
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321887498
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321887498
https://plusone.google.com/share?url=http://www.informit.com/title/9780321887498
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321887498
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321887498/Free-Sample-Chapter

Learning iOS
Design

The Addison-Wesley Learning Series is a collection of hands-on programming
guides that help you quickly learn a new technology or language so you can
apply what you’ve learned right away.

Each title comes with sample code for the application or applications built in
the text. This code is fully annotated and can be reused in your own projects
with no strings attached. Many chapters end with a series of exercises to
encourage you to reexamine what you have just learned, and to tweak or
adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and
leave you with the ability to walk off and build your own application and apply
the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

Addison-Wesley Learning Series

Learning iOS
Design

A Hands-On Guide for
Programmers and Designers

William Van Hecke

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial
 capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Van Hecke, William.
 Learning iOS design : a hands-on guide for programmers and designers /
William Van Hecke.
 pages cm
 Includes index.
 ISBN-13: 978-0-321-88749-8 (pbk. : alk. paper)
 ISBN-10: 0-321-88749-2 (pbk. : alk.paper)
 1. iOS (Electronic resource) 2. Application software—Development. 3. iPad
(Computer)—Programming. 4. iPhone (Smartphone)—Programming. I. Title.
 QA76.774.I67V36 2013
 004.167—dc23
 2013010043

Copyright © 2013 William Van Hecke

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc.,
 Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or
you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-88749-8
ISBN-10: 0-321-88749-2
Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.
First printing, June 2013

Editor-in-Chief
Mark L. Taub

Senior Acquisitions
Editor
Trina MacDonald

Development
Editor
Sheri Cain

Managing Editor
John Fuller

Full-Service
Production
Manager
Julie B. Nahil

Project Editor
Anna Popick

Copy Editor
Betsy Hardinger

Indexer
Jack Lewis

Proofreader
Anna Popick

Technical
Reviewers
Jon Bell
Jim Correia
Lukas Mathis

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
Rob Mauhar

❖

To Buzz and CeeCee; Touichi and Risako

❖

This page intentionally left blank

Contents at a Glance

 Foreword xix

 Preface xxi

 Acknowledgments xxix

 About the Author xxxi

I Turning Ideas into Software 1

 1 The Outlines 3

 2 The Sketches 15

 3 Getting Familiar with iOS 31

 4 The Wireframes 55

 5 The Mockups 81

 6 The Prototypes 111

 7 Going Cross-Platform 127

II Principles 143

 8 The Graceful Interface 145

 9 The Gracious Interface 167

 10 The Whole Experience 195

III Finding Equilibrium 221

 11 Focused and Versatile 223

 12 Quiet and Forthcoming 237

 13 Friction and Guidance 255

 14 Consistency and Specialization 271

 15 Rich and Plain 285

 Index 303

Supplement: The Learning iOS Design Companion 319

This page intentionally left blank

Contents

 Foreword xix

 Preface xxi

 Acknowledgments xxix

 About the Author xxxi

I Turning Ideas into Software 1

 1 The Outlines 3

The Process: Nonlinear but Orderly 3

Writing about Software 4

The Mental Sweep 6

More Inputs to Outlining 7

Outlining Requirements 8

Introducing SnackLog 8

Antirequirements 9

Define a Platform 10

Listing Ramifications 11

iOS and Featurefulness 11

Reducing Problems 12

Outlining Architecture 13

Your Outline Is Your To-Do List 14

Summary 14

Exercises 14

 2 The Sketches 15

Thinking by Drawing 15

Design Happens in Conversations 16

Tools for Sketching 18

Sketches Are Sketchy 19

When to Sketch 20

Using Precedents 21

Playing Devil’s Advocate 22

Sketching Interfaces 22

Sketching Interactions 24

Contentsx

Sketching Workflows 26

Summary 29

Exercises 29

 3 Getting Familiar with iOS 31

Navigation: Screen to Screen 31

Navigation Controller 31

Split View 34

Tabs 35

Segmented-Controls-as-Tabs 36

Multiple Personalities 36

Modal View 37

Popover 39

Custom Navigation 39

Advice on the Standard Elements 41

Bars 41

Content Views 43

Alerts 46

Action Sheets 47

Standard Controls 48

Custom Controls 52

Summary 53

Exercises 53

 4 The Wireframes 55

Thinking in Screens 56

Thinking in Points 57

Optical Measurements 57

Measuring Text Optically 59

Measuring Images and Controls Optically 60

Techniques for Measuring 60

Tools for Wireframing 61

Principles of Layout 63

Unity Is the Goal 63

Visual Weight 64

Similarity and Distinction 65

Proximity and Distance 66

Contents xi

Alignment 66

Rhythm 68

Margin and Padding 70

Balance 71

Understatement 71

Typography 72

Layout: A Place for Everything… 74

Content and Controls 74

Thinking in Layers 74

Controls in Content Areas 75

Information Density 75

Dimensionality 76

Orientation on iPhone 77

Orientation on iPad 78

The Worst-Case Height-Compression Scenario 78

Summary 79

Exercises 80

 5 The Mockups 81

When to Mock Up 81

Styling: The Apparent Design Discipline 82

Rendering 83

Communication 84

Tastefulness 84

Mockup Tools 85

Color: Thinking in HSB 86

Good Old RGB 86

Introducing HSB 87

Get Serious about Value 88

Contrast: Thinking in Figure/Ground Relationships 89

Styling for Good Contrast and Visual Weight 89

Good Backgrounds 92

Transparency 93

1+1 = 3 94

Presenting Image Content 95

Evaluating Contrast: Posterize It 95

Contrast Examples 98

Contentsxii

Table Cells 98

Action Sheet Buttons 99

iBooks Page Metadata 99

Birth of a Button 100

Step 0: Set Up the Canvas 100

Step 1: Create a Shape Layer 101

Step 2: Choose a Fill Color 102

Step 3: Apply a Gradient 102

Step 4: Add a Stroke 103

Step 5: Add a Bevel 104

Step 6: Add Texture 105

Step 7: Add an Underhighlight 105

Step 8: Add Contents 106

Onward 106

Mockup Assembly 106

Resizable Images 107

Retina Resources 107

Designing for Layers 108

Summary 109

Exercises 109

 6 The Prototypes 111

Test on the Device 111

Kinds of Prototypes 112

Paper Prototypes 112

Wizard of Oz Prototypes 114

Motion Sketches 115

Preemptive Demo Videos 117

Interactive Prototypes 118

Proof-of-Concept Software 121

Why Do Usability Testing? 123

How to Do Usability Testing 124

Summary 126

Exercises 126

 7 Going Cross-Platform 127

Platform Catalog 127

Standalone, Mini, and Companion Apps 129

Contents xiii

Start from Scratch 130

Back to the Outlines 130

Case Study: Apple Mail 131

Mac OS X Leopard 131

iPhone 134

iPad 138

Back to the Mac 140

Summary 141

Exercises 142

II Principles 143

 8 The Graceful Interface 145

Suspension of Disbelief 145

The Moment of Uncertainty 146

Instantaneous Feedback 147

Gracefulness through Layout 149

Six Reliable Gestures 151

The Sandwich Problem 153

Exotic Gestures as Shortcuts 154

Realistic Gestures 154

Hysteresis 155

Thresholds 157

Generous Taps 158

Meaningful Animation 161

Making SnackLog Graceful 163

Summary 164

Exercises 164

 9 The Gracious Interface 167

Denotation and Connotation 167

Cues 168

Imagery 171

Text 172

Writing: The Secret Design Discipline 174

Redundant Messages 176

Communication Breakdown 176

Guidance at the Point of Need 177

Contentsxiv

Visible Status 178

Contextual Status 179

Invisible Status 180

Adaptation 180

Learning 182

Resourcefulness 182

The Sense of Adventure 183

Capability 184

Defensive Design 185

Forgiveness 187

Undo 187

Manual Undo 189

Confirmation 190

Making SnackLog Gracious 191

Summary 193

Exercises 193

 10 The Whole Experience 195

Serve the Soul 197

Conveying Capability 198

The Name 199

The Icon 199

Launch Images 202

The App Store Listing 202

The Price 205

Documentation 206

Comprehensive Documentation 206

Problem-Solving Documentation 207

Tutorials 208

Release Notes 209

Characteristics of Good Documentation 210

Support 211

Localization 211

Accessibility 213

VoiceOver 214

AssistiveTouch 214

Ethos 215

Contents xv

Respect 215

Respect for Time and Attention 215

Respect for Data 216

Speaking of Betrayals of Trust… 216

Summary 219

Exercises 219

III Finding Equilibrium 221

 11 Focused and Versatile 223

Debunking “Simple” and “Complex” 223

The Focused Design 224

Focused Apps Are About Real-World Goals 225

iOS Loves Focus 225

Massacre Features 225

Consolidate Functionality 226

Save It for Later 227

Scaling Back 227

Focusing SnackLog: Labeling 228

Scaling Back on Labeling 230

The Versatile Design 230

Versatile Apps: Bring Your Own Goals 231

iOS Loves Versatility 231

When to Go Versatile 233

How to Go Versatile 233

Triangulation 233

Pattern Recognition 235

Finding the Boundaries 235

Summary 236

Exercises 236

 12 Quiet and Forthcoming 237

Adjacent in Space 238

Stacked in Time 239

Progressive Disclosure 240

Group by Meaning, Arrange by Importance 242

Promotion and Demotion 243

Contentsxvi

Splitting the Difference 246

iOS Loves Context 246

Hide, Don’t Disable 248

Disappear 248

Taps Are Cheap 250

Loud and Clear 250

Making SnackLog Quiet 251

Making SnackLog Forthcoming 252

Summary 253

Exercises 253

 13 Friction and Guidance 255

The Difficulty Curve 255

Experience Weight 257

Why Add Friction? 257

How to Add Friction 258

Unintended Friction 259

Don’t Expose Underlying Mechanisms 261

Streamline Input 261

Guidance 262

Zero Options 262

One Option 263

Guidance among More Options 264

Sensible Defaults 266

The Blank Slate 267

Templates 268

Presets 268

Summary 270

Exercises 270

 14 Consistency and Specialization 271

How It All Works Out 271

Getting the Most Out of the HIG 272

The Consistent Design 273

Precedents, Motifs, Patterns, Shorthands 275

Avoiding Cargo Cult Design 277

Contents xvii

The Specialized Design 278

Harmless Distinctiveness 279

Conscientious Divergence 279

One Free Novel Interaction 280

Novelty Is Hard 282

Summary 283

Exercises 284

 15 Rich and Plain 285

Color versus Monochrome 286

Using Hue 286

Using Saturation 288

Using Brightness 289

Depth versus Flatness 290

Lighting 291

Extremes of Flatness and Depth 294

Realism versus Digitality 296

Texture and Tactility 297

Metaphor 297

Ornamentation 298

Simulation 299

Take It Easy 301

Summary 301

Exercises 302

 Index 303

 Supplement: The Learning iOS Design Companion 319

This page intentionally left blank

Foreword

When Apple introduced Mac OS X, Mac users’ feelings were ambivalent. Sure, this
looked like a fantastic operating system, but a huge part of what made the Mac unique
was its software. Photoshop, Illustrator, Claris Works, MacPaint—these were the rea-
sons we used Macs. And with Mac OS X, all of these applications effectively stopped
working. There were few native applications for Mac OS X, and fewer still that
weren’t horrible.

There was, however, one company that consistently developed fantastic software
for Mac OS X right from the start. And they kept doing it. For the last decade, The
Omni Group has been a sure bet for quality products. Applications like OmniGraff le
combine ease of use and sheer power in a way that is unique, yet feels completely
natural. On the one hand, these applications are incredibly accessible. It takes very
little to create fantastic output. On the other hand, they have great depth. Recently,
the Omni Group has expanded their reach to iOS, and they’ve done something almost
nobody else outside of Apple has achieved: they’ve brought their applications to the
iPad in a way that makes them feel native to these portable touchscreen devices, but
doesn’t diminish their power and depth.

I’m probably not the only designer who has more than once looked at applications
like OmniOutliner, OmniGraff le, or the somewhat exorbitantly named OmniGraph-
Sketcher and wondered to themselves: How do they do it? How do these people con-
sistently create software that seems to effortlessly present incredibly powerful features
in a way that is easily accessible, and a pleasure to use? And even more puzzling, how
do they manage to achieve this feat on iOS, a platform famous for its abundance of
shallow, poorly designed, one-trick-pony, cash-grab apps?

Well, today’s your lucky day, because you’re holding the answer to this question in
your hands. My friend Bill, who wrote this book, happens to be Omni’s User Experi-
ence Lead. And he’s lifting his kilt, just for you.

I first consciously heard of Bill when he became Internet-famous for talking about
Omni’s 1:1 replicas of iPads made from wood, cardboard, Plexiglas, and 3-D-printed
parts. Who would want to make 1:1 replicas of iPads? Well, Apple had announced
the iPad, but had not yet started shipping it. Having already started designing apps for
the iPad, Bill’s team needed to get an idea for how these apps would feel on an actual
device. At this point, less dedicated people would just postpone the whole thing for a
few months. But not Bill’s team. They went ahead and made their own iPads.

Most UX designers eventually manage to come up with a design that works well.
It’s this kind of relentless dedication to detail, this kind of work ethic, though, that is

Forewordxx

the difference between a designer who can come up with a good design, and one who
will come up with a mind-blowingly awesome design.

But there’s something else that makes Bill unique among his peers. Any designer
will tell you that their goal is to make the product they’re working on beautiful and
easy to use and efficient and pleasant. But Bill goes one step further. His goal isn’t just
to make apps user-friendly, but to touch the user’s soul, to help people make more
beautiful things, be more successful, and be happier. In one of his presentations, he
recounts how one man converted his classic VW Beetle into an electric car with the
help of OmniGraff le. To Bill, that’s the ultimate goal. Software design isn’t just about
making an application easy to use, it’s about making the application have a positive
impact on people’s lives. It’s about helping people be better.

This book contains everything you need to know to create awesome, life-altering
applications, just like Omni’s. While it’s targeted at iOS designers, you’re going to
learn a lot from reading this book regardless of the platform you design for. I pride
myself on knowing a lot about design, but when reading this book, I probably didn’t
encounter a single page that didn’t offer at least one interesting idea, new concept, or
clever design technique. From learning how to make your application more forgiving
to a section on how pricing inf luences how people perceive your app (yep, its price is
part of the app’s design), you’re in for a treat.

Even better, this book doesn’t just offer invaluable content that will forever change
the way you design applications, it’s also written in a way that prevents you from put-
ting it down. So grab a hot cup of cocoa, put on your favorite music, and settle down
into your most comfortable chair, my friend, because you’ll be sitting here, staring at
this book, for quite a while.

Enjoy it.

—Lukas Mathis, ignorethecode.net; author of Designed for Use: Create Usable Interfaces
for Applications and the Web (Pragmatic Bookshelf, 2011)
March 2013

Preface

Hello
It took a while for the world to notice, but design really matters.

A perfect story of the power of design can be found by traveling back to April 2007
to eavesdrop on a chat with Microsoft CEO Steve Ballmer. Apple’s Steve Jobs had
announced the iPhone that January, and everyone had had a good while to process
the announcement and decide what they thought of it. Ballmer, in an interview with
USA Today, opined on the iPhone’s chances to make a dent in the well-populated
smartphone market: “There’s no chance that the iPhone is going to get any significant
market share. No chance.”

I’m not normally one to indulge in schadenfreude, but the wrongness of that pre-
diction is too illuminating to ignore. iPhone went on to become an icon that rede-
fined the public’s concept of what a mobile phone is, and nearly every “smartphone”
on the market takes inspiration from it. Its sibling, iPad, finally popularized the stag-
nant tablet concept and is on its way to replacing the traditional desktop or notebook
computer for millions. iPhone and iPad each own about half of the market share of
their respective markets. The App Store model has redefined the way people buy soft-
ware and has paid out more than $7 billion to third-party developers. As of the begin-
ning of 2013, nearly half a billion iOS devices have been sold.

Why? How did iOS become so successful? What did Ballmer and the rest of the
early-2007 iPhone scoffers miss? Ask any authority who followed the story closely
to pick one word to describe Apple’s advantage, and they’ll say design. (Some cynics
might say marketing, but they’re wrong.)

iOS is arguably the first technology platform to truly put design first. Instead of the
puffed-up and bulleted feature lists, the contortions to accommodate legacy systems,
the assumptions about how a phone was supposed to look or behave, and the obsession
with being the first to the market, iPhone prioritized beauty, responsiveness, and fun.
(And anything that Apple couldn’t get just right was omitted until they could.) This
view of design is about creating happiness, about cultivating a relationship with the
user, about imagining the most positive user experience possible and then doing what-
ever it takes to produce that imagined outcome.

You could almost say that iPhone refused to compromise on its user experience. But
as this book argues, all designs are compromises. Surely, countless tradeoffs and tough
decisions were made in the process of bringing iOS into being. But what’s important is

Prefacexxii

that wherever possible, those compromises erred on the side of paying attention to detail,
abandoning conventional wisdom, and putting in more work to make users happier.

Not solely because of Apple and iOS, but in large part, the world is learning that
design counts. It’s getting harder to compete without good design. It’s harder to find
good designers than it is to find good engineers (and that itself is pretty hard). Well-
designed software really can improve people’s lives, help them be more productive, and
yes, make them happy. This book aims to give you the practices, examples, and advice
you need to make it happen yourself.

You’re a Designer
Design is deciding how a thing should be. In every act of design, that decision- making
is done to accommodate constraints and to satisfy the needs of some audience or
“user.” The needs are paramount, because an artifact that doesn’t do anything useful
for anyone is more a piece of art than a design. And the constraints are your friends,
because they narrow the space of possibilities, making your job much more approach-
able. Almost everything you think about and do as a designer can be narrowed down
to these concepts: How are you serving the needs of the user? How are you working
within the constraints?

Everything artificial was designed by someone. Most of the time you don’t think
about the people who decided how the things around us should be: the height of a
chair’s seat, the shape of a battery charger, the hem of a blanket. That blissful igno-
rance is the goal of many designers. If people don’t think about the design of an
object, the designer has probably done a fantastic job. More than two thousand years
ago, Ovid said it like this: Si latet, ars prodest. If the art is concealed, it succeeds. That’s
one to print and hang on your wall.

If you’ve ever made something, then you’re a designer. Ever built a couch fort?
Arranged some f lowers in a vase? Sketched a map for someone? Whether or not
you thought very much about it, whether or not you followed well-researched prin-
ciples, you designed that thing. That’s design, with a lowercase d. You could take that
approach to designing an iOS app, but the result isn’t likely to be compelling. Books
like this one aim to help you do Design with a capital D. That means absorbing and
imagining as much as you can about how things could be better. It means making the
smartest, most informed decisions possible about the needs and constraints involved.
And it almost always means creating plans, sketches, and models along the way to a
final product. The good news is that you can get there from here, one step at a time,
always experimenting and learning as you go.

Meet the Book
This book introduces and explores the topic of designing iOS apps, even if you don’t
consider yourself a designer (yet). Even if you’ve never taken an art or design course,
if you consider yourself to have more of an engineering or analytical mind than a

Preface xxiii

creative one, or if you’re mystified by what actually goes on in the process of design,
you’re very welcome here.

At conferences, I’ve presented the topic of design to a largely engineering-minded
audience. Lots of programmers know that they should care about design, but the prac-
tice of design seems from the outside to be mysterious or even arbitrary, leaving them
disillusioned or apathetic about it. But after some demystification and conversation,
some folks have told me that they finally get why design is important and how they
can think about it systematically.

This book presents the art and science of design in an accessible, sensible way.
Part I: Turning Ideas into Software steps through the phases of design, turn-

ing a vague idea for an app into a fully f leshed-out design. It goes from outlines to
sketches to wireframes to mockups and prototypes. Each step of the way, you’ll find
advice about how to think carefully, critically, and cleverly about your project. Each
chapter concludes with exercises conceived to encourage you in planning the design of
your own app. Part I includes the following seven chapters.

n Chapter 1: The Outlines—This is all about planning, writing things down,
and making sense of your app idea. You’ll learn about the ways you can use
structured thinking and writing to figure out what your app is about and stay on
track throughout the project.

n Chapter 2: The Sketches—Sketching is the central activity of design. It’s all
about getting ideas out there and seeing where they lead. You can never know
the merits of an idea until it’s on a page, a whiteboard, or a screen. This chapter
will help you sketch with the right blend of adventurousness and discipline.

n Chapter 3: Getting Familiar with iOS—Understanding the constraints of
the platform is crucial. iOS offers a versatile kit for building interfaces and expe-
riences; you should know it well enough to decide when to take advantage of it
and when to diverge from it.

n Chapter 4: The Wireframes—Eventually you need to turn your sketches
into precise, screen-by-screen definitions of how the app should be organized.
A wireframe is a document that specifies layout and navigation without getting
bogged down in pixel-perfect styling just yet.

n Chapter 5: The Mockups—It’s not the only concern of design by far, but it
matters what your application looks like on the surface. In this chapter you’ll
break out the graphics apps and learn how to assemble beautiful assets into a
convincing, pleasant whole.

n Chapter 6: The Prototypes—Sometimes a static drawing of an interface is not
enough. You need to know how it behaves. This chapter is all about simulating
and testing the interactions that make up your app.

n Chapter 7: Going Cross-Platform—Plenty of apps exist not as completely
standalone experiences, but as parts of a multiplatform suite. This chapter
explores the concerns you’ll need to deal with if you want to build the same app

Prefacexxiv

for more than one device. It uses an app that appears on iPhone, iPad, and Mac
as a case study to illustrate how a single idea can wear three different interfaces.

Part II: Principles presents universal principles that apply to any design and that
you should follow if you want to craft an effective app that people will appreciate and
even love. To make sure your app works on every level, each chapter in this part is
based on one of the three levels of cognition identified by psychologist Donald Nor-
man. Many of these principles are applicable to all software design, but here they’re
tailored to the strengths and challenges of iOS. The exercises for each chapter present
sample situations to help you learn how to apply each principle.

n Chapter 8: The Graceful Interface—This chapter examines the visceral level
of cognition, which relates to the way people feel from instant to instant as they
interact with software. It deals with things like touch input, timing, and feel.
Most of the concerns here are subconscious. Users may not notice them, but they
subtly affect how pleasant the software is to use.

n Chapter 9: The Gracious Interface—Here you’ll learn about concerns at the
behavioral level of cognition. That means how users make decisions moment to
moment and how the app communicates possibilities and status. The chapter also
discusses how the app can encourage a sense of adventure so that users feel wel-
come and safe as they explore its possibilities.

n Chapter 10: The Whole Experience—The biggest, vaguest, most intan-
gible, and most important level of cognition is the ref lective level. This chapter
explains how people feel about your app in the long run: whether they rate it
well, whether they recommend it to friends, whether they respect you as a devel-
oper, and whether they’d buy from you again. Happiness is the ultimate goal.

Part III: Finding Equilibrium is meant to function as a reference, inspiration,
and exploratory guide to the various decision points you may encounter in design-
ing an app. It embraces the concept that all designs are compromises and that many
decisions have no single correct answer. This means that many answers to the same
design problem can coexist, and every design, no matter how unfashionable or unso-
phisticated it seems, has something to teach (a fact that many critics seem to forget).
You can look at each chapter’s opposed approaches as a sort of slider control, with a
continuum of answers between the extremes at either end. For each challenge, a smart
designer like you should seek an answer that works best for your app’s unique philoso-
phy. Over time you may find yourself preferring one side of a given slider over the
other. Maybe you like to err on the side of focused rather than versatile. Or perhaps
you’d rather seek the Aristotelian golden mean, straight down the middle. That’s great.
That’s what it means to have a style. Each type of decision is illustrated by examples of
different solutions to the same problem, depending on the angle you prefer. The exer-
cises encourage you to find your own favorite solution for a situation that may have
several possible answers.

Preface xxv

n Chapter 11: Focused and Versatile—One of the biggest decisions you need
to make about your app is its scope. Do you want to do one thing f lawlessly, or
many things competently? What’s feasible depends on the resources available and
your ability to be aggressive about defining what you expect of the project.

n Chapter 12: Quiet and Forthcoming—When most people talk about a
design being “simple,” what they usually mean is that it’s in good order and pres-
ents an understandable amount of information and control at once. In contrast,
designs feel empowering when they simultaneously present as much as possible.
This chapter describes how to control the apparent simplicity of your app from
screen to screen, depending on the emotion you prefer to evoke.

n Chapter 13: Friction and Guidance—Part of the job of a software designer
is to make many things possible, but also to gently guide people through an
experience. This chapter is about the ways an interface puts down grooves that
encourage a user to move this way or that way next, or slow down before taking
the next step.

n Chapter 14: Consistency and Specialization—Differentiating yourself from
the rest of the apps out there is both an advantage and a risk. When you think
of well-designed apps, the examples that come readily to mind are the ones
that break from convention and get away with it. But respecting the established
guidelines is usually the wiser path. This chapter will help you decide when to
stick to the script and when to diverge.

n Chapter 15: Rich and Plain—The visual styling of an app is the most con-
spicuous outward manifestation of its design. Independent of its functionality,
your app can look extravagant or subdued, lifelike or digital. This chapter will
help you tune the depth, color, and realism of your interface to set its tone and
personality.

Meet the Web Site
The web site for this book is http://learningiosdesign.com. There, you will find
resources such as the Photoshop and OmniGraff le source files for the examples given
throughout the book. You can also offer feedback about the book and find updates of
its content.

You and Your Team
You can follow this book as you work on your own app idea, especially by working
through the practices described in Part I. Even if you don’t yet have an app project,
or if your app already exists and you want to revise it for a new version, you should
be able to benefit from the book. Parts II and III are compatible with dipping into for
inspiration or advice.

http://learningiosdesign.com

Prefacexxvi

From time to time, the book may talk as if you are a designer working with a
software engineer or a team of engineers. That of course doesn’t need to be the case.
Maybe you’re one of that noble species, the lone programmer/designer hybrid. Maybe
you’re a product manager looking to understand design better. It doesn’t really matter;
whenever this book mentions “your engineers,” it’s fine if that means you!

Art/Science Duality
Design is full of what are called “wicked problems”: they’re difficult to define, they’re
impossible to come up with definitive answers to, and they’re never finished. That’s
likely to spook some people, but it’s also what makes design so much fun. You never
know what you’re going to get. There’s always some way to improve on your work.
Everything is a matter of taste, and yet some answers are unequivocally better than
others. There’s no recipe, and yet there are morsels of wisdom and inspiration to be
found everywhere.

Design is an art. And it’s a science. And it’s neither. Steve Jobs liked to say that what
Apple does falls “at the intersection of technology and liberal arts.” You may find your
team arguing about how to make a decision. One side is showing numbers; usability
test metrics clearly indicate that design A is more efficient than design B. The other
side is arguing that based on aesthetics, design A just doesn’t feel right. Who wins?
Maybe it’s one of those two options; maybe it’s a third, new option. Figuring it out is
part of the thrill of design.

You could take a completely scientific approach, refusing to budge on anything
until you’ve run a statistically significant study. You could also take a completely artis-
tic approach, following your muse and composing your personal magnum opus in app
form. But you won’t get very far with either one alone—data and heart both matter.

Inspiration Is Everywhere
This book can give you specific advice on specific topics and situations that occur
often in the work of designing apps for iOS. But your growth as a designer depends,
more than anything else, on your willingness to absorb inspiration from around you.
Pay attention to all kinds of design: graphics, interiors, architecture, games, anything.
Read widely: psychology, art, history, biology, everything. The most seemingly irrel-
evant knowledge may end up informing your work as a designer someday, in some
oblique way. If you do nothing else, use lots of well-regarded apps and think about
what makes them successful. The more you examine and ponder great work of all
kinds, the better you’ll get at it yourself.

Again, growing as a designer is a lifelong journey, but here is a necessarily short list
of reading material to get you started. Some of these books are mentioned again in the
chapters where they’re especially relevant.

Preface xxvii

n Universal Principles of Design by William Lidwell, Kritina Holden, and Jill
Butler—A delightful collection of 125 concepts that apply to all categories of
design. Very compatible with f lipping through for quick inspiration.

n The Elements of Typographic Style by Robert Bringhurst—One of the most care-
fully built, wisdom-packed books of all time. Yes, Bringhurst will make you
knowledgeable about type, but he will also inspire you with his methodical,
tasteful approach to design in general.

n Visual Explanations: Images and Quantities, Evidence and Narrative by Edward
Tufte—Or any of his four main books, really. Tufte tends to lean toward infor-
mation design for print, but the principles he espouses should be useful to any-
one who has any interest in making things understandable and beautiful.

n Designing Interactions by Bill Moggridge—This book is a collection of captivat-
ing interviews (included on DVD) from original Macintosh software lead Bill
Atkinson to legendary game designer Will Wright.

n Sketching User Experiences: Getting the Design Right and the Right Design by Bill
Buxton—Much of the reverence that technology designers have for the practice
of sketching can be credited to Buxton. Sketching is good for your brain and
good for your work.

n The Design of Everyday Things by Donald Norman—A classic that has stood the
test of time. This book pioneered the dissatisfaction with poorly designed expe-
riences and set the stage for a generation of designers to make the world a more
agreeable place to live in.

n Handbook of Usability Testing: How to Plan, Design, and Conduct Effective Tests by
Jeffrey Rubin and Dana Chisnell—If you’re interested in the scientific side of
design, this is an excellent walkthrough of the procedures and principles of col-
lecting data from a sample of the target audience using your app.

n “The Nature of Design Practice and Implications for Interaction Design
Research” by Erik Stolterman—A brief academic paper, chock full of references
to other inf luential papers, about what design really is and how to deal with its
complexity.

n Basic Visual Concepts and Principles: For Artists, Architects and Designers by Charles
Wallschlaeger and Cynthia Busic-Snyder—A solid grounding in perception and
the construction of visuals.

n Revolution in the Valley: The Insanely Great Story of How the Mac Was Made by
Andy Hertzfeld—This book is a treasure trove of firsthand anecdotes about the
culture and creativity surrounding the development of the original Macintosh. If
it doesn’t get you excited about making technology, nothing will.

n How the Mind Works by Steven Pinker—A comprehensive tour of what we
understand so far about human psychology. Not directly related to software
design, but a surprising source of insight into how people think and why design
principles work the way they do.

Prefacexxviii

n Thinking, Fast and Slow by Daniel Kahneman—An up-to-date psychology book
about how people pay attention, judge situations, and make decisions. Another
surprisingly enlightening read for science-minded designers.

And here are a couple of things that aren’t books.
n “Inventing on Principle”—A one-hour talk by Bret Victor, interaction designer

for iPad (among many other impressive accomplishments). Victor has among the
most thoughtful and inspirational minds in technology design, and this talk is a
fantastic place to start learning from him. This is the sort of talk you’ll want to
come back to once a year or so.

n Ideo Method Cards—A deck of cards from the legendary product design firm
Ideo. Each card describes a “user-centered” practice that can be of use to design-
ers working through an interesting problem. You can casually f lip through the
deck for ideas, assemble a mini-deck for a given project, or make up your own
ways of getting the most out of them.

n Oblique Strategies—A set of cards, each bearing an enigmatic phrase meant to
motivate and give direction to a person facing a creative problem. They were
originally created by Brian Eno and Peter Schmidt for musicians, but creative
people of all kinds have since found them useful for breaking through difficulty.
The cards themselves are rare, but plenty of web- and app-based editions are
available.

I found these resources helpful. Hopefully some of them will be at home in your
own garden of inf luences and inspirations.

Now…let’s make some software.

Acknowledgments

Turns out writing a book is hard! Mountains of thanks go out to all these people for
making it possible.

Thanks to Barbara Gavin and Erica Sadun for taking a chance on a shy and inexperi-
enced speaker and inviting me to speak at the Voices That Matter series of conferences,
which eventually led to this book project. Thanks to Trina MacDonald at Addison-
Wesley for guiding me through the writing process. Thanks to Betsy Hardinger for
editing that makes me seem like a much better writer than I am. Monumental thanks
to my review board: Lukas Mathis, Jim Correia, and Jon Bell; my trust in their wisdom
is the reason I’ve been able to maintain confidence in this endeavor.

Thanks to all my colleagues at the Omni Group for giving me the chance to make
good software and talk to brilliant people all day as my job. Every day, I feel as if I’m
getting away with something. Thanks to my instructors and classmates at the Univer-
sity of Washington’s Human-Centered Design & Engineering professional M.S. pro-
gram, where I’ve finally been able to get an academic grounding in the thing I’ve been
doing all this time. Thanks to my dear friends in #rosa for their endless support and
encouragement.

Admiration and thanks go to Yasunori Mitsuda, whose Xenogears albums provided
the soundtrack that kept me pushing keys. Thanks, too, to the various coffee shops of
Seattle, for providing the perfect writing environment.

It seems as if every book’s acknowledgments page mentions family members’
patience; now I understand why. Copious gratitude and love to my wife, Hiroko, for
her steadfast patience and support. Ultimately, everything is thanks to her.

This page intentionally left blank

About the Author

Since 2004, William Van Hecke has been User Experience Lead at the Omni
Group, one of the world’s most accomplished and affable Mac and iOS developers. Bill
got his start designing software by reverse-engineering his older brother’s text adven-
tures in MS Basic on the Macintosh Plus, and then graduated to creating HyperCard
games to mail to his cousins on f loppy disk.

Bill’s primary hobby is hobby-collecting: reading fiction and science; playing bass
guitar; appreciating, translating, and developing niche video games; studying the Japa-
nese language; mastering tabletop gaming; and exploring 3-D modeling. You can find
Bill on Twitter, prattling on about these topics and more (@fet).

This page intentionally left blank

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do bet-
ter, what areas you’d like to see us publish in, and any other words of wisdom you’re
willing to pass our way.

You can email or write me directly to let us know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail we receive, we might not be able to reply to every
message.

When you write, please be sure to include this book’s title and author as well as
your name and phone or email address.

Email: trina.macdonald@pearson.com

Mail: Reader Feedback
 Addison-Wesley Learning Series
 800 East 96th Street
 Indianapolis, IN 46240 USA

Reader Services
Visit our web site and register this book at informit.com/register for convenient
access to any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

This page intentionally left blank

4
The Wireframes

In the grand hierarchy of pictures of imaginary software, wireframes exist somewhere
between sketches and mockups. Their purpose is to nail down the details that sketches
leave out: what exactly exists on each screen and how it all fits together—the geography of
an app. A sketch is casual and usually disposable; you might attach a sketch to a design
document as a reminder of the conversation that led to a decision, but the sketch prob-
ably doesn’t represent a definitive understanding of how the software should end up.
Wireframes, on the other hand, document some details of how the app should be
built. (See Figure 4.1 for an illustration of the difference.)

Figure 4.1 A sketch (left) becomes a wireframe, gaining detail about the
screen elements and their layout.

Chapter 4 The Wireframes56

The distinction is not always black and white. Some wireframes are kind of sketchy,
and some sketches are kind of wireframey. But generally speaking, wireframes have the
following unique characteristics as compared with other types of software design images.

n A wireframe includes all the elements that should go on the final screen; a sketch
probably omits some.

n A wireframe delineates the type, position, and size of elements to a reasonably
final degree; a sketch can drastically distort them.

n A wireframe doesn’t specify an exact, pixel-perfect rendering of what ele-
ments should look like; that’s what mockups are for. Instead, it uses a minimal
rendering—usually plain, f lat shapes, lines, and text.

n A wireframe may give some indication of the relative visual weight of elements
on the screen, usually by differences in shading.

A wireframe may or may not be interactive; if it is, it’s also a prototype.

Thinking in Screens
iOS apps are made of screens. Sure, they also include animations, audio cues, notifi-
cations, and other bits that can’t be represented by static screens. And some apps do a
lot of work behind the scenes that never becomes visible. But the basic constituent unit
of any app, from a user’s perspective, is the screen. The login screen, the home screen,
the item detail screen, the archive screen, the user info screen, the settings screen, the
share screen—these are the places users visit as they journey around your app. Each
screen might have a number of states it can be in as well as a number of elements it
might display depending on the situation.

Many interface screens are bigger than the physical size of the hardware display
they appear on and can be scrolled or zoomed around. Don’t confuse these different
types of screens. (In this book, “screen” always means a place in the app, and not the
glass on the front of the device.) On iPad, popovers give you a roughly iPhone-sized
mini-display within a display, which can move between its own set of screens. All
these screens and the states they move through are the skeleton of an app; you need to
get them right to get the app right. (By now, it’s normal if “screen” no longer looks
like a word to you.)

Thanks to outlining, sketching, meeting, arguing, and deep thinking, you’ve got a
good idea of all the screens that need to go into your app, and it’s time to plot out pre-
cisely what each one should contain and how it should be organized. You need wire-
framing. Making yourself draw out every button, switch, field, and label will almost
certainly raise some questions.

n How are we going to fit all six of these features onto one toolbar?
n Should this feature really be exposed at this point in the app?

Optical Measurements 57

n Do we want to present this option up front, or tuck it away somewhere else?
n Is this the right place to diverge from Apple’s guidelines and precedents?
n Should these controls really be separate, or can we combine them?
n Oh dear, what have we gotten ourselves into? Is this even the app we should be

making?

And so on. That’s fine! That is part of the process. You might need to do more
sketching or hold discussions to figure out how you want to answer those questions.
Part III of this book is all about finding your own answers to those questions that
don’t have definitive solutions, so you may want to peruse it when you run into one.
Get excited: this step—figuring out how you want to answer the questions that come
up during wireframing—is when you develop the unique personality of your app.

Thinking in Points
We’re used to dealing with pixels when measuring interface elements. And for a cou-
ple of years, only two sets of pixel dimensions mattered to iOS designers: the iPhone
(at 320×480) and the iPad (at 768×1,024). As of the introduction of the iPhone 4 and
the third-generation iPad, you now need to think about both standard and Retina res-
olutions, for both device families. Thankfully, the Retina resolutions are evenly divis-
ible by the standard ones: one standard pixel split in half, in both dimensions, produces
four Retina pixels. So you can simply multiply pixel distances by 2 and carry on.

But for the most part, you shouldn’t be thinking in pixels until you get to the
mockup stage and start creating production graphics. For wireframes, you should be
thinking in points. The point comes from typography and publishing, where it has
held a variety of values over the centuries but which finally settled at 1 ⁄72 inches, the
“PostScript point.” The Apple point, though, is a new unit that indicates a resolution-
independent distance on the display. On a standard-resolution display, 1 point equals 1
pixel; on a Retina display, 1 point equals 2 pixels. (See Figure 4.2.)

The important thing to remember is that you shouldn’t take the presence of more
pixels to mean you can increase information density. Retina displays are not for cram-
ming numerous comically tiny elements onto a single screen. Rather, they’re for
increasing the fidelity of the same old identically sized elements. So Retina displays
shouldn’t even affect your wireframing process. Carry on designing for a screen that’s
320×480 or 768×1,024, and enjoy the extra sharpness and fidelity you’ll get if it
appears on a Retina display.

Optical Measurements
For wireframing, you’ll need to use an app that can lay out objects on a canvas, and
you’ll need to be able to measure their positions and their relationships to each other

Chapter 4 The Wireframes58

very precisely. But the measurements reported by Xcode and by various graphics
apps for a given object are sometimes at odds with each other, and are often at odds
with what your eyes actually see. This is because the actual visual edges of a given
object don’t necessarily coincide with the bounds of that object as understood by the
app displaying it. Objects have whitespace inside, or shadow effects dangling off of
them, or text ascenders and descenders, or other accoutrements that make it hard
for the software to know where the theoretical thing, as seen by a human, begins
and ends.

Bounds and Optical Edges Are Sometimes Equal
Sometimes, of course, the visual edges of an object do correspond with its bounds as
understood by the software drawing it. That’s the case for a rectangle without any of
those accoutrements like extra whitespace or shadows. For those objects, you can rely
on the measurements reported by the software.

Figure 4.2 The meaning of 1 point on the four iOS displays. The size of
a point can vary and can consist of 1 or 4 pixels.

Optical Measurements 59

To plan clean, professional layouts, you need to think optically and measure sizes
and distances optically. This often means ignoring what OmniGraff le, Photoshop,
Fireworks, and Xcode say about where things are and how big they are. Instead, use
the following techniques—and your eyes.

First, you need to know where to measure from. This is getting a bit into mockup
territory, because you’re going to see examples that include final effects. You aren’t
supposed to be worrying concretely about production graphics at this point, but you
need to know about these techniques while you’re wireframing.

Measuring Text Optically
Measuring text horizontally is easy: just look at the left- or rightmost point that’s
mostly opaque. If there’s a faint column of antialiased pixels or a few pixels protruding
from a round character shape (like an O), you can ignore them and move on to the
heavily filled pixels.

Effectively every typeface—and certainly Helvetica Neue, the standard font on
iOS—has its weight vertically delineated by its baseline and its cap height.

n The baseline is the horizontal line that the bottoms of most letters sit upon.
(The curves of rounded letters go below it just a bit, and the descenders of
certain letters protrude down beyond it.)

n The cap height is the line that the capital letters reach up to. (Some lowercase
letters also reach it.)

These two lines delineate the vertical bounds of text for the purposes of optically
aligning and measuring distances between elements. (See Figure 4.3.) Yes, this means
that the descent of letters like y and p, and the ascent of letters like Å and Ž, may pro-
trude outside the visual weight of the text and into the margins around it. Generous
margins should more than accommodate that. Tons of apps get this wrong, either by
including the descent or excluding the cap height in the weight of a text element. You
can do better.

Figure 4.3 Measuring text optically. The shaded area represents the
bounds of the text for the purposes of positioning and balance. Rounded

shapes and faint antialiasing can protrude slightly.

Chapter 4 The Wireframes60

Measuring Images and Controls Optically
Any control or image should have some sort of contrasting border or edge that defines
its optical boundary. (If the edges seem to blur into the surface that the element is rest-
ing on, then you have a contrast problem. See Chapter 5 for more about contrast.) The
boundary where the dark object transitions to the light background, or vice versa, is
the optical boundary of the object. (See Figure 4.4.)

Where to Measure From
Some designers measure from the inside of the boundary; others measure from the
outside. Is the edge of a table cell defined by the last white pixel inside, or the last
gray pixel of the border? It doesn’t matter which you pick, as long as you’re consistent.

Techniques for Measuring
When you need an exact pixel measurement, here are some ways you can get it.

n Zoom in really close—On your Mac, go to the Accessibility pane of System
Preferences and turn on the systemwide zoom. Turn off image smoothing,
because you want to see those pixels nice and chunky. Now you can use the
keyboard commands or the modified scroll gesture to zoom way the heck in
on your designs and count the pixels yourself. Lots of times this is the quick-
est way to check on very small distances, but it gets tedious and error-prone at
around 16 pixels. On iOS, the accessibility zoom always has blurry smoothing
applied—you can’t turn it off. You can work around that limitation with the app
Screenshot Journal, which is intended for designers and developers, so it has a
nice, chunky zoom.

Figure 4.4 Measuring controls optically. In this example, the outside of
the stroke is considered to define the bounds of the button. Note that the

underhighlight for the etched effect is not part of the bounds.

Tools for Wireframing 61

n Guides and grids—Any decent diagramming or graphics app should offer
manual guides and customizable grids that you can use to draw laser-straight
lines across your canvas. These are an excellent way to make sure objects are
aligned and spaced evenly.

n Standalone measurement tools—Expect to run into lots of situations when
you need to get the exact dimensions of an element in the iOS simulator or your
wireframes, align two distant objects, or perform some other feat of precision.
A standalone screen measurement tool (independent of your graphics app) is
invaluable. You aren’t likely to do better than the Iconfactory’s xScope, a suite of
tools for measuring, scrutinizing, and previewing pixels; it works like the guides
and grids mentioned earlier, but for your whole screen rather than within a cer-
tain app.

n Ruler objects—Another option is to prepare precisely sized ruler objects inside
your graphics app of choice, and keep them on a layer that you can unhide
when you need to check a size or distance. These objects should be ones that
you know are the same size optically and are shown in the app’s logic—such as
a plain, filled rectangle with no outer stroke—so that you can rely on the sizes
reported by the app.

Tools for Wireframing
When it comes to sketching tools, you want anything that helps you get ideas out as
quickly and roughly as possible. But for wireframes, precision is paramount. Theoreti-
cally you could do wireframes on graph paper, if you have an unusually steady hand,
a mathematical mind, and a superb eraser. But you’re almost certainly best served by a
desktop software tool. You should choose something that lets you nudge objects pixel
by pixel, measure exact distances, and quickly make adjustments to get your position-
ing and dimensions just right. This book doesn’t rely on a specific piece of software,
but among your options are OmniGraff le, Fireworks, Illustrator, Photoshop, Axure,
and Balsamiq.

Designing in Xcode
Some designers use Xcode itself for interface design, which has the benefit that you
can use the resulting product in the actual app. But it works great only as long as you
stick strictly to stock, standard controls and elements. You’ll miss out on custom ele-
ments, annotations, layers, and the rest of the graphical and logical benefits offered
by a proper graphic design app. Once you have the hang of designing in design soft-
ware, it’ll save you much more time and effort than designing in Xcode.

Chapter 4 The Wireframes62

Here are some crucial features to look for in your wireframing tools.
n Layers—One of the best skills you can have for building good wireframes is

layer management. Be fastidious about keeping related elements together on lay-
ers, and name your layers descriptively; an orderly layer structure will serve you
well. You can use layer visibility to compare alternative approaches to the same
problem. You can also describe several states of a screen on just one canvas; pop-
overs, sheets, alerts, and so on can each live on their own layer for easy showing
and hiding. Some apps (like Photoshop) let you save layer comps that remember
the visibility of each layer, or (like OmniGraff le) share layers across canvases.

n Grids—Get used to using the grid to position objects exactly where you want
them. For initial layout, a good grid setting is 44 pixels with 11 subdivisions,
resulting in 4-pixel squares. The major grid lines help you see the minimum
44-point-square tap target, and the minor grid lines give you some fine move-
ment, 4 pixels at a time, without getting too fiddly. You may occasionally need
to bump the subdivisions to 44 or 22 for a moment to move elements just a pixel
or two. Even if you want maximum precision, leave the subdivisions at 1 pixel to
prevent yourself from accidentally placing an object between pixel boundaries. A
design document showing objects off the pixel grid looks cheap and mushy.

n Styles—Over time, you’re bound to develop your own tastes and practices for
wireframe creation. But it’s good to keep in mind that you have options. The
term “wireframe” of course comes from the classic outlines-only style of draw-
ing interface elements, which looks precise like a blueprint and cares very little
about the eventual appearance of each element. If you want to be a bit more
detailed, you can use shading—monochrome or a very limited color palette is
best—to indicate the relative visual weight or the semantic grouping of elements.
Going in the opposite direction, you could even make your wireframes look
intentionally slightly sketchy, just to communicate clearly that they’re not final-
ized. (See Figure 4.5 for some wireframing styles.)

n Dimension lines—If you’re passing your designs off to be implemented, and
especially if you aren’t going to have a mockup step between the wireframes and
the implementation, it’s helpful to include dimension lines between elements
to make sizes and distances explicit. Some tools (like OmniGraff le) can even
automatically calculate and display the length of a line. Put dimension lines on
their own layer so that you can show them when they’re needed and hide them
otherwise.

n Templates and stencils—Whatever your graphics app of choice, you can find
prepopulated templates and stencils full of wireframing components for common
iOS screens and controls. Assuming that the resources you use are accurate, you
can save a lot of time and effort in creating elements that are the correct dimen-
sions. Or you can always create your own internal suite of stencils that fit the
way you design so that you don’t have to re-create every object every time.

Principles of Layout 63

Principles of Layout
Before we get into the specifics of laying out iOS screens, it’s helpful to learn (or
review) some basic principles. As you lay out each screen, you should be thinking
about what the placement and relationships of the elements communicate to users.
There’s no single canonical process for turning a set of requirements into a “correct”
layout. But the principles discussed here will guide you as you experiment with layout
possibilities and try to find a balance between the needs and constraints of the design.

Much of this section is based on the rudiments of Gestalt psychology—a theoretical
framework that has a lot to say about how human beings perceive things. It’s been
highly inf luential in visual design. It tends to show up in art school curricula, and a
century after its founding it is even useful for laying out iOS app screens. You could
spend a lot of time studying Gestalt theory. If this sort of thing is interesting to you,
check the reading list in the Inspiration Is Everywhere section of the Preface.

Unity Is the Goal
The following principles are aimed toward the creation of unity in your layout. In a
unified design, every component seems to be just where it needs to be. Nothing extra-
neous is present. Nothing feels uncomfortable or haphazard. Each part makes sense
on its own and contributes to a whole that makes sense, too. And if all is well, users
don’t notice this unity. Unless they’re familiar with design and they’re looking at the
screen with a critical eye, most people don’t realize what is pleasant about a layout.
They just happily proceed to use it. If pressed, they might be able to say that it seems
“clean” or “professional.” But if the app falls short of achieving unity, people will

Figure 4.5 Several wireframing styles. Left to right: slightly sketchy, with the
precise dimensions not yet nailed down; bare wires, to avoid suggesting any visual
treatments; shaded, for suggesting relative visual weight; color-coded, for easy rec-

ognition of groups of elements.

Chapter 4 The Wireframes64

notice. Customers can spot a disjointed layout from a mile away, and they recognize
it as a warning sign that the developer hasn’t put enough care and time into polishing
the product.

How well an app is laid out is related to, but is not the same as, how well rendered
it is graphically. That’s another test for your layout to pass, and you’ll get to that in
Chapter 5, The Mockups. For now, focus on constructing good bones so that you can
layer on the appealing styling later.

Read on for the principles. When you carefully consider all of them and get them
working harmoniously, you’ll achieve unity. Most of the principles probably seem
obvious on their own, but it’s surprising how easy it is to neglect them if they’re not
near the front of your consciousness. And it’s the combination of them that creates a
magical, ineffable sense of good design. If a design seems “off” somehow, it’s probably
time to run through this list and see which principle is being violated.

Visual Weight
Each element in a layout possesses some amount of visual weight relative to the oth-
ers and to the layout as a whole. This weight affects how readily the element is noticed
by the eye, how important it seems, and how it affects the balance of the layout. Visual
weight is determined mainly by multiplying the following two attributes.

n Size—The bigger an element is, the more visual weight it carries.
n Background contrast—The more an element stands out from the background,

the more visual weight it carries.

It’s easy for a new designer to think that size is the only attribute that contributes
to visual weight, neglecting the role of contrast. But the relationship between size and
contrast means you can have elements that are different sizes but feel equally weighty,
or elements that are the same size but seem to carry different weights. (See Figure 4.6
for an illustration.)

The final contrast depends largely on the visual treatment you end up giving the
element in the mockup phase. But you should consider now the amount of contrast
you intend to give the element so that you can weigh that against its size. For now,
while wireframing, you can indicate contrast roughly by filling objects with three
shades of gray to represent light, medium, and dark elements and areas.

For instance, suppose your app has a crucial button that you want to make particu-
larly large for easy tapping. Giving it the same style as all your other buttons, while
also making it much bigger, would result in an uncomfortably heavy button. It would
far outweigh everything else on the screen. But if during the wireframing phase you
indicate that it should be given a low-contrast treatment, you can then plan on styling
it accordingly during mockups.

Or you may have a button that you need to keep small, for space reasons or even
to minimize accidental taps. To keep it from getting lost among the other elements on
the screen, you can increase its contrast with the background. A fine example of this

Principles of Layout 65

is the purchase button in the App Store. It’s actually smaller than the recommended
minimum tap target size, because it’s important to avoid accidental taps. But its heavy,
high-contrast treatment makes its importance apparent.

Similarity and Distinction
Similar objects seem related, and dissimilar objects seem different. It seems banal to
even write down. But there it is, because it’s crucial to remember it as you design.
When you’re weighing your options for which element to use, where to place it, or
how to size and orient it, compare it to existing elements on the same screen. Its simi-
larity or dissimilarity to the other elements can tip the scale. Consider what their level
of similarity says about the on-screen elements.

If you offer five similarly styled toolbar buttons, for example, a user expects them to
be roughly equivalent. It’s safe to assume that they are all actions that can be taken on
whatever is currently visible in the content area, and that they’re about equally likely
to be used. Identically styled items listed in a table view are seen as peers—none par-
ticularly more important than another.

Any dissimilarities you introduce should have meaning. People tend to look for a
reason when something is not like the things around it. The Done or Save button that
concludes a modal view tends to be blue. Some apps give a distinctive size or style
to a single toolbar button or tab to indicate that it is somehow more important than
the rest. The Delete Contact button in the Contacts app lives among f lat, white table
views, but it’s presented in a unique shiny red style to call out its distinct (and destruc-
tive) purpose.

Figure 4.6 Objects of different sizes can have equivalent visual weights,
as shown here with abstract wireframe objects (top row) and then again

with visual treatments (bottom row).

Chapter 4 The Wireframes66

Proximity and Distance
Objects that are close together seem related, and objects that are far apart seem differ-
ent. This fact works along with similarity and distinction to determine how the eye
groups things. The closer two things are in space, the more strongly their similarity
links them, and vice versa.

When elements have similar purposes or meanings, put them close together. In
many cases, such as in grouped table views, you can actually stick them together, shar-
ing a border, with no space or separation between them. Or if you have two elements
you need to separate conceptually, try putting some space or some sort of visual sepa-
rator between them.

The grouped table views in the various screens of the Settings app are the prototyp-
ical example of using grouping and separation to associate and disassociate elements.
Notice that they bear group labels only when necessary; often, the cells in each group
do a fine job of explaining what the group is for. Really, the whole Settings app is a
gold mine of admirably clever problem solving through layout.

Alignment
Most objects on a screen should align with something else on the screen. That is, if
you draw an imaginary straight line along the edge or center of an object and con-
tinue it across the screen, the line should coincide with the edges or centers of other
objects rather than miss them. (See Figure 4.7.) Look at any clean design, and you’re
bound to find that objects are rarely just a bit out of alignment. Either they’re perfectly
aligned, or they’re far enough out of alignment that it’s obvious the misalignment is
intentional.

Alignment and Interface Layers
There’s one major exception to the rule that objects should align, and it has to do with
interface layers (which are not necessarily the same as the layers feature in graphics
software). The Thinking in Layers section later in this chapter explains how to use
interface layers to conceptually separate chunks of your interface. To reinforce the
distinction, it’s good for objects on different interface layers to be slightly out of align-
ment with each other. Notice that in Apple apps, the side margins in a navigation bar
don’t align with the side margins in the content area. The narrower margins in the navi-
gation bar layer subtly suggest that it’s a different interface layer that “contains” the
content area layer.

Here are some tips for keeping elements aligned.
n Edge alignment—Aim to edge-align as many as possible of rectilinear (box-

like) objects in your design: buttons, tables, square icons, and so on. For similar

Principles of Layout 67

objects in close proximity, edge alignment reinforces their relationship. If objects
are farther apart, or less similar, then their edge alignment simply looks nice; it
doesn’t suggest a strong relationship.

n Center alignment—For rectilinear objects, this design is weaker and more
prone to messiness than edge alignment. But it’s excellent for irregular shapes,
like blobs of text or bare graphics. For example, borderless toolbar buttons are
usually aligned to their vertical center rather than edge-aligned, because each
one has its own unique shape. Similarly, text that doesn’t live in a box is often
center-aligned. The title in a navigation bar is usually centered on the screen
horizontally and centered in the bar vertically.

n Aligning text—Generally, text wants to align to other text more than it wants
to align to boxes. You might at first think that a table view label should be left-
aligned with the table border. But it looks much more at peace when it’s left-
aligned with the text inside the table. To vertically align different-sized pieces of
text, the traditional approach is to ground them by making them share the same
baseline; otherwise, both pieces of text will seem to be f loating uncomfortably
in space. If the two pieces of text are of very different sizes, though, then center-
aligning to the vertical weight works better.

n The guide test—This is the quickest, most straightforward way to check the
alignment of a layout and then fix it. Put the layout on the canvas of a graphics
app that supports manual guides (straight lines that span the whole canvas). For
every visual edge you see, add a guide. The edges of aligned objects can share a
guide, but misaligned objects get their own guides. When you’re finished, the
guides express the visual logic of your layout, whether it’s neat and sensible or a
chaotic mess. From there you can adjust elements and remove guides until you
have the most elegant layout that still supports the needs of the design. (See Fig-
ure 4.8 for a before-and-after example.)

Figure 4.7 Edge alignment and center alignment. Pink lines show
alignment; orange areas show the optical bounds of text elements.

Chapter 4 The Wireframes68

Rhythm
A good sense of visual rhythm is usually a cumulative effect of your spacing, align-
ment, and balance. But you can take an extra measure to ensure that the sizes and dis-
tances you choose are harmonious: use a scale. A scale is a preset list of measurements
for you to rely on rather than choose an arbitrary value every time you need to posi-
tion or size something. When the same harmonious numbers keep appearing through-
out a design, it lends a sense of unity and order. (See Figure 4.9 for scales in use.)

Here are two scales that work well for iOS designs; you can pick one of these or
invent your own.

n Basic scale: 10, 20, 44—For almost any design, you can get away with using
this simplified scale. You use 10 points for a “normal” distance—for separating
controls from each other, from labels, and from the edges of the screen or the view
that contains them. Use 20 points when you need extra separation, as for groups

Figure 4.8 Applying the guide test to a particularly heinous layout (top),
and then to a repaired version of the same layout (bottom). Only the

guides for horizontal alignment are shown.

Principles of Layout 69

of unrelated controls. Many standard iOS controls (such as table cells and toolbars)
are 44 points; if you need much bigger spaces, using multiples of 44 when possible
will coordinate well with them. You may need to use some other sizes on an ad
hoc basis—for instance, a 52-point-tall table cell for holding a lot of text. That’s
fine! But don’t also create 50- and 54-point-tall cells that will clash with it.

n Modular scale: 7, 10, 14, 20, 28, 40, 56, 80…—A modular scale is based on
iterated multiplication by some number. In this case it’s 2, which results in a
doubling every two iterations. You can get very involved with choosing a ratio
and devising a scheme for how you use each step in the scale; ventures like this
are part of the endlessly rewarding pursuit of design. If you enjoy this sort of
thing and want to learn more, pick up The Elements of Typographic Style by Rob-
ert Bringhurst. If not, there’s no shame in using the basic scale.

The guide test described earlier is also good at uncovering awkward rhythms. If the
distances between the guides seem to vary willy-nilly instead of falling into a sensible
pattern, you need to make some adjustments.

Figure 4.9 Basic-scale (left) and modular-scale (right) variants of a single design

Chapter 4 The Wireframes70

Margin and Padding
Layouts look more modern, more pleasant, and more approachable when they employ
healthy amounts of empty space. Margin is the amount of space afforded around an
object. For boxlike objects with borders and content, such as a table cell or a button
with a text label, padding is the amount of space afforded from the border to the
content.

On iOS, users expect a certain amount of breathing room for elements, and when
it’s not there the app feels cramped, cheap, and uncouth. Scrolling is almost free, cog-
nitively and ergonomically speaking, so there is little downside to giving content more
space.

Don’t Trust Xcode’s Guides
Xcode’s automatic positioning guides do try to help with layout, but you can’t rely
solely on them. They’re more than happy to blindly suggest positions and spacing that
make no sense, given what the layout actually looks like. Remember, optical measure-
ments are what counts, and not the bounds of objects in Interface Builder. Over time,
you may develop a reflex of letting Xcode place an object wherever it wants and then
adding or subtracting a certain amount of space that you know to be correct for your
design.

For margins, you can rely on a scale, as described earlier; put 10 points around
everything, and you’re in pretty good shape. To make sure you provide adequate pad-
ding, though, it’s up to you to be vigilant. There isn’t a strict algorithm for figuring
out how much padding to afford a given bit of content. But a few guidelines can take
you a long way. Most of these are based on the cap height of the text involved; that’s
the height of an ordinary capital letter like “E.”

n For a single line of text in a box, give about 100% of the cap height as vertical
padding. (See Figure 4.10 for illustrations of text and image padding.)

n For multiple lines of text in a single box, give 50% to 100% of the cap height of
the biggest text as vertical padding.

n Generally, the horizontal padding should be between 50% and 100% of the cap
height of the biggest text. Once you have your vertical padding as recommended
earlier, you can apply a similar amount as horizontal padding.

n Objects that are edge-aligned with each other, especially horizontally, should
also edge-align their text by having equal horizontal padding. (Even though the
cells in Figure 4.10 have different top and bottom padding, they have the same
side padding.)

n Images inside of boxes (such as toolbar buttons) can generally stand having a bit
less padding than text. Aim for between 25% and 50% of the height or width of
the image.

Principles of Layout 71

Balance
Even if all the individual details in your layout are appropriately sized, aligned, and
spaced, you still need to look at how the whole picture fits together. The main thing
to keep in mind when thinking at this scale is balance: how the visual weight of the
elements is distributed across the entirety of the screen.

A cheap way to get balance is by making your layout symmetrical. This approach is
appropriate in a lot of cases, but it isn’t the only way. One thing to watch out for is the
tendency of the elements that balance each other to seem equivalent or in opposition
to one another.

Another way to get balance is by carefully adjusting the visual weight of the ele-
ments. Adjust the size or the background contrast (described earlier) of elements to
add or remove weight from an area of the screen. You may even subtly shift elements
out of strict alignment or consume some of the space reserved for margins in order to
achieve better balance. This approach takes a lot of experience and wisdom.

Thankfully, iOS apps can generally bear quite a bit of unbalance before they look
bad from it. Vertical imbalance is usually fine, but try to avoid leaving one side of the
screen empty while populating the other side.

Understatement
Use the minimum elements necessary to satisfy the needs of the design. In other
words, never include anything that you don’t need. This is the single most important

Figure 4.10 Padding examples for text, in percentages of the cap
height) and an image (in percentage of the image height). Orange areas
indicate optical bounds; note that the star’s optical bounds don’t reach

all the way to the points, because the points contribute little to the visual
weight of the overall shape.

Chapter 4 The Wireframes72

principle, and it probably seems the most obvious. But it’s more subtle than it seems,
and it’s easy to violate without realizing it.

To separate controls, you usually need only take one step up on your distance
scale. There’s usually no need for a separator line. When you have two pieces of text
separated by whitespace and using different styles, you don’t also need to use punctua-
tion or borders to set them apart. If you have buttons organized in a grid, you don’t
need to draw a border completely around each item; let them share borders like a
table, and use the edge of the screen or view as a border, too. Or eliminate the bor-
ders if the buttons still end up looking tappable. (See Figure 4.11 for an application of
understatement.)

Typography
Normally a design book would need a huge chapter dedicated to typography: how to
use type effectively and how to avoid the common pitfalls that make type look ama-
teurish. Luckily, iOS has done a lot of the work for you, making decent typography

Figure 4.11 A needlessly fussy layout (left) and an understated version
of the same screen (right).

Typography 73

easy and poor typography difficult. For most projects, you need only follow a few
principles, listed here.

n Many of the principles described in this chapter apply to text as much as to other
elements. Text should be balanced, aligned, understated, adequately padded, and
so on. A modular scale, described earlier in this chapter, is wonderful for choos-
ing text sizes. See the principles in this chapter that call out how they apply spe-
cifically to text.

n Almost all the time, the system font (Helvetica Neue on Retina displays, and
Helvetica elsewhere) is all you need. It’s a fantastic all-purpose font given the size
and resolution of iOS displays, and it’s so neutral that anything else tends to feel
odd in an iOS interface. One exception arises when you want to put in a bit of
branding by, say, using your logotype as a label on your home screen; that’s fine,
but use the system font everywhere else. The other exception is for long-form
reading, spanning many screens’ worth of text; in these cases it can be worth
switching to a font specially designed for heavy reading; Georgia and Verdana
are solid choices. (To learn about hunting down great fonts for inclusion in your
app rather than using the iOS defaults, look up Marco Arment’s “Introducing
Instapaper 4.1 for iPhone, iPad” post on marco.org.)

n Use real characters, not ascii approximations. Habits from the early days of
personal computing and the limitations of typical keyboards often keep people
restricted to the meager ascii character set. Today’s systems have a wealth of
expressive characters available, thanks to the Unicode character set, but many
people don’t even know that there’s a difference between, say, a proper apostro-
phe (’) and a clumsy vertical tick ('). Use real quotation marks (“ ”) instead of
neutral ones ("), use en- and em-dashes (– —) instead of double-hyphens (--),
and use a real ellipsis (…) rather than three periods. All these characters can be
typed with key combinations or copied from a lookup app like UnicodeChecker.

n There’s no need to separate sentences with two spaces. It can be a hard habit to
kick if you were raised to type this way, but it’s just not necessary in the age of
modern digital typography. One space is all you need; the carefully tuned fonts
included with iOS know how to handle it.

n Generally, columns of the correct width (about wide enough to type the alpha-
bet once or twice) are easier to read than too-wide ones (more than two alpha-
bets wide) or very narrow ones (less than one alphabet wide). If you do have
wide columns, you can make them easier to read by putting a bit more space
between lines. Then it’s easier for the eye to stay on track as it moves from the
end of one line to the beginning of the next.

n On an iOS screen, it’s rare that you’ll have enough words per line to benefit
from horizontal justification; instead it’s likely to lead to unsightly and random-
looking gaps between words. Left-alignment, with a ragged right edge, works
well for paragraphs of content. Center-alignment is common for short, stand-
alone explanatory blurbs of text that live outside of elements.

Chapter 4 The Wireframes74

For advice beyond this, get hold of Robert Bringhurst’s The Elements of Typographic
Style, or the more adventurous Thinking with Type by Ellen Lupton, which are a thrill
to read and will put you well on your way to becoming an expert.

Layout: A Place for Everything…
Now that you’re familiar with the mechanics of placing elements together on a screen,
it’s time to think about where to put them. This section deals with the semantic
(meaning-oriented) implications of how you arrange elements and how iOS helps
you convey meaning through layout.

Content and Controls
Recognize the difference, and the relationship, between content and controls. Content
is the actual stuff that users come to your app to see and manipulate: documents, images,
web sites, media, text, and so on. Controls, then, are the administrative necessities
(such as buttons and switches) that the user uses to tell the app what to do. The con-
tent is on the screen because the user wants to see it and work with it. The controls are
on the screen because the app needs to get input from the user about how to behave.

This relationship should make it clear that content takes precedent whenever pos-
sible. The more you can pull your controls out of the way of your content, the better.
That means either putting the controls on a visually distinct layer or presenting them
in a temporary form such as a popover or a contextual menu.

Thinking in Layers
Most iOS apps involve some sort of layering, with the visual suggestion that the parts
of the screen are actually different contiguous surfaces, each with its own indepen-
dent position, and often overlapping in the imaginary dimension perpendicular to the
screen (usually called the z dimension). This book calls these interface layers to
differentiate them from the layers feature of graphics software. The most basic example
of this concept is the way the content of an iPhone app scrolls around while the navi-
gation bar and toolbar stay put. The content appears to be sliding around on its own
layer behind the bars. Similarly, the sidebar of an iPad app is clearly its own layer by
the way it scrolls independently of the main content area (or slides in from the side, in
portrait orientation).

But independent scrolling isn’t the only way you can distinguish interface layers. A
conspicuous change in visual treatment can also signal a transition from one layer to
another. The status bar, for instance, is usually styled differently from the app interface
so that it seems more like part of the hardware device than part of the app. The same
goes for the keyboard; users understand it as being different from the content area
where they’re using it to enter text.

The value of interface layers is both practical and conceptual. Practically, of course,
it’s good to be able to keep some things on the screen (like toolbar buttons) while

Layout: A Place for Everything… 75

other things (like content) scroll around. Conceptually, layers can signal the purpose
of elements and content. Whatever occupies the center of the screen gets the user’s
attention, whereas the controls in toolbars, sidebars, and navigation bars around the
periphery tend to be more utilitarian, only there to serve a purpose ancillary to the
main content. Layers help you avoid polluting the content area with controls and help
users’ brains understand what’s safe to ignore when they’re just interested in looking at
the content.

Occasionally apps add even more interface layers. An example is the slide-out
ruler in the app Pages, which provides further, optional controls related to styling. As
you lay out a screen, think about how to make interface elements feel as if they exist
in discrete, modular chunks, grouped and arranged meaningfully around the main
content.

Controls in Content Areas
Every rule has exceptions. Even though you just learned that controls should be
arranged in chunks around the content, sometimes it makes sense to put controls
inline with the content. If a control is closely related to the content, and especially if
space is tight in the designated control areas, it might make sense to put the control in
with the content.

The classic example of this is a “new item” placeholder presented as the last item
in a table. If users tap it, a new item appears right in the tapped cell. Note that this
approach doesn’t guarantee that the new item button will always be visible on the
screen; if you have a long list, it might be scrolled off the bottom. (Putting it at the
top would be awkward because new items are usually added to the end of a list, not
the beginning.)

The main challenge in presenting controls in the content area is making them look
sufficiently distinctive to identify them as controls, without overpowering the prece-
dence of the content. One minor styling difference, such as making text grayish-blue
instead of black, is usually enough.

Information Density
Scrolling on iOS is cheap. The huge touch target, the simple gesture, the breezy iner-
tial effect, and the viscerally satisfying animation make it one of the easiest things to
do on an iOS device. So putting content “below the fold”—that is, beyond the first
screenful of information (analogous to the fold in a paper newspaper)—is not nearly as
strong a deemphasis as it was on the desktop in days of yore.

So calm any tendency you may have to cram as much data as possible onto a single
screen. In some situations, an info-dense, dashboard-style, at-a-glance view is useful,
but it’s uncharacteristic of iOS apps. Even on a small screen, feel free to spread out
your information as described earlier in the principles of layout. See more about infor-
mation density in Chapter 12.

Chapter 4 The Wireframes76

Dimensionality
Given the controls you have to lay out and the screen or view size you have to work
with, it may seem reasonable to use a two-dimensional arrangement: a grid, a multi-
column table, and so on. Especially on iPad, where you have a lot more screen space
to work with than on iPhone, you might be tempted to get sideways. Be careful! iOS
is generally a one-dimensional platform, because it’s harder for users to decipher 2-D
layouts.

n Most fundamentally, 1-D layouts are far easier for the human eye to scan and
interpret. You can simply draw your eye down the list of available items until it
arrives at the correct one. A 2-D layout instead encourages the eye to bounce
around the screen haphazardly, unsure where to look next.

n Two-dimensional layouts suggest meaning that might not be there. Each column
seems to have a purpose, so the eye looks for a way to group its items. The same
goes for rows; anything adjacent appears to be adjacent for a reason, which your
brain tries to find.

n Although traditional tables of data are common on the desktop, such as in Finder
windows or the classic Mail message list, they are rare on iOS. Instead of laying
out cells of data side by side, iOS more commonly provides a couple of impor-
tant pieces of information, using a supplemental text style, arranged in the same
cell as the main title. This makes for a sort of 1.5-dimensional layout, where the
items are arranged in a linear list but each item contains information spread out
horizontally and vertically. (The 1.5-D message list in Mail on iOS has even
made its way to the Mail on OS X.)

Keep Widths Sensible
Especially if you stay one-dimensional, you might wonder how to keep your elements
from being comically wide as they try to fill the width of an iPad display. In such cases,
you should usually not have the entire width of the display to fill; elements usually
appear in a popover, a sheet, a sidebar, or the content area next to a sidebar. But if
you find yourself with a content area covering the entire screen anyway, use generous
amounts of margin (balanced on both sides) to push the controls inward. That’s better
than having ridiculously sized elements that fill the space just because it’s there. (The
page sheet style of modal view, described in Chapter 3, does a good job of keeping
things from getting too wide.)

Sometimes, though, going two-dimensional is a fine answer. After all, even the
iOS home screen is a grid.

n Two-dimensional layouts work pretty well with instantly recognizable entities.
A grid of big, simple, colorful icons should work great. But a grid of tiny text-
labeled buttons is a hassle for the mind to process.

Layout: A Place for Everything… 77

n The fewer items you have to lay out, the more likely they are to work in 2-D.
A 2×3 grid of 120-point square icons can be understandable and comfortable to
interact with. A 5×5 grid of 48-point square icons, though, would be a headache
to parse.

n If you can establish a meaningful reason for the columns that helps the user iden-
tify the options, 2-D can be nice. Suppose you have three text-oriented options
and three media-oriented options in a blogging app; separating them into two
columns makes good sense.

n Two dimensions is more often appropriate for content than it is for controls.
Don’t be afraid to use a 2-D layout to present information if it makes the infor-
mation clearer. Sometimes it makes perfect sense to lay out information spatially.
And if a meaningful 2-D presentation already exists for the content at hand, as
in a calendar, even better.

Orientation on iPhone
iPhone apps can be locked to a certain orientation (portrait or landscape), or they
can adapt to either orientation. There are four basic options for dealing with device
rotation.

n Locking your app to portrait orientation is understandable, but not ideal, for
a typical app. If you have to pick an orientation to lock to, portrait is the one.
That’s the orientation of the iPhone home screen, and it’s by far the most com-
monly used orientation in apps. iOS tends to stack UI elements vertically: navi-
gation bars, toolbars, keyboards, and so on. So some apps are simply too hard to
cram into the shorter vertical space of a landscape iPhone.

n Being locked to landscape orientation is odd. A few apps can get away with it
because their interface is dependent on a unique and immutable composition of
elements.

n Adapting one interface to either orientation is ideal. If you can do it without
undertaking a drastic redesign of your entire interface, you should. Users appre-
ciate being able to rotate the device to switch between seeing more items at once
and seeing more detail about each item. Lots of people prefer the big keys on the
landscape keyboard for typing-intensive tasks. You can even get away with a few
rarely used screens being portrait-only, if you must.

n Occasionally, it makes sense to offer a different interface depending on the ori-
entation. If you have two drastically different but comparably valuable ways of
looking at the same information, an orientation change may be just the way to
switch between them. That’s especially true if the normal view wouldn’t have
benefited much from landscape anyway. But be careful with this approach.
Plenty of users simply never think to rotate their phone in order to see some-
thing different. Some even keep their orientation locked all the time to avoid
accidental rotation, because they never intentionally switch to landscape.

Chapter 4 The Wireframes78

Consider the orientation handling of some of Apple’s built-in and App Store apps.
n Clock is locked to portrait orientation, because switching to landscape wouldn’t

gain you much. The information in each item is narrow enough to be com-
pletely visible without needing more horizontal space; switching to landscape
would merely reduce the number of items visible at once and would make the
already sparse items look even more empty.

n GarageBand is locked to landscape orientation, an unorthodox choice. Of
course, GarageBand has an unorthodox approach to its interface overall. It feels
much more like a virtual hardware device, like an actual piece of recording
equipment rather than a magical piece of software that can reconfigure its layout.
It is already pushing hard on the boundaries of what a phone is expected to do;
redesigning its painstakingly detailed and surprisingly complex interface to be
orientation independent would have been prohibitively difficult, with little to be
gained. If your app is as grand and complex as GarageBand, and as astoundingly
useful, feel free to lock it to landscape.

n Mail adapts to both orientations, which is an easy choice because of its structure.
For the most part, it’s a f lexible content area bounded by a navigation bar at the
top and a toolbar at the bottom. When you rotate the device, the content resizes
appropriately, and the bars get a bit taller or shorter. It’s a small investment for a
big payoff, considering how much reading and typing people do in the app.

n Calendar offers a different presentation in landscape mode: a sort of expanded
version of its hour-by-hour day planner that spans multiple days and can be
panned two-dimensionally. In this app, rotating the device is more like toggling
a view setting than it is like simply adjusting the size of the “window.”

Orientation on iPad
The question of how to deal with orientation is quite a bit simpler on iPad. The device
is still easy to rotate, but it’s not as easy and casual as rotating an iPhone. People tend
to pick an orientation and stick with it for a long time as they work with various apps.
The screen is spacious enough that as long as you design carefully, either orientation
offers enough space to get things done. So it is much harder to get away with not
offering the same interface in both orientations. For almost all apps, users expect the
app to accommodate them and not to have to rotate the iPad to accommodate the app.

Being locked to either orientation requires a compelling reason. GarageBand and
Keynote are both locked to landscape, because their interfaces are so specific to those
screen dimensions that it would not make much sense to reinterpret them in portrait.

The Worst-Case Height-Compression Scenario
On both devices and in both orientations, it might seem as if you have plenty of verti-
cal space to work with. But there’s a horde of interface elements just waiting to stack

Summary 79

up and consume it. Whatever elements you’re intentionally including in your design,
make sure you consider the other elements that might invite themselves.

n Unless you’re hiding the status bar because you have an especially immersive
app, it’ll always be there, eating up 20 points.

n On an iPhone in portrait mode, if a phone call, voice recording, or tethering
session is in progress, then the status bar grows to be 40 points tall.

n On any screen that allows text entry, you must of course account for the key-
board (162 points on iPhone landscape, 216 points on iPhone portrait, 352 points
on iPad landscape, and 264 points on iPad portrait). Screens that don’t normally
scroll may need to scroll when the keyboard is visible.

n Some languages, such as Japanese, also need a completion bar to support text
input, so the space needed for the keyboard is actually taller than you think (36
points on iPhone, 54 points on iPad).

n Even if you’re designing with the taller iPhone 5 in mind, with 568 points of
height to work with, lots of people have older iPhones with only 480 points of
height. Every screen you make should be great on the shorter display and even
better on the new taller display. This may mean that less scrolling is necessary, or
it could mean that screens designed to fill the display afford more space to each
element. Wireframe for both heights.

For each screen you wireframe, plan how it will respond to having all the possible
interface elements visible at once. If it can take all those elements and still have a rea-
sonable amount of room for the content, then you know you’re in good shape.

Summary
Wireframing is about figuring out which elements to use and where. It requires think-
ing in screens: how elements fit onto screens, how one screen f lows into the next, and
what variants and states of each screen exist. It also requires thinking in points: the
dimensions of elements and their placement relative to the screen boundaries and the
other elements. There are lots of tools for wireframing. Make sure you choose tools
that help you draw precisely and measure accurately.

To get good at wireframing, you should be familiar with the fundamentals of lay-
out, especially the goal of unity and the importance of understatement. These princi-
ples will serve you well elsewhere, too: on the desktop, on the web, in graphic design,
and beyond. When it comes to iOS specifically, keep in mind the standards of layout
that users expect from a well-made app.

The next stage of our journey is an exciting one. It’s almost time to turn our mod-
est, utilitarian skeleton of a design into a lovely, charming, production-grade mockup.

Chapter 4 The Wireframes80

Exercises
The principles you’ve learned in this chapter should serve you well for building
responsible, sturdy screens. Work through these exercises to get your own app into
shape.

 1. Based on reviewing the sketches you made of each screen and referring to your
architecture outline, build a wireframe of each screen that includes every ele-
ment just where it needs to be. Consider all the elements built in to iOS and the
possibilities of custom controls. Consider what the positioning, grouping, and
characteristics of the elements say about their meanings.

 2. Critically scrutinize your wireframes, looking for any elements that are mis-
aligned, unbalanced, or cramped. Use the guide test to bring all the elements
into harmony as best you can.

 3. Wireframe key screens in both orientations and with all the possible transitory
elements visible. Make sure these changes don’t cause the layout to break down.

1-D layouts, 76
1+1 = 3 effect, 94
1.5-D layouts, 76
1Password app, 281
2-D layouts, 76

A
Accessibility, 213–215
Accessibility Programming Guide for iOS, 214
Accounts, Mac Mail, 132–133
Acorn, graphics tool, 86
Action sheets

confirming actions with, 190–191
contrast for buttons, 99
overview of, 47
paying attention to context with, 247
using hue for, 286

Activity indicator, as standard control, 48
Adaptation, invisible status of apps and, 180–181
Administrative debris, UI paraphernalia as, 238
Aesthetics (rich and plain)

color vs. monochrome, 286–290
depth vs. f latness, 290–296
exercises, 302
overview of, 285–286
realism vs. digitality, 296–301
summary review, 301

Affordances, 169–170
Alerts

animating with motion sketches, 115
appropriate use of, 190
avoiding annoying, 216, 218
delivering important text message with, 173
overview of, 46–47
showing contextual status with badges, 179

Alignment, 66
Alpha software, 121–123
Anatomical components, of elements, 90
Animations, 115–117, 161–163
Annotations, 19, 25
Antialiasing, 59
Antirequirements

keeping rejected ideas as, 6
pruning features for focused apps, 226
specifying in versatile apps, 235–236
specifying what app is not for, 9–10

App Store
creating market for life-improving software, 197
encouraging experimentation, 278

listing app in, 202–204
listing app name in, 199
release notes for, 209–210
tap target size for purchase button in, 161

App Store Review Guidelines, 204
Appearance. See Aesthetics (rich and plain)
Apple, xix, xxi–xxii, xxvi
Architecture outline, 13, 20
Architecture sketches, 20
AssistiveTouch, 214–215
Attention

budget, 237–238
respecting user, 215–218

Autosave, manual, 263

B
Back button, 33
Background

adding underhighlights to, 105
safe hues for, 286–287
using alerts for processes in, 46

Background contrast
overview of, 92–93
presenting image content, 81
with visual weight, 64–65, 90–92

Badges, for contextual status alerts, 179
Balance, as layout principle, 71
Balsamiq tool, prototypes, 118–119
Baseline, measuring text optically, 59
Basic scale, rhythm in layout, 68–69
Behavioral level of cognition, defined, 167
Betrayal of trust, 216–218
Binocular vision, 291–293
Blank slate, 267–268
Blending modes, applying gradients, 103
Borders

1+1 = 3 effect in, 94
applying understated layout to, 72
for contrast and visual weight, 90–92
toolbar button, 42

Bounds, optical measurements and, 58–60
Branding, with certain hue, 287–288
“A Brief Rant on the Future of Interaction Design”

(Victor), 146
Brightness

HSB color model and, 87–88
perceived as value, 88–89
slider, 51
using, 289–290

Index

Index304

Brushes app, 171
Bug reporting

overview of, 121–123
using tickets in bug-tracking database, 5

Buttons
avoid making segmented controls behave as, 50
for contrast in action sheet, 99
generous tap targets for, 159–161
rounded rectangle, 50
styling communication cues, 84
styling instantaneous feedback, 147–149
styling with understatement, 72

Buttons, custom
bevel, 104
contents, 106
fill color, 102
gradient, 102–103
overview of, 100–101
shape layer, 101–102
stroke, 103–104
texture, 105
underhighlight, 105–106

C
Calendar app

orientation on iPhone, 78
ornamentation in iPad, 299
replicating office supplies, 298
resourcefulness of, 183
scaling back in iPad, 228

Camouf lage, contrasting objects to avoid, 89
Canvas, 100–101, 107
Cap height, 59, 70–71
Capability, conveying

App Store listing, 202–204
icon, 199–202
interface interaction design for, 184–185
launch image, 202
name, 199
overview of, 198
price, 205–206

Cargo cult design, avoiding, 277
Case study. See Mail app, case study
Cell styles, content views, 44–46
Center alignment, in layout, 67
Center case, versatile app design, 234–235
Characters, principles of typography, 73
Chrome, UI paraphernalia as, 238
Clarity, from text and visual weight, 250–251
Clock app, 78
Clock screens, 33
Coherence, of animation, 117
Color

customizing with tints, 279
fill, 102
HSB, 87–88
perceived brightness of, 88–89

RGB, 86–87
styling communication with, 84
styling contrast and visual weight with, 89–92
vs. monochrome, 286–290

Colors, programmer’s, 288–289
Columns

in 2-D layouts, 77
principles of typography, 73

Commands
Mac Mail, 133–134
Mail for iPhone, 136, 138

Communication
breakdown of, 176–177
as styling attribute, 84

Communication apps. See also Mail app
adding friction to protect user, 258
immersive status bar for, 41
on mobile platforms, 128

Companion apps, 129–130
Competitive analysis, in outlining, 7–8
Complexity of design. See Versatile apps
Comprehensive documentation, 206–209
Conciseness, of written text, 174–175
Connotation, 168–171, 172
Consistent design

avoiding cargo cult design, 277–278
diff iculty of novelty apps, 282–283
exercises, 284
getting the most of HIG, 272–273
guidelines, 271
how it all works out, 271–272
overview of, 273–275
precedents, motifs, patterns, and shorthands,

275–276
specialization vs., 272

Consumption-oriented apps, full-screen mode, 249
Contacts app

attaching commands to objects, 138
resourcefulness of, 183
respecting user data, 216
value 1 cells for, 45

Content
2-D layouts and, 77
adding to custom button, 106
adding to mockups, 1–6
bright elements stealing from, 289
designing layers for, 108
information density and, 75
layout of controls vs., 74
neutral interface of apps focused on, 286
presenting controls in areas of, 75
presenting with split view navigation, 33–34
rounded rectangle button in areas of, 50
styling for contrast and visual weight, 90–92
transparency, and reading of, 94
views, 43–46

Contents, anatomical component of an element, 90

Index 305

Context, iOS paying attention to, 246–247
Contextual controls (documentation), 178
Contextual inquiry, in outlining, 7
Contextual menus

paying attention to context with, 247–248
providing guidance, 178
sketching interactions for, 26

Contextual status, 179–180
Contour, 89
Contrast

brightness for, 289
designing layers with, 108
examples of, 97–99
importance in visual design, 89
measuring images/controls optically, 60
posterizing to evaluate, 95–97
transparency for, 93–94
using low internal background, 92–93
visual weight for, 64–65, 89–92

Controls
in content areas, 75
custom, 52–53
designing for layers, 108
guidance at point of need for, 178
hiding vs. disabling, 248
instantaneous feedback, 147–149
layout of content vs., 74
measuring optically, 60
segmented-controls-as-tabs navigation, 36
sketching on-screen, 22–24
sketching workf low, 26–29
standard, 48–51
text label with icon for crucial, 176
tints for customizing, 279
toolbar, 42
understatement for, 72
undo for, 187, 189
viewing gradient, 103

Conventions, design
conscientious divergence from, 279–280
harmless distinctiveness from, 279
overview of, 271–272

Conversational documentation, 210
Conversations, sketching during, 16–18, 20
Convertbot app, 281
Copycats, design, 277–278
Credentials, signup experience, 260–261
Cross-platform

case study of Apple Mail, 131–141
evaluating virtues of all platforms, 127–129
exercises, 142
outlining, 130–131
overview of, 127
standalone, mini, and companion apps, 129–130
starting from scratch, 130
summary review, 141–142

Cues
adding friction with scary, 259
combining imagery/text with, 176
false, 171
as guidance, 265
interaction, 169–171

Current context modal view, iPad, 38
Curves, animation, 162–163
Custom

appearance, 279
buttons, 100–106
cell styles, 46
controls, 52–53
navigation, 39–41

D
Data, respectfulness of user, 216–218
Date and time picker, 48
Dead-end (rejected) ideas, 6, 17
Decision fatigue, human attention budget, 238
Deep prototypes, 119–120
Default cell view, information in, 44–45
Defensive design, 185–187
Delay, 147–149
Delete button, 160, 190–191
Delete Contact button, Contacts app, 65
Delicious Generation, 278
Demoting features, 243–246, 259
Denotation, 167, 172–174
Depth vs. f latness

extreme examples, 293–296
lighting, 291–293
overview of, 290–291

Design apps, 119
Design bugs, 121
The Design of Everyday Things (Norman), 170
Design specification, in outlining, 5–6
Desktop apps, Mac Mail, 132–134
Desktop computers, mouse-based input on, 158–159
Detail disclosure button, 48
Devil’s advocate, in sketching, 22
Dictionary, 182
Diet Coda web editor, iPad, 263–264
Digitality. See Realism vs. digitality
Dimension lines, in wireframing, 62
Dimensionality, and layout, 76–77
Disabling controls, 248
Disappearing interfaces, 248–249
Distance, layout principle of, 66
Distinction, layout principle of, 64
Division of labor

scaling back features, 228, 230
software design philosophy, 266–267

Documentation
bugs, proof-of-concept software, 121–122
characteristics of good, 210

Index306

Documentation (continued)
comprehensive, 206–207
problem-solving, 207–208
release notes, 209–210
tutorials, 208–209
in usability testing, 125

Double-taps
overview of, 152
single-taps vs., 148
zooming to 100% with, 154

Drag
creating realistic, 154–155
hysteresis and, 156
pull-to-refresh threshold in Mail using, 158
as reliable gesture, 152

Drag to Move, 156–157
Drag to Resize, 156–157
Drop shadows

communication of, 84
home screen icons with, 202
overview of, 291–293
underhighlight effect with, 105–106

E
Ease-in animation curve, 162
Ease-in/ease-out animation curve, 116, 162–163
Ease-out animation curve, 162
Edge alignment, layout, 66–67, 70
Edge cases, 233
Edit mode, as visible status, 179
Editing-oriented apps, full-screen mode on, 249
Elements

action sheets, 47
adding depth to give permanence, 291
alerts, 46–47
applying styling to. See Styling
bars, 41–43
content views, 43–46
creating paper prototypes, 113–114
standard, 41
standard controls, 48–51
titling, 172
understatement of, 71–72

The Elements of Typographic Style (Bringhurst), xxvii, 69,
74, 271–272

Email
avoid exposing underlying mechanisms of, 261
ramifications outline for, 11
reducing friction in, 260

Engineering bugs, 121
Ethos, cultivating a good reputation, 215
Experience weight, and friction, 257

F
Failed feedback, 147
Failed inputs, 146–147

Fair app pricing, 206
Fallback gestures, 154
FAQs, as problem-solving documentation, 207–208
Feature creep, Mac Mail, 132–133
Features

avoid exposing underlying mechanisms, 261
complexity vs. usefulness of, 231–232
comprehensive documentation of, 207
grouping/arranging, 243–245
iOS and, 11–12
Mac Mail, 132–134
placing usefulness, 238–239
promoting/demoting, 243–245
pruning for focused apps, 225–228
reducing problems, 12–13
scaling back for focused app, 228–230
streamlining on Mail for iPhone, 134, 138
versatile design for, 233

Feedback. See also User feedback
giving instantaneous, 147–149
keeping out of hand shadow area, 150–151
moment of uncertainty caused by lack of

immediate, 147
realistic gestures and, 154–155

Figure/ground relationship, contrast and, 89
Fill color, mockups, 102
Find My Friends app, 279, 299
Fitts’s Law, tap target sizes and, 161
Five Whys process, 197–198
Flatness vs. depth

extreme examples of, 293–296
lighting, 291–293
overview of, 290–291
tastefulness of f lat interfaces, 85

Focused apps
consolidating features, 226–227
designing, 224–225
example app, 228–230
exercises, 236
as forthcoming or quiet, 223–224
iOS love of, 225
pruning features, 225–227
real-world goals of, 225
saving feature for later, 227
scaling back features, 227–228
summary review, 236

Forgiveness, user error
confirmation, 190–191
overview of, 187
undo, 187–189

Form sheet modal view, iPad, 37
Forthcoming interface design

adjacent in space, 238–239
disappearing interfaces, 248–249
example of, 252–253
exercises, 253–254

Index 307

of focused and versatile apps, 223–224
grouping/arranging features, 242–243
hiding vs. disabling controls, 248
overview of, 237–238
paying attention to context in, 246–248
progressive disclosure, 240–241
promoting/demoting features, 243–244
quiet design vs., 237
splitting difference of features, 246
stacking in time, 239–240
summary review, 253
taps, 250
text and visual weight, 250–251

Friction
defined, 255
experience weight and, 257
how to add, 258–259
modulating app, 270
reasons to add, 257–258
slope of diff iculty curve and, 255–257
summary review, 270
unintended, 259–264

Full-screen mode, 37, 249
Functionality

adding friction for changes to, 258
complexity of design, 223–224
consolidating in focused apps, 226–227
of popover navigation, 39

G
GarageBand app

aggressive use of depth, 294–296
custom navigation scheme, 40
help overlay documentation, 208
orientation on iPhone/iPad, 78
simulation, 300–301

Gear icon, 48, 172
General preferences, Mac Mail, 132
Gestures

adding friction with more-involved, 259
exotic, 154
hysteresis of, 155–157
introducing one novel interaction per app, 280–281
keeping feedback out of hand shadow, 150–151
realistic, 154–155
sandwich problem, 153–154
six reliable, 151–153
thresholds and, 157–158

Graceful interface. See Interface, crafting graceful
Gracious interface. See Interface, crafting gracious
Gradients, 102–104, 291–293
Graphics software, sketching with, 19
Grids

measuring pixels with, 61
using 2-D layouts, 77
wireframing, 62

Grouped table views, 44, 66
Grouping

by meaning, 242–243
with usefulness stacked in time, 240

Guidance. See also Friction
among more options, 265–266
modulating app, 270
one option, 263–264
at point of need, 177–178
sensible defaults, 266–269
summary review, 270
zero options, 262–263

Guidelines, design
overview of, 271–272
using HIG. See iOS Human Interface Guidelines (HIG)

Guides
measuring pixels with, 61
testing alignment of layout with, 67–68

H
Hand shadows, 150–151
Handbook of Usability Testing (Rubin and Chisnell),

xxvii, 125
Hardware display, 56
Hardware prototypes, 114
Help overlay documentation, 208
Helvetica Neue typeface, 59, 73
Helvetica typeface, 73
Hiding

controls, 248
status bars, 41

Hierarchical navigation view
iPad, 139
Mac Mail, 133
Mail for iPhone, 135
of navigation controllers, 31–34
sketching interactions for, 26

HIG. See iOS Human Interface Guidelines
High contrast, posterization process, 97
High fidelity prototypes, 112, 118–120
Hints, coexisting with interface, 208
Horizontal slide animation, navigation controllers, 33
HSB color model

action sheet contrast, 99
brightness, 289–290
hue, 286–288
overview of, 87–88
saturation, 288–289

Hue
feelings associated with, 286
HSB color model and, 87–88
perceived brightness of, 88
using, 286–288

Human Interface Guidelines. See iOS Human Interface
Guidelines

Hysteresis, 155–157

Index308

I
iA Writer, disappearing interface of, 249
iBooks app

custom navigation scheme, 40
disappearing interface, 249
experience weight, 257
interfaces/navigation structure, 36–37
internal background, 92–93
page metadata contrast, 99
presentation of image content, 81
smart approach to brightness, 289–290
transparency of toolbar buttons, 93–94

iCab app, 223
iCloud, 227–228
Icons, conveying capability via, 199–202
Ideo Method Cards, xxviii, 8
iLife design, 278
Illustrative documentation, 210
Illustrator, as mockup tool, 86
Image resources

creating mockups using canvas, 100–101
creating mockups with Paintcode, 86
creating mockups with resizable, 107
creating Retina versions of, 107
exporting for mockup assembly, 106–107

Image Size command, 107
Images

App Store listing, 202–204
combining with cues and text, 176
for interface interaction design, 171–172
launch, 202–203
margin and padding guidelines, 70–71
measuring optically, 60
presenting, 95

Immersion, 41, 145–146
Inconvenience hand-off, scaling back features,

227–228, 230
Indeterminate progress indicator (spinny). See

Spinning indicator
Indexes, in plain table view, 44
Info button, as standard control, 48
Information density, and layout, 75
Inner bevels, 291–293
Inner shadow, 291–293
Input

creating suspension of disbelief, 145–146
failed, 146–147
improving using hysteresis, 155–157
instantaneous feedback for, 147–149
mouse-based vs. touch, 158–159
outlining, 6–8
streamlining, 261–262

Insert popover, 227
Insight, from users, 7
Inspiration, xxvi–xxviii

Instapaper app
interface adjusting for time of day, 183
novel interaction, 281
quiet presentation, 223

Interactions
cues, 169–170
design precedents for, 275
diff iculty of novel, 282–283
introducing novel, 280–281
sketches, 24–26
styling precedents, 84
suspension of disbelief in touch-based, 146
updating original, 276
usability testing for, 123–124

Interactive prototypes, 55, 112, 118–120
Interface

constraining width using page sheet, 37
creating paper prototypes, 113–114
including two in one app, 36–37
layers, 66, 74–75, 108
modal view navigation and, 37–38
orientation on iPhone, 77
paraphernalia, 238
plotting out screens, 56–57
sketches, 22–24
tastefulness, 85

Interface, crafting graceful
defined, 145
example app, 163–164
exercises, 164–165
generous taps, 158–161
hysteresis and, 155–157
instantaneous feedback in, 147–148
layout, 149–151
meaningful animation, 161–163
moment of uncertainty, 146–147
realistic gestures, 154–155
sandwich problem, 153–154
six reliable gestures, 151–153
summary review, 164
suspension of disbelief, 145–146
thresholds, 157–158
using exotic gestures as shortcuts, 154

Interface, crafting gracious
capability, 184–185
communication breakdown, 176–177
contextual status, 179–180
cues, 168–171
defensive design, 185–187
denotation and connotation, 167–168
example app, 191–193
exercises, 193–194
forgiveness, 187–191
guidance at point of need, 177–178
imagery, 171–172

Index 309

invisible status, 179–183
overview of, 167
redundant messages, 176
sense of adventure, 183–184
summary review, 193
text, 172–174
visible status, 178–179
writing, 174–176

Interior, anatomical component of an element, 90
Internal contrast, 92–93, 97
Interviews, outlining using input from, 7
Invisible status, 180–182
iOS Human Interface Guidelines (HIG)

80 percent solution for defensive design, 186
Apple developer site, 21
Apple’s icon guidelines, 200, 202
button styles within same toolbar, 42
design guidelines, 271–272
getting most out of, 272–273
iPad and iPhone tap targets, 161
iPhone tab bar limits, 23
resourcefulness, 182–183
standard controls, 48–51
standard system imagery, 172

iOS
custom controls, 52–53
elements. See Elements
exercises, 53
navigation scheme. See Navigation
overview of, 31
summary review, 53

iPad
action sheets, 47, 190–191
app icon variants, 201
designing Mail for, 138–139
drawbacks of sketching with, 19
form factor, and sketching for, 21
going cross-platform, 127
handling orientation, 78
holding techniques/layout, 149–151
modal views, 37–38
popovers, 39, 56
sketching interface for, 21–24
sketching workf low for, 26
sleek/lean apps of, 11–12
tap target sizes, 161
Undo button for apps, 171
worst-case height-compression scenario, 78–79

iPhone
action sheets, 47, 190–191
going cross-platform with, 127
handling orientation on, 78
holding techniques/layout, 149–151
icon variants, 201–202
Mail for, 134–138
Mail for iPad vs., 139

modal views, 38
Music app tab bars on, 35
navigation controller, 32–33
sketching interface for, 21–24
sleek/lean apps of, 11–12
tap target sizes, 161
worst-case height-compression scenario, 78–79

iTunes app
contextual status in, 180
localization and, 212–213
ramifications outline for, 11
specialized design of, 278

iWork apps
custom navigation scheme, 40
disabling vs. hiding undo in, 248
fallback gestures of, 154
interactive tutorial of, 208–209
precedent for browsing local documents, 275–276
redo feature in, 188
scaling back features in, 227–228
segmented-controls-as-tabs navigation in, 36
templates, 268
versatile design of, 230–231

J
Jobs, Steve, xxi, xxvi, 82, 128, 134, 138, 259, 278

K
Kaleidoscope tool, 8
Keyboards branch, navigation controller hierarchy, 32
Keynote app

animation curves in, 162–163
building wide prototype in, 120
consolidating functionality in, 227
good guidance of, 266
handling orientation on iPad, 78
interactive prototypes with, 119
prototyping animations in, 116–117
templates, 268–269
toolbar configurations, 42
versatile design using, 230–231

L
Labels

creating paper prototypes, 114
for groupings, 242
scaling back for focused app, 230
as standard controls, 48–49
text used for, 172
value 1 and 2 cells emphasizing text, 45

Lag time, realistic drag and, 154–155
Landscape orientation

on iPad, 78
on iPhone, 77–78
keeping platform in mind while sketching app, 21
page sheet modal view in, 37

Index310

Language
localizing app, 211–213
using resourcefulness for, 183
worst-case height-compression scenario, 79

Launch image, 202–204
Layer Vault tool, 8
Layers

depth styling hinting at, 291
designing for, 108
dimension lines and, 62
interface, 66, 74–75, 108
mockup assembly with, 106–107
shape, 101–102
thinking in, 74–75
transparent, 93–94
as wireframe tool, 62
Wizard of Oz prototypes in, 114–115

Layers palette, 102–104
Layout

alignment, 66–68
balance, 71
consistent design for, 274
content and controls, 74
for graceful interface, 149–151
localizing app and, 212
margin and padding, 70–71
overview of, 63
proximity and distance, 66
rhythm, 68–69
similarity and distinction, 65
understatement, 71–72
unity, 63–64
visual weight, 64–65

Left detail (value 2 cells) style, 45, 51
Letterpress app, as f lattened, 294
Life-improving software, iOS, 197
Lighting effects, and depth, 291–293
Linear animation curves, 162–163
Linguistic gimmicks, avoiding in localization, 212
Links, consistent design for, 274
Lion, Mail on, 140–141
LiveView, for interactive prototypes, 119
Localization, 183, 211–213
Location Services, respecting user data, 216
Logos, 84, 287–288
Loudness, with text/visual weight, 250–251
Low fidelity prototypes

defined, 112
interactive prototypes as, 118–120
paper prototypes as, 112–114

M
Mac

designing Mail for, 140–141
going cross-platform with, 128
specialized design of, 278

Mac OS X Leopard, and Mail, 131–134, 137
Mail app

1.5-D message list in, 76
adaptation of, 180–181
depth cues in, 291
guidance at point of need in, 178
handling orientation on iPhone, 78
learning of, 182
paying attention to context in, 247
pull-to-refresh threshold in, 158
split view navigation, 33–34
text used for unread messages on, 172
undo feature in, 188
using page sheet modal view, 37

Mail app, case study
back to the Mac, 140–141
implementing on different platforms, 131
iPad, 138–139
iPhone, 134–138
Mac OS X Leopard, 131–134

Maps app
detail disclosure button on iPhone, 48
double-tap in, 152
navigation on iPhone, 33
rotate in, 153
sandwich problem of, 153–154

Margins, as layout principle, 70–71
Marketing

creating preemptive demo videos for, 118
evaluating proof-of-concept software for bugs, 122
of iOS gestures, 153

Master/detail approach, with workf low sketches, 26
Matte surface, mockups, 105
Meaning, grouping by, 242–243
Meaningful animation, 161–163
Measurement, 58–61
Medium contrast, in posterization, 97
Mental model, 40–41
Mental sweep, outlining using, 6–7
Menus, Mac Mail, 133–134
Message list screen, Mail for iPhone, 136
Messages

redundant, 176
rewriting, 175
writing text, 174–176

Messages app, conscientious divergence of design in,
280

Metaphors, mimicking real objects, 297–298
Mini apps, 129–130
Mission statement, App Store listing, 204
Mobile platforms, going cross-platform, 128
Mockups

assembly, 106–107
backgrounds, 92–93
color for, 86–88
color vs. monochrome, 286–290

Index 311

contrast, 89–92
contrast, evaluating with posterize, 95–97
contrast, examples, 97–99
creating button, 100–106
designing for layers, 108
exercises, 109
overview of, 81
pixels and, 57
presenting image content, 95
resizable images, 107
retina resources, 107–108
sketches vs., 19
styling, 82–85
summary review, 109
tools for, 85–86
transparency, 93–94
value, 88–89
when to create, 81–82
when to skip, 82

Modal views
context and, 248
manually undoing interactions, 189
for motion sketches, 115
presenting, 37–38

Modes
hues for, 286
as visible status, 179

Modular scale, 69
Monochrome, color vs., 286–290
Motion sketches, 112, 115–118
Mouse-based input, vs. touch, 158–159
Multiple personalities, 36–37
Multiple-user support, rarely offered in iOS, 12–13
Multithreading, contextual status and, 180
Music app, iPhone

presenting image content, 95
tab bar, 29, 35–36
volume knob lighting, 292

Mystery meat navigation, 172

N
Naming

apps, 199
groupings, 242

Navigable documentation, 210
Navigation

customizing, 39–41
modal view, 37–38
of multiple interfaces in one app, 36–37
mystery meat, 172
navigation controllers, 31–34
overview of, 31
popovers, 39
segmented-controls-as-tabs, 36–37
split view, 34–35
tab bar, 35–36

with table cells/detail disclosure buttons, 50
with table views, 43

Navigation bar, 31–32, 42, 279
Navigation controllers

consistent design for, 274
creating motion sketches, 115
overview of, 31–34
tab bar navigation vs., 36

Negative feedback, 147
Negotiation bugs, 122
Network activity indicator, 49
Nextstep operating system, Mail on Leopard, 131–132
Night theme, iBooks, 290
No-hand holding, for iPhone/iPad, 150
Noise layer, for matte surface, 105
Norman, Donald

on affordances, 170
on behavioral level of cognition, 167
on ref lective level of cognition, 195–196
on visceral level of cognition, 145

Notations
adding to screenshots in App Store, 204
denotation vs. connotation, 167–168
using Remarks app for, 19

Notes app
replicating office supplies, 298
streamlining input, 261
using architecture sketches for, 20

Notifications
betrayal of user trust, 216–218
respecting user time/attention, 215–216
subtitle cells of Settings app screen, 45

Novel interactions, 280–283
Number pads, 163–164
Numbers app, 230–231, 268
Numerical settings, with stepper, 51

O
OmniFocus app, 186
OmniGraff le app, 19, 119
On-screen controls, sketching interfaces, 22–24
One-handed holding, iPhone layout for, 149–150
One not many, scaling features, 227, 230
One option, guiding user with, 264–266
Online resources

accessibility, 215
quiet vs. forthcoming presentations, 223–224
registering this book for reader services, xxxiii
web site for this book, xxv

Opacity, 103–104
Optical measurements, wireframes, 58–61
Orientation

sketching app with platform in mind, 21
wireframing iPhone/iPad, 77–78
worst-case height-compression scenario, 78–79

Ornamentation, 298–299

Index312

Outlines
antirequirements, 9–10
architecture, 13
avoid exposing underlying mechanism, 261
defining platform, 10–11
as to-do list, 14
exercises, 14
exploring design ideas with, 15
features and, 11–12
listing ramifications, 11
mental sweep before beginning, 6–7
more inputs to, 7–8
nonlinear but orderly process of, 3–4
overview of, 3
problem reduction, 12–13
requirements, 8–9
software design with, 4–6
starting new platform with, 130

P
Padding, as layout principle, 70–71
Page indicator, 49
Page metadata contrast, iBooks, 99
Page sheet style, modal view, 37
Pages app

borrowing materials from real world, 297
complexity on Mac vs. iPad, 231–232
presets, 269
templates, 268
versatile design of, 223, 230–231

Paintcode tool, mockups, 86
Paper app, 18–19, 281
Paper prototypes, 112–114
Partial curl transition style, iPhone, 38
Pathways, workf low sketch, 26–29
Pattern recognition, versatile apps, 235
Patterns, of good backgrounds, 93
Penultimate app, writing/sketching, 19
Perceived brightness (values), 88–89, 95–97
Permanence, 291, 297
Photos, 81, 249
Photoshop

converting image resources to Retina, 107–108
creating custom button, 100–106
mockup assembly in, 85, 106–107

Picker control, 49, 52–53
Pinch/unpinch

getting out of sync with fingers, 155
hysteresis and, 157
pitfalls of thresholds, 158
sandwich problem in Maps app and, 153–154
zoom in/out with, 152–153

Pixelmator tool, mockups, 86
Pixels

adding bevel, 104
and grids, 62

measuring, 58–61
and points, 57–58

Placeholder text, 51, 178
Plain apps. See Aesthetics (rich and plain)
Plain table view, 43–44
Plain text f iles, for software design, 5
Platform definition outline, 10–11
Platforms

creating new sketches based on precedents, 22
going cross-platform. See Cross-platform
keeping in mind while sketching app, 21

Podcast screens, navigation controllers for, 33
Points

tap targets and, 158–161
using scale for margins, 70
using scale for rhythm, 68–69
wireframing iOS displays in, 57–58
worst-case height-compression scenario, 79

Popovers
hues for, 286
on iPad screens, 56
modal views vs., 38
navigating, 36, 39
paying attention to context with, 246–247
styling for communication, 84
tips for, 43
undo feature and, 188
workf low sketches of, 26

Portrait orientation
on iPad, 78
on iPhone, 77–78
keeping in mind while sketching app, 21
page sheet modal view in, 37
split-view navigation and, 33–34
worst-case height-compression scenario, 79

Posterization process, 95–98
PowerPoint, 266
Powers of 10, instantaneous feedback, 149
Precedents, 21–22, 275–276
Preemptive demo videos, 112, 117–118
Preferences, Mail, 132–135
Premium app pricing, 205–206
Presentation

functional complexity of. See Versatile apps
functional simplicity of. See Focused apps
simplicity vs. complexity of. See

Forthcoming interface design;
Quiet interface design

Presets, 228, 230, 268–269
Previews of content, navigation controllers, 33–34
Pricing, app, 205–206
Priorities, bug reporting, 122–123
Problem reduction outlines, 12–13
Problem-solving documentation, 207–208
Productivity apps, 41
Programmer’s colors, and saturation, 288–289

Index 313

Progress indicators. See also Spinning indicator
quietness of spinnies vs., 251
for response of more than three seconds, 148
threshold for, 148

Progress view, as standard control, 49–50
Progressive disclosure experience, in iOS, 240–241
Project management software, outlining using, 5
Promoting features, 243–245
Proof-of-concept software, 112, 121–123
Prototypes

exercises, 126
interactive, 118–120
kinds of, 112
motion sketches as, 115–117
overview of, 111
paper, 112–114
preemptive demo videos, 117–118
proof-of-concept software, 121–123
sketches vs., 19
summary review, 126
testing, 111–112, 123–126
Wizard of Oz, 114–115

Proximity, layout principle of, 66
Pull-to-refresh

cargo cult design example, 277
as successful novel interaction, 281
threshold example, 157–158

Q
Quiet interface design

adjacent in space, 238–239
disappearing interfaces, 248–249
example of, 251–252
exercises, 253–254
of focused and versatile apps, 223–224
forthcoming design vs., 237
grouping/arranging in, 242–243
hiding vs. disabling controls, 248
overview of, 237–238
paying attention to context, 246–248
progressive disclosure, 240–241
promoting/demoting features, 243–244
splitting difference of features, 246
stacking in time, 239–240
summary review, 253
taps, 250
text and visual weight, 250–251

R
Ramifications outline, 11
Read-only, scaling back features, 228, 230
Real-world goals, focused apps, 225
Real-world objects. See Skeuomorphic design
Real-world textures, 92–93
Realism vs. digitality

metaphor, 297–298

ornamentation, 298–299
overview of, 296–297
simulation, 299–301
taking it easy, 301
texture and tactility, 297

Realistic gestures, 154–155
Reassurance, of elements adjacent in space, 238
Records, user feedback, 8
Redo feature, 188
Redundant messages, 176
Ref lective level of cognition

judging app quality, 124
overview of, 195–196

Rejected (dead-end) ideas, 6, 17
Release notes, 209–210
Reliable gestures, 151–153
Remarks app, writing/sketching tool, 19
Rendering, as styling attribute, 83
Requirements outline

creating, 8–9
creating interface sketch from, 23
starting new platform using, 129

Resizable images, mockups, 107
Resourcefulness, 181–182
Resources

focused vs. versatile apps, 225
helpful, xxvii–xxviii
versatile app requirements, 233

Respect, establishing user, 215–219
Retina resolutions

converting image resources to, 107–108
Helvetica Neue typeface on, 73
points in, 57

Rewriting messages, 175
RGB colorspace, 86–88
Rhythm, as layout principle, 68–69
Rich apps. See Aesthetics (rich and plain)
Right detail (value 1 cells) style, 45, 51
Rotate, performing gesture, 153
Rounded rectangle button, as standard control, 50
Rubber ducking, 17–18
Ruler objects, measuring pixels, 61

S
Safari, tap targets in, 160
Safety mechanism, custom controls, 187
Saturation

HSB color model and, 87–88
using, 288–289
visual weight and, 91

Saving work, 262
Scale

basic, 68–69
modular, 69

Scale Styles setting, 107
Scaling back features in focused apps, 227–228, 230

Index314

Scope bar, as standard control, 50
Scope, choosing app, 224–225
Screens

elements adjacent in space on single, 238–239
elements as building blocks of. See Elements
manual undo and, 189
mockup assembly and, 106–107
navigating. See Navigation
for paper prototypes, 113–114
tab bar dominance on, 36
thinking in terms of, 55–57
for Wizard of Oz prototypes, 114–115
workf low sketches of paths between, 26–29

Screenshot Journal app, 60
Screenshots, 81–82, 204
Scrolling, 74–75, 79
Search bar, as standard control, 50
Section headers, plain table view, 44
Security, respecting user data, 216
Segmented controls, 50
Segmented-controls-as-tabs, 36–37
Selection, as visible status, 178–179
Self-guided tour, of your app, 240–241
Semiotic engineering, 169
The Semiotic Engineering of Human-Computer Interaction

(de Souza), 169
Sensible defaults, 265–269
Sepia theme, iBooks, 289–290
Service, customer, 211
Settings app

gear imagery for, 171
grouped table view in, 44, 66
subtitle cell style for Notifications screen of, 45
value 1 cells for, 45

Settings-like split view navigation, 33–34
Shading, 58–59, 62–63
Shake to Undo gesture, 188
Shape layer, creating custom buttons, 101–102
Shine effect, app icons, 202
Shortcuts, 27–29, 154
Shorthand, using precedents, 276
Signatures, Mac Mail, 132
Signup experience, reducing friction in, 260–261
Silence, in failed feedback, 147
Similarity, layout principle of, 64
Simulation, of real-world objects, 299–301
Single-taps, 148
Size, visual weight and, 64–65
Sketching

creating paper prototypes, 114
creating versatile app, 233–235
creating Wizard of Oz prototypes, 114–115
exercises, 29
exploring design ideas with, 15
interactions, 24–26

interfaces, 22–24
playing devil’s advocate using, 22
rubber ducking and, 17–18
situations for, 20–21
sketchiness of, 19–20
summary review, 29
thinking by, 15–16
through conversation, 16–18
tools for, 18–19
using precedents, 21–22
wireframes vs., 55–56
workf lows, 26–29

Sketching User Experiences (Buxton), xxvii, 15
Skeuomorphic design

metaphors, 297–298
ornamentation, 298–299
overview of, 301
simulation, 299–301
taking it easy, 301
texture and tactility, 297

Skeuomorphism, 301
Skinner, B.F., 183
Skinning standard controls, harmless distinctiveness,

279
Slicy app, 106–107, 202–203
Slide to unlock, adding friction with, 259
Slider, as standard control, 51
SnackLog sample app

Five Whys and, 197–198
as focused app, 228–230
introduction to, 8–9
making forthcoming, 252–253
making graceful, 163–164
making gracious, 191–193
making quiet, 251–252

Specialized design
conscientious divergence in, 279–280
consistency vs., 271–272
diff iculty of novelty, 282–283
exercises, 284
getting the most of HIG, 272–273
harmless distinctiveness in, 279
how it all works out, 271–272
one novel interaction per app, 280–281
overview of, 278

Spinning indicator
progress indicators vs. quietness of, 251
pull-to-refresh in Mail using, 158
for response of more than three seconds, 148
threshold for, 148

Split view
as content view, 43
current context modal view in, 38
presenting navigation with, 34–35

Stacked in time, 237, 239–240

Index 315

Standalone apps, 129–130
Standard controls

custom controls based on, 52
customizing appearance with tints, 279
types of, 48–51

Standard resolution, 57, 100
Status

contextual, 179–180
invisible, 180–182
visible, 178–179

Status bar
network activity indicator in, 49
showing content/controls, 41
worst-case height-compression scenario, 79

Steering wheel zone, iPad layout, 149–150
Stencil tools, wireframes, 62
Stepper control, numerical settings, 51
Steps, adding friction with more, 259
Stocks app, 20
Stretchable images, mockups, 107
Strings, localizing app, 212
Stroke, mockups, 103–104
Styling

backgrounds, 92–93
color, 86–88
for communication, 84
with consistency. See Consistent design
with contrast, 89, 95–97
as design discipline, 82–83
for good contrast and visual weight, 89–92
image content, 95
in layers, 108
rendering and, 83
specialized. See Specialized design
tastefulness and, 84–85
transparency, 93–94
value and, 88–89
wireframes, 62–63

Subtitle cells, as content view, 45
Support, designing for user, 211
Surface, adding matte to, 105
Suspension of disbelief

breaking, 146
instantaneous feedback preserving, 148–149
iOS devices preserving, 145–146
moment of uncertainty, 146–147

Sustainable app pricing, 205
Swipe gesture, 152
Swipe-to-delete convention, 152
Switches

consistent design for, 274
manually undoing interactions, 189
as standard control, 51
toggling setting on/off, 50

T
Tab bar

showing content/controls, 42–43
top-level navigation with, 35–36
workf low sketches of, 26

Table cells
consistent design for, 274
contrast in, 98
generous tap targets for, 159–161
Mail for iPhone using, 136
with text input, 51

Table view
choosing options in, 50
contrast in, 98
information displayed in, 43
Mail for iPhone using, 135, 136
navigation controller options, 33
picker vs., 49
styling for contrast, 91

Tactility, borrowing materials from real world, 297
Taps

ease of using, 250
forgiving accidental/exploratory, 259
hysteresis and, 156
instantaneous feedback of, 148–149, 154–155
as most reliable gesture, 152
navigation controllers using, 33
sketching interactions for, 26
targets for, 158–161

Target audience
accessing for outlining, 7–8
usability testing with, 124–126

Tasks, outlining, 5
Tastefulness, as styling attribute, 84–85
Templates, 62, 268
Terminology, designing features using, 13
Testing

prototype animations, 117
prototypes on device, 111–112
usability of prototypes, 123–126
using hysteresis to improve, 157
VoiceOver, 214

Text
aligning in layout, 67
combining with cues/imagery, 176
demanding attention/requiring reading, 174
depth styling for legibility, 291
giving loudness and clarity to, 250–251
in interface interaction design, 172–174
label, 45, 48–49
margin and padding guidelines, 70–71
measuring optically, 59
principles of typography, 73–74
understated layout for, 72

Index316

Text fields, 51
Text view, 46
Texture, 105, 297
Themes, iBooks, 289–290
Thinking, Fast and Slow (Kahneman), xxviii, 238
Thinking with Type (Lupton), 74
Thresholds, in graceful interface, 157–158
Thumb field, iPhone layout, 149–150
Time, user

elements adjacent in space saving, 238
precedents saving, 276
respecting, 215–218

Timing, iOS animations, 116
Tints, customizing app, 279
To-do applications, tasks in, 5
To-do lists, outlines as, 14
Toolbar buttons

bordered/unbordered, 42
center alignment of borderless, 67
iBooks transparent, 93–94
iPhone Mail commands, 136
margin and padding, 70

Toolbars
customizing with tints, 279
safe hues for, 286–287
showing content/controls, 42

Tools
graphics, 85–86
prototyping, 118–119
sketching, 18–19

Touch and hold, 152
Toyota, Five Whys process, 197–198
Track 8 music app, 294
Traditional outlines, 5
Transitions, iPhone, 38
Transparency, mockups and, 93–94
Trends, design, 272
Triangulation, versatile app design, 233–235
Trust, respecting user, 215–219
Tutorials, introducing interface via, 208–209
Tweetbot, Use Last Photo Taken button, 265–266
Tweetie, 157–158, 277, 281
Two-handed holding, iPhone/iPad, 150
Typography

Apple points vs. points in, 57–58
page sheet modal view and, 37
principles of, 73–74

U
UI furniture, 239, 248–249
UIPrerenderedIcon shine effect, 202
Unbordered buttons, toolbars, 42
Underlying mechanisms, 261
Underhighlights, 105–106, 291–293
Understatement, 71–72, 84–85

Undo feature
arrow buttons, 171
disabling vs. hiding in iWork, 248
overview of, 187–188
prominence of, 243

Unicode character set, 73, 211–213
Unintended friction, 259–264
Unitaskers, 225
Unity, layout, 63–64
Updating sketches, as you go, 18
Usability testing, 123–126
Use cases

defined, 121–122
starting new platform, 130
versatile app design, 233–236

User experience design
accessibility, 213–215
conveying capability, 198–206
documentation, 206–210
ethos, 215
exercises, 219
following precedents to save effort, 276
localization, 211–213
overview of, 195–196
respect, 215–219
serving the soul, 197–198
summary review, 219
support, 211

User feedback
keeping records of, 8
often-requested features vs. antirequirements, 10
in usability testing, 126, 208

User Interface Design Labs, 273
Users

accessing for outlines, 7–8
betrayal of trust, 216–218
guessing intentions using hysteresis, 157
sketching interactions, 26
use of term in this book, 218–219

V
Value 1 cells (right detail) style, 45, 51
Value 2 cells (left detail) style, 45, 51
Value bar, 163–164
Values (perceived brightness)

contrast and, 89
overview of, 88–89

Vectors, defining shape layer, 102
Versatile apps

bringing own goals to, 231
creating, 233
designing, 230–231
exercises, 236
finding boundaries, 235–236
as forthcoming or quiet, 223–224

Index 317

iOS love of versatility, 231–232
pattern recognition for, 235
resources required for, 233
summary review, 236
using triangulation, 233–235

Version control, for design resources, 8
Versions tool, by Black Pixel, 8
Videos, preemptive demo, 117–118
Visceral level of cognition

crafting graceful interface. See Interface, crafting
graceful

defined, 145
judging app quality at, 124

Visible status, interface interaction design, 178–179
Visual cues, 259
Visual rhythm, layout, 68–69
Visual weight

adding friction by increasing, 259–260
adjusting for balance, 71
adjusting for contrast, 89–92
giving loudness and clarity, 250–251
as layout principle, 64–65
using hue for, 287

VoiceOver, for accessibility, 214
Volume slider, 51

W
W3C (World Wide Web Consortium), 89
Wait indicator threshold, 148
Warning cues, 259
Weather app

adjusting for time of day, 183
focused design of, 223
status images of, 171

Web, going cross-platform with, 128–129
Web service, sketching interactions for, 26
Web view, 46
 “What’s New,” App Store, 209–210
Wheels of time, 48–49
White theme, iBooks, 289–290
Whiteboards, 5, 16–18
Wide prototypes, 119–120
Widget-type apps, starting out, 20

Widths, 37, 76
Windows, cross-platform with, 128
Wireframes

content and controls layout, 75
controls in content areas, 75
dimensionality, 76–77
exercises, 80
in graceful interface layout, 149–151
information density, 75
layout principles. See Layout
optical measurements, 58–61
orientation on iPad, 78
orientation on iPhone, 77–78
sketches vs., 55–56
summary review, 79
for tab bars, 42–43
thinking in layers, 75–76
thinking in points, 57–58
thinking in screens, 55–57
tools, 61–63
typography, 72–74
in Wizard of Oz prototypes, 114–115
worst-case height-compression scenario, 78–79

Wizard of Oz prototypes, 112, 114–115
Workf low sketches, 26–29
World Wide Web Consortium (W3C), 89
Worldwide Developers Conference, Apple, 273
Wrench icon, 48
Writing

about software, 4–6
interface interaction with good, 174–176

X
Xcode, 61, 70
xScope app, 61, 101, 108, 115

Z
Z dimension, 74
Zero options, 262–263
Zoom in

measuring pixels with, 60
pinch/unpinch for. See Pinch/unpinch
two-fingered double tap for, 154

This page intentionally left blank

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	4 The Wireframes
	Thinking in Screens
	Thinking in Points
	Optical Measurements
	Tools for Wireframing
	Principles of Layout
	Typography
	Layout: A Place for Everything…
	Summary
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

