
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321885951
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321885951
https://plusone.google.com/share?url=http://www.informit.com/title/9780321885951
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321885951
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321885951/Free-Sample-Chapter

The Essence
of Software

Engineering

This page intentionally left blank

The Essence
of Software

Engineering
Applying the SEMAT Kernel

Ivar Jacobson
Pan-Wei Ng

Paul E. McMahon
Ian Spence

Svante Lidman

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

Figures P-1, P-2, P-3, 2-1, 3-1, 3-2, 3-4 and 22-2 are provided courtesy of the Software
Engineering Method and Theory (SEMAT) community.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding inter-
ests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Cataloging-in-Publication Data is on file with the Library of Congress.

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc., Per-
missions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-88595-1
ISBN-10: 0-321-88595-3
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.
First printing, January 2013

In every block of marble I see a statue as plain
as though it stood before me, shaped and perfect

in attitude and action. I have only to hew
away the rough walls that imprison the lovely

apparition to reveal it to the other eyes
as mine see it.

—Michelangelo

Standing on the shoulders of a giant...
We are liberating the essence from the

burden of the whole.

—Ivar Jacobson

This page intentionally left blank

vii

Contents
Foreword by Robert Martin xvii

Foreword by Bertrand Meyer xxi

Foreword by Richard Soley xxiii

Preface xxvii

Acknowledgments xliii

PART I THE KERNEL IDEA EXPLAINED 1

Chapter 1 A Glimpse of How the Kernel Can Be
Used 3

1.1 Why Is Developing Good Software So
Challenging? 4

1.2 Getting to the Essence of Software
Engineering: The Kernel 5

1.3 Using the Kernel to Address Specific
Challenges: An Example 6

1.4 Learning How to Address Development
Challenges with the Kernel 10

Chapter 2 A Little More Detail about the Kernel 13

2.1 How to Use the Kernel to Address a Specific
Challenge: An Example 13

2.2 Introducing the Alphas 14

2.3 Alphas Have States to Help a Team Achieve
Progress 18

2.4 There Is More to the Kernel 21

viii CONTENTS

Chapter 3 A 10,000-Foot View of the Full Kernel 23

3.1 Organizing the Kernel 24

3.2 The Essential Things to Progress and Evolve:
The Alphas 25

3.3 The Essential Things to Do: The
Activities 32

3.4 Competencies 35

3.5 Finding Out More about the Kernel 36

Chapter 4 The Kernel Alphas Made Tangible with
Cards 37

4.1 Using Cards As Aids to Address a Specific
Challenge: An Example 38

4.2 Making the Kernel Come Alive 41

Chapter 5 Providing More Details to the Kernel through
Practices 43

5.1 Making a Practice Explicit 44

5.2 How Explicit Should Practices Be? 45

5.3 Building Methods from Practices 47

5.4 Learning Methods and Practices 48

Chapter 6 What the Kernel Can Do for You 51

6.1 Developing Great Software 52

6.2 Growing 54

6.3 Learning 55

6.4 Evolving 55

Further Reading 56

CONTENTS ix

PART II USING THE KERNEL TO RUN AN
ITERATION 59

Chapter 7 Running Iterations with the Kernel:
Plan-Do-Check-Adapt 61

7.1 Terminology Used 61

7.2 Plan-Do-Check-Adapt 62

7.3 Setting the Scene 64

7.4 The Focus for the Next Few Chapters 66

Chapter 8 Planning an Iteration 69

8.1 Planning Guided by Alpha States 70

8.2 Determining the Current State in Our
Story 73

8.3 Determining the Next State in Our
Story 73

8.4 Determining How to Achieve the Next States
in Our Story 73

8.5 How the Kernel Helps You in Planning
Iterations 78

Chapter 9 Doing and Checking the Iteration 79

9.1 Doing and Checking the Iteration with the
Kernel 79

9.2 Doing and Checking the Iteration in Our
Story 81

9.3 How the Kernel Helps You in Doing and
Checking the Iteration 84

x CONTENTS

Chapter 10 Adapting the Way of Working 87

10.1 Adapting the Way of Working with the
Kernel 87

10.2 Adapting the Way of Working in the
Story 88

10.3 How the Kernel Helps You in Adapting the
Way of Working 90

Chapter 11 Running an Iteration with Explicit
Requirement Item States 93

11.1 Working with Explicit Requirement
Items 93

11.2 Planning an Iteration in Our Story 95

11.3 Doing Another Iteration in Our Story 97

11.4 Adapting the Way of Working in Our
Story 100

11.5 Discussion 102

Further Reading 103

PART III USING THE KERNEL TO RUN A
SOFTWARE ENDEAVOR 105

Chapter 12 Running a Software Endeavor: From Idea to
Production 107

12.1 The People in Our Story and Challenges
along the Way 107

12.2 Understanding the Organizational
Context 109

CONTENTS xi

Chapter 13 Building the Business Case 111

13.1 Getting Ready to Start in Our Story 111

13.2 Understanding the Opportunity and the
Stakeholders 115

13.3 Understanding the Solution 117

13.4 Preparing to Do the Work 119

13.5 Establishing a High-Level Plan 121

13.6 Building the Schedule 125

13.7 How the Kernel Helps You in Getting
Started 128

Chapter 14 Developing the System 131

14.1 Building the Skinny System—Getting
Things Working 135

14.2 Engaging the Stakeholders 136

14.3 Starting Development 138

14.4 Establishing an Agreed-on Way of
Working 139

14.5 Making the Skinny System Usable—Getting
Things Working Well 143

14.6 Keeping the Stakeholders Involved 144

14.7 Evolving a Usable System 146

14.8 Getting to a Good Way of Working 148

14.9 Evolving a Deployable Solution—
Concluding the Work 149

14.10 Gaining Acceptance 151

14.11 Getting to Delivery 152

14.12 Done! Completing Development
Work 154

xii CONTENTS

14.13 How the Kernel Helps You Develop Great
Software 156

Chapter 15 Operating the Software 157

15.1 Setting the Scene 157

15.2 Going Live—Successfully Deploying the
System 161

15.3 Deploying the System 162

15.4 Handing Over between the Two
Teams 164

15.5 Supporting the System until
Retirement 167

15.6 Our Story Ends 170

Further Reading 170

PART IV SCALING DEVELOPMENT WITH THE
KERNEL 173

Chapter 16 What Does It Mean to Scale? 175

Chapter 17 Zooming In to Provide Details 179

17.1 Making Practices Precise for Inexperienced
Members 180

17.2 An Example: A Requirements Elicitation
Practice 182

17.3 An Example: An Acceptance Testing
Practice 184

17.4 Understanding How Practices Work
Together 186

17.5 Value of Precise Practices 188

CONTENTS xiii

Chapter 18 Reaching Out to Different Kinds of
Development 191

18.1 Agreeing on the Practices to Use 192

18.2 Adapting to Your Development Life
Cycle 193

18.3 Building a Method Incrementally during
Development 194

18.4 Methods in Large Organizations 197

18.5 Putting Teams in Control of Their
Methods 198

Chapter 19 Scaling Up to Large and Complex
Development 201

19.1 An Example of Large Development 202

19.2 Organizing Work Using the Alphas 204

19.3 Visualizing Development with the
Alphas 208

19.4 Coordinating the Development Teams
through Alphas 210

19.5 Empowering Teams to Scale 212

Further Reading 213

PART V HOW THE KERNEL CHANGES THE WAY
YOU WORK WITH METHODS 215

Chapter 20 Thinking about Methods without Thinking
about Methods 217

20.1 You Think about Methods All the
Time 218

20.2 Doing Rather Than Discussing 219

xiv CONTENTS

Chapter 21 Agile Working with Methods 221

21.1 The Full Team Owns Their Method, Rather
Than a Select Few 222

21.2 Focus on Method Use Rather Than
Comprehensive Method Description 223

21.3 Evolve Your Team’s Method, Rather Than
Keeping Your Method Fixed 224

PART VI WHAT’S REALLY NEW HERE? 227

Chapter 22 Refounding Methods 229

22.1 Not a Lack of Methods, but a Lack of a
Foundation—a Kernel 229

22.2 The Kernel Values Practicality 230

22.3 The Kernel Is Actionable and
Extensible 232

Chapter 23 Separation of Concerns Applied to
Methods 235

23.1 Separating the Kernel from Practices 236

23.2 Separating Alphas from Work
Products 237

23.3 Separating the Essence from the
Details 238

Chapter 24 The Key Differentiators 241

24.1 Innovations with Methods 241

24.2 Practical Tools for Software Teams and
Professionals 242

CONTENTS xv

PART VII EPILOGUE 245

Chapter 25 This Is Not the End 247

Chapter 26 . . . But Perhaps It Is the End of the
Beginning 249

Chapter 27 When the Vision Comes True 253

27.1 The Software Professional 253

27.2 The Industry 254

27.3 The Academic World 255

27.4 An Exciting Future 256

Further Reading 257

APPENDIXES 259

Appendix A Concepts and Notation 261

Appendix B What Does This Book Cover with Respect to
the Kernel? 263

B.1 Inside the Kernel, and Inside This
Book 263

B.2 Outside the Kernel, but Inside This
Book 264

B.3 Inside the Kernel, but Outside This
Book 265

Appendix C Bibliography 267

C.1 SEMAT Working Documents 267

xvi CONTENTS

C.2 SEMAT: Other Documents and
References 268

C.3 Other References 270

About the Authors 271

What People Are Saying about This Book 275

Index 287

xvii

Foreword
by Robert Martin

The pendulum has swung again. This time it has swung toward
craftsmanship. As one of the leaders of the craftsmanship move-
ment, I think this is a good thing. I think it is important that
software developers learn the pride of workmanship that is com-
mon in other crafts.

But when the pendulum swings, it often swings away from
something else. And in this case it seems to be swinging away
from the notion of engineering. The sentiment seems to be that
if software is a craft, a kind of artistry, then it cannot be a sci-
ence or an engineering discipline. I disagree with this rather
strenuously.

Software is both a craft and a science, both a work of passion
and a work of principle. Writing good software requires both
wild flights of imagination and creativity, as well as the hard
reality of engineering tradeoffs. Software, like any other worth-
while human endeavor, is a hybrid between the left and right
brain.

This book is an attempt at describing that balance. It proposes
a software engineering framework or kernel that meets the need
for engineering discipline, while at the same time leaving the
development space open for the creativity and emergent behavior
needed for a craft.

Most software process descriptions use an assembly line meta-
phor. The project moves from position to position along the line
until it is complete. The prototypical process of this type is the

xviii FOREWORD BY ROBERT MARTIN

waterfall, in which the project moves from Analysis to Design to
Implementation. In RUP the project moves from Inception to
Elaboration to Construction to Transition.

The kernel in this book represents a software development
effort as a continuously operating abstract mechanism composed
of components and relationships. The project does not move
from position to position within this mechanism as in the assem-
bly line metaphor. Rather, there is a continuous flow through
the mechanism as opportunities are transformed into require-
ments, and then into code and tests, and then into deployments.

The state of that mechanism is exposed through a set of criti-
cal indicators, called alphas, which represent how well the under-
lying components are functioning. These alphas progress from
state to state through a sequence of actions taken by the devel-
opment team in response to the current states.

As the project progresses, the environment will change, the
needs of the customer will shift, the team will evolve, and the
mechanism will get out of kilter. The team will have to take
further actions to tune the mechanism to get it back into proper
operation.

This metaphor of a continuous mechanism, as opposed to an
assembly line, is driven by the agile worldview. Agile projects
do not progress through phases. Rather, they operate in a man-
ner that continuously transforms customer needs into software
solutions. But agile projects can get out of kilter. They might
get into a mode where they aren’t refactoring enough, or they
are pairing too much, or their estimates are unreliable, or their
customers aren’t engaged.

The kernel in this book describes the critical indicators and
actions that allow such malfunctions to be detected and then
corrected. Teams can use it to tune their behaviors, commu-
nications, workflows, and work products in order to keep the
machine running smoothly and predictably.

FOREWORD BY ROBERT MARTIN xix

The central theme of the book is excellent. The notion of
the alphas, states, and actions is compelling, simple, and effec-
tive. It’s just the right kind of idea for a kernel. I think it is an
idea that could help the whole software community.

If you are deeply interested in software process and engineer-
ing, if you are a manager or team leader who needs to keep the
development organization running like a well-oiled machine, or
if you are a CTO in search of some science that can help you
understand your development organizations, then I think you’ll
find this book very interesting.

After reading the book, I found myself wanting to get my
hands on a deck of cards so that I could look through them and
play with them.

—Robert Martin
(unclebob)
February 2012

This page intentionally left blank

xxi

Foreword
by Bertrand Meyer

Software projects everywhere look for methodology and are not
finding it. They do, fortunately, find individual practices that
suit them; but when it comes to identifying a coherent set of
practices that can guide a project from start to finish, they are
too often confronted with dogmatic compendiums that are too
rigid for their needs. A method should be adaptable to every
project’s special circumstances: it should be backed by strong,
objective arguments; and it should make it possible to track the
benefits.

The work of Ivar Jacobson and his colleagues, started as part of
the SEMAT initiative, has taken a systematic approach to identi-
fying a “kernel” of software engineering principles and practices
that have stood the test of time and recognition. Building on this
theoretical effort, they describe project development in terms of
states and alphas. It is essential for the project leaders and the
project members to know, at every point in time, what is the cur-
rent state of the project. This global state, however, is a combina-
tion of the states of many diverse components of the system; the
term alpha covers such individual components. An alpha can be
a software artifact, like the requirements or the code; a human
element, like the project team; or a pure abstraction, like the
opportunity that led to the idea of a project. Every alpha has, at
a particular time, a state; combining all these alpha states defines
the state of the project. Proper project management and success
requires knowing this state at every stage of development.

xxii FOREWORD BY BERTRAND MEYER

The role of the kernel is to identify the key alphas of soft-
ware development and, for each of them, to identify the standard
states through which it can evolve. For example, an opportunity
will progress through the states Identified, Solution Needed,
Value Established, Viable, Addressed, and Benefits Accrued.
Other alphas have similarly standardized sets of states.

The main value of this book is in the identification of these
fundamental alphas and their states, enabling an engineering
approach in which the project has a clear view of where it stands
through a standardized set of controls.

The approach is open, since it does not prescribe any particu-
lar practice but instead makes it possible to integrate many dif-
ferent practices, which do not even have to come from the same
methodological source—like some agile variant—but can com-
bine good ideas from different sources. A number of case studies
illustrate how to apply the ideas in practice.

Software practitioners and teachers of software engineering
are in dire need of well-grounded methodological work. This
book provides a solid basis for anyone interested in turning soft-
ware project development into a solid discipline with a sound
engineering basis.

—Bertrand Meyer
March 2012

xxiii

Foreword
by Richard Soley

Software runs our world; software-intensive systems, as Grady
Booch calls them, are the core structure that drives equity and
derivative trading, communications, logistics, government ser-
vices, management of great national and international military
organizations, and medical systems—and even allows elementary
school teacher Mr. Smith to send homework assignments to little
Susie. Even mechanical systems have given way to software-driven
systems (think of fly-by-wire aircraft, for example); the trend is
not slowing, but accelerating. We depend on software, and often
we depend on it for our very lives. Amazingly, more often than
not software development resembles an artist’s craft far more
than an engineering discipline.

Did you ever wonder how the architects and builders of the
great, ancient temples of Egypt or Greece knew how to build
grand structures that would stand the test of time, surviving
hundreds, or even thousands of years, through earthquakes,
wars, and weather? The Egyptians had amazing mathematical
abilities for their time, but triangulation was just about the top
of their technical acumen. The reality, of course, is that luck has
more to do with the survival of the great façade of the Celsus
Library of Ephesus, in present-day Selçuk, Turkey, than any tre-
mendous ability to understand construction for the ages.

This, of course, is no longer the case. Construction is now
civil engineering, and civil engineering is an engineering dis-
cipline. No one would ever consider going back to the old

xxiv FOREWORD BY RICHARD SOLEY

hand-designed, hand-built, and far more dangerous structures
of the distant past. Buildings still fail in the face of powerful
weather phenomena, but not at anywhere near the rate they did
500 years ago.

What an odd dichotomy, then, that in the design of some
large, complex systems we depend on a clear engineering meth-
odology, but in the development of certain other large, complex
systems we are quite content to depend on the ad hoc, hand-
made work of artisans. To be sure, that’s not always the case;
quite often, stricter processes and analytics are used to build
software for software-intensive systems that “cannot” fail, where
more time and money is available for their construction; aircraft
avionics and other embedded systems design is often far more
rigorous (and costly) than desktop computing software.

Really, this is more of a measure of the youth of the com-
puting field than anything else, and the youth of our field is
never more evident than in the lack of a grand unifying the-
ory to underpin the software development process. How can we
expect the computing field to have consistent software devel-
opment processes, consistently taught at universities worldwide,
consistently supported by software development organizations,
and consistently delivered by software development teams, when
we don’t have a globally shared language that defines the soft-
ware development process?

It is worth noting, however, that there is more than one
way to build a building and more than one way to construct
software. So the language or languages we need should define
quarks and atoms instead of molecules—atomic and subatomic
parts that we can mix and match to define, carry out, measure,
and improve the software development process itself. We can
expect the software development world to fight on about agile
versus non-agile development, and traditional team-member

FOREWORD BY RICHARD SOLEY xxv

programming versus pair programming, for years to come; but
we should demand and expect that the process building blocks
we choose can be consistently applied, matched, and compared
as necessary, and measured for efficacy. That core process design
language is called Essence. Note that, in fact, in this book there
is a “kernel” of design primitives that are themselves defined in a
common language; I will leave this complication for the authors
to explain in detail.

In late 2009, Ivar Jacobson, Bertrand Meyer, and I came
together to clarify the need for a widely accepted process design
kernel and language and to build an international team to
address that need. The three of us came from quite different
backgrounds in the software world, but all of us have spent time
in the trenches slinging code, all of us have led software devel-
opment teams, and all of us have tried to address the software
complexity problem in various ways. Our analogies have differed
(operatic ones being quite noticeably Prof. Meyer’s), our team
leadership styles have differed, and our starting points have been
quite visibly different. These differences, however, led to an out-
standing international cooperation called Software Engineering
Method and Theory, or SEMAT. The Essence kernel, a major
Object Management Group (OMG) standards process, and this
book are outputs of this cooperative project.

Around us a superb team of great thinkers formed, meeting
for the first time at ETH in Zürich two years ago, with other
meetings soon afterward. That team has struggled to bring
together diverse experiences and worldviews into a core kernel
composed of atomic parts that can be mixed and matched, con-
nected as needed, drawn on a blueprint, analyzed, and put into
practice to define, hire, direct, and measure real development
teams. As I write this, the OMG is considering how to capture
the work of this team as an international software development

xxvi FOREWORD BY RICHARD SOLEY

standard. It’s an exciting time to be in the software world, as we
transition from groups of artisans sometimes working together
effectively, to engineers using well-defined, measured, and con-
sistent construction practices to build software that works.

The software development industry needs and demands a core
kernel and language for defining software development prac-
tices—practices that can be mixed and matched, brought on
board from other organizations, measured, integrated, and com-
pared and contrasted for speed, quality, and price. Soon we’ll
stop delivering software by hand; soon our great software edi-
fices will stop falling down. SEMAT and Essence may not be
the end of that journey to developing an engineering culture for
software, and they certainly don’t represent the first attempt to
do so; but they stand a strong chance of delivering broad accep-
tance in the software world. This thoughtful book gives a good
grounding in ways to think about the problem, and a language
to address the need; every software engineer should read it.

—Richard Mark Soley, Ph.D.
38,000 feet over the Pacific Ocean
March 2012

xxvii

Preface
Everyone who develops software knows that it is a complex and
risky business, and is always on the lookout for new ideas that
will help him or her develop better software. Luckily, software
engineering is still a young and growing profession—one that
sees new innovations and improvements in best practices every
year. These new ideas are essential to the growth of our indus-
try—just look at the improvements and benefits that lean and
agile thinking have brought to software development teams.

Successful software development teams need to strike a bal-
ance between quickly delivering working software systems, sat-
isfying their stakeholders, addressing their risks, and improving
their way of working. For that, they need an effective think-
ing framework—one that bridges the gap between their current
way of working and any new ideas they want to take on board.
This book presents such a thinking framework in the form of an
actionable kernel—something we believe will benefit any team
wishing to balance their risks and improve their way of working.

INSPIRATION

This book was inspired by, and is a direct response to, the
SEMAT Call for Action. It is, in its own way, one small step in
the process to refound software engineering.

SEMAT (Software Engineering Method and Theory) was
founded in September 2009 by Ivar Jacobson, Bertrand Meyer,
and Richard Soley, who felt the time had come to fundamentally
change the way people work with software development meth-
ods. Together they wrote a call for action, which in a few lines

xxviii PREFACE

identifies a number of critical problems with current software
engineering practice, explains why there is a need to act, and
suggests what needs to be done. Figure P-1 is an excerpt from
the SEMAT Call for Action.

The call for action received a broad base of support, including
a growing list of signatories and supporters.1 The call for action’s
assertion that the software industry is prone to fads and fashions
has led some people to assume that SEMAT and its support-
ers are resistant to new ideas. This could not be further from
the truth. As you will see in this book, they are very keen on
new ideas—in fact, this book is all about some of the new ideas
coming from SEMAT itself. What SEMAT and its supporters
are against is the non-lean, non-agile behavior that comes from

1. The current list can be found at www.semat.org.

Software engineering is gravely hampered today by immature practices.
Specific problems include:

• The prevalence of fads more typical of a fashion industry than of an
engineering discipline

• The lack of a sound, widely accepted theoretical basis

• The huge number of methods and method variants, with differenc-
es little understood and artificially magnified

• The lack of credible experimental evaluation and validation

• The split between industry practice and academic research

We support a process to refound software engineering based on a solid
theory, proven principles and best practices that:

• Include a kernel of widely-agreed elements, extensible for specific
uses

• Address both technology and people issues

• Are supported by industry, academia, researchers and users

• Support extension in the face of changing requirements and
technology

Figure P-1 Excerpt from the SEMAT Call for Action

http://www.semat.org

PREFACE xxix

people adopting inappropriate solutions just because they believe
these solutions are fashionable, or because of peer pressure or
political correctness.

In February 2010 the founders developed the call for action
into a vision statement.2 In accordance with this vision SEMAT
then focused on two major goals:

 1. Finding a kernel of widely agreed-on elements

 2. Defining a solid theoretical basis

To a large extent these two tasks are independent of each
other. Finding the kernel and its elements is a pragmatic exercise
requiring people with long experience in software development
and knowledge of many of the existing methods. Defining the
theoretical basis requires academic research and may take many
years to reach a successful outcome.

THE POWER OF THE COMMON GROUND

SEMAT’s first step was to identify a common ground for soft-
ware engineering. This common ground is manifested as a kernel
of essential elements that are universal to all software develop-
ment efforts, and a simple language for describing methods and
practices. This book provides an introduction to the SEMAT
kernel, and how to use it when developing software and com-
municating between teams and team members. It is a book for
software professionals, not methodologists. It will make use of
the language but will not dwell on it or describe it in detail.

The kernel was first published in the SEMAT OMG Submis-
sion.3 As shown in Figures P-2 and P-3, the kernel contains a

2. The SEMAT Vision statement can be found at the SEMAT website,
www.semat.org.

3. “Essence – Kernel and Language for Software Engineering Methods.”
Available from www.semat.org.

http://www.semat.org
http://www.semat.org

xxx PREFACE

C
us

to
m

er
S

o
lu

ti
o

n
E

nd
ea

vo
r

Opportunity

Requirements

Stakeholder

Software
System

Team

identifies

fulfills

us
es

 a
nd

co
ns

um
es

helps to address

demandsfo
cu

se
s

su
pp

or
ts

ap
pli

es

guides

performs and plans

pr
od

uc
es

updates and changes

sc
op

es
 a

nd

 c
on

st
ra

in
s

se
t

up
 t

o
ad

dr
es

s

Way of
Working

Work

Figure P-2 Things to work with

C
us

to
m

er
S

o
lu

ti
o

n
E

nd
ea

vo
r

Explore
Possibilities

Ensure
Stakeholder
Satisfaction

Shape
the System

Implement
the System

Test
the System

Deploy
the System

Use the
System

Operate
the System

Understand
Stakeholder

Needs

Prepare to Do
the Work

Coordinate
Activity

Support the
Team

Stop the
Work

Track
Progress

Understand the
Requirements

Figure P-3 Things to do

PREFACE xxxi

small number of “things we always work with” and “things we
always do” when developing software systems. There is also work
that is ongoing, with the goal of defining the “skills we always
need to have,” but this will have to wait until future versions of
the kernel and is outside the scope of this book.4

We won’t delve into the details of the kernel here as this is the
subject of Part I, but it is worth taking a few moments to think
about why it is so important to establish the common ground
in this way. More than just a conceptual model, as you will see
through the practical examples in this book, the kernel provides

• A thinking framework for teams to reason about the prog-
ress they are making and the health of their endeavors

• A framework for teams to assemble and continuously
improve their way of working

• A common ground for improved communication, stan-
dardized measurement, and the sharing of best practices

• A foundation for accessible, interoperable method and prac-
tice definitions

• And most importantly, a way to help teams understand
where they are and what they should do next

THE BIG IDEA

What makes the kernel anything more than just a conceptual
model of software engineering? What is really new here? This
can be summarized into the three guiding principles shown in
Figure P-4.

4. A kernel with similar properties as the SEMAT kernel was first developed at
Ivar Jacobson International in 2006 (www.ivarjacobson.com). This kernel has
served as an inspiration and an experience base for the work on the SEMAT
kernel.

http://www.ivarjacobson.com

xxxii PREFACE

The Kernel Is Actionable

A unique feature of the kernel is how the “things to work with”
are handled. These are captured as alphas rather than work
products (such as documents). An alpha is an essential element
of the software engineering endeavor, one that is relevant to an
assessment of its progress and health. As shown in Figure P-2,
SEMAT has identified seven alphas: Opportunity, Stakeholders,
Requirements, Software System, Work, Way of Working, and
Team. The alphas are characterized by a simple set of states that
represent their progress and health. As an example, the Soft-
ware System moves through the states of Architecture Selected,
Demonstrable, Usable, Ready, Operational, and Retired. Each
state has a checklist that specifies the criteria needed to reach the
state. It is these states that make the kernel actionable and enable
it to guide the behavior of software development teams.

The kernel presents software development not as a linear pro-
cess but as a network of collaborating elements; elements that
need to be balanced and maintained to allow teams to prog-
ress effectively and efficiently, eliminate waste, and develop great
software. The alphas in the kernel provide an overall frame-
work for driving and progressing software development efforts,
regardless of the practices applied or the software development
philosophy followed.

Ac
tio

na
bl

e Extensible
Practical

Figure P-4 Guiding principles of the kernel

PREFACE xxxiii

As practices are added to the kernel, additional alphas will be
added to represent the things that either drive the progress of the
kernel alphas, or inhibit and prevent progress from being made.
For example, the Requirements will not be addressed as a whole
but will be progressed requirement item by requirement item. It
is the progress of the individual requirement items that will drive
or inhibit the progress and health of the Requirements. The
requirement items could be of many different types—for exam-
ple, they could be features, user stories, or use-case slices, all of
which can be represented as alphas and have their state tracked.
The benefit of relating these smaller items to the coarser-grained
kernel elements is that it allows the tracking of the health of the
endeavor as a whole. This provides a necessary balance to the
lower-level tracking of the individual items, enabling teams to
understand and optimize their way of working.

The Kernel Is Extensible

Another unique feature of the kernel is the way it can be
extended to support different kinds of development (e.g., new
development, legacy enhancements, in-house development, off-
shore, software product lines, etc.). The kernel allows you to add
practices, such as user stories, use cases, component-based devel-
opment, architecture, pair programming, daily stand-up meet-
ings, self-organizing teams, and so on, to build the methods you
need. For example, different methods could be assembled for
in-house and outsourced development, or for the development
of safety-critical embedded systems and back office reporting
systems.

The key idea here is that of practice separation. While the term
practice has been widely used in the industry for many years, the
kernel has a specific approach to the handling and sharing of
practices. Practices are presented as distinct, separate, modular

xxxiv PREFACE

units, which a team can choose to use or not to use. This con-
trasts with traditional approaches that treat software develop-
ment as a soup of indistinguishable practices and lead teams to
dump the good with the bad when they move from one method
to another.

The Kernel Is Practical

Perhaps the most important feature of the kernel is the way it
is used in practice. Traditional approaches to software develop-
ment methods tend to focus on supporting process engineers or
quality engineers. The kernel, in contrast, is a hands-on, tangible
thinking framework focused on supporting software profession-
als as they carry out their work.

For example, the kernel can be touched and used through the
use of cards (see Figure P-5). The cards provide concise remind-
ers and cues for team members as they go about their daily
tasks. By providing practical checklists and prompts, as opposed
to conceptual discussions, the kernel becomes something the
team uses on a daily basis. This is a fundamental difference from

The set of circumstances that makes it

appropriate to develop or change a

software system

• A good opportunity is identified

addressing the need for a so
ftware-

based solution

• A good opportunity has established

value

• A good opportunity has a so
ftware-

based solution that can be

produced quickly and cheaply

• A good opportunity creates a

tangible benefit

IdentifiedOpportunity

Solution Needed

Value Established

Viable

Addressed

Benefit Accrued

I

po

ol

Val

Bene

The people, groups, or organizations
who affect or are affected by a
software system

• Healthy stakeholders represent
groups or organizations affected by
the software system

• Healthy stakeholder
representatives carry out their
agreed-on responsibilities

• Healthy stakeholder
representatives cooperate to reach
agreement

• Healthy stakeholders are satisified
with the use of the software system

Recognized

Stakeholders

Represented

Involved

In Agreement

Satisified for Deployment

Satisified in Use

efit Ac

Re

Stake

Re

I

isifie

Satis

A system made up of software,

hardware, and data that provides its

primary value by the execution of

the software
• Good Software System meets

requirements• Good Software System has

appropriate architecture

• Good Software System is

maintainable, extensible, and

testable• Good Software System has low

support cost

Architecture Selected

Software System
DemonstrableUsable

Ready
OperationalRetired

ccr

e

ified in U

Archite

Softw

De

R

What the software system must do to

address the opportunity and satisify

the stakeholders
• Good Requirements meet real

needs• Good Requirements have clear

scope• Good Requirements are coherent

and well organized

• Good Requirements help drive

development

Conceived

RequirementsBoundedCoherent
Acceptable

AddressedFulfilled
•

an• Godeve

ed

ents

• T
he n

eed for a
new sys

tem is

cle
ar

• Users are
 identifie

d

• In
itia

l sp
onsors a

re
identifie

d
Conceived

1/6

Require
ments

s
Goodand well oood Requirem

elopment

tts

• The

cle

• U

• I

Req

• The purpose and extent of the

system are agreed on

• Success criteria are clear

• Mechanisms for handling

requirements are agreed on

• Constraints and assumptions

are identified

Bounded

2/6

Requirements

I

T

•

R

• The big picture is clear and
shared by all involved

• Important usage scenarios
are explained

• Priorities are clear
• Conflicts are addressed
• Impact is understood

Coherent

3/6

Requirements

I

Th
sy

• S

• M

•

Re

•

•

•
•

• Requirements describe a

solution acceptable to the

stakeholders• The rate of change to agreed-

 on requirements is low
• Value is clear

Acceptable

4/6

Requirements

The
sha
Im
a •

• Enough requirements are

implemented for the system to

be acceptable
• Stakeholders agree the system

is worth making operational

Addressed

5/6

Requirements

e

Req

• Requirsolutiostakeh
• The r on r

• Valu

A

Req

• Enough requirements are

implemented for the system to

be acceptable
• Stakeholders agree the system

is worth making operational

Addressed

5/6

Requirements

• The system fully satisfies the

requirements and the need

• There are no outstanding

requirement items preventing

completion

Fulfilled

6/6

Requirements

Figure P-5 Cards make the kernel tangible.

PREFACE xxxv

traditional approaches, which tend to overemphasize method
description as opposed to method use and tend to only be con-
sulted by people new to the team.

THE KERNEL IN ACTION

Although the ideas in this book will be new to many of you,
they have already been successfully applied in both industry and
academia.

Early adopters of the kernel idea5 include the following.

• MunichRe, the world’s leading reinsurance company, where
a family of “collaboration models” have been assembled to
cover the whole spectrum of software and application work.
Four collaboration models have been built on the same
kernel from the same set of 12 practices. The models are
Exploratory, Standard, Maintenance, and Support.

• Fujitsu Services, where the Apt Toolkit has been built on
top of an early version of the software engineering kernel,
including both agile and waterfall ways of working.

• A major Japanese consumer electronics company, whose
software processes have been defined on top of an early
version of the kernel, allowing the company to help teams
apply new practices and manage their offshore development
vendor.

• KPN, where a kernel-based process was adopted by more
than 300 projects across 13 programs as part of a move to
iterative development. The kernel also provided the basis for
a new result-focused QA process, which could be applied to
all projects regardless of the method or practices used.

5. In all cases they used the kernel and practices developed by Ivar Jacobson
International.

xxxvi PREFACE

• A major UK government department, where a kernel-based
agile toolset was introduced to enable disciplined agil-
ity and the tracking of project progress and health in a
practice-independent fashion.

The kernel is already being used in first- and second-year soft-
ware engineering courses at KTH Royal Institute of Technology
in Sweden.

• The first-year courses were run by Anders Sjögren. After
the students conducted their projects, Anders and the stu-
dents went through the SEMAT alphas and matched them
to their project results. Here, the students had the opportu-
nity to acquaint themselves with and evaluate the alphas as
well as gain insight into the project’s progress and health.

• The second-year courses were run by Mira Kajko- Mattsson.
Here, the students were requested to actively use the
SEMAT kernel when running their projects along with
the development method they followed. Mira created an
example software development scenario and evaluated the
scenario for each alpha, its states, and the state checklist
items. The students were then requested to do the same
when conducting and evaluating their projects.

The courses taught the students the following lessons.

• The kernel assures that all the essential aspects of software
engineering are considered in a project. By matching the
project results against the kernel alphas, the students can
easily identify the good and bad sides of their development
methods.

PREFACE xxxvii

• The kernel prepares students for future software engineer-
ing endeavors with minimal teaching effort. Because they
had to follow all the kernel alphas, the students could learn
the total scope of the software engineering endeavor and
thereby know what will be required of them in their profes-
sional careers.

HOW DOES THE KERNEL RELATE TO AGILE AND
OTHER EXISTING APPROACHES?

The kernel can be used with all the currently popular man-
agement and technical practices, including Scrum, Kanban,
risk-driven iterative, waterfall, use-case-driven development,
acceptance-test-driven development, continuous integration,
test-driven development, and so on. It will help teams embark-
ing on the development of new and innovative software prod-
ucts and teams involved in enhancing and maintaining mature
and established software products. It will help teams of all sizes
from one-man bands to thousand-strong software engineering
programs.

For example, the kernel supports the values of the Agile Man-
ifesto. With its focus on checklists and results, and its inherent
practice independence, it values individuals and interactions over
processes and tools. With its focus on the needs of professional
software development teams, it values teams working and fulfill-
ing team responsibilities over the following methods.

The kernel doesn’t in any way compete with existing meth-
ods, be they agile or anything else. On the contrary, the kernel is
agnostic to a team’s chosen method. Even if you have already cho-
sen, or are using, a particular method the kernel can still help you.
Regardless of the method used, as Robert Martin has pointed out
in his Foreword to this book, projects—even agile ones—can get
out of kilter, and when they do teams need to know more. This

xxxviii PREFACE

is where the real value of the kernel can be found. It can guide a
team in the actions to take to get back on course, to extend their
method, or to address a critical gap in their way of working. At
all times it focuses on the needs of the software professional and
values the “use of methods” over the “description of method defi-
nitions” (as has been normal in the past).

The kernel doesn’t just support modern best practices. It also
recognizes that a vast amount of software is already developed
and needs to be maintained; it will live for decades and it will
have to be maintained in an efficient way. This means the way
you work with this software will have to evolve alongside the
software itself. New practices will need to be introduced in a way
that complements the ones already in use. The kernel provides
the mechanisms to migrate legacy methods from monolithic
waterfall approaches to more modern agile ones and beyond, in
an evolutionary way. It allows you to change your legacy meth-
ods practice by practice while maintaining and improving the
team’s ability to deliver.

HOW THE KERNEL WILL HELP YOU

Use of the kernel has many benefits for you as an experienced or
aspiring software professional, and for the teams you work in.
For example, it provides guidance to help you assess the prog-
ress and health of your software development endeavors, evalu-
ate your current practices, and improve your way of working. It
will also help you to improve communication, move more easily
between teams, and adopt new ideas. And it will help the indus-
try as a whole by improving interoperability between teams, sup-
pliers, and development organizations.

By providing a practice-independent foundation for the defi-
nition of software methods, the kernel also has the power to
completely transform the way methods are defined and practices

PREFACE xxxix

are shared. For example, by allowing teams to mix and match
practices from different sources to build and improve their way
of working, the kernel addresses two of the key methodological
problems facing the industry.

 1. Teams are no longer trapped by their methods. They can
continuously improve their way of working by adding or
removing practices as and when their situation demands.

 2. Methodologists no longer need to waste their time describ-
ing complete methods. They can easily describe their new
ideas in a concise and reusable way.

Finally, there are also benefits for academia, particularly in the
areas of education and research. The kernel will provide a basis
for the creation of foundation courses in software engineering,
ones that can then be complemented with additional courses in
specific practices—either as part of the initial educational cur-
riculum or later during the student’s further professional devel-
opment. Equally as important is the kernel’s ability to act as a
shared reference model and enabler for further research and
experimentation

HOW TO READ THIS BOOK

This book is intended for anyone who wants to have a clear
frame of reference when developing software, researching soft-
ware development, or sharing software development experiences.

For software professionals the goal of this book is to show
how the kernel can help solve challenges you face every day when
doing your job. It demonstrates how the kernel is used in dif-
ferent situations from small-scale development to large-scale
development.

xl PREFACE

For students and other aspiring software professionals, the
goal of the book is to illustrate some of the challenges software
professionals face and how to deal with them. It will provide you
with a firm foundation for further study and help you learn what
you otherwise only learn through experience.

The book is organized to allow gradual learning, and con-
cepts are introduced and illustrated incrementally. We hope this
book will be useful to software professionals, educators, and stu-
dents, and we look forward to your feedback.

The book is structured into seven short parts.

Part I: The Kernel Idea Explained
An overview of the kernel with examples of how it can be used
in practice.

Part II: Using the Kernel to Run an Iteration
A walkthrough of how the kernel can be used to run an
iteration.

Part III: Using the Kernel to Run a Software Endeavor
A description of how you can use the kernel to run a complete
software endeavor—for example, a project of some size—from
idea to production.

Part IV: Scaling Development with the Kernel
A demonstration of how the kernel is flexible in supporting
different practices, organizations, and domains.

Part V: How the Kernel Changes the Way You Work
with Methods

Takes a step back and discusses the principles for you to apply
the kernel effectively and successfully to your specific situation.

Part VI: What’s Really New Here?
A summary of the highlights and key differentiators of
SEMAT and this book.

PREFACE xli

Part VII: Epilogue
A forward-looking discussion of how we can get even more
value from the kernel in the future.

FURTHER READING

Jacobson, I., and B. Meyer. 2009. Methods need theory. Dr. Dobb’s
Journal.

Jacobson I., and I. Spence. 2009. Why we need a theory for software
engineering. Dr. Dobb’s Journal.

Jacobson I., B. Meyer, and R. Soley. 2009. Call for Action: The Semat
Initiative. Dr. Dobb’s Journal.

Jacobson I., B. Meyer, and R. Soley. 2009. The Semat Vision
Statement.

Fujitsu, Ivar Jacobson International AB, Model Driven Solutions.
2012. Essence – Kernel and Language for Software Engineering
Methods. Initial Submission – Version 1.0.

OMG. 2012. Request for Proposal (RFP). A Foundation for the Agile
Creation and Enactment of Software Engineering Methods. OMG.

Jacobson I., P.W. Ng, and I. Spence. 2007. Enough of Processes: Let’s
Do Practices. Journal of Object Technology 6(6):41–67.

Ng P.W., and M. Magee. Light Weight Application Lifecycle Manage-
ment Using State-Cards. Agile Journal, October 10, 2010.

Azoff, M. EssWork 3.0 and Essential Practices 4.0. Ivar Jacob-
son International. OVUM Technology Report, Reference Code
TA001906ADT. April 2012.

Azoff, M. Apt Methods and Tools. Fujitsu. OVUM Technology
Report, Reference Code O100032-002. January 2011.

This page intentionally left blank

xliii

Acknowledgments
We wish to acknowledge and thank the contributors to SEMAT,
in particular (alphabetically): Jakob Axelsson, Stefan Bylund,
Bob Corrick, Michael Goedicke, Lulu He, Shihong Huang,
Carlos Mario Zapata Jaramillo, Mira Kajko-Mattsson, Philippe
Kruchten, Bruce Macisaac, Winifred Menezes, Richard Murphy,
Hanna Oktaba, Roland Racko, Ed Seidewitz, and Michael
Strieve.

This page intentionally left blank

69

 8
Planning an Iteration

The art of planning an iteration is in deciding which of the many
things the team has to do should be done in this iteration—the
next two to four weeks. Every iteration will produce working
software, but there are other things the team needs to think
about. They need to make sure they develop the right software
in the best way they can. The kernel helps the team reason about
the current development context, and what to emphasize next,
to make sure a good balance is achieved across the different
dimensions of software development.

You can think of planning an iteration as follows.

1. Determine where you are. Work out the current state of the
endeavor.

 2. Determine where to go. Decide what to emphasize next, and
what the objectives of the next iteration will be.

 3. Determine how to get there. Agree on the tasks the team
needs to do to achieve the objectives.

In our story, because of the way the team chose to run their
iterations, the iteration objectives were put into the team’s itera-
tion backlog and broken down into more detailed tasks. In this
way the iteration backlog served as the team’s to-do list. We will

70 PLANNING AN ITERATION

now look at how Smith and his team used the alphas to guide
the planning and execution of an iteration.

8.1 PLANNING GUIDED BY ALPHA STATES

When you plan an iteration the alphas can help you understand
where you are and where to go next. By aligning the objec-
tives they set for each iteration, Smith’s team made sure they
progressed in a balanced and cohesive way. This relationship
between the alphas, and the objectives and tasks in the iteration
backlog, is illustrated in Figure 8-1.

8.1.1 Determine Where You Are

When preparing for an iteration, the first step is to understand
where you are. This involves, among other things, understand-
ing details relating to technology, risks, quality, and stakeholder
needs. But it is also important to have a shared understanding of
where you are with the software endeavor as a whole, and this is
where the kernel can help.

Alpha

Target State

Iteration
Backlog

(containing
objectives
 and tasks)

Alpha

Target State

Target alpha states
help set objectives.

Completed work achieves the
objectives and advances target

alpha states.

Team members work on
tasks during the iteration.

To Do Doing DoneObjectives

Figure 8-1 Working from the tasks and objectives in an iteration backlog

8.1 PLANNING GUIDED BY ALPHA STATES 71

There are a number of ways you can use the kernel to do this.
If you are using alpha state cards, as discussed in Part I, you can
do this as follows.

• Walkthrough: This is a simple approach using one set of
cards.

 1. Lay out the cards for each alpha in a row on a table with
the first state on the left and the final state on the right.

 2. Walk through each state and ask your team if you have
achieved that state.

 3. If the state is achieved, move that state card to the left.
Continue with the next state card until you get to the
state that your team has not yet achieved.

 4. Move this state card and the rest of the pending state
cards to the right.

• Poker: Another approach that sometimes works better is
poker.

 1. Each member is given a deck of state cards.

 2. For each alpha, each member selects the state card that
he or she thinks best represents the current state of the
software development endeavor.

 3. All members put their selected state card face down on
the table.

 4. When all are ready, they turn the state card face up.

 5. If all members have selected the same state card, then
there is consensus.

 6. If the selected state cards are different, it is likely there
are different interpretations of the checklists for the
states. The team can then discuss the checklists for the
state to reach an agreement.

72 PLANNING AN ITERATION

Using state cards is not required to use the kernel, but they
are a useful tool to get the team members to talk, and to discuss
what state the endeavor is in and what state they need to focus
on next.

Once you have determined the current state of the endeavor,
you can start discussing what the next set of states to be achieved
should be.

8.1.2 Determine Where to Go

Identifying a set of desired alpha states guides the team in deter-
mining what to emphasize in an iteration. In fact, the iteration
objective can be described as reaching a set of target alpha states.

Once the team has determined the current state of their alphas
,it is fairly easy to select which of the next states they should tar-
get in their next iteration. The target states make well-formed
objectives as their checklists provide clearly defined completion
criteria.

Selecting the target states can easily be done as an extension
to the walkthrough and poker techniques described in the pre-
ceding section.

8.1.3 Determine How to Get There

After identifying a candidate set of objectives for the iteration,
the team has to decide how they will address them and whether
or not they can achieve them in the iteration timebox. Typically
this is done by identifying one or more tasks to be completed to
achieve the objective.

Again the alpha states help the team with the checklist for
each state providing hints as to what tasks they will need to do
to achieve the objective. In this part of the book we are just
considering a small software endeavor. Later in the book we will
discuss how you identify tasks and measure progress on more
complex efforts.

8.4 DETERMINING HOW TO ACHIEVE THE NEXT STATES IN OUR STORY 73

8.2 DETERMINING THE CURRENT STATE IN OUR STORY

Smith and his team were six weeks into development. They had
provided an early demonstration of the system to their stake-
holders. Angela and the other stakeholders were pleased with
what they saw, and they gave valuable feedback. However, the
system was not yet usable by end users.

Smith started the iteration planning session with a walk-
through to determine the current state. Figure 8-2 shows the
states they had achieved on the left, and the states not yet
achieved on the right.

Table 8-1 shows the current states for the alphas and describes
how the team in our story achieved them.

8.3 DETERMINING THE NEXT STATE IN OUR STORY

Once the team had agreed on the current alpha states, the team
discussed what the next desired “target” states were to guide
its planning. The team agreed to use the immediate next alpha
states to help establish the objectives of the next iteration. These
are shown in Figure 8-3.

In most cases, the name of the alpha state itself provides suf-
ficient information to understand the state. But if needed, team
members can find out more by reading the alpha state checklist.
By going through the states one by one for each alpha, a team
quickly gets familiar with what is required to achieve each state.
In this way the team learns about the kernel alphas at the same
time as they determine their current state of development and
their next target states.

8.4 DETERMINING HOW TO ACHIEVE THE NEXT
STATES IN OUR STORY

Smith and his team looked at the next target states and agreed
that some prioritization was needed. In this case, they needed

74 PLANNING AN ITERATION

Table 8-1 How the Team Achieved the Current State of Development

Current State How It Was Achieved

• Requirements describe a
solution acceptable to the
stakeholders

• The rate of change to agreed-
 on requirements is low

• Value is clear

Acceptable

4/6

Requirements Smith’s team had demonstrated an early ver-
sion of the application based on an initial set
of requirements. After the demonstration, the
stakeholders agreed that the understanding of
the requirements was acceptable.
The agreed-on requirement items were online
and offline browsing of the social network,
and making posts offline. However, these
requirement items were only partially imple-
mented at the time of the demonstration.
According to the state definition, our team has
achieved the Requirements: Acceptable state.

• Key architecture
characteristics demonstrated

• Relevant stakeholders agree
architecture is appropriate

• Critical interface and system
configurations exercised

Demonstrable

2/6

Software
System

Early during development, Smith’s team had
identified the critical technical issues for the
software system and outlined the architecture.
This had allowed them to achieve the Software
System: Architecture Selected state. More-
over, Smith’s team had demonstrated an early
version of the system to their stakeholders.
This means that Smith’s team had achieved the
Software System: Demonstrable state. How-
ever, since Smith’s team had not completed
enough functionality to allow users to employ
the system on their own, Smith’s team had not
yet achieved the Software System: Usable state.

• All members of team are
using way of working

• All members have access to
practices and tools to do
their work

• Whole team involved in
inspection and adaptation of
way of working

In Place

4/6

Way of
Working

The two new members, Dick and Harriet,
who had just come on board were not fully
productive yet. In particular, they seemed to
have trouble with the approach to automated
testing, which the team agreed was important
to maintain high quality during development.
They had difficulty identifying good test cases
and writing good test code. As such, the team
agreed that the Way of Working is currently
in the In Place state. But they had not yet
achieved the Working Well state.

75

• The need for a new system is
clear

• Users are identified
• Initial sponsors are identified

Conceived

1/6

Requirements

• The purpose and extent of the
system are agreed on

• Success criteria are clear
• Mechanisms for handling

requirements are agreed on
• Constraints and assumptions

are identified

Bounded

2/6

Requirements

• The big picture is clear and
shared by all involved

• Important usage scenarios
are explained

• Priorities are clear
• Conflicts are addressed
• Impact is understood

Coherent

3/6

Requirements

• Requirements describe a
solution acceptable to the
stakeholders

• The rate of change to agreed-
 on requirements is low

• Value is clear

Acceptable

4/6

Requirements

• Enough requirements are
implemented for the system to
be acceptable

• Stakeholders agree the system
is worth making operational

Addressed

5/6

Requirements

• The system fully satisfies the
requirements and the need

• There are no outstanding
requirement items preventing
completion

Fulfilled

6/6

Requirements

• Architecture selected that
addresses key technical risks

• Criteria for selecting
architecture agreed on

• Platforms, technologies, and
language selected

• Buy, build, and reuse decisions
made

Architecture
Selected

1/6

Software
System

• Key architecture
characteristics demonstrated

• Relevant stakeholders agree
architecture is appropriate

• Critical interface and system
configurations exercised

Demonstrable

2/6

Software
System

• System is usable and has
desired characteristics

• System can be operated by
users

• Functionality and performance
have been tested and accepted

• Defect levels acceptable
• Release content known

Usable

3/6

Software
System

• User documentation available
• Stakeholder representatives

accept system
• Stakeholder representatives

want to make system
operational

Ready

4/6

Software
System

• System in use in operational
environment

• System available to intended
users

• At least one example of system
is fully operational

• System supported to agreed-
on service levels

Operational

5/6

Software
System

• System no longer supported
• Updates to system will no

longer be produced
• System has been replaced or

discontinued

Retired

6/6

Software
System

• Principles and constraints
established

• Principles and constraints
commited to

• Practices and tools agreed to
• Context team operates in

understood

Principles
Established

1/6

Way of
Working

• Key practices and tools ready
• Gaps that exist between

practices and tools analyzed
and understood

• Capability gaps analyzed and
understood

• Selected practices and tools
integrated

Foundation
Established

2/6

Way of
Working

• Some members of the team are
using the way of working

• Use of practices and tools
regularly inspected

• Practices and tools being
adapted and supported by team

• Procedures in place to handle
feedback

In Use

3/6

Way of
Working

• All members of team are
using way of working

• All members have access to
practices and tools to do
their work

• Whole team involved in
inspection and adaptation of
way of working

In Place

4/6

Way of
Working

• Way of working is working
well for team

• Team members are making
progress as planned

• Team naturally applies practices
without thinking about them

• Tools naturally support way of
working

Working Well

5/6

Way of
Working

• Way of working is no longer in
use by team

• Lessons learned are shared for
future use

Retired

6/6

Way of
Working

Figure 8-2 The team uses the alphas to determine the current states.

76 PLANNING AN ITERATION

to first get to the Way of Working: Working Well state, then
the Software System: Usable state, and finally the Requirements:
Addressed state. The reason was simple: If their way of working
did not work well, this would impede their attempts to get the
software system usable. In addition, they agreed on the prior-
ity for the missing requirement items necessary to achieve the
Requirements: Addressed state.

Smith and his team next discussed what needed to be done to
achieve these states (see Table 8-2).

• Enough requirements are
implemented for the system to
be acceptable

• Stakeholders agree the system
is worth making operational

Addressed

5/6

Requirements

• Way of working is working
well for team

• Team members are making
progress as planned

• Team naturally applies practices
without thinking about them

• Tools naturally support way of
working

Working Well

5/6

Way of
Working

• System is usable and has
desired characteristics

• System can be operated by
users

• Functionality and performance
have been tested and accepted

• Defect levels acceptable
• Release content known

Usable

3/6

Software
System

Figure 8-3 The selected next states

Table 8-2 How the Team Planned to Achieve the Selected Target States

Target State How They Planned to Achieve Them

• Way of working is working
well for team

• Team members are making
progress as planned

• Team naturally applies practices
without thinking about them

• Tools naturally support way of
working

Working Well

5/6

Way of
Working

Both Dick and Harriet agreed that they had
difficulties in applying automated testing.
They needed help in order to make progress.
Tom agreed that he had to spend time teach-
ing them.
A task was added to the iteration backlog for
Tom to conduct training on automated testing
for Dick and Harriet.

8.4 DETERMINING HOW TO ACHIEVE THE NEXT STATES IN OUR STORY 77

• System is usable and has
desired characteristics

• System can be operated by
users

• Functionality and performance
have been tested and accepted

• Defect levels acceptable
• Release content known

Usable

3/6

Software
System

This state reminds us that the software system
must be shown to be of sufficient quality and
functionality to be useful to the users. So far,
Smith’s team had been testing within its devel-
opment environment. Now it had to conduct
tests within an acceptance test environment,
which they had yet to prepare. This resulted in
the following task:
Task 2. Prepare acceptance test environment.
Smith’s team had to bring all requirement
items currently demonstrable in the system to
completion. By “complete” they meant that
each requirement item must be fully tested
within the acceptance test environment.
Task 3. Complete requirement item A:
“Browse online and offline”.
Task 4. Complete requirement item B: “Post
comment (online and offline)”.
Task 5. Complete requirement item C:
“Browse album”.

• Enough requirements are
implemented for the system to
be acceptable

• Stakeholders agree the system
is worth making operational

Addressed

5/6

Requirements This state reminds us of the need to work with
stakeholders to ensure that they are happy
with the system produced. In our story Smith
had to work with Angela to determine which
additional requirement items needed to be
implemented. This resulted in the following
additional task:
Task 6: Talk to Angela and agree on additional
requirement items, fitting in the iteration, to
make the system worth being operational.

Table 8-2 How the Team Planned to Achieve the Selected Target States
(continued)

By going through the target alpha states, Smith was able to
determine a set of objectives and tasks for the next iteration.

78 PLANNING AN ITERATION

8.5 HOW THE KERNEL HELPS YOU IN PLANNING
ITERATIONS

A good plan must be inclusive, meaning that it includes all essen-
tial items and covers the whole team. It must also be concrete,
so it is actionable for the team. The team must also have a way
to monitor its progress against the plan. The kernel helps you
achieve this as follows.

• Inclusive: The kernel alphas serve as reminders across the dif-
ferent dimensions of software development, helping you to
create a plan that addresses all dimensions in a balanced way.

• Concrete: The checklists for each alpha state give you hints as
to what you need to do in the iteration. The same checklists
help you determine your progress by making clear what you
have done and comparing this to what you intended to do.

287

A
ABET (Accreditation Board for

Engineering and Technol-
ogy), 255

Academia
kernel adoption by, xxxvi
kernel benefits, xxxix
kernel impact on, 255–257

Acceptable state
in acceptance testing practice,

185
alpha cards for, 40
composed practices, 187
in developing systems, 146
in planning iterations, 74
in requirements, 19–20, 29–30

Acceptance in developing systems,
134, 151–152

Acceptance Test Cases work prod-
uct, 184–186

Acceptance Test Results work
product, 184–185

Acceptance testing practice, 181,
184–185

Acceptance testing team, 203
Accepted state, 97, 102
Accreditation Board for Engineer-

ing and Technology (ABET),
255

Actionable feature of kernel,
xxxii–xxxiii, 53, 232–233

Activities and activity spaces
for alpha state progression, 184
overview, 32–34
terminology and notation, 261

Adapt phase in Plan-Do-Check-
Adapt cycle

description, 64
in large development, 209

Addressed state
in acceptance testing practice,

185
alpha cards for, 40
in developing systems, 147, 152
in planning iterations, 76–77
in requirements, 19, 29, 31
in way of working, 89

Adjourned state
in system support, 170
in team handover, 166

Agile Manifesto, xxxvii–xxviii,
221

Agile methods
benefits, 79
working with, 221–225

Agree on Acceptance Test Cases
work product, 188

Agree on What Is of Value to
Users activity, 45, 182–184

in acceptance testing practice,
184

in composed practices, 187

Index

288 INDEX

Agreed-on elements, 3
Agreed-on way of working

establishing, 139–143
in skinny systems, 133

Alpha definition cards, 38–39
Alpha state cards, 40–41
Alphas, xxxii–xxxiii, 13–14

in business case, 114–115
cards for, 37–42
checklist, 29
development team coordina-

tion through, 210–212
introduction, 14–17
in large development, 209–210
in method building, 196–197
overview, 25–32
as practical tools, 242
scope of, 17, 31
separating from work products,

237–238
states. See States
terminology and notation, 261

Analyst competency, 36
Apt Toolkit, xxv
Architecture alpha in method

building, 196
Architecture forum in large devel-

opment, 206–207
Architecture issues in business

case, 127
Architecture Selected state, 114,

118
Areas of concern, 24–25

in business case, 113
in deployment, 161–162
in developing systems, 135–

136, 143–144, 150
Successfully Deployed mile-

stone, 159
in system support, 167–168

Authors, kernel benefits for, 55

B
Background for explicit practices,

46
Backlog-driven development prac-

tices in method building, 196
Backlogs

iteration, 62
in large development, 206–207

Benefit Accrued state
in deployment, 164
in system support, 169

Bibliography, 267–270
Bounded requirements

addressing, 9
alphas, 19–20, 29–30
in business case, 118
in large development, 204

Bounded state
alpha cards for, 40–41
in business case, 114

Business case
challenges, 117
guiding development,

128–129
opportunity, 115–117
overview, 111–114
planning, 121–125, 129
schedule, 125–128
solution, 117–119
stakeholders, 115–117, 128
work preparation, 119–121

Business needs, 6

C
Call for Action, xxvii–xxix, 247
Capabilities for explicit practices,

46
Cards

for alphas, 37–42
benefits, xxxiv–xxxv
for business case, 122–123

INDEX 289

for planning iterations, 71–72
as practical tools, 242

Challenges
addressed by kernel, 6–11
business case, 117
methods, 217
scaling, 175–178
software development, 3–5
software endeavors, 107–108

Check phase in Plan-Do-Check-
Adapt cycle

description, 64
in large development, 209

Churchill, Winston, 249
Closed state

in system support, 170
in team handover, 166

Coherent state
alpha cards for, 40–41
in developing systems,

138–139
in requirements, 19–20, 29–30

Collaborating state
in developing systems, 141
in team handover, 165

Collaboration in teams, 10
Collaboration models, xxxv
Collaborative forums vs. top-

down hierarchies, 204
Common ground

learning and training based
on, 48

for software engineering,
xxix–xxxi

Competencies
overview, 35–36
requirement for, 4
terminology and notation, 262

Completing developing systems,
154–156

Complexity of software develop-
ment, 4–5

Component alpha in method
building, 196

Composition of practices,
186–188

Conceived state
alpha cards for, 40–41
in business case, 118
in large development, 204
in requirements, 18, 20, 29

Concepts and notation, 261–262
Concluded state in developing

systems, 155
Concrete graphical syntax, 231
Concrete plans, 78
Conduct user demos activity, 45
Coordinate activity space, 34
Coordination

of development teams through
alphas, 210–212

in large development, 202
Coordination forum, 203,

208–209
Criteria for alpha states, 27–28
Critical requirement items,

211–212
Cross-company mobility, 254
Crosscutting requirement items,

212
Current state determination,

73–75
Curricula

kernel benefits, xxxvi–xxxvii,
xxxix

kernel impact on, 256
vision for, 250

Curriculum Guidelines for Under-
graduate Degree Programs in
Software Engineering, 255

290 INDEX

Customer area of concern
in business case, 113
in deployment, 161–162
description, 24–25
in developing systems, 135–

136, 143–144, 150
Successfully Deployed mile-

stone, 159
in system support, 167–168

Customer representatives
competency, 35
responsibilities, 65

Customer value team, 203, 206

D
Daily meetings in iteration pro-

cess, 80
Decision points in organizational

context, 109
Decision to Fund milestone, 109
Decision to Go Live milestone

in business case, 122
in developing systems, 151
in organizational context, 109

Delivery in developing systems,
134, 152–154

Demonstrable software systems,
10, 21

Demonstrable state
in developing systems,

137–138
in planning iterations, 74

Demonstrated state in large devel-
opment, 208

Department manager responsibil-
ities, 65

Deploy the system activity space,
34

Deployable solutions in develop-
ing systems, 134

Deployable systems, evolving,
149–151

Deploying systems, 161–164
Described state, 94–96, 99
Design software engineering cur-

ricula, kernel impact on, 256
Design teams in large develop-

ment, 202
Details, separating essence from,

238–239
Developers

business case, 117
competency, 36
and methods, 48
responsibilities, 65

Developing systems
acceptance, 151–152
agreed-on way of working,

139–143
completing, 154–156
delivery, 152–154
evolving deployable systems,

149–151
evolving usable systems,

146–148
good way of working, 148–149
overview, 131–135
skinny systems, 133–135,

138–139
stakeholders, 136–137, 144–146
starting, 138–139

Development
kernel for, 52–54
visualizing with alphas,

208–210
Development life cycles, 193–194
Development teams

coordinating through alphas,
210–212

in large development, 203

INDEX 291

Do phase in Plan-Do-Check-
Adapt cycle

description, 63–64
in large development, 209

Doing and checking iterations,
79–85

Doing column in iteration task
boards, 80–84

Done column in iteration task
boards, 80–84

E
Early adopters, xxxv–xxxvi
Education

kernel benefits, xxxvi–xxxvii,
xxxix

kernel impact on, 255–256
vision for, 250

Endeavor area of concern
in business case, 114
in deployment, 161–162
description, 24–25
in developing systems, 135–

136, 143–144, 151
in system support, 168

Engineering courses, xxxvi–xxxvii
Engineers, method, 222
Enhancement requirements, 17, 20
Ensure stakeholder satisfaction

activity space, 33
Entertainment application

requirements in large devel-
opment, 202–203, 210

Essence, separating from details,
238–239

Essential things to do, 32
Essentials, learning and training

focused on, 48
Evolving

deployable systems, 149–151
kernel for, 52, 55–56

methods, 224–225, 237
usable systems, 146–148

Existing approaches, kernel rela-
tionship to, xxxvii–xxviii

Explicit practices, 44–47
Explicit requirement item states

in iteration planning, 95–97
task boards, 97–100
working with, 93–95

Explicit way of working, 90–91
Explore possibilities activity space,

33
Extensible kernels, xxxiii–xxxiv,

232–233

F
Fads, xxviii
Feature Lists, 182, 186
Formal semantics, 231
Formed state in developing sys-

tems, 141
Foundation Established state

in business case, 114
in developing systems, 140

Fujitsu Services company, xxxv
Fulfilled state

in acceptance testing practice,
185

alpha cards for, 40
in deployment, 163
in developing systems, 153
in explicit requirement items,

96–97, 100
in requirements, 19, 29, 31

Funding in organizational con-
text, 109

Future, 256–257

G
Gaining acceptance in developing

systems, 134

292 INDEX

General application requirements
in large development, 202–
203, 210

Getting to delivery in developing
systems, 134

Good way of working in develop-
ing systems, 148–149

Growth, kernel for, 52, 54–55
Guiding development in business

case, 128–129

H
Handover between teams,

164–167
Health, kernel focus on, 53
High-level plans in business case,

121–125

I
Identified state

in business case, 115
in explicit requirement items,

94–96
Implement the system activity

space, 34
Implemented state in explicit

requirement items, 94–96
In Agreement state in developing

systems, 137, 145
In Place state

in developing systems, 141
in planning iterations, 74

In Use state in developing sys-
tems, 140

Inclusive plans, 78
Incremental method building,

194–197
Industry, kernel impact on,

254–255
Initiated state in business case, 120

Innovations with methods,
241–242

Intuitive graphical syntax, 231
Involved state in developing sys-

tems, 137, 145
Iteration alpha in method build-

ing, 196
Iterations

backlogs, 62
doing and checking, 79–85
explicit requirement items,

93–100
objectives, 62, 84
Plan-Do-Check-Adapt cycle,

61–67
planning. See Planning

iterations
terminology, 61–62

J
Jacobson, Ivar

contributions, 271
grand vision, 247
SEMAT founding by, xxvii

Just-in-time approach, 194

Kajko-Mattsson, Mira, xxxvi
Kernel

actionable feature, xxxii–xxxiii,
232–233

activities, 32–34
alphas. See Alphas
areas of concern, 24–25
benefits, xxxvii–xxxix, 51–52
challenges addressed by, 6–11
competencies, 35–36
early adopters, xxxv–xxxvi
engineering courses,

xxxvi–xxxvii

INDEX 293

essentials, 5–6
extensible feature, xxxiii–xxxiv,

232–233
measurement approaches, 53
practical feature, xxxiv–xxxv,

231
practices. See Practices
principles, xxxi–xxv
provisions, xxxi
relationship to existing

approaches, xxxvii–xxviii
separating from practices,

236–237
simple language, 180
stable, 236–237
terminology and notation, 261
usage and extension, 263–264
vision for, 250

Key differentiators
innovations with methods,

241–242
practical tools, 242–243

KPN company, xxxv
KTH Royal Institute of Technol-

ogy, xxxvi

L
Language

constructs, 265
simple, 180
vision for, 250

Large development, 201–202
coordinating, 210–212
example, 202–203
methods, 197–199
organizing work, 204–208
visualizing, 208–210

Leadership competency, 36
Learning

kernel for, 52, 55
methods and practices, 48–49

Lidman, Svante, contributions by,
272

Life cycles
adapting, 193–194
description, 63–64
in large development, 209

M
Maintenance, 158
Martin, Robert, xxxvii
McMahon, Paul E., contributions

by, 271
Measurement approaches, 53
Meetings in iteration process, 80
Methods, 44. See also Practices

with Agile, 221–225
building, 192–193
challenges, 217
defined, 191
doing rather than discussing,

219
evolving, 224–225, 237
incremental building, 194–197
innovations with, 241–242
in large organizations,

197–199
learning, 48–49
from practices, 47–48
in reaching out, 177
refounding, 229–233
separation of concerns,

235–239
team control, 198, 200
team ownership, 222–223
terminology and notation, 261
thinking about, 218–219
use focus vs. description,

223–224, 231
Meyer, Bertrand

grand vision, 247
SEMAT founding by, xxvii

294 INDEX

Milestones
in business case, 121–124, 127
in organizational context,

109–110
Missing tasks in iteration, 85
Modern development life cycle,

193–194
Multidimensional aspects of soft-

ware development, 4
MunichRe company, xxxv

N
Next state determination in plan-

ning iterations, 73, 76–77
Ng, Pan-Wei, contributions by,

271
Noncritical requirement items in

large development, 211
Notation, 261–262

O
Objectives column on iteration

task boards, 80–84
Objectives in iteration, 62, 84
Obstacles in software develop-

ment, 4–5
Operate the system activity space,

34
Operational state in deployment,

163
Opportunity, xxxii

addressing, 9–10
alpha definition cards for,

38–39
alphas, 15–16, 20, 25–26
in business case, 115–117, 125,

128
in deployment, 164
in developing systems, 137, 152
issues, 6

practices, 182–183
in system support, 169

Organizational context, 109–110
Overlap of practices, 186

P
Papers, kernel for, 250
Performing state in developing

systems, 148, 155
Placeholders, activity spaces as, 32
Plan-Do-Check-Adapt cycle

in large development,
208–210

in method building, 195
overview, 61–67

Plan phase in Plan-Do-Check-
Adapt cycle

description, 63
in large development, 208

Planning in business case, 121–
125, 129

Planning iterations, 69–70
alpha states for, 70–72
current state determination,

73–75
explicit requirement items in,

95–97
kernel help for, 78
next state determination, 73,

76–77
Poker approach for planning iter-

ations, 71
Possibilities

addressing, 9
exploring, 33

Post-development phase in reach-
ing out, 193–194

Practical feature of kernel, xxxiv–
xxxv, 231

Practical tools, 242–243

INDEX 295

Practice market place, vision for,
250

Practices, xxxiii–xxxiv, 43–44
in acceptance testing, 184–185
composition, 181, 186–188
defined, 179
explicit, 44–47
learning, 48–49
methods from, 47–48
precise, 180–181, 188–189, 242
in reaching out, 192
in requirements elicitation,

181–183
separating kernel from,

236–237
terminology and notation, 262
in zooming in, 176

Pre-development phase in reach-
ing out, 193–194

Prebuilt methods, 197–198
Precise practices

making, 180–181
as practical tools, 242
value, 188–189

Prepare to do the work activity
space, 34

Prepared state in business case, 120
Principles Established state, 120
Prioritization in iteration, 84
Process engineers, 231
Process in way of working, 90–91
Process professionals, impact on,

255
Product

description, 180–181
separating alphas from, 237–238
terminology and notation, 262
in way of working, 90–91

Product requirements in large
development example, 203

Professors, kernel impact on,
255–256

Program managers, kernel impact
on, 255

Progress, kernel focus on, 53

Q
Quality in large development,

207

R
Reaching out, 191–192

in development life cycle,
193–194

method building, 194–197
method control, 198, 200
methods in large organiza-

tions, 197–199
overview, 176–177
practices, 192
in scaling, 54

Readers, kernel benefits for, 55
Ready state

in developing systems, 153
in explicit requirement items,

96–97, 100
in planning iterations, 76

Recognized state in business case,
115

Refounding methods, 229–233
Represented state in business case,

116
Requirement item states

in iteration planning, 95–97
in method building, 196
task boards, 97–100
working with, 93–95

Requirement items
in business case, 127
in large development, 211–212

296 INDEX

Requirements, xxxiii
in acceptance testing practice,

184–185
addressing, 9–10
in business case, 114, 118, 122,

125
current state determination,

74–75
in deployment, 163
in developing systems, 138–

139, 144, 146–147, 153
issues, 7
in large development, 202–204
next state determination,

76–77
practices, 182–184
in system support, 169
in way of working, 89–90

Requirements alphas, xxxii,
15–17

alpha definition cards for,
38–39

alpha state cards for, 40–41
checklist, 29
in large development, 209–210
overview, 26, 28
states, 18–21

Requirements Coherent state
in acceptance testing practice,

185
in composed practices, 187

Requirements elicitation practice,
181–183

Research
kernel benefits, xxxix
vision for, 251

Retired state
in system support, 169–170
in team handover, 167, 169

Retrospectives
alpha states in, 90
benefits, 87–88
in developing systems, 142
in explicit requirement items,

101–102

S
Satisfied for Deployment state,

151
Satisfied in Use state

in deployment, 163
in system support, 169

Scaling up, 54, 201–202
challenges, 175–178
coordinating development

teams through alphas,
210–212

large development example,
202–203

organizing work using alphas,
204–208

overview, 177–178
as practical tool, 242
teams, 212–213
visualizing development with

alphas, 208–210
Schedules in business case,

125–128
Scope of alphas, 17, 31
Scrum practice in method build-

ing, 196
Seeded state in business case, 114,

119
SEMAT (Software Engineering

Method and Theory), xxvii
Call for Action, xxvii-xxviii,

247
goals, xxix

INDEX 297

kernel principles, 230–231
methods, 230, 232
OMG Submission, xxix–xxxi
working documents, 267–268

Separation of concerns (SoC),
235–236

alphas from work products,
237–238

essence from details, 238–239
kernel from practices, 236–237

Shape the system activity space, 33
Simple language for practices, 180
Sjögren, Anders, xxxvi
Skills we always need to have, xxxi
Skinny system

in business case, 121–122,
126–127

in developing systems, 133–
135, 138–139

usable, 143–144
Skinny System Available milestone

in business case, 122, 126
in developing systems, 135

Social application requirements,
202–203, 209–210

Software engineering kernel, 23
Software professionals, kernel

impact on, 253–254
Software System, 137

in acceptance testing practice,
185

addressing, 10
in business case, 114, 118, 122,

125
current state determination,

74–75
in deployment, 163
in developing systems, 138,

144, 146, 153

in explicit requirement items,
96–97, 100

issues, 7
in iteration task boards, 83
in large development, 204
next state determination,

76–77
in system support, 169

Software System alphas, xxxii,
15–16

alpha definition cards for,
38–39

overview, 27–28
states, 21

Soley, Richard
grand vision, 247
SEMAT founding by, xxvii

Solution area of concern
in business case, 113–114
in deployment, 161–162
description, 24–25
in developing systems, 135–

136, 143–144, 151
Successfully Deployed mile-

stone, 159
in system support, 168

Solution needed state, 116
Specific skills in competencies, 35
Spence, Ian, contributions by,

272
Spikes, defined, 9
Sprint alpha in method building,

196
Stable kernels, 236–237
Stakeholders

addressing, 10
in business case, 113, 115–117,

122, 125, 128
in deployment, 163

298 INDEX

Stakeholders (continued)
in developing systems, 133,

136–137, 144–146, 151
impact on, 253–254
issues, 6–7
practices, 182–183
in system support, 169

Stakeholders alphas, xxxii, 15–16
alpha definition cards for,

38–39
overview, 26, 28
states, 20

Started state
in developing systems, 140
in team handover, 165

State cards
for business case, 111,

122–123
for planning iterations, 71–72
working with, 38, 40–42

State progression, activities for,
184

States, xxxii, 27–28
acceptance testing practice,

184–185
business case, 126
checklists, 29–31
explicit requirement items,

94–102
overview, 18–21
planning iterations, 70–72
practices, 182–183
progression, activities for, 184
requirements, 18–21
scaling up using, 204–208
visualizing development with,

208–210
way of working, 88–89

Stop the work activity space, 34

Successfully Deployed milestone,
159, 161

Support, system, 167–170
Support the team activity space,

34
SWEBOK Curriculum Guidelines

for Undergraduate Degree
Programs in Software Engi-
neering, 255

System support, 167–170

T
Target states in way of working,

88–89
Task boards

explicit requirement items,
97–100

working with, 80–84
Tasks in iteration

description, 62
prioritization, 84

Teaching
kernel impact on, 256
vision for, 250

Team
addressing, 10
in business case, 119, 125
competencies, visibility of, 5
complexity from, 4–5
in developing systems, 141,

148, 155
handover, 164–167
issues, 7
methods control, 198, 200
methods evolution, 224–225
methods ownership, 222–223
in reaching out practices, 192
in scaling up, 212–213
in system support, 170

INDEX 299

Team alphas, xxxii, 15–16, 27–28
Team focus

in large development, 204–208
visibility of, 208

Team leaders, kernel impact on,
255

Terminology
for iteration, 61–62
table of, 261–262

Test alpha in method building,
196

Test the system activity space, 34
Tester competency, 36
Text books, vision for, 250
Theoretical basis as SEMAT goal,

xxix
Thing to work with practice,

182–183
Things to do practice, 182

in acceptance testing, 184–185
composing, 186–187
SEMAT OMG Submission,

xxix–xxxi
Things to work with practice

in acceptance testing practice,
184–185

composing, 186
kernel, xxxii
SEMAT OMG Submission,

xxix–xxxi
Thinking about methods,

218–219
To Do column in iteration task

boards, 80–84
Tools

practical, 242–243
vision for, 250

Top-down hierarchies, 204
Track progress activity space, 34

U
Under Control state

in developing systems, 142,
148–149

in team handover, 165
Understand Stakeholder Needs

activity space, 33
Understand the Requirements

activity space
in composed practices, 187
description, 33

Universals, 265
Universities

kernel adoption by, xxxvi
kernel benefits, xxxix
kernel impact on, 255–257

Usable state
in developing systems, 137, 146
in planning iterations, 76

Usable System Available milestone
in business case, 122
in developing systems,

143–144
Usable systems

in business case, 126–127
in developing systems, 133
evolving, 146–148

Use the System activity space, 33
Users, method, 222

V
Value Added Services, 8

addressing, 9
alphas, 16–17
states, 20

Value established state in business
case, 116

Verified states for explicit require-
ment items, 94–96

300 INDEX

Viable state in developing systems,
137, 145

Visibility
of team competencies, 5
team focus for, 208

Vision Statement, 247, 249
Visualization in large develop-

ment, 202, 208–210

W
Walk through the Usage of the

System activity
for composed practices, 187
description, 45

Walkthrough approach for plan-
ning iterations, 71

Waterfall development life cycle,
193–194

Way of Working
adapting, 87–92
alphas, xxxii, 16
in business case, 114, 120, 125
current state determination,

74–75
in developing systems, 140–

141, 155
in explicit requirement items,

96, 100–102
issues, 7
iteration task boards, 81–82
next state determination, 76
overview, 27–28

in system support, 170
in team handover, 165–167

Work
alphas, xxxii, 15, 27–28
in business case, 114, 120, 125
in developing systems, 140,

142, 148–149, 155
issues, 7
in system support, 170
in team handover, 165–166

Work products
description, 180–181
separating alphas from, 237–238
terminology and notation, 262

Working documents, 267–268
Working well state

in developing systems, 155
in explicit requirement items,

96, 100
in planning iterations, 76
in team handover, 166

Z
Zooming in

for acceptance testing practice,
184–185

description, 179–180
overview, 176
in precise practices, 180–181
in requirements elicitation

practice, 182–183
in scaling, 54

	Contents
	Foreword
	Foreword
	Foreword
	Preface
	Acknowledgments
	Chapter 8 Planning an Iteration
	8.1 Planning Guided by Alpha States
	8.2 Determining the Current State in Our Story
	8.3 Determining the Next State in Our Story
	8.4 Determining How to Achieve the Next States in Our Story
	8.5 How the Kernel Helps You in Planning Iterations

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

