

Peachpit Press

V I S U A L Q U I C K S tA r t G U I D E

jQuery and
jQuery UI

Jay Blanchard

Visual QuickStart Guide
jQuery and jQuery UI
Jay Blanchard

Peachpit Press
www.peachpit.com.

To report errors, please send a note to errata@peachpit.com.
Peachpit Press is a division of Pearson Education.

Copyright © 2013 by Jay Blanchard

Acquisitions and Project Editor: Rebecca Gulick
Developmental Editor: Dave Awl
Copy Editor: Liz Welch
Technical Reviewer: Jesse Castro
Production Coordinator: Myrna Vladic
Compositor: David Van Ness
Proofreader: Patricia Pane
Indexer: Valerie Haynes Perry
Cover Design: RHDG / Riezebos Holzbaur Design Group, Peachpit Press
Interior Design: Peachpit Press
Logo Design: MINE™ www.minesf.com

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,
the designations appear as requested by the owner of the trademark. All other product names and services
identified throughout this book are used in editorial fashion only and for the benefit of such companies with no
intention of infringement of the trademark. No such use, or the use of any trade name, is intended to convey
endorsement or other affiliation with this book.

ISBN-13: 978-0-321-88514-2
ISBN-10: 0-321-88514-7

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

http://www.minesf.com

Dedication
Dedicated to the memory of Mr. Coy Watkins, who instilled a love of
 science and exploration in hundreds of students…especially me.

Special Thanks to:
It is not possible to embark upon the journey of creating a book without
a lot of talented and supportive people by your side. I love that they get
me, warts and all, even if it means that I say, “I can’t…I have to write.”

To my daughters Brittany and Kaitlyn, thank you for inspiring me and
cheering me on. You make life worth every single moment. I love you
to the moon and back…infinity!

To my Dad, I could not be here without the life lessons, support, and
love that you have so graciously shared with a hardheaded kid. Thank
you for being my Dad. I love you.

To Rebecca Gulick, the journey gets more interesting as we go. Thank
you for your patient and firm guidance while maintaining a sense of
humor. You’re truly a treasure.

To Dave Awl, thank you for steering the boat through some choppy
seas. You’ve taught me a lot about that.

To Jesse Castro, what can I say? Your depth and breadth of knowledge
always astounds me. Your ability to keep me on point is amazing. Your
friendship and quirky sense of humor make me smile. Thank you!

To the Peachpit/Pearson team, thank you for your patience and your
ability to turn sows’ ears into silk purses. Your wow factor is way off the
top of the scale.

To my valued mentor Larry Ullman, you know how to cut to the heart of
the matter and remind me what the value of humbleness is.

To my friends who have supported me and carried me through when the
pressure was on and time was short, I appreciate you beyond the mere
measure of words on a page.

To the jQuery team and community, thank you for your dedication to
bringing a great product to the masses, your encouragement, and
your steadfast vision of what a JavaScript library should look like. Your
willingness to share your knowledge and to bring people into the fold is
tremendously valuable and welcomed.

Contents at a Glance

 Introduction . xi

Chapter 1 Using Selectors . 1

Chapter 2 handling Events . 15

Chapter 3 Getting and Setting dOM attributes 35

Chapter 4 Manipulating dOM Elements 55

Chapter 5 harnessing advanced Selectors 81

Chapter 6 Traversing the dOM Tree 95

Chapter 7 Using ajax . 109

Chapter 8 creating captivating Effects 127

Chapter 9 Turning on jQuery’s Utilities 141

Chapter 10 Using Plugins . 151

Chapter 11 Introducing jQuery UI 161

Chapter 12 Fixing common Problems 179

Appendix A jQuery vs. Other Technology 187

Appendix B an active jQuery Website 189

 Index . 193

Contents at a Glance v

This page intentionally left blank

Table of Contents vii

Table of Contents

 Introduction . xi

Chapter 1 Using Selectors . 1

Using Basic Selectors . 2
Applying Filters to Selectors 6
Rewind and Review . 14

Chapter 2 Handling Events . 15

Attaching Event Handlers 16
Calling Document Events 17
Trapping Mouse Events 19
Capturing Keyboard Events 25
Forging Form Events . 30
Rewind and Review . 34

Chapter 3 Getting and Setting DOM Attributes 35

Changing Properties . 37
Managing Values . 43
Using and Updating Attributes 45
Handling CSS Classes 50
Rewind and Review . 54

Chapter 4 Manipulating DOM Elements 55

Inserting Elements . 56
Creating a Lightbox Effect 57
More Fun with DOM Manipulators 67
Getting and Setting Measurements 69
Cloning . 72
Changing an Input Element 76
Rewind and Review . 80

viii Table of Contents

Chapter 5 Harnessing Advanced Selectors 81

Forming Attribute Selectors 82
Combining Selectors . 91
Rewind and Review . 94

Chapter 6 Traversing the DOM Tree 95

Traversing the Tree . 96
Applying Traversal Filters 102
Rewind and Review . 108

Chapter 7 Using Ajax . 109

Applying Shorthand Methods 110
Working with JSON . 122
Rewind and Review . 126

Chapter 8 Creating Captivating Effects 127

Controlling Visibility 128
Managing Motion . 131
Composing Custom Animations 133
Rewind and Review . 140

Chapter 9 Turning on jQuery’s Utilities 141

Looping Through Elements 143
Setting and Getting Data 146
Rewind and Review . 150

Chapter 10 Using Plugins . 151

Working with Plugins 152
Rewind and Review . 160

Chapter 11 Introducing jQuery UI 161

Riding the ThemeRoller Coaster 162
Exploring Popular UI Widgets 166
Adding a Dialog Widget 174
Rewind and Review . 178

Table of Contents ix

Chapter 12 Fixing Common Problems 179

Nothing Works! . 180
Nothing Comes Back from Ajax! 181
jQuery Doesn’t Work in Ajax-Loaded Content 183
Loading Two Libraries 185
Rewind and Review . 186

Appendix A jQuery vs. Other Technology 187

Appendix B An Active jQuery Website 189

 Index . 193

This page intentionally left blank

Introduction xi

Welcome to jQuery!

You are on the verge of learning how to
add the world’s most popular JavaScript
library to your websites and web applica-
tions. You’ll be joining the ranks of devel-
opers for companies like Google, ESPN,
and Best Buy in applying jQuery to your
web development arsenal.

Originally developed in 2005 by John
Resig, the jQuery library has grown into a
mature and powerful tool for enhancing
web pages. Developers worldwide took up
the banner and began developing widgets
(called plugins) using the jQuery library for
the foundation. The jQuery group joined
in the plugin craze, absorbing some very
popular plugins into its framework and
adding some widgets to an additional
library, jQuery UI, in 2007.

Introduction

Since that time, the jQuery Foundation
has continued to enhance and rework the
library to make it more robust and effi-
cient. New versions of the library with new
features and enhancements are rolled out
at an incredible pace to keep up with the
changing landscape of web development.

Why Use This Book?
The goal of this book is to introduce you
to the concepts of the jQuery and jQuery
UI libraries, as well as how to use those
concepts in practical examples. You’ll be
able to use the concepts right away in your
web projects.

xii Introduction

What Is jQuery?
There is a very simple answer to that
question: jQuery is JavaScript. To be more
 specific, jQuery is a free, open source
library of code written in the JavaScript
programming language.

Because jQuery is JavaScript, it can take
advantage of many of JavaScript’s func-
tions and concepts, like object notation,
and in many cases make them easier to
work with.

At the heart of jQuery is its selector engine,
Sizzle, which is also written in JavaScript.
The Sizzle selector engine makes it easy to
use CSS (Cascading Style Sheet) selectors
as jQuery objects to work with specific web
page elements or groups of elements.

Learning jQuery
Learning how to use jQuery is an organic process. For example, knowing how to create selectors is
no fun if you don’t do something with the items you select.

You’ll be introduced early on to many of jQuery’s methods and functions even if the concept has
not yet been covered in the book. You’ll be guided to chapters where more information concerning
those methods and functions can be found at the end of each exercise.

Starting in Chapter 2, “Handling Events,” you’ll begin building jQuery functions within the frame-
work of a website’s templates. Once complete, the web pages will have used very many of the
jQuery methods available, including some of the jQuery UI plugin widgets (widgets and plugins
are small, stand-alone tools that are easily added to websites). The markup and code for the com-
pleted web pages (including the PHP and MySQL queries) are provided for you in Appendix B,
“An Active jQuery Website.”

All of the code used in the book is available for download from www.jayblanchard.net. Just look for
the jQuery and jQuery UI Visual QuickStart Guide download link.

Variables and functions
and arguments, oh my!
If this is your first foray into programming
languages, let’s cover some of the basic
concepts of putting together a working
piece of software. You’ll see examples of
these concepts in nearly every exercise.

The first concept is that of variables.
Variables are essentially containers for
pieces of information that can come in the
form of values, arrays (indexed collections
of items), or objects (items that have a
collection of properties). The following will
declare a variable and set its value to be
blank:

var myVariable = '';

var myNewVariable = '';

http://www.jayblanchard.net

Introduction xiii

The while condition typically starts a
loop (there is also a for condition that
sets up a loop). Here you’ll test the value
of myVariable, print out the value of the
variable, and then reduce the variable’s
value by 1. The loop will run as long as
 myVariable’s value is greater than 0.

var myVariable = 10;

while(myVariable > 0) {

 // do something

 document.write(myVariable +
"
");

 myVariable--;

}

A little more difficult concept is the func-
tion. A function is typically a group of
instructions that allow you to perform a set
of actions just by calling the function name.
Then you can return the result of the func-
tion’s actions.

To declare a function, you do this:

function myFunction() {

 // place instructions here

 var result = 1 + 1; //
➝ instruction

 return result;

}

continues on next page

The variable is now ready to be used, and
you can populate it with any value that you
need just by referring to it:

myVariable = 1234;

myNewVariable = $('#id');

One thing that you’ll need to be aware of
with variables: They have a scope. In other
words, a variable may only be available
within the confines of a function and not
available anywhere else in your code.
JavaScript variable scope has been a
popular topic of discussion, and you’ll find
many good references online.

 Give your variables and functions mean-
ingful names, because doing so will help you
maintain your code later as well as provide
clues for how the variable or function is used.

The next concept is designed for testing a
condition and then reacting to that condi-
tion. Conditional statements come in the
form of if (if this, then that) or while (while
condition exists, do this):

if(myNewVariable == 1234) {

 // then do this

} else {

 // then do that

}

xiv Introduction

To use the function, you might do some-
thing like this:

var myVariable = myFunction();

 //myVariable now equals 2

Sometimes you’ll want to send informa-
tion to a function. This is known as passing
arguments. Revamp your function to look
like this:

function myFunction(argument) {

 var result = argument + 1;

 return result;

}

Now you can pass an argument to the
function:

var myVariable = 5;

var myNewVariable =
➝ myFunction(myVariable);

You pass myVariable to myFunction.
Then myVariable becomes argument. You
add 1 to argument and return the result.
myNewVariable is now equal to 6 A.

Functions are great when you need to per-
form the same action over and over again
while maybe passing different arguments.
You can also set up functions to receive
and process multiple arguments. Functions
will become a key tool in your develop-
ment toolbox.

This is nowhere near an exhaustive intro-
duction to programming, but it should be
enough to get your feet wet and give you
the understanding that you need to work
through the jQuery exercises in the book.
There are many good resources for learn-
ing how to program with JavaScript and
many other languages where the concepts
are the same, only the syntax is changed.

Functions or Methods?
One concept that may be a little vague
is the difference between functions and
methods. It seems, on the surface, that
they’re the same thing. In reality they
are not.

A function is a piece of code that’s called
by name. You can pass data to a function
and the function will operate on that
data. You can also return data from a
function. Any data passed to the function
is passed explicitly—you choose to pass
data to a function.

A method is a piece of code that is
normally associated with an object, like
when a selector is bound to a jQuery
method. You still call a method by name,
and in most respects, it’s identical to a
function except for two key differences:
A method is implicitly passed the object
for which it was called and the method is
able to operate on data that’s contained
within the object.

The water becomes muddy when you
begin to understand that functions may
contain methods and in a similar fashion
you may create methods, like jQuery
plugins and extensions, that contain
functions. If you remember how informa-
tion is passed, either explicitly or implic-
itly, you’ll be able to keep the differences
straight.

A The transformation of an argument.

start

end

Introduction xv

Learning the Basics
In many cases, your first decision as a
web developer using jQuery is deciding
whether to download the jQuery core to
make it available from your web server
or use a hosted service known as a CDN
(Content Delivery Network). Both have
advantages and disadvantages.

The single largest advantage of using a
CDN, like Google’s, is that its distributed
network almost always uses servers clos-
est to the website visitor to deliver the
jQuery library. Once the library from a CDN
is cached by the browser, it doesn’t have
to be downloaded again (as long as the
browser cache isn’t cleared), which makes
site loading faster. The largest disadvan-
tage is that you’ll have to rely on a third
party to be available when your site is
requested by a first-time visitor.

If you decide to host the jQuery library
yourself, your biggest advantage is that
you’ll be in control. If someone can reach

your site, they can get all of the files
needed to use your site. Once it’s cached
from your site, returning visitors gain the
same advantage they’d get if you were
using a CDN. You can also create jQuery
applications that require no connection
to the Internet if the application has no
requirement for a remote data source. The
biggest disadvantage is that some brows-
ers limit the number of connections they
can make to a server simultaneously, so
getting everything downloaded quickly
may be difficult.

For most people in this day and age band-
width is not a concern, but you may want
to consider those do who have bandwidth
limitations or who are using browsers that
place low limits on connections to servers.

Your best bet may be using a CDN with
a fallback to a local (on your web server)
copy of the jQuery library. Let’s prepare for
creating a fallback by downloading a copy
of jQuery first.

xvi Introduction

To download jQuery
from jquery.com:
1. Open a browser and visit jquery.com A.

2. Choose the version of jQuery you’d
like to download, either production or
development. The production version is
minified (white spaces and comments
stripped) to provide the smallest pos-
sible footprint and overhead.

A The jQuery website. The links to download the code are in the
upper-right-hand corner of the site.

B The raw JavaScript code for the jQuery library.

3. The jQuery file will appear in your
browser B.

4. Save the file to your computer and then
move it to the proper place on your
web server.

 In order to facilitate offline development,
you’ll want to download a copy of jQuery to
host on your local machine.

Introduction xvii

Once you’ve downloaded the file, you
can include it in your web projects. Let’s
set up a fallback method to use with
Google’s CDN.

To use jQuery in your projects:
n	 Add the following code within the

<head></head> tags in your web pages:

<script type="text/javascript"
➝ src="https://ajax.googleapis.com/
➝ ajax/libs/jquery/1.7.2/jquery.
➝ min.js">

</script>

<script type="text/javascript">

if (typeof jQuery ==
➝'undefined') {

document.write(unescape("%3Cscript
➝ src='path/to/jquery-1.7.2.min.js'
➝ type='text/javascript'%3E%3C/
➝ script%3E"));

}

</script>

The first script is an attempt to include the
jQuery core in your web project from the
CDN. The second script then tests to see if
the jQuery object is available. If the jQuery
object isn’t available, a line is written to the
HTML file to load the jQuery file from the
local source.

 If you’re using HTML5, it isn’t necessary
to include the type attribute in your script tags.

 You have choices when it comes to CDNs.
Microsoft, Google, and jQuery all offer CDNs.

xviii Introduction

Minifying your code
As you’re developing your markup, style
sheets, and jQuery code, you’ll leave a lot
of whitespace, tabs, and comments in your
files to make the files easy to maintain and
read. This is great during development, but
for production you should consider minify-
ing your code.

The process of minifying code removes
all of the unnecessary whitespace, com-
ments, and formatting characters, which
makes the download of the code much
faster. Some minifying applications will
even check your code for errors and per-
form other actions to reduce your code to
the smallest possible size without losing
functionality.

My favorite application for minifying code is
the Google Closure Compiler C.

C The Google Closure Compiler interface.

To minify your code with the
Google Closure Compiler:
1. Go to http://closure-compiler.appspot.

com/home to access the application.

2. Modify the line of code in the left-hand
pane of the compiler containing the
directive @output_file_name. Use the
name of the file you wish to save your
minified code to:

// ==ClosureCompiler==

// @compilation_level
➝ WHITESPACE_ONLY

// @output_file_name
➝ jquery.custom.min.js

// ==/ClosureCompiler==

3. Copy your jQuery code into the space
below the directives.

4. Click the Compile button in the upper-
left pane of the compiler.

http://closure-compiler.appspot.com/home
http://closure-compiler.appspot.com/home

Introduction xix

Once you’ve completed those steps, you’ll
see the compiled code in the right pane
of the application. In the upper-right sec-
tion of the interface, you can get statistics
about the original size of the code, fol-
lowed by the compiled size of the code to
give you an idea of how much compres-
sion occurred.

Also in the upper-right section of the com-
piler is a link to your minified code, using
the name you specified in the directives.
Clicking on the link will open your raw,
minified JavaScript code in your browser
window. Save the code to your computer
and move it to the proper location on your
web server.

 Always keep a development version of
your code containing all of the comments and
whitespace for readability and minify only for
your production environment.

Performing Progressive
Enhancement
One of the major benefits of using the
jQuery library is that you can use it on any
website without having to modify any of
your HTML or CSS.

Most websites are developed using a simi-
lar workflow. The HTML markup and CSS
are developed first along with any artwork
to give the website its look and feel. Once
complete, the website may be fully func-
tioning. Most developers keep their style
sheets separate from their markup, choos-
ing to include the CSS in their projects via
link tags in the head of HTML documents.
It’s just good organization. Maintenance is
easier and much more efficient.

Because jQuery has the ability to interact
with the full range of CSS selectors and
HTML elements, it can be kept apart from
the markup, whereas many JavaScript calls
have to be written inline with the markup.
For instance, to capture a click event from
a link tag you’d have to include a call to
JavaScript's onClick() method within the
anchor tag:

<a href="some.html"
➝ onClick="jsFunction">

It can be a lot of work to go back to a web-
site you’ve developed to add JavaScript
interaction.

 When planning new websites and appli-
cations that you’ll be using jQuery on, be sure
to add classes and IDs that will assist you in
the development process.

With jQuery you’d include your jQuery
file in a script tag, just as you did with the
jQuery core earlier in “Learning the Basics.”
Then you could write the click event han-
dler into your jQuery code file:

$('a[href="some.html"]').click(...

This means you never have to touch your
existing markup. The concept of keeping
everything separate is known as progres-
sive enhancement.

The basic rules for progressive enhance-
ment are simple. Develop your markup,
add your styles, and then enhance with
jQuery—with each of those being in stand-
alone files. In Chapter 1, “Using Selectors,”
progressive enhancement isn’t used—all
of the HTML, CSS, and jQuery (except the
jQuery core) you’ll write are in one file. This
was done for simplicity’s sake. Once you
start developing jQuery in earnest (begin-
ning with Chapter 2, “Handling Events”),
the markup, styles, and jQuery code are
kept in separate files and included in the
HTML as needed.

xx Introduction

Rewind and Review
Take a few moments to reflect on what
you’ve learned in this introduction:

n	 Where do you get the jQuery library?

n	 Is it better to host your own jQuery
code or rely on a Content Delivery
 Network (CDN)?

n	 What is jQuery?

n	 What is the advantage of progressive
enhancement?

Tracking Down Tools
All you need other than the jQuery core
file is a good text editor. Every developer
has his or her preferences, so I’m going
to give you a couple of recommenda-
tions. I encourage you to experiment with
a few different text editors until you find
one you’re comfortable with. Additionally,
Table I.1 contains some recommendations
for other tools that will help you to become
a better jQuery developer and a better
web developer.

As your skills and abilities grow, you may
find that other tools will enhance your
workflow and make your development
process more efficient.

TABLE I.1 Suggested Tools

Name Information

Eclipse IDE General-purpose text editor for Windows or Mac. Available from www.eclipse.org.

Sublime Text 2 General-purpose text editor for Windows, Mac, and Linux. Available from www.
sublimetext.com.

Firebug DOM inspector and troubleshooting tools for Firefox on Windows and Mac.
Available from http://getfirebug.com.

Developer Tools DOM inspector and troubleshooting tools available with Internet Explorer 9 on
Windows. Just press F12.

Developer Tools DOM inspector and troubleshooting tools for Google Chrome. It comes bundled
with Chrome: Select Tools > Developer Tools.

XAMPP A personal web server you can install on your computer for local development.
Includes PHP and MySQL, and runs on Windows. Available from www.
apachefriends.org.

MAMP A personal web server you can install on your Mac. Includes PHP and MySQL.
Available from www.mamp.info.

http://www.eclipse.org
http://www.sublimetext.com
http://www.sublimetext.com
http://www.apachefriends.org
http://www.apachefriends.org
http://www.mamp.info
http://getfirebug.com

4
Manipulating DOM

Elements

In This Chapter
Inserting Elements 56

Creating a Lightbox Effect 57

More Fun with DOM Manipulators 67

Getting and Setting Measurements 69

Cloning 72

Changing an Input Element 76

Rewind and Review 80

Adding, changing, and removing elements
from your web pages based on user inter-
actions is one of the coolest things you can
do with jQuery. The library is deep, with
lots of functions you can apply to your web
pages to achieve dramatic effects.

In many of the exercises prior to this chap-
ter, you’ve used the css() method to create
styles on the fly. In this chapter, you’ll take it
a couple of steps further using CSS height,
width, and position properties. You’ve also
used the html() method to add error mes-
sages when form elements were not filled
out correctly. You’ll explore using html()
further while employing some custom
HTML attributes.

The DOM manipulators don’t stop there.
You’ll learn how to copy, add, change,
and remove DOM elements to enhance
your website visitors’ experience. Let’s
get started!

56 Chapter 4

Inserting Elements
You’ll find there are times when you need
to add and remove elements from your
web pages. The jQuery library provides a
number of methods for performing these
manipulations, allowing you a great deal
of flexibility when creating specific interac-
tions (see Table 4.1).

Of special note are the methods that per-
form the same function but use a different
syntax. Take, for example, before() and
insertBefore(). Both allow you to place
content into your page in the same way but
with the syntax flipped:

TABLE 4.1 DOM Insertion Manipulators

Method Use It To…

after() Insert content after each of the selected elements.

insertAfter() Perform the same action as after(); requires a different syntax.

append() Insert content at the end of each selected element.

appendTo() Perform the same task as append(), but the syntax is flipped.

prepend() Insert content at the beginning of each selected element.

prependTo() Perform the same task as prepend(), but the syntax is reversed.

before() Insert content before each of the selected elements.

insertBefore() Perform the same action as before(), but the syntax is flipped.

clone() Create a deep copy (copies all of the descendants) of the set of selected elements.

detach() Remove the set of matched elements from the DOM and keep the data for later reinsertion.

empty() Remove all child nodes of the set of selected elements from the DOM.

remove() Remove the set of selected elements from the DOM.

removeAttr() Remove an attribute from each of the selected elements.

replaceAll() Replace each target element with the set of selected elements.

replaceWith() Replace each element in the set of selected elements with new content.

wrap() Wrap an HTML structure around each element in the set of selected elements.

unwrap() Remove the parents of the set of selected elements from the DOM.

wrapAll() Wrap an HTML structure around all elements in the set of selected elements.

wrapInner() Wrap an HTML structure around the content of each element in the set of selected
elements.

$('element')

 .before('<p>before element</p>');

$('<p>before element</p>')

 .insertBefore('element');

The paragraph containing “before element”
will be inserted before “element” in either
case—the choice for you is a stylistic one.
Many say using insertBefore() is more
easily read because it reads left to right and
is easier to understand. On the other hand,
many like the syntax of the first example
even if it’s another case where jQuery
sounds a little like Yoda. Methods that per-
form the same task are pointed out in their
descriptions.

Manipulating DOM Elements 57

Creating a
Lightbox Effect
In the next few exercises you’ll use several
of the DOM manipulators to create a light-
box effect. Many websites use a lightbox
effect to show enlargements of photo-
graphs centered and highlighted on web
pages. You’ll be able to use the effect on

TABLE 4.2 DOM CSS Manipulators

Method Use It To…

css() Get or set the value of a style property for the first element in the set of selected elements.

height() Get the current computed height for the first element in the set of selected elements.

innerHeight() Get the current computed height for the first element in the set of selected elements,
including the padding but not the border.

outerHeight() Get the current computed height for the first element in the set of selected elements,
including padding, border, and optionally, margin.

width() Get the current computed width for the first element in the set of selected elements.

innerWidth() Get the current computed width for the first element in the set of selected elements,
including the padding but not the border.

outerWidth() Get the current computed width for the first element in the set of selected elements,
including padding and border.

offset() Get the current coordinates of the first element in the set of selected elements, relative to
the document.

position() Get the current coordinates of the first element in the set of selected elements, relative to
its parent element.

scrollLeft() Get the current number of pixels hidden from view to the left of any scrollable area for the
first element in the set of selected elements.

scrollTop() Get the number of pixels hidden above any scrollable area for the first element in the set
of matched elements.

remove() Remove the set of selected elements from the DOM.

removeAttr() Remove an attribute from each of the selected elements.

replaceAll() Replace each target element with the set of selected elements.

replaceWith() Replace each element in the set of selected elements with new content.

wrap() Wrap an HTML structure around each element in the set of selected elements.

unwrap() Remove the parents of the set of selected elements from the DOM.

wrapAll() Wrap an HTML structure around all elements in the set of selected elements.

wrapInner() Wrap an HTML structure around the content of each element in the set of selected
elements.

your web pages too, once you’ve learned
how to put together the function.

Some of the manipulators that you’ll use dur-
ing the exercise are specifically designed for
getting or modifying information about CSS.
These are described in Table 4.2.

The first order of business is covering the
current page with a translucent background
on which the photograph will be displayed.

58 Chapter 4

To use the append() method to
display a translucent shade:
1. Open gallery.html in your text editor

and add the data-photo attribute to
each of the list items (Script 4.1.html):

<img src="images/thumb_lv01.jpg"
➝ data-photo="images/lv01.jpg"
➝ alt="Classic Sign - Las Vegas" />

<img src="images/thumb_lv02.jpg"
➝ data-photo="images/lv02.jpg" alt=
➝"New York New York - Las Vegas" />

<img src="images/thumb_lv03.jpg"
➝ data-photo="images/lv03.jpg"
➝ alt="Neon Lights - Las Vegas" />

<img src="images/thumb_lv04.jpg"
➝ data-photo="images/lv04.jpg" alt=
➝"Stratosphere - Las Vegas" />

<img src="images/thumb_lv05.jpg"
➝ data-photo="images/lv05.jpg"
➝ alt="Wynn Hotel - Las Vegas" />

<img src="images/thumb_lv06.jpg"
➝ data-photo="images/lv06.jpg"
➝ alt="Paris - Las Vegas" />

2. Save the gallery.html file and upload
it to your web server.

Manipulating DOM Elements 59

3. Edit jquery.custom.js and insert the
following code to add a translucent
background to the browser window:

$('.imageGallery li img')

.click(function() {

$('body').append

('<div class="shade"></div>');

$('.shade')

.css('opacity', 0.7).fadeIn();

});

4. Save the jQuery file and upload it to
your server.

5. Click on any of the images in the photo
gallery and the background should
appear. There’s no way to get rid of it at
this point without reloading the page.
You’ll add code to remove it later A.

For the backdrop to appear, you have to
append a div to the body element of your
page and declare the shade class on the
div (the shade class is already defined for
you in css/base.css). At this point, you
apply a CSS opacity property (to make the
backdrop translucent) and use fadeIn()
to bring the backdrop into view. (More on
fadeIn() and other effects in Chapter 8,
“Creating Captivating Effects.”)

Take a look at your DOM inspection tool
while you have the div applied to the
body. Notice that the backdrop div is the
last element within the body tags because
append() inserts content at the end of the
selected element B.

With the backdrop in place, it’s time to add
the photo. There will be two things you’ll
have to take care of: preloading all the
full-sized images and placing the image
centered on the browser window.

continues on next page

A The backdrop is in place for the lightbox.

B The backdrop div element is the last element
within the body tags.

60 Chapter 4

The reason for preloading the images is to
ensure that the lightbox function can prop-
erly measure the image and know how
to place it within the window. The jQuery
methods can’t get the height and width
of an element that isn’t currently available
in the DOM. Failing to perform this step
results in the image not being centered
properly C.

You’ll also use the browser window’s
height to set the size of the image to make
sure the photo is fully displayed within the
boundaries of the browser window. Many
of the full-sized images in the example
are either taller or wider than the browser
window D.

As a matter of organization, most devel-
opers will group functions like the image
preloader near the top of their jQuery file.
In this case, the preloader needs to have
completed its job before the lightbox func-
tion is called, so let’s put the preloading
function together first.

To create an image preloader
using appendTo():
1. Edit your jQuery file to add the image

preloader:

function preload(arrayOfImages) {

$(arrayOfImages).each(function(){

$('')

.attr('src',this)

.appendTo('body')

.css('display','none');

});

}

You start by declaring a function named
preload. The function is given the
argument of arrayOfImages. Once the

C The top-left corner of the image is centered on
the screen rather than the whole photo.

D You can never tell how tall the Statue of Liberty
is until you try to fit her in a browser window.

Manipulating DOM Elements 61

function is called, the jQuery method
each() loops through each item in the
array that you’ll pass to the function.
(More on each() in Chapter 9, “Turning
on jQuery’s Utilities.”)

For each image, you append an image
tag to the body. Then you set the src
attribute for the image tag to the current
image information. Finally, you make
sure the images are not visible until you
need them by setting their CSS display
method to none.

Using appendTo() here makes perfect
sense because it allows you to specify
attributes more easily for each image
tag prior to the tag being added to the
page.

2. Create the array inside a function call
to preload:

preload([

 'images/lv01.jpg',

 'images/lv02.jpg',

 'images/lv03.jpg',

 'images/lv04.jpg',

 'images/lv05.jpg',

 'images/lv06.jpg'

]);

The square brackets indicate a
JavaScript array using JavaScript
Object Notation. The path for each
full-sized image has been specified in
a comma-separated list. Have a look
at your DOM inspector and you should
see the image tags just before the clos-
ing body tag E.

Now let’s add further to the lightbox
function.

E The new image tags have been appended to
the body.

62 Chapter 4

To use height() and width() to set
an element’s size and position:
1. Open jquery.custom.js in your text

editor.

2. Add the following jQuery code to create
an image tag:

var imgSRC = $(this)
➝.attr('data-photo');

var imgTAG =
➝'';

This code should be added immedi-
ately after the line where you applied
fadeIn() to the backdrop.

3. Continue the function by adding the
following code to append the modal
window to the body and the image tag
to the modal window:

$('body')

.append('<div class="photoModal">

</div>');

$('.photoModal').html(imgTAG);

$('.photoModal')

 .fadeIn('slow')

 .append('<div>

Close X</div>');

The additional append() method adds
an anchor tag to the modal, which will
be used for closing the photo.

Manipulating DOM Elements 63

4. Enter the code to check the window’s
height and apply the height to the
image:

var windowHeight =
➝ $(window).height();

$('.photoModal img')

.css('height',

 (windowHeight - 200));

You’ve subtracted 200 pixels from the
window’s height to ensure that the
image will fit in the browser window.

5. Save information about the modal’s cur-
rent height and width to two variables.

These two variables will be applied to
the modal to center it horizontally and
vertically within the browser window:

var modalTopMargin =
➝ ($('.photoModal')

 .height() + 20) / 2;

var modalLeftMargin =
➝ ($('.photoModal')

 .width() + 20) / 2;

The reason you add 20 to the height
and width is because the CSS specified
for the modal window has a border of
10 pixels per side F.

continues on next page

F Take note of the border to make sure the photo is perfectly centered.

64 Chapter 4

6. Add the code to apply the CSS to the
modal:

$('.photoModal')

.css({
➝'margin-top' : -modalTopMargin,
➝'margin-left': -modalLeftMargin
➝});

In the original CSS (see css/base.css)
for the modal, the top-left corner is
originally set to be in the center of
the screen. The top-left corner of
the browser window is at coordinates
0, 0 G.

To make sure the photo is centered,
you apply negative measurements from
the photo’s top-left corner to move it
into position H.

G The base coordinates
for the browser window start
at the upper-left corner.

0, 0

–522px

–
36

5
px

H By calculating the photo’s
height and width, you can
apply negative numbers to
move it into position.

Manipulating DOM Elements 65

7. Save the jQuery file and upload it to
your web server. Reload gallery.html
into your web page and click on one of
the pictures I.

There’s only one problem at this point: you
can’t close a picture once you’ve opened
it. Because you’ve added elements to the
DOM that were not previously there, you’ll
have to use a special way to attach event
handlers to account for the new elements.

I The picture is sized and presented!

66 Chapter 4

To close the picture using remove():
1. Reload jquery.custom.js into your text

editor.

2. Add the following function to the file:

$('body')

.on('click', '.closePhoto',
➝ function(e){

e.preventDefault();

$('.photoModal, .shade')

 .fadeOut(function(){

 $(this).remove();

 });

});

The on() method accounts for elements
either in the DOM now or added in the
future. You use it to bind event handlers
to items within a selected element. In
the exercise, you attached the click
event handler to the body and specified
that the handler should answer to any
item having the closePhoto class. You’ll
recall that you appended an anchor

tag having the class closePhoto in the
previous exercise.

Once the tag is clicked, the photo
modal and the backdrop are faded
and then removed using the remove()
method, allowing the lightbox function
to be reset for its next performance.

You have undoubtedly noticed the
 preventDefault() method used here.
You passed the click event e to the
function:

function(e){...}

To keep the link from acting nor-
mally, which is typically navigating
to another page, you applied the
preventDefault() method to the
event, which does what it says—it
prevents the default event action
from occurring.

3. Save the file and upload it to your
web server.

4. Reload the gallery.html page. Click
on an image and then click on the
“Close X” link at the bottom right of the
image. Your gallery page has returned
to normal.

Manipulating DOM Elements 67

More Fun with DOM
Manipulators
Let’s look at more ways to use some of the
other DOM manipulators.

To use before() to rearrange order:
1. Open a new copy of the HTML5 boil-

erplate in your text editor and add the
following markup (Script 4.2.html):

<div id="content>

<div class="article">

<h3>Article 1</h3>

<p>Lorem ipsum...</p>

move to top</div>

<div class="article">

<h3>Article 2</h3>

<p>Lorem ipsum... </p>

move to top</div>

<div class="article">

<h3>Article 3</h3>

<p>Lorem ipsum...</p>

move to top</div>

<div class="article">

<h3>Article 4</h3>

<p>Lorem ipsum...</p>

move to top</div>

<div class="article">

<h3>Article 5</h3>

<p>Lorem ipsum...</p>

move to top</div>

</div>

2. Save the file as article.html and
upload it to your web server. Load the
page into your browser A.

continues on next page

A The list of articles in their normal order.

68 Chapter 4

3. Modify jquery.custom.js with the fol-
lowing code to move an article to the
top of the list of articles:

$('.mover').click(function(e) {

e.preventDefault();

$('#content div:first')

.before($(this).parent('div'));

});

4. Save the jQuery file and upload it to
your web server.

5. Reload article.html in your web
browser and click on any of the “move
to top” links. The article moves to the
top of the list B.

Let’s look at what’s in play here. Using
before() makes things read backward
so the selector selects the first div, using
a jQuery selector extension (more about
those in Chapter 5, “Harnessing Advanced
Selectors”), :first. The first div in the
group is the div you’ll insert your chosen
div before. Whew. Then you invoke the
before() method to carry your chosen div
to the first spot in the group C.

To get the chosen div, you get the par-
ent div of the clicked link. The parent()
method is a DOM traversal method you’ll
see again in Chapter 6, “Traversing the
DOM Tree.”

The before() method has a counter-
part that performs the same job exactly,
the insertBefore() method. The
 insertBefore() method has one huge
advantage: It’s much easier to read:

$(this).parent('div')

.insertBefore($('#content div:first'));

This line of code says to take the clicked
element’s parent div and insert it before
the first div in the selected group of divs.
Which one should you use? As mentioned
earlier, it’s a matter of personal preference.

B You can rearrange
the list to bring an
article to the top.

C Clicking the third div moves it to the top of
the list.

Manipulating DOM Elements 69

Getting and Setting
Measurements
There are some DOM manipulators whose
sole purpose is to help you get and set
measurements. Let’s use a couple of those
to help animate a floating menu.

To use scrollTop() and offset()
to create a floating menu:
1. Modify the markup of article.html

first by adding a div to wrap the div
with an id="content" (Script 4.3.html):

<div class="pageWrapper">

<div id="content">

// all of the content is here

</div>

</div>

2. Add the following markup to define
the floating menu. It must be within
the pageWrapper div:

<div class="sidebar">

Articles

Photo Gallery

</div>

3. Save article.html and upload it to
your web server.

4. Create the jQuery function to make the
menu float in jquery.custom.js:

var sidebarOffset =
➝ $('.sidebar').offset();

var paddingTop = 10;

$(window).scroll(function() {

if ($(window).scrollTop() >
➝ sidebarOffset.top) {

$('.sidebar').stop()

.animate({

marginTop: $(window).scrollTop() -
➝ sidebarOffset.top + paddingTop

});

} else {

$('.sidebar').stop()

.animate({

marginTop: $(window).scrollTop()

});

}

});

5. Save jquery.custom.js and upload it to
your web server.

continues on next page

70 Chapter 4

6. Load article.html into your web
browser and you’ll see the floating
menu on the right-hand side of the
page A.

As you scroll down the page, the menu
will float into place B.

Let’s see what’s behind the curtain on
making this little function work. First you
save the sidebar’s offset to a variable. The
offset() function gets the current position
of an element relative to the document.
The function returns an object having two
properties: top and left C.

A The new menu
is ready to go.

B The menu floats into view as lightly as a cloud.

C An example of offset for two elements.

15px

15px

50px

30px

Manipulating DOM Elements 71

The other measurement you took is the
window’s scrollTop() amount. This
measurement, in pixels, is the number of
pixels hidden from view above the browser
window as you scroll down the page D.

 You can determine the bottom and right
properties of an object by using offset() and
a little math.

Once the scroll event takes place, all you
have left to do is to animate the div into
its new position (you’ll read more about
animations in Chapter 8). You’ll do that
based on the measurement provided by
scrollTop(). Then you do a little math to
subtract the original offset amount and add
in a padding value to make sure the div is
5 pixels below the edge of the top of the
browser window E.

top of the document

The number of pixels here is
measured by scrollTop()

D The scrollTop()
method measures what
you can’t see.

E The original gap is maintained after the
animation.

72 Chapter 4

Cloning
You should be getting pretty comfortable
manipulating elements in the DOM. You’ve
learned how to add and remove elements,
get measurement information, and set
measurement information. Let’s turn our
focus to duplicating elements on a page,
a little thing jQuery calls cloning.

On the surface, cloning a group of ele-
ments on a page looks pretty simple. All
you have to do is use the clone() function
and you’re all set, right? Let’s dig a little
further.

When you use the clone() method, you’re
making a copy of the selected elements
and all of their descendants and any text
nodes contained within the selected items
and the descendants. This is known as a
deep copy.

You can also copy the entire set of event
handlers bound to the selected elements,
ensuring that your functions will con-
tinue to work even though you’re adding
new elements to the DOM. You do this
by setting the withDataAndEvents and
deepWithDataAndEvents properties of
clone() to true.

To demonstrate clone(), you’ll create a
new form for the website that allows visi-
tors to submit recipes. Some recipes have
more ingredients than others, but you don’t
want to clutter up the page with input ele-
ments. You’ll use the clone() method to
allow form users to add as many ingredient
fields as they need.

To use clone() to add form elements:
1. Use a fresh copy of the HTML5 boiler-

plate in your text editor and add the fol-
lowing markup to create a recipe form
(Script 4.4.html):

<div id="content">

<h2>Submit a recipe...</h2>

<form name="recipe" action="inc/
➝ php/recipe.php" method="post">

<input name="recipeName"
➝ placeholder="Recipe Name"/>

<div id="ingredients">

<p>Ingredients</p>

<input name="recipeIngredient[]"
➝ placeholder="Ingredient" />

<input name="recipeIngredient[]"
➝ placeholder="Ingredient" />
➝

<input name="recipeIngredient[]"
➝ placeholder="Ingredient" />

add
➝ another ingredient

</div>

<p>Instructions</p>

<textarea name=
➝"recipeInstructions">

</textarea>

<input type="submit" name="submit"
➝ value="Submit Recipe" />

</form>

</div>

Manipulating DOM Elements 73

Take note of the span tags surrounding
the inputs for ingredients. These are
used to make writing your code much
easier and more compact. Addition-
ally, each ingredient tag is named with
square brackets ([]) to make them each
part of an array that can be handled
more easily by server-side languages
like PHP.

2. Save the file as recipe.html and
upload it to your web server. When
loaded into a browser, it looks like A.

3. Add a function to jquery.custom.js to
clone the last recipe ingredient span:

$('a[href="newIngredient"]')

.click(function(e){

e.preventDefault();

var clonedInput =
➝ $('.inputSpan').filter(':last')

.clone(true, true);

Using a class on the span tags sur-
rounding it helps to keep your selec-
tor short. Be sure to set the clone()
function’s properties to true, true so
event handlers are copied.

4. Get the current value of the last input.
You’ll use this value to make sure you
don’t lose any ingredients:

var lastInputData = $('input[name=
➝"recipeIngredient[]"]')

.filter(':last').val();

continues on next page

A The new recipe form is almost
ready to go.

74 Chapter 4

5. Set the last ingredient input’s HTML to
get rid of the link and to ensure that it
retains its current value:

$('.inputSpan').filter(':last')

.html('
➝ <input name="recipeIngredient[]"
➝ placeholder="Ingredient"
➝ value="' + lastInputData + '" />
➝
');

Resetting the HTML of the element pre-
vents it from creating the “add another
ingredient” link again and again B.

6. Append the cloned input to the ingredi-
ents div:

$('#ingredients')

.append(clonedInput);

7. Clean up the new input by setting its
value to be blank and then placing the
focus on the new input:

$('input[name=
➝"recipeIngredient[]"]')

.filter(':last').val('');

$('input[name=
➝"recipeIngredient[]"]')

.filter(':last').focus();

});

Setting the focus into the new input is a
convenience for users. It allows them to
just start typing when the new element
is added.

8. Save the jQuery file and upload it to
your server. Reload recipe.html and
click the “add another ingredient”
link C.

If you keep clicking the link, the click event
handler is triggered each time without you
having to resort to changing the event
handler D.

B Duplicating
the links not only
looks bad, but also
it’s confusing to
the user.

D The click
event is still
triggered each
time because you
set up clone()
to copy the event
handlers for the
form.

C A new ingredient field has
been added and now has the
focus.

Manipulating DOM Elements 75

Chaining jQuery Methods
In many of the exercises in this book, you’ve used several jQuery methods on a single selector.
Using more than one function on a selector is known as chaining.

Chaining is beneficial for two reasons. First, you don’t have to reselect elements to add another
function to them, thus saving time. Second, you can use chaining to make your code much more
readable. You’re allowed to place line breaks between each function:

$('input[name="recipeIngredient[]"]')

 .filter(':last')

 .val('')

 .focus();

});

The only caveat with chaining you need to be aware of is function order. Be sure to add functions
in the order you wish them to be executed or the results may not be what you expect.

Keep in mind that chaining jQuery functions is not suitable for every situation. There may be times
when you need to reselect elements because of the function’s length or the order in which you
need things to occur. In those cases, you may want to cache a selector by holding it in a variable:

var ingredients = $('input[name="recipeIngredient[]"]');

The selector $(ingredients) is now reusable:

$(ingredients)

 .filter(':last')

 .val('')

 .focus();

Caching the selector also prevents jQuery from having to reselect the elements each time it’s
used, providing enhanced performance—especially when there is a large group of elements
defined by one selector.

76 Chapter 4

Changing an
Input Element
Let’s make one other change to the form.
Assume the user wants to designate
that an ingredient is really a spice. To
accomplish the change, you’ll use the
replaceWith() manipulator to change
the input.

To use replaceWith() to
change an element:
1. Modify the first two ingredient inputs of

recipe.html to create a link that will
trigger the change to a spice, as seen in
the following highlighted markup (Script
4.5.html):

<input name="recipeIngredient[]"
➝ placeholder="Ingredient" />
➝ <a href="makeSpice"
➝ class="ingredientType">change
➝ to spice

2. Save recipe.html and upload it to your
web server A.

A The new links have been added
to the input boxes.

Manipulating DOM Elements 77

3. Open jquery.custom.js and modify
the function you created in the previous
exercise to account for the additional
link. The section you need to add is
highlighted:

$('.inputSpan')

.filter(':last')

.html('
➝ <input name="recipeIngredient[]"
➝ placeholder="Ingredient" value=
➝"' + lastInputData + '" />
➝ <a href="makeSpice"
➝ class="ingredientType">change
➝ to spice
');

By making this modification, you ensure
that the link to change the input ele-
ment is available.

4. Create a new function in jquery.
custom.js. The function will determine
what kind of input is available and make
the needed change:

$('#ingredients').on('click',
➝'.ingredientType', function(e) {

e.preventDefault();

var ingredientType =
➝ $(this).attr('href');

if('makeSpice' == ingredientType)

{

5. Get the existing value of the input:

var oldElement =
➝ $(this).closest('span');

var oldElementValue =
➝ $(this).closest('span')

.find('input').val();

6. Create the new input element and
assign it to a variable to be used later in
the function:

var newElement =
➝'
➝ <input name="recipeSpice[]"
➝ placeholder="Spice" value="' +
➝ oldElementValue + '" />

 <a href="makeIngredient"
➝ class="ingredientType">
➝ change to ingredient
➝
';

7. Replace the old input with the new
input:

$(oldElement)

.replaceWith(newElement);

8. Set the new input’s value based on
what was already entered in the form:

$(newElement).find('input')

.val(oldElementValue);

continues on next page

78 Chapter 4

9. Add the remainder of the function to
change the input back to an ingredient
input if requested:

else {

var oldElement =
➝ $(this).closest('span');

var oldElementValue =
➝ $(this).closest('span')

.find('input').val();

var newElement =

'
➝ <input name="recipeIngredient[]"
➝ placeholder="Ingredient"
➝ value="' + oldElementValue
➝ + '" />
➝ <a href="makeSpice"
➝ class="ingredientType">change
➝ to spice

';

$(oldElement)

.replaceWith(newElement);

$(newElement).find('input')

.val(oldElementValue);

}

});

The functionality of the else condition
is exactly the same as the if condition,
except that it changes the input type
back to ingredient.

10. Save jquery.custom.js and upload it to
your web server. Reload recipe.html
in your browser and click one of the
“change to spice” links B.

 When you add an ingredient, the cre-
ation of another input element occurs and
has the “change to spice” link added C.

B The input has been changed to
reflect its status as a spice.

C New inputs have been added,
ready to take their place in the
recipe as an ingredient or a spice.

Manipulating DOM Elements 79

Take a look at your DOM inspection tool,
and you’ll see the changes you put into
place D.

There should be no doubt that jQuery
makes it very easy to manipulate DOM ele-
ments. The library excels at adding, remov-
ing, measuring, and changing elements on
every web page you create. The library’s
ability to modify markup is a valuable set of
tools that lets you worry less about existing
markup—giving you the power to make
sensible changes that will allow your func-
tions to operate effectively.

You also learned how to chain jQuery
methods to create complex functions.
Chaining makes your code compact, easy
to read, and efficient.

Next you’re going to ramp up your under-
standing and use of selectors. Selector
boot camp ahead!

D The replaced input elements are evident when inspecting the DOM.

80 Chapter 4

Rewind and Review
Take a few moments to reflect on what
you’ve learned in this chapter:

n	 How many of jQuery’s DOM manipula-
tors have counterpart functions that
perform the same action?

n	 Are there advantages to using func-
tions that perform the same action but
have a different syntax? What are the
advantages?

n	 Why is it a good idea to preload
images?

n	 What is the benefit of using a DOM
inspection tool like Firebug?

n	 What is preventDefault() used for?

n	 What is the difference between
 postion() and offset()?

n	 How do you preserve event handlers
on cloned elements?

n	 How does the term deep copy apply to
cloned elements?

n	 When should you cache a selector?

n	 How many jQuery functions can you
chain together?

n	 Are line breaks allowed when chaining
jQuery methods?

Index 193

Symbols

{ } (curly brackets), using with attributes, 49

" (quotes), using with attribute selectors, 82

A

accordion widget, 169–171

:active CSS pseudo-class selectors, 7

add() DOM tree traversal method, 103

addClass() function, 36, 50–51

usage, 36

using, 50–51

:after CSS pseudo-class selectors, 7

after() DOM insertion manipulator, 56

AJAX (Asynchronous JavaScript and XML). See
also JSON (JavaScript Object Notation)

attaching on() method, 117–119

event bubbling, 117–118

execution of requests, 110

get() shorthand method, 110

getJSON() shorthand method, 110, 123–125

getScript() shorthand method, 110

load() shorthand method, 110–116

managing loaded content, 117–118

AJAX (continued)

PHP and MySQL, 120

post() shorthand method, 110, 119–121

shorthand methods, 110

testing server-side scripts, 121

Ajax requests, troubleshooting, 181–182

Ajax scripts, testing, 182

all selector, 2, 4

alt attribute, using, 47

andSelf() DOM tree traversal method, 103

animate() custom animation method, 133,
135–139

animations, easing, 130. See also custom
animation methods

append() DOM insertion manipulator, 56,
58–60

appendTo() DOM insertion manipulator, 56,
60–61

applications, planning, xix

arguments

explained, xii–xiv

passing to functions, xiv

transformation of, xiv

as windows, 142

Index

194 Index

attribute selectors (continued)

quotes (") used with, 82

using, 12–13

attributes

changing, 49

data elements, 37

using curly brackets ({}) with, 49

B

balloon example, 105

basic_filter.html file, saving, 8

basic.html file, saving, 4

:before CSS pseudo-class selectors, 7

before() DOM insertion manipulator, 56,
67–68

blur() event handler, using, 30–32

browser features, determining presence of, 142

C

CDNs (Content Delivery Networks), xv, xvii

change() event handler, using, 30, 32–33

:checked CSS pseudo-class selectors, 7

children() DOM tree traversal method, 96

class selector, 2

[[Class]] of object, determining, 142

classes, assigning to elements, 2

clearQueue() custom animation method, 133

click event handler

animation triggered by, 21

generating, 22

using, 20–22

clone() function, 56, 72–74

closest() DOM tree traversal method, 96,
100–101

code

documenting, 22

downloading for chapters, 191

minifying, xviii–xix

array elements, finding, 142

array-like objects, converting to JavaScript
arrays, 142. See also objects

arrays

identifying arguments in, 142

iterating over, 142

merging contents of, 142

searching for values in, 142

translating items in, 142

article.html file, saving, 67

articles

with bylines and post times, 84

displaying with tags, 88

highlighting, 85

placing focus on information in, 90

selecting titles in, 93

attr() function

adding attributes, 48–49

setting attributes, 48–49

usage, 36

using, 46–47

attribute methods

addClass() function, 36, 50–51

attr() function, 36, 46–47

hasClass() function, 36, 52

prop() function, 36

removeAttr() function, 36

removeClass() function, 36, 51–52

removeProp() function, 36

toggleClass() function, 36, 53

val() function, 36, 43–44

attribute selectors. See also selectors

combining for OR condition, 91–93

finding substrings, 83–85

[name*], 82

[name*="value"], 83–85

[name~=value], 85–88

[name!=value], 89–90

Index 195

D

data. See also stored data values

getting, 146–149

removing, 142

setting, 146–149

storing, 142

data elements, explained, 37

date picker widget, using, 171–173

dbconnect.php file, 192

delay() custom animation method, 133

dequeue() custom animation method, 133

detach() DOM insertion manipulator, 56

Developer Tools, described, xx

dialog widget, adding, 174–177

:disabled CSS pseudo-class selectors, 7

document events, calling, 17

documenting code, 22

Dojo versus jQuery, 187

DOM (Document Object Model)

explained, 35–36

modifying markup in, 48

DOM CSS manipulators

css() method, 57

getting measurements, 69–71

height() method, 57, 62–65

innerHeight() method, 57

innerWidth() method, 57

offset() method, 57, 69–71

outerHeight() method, 57

outerWidth() method, 57

position() method, 57

remove() method, 57, 66

removeAttr() method, 57

replaceAll() method, 57

replaceWith() method, 57, 76–79

scrollLeft() method, 57

scrollTop() method, 57, 69–71

conditional statements

for, xiii

while, xiii

console.log, including, 180

content filters, using, 9

contents() DOM tree traversal method, 103

css() method, 57

CSS pseudo-class selectors. See also selectors

:active, 7

:after, 7

:before, 7

:checked, 7

:disabled, 7

:empty, 7

:enabled, 7

:first-child, 7

:first-letter, 7

:first-line, 7

:focus, 7

:hover, 7

:last-child, 7

:link, 7

:not(selector), 7

:nth-child(n), 7, 12

:nth-last-child(n), 7

:only-child, 7

:root, 7

:visited, 7

curly brackets ({ }), using with attributes, 49

custom animation methods. See also
animations

animate(), 133, 135–139

clearQueue(), 133

delay(), 133

dequeue(), 133

outerHTML() helper function, 134

queue(), 133

stop(), 133

196 Index

DOM tree traversal filters

eq(), 102–106

filter(), 102

first(), 102

has(), 102

is(), 102

last(), 102

map(), 102–103

slice(), 102, 106–107

DOM tree traversal methods

add(), 103

andSelf(), 103

children(), 96

closest(), 96, 100–101

contents(), 103

end(), 103

find(), 96, 99–100

next(), 96–98

nextAll(), 96

nextUntil(), 96

not(), 103

offsetparent(), 96

parent(), 96, 98

parents(), 96

parentsUntil(), 96

prev(), 96–97

prevAll(), 96

prevUntil(), 96

siblings(), 96

E

easing animations, 130

Eclipse IDE, described, xx, 3

element selector, 2

elements, looping through, 143–145

:empty CSS pseudo-class selectors, 7

DOM CSS manipulators (continued)

setting measurements, 69–71

unwrap() method, 57

width() method, 57, 62–65

wrap() method, 57

wrapAll() method, 57

wrapInner() method, 57

DOM elements

checking, 142

sorting array of, 142

storing data on, 146–149

DOM insertion manipulators

after(), 56

append() method, 56, 58–60

appendTo() method, 56, 60–61

before(), 56, 67–68

clone(), 56

detach(), 56

empty(), 56

insertAfter(), 56

insertBefore(), 56

prepend(), 56

prependTo(), 56

rearranging order, 67–68

remove(), 56

removeAfter(), 56

replaceAll(), 56

replaceWith(), 56

unwrap(), 56

wrap(), 56

wrapAll(), 56

wrapInner(), 56

DOM nodes

as XML documents, 142

in XML documents, 142

DOM tree event bubbling, 117–118

Index 197

filters (continued)

:parent, 6

:selected, 6

using, 8

:visible, 6

find() DOM tree traversal method, 96,
99–100

Firebug, described, xx

first() DOM tree traversal filter, 102

:first-child CSS pseudo-class selectors, 7

:first-letter CSS pseudo-class selectors, 7

:first-line CSS pseudo-class selectors, 7

floating menu, creating, 69–71

:focus CSS pseudo-class selectors, 7

focus() form event handler, 30

focusout() method, using, 28–29

for condition, using, xiii

form elements

disabling with prop() function, 40–41

enabling with prop() function, 40–41

form event handlers. See also event handlers

blur(), 30–32

change(), 30, 32–33

focus(), 30

select(), 30

submit(), 30

test() method, 32

forms, changing input elements, 76–79

functions. See also methods

empty, 142

executing on queues, 142

explained, xiii

versus methods, xiv

naming, xiii

showing queue for execution, 142

using, xiv

empty() DOM insertion manipulator, 56

empty function, indicating, 142

:enabled CSS pseudo-class selectors, 7

end() DOM tree traversal method, 103

eq() DOM tree traversal filter, 102–106

event bubbling. See also troubleshooting

explained, 117–118

using with Ajax-loaded content, 183

event handlers. See also form event handlers;
keyboard events; mouse events

attaching, 16

ready(), 16

ExtJS versus jQuery, 188

F

fadeIn() visibility method, 128

fadeOut() visibility method, 128

fadeTo() visibility method, 128

FadeToggle() visibility method, 128

filter() DOM tree traversal filter, 102

filter() method, using, 8

filters

:animated, 6

applying to selectors, 6–7

content type, 9

:eq(), 6

:even, 6, 11–12

extensions, 6, 10

:first, 6

:gt(), 6

:has(), 6

:header, 6

:hidden, 6

:lt(), 6

:[name!="value"], 6

:odd, 6, 11–12

198 Index

J

JavaScript code, executing globally, 142

JavaScript Object Literals, 49

jCarousel Lite. See also plugins

installing, 152–153

using, 154–156

jQuery

arguments, xii–xiv

described, xii

versus Dojo library, 187

downloading, xvi–xvii, 191

versus ExtJS library, 188

functions, xiii

learning, xii

versus MooTools library, 188

versus Prototype library, 188

using in projects, xvii

variables, xii–xiv

versus YUI library, 187

jQuery library, installing version of, 174–175

jQuery methods

caching selectors, 75

chaining, 75

jQuery UI

configuring, 162–163

ThemeRoller, 162

website, 162

jQuery UI files, including in HTML, 165

jQuery UI library, installing, 164

jQuery UI widgets

accordion, 169–171

date picker, 171–173

dialog, 174–177

implementing tabs, 166–168

order of, 171

jQuery.*() utility methods, 142

jquery.custom.js file, saving, 21

G

GitHub site, accessing for Tooltipsy, 156

Google Closure Compiler, minifying code with,
xviii–xix

H

has() DOM tree traversal filter, 102

hasClass() function, 36, 52

height() method, 57, 62–65

hide() visibility method, 128–129

:hover CSS pseudo-class selectors, 7

hover() method

functions, 23

hover(), 22

navigation elements, 23

usage, 19

using, 22

HTML5 boilerplate, 189–190

I

ID attribute, explained, 2

id selector, 2

innerHeight() method, 57

innerWidth() method, 57

input

getting value with val(), 43–44

setting value with val(), 43

input elements, changing, 76–79

input type, changing via prop(), 38–39

insertAfter() DOM insertion manipulator, 56

insertBefore() DOM insertion manipulator, 56

installing

jCarousel Lite, 152–153

jQuery UI library, 164

Tooltipsy, 156

is() DOM tree traversal filter, 102

iterating over objects and arrays, 142

Index 199

M

MAMP, described, xx

map() DOM tree traversal filter,
102–103

menu, floating, 69–71

methods. See also functions

chaining, 75

versus functions, xiv

minifying code, xviii–xix

MooTools versus jQuery, 188

motion methods

slideDown(), 131

slideToggle(), 131–132

slideUp(), 131

mouse events. See also event handlers

click(), 19–22

dblclick(), 19

differences in, 24

focusin(), 19

focusout(), 19

hover(), 19

mousedown(), 19

mouseenter(), 19

mouseleave(), 19

mousemove(), 19

mouseout(), 19

mouseover(), 19

mouseup(), 19

trapping, 19–24

MySQL and PHP

dbconnect.php file, 192

registration.php file, 192

using, 120

jQuery.data() method, using, 146–149

jQuery.each() utility

versus $(element).each(), 145, 147

using, 143–145

JSON (JavaScript Object Notation), 122.
See also AJAX (Asynchronous JavaScript
and XML)

K

keyboard events. See also event handlers

capturing, 25–29

focusin(), 25

focusout(), 25, 28–29

keydown(), 25

keypress(), 25

keyup(), 25

keydown() event handler, problem with, 27

keyup() event handler, using, 25–27

L

last() DOM tree traversal filter, 102

:last-child CSS pseudo-class selectors, 7

libraries, loading, 185–186

lightbox effect

closing picture with remove(), 66

creating, 57

displaying translucent shade, 58–60

element size and position, 62–65

image preloader, 60–61

on() method, 66

:link CSS pseudo-class selectors, 7

list, rearranging, 68

loading errors

fixing, 180

tracking down, 180

looping through elements, 143–145

200 Index

outerHTML() helper function custom animation
method, 134

outerWidth() method, 57

P

parent() DOM tree traversal method, 96, 98

parents() DOM tree traversal method, 96

parentsUntil() DOM tree traversal
method, 96

password

error message, 44

form field for, 38

visibility, 39

password field, enabling, 41

photo gallery

setting titles for pictures, 47

starting point for, 46

PHP and MySQL

dbconnect.php file, 192

registration.php file, 192

using, 120

plugin code, concatenating, 158

plugins. See also jCarousel Lite

creating, 155

download options, 152

looking for, 152

Tooltipsy, 156

position() method, 57

prepend() DOM insertion manipulator, 56

prependTo() DOM insertion manipulator, 56

prev() DOM tree traversal method, 96–97

prevAll() DOM tree traversal method, 96

prevUntil() DOM tree traversal method, 96

problems. See troubleshooting

Products tables, 144–145

progressive enhancement, performing, xix

N

[name*="value"] selector, finding substrings
with, 83–85

[name~=value] selector, using, 85–88

[name!=value] selector, using, 89–90

next() DOM tree traversal method, 96–98

nextAll() DOM tree traversal method, 96

nextUntil() DOM tree traversal method, 96

noConflict() method, using with libraries,
185–186

not() DOM tree traversal method, 103

not equal selector

described, 82

using, 88–90

:not(selector) CSS pseudo-class selectors, 7

:nth-child(n) CSS pseudo-class selectors,
7, 12

:nth-last-child(n) CSS pseudo-class
selectors, 7

O

objects. See also array-like objects

determining empty status of, 142

iterating over, 142

merging contents of, 142

plain type, 142

returning from JSON string, 142

offset() method, 57, 69–71

DOM CSS manipulators, 69–71

usage, 57

offsetparent() DOM tree traversal
method, 96

on() method

using with delegation, 183–184

using with lightbox effect, 66

:only-child CSS pseudo-class selectors, 7

outerHeight() method, 57

Index 201

removeProp() function, 36, 41–42

replaceAll()

DOM insertion manipulator, 56

method, 57

replaceWith()

DOM insertion manipulator, 56

method, 57, 76–79

:root CSS pseudo-class selectors, 7

S

scrollLeft() method, 57

scrollTop() method, 57, 69–71

select() form event handler, 30

selectors. See also attribute selectors;
CSS pseudo-class selectors

all, 2, 4

applying filters to, 6–7

attribute type, 12–13

caching, 4, 75

class, 2

combining, 5, 91–93

element, 2

id, 2

improving performance, 4

not equal, 82, 88–90

using, 3–4

server-side scripts, testing, 121

show() visibility method, 128–129

siblings() DOM tree traversal method, 96

slice()

DOM tree traversal filter, 102, 106–107

traversal method, 10

stop()method, 23, 133

stored data values, getting, 148–149.
See also data

storing data, 142

strings, parsing into XML documents, 142

prop() function, 36

versus attr() method, 39

disabling form elements, 40–41

enabling form elements, 40–41

using to change input type, 38–39

properties

changing, 37–42

removeProp() function, 41–42

Prototype versus jQuery, 188

Q

queue, removing items from, 142

queue() custom animation method, 133

quotes ("), using with attribute selectors, 82

R

ready() handler

execution of, 16

relationship to DOM elements, 18

using in separate files, 17

using in web pages, 18

rearranging order DOM insertion manipulator,
67–68

recipe form

changing ingredients, 100

creating, 73

registration.php file, 192

regular expressions, 32

remove()

DOM insertion manipulator, 56

method, 57, 66

removeAfter() DOM insertion manipulator, 56

removeAttr() function, 36, 57

removeClass() function, 36, 51–52

usage, 36

using, 51–52

202 Index

U

UI (User Interface). See jQuery UI

unwrap()method,56–57

utilities website, 141

utility methods

getting data, 146–149

jQuery.data(), 146–149

jQuery.each(), 143–145, 147

letter case, 145

setting data, 146–149

table of, 142

V

val() function

usage, 36

using, 43–44

values, managing, 43–44

variables

explained, xii–xiv

naming, xiii

visibility methods

easing plugin, 130

fadeIn(), 128

fadeOut(), 128

fadeTo(), 128

FadeToggle(), 128

hide(), 128–129

show(), 128–129

toggle(), 128–130

:visited CSS pseudo-class selectors, 7

W

websites

building, 16

code for chapters, xii, 191

Sublime Text 2, described, xx

submit() form event handler, 30

substrings, finding, 83–85

T

tabs, implementing with jQuery UI,
166–168

test() method form event handler, 32

ThemeRoller

described, 162

learning, 163

use of styles, 163

this versus $(this), 14

time, returning number for, 142

toggle() method, 23, 128–130

toggleClass() function, 36, 53

usage, 36

using, 53

tools

Developer Tools, xx

Eclipse IDE, xx

Firebug, xx

MAMP, xx

Sublime Text 2, xx

XAMPP, xx

Tooltipsy

installing, 156

using in web pages, 157–159

troubleshooting. See also event bubbling

Ajax requests, 181–182

Ajax-loaded content, 183–184

loading errors, 180

loading libraries, 185–186

using noConflict() method, 185–186

using on() method with delegation, 183–184

tweets, hiding and showing, 129

Index 203

whitespace, removing around strings, 142

widgets. See jQuery UI widgets

width() method, 57, 62–65

wrap() method, 56–57

wrapAll()method, 56–57

wrapInner() method,56–57

X

XAMPP, described, xx

XML documents

DOM nodes as, 142

DOM nodes in, 142

parsing strings into, 142

Y

YUI versus jQuery, 187

websites (continued)

directory structure, 20

Dojo JavaScript library, 187

ExtJS library, 188

Google Closure Compiler, xviii

HTML5 boilerplate, 189–190

jCarousel Lite, 152

jQuery, xvi–xvii , 191

jQuery UI, 162

link element in form, 20

MooTools library, 188

planning, xix

Prototype class-drive JavaScript library, 188

regular expressions, 32

utilities, 141

YUI JavaScript and CSS library, 187

while condition, using, xiii

Unlimited online access to all Peachpit, Adobe
Press, Apple Training and New Riders videos
and books, as well as content from other
leading publishers including: O’Reilly Media,
Focal Press, Sams, Que, Total Training, John
Wiley & Sons, Course Technology PTR, Class
on Demand, VTC and more.

no time commitment or contract required!
Sign up for one month or a year.
all for $19.99 a month

Sign up today
peachpit.com/creativeedge

	Cover
	Table of Contents
	Introduction
	Chapter 4 Manipulating DOM Elements
	Inserting Elements
	Creating a Lightbox Effect
	More Fun with DOM Manipulators
	Getting and Setting Measurements
	Cloning
	Changing an Input Element
	Rewind and Review

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

