
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321884992
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321884992
https://plusone.google.com/share?url=http://www.informit.com/title/9780321884992
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321884992
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321884992/Free-Sample-Chapter

“Shaw_FM” — 2014/11/8 — 17:24 — page 1 — #1

LEARN RUBY
THE HARD WAY

Third Edition

“Shaw_FM” — 2014/11/8 — 17:24 — page 2 — #2

“Shaw_FM” — 2014/11/8 — 17:24 — page 3 — #3

LEARN RUBY
THE HARD WAY
A Simple and Idiomatic Introduction

to the Imaginative World of
Computational Thinking with Code

Third Edition

Zed A. Shaw

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

“Shaw_FM” — 2014/11/8 — 17:24 — page 4 — #4

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or
(800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com/hardway

Library of Congress Cataloging-in-Publication Data
Shaw, Zed, author.
Learn Ruby the hard way : a simple and idiomatic introduction to the imaginative world of computational

thinking with code / Zed A. Shaw.—Third edition.
pages cm

Includes index.
ISBN 978-0-321-88499-2 (pbk. : alk. paper)
1. Ruby (Computer program language) I. Title.
QA76.73.R83S536 2014
005.1’17—dc23

2014033534

Copyright © 2015 Zed A. Shaw

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may
fax your request to (201) 236-3290.

ISBN-13: 978-0-321-88499-2
ISBN-10: 0-321-88499-X

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, December 2014

“Shaw_FM” — 2014/11/8 — 17:24 — page v — #5

v

Contents

Preface . 1

Acknowledgments . 1

The Hard Way Is Easier . 2

Reading and Writing . 2

Attention to Detail . 2

Spotting Differences . 3

Do Not Copy-Paste . 3

Using the Included Videos . 3

A Note on Practice and Persistence 3

A Warning for the Smarties . 4

Exercise 0 The Setup . 6

Mac OS X . 6

OS X: What You Should See . 7

Windows . 7

Windows: What You Should See 8

Linux . 8

Linux: What You Should See . 9

Finding Things on the Internet . 10

Warnings for Beginners . 10

Exercise 1 A Good First Program . 12

What You Should See . 14

Study Drills . 16

Common Student Questions . 17

Exercise 2 Comments and Pound Characters 18

What You Should See . 18

Study Drills . 18

Common Student Questions . 19

Exercise 3 Numbers and Math . 20

What You Should See . 21

Study Drills . 21

Common Student Questions . 22

“Shaw_FM” — 2014/11/8 — 17:24 — page vi — #6

vi CONTENTS

Exercise 4 Variables and Names . 24

What You Should See . 25

Study Drills . 25

Common Student Questions . 25

Exercise 5 More Variables and Printing 28

What You Should See . 28

Study Drills . 29

Common Student Questions . 29

Exercise 6 Strings and Text . 30

What You Should See . 31

Study Drills . 31

Common Student Question . 31

Exercise 7 More Printing . 32

What You Should See . 32

Study Drills . 33

Common Student Questions . 33

Exercise 8 Printing, Printing . 34

What You Should See . 34

Study Drills . 35

Common Student Questions . 35

Exercise 9 Printing, Printing, Printing 36

What You Should See . 36

Study Drills . 37

Common Student Questions . 37

Exercise 10 What Was That? . 38

What You Should See . 39

Escape Sequences . 39

Study Drills . 40

Common Student Questions . 40

Exercise 11 Asking Questions . 42

What You Should See . 42

Study Drills . 43

Common Student Question . 43

Exercise 12 Prompting People for Numbers 44

What You Should See . 44

Study Drills . 44

“Shaw_FM” — 2014/11/8 — 17:24 — page vii — #7

CONTENTS vii

Exercise 13 Parameters, Unpacking, Variables 46

What You Should See . 46

Study Drills . 47

Common Student Questions . 47

Exercise 14 Prompting and Passing . 50

What You Should See . 50

Study Drills . 51

Common Student Questions . 51

Exercise 15 Reading Files . 52

What You Should See . 53

Study Drills . 53

Common Student Questions . 54

Exercise 16 Reading and Writing Files 56

What You Should See . 57

Study Drills . 57

Common Student Questions . 58

Exercise 17 More Files . 60

What You Should See . 60

Study Drills . 61

Common Student Questions . 61

Exercise 18 Names, Variables, Code, Functions 62

What You Should See . 63

Study Drills . 64

Common Student Questions . 65

Exercise 19 Functions and Variables . 66

What You Should See . 67

Study Drills . 67

Common Student Questions . 67

Exercise 20 Functions and Files . 70

What You Should See . 71

Study Drills . 71

Common Student Questions . 71

Exercise 21 Functions Can Return Something 74

What You Should See . 75

Study Drills . 75

Common Student Questions . 76

“Shaw_FM” — 2014/11/8 — 17:24 — page viii — #8

viii CONTENTS

Exercise 22 What Do You Know So Far? 78

What You Are Learning . 78

Exercise 23 Read Some Code . 80

Exercise 24 More Practice . 82

What You Should See . 83

Study Drills . 83

Common Student Questions . 83

Exercise 25 Even More Practice . 84

What You Should See . 85

Study Drills . 87

Common Student Questions . 87

Exercise 26 Congratulations, Take a Test! 88

Common Student Questions . 88

Exercise 27 Memorizing Logic . 90

The Truth Terms . 90

The Truth Tables . 91

Common Student Question . 92

Exercise 28 Boolean Practice . 94

What You Should See . 96

Study Drills . 96

Common Student Questions . 96

Exercise 29 What If . 98

What You Should See . 99

Study Drills . 99

Common Student Question . 99

Exercise 30 Else and If . 100

What You Should See . 101

Study Drills . 101

Common Student Question . 101

Exercise 31 Making Decisions . 102

What You Should See . 103

Study Drills . 103

Common Student Questions . 103

Exercise 32 Loops and Arrays . 106

What You Should See . 108

“Shaw_FM” — 2014/11/8 — 17:24 — page ix — #9

CONTENTS ix

Study Drills . 108

Common Student Questions . 108

Exercise 33 While Loops . 110

What You Should See . 111

Study Drills . 112

Common Student Questions . 112

Exercise 34 Accessing Elements of Arrays 114

Study Drills . 115

Exercise 35 Branches and Functions . 116

What You Should See . 118

Study Drills . 118

Common Student Questions . 118

Exercise 36 Designing and Debugging 120

Rules for If-Statements . 120

Rules for Loops . 120

Tips for Debugging . 121

Homework . 121

Exercise 37 Symbol Review . 122

Keywords . 122

Data Types . 124

String Escape Sequences . 124

Operators . 125

Reading Code . 126

Study Drills . 126

Common Student Question . 127

Exercise 38 Doing Things to Arrays . 128

What You Should See . 129

What Arrays Can Do . 129

When to Use Arrays . 130

Study Drills . 131

Common Student Questions . 131

Exercise 39 Hashes, Oh Lovely Hashes 132

A Hash Example . 133

What You Should See . 135

What Hashes Can Do . 136

“Shaw_FM” — 2014/11/8 — 17:24 — page x — #10

x CONTENTS

Making Your Own Hash Module . 136

The Code Description . 140

Three Levels of Arrays . 142

What You Should See (Again) . 142

When to Use Hashes or Arrays . 143

Study Drills . 143

Common Student Questions . 144

Exercise 40 Modules, Classes, and Objects 146

Modules Are Like Hashes . 146

Classes Are Like Modules . 148

Objects Are Like Require . 148

Getting Things from Things . 150

A First Class Example . 150

What You Should See . 151

Study Drills . 151

Common Student Question . 151

Exercise 41 Learning to Speak Object Oriented 152

Word Drills . 152

Phrase Drills . 152

Combined Drills . 153

A Reading Test . 153

Practice English to Code . 156

Reading More Code . 156

Common Student Questions . 156

Exercise 42 Is-A, Has-A, Objects, and Classes 158

How This Looks in Code . 159

Study Drills . 161

Common Student Questions . 161

Exercise 43 Basic Object-Oriented Analysis and Design 164

The Analysis of a Simple Game Engine 165

Write or Draw about the Problem 165

Extract Key Concepts and Research Them 166

Create a Class Hierarchy and Object Map for the Concepts . . . 167

Code the Classes and a Test to Run Them 168

“Shaw_FM” — 2014/11/8 — 17:24 — page xi — #11

CONTENTS xi

Repeat and Reåne . 169

Top Down Versus Bottom Up . 170

The Code for ”Gothons from Planet Percal #25” 170

What You Should See . 176

Study Drills . 177

Common Student Question . 177

Exercise 44 Inheritance Versus Composition 178

What Is Inheritance? . 178

Implicit Inheritance . 179

Override Explicitly . 180

Alter Before or After . 180

All Three Combined . 182

Using super() with initialize 183

Composition . 183

When to Use Inheritance or Composition 185

Study Drills . 186

Common Student Questions . 186

Exercise 45 You Make a Game . 188

Evaluating Your Game . 188

Function Style . 189

Class Style . 189

Code Style . 190

Good Comments . 190

Evaluate Your Game . 191

Exercise 46 A Project Skeleton . 192

Creating the Skeleton Project Directory 192

Final Directory Structure . 193

Testing Your Setup . 195

Using the Skeleton . 195

Required Quiz . 195

Common Student Questions . 196

Exercise 47 Automated Testing . 198

Writing a Test Case . 198

Testing Guidelines . 201

“Shaw_FM” — 2014/11/8 — 17:24 — page xii — #12

xii CONTENTS

What You Should See . 201

Study Drills . 202

Common Student Questions . 202

Exercise 48 Advanced User Input . 204

Our Game Lexicon . 204

Breaking Up a Sentence . 205

Lexicon Tuples . 205

Scanning Input . 205

Exceptions and Numbers . 206

A Test First Challenge . 206

What You Should Test . 207

Study Drills . 209

Common Student Questions . 210

Exercise 49 Making Sentences . 212

Match and Peek . 212

The Sentence Grammar . 213

A Word on Exceptions . 213

The Parser Code . 213

Playing with the Parser . 216

What You Should Test . 217

Study Drills . 217

Common Student Question . 217

Exercise 50 Your First Website . 218

Installing Sinatra . 218

Make a Simple ”Hello World” Project 219

What’s Happening Here? . 220

Stopping and Reloading Sinatra . 221

Fixing Errors . 221

Create Basic Templates . 222

Study Drills . 223

Common Student Questions . 223

Exercise 51 Getting Input from a Browser 224

How the Web Works . 224

How Forms Work . 226

“Shaw_FM” — 2014/11/8 — 17:24 — page xiii — #13

CONTENTS xiii

Creating HTML Forms . 227

Creating a Layout Template . 228

Writing Automated Tests for Forms 229

Study Drills . 230

Common Student Question . 231

Exercise 52 The Start of Your Web Game 232

Refactoring the Exercise 43 Game . 232

Sessions and Tracking Users . 237

Creating an Engine . 238

Your Final Exam . 240

Next Steps . 242

How to Learn Any Programming Language 243

Advice from an Old Programmer . 246

Appendix Command Line Crash Course 249

Introduction: Shut Up and Shell . 249

How to Use This Appendix . 249

You Will Be Memorizing Things 250

The Setup . 251

Do This . 251

You Learned This . 252

Do More . 252

Paths, Folders, and Directories (pwd) 254

Do This . 255

You Learned This . 256

Do More . 256

If You Get Lost . 256

Do This . 257

You Learned This . 257

Make a Directory (mkdir) . 257

Do This . 257

You Learned This . 259

Do More . 259

Change Directory (cd) . 260

Do This . 260

“Shaw_FM” — 2014/11/8 — 17:24 — page xiv — #14

xiv CONTENTS

You Learned This . 263

Do More . 264

List Directory (ls) . 264

Do This . 264

You Learned This . 269

Do More . 269

Remove Directory (rmdir) . 269

Do This . 270

You Learned This . 272

Do More . 272

Moving Around (pushd, popd) . 273

Do This . 273

You Learned This . 275

Do More . 275

Making Empty Files (Touch, New-Item) 276

Do This . 276

You Learned This . 277

Do More . 277

Copy a File (cp) . 277

Do This . 277

You Learned This . 280

Do More . 281

Moving a File (mv) . 281

Do This . 281

You Learned This . 283

Do More . 283

View a File (less, MORE) . 283

Do This . 284

You Learned This . 284

Do More . 284

Stream a File (cat) . 285

Do This . 285

You Learned This . 286

Do More . 286

“Shaw_FM” — 2014/11/8 — 17:24 — page xv — #15

CONTENTS xv

Removing a File (rm) . 286

Do This . 286

You Learned This . 288

Do More . 289

Exiting Your Terminal (exit) . 289

Do This . 289

You Learned This . 289

Do More . 289

Command Line Next Steps . 290

UNIX Bash References . 290

PowerShell References . 290

Index . 291

This page intentionally left blank

“Shaw_Preface” — 2014/11/8 — 17:27 — page 1 — #1

1

Preface

T his simple book is meant to get you started in programming. The title says it’s the hard way to
learn to write code, but it’s actually not. It’s only the ”hard” way because it uses a technique

called instruction. Instruction is where I tell you to do a sequence of controlled exercises designed
to build a skill through repetition. This technique works very well with beginners, who know noth-
ing and need to acquire basic skills before they can understand more complex topics. It’s used in
everything from martial arts to music, to even basic math and reading skills.

This book instructs you in Ruby by slowly building and establishing skills through techniques like
practice and memorization, then applying them to increasingly difåcult problems. By the end of
the book you will have the tools needed to begin learning more complex programming topics. I
like to tell people that my book gives you your ”programming black belt.” What this means is that
you know the basics well enough to now start learning programming.

If you work hard, take your time, and build these skills, you will learn to code.

Acknowledgments
I would like to thank Angela for helping me with the årst two versions of this book. Without her,
I probably wouldn’t have bothered to ånish it at all. She did the copyediting of the årst draft, and
supported me immensely while I wrote it.

I also want to thank Rob Sobers for suggesting I make a Ruby version of my Python book and doing
the initial work helping me convert it to use Ruby.

I’d also like to thankGregNewman for doing the original cover art, Brian Shumate for early website
designs, and all of the people who read this book and took the time to send me feedback and
corrections.

Thank you.

“Shaw_Ex00” — 2014/11/7 — 18:41 — page 2 — #1

2

The Hard Way Is Easier

W ith the help of this book, you will do the incredibly simple things that all programmers do
to learn a programming language:

1. Go through each exercise.

2. Type in each sample exactly.

3. Make it run.

That’s it. This will be very difåcult at årst, but stick with it. If you go through this book, and do each
exercise for one or two hours a night, you will have a good foundation for moving onto another
book about Ruby to continue your studies. This book won’t turn you into a programmer overnight,
but it will get you started on the path to learning how to code.

This book’s job is to teach you the three most essential skills that a beginning programmer needs
to know: reading and writing, attention to detail, and spotting differences.

Reading and Writing
If you have a problem typing, you will have a problem learning to code, and especially if you have
a problem typing the fairly odd characters in source code. Without this simple skill you will be
unable to learn even the most basic things about how software works.

Typing the code samples and getting them to run will help you learn the names of the symbols,
get familiar with typing them, and get you reading the language.

Attention to Detail
The one skill that separates bad programmers from good programmers is attention to detail. In
fact, it’s what separates the good from the bad in any profession. You must pay attention to the
tiniest details of your work or you will miss important elements of what you create. In program-
ming, this is how you end up with bugs and difåcult-to-use systems.

By going through this book, and copying each example exactly, you will be training your brain to
focus on the details of what you are doing, as you are doing it.

“Shaw_Ex00” — 2014/11/7 — 18:41 — page 3 — #2

THE HARD WAY IS EASIER 3

Spotting Differences
A very important skill (that most programmers develop over time) is the ability to visually notice
differences between things. An experienced programmer can take two pieces of code that are
slightly different and immediately start pointing out the differences. Programmers have invented
tools to make this even easier, but we won’t be using any of these. You årst have to train your
brain the hard way; then use the tools.

While you do these exercises, typing each one in, you will be making mistakes. It’s inevitable; even
seasoned programmers would make a few. Your job is to compare what you have written to what’s
required, and åx all the differences. By doing so, you will train yourself to notice mistakes, bugs,
and other problems.

Do Not Copy-Paste
You must type each of these exercises in, manually. If you copy and paste, you might as well not
even do them. The point of these exercises is to train your hands, your brain, and your mind in how
to read, write, and see code. If you copy-paste, you are cheating yourself out of the effectiveness
of the lessons.

Using the Included Videos
Learn Ruby the Hard Way has more than åve hours of instructional videos to help you with the
book. There is one video for each exercise where I either demonstrate the exercise, or give you tips
for completing the exercise. The best way to use the videos is if you are stuck when attempting
an exercise or for review after you have completed an exercise. This will slowly wean you off of
using videos to learn programming and build your skills at understanding code directly. Stick with
it, and slowly you won’t need the videos, or any videos, to learn programming. You’ll be able to
just read for the information you need.

A Note on Practice and Persistence
While you are studying programming, I’m studying how to play guitar. I practice it every day for at
least two hours. I play scales, chords, and arpeggios for an hour; and then I learn music theory, ear
training, songs, and anything else I can. Some days I study guitar and music for eight hours because
I feel like it and it’s fun. To me, repetitive practice is natural and just how to learn something. I
know that to get good at anything I have to practice every day, even if I suck that day (which is
often) or it’s difåcult. Keep trying and eventually it’ll be easier and fun.

“Shaw_Ex00” — 2014/11/7 — 18:41 — page 4 — #3

4 LEARN RUBY THE HARD WAY

Between the time that I wrote Learn Python the Hard Way and Learn Ruby the Hard Way, I dis-
covered drawing and painting. I fell in love with making visual art at the age of 39; and I have
been spending every day studying it in much the same way that I studied guitar, music, and pro-
gramming. I collected books of instructional material, did what the books said, painted every
day, and focused on enjoying the process of learning. I am by no means an ”artist,” or even
that good, but I can now say that I can draw and paint. The same method I’m teaching you in
this book applied to my adventures in art. If you break the problem down into small exercises
and lessons, and do them every day, you can learn to do almost anything. If you focus on slowly
improving and enjoying the learning process, then you will beneåt no matter how good you
are at it.

As you study this book, and continue with programming, remember that anything worth doing
is difåcult at årst. Maybe you are the kind of person who is afraid of failure, so you give up at
the årst sign of difåculty. Maybe you never learned self-discipline, so you can’t do anything that’s
”boring.” Maybe you were told that you are ”gifted,” so you never attempt anything that might
make you seem stupid or not a prodigy. Maybe you are competitive and unfairly compare yourself
to someone like me who’s been programming for more than 20 years.

Whatever your reason for wanting to quit, keep at it. Force yourself. If you run into a Study Drill
you can’t do, or a lesson you just do not understand, then skip it and come back to it later. Just keep
going, because with programming there’s this very odd thing that happens. At årst, you will not
understand anything. It’ll be weird, just like with learning any human language. You will struggle
with words, and not know what symbols are what, and it’ll all be very confusing. Then one day
BANG—your brain will snap and you will suddenly ”get it.” If you keep doing the exercises and
keep trying to understand them, you will get it. You might not be a master coder, but you will at
least understand how programming works.

If you give up, you won’t ever reach this point. You will hit the årst confusing thing (which is
everything at årst) and then stop. If you keep trying—keep typing it in, trying to understand it
and reading about it—you will eventually get it. If you go through this whole book, and you still
do not understand how to code, at least you gave it a shot. You can say you tried your best and a
little more and it didn’t work out, but at least you tried. You can be proud of that.

AWarning for the Smarties
Sometimes people who already know a programming language will read this book and feel I’m
insulting them. There is nothing in this book that is intended to be interpreted as condescending,
insulting, or belittling. I simply know more about programming than my intended readers. If you
think you are smarter than me, then you will feel talked down to and there’s nothing I can do
about that because you are not my intended reader.

“Shaw_Ex00” — 2014/11/7 — 18:41 — page 5 — #4

THE HARD WAY IS EASIER 5

If you are reading this book and ýipping out at every third sentence because you feel I’m insulting
your intelligence, then I have three points of advice for you:

1. Stop reading my book. I didn’t write it for you. I wrote it for people who don’t already

know everything.

2. Empty before you åll. Youwill have a hard time learning from someonewithmore knowl-

edge if you already know everything.

3. Go learn Lisp. I hear people who know everything really like Lisp.

For everyone else who’s here to learn, just read everything as if I’m smiling and I have a mis-
chievous little twinkle in my eye.

“Shaw_Ex01” — 2014/11/7 — 14:08 — page 12 — #1

12

EXERCISE 1

A Good First Program

Y ou should have spent a good amount of time in Exercise 0 learning how to install a text editor,
run the text editor, run Terminal, and work with both of them. If you haven’t done that, then

do not go on. You will not have a good time. This is the only time I’ll start an exercise with a
warning that you should not skip or get ahead of yourself.

Type the following text into a single åle named ex1.rb. Ruby works best with åles ending in .rb.
ex1.rb

1 puts "Hello World!"
2 puts "Hello Again"
3 puts "I like typing this."
4 puts "This is fun."
5 puts "Yay! Printing."
6 puts "I'd much rather you 'not'."
7 puts 'I "said" do not touch this.'

If you are onMac OS X, then this is what your text editor might look like if you use TextWrangler:

“Shaw_Ex01” — 2014/11/7 — 14:08 — page 13 — #2

A GOOD FIRST PROGRAM 13

If you are on Windows using Notepad++, then this is what it would look like:

Don’t worry if your editor doesn’t look exactly the same, it should be close though. When you
create this åle, keep in mind these points:

1. I did not type the line numbers on the left. Those are printed in the book so I can talk

about speciåc lines by saying, ”See line 5.” You do not type line numbers into Ruby

scripts.

2. I have the puts at the beginning of the line and it looks exactly the same as what I have

in ex1.rb. Exactly means exactly, not kind of sort of the same. Every single character has

to match for it to work. Color doesn’t matter, only the characters you type.

In Terminal run the åle by typing:

ruby ex1.rb

If you did it right, then you should see the same output as in the What You Should See section of
this exercise. If not, you have done something wrong. No, the computer is not wrong.

“Shaw_Ex01” — 2014/11/7 — 14:08 — page 14 — #3

14 LEARN RUBY THE HARD WAY

What You Should See
On Mac OS X in Terminal you should see this:

“Shaw_Ex01” — 2014/11/7 — 14:08 — page 15 — #4

A GOOD FIRST PROGRAM 15

On Windows in PowerShell you should see this:

You may see different names before the ruby ex1.rb command, but the important part is that
you type the command and see the output is the same as mine.

“Shaw_Ex01” — 2014/11/7 — 14:08 — page 16 — #5

16 LEARN RUBY THE HARD WAY

If you have an error, it will look like this:

> ruby ex1.rb
ex1.rb:3: syntax error, unexpected tCONSTANT, expecting $end
puts "I like typing this."

It’s important that you can read these error messages, because you will be making many of these
mistakes. Even I make many of these mistakes. Let’s look at this line by line.

1. We ran our command in Terminal to run the ex1.rb script.

2. Ruby tells us that the åle ex1.rb has an error on line 3. The type of error is ”syntax error,”

and then some programmer jargon you can usually ignore.

3. It prints the offending line of code for us to see.

WARNING! If you are from another country, and you get errors about ASCII encodings,
then put this at the top of your Ruby scripts:

−*− coding: utf−8 −*−

It will åx them so that you can use Unicode UTF-8 in your scripts without a problem.

Study Drills
The Study Drills contain things you should try to do. If you can’t, skip it and come back later.

For this exercise, try these things:

1. Make your script print another line.

2. Make your script print only one of the lines.

3. Put a # (octothorpe) character at the beginning of a line. What did it do? Try to ånd out

what this character does.

From now on, I won’t explain how each exercise works unless an exercise is different.

NOTE: An ”octothorpe” is also called a ”pound,” ”hash,” ”mesh,” or any number of
names. Pick the one that makes you chill out.

“Shaw_Ex01” — 2014/11/7 — 14:08 — page 17 — #6

A GOOD FIRST PROGRAM 17

Common Student Questions
These are actual questions that real students have asked when doing this exercise.

How do you get colors in your editor?

Save your åle årst as a .rb åle, such as ex1.rb. Then you’ll have color when you type.

I get ruby: No such file or directory – ex1.rb (LoadError).

You need to be in the same directory as the åle you created. Make sure you use the cd command

to go there årst. For example, if you saved your åle in lrthw/ex1.rb, then you would type cd

lrthw/ before trying to run ruby ex1.rb. If you don’t know what any of that means, then go

through Appendix A.

“Shaw_Ex02” — 2014/11/7 — 14:10 — page 18 — #1

18

EXERCISE 2

Comments and Pound Characters

C omments are very important in your programs. They are used to tell you what something does
in English, and they are used to disable parts of your program if you need to remove them

temporarily. Here’s how you use comments in Ruby:
ex2.rb

1 # A comment, this is so you can read your program later.
2 # Anything after the # is ignored by ruby.
3
4 puts "I could have code like this." # and the comment after is ignored
5
6 # You can also use a comment to "disable" or comment out a piece of code:
7 # puts "This won't run."
8
9 puts "This will run."

From now on, I’m going to write code like this. It is important for you to understand that every-
thing does not have to be literal. Your screen and program may visually look different, but what’s
important is the text you type into the åle you’re writing in your text editor. In fact, I could work
with any text editor and the results would be the same.

What You Should See
Exercise 2 Session

$ ruby ex2.rb
I could have code like this.
This will run.

Again, I’m not going to show you screenshots of all the Terminals possible. You should understand
that the above is not a literal translation of what your output should look like visually, but the text
between the årst $ ruby ... and last $ lines will be what you focus on.

Study Drills
1. Find out if you were right about what the # character does andmake sure you knowwhat

it’s called (octothorpe or pound character).

2. Take your ex2.rb åle and review each line going backward. Start at the last line, and

check each word in reverse against what you should have typed.

“Shaw_Ex02” — 2014/11/7 — 14:10 — page 19 — #2

COMMENTS AND POUND CHARACTERS 19

3. Did you ånd more mistakes? Fix them.

4. Read what you typed out loud, including saying each character by its name. Did you ånd

more mistakes? Fix them.

Common Student Questions
Are you sure # is called the pound character?

I call it the octothorpe because that is the only name that no country uses, and that works in every

country. Every country thinks its name for this one character is both the most important way to do

it and the only way it’s done. To me, this is simply arrogance and, really, y’all should just chill out

and focus on more important things like learning to code.

If # is for comments, then how come # -*- coding: utf-8 -*- works?

Ruby still ignores that as code, but it’s used as a kind of ”hack” or workaround for problems with

setting and detecting the format of a åle. You will also ånd a similar kind of comment for editor

settings.

Why does the # in puts "Hi # there." not get ignored?

The # in that code is inside a string, so it will be put into the string until the ending " character is

hit. These pound characters are just considered characters and aren’t considered comments.

How do I comment out multiple lines?

Put a # in front of each one.

I can’t ågure out how to type a # character on my country’s keyboard.

Some countries use the Alt key and combinations of other keys to print characters foreign to their

language. You’ll have to look online in a search engine to see how to type it.

Why do I have to read code backward?

It’s a trick to make your brain not attach meaning to each part of the code, and doing that makes

you process each piece exactly. This catches errors and is a handy error-checking technique.

This page intentionally left blank

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 249 — #1

249

APPENDIX

Command Line Crash Course

T his appendix is a quick, super-fast course in using the command line. It is intended to be done
rapidly in about a day or two, and is not meant to teach you advanced shell usage.

Introduction: Shut Up and Shell
This appendix is a crash course in using the command line to make your computer perform tasks.
As a crash course, it’s not as detailed or extensive as my other books. It is simply designed to get
you barely capable enough to start using your computer like a real programmer does. When you’re
done with this appendix, you will be able to give most of the basic commands that every shell user
touches every day. You’ll understand the basics of directories and a few other concepts.

The only piece of advice I am going to give you is this:

Shut up and type all of this in.

Sorry to be mean, but that’s what you have to do. If you have an irrational fear of the command
line, the only way to conquer an irrational fear is to just shut up and åght through it.

You are not going to destroy your computer. You are not going to be thrown into some jail at the
bottom of Microsoft’s Redmond campus. Your friends won’t laugh at you for being a nerd. Simply
ignore any stupid weird reasons you have for fearing the command line.

Why? Because if you want to learn to code, then you must learn this. Programming languages
are advanced ways to control your computer with language. The command line is the little baby
brother of programming languages. Learning the command line teaches you to control the com-
puter using language. Once you get past that, you can then move on to writing code and feeling
like you actually own the hunk of metal you just bought.

How to Use This Appendix

The best way to use this appendix is to do the following:

• Get yourself a small paper notebook and a pen.

• Start at the beginning of the appendix and do each exercise exactly as you’re told.

• When you read something that doesn’t make sense or that you don’t understand, write

it down in your notebook. Leave a little space so you can write an answer.

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 250 — #2

250 LEARN RUBY THE HARD WAY

• After you ånish an exercise, go back through your notebook and review the questions

you have. Try to answer them by searching online and asking friends who might know

the answer. Email me at help@learncodethehardway.org and I’ll help you, too.

Just keep going through this process of doing an exercise, writing down questions you have, then
going back through and answering the questions you can. By the time you’re done, you’ll actually
know a lot more than you think about using the command line.

You Will Be Memorizing Things

I’m warning you ahead of time that I’m going to make you memorize things right away. This is the
quickest way to get you capable at something, but for some people memorization is painful. Just
åght through it and do it anyway. Memorization is an important skill in learning things, so you
should get over your fear of it.

Here’s how you memorize things:

• Tell yourself you will do it. Don’t try to ånd tricks or easy ways out of it, just sit down and

do it.

• Write what you want to memorize on some index cards. Put one half of what you need

to learn on one side, then the other half on the other side.

• Every day for about 15–30 minutes, drill yourself on the index cards, trying to recall each

one. Put any cards you don’t get right into a different pile, just drill those cards until you

get bored, and then try the whole deck and see if you improve.

• Before you go to bed, drill just the cards you got wrong for about 5 minutes, then go to

sleep.

There are other techniques, like you canwrite what you need to learn on a sheet of paper, laminate
it, then stick it to the wall of your shower. While you’re bathing, drill the knowledge without
looking, and when you get stuck glance at it to refresh your memory.

If you do this every day, you should be able tomemorizemost of the things I tell you tomemorize in
about a week to a month. Once you do, nearly everything else becomes easier and intuitive, which
is the purpose of memorization. It’s not to teach you abstract concepts, but rather to ingrain the
basics so that they are intuitive and you don’t have to think about them. Once you’ve memorized
these basics, they stop being speed bumps preventing you from learning more advanced abstract
concepts.

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 251 — #3

COMMAND LINE CRASH COURSE 251

The Setup
In this appendix you will be instructed to do three things:

• Do some things in your shell (command line, Terminal, PowerShell).

• Learn about what you just did.

• Do more on your own.

For this årst exercise, you’ll be expected to get your Terminal open and working so that you can
do the rest of the appendix.

Do This

Get your Terminal, shell, or PowerShell working so you can access it quickly and know that it
works.

Mac OS X

For Mac OS X you’ll need to do this:

• Hold down the command key and hit the spacebar.

• In the top right corner, the blue ”search bar” will pop up.

• Type: terminal

• Click on the Terminal application that looks kind of like a black box.

• This will open Terminal.

• You can now go to your dock and CTRL-click to pull up the menu, then select

Options->Keep In dock.

Now you have your Terminal open and it’s in your dock so you can get to it.

Linux

I’m assuming that if you have Linux, then you already know how to get at your Terminal. Look
through the menu for your window manager for anything named ”Shell” or ”Terminal.”

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 252 — #4

252 LEARN RUBY THE HARD WAY

Windows

OnWindows, we’re going to use PowerShell. People used to work with a program called cmd.exe,

but it’s not nearly as usable as PowerShell. If you have Windows 7 or later, do this:

• Click Start.

• In ”Search programs and åles” type: powershell

• Hit Enter.

If you don’t have Windows 7, you should seriously consider upgrading. If you still insist on not
upgrading then you can try installing it from Microsoft’s download center. Search online to ånd
”powershell downloads” for your version of Windows. You are on your own, though, since I don’t
have Windows XP, but hopefully the PowerShell experience is the same.

You Learned This

You learned how to get your Terminal open, so you can do the rest of this appendix.

WARNING! If you have that really smart friend who already knows Linux, ignore him
when he tells you to use something other than bash. I’m teaching you bash. That’s it.
He will claim that zsh will give you 30 more IQ points and win you millions in the stock
market. Ignore him. Your goal is to get capable enough and at this level it doesn’t
matter which shell you use. The next warning is stay off IRC or other places where
”hackers” hang out. They think it’s funny to hand you commands that can destroy
your computer. The command rm -rf / is a classic that you must never type. Just
avoid them. If you need help, make sure you get it from someone you trust and not
from random idiots on the Internet.

Do More

This exercise has a large ”do more” part. The other exercises are not as involved as this one, but
I’m having you prime your brain for the rest of the appendix by doing some memorization. Just
trust me: this will make things silky smooth later on.

Linux/Mac OS X

Take this list of commands and create index cards with the names on the left on one side, and
the deånitions on the other side. Drill them every day while continuing with the lessons in this
appendix.

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 253 — #5

COMMAND LINE CRASH COURSE 253

pwd print working directory

hostname my computer’s network name

mkdir make directory

cd change directory

ls list directory

rmdir remove directory

pushd push directory

popd pop directory

cp copy a åle or directory

mv move a åle or directory

less page through a åle

cat print the whole åle

xargs execute arguments

ånd ånd åles

grep ånd things inside åles

man read a manual page

apropos ånd which man page is appropriate

env look at your environment

echo print some arguments

export export/set a new environment variable

exit exit the shell

sudo DANGER! become super user root DANGER!

Windows

If you’re using Windows, then here’s your list of commands:

pwd print working directory

hostname my computer’s network name

mkdir make directory

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 254 — #6

254 LEARN RUBY THE HARD WAY

cd change directory

ls list directory

rmdir remove directory

pushd push directory

popd pop directory

cp copy a åle or directory

robocopy robust copy

mv move a åle or directory

more page through a åle

type print the whole åle

foråles run a command on lots of åles

dir -r ånd åles

select-string ånd things inside åles

help read a manual page

helpctr ånd which manual page is appropriate

echo print some arguments

set export/set a new environment variable

exit exit the shell

runas DANGER! become super user root DANGER!

Drill, drill, drill! Drill until you can say these phrases right away when you see that word. Then drill
the inverse, so that you read the phrase and know which command will do that. You’re building
your vocabulary by doing this, but don’t spend so much time you go nuts and get bored.

Paths, Folders, and Directories (pwd)
In this exercise you learn how to print your working directory with the pwd command.

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 255 — #7

COMMAND LINE CRASH COURSE 255

Do This

I’m going to teach you how to read these ”sessions” that I show you. You don’t have to type

everything I list here, just some of the parts:

• You do not type in the $ (UNIX) or > (Windows). That’s just me showing you my session

so you can see what I got.

• You type in the stuff after $ or >, then hit Enter. So if I have $ pwd, you type just pwd

and hit Enter.

• You can then see what I have for output followed by another $ or > prompt. That content

is the output and you should see the same output.

Let’s do a simple årst command so you can get the hang of this:

Linux/OS X

Exercise 2 Session

$ pwd

/Users/zedshaw

$

Windows

Exercise 2 Windows Session

PS C:\Users\zed> pwd

Path

C:\Users\zed

PS C:\Users\zed>

WARNING! In this appendix I need to save space so that you can focus on the important
details of the commands. To do this, I’m going to strip out the årst part of the prompt
(the PS C:\Users\zed above) and leave just the little > part. This means your prompt
won’t look exactly the same, but don’t worry about that.

Remember that from now on I’ll include only the > to tell you that’s the prompt.
I’m doing the same thing for the UNIX prompts, but UNIX prompts are so varied that
most people get used to $ meaning ”just the prompt.”

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 256 — #8

256 LEARN RUBY THE HARD WAY

You Learned This

Your prompt will look different from mine. You may have your user name before the $ and the

name of your computer. On Windows it will probably look different, too. The key is that you see

this pattern:

• There’s a prompt.

• You type a command there. In this case, it’s pwd.

• It printed something.

• Repeat.

You just learned what pwd does, which means ”print working directory.” What’s a directory?
It’s a folder. Folder and directory are the same thing, and they’re used interchangeably. When
you open your åle browser on your computer to graphically ånd åles, you are walking through
folders. Those folders are the exact same things as these ”directories” we’re going to
work with.

Do More

• Type pwd 20 times and each time say ”print working directory.”

• Write down the path that this command gives you. Find it with your graphical åle browser

of choice.

• No, seriously, type it 20 times and say it out loud. Sssh. Just do it.

If You Get Lost
As you go through these instructions, you may get lost. You may not know where you are or
where a åle is and have no idea how to continue. To solve this problem, I am going to teach you
the commands to type to stop being lost.

Whenever you get lost, it is most likely because you were typing commands and have no idea
where you’ve ended up. What you should do is type pwd to print your current directory. This tells
you where you are.

The next thing you need is a way of getting back to where you are safe, your home. To do this,
type cd ~ and you are back in your home.

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 257 — #9

COMMAND LINE CRASH COURSE 257

This means if you get lost at any time, you should type:

pwd
cd ~

The årst command pwd tells you where you are. The second command cd ~ takes you home so
you can try again.

Do This

Right now ågure out where you are, and then go home using pwd and cd ~. This will ensure that
you are always in the right place.

You Learned This

How to get back to your home if you ever get lost.

Make a Directory (mkdir)
In this exercise you learn how to make a new directory (folder) using the mkdir command.

Do This

Remember! You need to go home årst! Do your pwd and then cd ~ before doing this exercise.
Before you do all exercises in this appendix, always go home årst!

Linux/OS X

Exercise 4 Session

$ pwd

$ cd ~

$ mkdir temp

$ mkdir temp/stuff

$ mkdir temp/stuff/things

$ mkdir -p temp/stuff/things/frank/joe/alex/john

$

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 258 — #10

258 LEARN RUBY THE HARD WAY

Windows

Exercise 4 Windows Session

> pwd

> cd ~

> mkdir temp

Directory: C:\Users\zed

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/17/2011 9:02 AM temp

> mkdir temp/stuff

Directory: C:\Users\zed\temp

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/17/2011 9:02 AM stuff

> mkdir temp/stuff/things

Directory: C:\Users\zed\temp\stuff

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/17/2011 9:03 AM things

> mkdir temp/stuff/things/frank/joe/alex/john

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 259 — #11

COMMAND LINE CRASH COURSE 259

Directory: C:\Users\zed\temp\stuff\things\frank\joe\alex

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/17/2011 9:03 AM john

>

This is the only time I’ll list the pwd and cd ~ commands. They are expected in the exercises every
time. Do them all the time.

You Learned This

Now we get into typing more than one command. These are all the different ways you can run
mkdir. What does mkdir do? It make directories. Why are you asking that? You should be doing
your index cards and getting your commands memorized. If you don’t know that ”mkdir makes
directories,” then keep working the index cards.

What does it mean to make a directory? You might call directories ”folders.” They’re the same
thing. All you did in this exercise is create directories inside directories inside of more directories.
This is called a ”path” and it’s a way of saying ”årst temp, then stuff, then things, and that’s where
I want it.” It’s a set of directions to the computer of where you want to put something in the tree
of folders (directories) that make up your computer’s hard disk.

WARNING! In this appendix I’m using the / (slash) character for all paths since it works
the same on all computers now. However, Windows users need to know that you can
also use the \ (backslash) character and other Windows users will expect that at times.

Do More

• The concept of a ”path” might confuse you at this point. Don’t worry. We’ll do a lot more

with them and then you’ll get it.

• Make 20 other directories inside the temp directory in various levels. Go look at them

with a graphical åle browser.

• Make a directory with a space in the name by putting quotes around it: mkdir "I Have

Fun"

• If the temp directory already exists, then you’ll get an error. Use cd to change to a work

directory that you can control and try it there. On Windows, Desktop is a good place.

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 260 — #12

260 LEARN RUBY THE HARD WAY

Change Directory (cd)
In this exercise you learn how to change from one directory to another using the cd command.

Do This

I’m going to give you the instructions for these sessions one more time:

• You do not type in the $ (UNIX) or > (Windows).

• You type in the stuff after this, then hit Enter. If I have $ cd temp you just type cd temp

and hit Enter.

• The output comes after you hit Enter, followed by another $ or > prompt.

• Always go home årst! Do pwd and then cd ~ so you go back to your starting point.

Linux/OS X

Exercise 5 Session

$ cd temp

$ pwd

~/temp

$ cd stuff

$ pwd

~/temp/stuff

$ cd things

$ pwd

~/temp/stuff/things

$ cd frank/

$ pwd

~/temp/stuff/things/frank

$ cd joe/

$ pwd

~/temp/stuff/things/frank/joe

$ cd alex/

$ pwd

~/temp/stuff/things/frank/joe/alex

$ cd john/

$ pwd

~/temp/stuff/things/frank/joe/alex/john

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 261 — #13

COMMAND LINE CRASH COURSE 261

$ cd ..

$ cd ..

$ pwd

~/temp/stuff/things/frank/joe

$ cd ..

$ cd ..

$ pwd

~/temp/stuff/things

$ cd ../../..

$ pwd

~/

$ cd temp/stuff/things/frank/joe/alex/john

$ pwd

~/temp/stuff/things/frank/joe/alex/john

$ cd ../../../../../../../

$ pwd

~/

$

Windows

Exercise 5 Windows Session

> cd temp

> pwd

Path

C:\Users\zed\temp

> cd stuff

> pwd

Path

C:\Users\zed\temp\stuff

> cd things

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 262 — #14

262 LEARN RUBY THE HARD WAY

> pwd

Path

C:\Users\zed\temp\stuff\things

> cd frank

> pwd

Path

C:\Users\zed\temp\stuff\things\frank

> cd joe

> pwd

Path

C:\Users\zed\temp\stuff\things\frank\joe

> cd alex

> pwd

Path

C:\Users\zed\temp\stuff\things\frank\joe\alex

> cd john

> pwd

Path

C:\Users\zed\temp\stuff\things\frank\joe\alex\john

> cd ..

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 263 — #15

COMMAND LINE CRASH COURSE 263

> cd ..

> cd ..

> pwd

Path

C:\Users\zed\temp\stuff\things\frank

> cd ../..

> pwd

Path

C:\Users\zed\temp\stuff

> cd ..

> cd ..

> cd temp/stuff/things/frank/joe/alex/john

> cd ../../../../../../../

> pwd

Path

C:\Users\zed

>

You Learned This

You made all these directories in the last exercise, and now you’re just moving around inside them
with the cd command. In my session, I also use pwd to check where I am, so remember not to type
the output that pwd prints. For example, on line 3 you see ~/temp but that’s the output of pwd
from the prompt above it. Do not type this in.

You should also see how I use the .. to move ”up” in the tree and path.

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 264 — #16

264 LEARN RUBY THE HARD WAY

Do More

A very important part of learning to use the command line interface (CLI) on a computer with
a graphical user interface (GUI) is åguring out how they work together. When I started using
computers, there was no ”GUI” and you did everything with the DOS prompt (the CLI). Later,
when computers became powerful enough that everyone could have graphics, it was simple for
me to match CLI directories with GUI windows and folders.

Most people today, however, have no comprehension of the CLI, paths, and directories. In fact,
it’s very difåcult to teach it to them and the only way to learn about the connection is for you to
constantly work with the CLI until one day it clicks that things you do in the GUI will show up in
the CLI.

The way you do this is by spending some time ånding directories with your GUI åle browser, then

going to them with your CLI. This is what you’ll do next.

• cd to the joe directory with one command.

• cd back to temp with one command, but not further above that.

• Find out how to cd to your ”home directory” with one command.

• cd to your Documents directory, then ånd it with your GUI åle browser (e.g., Finder,

Windows Explorer, etc.).

• cd to your Downloads directory, then ånd it with your åle browser.

• Find another directory with your åle browser, then cd to it.

• Remember when you put quotes around a directory with spaces in it? You can do that

with any command. For example, if you have a directory I Have Fun, then you can do:

cd "I Have Fun"

List Directory (ls)
In this exercise you learn how to list the contents of a directory with the ls command.

Do This

Before you start, make sure you cd back to the directory above temp. If you have no idea where
you are, use pwd to ågure it out and then move there.

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 265 — #17

COMMAND LINE CRASH COURSE 265

Linux/OS X

Exercise 6 Session

$ cd temp

$ ls

stuff

$ cd stuff

$ ls

things

$ cd things

$ ls

frank

$ cd frank

$ ls

joe

$ cd joe

$ ls

alex

$ cd alex

$ ls

$ cd john

$ ls

$ cd ..

$ ls

john

$ cd ../../../

$ ls

frank

$ cd ../../

$ ls

stuff

$

Windows

Exercise 6 Windows Session

> cd temp

> ls

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 266 — #18

266 LEARN RUBY THE HARD WAY

Directory: C:\Users\zed\temp

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/17/2011 9:03 AM stuff

> cd stuff

> ls

Directory: C:\Users\zed\temp\stuff

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/17/2011 9:03 AM things

> cd things

> ls

Directory: C:\Users\zed\temp\stuff\things

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/17/2011 9:03 AM frank

> cd frank

> ls

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 267 — #19

COMMAND LINE CRASH COURSE 267

Directory: C:\Users\zed\temp\stuff\things\frank

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/17/2011 9:03 AM joe

> cd joe

> ls

Directory: C:\Users\zed\temp\stuff\things\frank\joe

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/17/2011 9:03 AM alex

> cd alex

> ls

Directory: C:\Users\zed\temp\stuff\things\frank\joe\alex

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/17/2011 9:03 AM john

> cd john

> ls

> cd ..

> ls

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 268 — #20

268 LEARN RUBY THE HARD WAY

Directory: C:\Users\zed\temp\stuff\things\frank\joe\alex

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/17/2011 9:03 AM john

> cd ..

> ls

Directory: C:\Users\zed\temp\stuff\things\frank\joe

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/17/2011 9:03 AM alex

> cd ../../..

> ls

Directory: C:\Users\zed\temp\stuff

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/17/2011 9:03 AM things

> cd ..

> ls

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 269 — #21

COMMAND LINE CRASH COURSE 269

Directory: C:\Users\zed\temp

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/17/2011 9:03 AM stuff

>

You Learned This

The ls command lists out the contents of the directory you are currently in. You can see me use
cd to change into different directories and then list what’s in them so I know which directory to
go to next.

There are a lot of options for the ls command, but you’ll learn how to get help on those later
when we cover the help command.

Do More

• Type every one of these commands in! You have to actually type these to learn them. Just

reading them is not good enough. I’ll stop yelling now.

• On UNIX, try the ls -lR command while you’re in temp.

• On Windows, do the same thing with dir -R.

• Use cd to get to other directories on your computer and then use ls to see what’s in

them.

• Update your notebook with new questions. I know you probably have some, because I’m

not covering everything about this command.

• Remember that if you get lost, then use ls and pwd to ågure out where you are, then go

to where you need to be with cd.

Remove Directory (rmdir)
In this exercise you learn how to remove an empty directory.

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 270 — #22

270 LEARN RUBY THE HARD WAY

Do This

Linux/OS X

Exercise 7 Session

$ cd temp

$ ls

stuff

$ cd stuff/things/frank/joe/alex/john/

$ cd ..

$ rmdir john

$ cd ..

$ rmdir alex

$ cd ..

$ ls

joe

$ rmdir joe

$ cd ..

$ ls

frank

$ rmdir frank

$ cd ..

$ ls

things

$ rmdir things

$ cd ..

$ ls

stuff

$ rmdir stuff

$ pwd

~/temp

$

WARNING! If you try to do rmdir on Mac OS X and it refuses to remove the directory
even though you are positive it’s empty, then there is actually a åle in there called
.DS_Store. In that case, type rm -rf <dir> instead (replace <dir> with the direc-
tory name).

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 271 — #23

COMMAND LINE CRASH COURSE 271

Windows

Exercise 7 Windows Session

> cd temp

> ls

Directory: C:\Users\zed\temp

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/17/2011 9:03 AM stuff

> cd stuff/things/frank/joe/alex/john/

> cd ..

> rmdir john

> cd ..

> rmdir alex

> cd ..

> rmdir joe

> cd ..

> rmdir frank

> cd ..

> ls

Directory: C:\Users\zed\temp\stuff

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/17/2011 9:14 AM things

> rmdir things

> cd ..

> ls

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 272 — #24

272 LEARN RUBY THE HARD WAY

Directory: C:\Users\zed\temp

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/17/2011 9:14 AM stuff

> rmdir stuff

> pwd

Path

C:\Users\zed\temp

> cd ..

>

You Learned This

I’m now mixing up the commands so make sure you type them exactly and pay attention. Every
time youmake amistake, it’s because you aren’t paying attention. If you ånd yourself makingmany
mistakes, then take a break or just quit for the day. You’ve always got tomorrow to try again.

In this example you’ll learn how to remove a directory. It’s easy. You just go to the directory right
above it, then type rmdir <dir>, replacing <dir> with the name of the directory to remove.

Do More

• Make 20 more directories and remove them all.

• Make a single path of directories that is 10 deep and remove them one at a time just like

I did.

• If you try to remove a directory with content you will get an error. I’ll show you how to

remove these in later exercises.

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 273 — #25

COMMAND LINE CRASH COURSE 273

Moving Around (pushd, popd)
In this exercise you learn how to save your current location and go to a new location with pushd.
You then learn how to return to the saved location with popd.

Do This

Linux/OS X

Exercise 8 Session

$ cd temp

$ mkdir -p i/like/icecream

$ pushd i/like/icecream

~/temp/i/like/icecream ~/temp

$ popd

~/temp

$ pwd

~/temp

$ pushd i/like

~/temp/i/like ~/temp

$ pwd

~/temp/i/like

$ pushd icecream

~/temp/i/like/icecream ~/temp/i/like ~/temp

$ pwd

~/temp/i/like/icecream

$ popd

~/temp/i/like ~/temp

$ pwd

~/temp/i/like

$ popd

~/temp

$ pushd i/like/icecream

~/temp/i/like/icecream ~/temp

$ pushd

~/temp ~/temp/i/like/icecream

$ pwd

~/temp

$ pushd

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 274 — #26

274 LEARN RUBY THE HARD WAY

~/temp/i/like/icecream ~/temp

$ pwd

~/temp/i/like/icecream

$

Windows

Exercise 8 Windows Session

> cd temp

> mkdir -p i/like/icecream

Directory: C:\Users\zed\temp\i\like

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/20/2011 11:05 AM icecream

> pushd i/like/icecream

> popd

> pwd

Path

C:\Users\zed\temp

> pushd i/like

> pwd

Path

C:\Users\zed\temp\i\like

> pushd icecream

> pwd

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 275 — #27

COMMAND LINE CRASH COURSE 275

Path

C:\Users\zed\temp\i\like\icecream

> popd

> pwd

Path

C:\Users\zed\temp\i\like

> popd

>

You Learned This

You’re getting into programmer territory with these commands, but they’re so handy I have to
teach them to you. These commands let you temporarily go to a different directory and then come
back, easily switching between the two.

The pushd command takes your current directory and ”pushes” it into a list for later, then it
changes to another directory. It’s like saying, ”Save where I am, then go here.”

The popd command takes the last directory you pushed and ”pops” it off, taking you back there.

Finally, on UNIX, the command pushd, if you run it by itself with no arguments, will switch be-
tween your current directory and the last one you pushed. It’s an easy way to switch between two
directories. This does not work in PowerShell.

Do More

• Use these commands to move around directories all over your computer.

• Remove the i/like/icecream directories and make your own, then move around in

them.

• Explain to yourself the output that pushd and popd will print out for you. Notice how it

works like a stack?

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 276 — #28

276 LEARN RUBY THE HARD WAY

• You already know this, but remember that mkdir -p will make an entire path even if all

the directories don’t exist. That’s what I did very årst for this exercise.

Making Empty Files (Touch, New-Item)
In this exercise you learn how to make an empty åle using the touch (new-item on Windows)
command.

Do This

Linux/OS X

Exercise 9 Session

$ cd temp

$ touch iamcool.txt

$ ls

iamcool.txt

$

Windows

Exercise 9 Windows Session

> cd temp

> New-Item iamcool.txt -type file

> ls

Directory: C:\Users\zed\temp

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 12/17/2011 9:03 AM iamcool.txt

>

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 277 — #29

COMMAND LINE CRASH COURSE 277

You Learned This

You learned how to make an empty åle. On UNIX touch does this, and it also changes the times
on the åle. I rarely use it for anything other than making empty åles. On Windows, you don’t have
this command, so you learned how to use the New-Item command, which does the same thing
but can also make new directories.

Do More

• UNIX: Make a directory, change to it, and then make a åle in it. Then move up one level

and run the rmdir command in this directory. You should get an error. Try to understand

why you got this error.

• Windows: Do the same thing, but you won’t get an error. You’ll get a prompt asking if

you really want to remove the directory.

Copy a File (cp)
In this exercise you learn how to copy a åle from one location to another with the cp command.

Do This

Linux/OS X

Exercise 10 Session

$ cd temp

$ cp iamcool.txt neat.txt

$ ls

iamcool.txt neat.txt

$ cp neat.txt awesome.txt

$ ls

awesome.txt iamcool.txt neat.txt

$ cp awesome.txt thefourthfile.txt

$ ls

awesome.txt iamcool.txt neat.txt thefourthfile.txt

$ mkdir something

$ cp awesome.txt something/

$ ls

awesome.txt iamcool.txt neat.txt something thefourthfile.txt

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 278 — #30

278 LEARN RUBY THE HARD WAY

$ ls something/

awesome.txt

$ cp -r something newplace

$ ls newplace/

awesome.txt

$

Windows

Exercise 10 Windows Session

> cd temp

> cp iamcool.txt neat.txt

> ls

Directory: C:\Users\zed\temp

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 12/22/2011 4:49 PM 0 iamcool.txt

-a--- 12/22/2011 4:49 PM 0 neat.txt

> cp neat.txt awesome.txt

> ls

Directory: C:\Users\zed\temp

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 12/22/2011 4:49 PM 0 awesome.txt

-a--- 12/22/2011 4:49 PM 0 iamcool.txt

-a--- 12/22/2011 4:49 PM 0 neat.txt

> cp awesome.txt thefourthfile.txt

> ls

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 279 — #31

COMMAND LINE CRASH COURSE 279

Directory: C:\Users\zed\temp

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 12/22/2011 4:49 PM 0 awesome.txt

-a--- 12/22/2011 4:49 PM 0 iamcool.txt

-a--- 12/22/2011 4:49 PM 0 neat.txt

-a--- 12/22/2011 4:49 PM 0 thefourthfile.txt

> mkdir something

Directory: C:\Users\zed\temp

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/22/2011 4:52 PM something

> cp awesome.txt something/

> ls

Directory: C:\Users\zed\temp

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/22/2011 4:52 PM something

-a--- 12/22/2011 4:49 PM 0 awesome.txt

-a--- 12/22/2011 4:49 PM 0 iamcool.txt

-a--- 12/22/2011 4:49 PM 0 neat.txt

-a--- 12/22/2011 4:49 PM 0 thefourthfile.txt

> ls something

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 280 — #32

280 LEARN RUBY THE HARD WAY

Directory: C:\Users\zed\temp\something

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 12/22/2011 4:49 PM 0 awesome.txt

> cp -recurse something newplace

> ls newplace

Directory: C:\Users\zed\temp\newplace

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 12/22/2011 4:49 PM 0 awesome.txt

>

You Learned This

Now you can copy åles. It’s simple to just take a åle and copy it to a new one. In this exercise I also
make a new directory and copy a åle into that directory.

I’m going to tell you a secret about programmers and system administrators now: they are lazy.
I’m lazy. My friends are lazy. That’s why we use computers. We like to make computers do boring
things for us. In the exercises so far you have been typing repetitive boring commands so that you
can learn them, but usually it’s not like this. Usually if you ånd yourself doing something boring
and repetitive, there’s probably a programmer who has ågured out how to make it easier. You just
don’t know about it.

The other thing about programmers is they aren’t nearly as clever as you think. If you overthink
what to type, then you’ll probably get it wrong. Instead, try to imagine what the name of a com-
mand is and try it. Chances are that it’s a name or some abbreviation similar to what you thought
it was. If you still can’t ågure it out intuitively, then ask around and search online. Hopefully it’s
not something really stupid like ROBOCOPY.

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 281 — #33

COMMAND LINE CRASH COURSE 281

Do More

• Use the cp -r command to copy more directories with åles in them.

• Copy a åle to your home directory or desktop.

• Find these åles in your graphical user interface and open them in a text editor.

• Notice how sometimes I put a / (slash) at the end of a directory? That makes sure the åle

is really a directory, so if the directory doesn’t exist I’ll get an error.

Moving a File (mv)
In this exercise you learn how to move a åle from one location to another using the mv command.

Do This

Linux/OS X

Exercise 11 Session

$ cd temp

$ mv awesome.txt uncool.txt

$ ls

newplace uncool.txt

$ mv newplace oldplace

$ ls

oldplace uncool.txt

$ mv oldplace newplace

$ ls

newplace uncool.txt

$

Windows

Exercise 11 Windows Session

> cd temp

> mv awesome.txt uncool.txt

> ls

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 282 — #34

282 LEARN RUBY THE HARD WAY

Directory: C:\Users\zed\temp

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/22/2011 4:52 PM newplace

d---- 12/22/2011 4:52 PM something

-a--- 12/22/2011 4:49 PM 0 iamcool.txt

-a--- 12/22/2011 4:49 PM 0 neat.txt

-a--- 12/22/2011 4:49 PM 0 thefourthfile.txt

-a--- 12/22/2011 4:49 PM 0 uncool.txt

> mv newplace oldplace

> ls

Directory: C:\Users\zed\temp

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/22/2011 4:52 PM oldplace

d---- 12/22/2011 4:52 PM something

-a--- 12/22/2011 4:49 PM 0 iamcool.txt

-a--- 12/22/2011 4:49 PM 0 neat.txt

-a--- 12/22/2011 4:49 PM 0 thefourthfile.txt

-a--- 12/22/2011 4:49 PM 0 uncool.txt

> mv oldplace newplace

> ls newplace

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 283 — #35

COMMAND LINE CRASH COURSE 283

Directory: C:\Users\zed\temp\newplace

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 12/22/2011 4:49 PM 0 awesome.txt

> ls

Directory: C:\Users\zed\temp

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/22/2011 4:52 PM newplace

d---- 12/22/2011 4:52 PM something

-a--- 12/22/2011 4:49 PM 0 iamcool.txt

-a--- 12/22/2011 4:49 PM 0 neat.txt

-a--- 12/22/2011 4:49 PM 0 thefourthfile.txt

-a--- 12/22/2011 4:49 PM 0 uncool.txt

>

You Learned This

Moving åles or, rather, renaming them. It’s easy: give the old name and the new name.

Do More

• Move a åle in the newplace directory to another directory, then move it back.

View a File (less, MORE)
To do this exercise you’re going to do some work using the commands you know so far. You’ll also

need a text editor that can make plain text (.txt) åles. Here’s what you do:

• Open your text editor and type some stuff into a new åle. On OS X this could be

TextWrangler. On Windows this might be Notepad++. On Linux this could be gedit. Any

editor will work.

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 284 — #36

284 LEARN RUBY THE HARD WAY

• Save that åle to your desktop and name it test.txt.

• In your shell use the commands you know to copy this åle to your temp directory that

you’ve been working with.

Once you’ve done that, complete this exercise.

Do This

Linux/OS X

Exercise 12 Session

$ less test.txt

[displays file here]

$

That’s it. To get out of less, just type q (as in quit).

Windows

Exercise 12 Windows Session

> more test.txt

[displays file here]

>

WARNING! In the output I’m showing [displays file here] to ”abbreviate” what
that program shows. I’ll do this when I mean to say, ”Showing you the output of
this program is too complex, so just insert what you see on your computer here and
pretend I did show it to you.” Your screen will not actually show this.

You Learned This

This is one way to look at the contents of a åle. It’s useful because, if the åle has many lines, it will
”page” so that only one screenful at a time is visible. In the Do More section, you’ll play with this
some more.

Do More

• Open your text åle again and repeatedly copy-paste the text so that it’s about 50–100

lines long.

• Copy it to your temp directory again so you can look at it.

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 285 — #37

COMMAND LINE CRASH COURSE 285

• Now do the exercise again, but this time page through it. On UNIX you use the spacebar

and w (the letter w) to go down and up. Arrow keys also work. On Windows, just hit the

spacebar to page through.

• Look at some of the empty åles you created.

• The cp command will overwrite åles that already exist, so be careful when copying åles

around.

Stream a File (cat)
You’re going to do some more setup for this one so you get used to making åles in one program
and then accessing them from the command line. With the same text editor from the last exercise,
create another åle named test2.txt but this time save it directly to your temp directory.

Do This

Linux/OS X

Exercise 13 Session

$ less test2.txt

[displays file here]

$ cat test2.txt

I am a fun guy.

Don't you know why?

Because I make poems,

that make babies cry.

$ cat test.txt

Hi there this is cool.

$

Windows

Exercise 13 Windows Session

> more test2.txt

[displays file here]

> cat test2.txt

I am a fun guy.

Don't you know why?

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 286 — #38

286 LEARN RUBY THE HARD WAY

Because I make poems,

that make babies cry.

> cat test.txt

Hi there this is cool.

>

Remember thatwhen I say [displays file here], I’m abbreviating the output of that command
so I don’t have to show you exactly everything.

You Learned This

Do you like my poem? Totally going to win a Nobel. Anyway, you already know the årst command,
and I’m just having you check that your åle is there. Then you cat the åle to the screen. This
command spews the whole åle to the screen with no paging or stopping. To demonstrate that, I
have you do this to the test.txt, which should just spew a bunch of lines from that exercise.

Do More

• Make a few more text åles and work with cat.

• UNIX: Try cat test.txt test2.txt and see what it does.

• Windows: Try cat test.txt,test2.txt and see what it does.

Removing a File (rm)
In this exercise you learn how to remove (delete) a åle using the rm command.

Do This

Linux/OS X

Exercise 14 Session

$ cd temp

$ ls

uncool.txt iamcool.txt neat.txt something thefourthfile.txt

$ rm uncool.txt

$ ls

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 287 — #39

COMMAND LINE CRASH COURSE 287

iamcool.txt neat.txt something thefourthfile.txt

$ rm iamcool.txt neat.txt thefourthfile.txt

$ ls

something

$ cp -r something newplace

$

$ rm something/awesome.txt

$ rmdir something

$ rm -rf newplace

$ ls

$

Windows

Exercise 14 Windows Session

> cd temp

> ls

Directory: C:\Users\zed\temp

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/22/2011 4:52 PM newplace

d---- 12/22/2011 4:52 PM something

-a--- 12/22/2011 4:49 PM 0 iamcool.txt

-a--- 12/22/2011 4:49 PM 0 neat.txt

-a--- 12/22/2011 4:49 PM 0 thefourthfile.txt

-a--- 12/22/2011 4:49 PM 0 uncool.txt

> rm uncool.txt

> ls

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 288 — #40

288 LEARN RUBY THE HARD WAY

Directory: C:\Users\zed\temp

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/22/2011 4:52 PM newplace

d---- 12/22/2011 4:52 PM something

-a--- 12/22/2011 4:49 PM 0 iamcool.txt

-a--- 12/22/2011 4:49 PM 0 neat.txt

-a--- 12/22/2011 4:49 PM 0 thefourthfile.txt

> rm iamcool.txt

> rm neat.txt

> rm thefourthfile.txt

> ls

Directory: C:\Users\zed\temp

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/22/2011 4:52 PM newplace

d---- 12/22/2011 4:52 PM something

> cp -r something newplace

> rm something/awesome.txt

> rmdir something

> rm -r newplace

> ls

>

You Learned This

Here we clean up the åles from the last exercise. Remember when I had you try to rmdir on a
directory with something in it? Well, that failed because you can’t remove a directory with åles in
it. Instead you have to remove the åle, or recursively delete all of its contents. That’s what you did
at the end of this example.

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 289 — #41

COMMAND LINE CRASH COURSE 289

Do More

• Clean up everything in temp from all the exercises so far.

• Write in your notebook to be careful when running recursive remove commands on åles.

Exiting Your Terminal (exit)

Do This

Linux/OS X

Exercise 23 Session

$ exit

Windows

Exercise 23 Windows Session

> exit

You Learned This

Your ånal exercise is how to exit a Terminal. Again, this is very easy, but I’m going to have you do
more.

Do More

For your last set of exercises, I want you to use the help system to look up a set of commands you
should research and learn how to use on your own.

Here’s the list for UNIX:

• xargs

• sudo

• chmod

• chown

“Shaw_AppendixA” — 2014/11/7 — 18:37 — page 290 — #42

290 LEARN RUBY THE HARD WAY

For Windows, look up these things:

• forfiles

• runas

• attrib

• icacls

Find out what these are, play with them, and then add them to your index cards.

Command Line Next Steps
You have completed the crash course. At this point you should be a barely capable shell user. There’s
a huge list of tricks and key sequences you don’t know yet, and I’m going to give you a few ånal
places to go research more.

UNIX Bash References

The shell you’ve been using is called bash. It’s not the greatest shell but it’s everywhere and has a
lot of features so it’s a good start. Here’s a short list of links about bash you should visit:

Bash Cheat Sheet http://cli.learncodethehardway.org/bash_cheat_sheet.pdf created by Raph-

ael and CC licensed.

Reference Manual http://www.gnu.org/software/bash/manual/bashref.html

PowerShell References

On Windows, there’s really only PowerShell. Here’s a list of useful links related to PowerShell:

Owner’s Manual http://technet.microsoft.com/en-us/library/ee221100.aspx

Cheat Sheet http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=7097

Master PowerShell http://powershell.com/cs/blogs/ebook/default.aspx

http://www.gnu.org/software/bash/manual/bashref.html
http://cli.learncodethehardway.org/bash_cheat_sheet.pdf
http://technet.microsoft.com/en-us/library/ee221100.aspx
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=7097
http://powershell.com/cs/blogs/ebook/default.aspx

“Shaw_Index” — 2014/11/8 — 17:18 — page 291 — #1

291

INDEX

Index

Symbols

" (double quotes)
escaping, 38
strings and, 28, 33
variables and, 30

' (single quotes)
escaping, 38
strings and, 33
variables and, 30

" " " (triple quotes), 37–38
/ (forward-slash) characters, 38–40
\ (backslash) characters, 38–40
_ (underscore) characters, 24
|| (or) expressions, 91–96
+= (increment by) operators, 71–72, 99
= (equal) characters

== vs., 25
ARGV and, 46–51
in asking questions of users, 42
escaping quotes, 38
format strings and, 34–37
naming variables with, 24–26
printing variables with, 28–29
returning values from functions with, 74–76
setting variables to numbers, 44–45
setting variables to strings, 30–33

== (double equal) characters, 25, 92–96
! (not) expressions, 91–96
!= (not equal) characters, 91–96
(pound) characters, 18–19
?? comments, 159–161
#{} (format activators), 28, 35
% (modulus) operators, 22, 35
%{} (format activators), 35
&& (and) expressions, 91–96
*args (asterisk args), 63–65
@ (object scope), 125, 149–151

[(left bracket), opening arrays with, 106–108
] (right bracket), closing arrays with, 106–108
> (prompts), 50–51

Numbers

2-dimensional (2D) arrays, 108
8080 port, 219–223

A

Addresses, deåned, 225
Advanced user input

exceptions in, 206
game lexicon and, 204–206
introduction to, 204
lexicon types in, 205
numbers in, 206
questions about, 210
sentence breaks in, 204–205
Study Drills on, 209
testing årst, 206–207
testing procedures, 207–209
writing scanners in, 205

Advice for programmers, 246–247
After inheritance, 180–182
Algorithms, 140
Analysis

of game engines. See Game engine analysis
of games, 188–189, 191
object-oriented. See Object-oriented

analysis
top down versus bottom up, 170–176

And (&&) expressions, 91–96
Argument variable (ARGV). See ARGV

(argument variable)
ArgumentError, 206
Arguments

*args, 63–65
ARGV. See ARGV (argument variable)

“Shaw_Index” — 2014/11/8 — 17:18 — page 292 — #2

292 INDEX

Arguments (Continued)
arrays and, 128
class style and, 189
in command line, 46–47
in functions, 62–68, 75

ARGV (argument variable)
introduction to, 46–48
opening åles with, 52–54
prompting and passing with, 50–51

Arrays
2-dimensional, 108
accessing elements of, 114–115
bucket, 140–142
closing, 106–108
data structures and, 129–130
hashes vs., 132–133, 144
levels of, 142–144
loops and, 106–112
opening, 106–108
questions about, 108–109, 131
strings and, 128–129
Study Drills on, 108, 131
when to use, 130–131, 143

Asking questions of users
decision making and, 102–104
overview of, 42
questions about, 43
Study Drills on, 43

assert commands, 144, 217
Association, 133–136
Asterisk args (*args), 63–65
Automated testing

of forms, 229–230
guidelines for, 201
introduction to, 198
questions about, 202
results of, 201
Study Drills on, 202
writing, 198–201

B

Backslash (\) characters, 38–40
Before inheritance, 180–182

begin-rescue, 206, 210
bin/ folders, 192–196
Bitbucket.com, 80
Boolean logic

overview of, 94–96
questions about, 96
Study Drills on, 96
true/false in, 92

Branches
overview of, 116–119
questions about, 119
Study Drills on, 118

Browsers
automated testing of forms and, 229–230
deåned, 225
HTML forms and, 226–228
input from, generally, 224
layout templates and, 228–229
questions about, 231
Study Drills on, 230–231
web workings and, 224–226
websites and, 220

Bucket arrays, 140–142

C

cat (stream åle) command, 285–286
cd (change directory), 260–264
Chef Solo, 242
Child classes, 179–186
chomp, 42–48
Classes

Child, 179–186
creating, 148–149
in game engine analysis, 167–169
hierarchies of, 167–168
introduction to, 146–148
modules and, 148–149
nil and, 160–162
in object-oriented programming, generally,

146–151
objects vs., 158
Parent, 179–186
in phrases, 152–153

“Shaw_Index” — 2014/11/8 — 17:18 — page 293 — #3

INDEX 293

style of, 189–190
testing, 168–169

close command, 56
Closing arrays with right bracket (]), 106–108
Command line tools

ARGV. See ARGV (argument variable)
cat (stream åle), 285–286
cd (change directory), 260–264
exit (exit terminal), 289–290
in Linux. See Linux
ls (list directory), 264–269
in Mac OS X. See Mac OS X
memorizing, 250
mkdir (make directory), 257–259
mv (move åle), 281
new-item (create empty åle), 276–277
popd (return to saved location),

273–276
pushd (save location, go to new location),

273–276
pwd command, 254–256
references on, 290
rm (remove åle), 286–289
rmdir (remove directory), 269–272
setup for, 251
shells, 249
touch (create empty åle), 276–277
viewing åles with, 283–285
for when lost, 256–257
in Windows. See Windows

Comments
?? 159–161
in English, 18, 24, 33
in game creation, 190–191
overview of, 18
questions about, 18–19
Study Drills on, 18–19

Connections, deåned, 225
Copying åles

cp for, 277–281
overview of, 60–61
questions about, 61
Study Drills on, 61

Copy-pasting, 3
Correcting bad code, 88
cp (copy åle) command, 277–281

D

Data structures, 129–130, 136
Data types, 124
Debugging games, 120–121
Decision making

exercises in, 102–103
questions about, 103–104
Study Drills on, 103

def (deåne function), 63, 152
delete, 141
Designing games, 120–121
Details, signiåcance of, 2
Dictionaries, 132
Differences, signiåcance of, 3
Directories. See Skeleton directories
Double equal (==) characters, 25,

92–96
Double quotes ("). See " (double quotes)
Drawing problems, 165–166

E

Ease of learning, 2–5
Elements of arrays, access to, 114–115
Eloquent Ruby, 242
else conditions

elsif as. See elsif
making decisions with, 102–104
overview of, 100–101
questions about, 101
Study Drills on, 101

elsif

branches and, 116–117
deånition of, 123
introduction to, 101
making decisions with, 102–104
rules for, 120

English
comments in, 18, 24, 33
in object-oriented programming, 156

“Shaw_Index” — 2014/11/8 — 17:18 — page 294 — #4

294 INDEX

Equality operators
!= (not equal), 91–96
= (single equal). See = (equal) characters
== (double equal), 25, 92–96
in Boolean logic, 95–96

Errors
debugging games for, 120–121
exceptions as. See Exceptions
in if- statements, 100, 120
load, 17
name, 25
ParserError, 213–216
in prompt variables, 51
rake test and, 201–202
reading messages about, 16
spelling, 37
syntax. See Syntax errors
tokens, 205
in unpacking variables, 47
in website creation, 221–222

Escape sequences
introduction to, 38
overview of, 38–39
questions about, 40
string, 124
Study Drills on, 40

Evaluation
of game engines. See Game engine
analysis of games, 188–189, 191
object-oriented. See Object-oriented

analysis
Exceptions

numbers and, 206
in sentences, 213
symbols for, 122–123

exit commands, 116–119, 289–290
Explicitly overriding inheritance, 180
Extracting game concepts, 166. See also

Game engine analysis

F

f variable, 70–71
False

in Boolean logic, 95–96

format strings and, 34–35
math operators and, 20–21
overview of, 90–92

File.exist?(to_file), 60–61
Files

copying, 60–61, 277–281
creating empty, 276–277
functions and, 70–72
moving, 281
opening, 52–58
questions about, 71–72
reading, 52–58
reading backward, 24–26
removing, 286–289
running, 13, 15
streaming, 285–286
Study Drills on, 71
viewing, 283–285
writing, 56–58

First programs
on Mac OS X, 12, 14
overview of, 12
questions about, 17
Study Drills on, 16
on Windows, 13, 15

Floating point numbers, 21
for-loop

exercises in, 106–108
questions about, 108–109
rules for, 120
Study Drills on, 108
while-loop vs., 112

Format activators, 28, 35
Format strings

= characters and, 34–37
overview of, 34
printing, 34
questions about, 35
Study Drills on, 35

Forms
automated tests for, 229–230
HTML, 227–231

“Shaw_Index” — 2014/11/8 — 17:18 — page 295 — #5

INDEX 295

layout templates for, 228
overview of, 226–227

Forward-slash (/), 38–40
Frequently asked questions

on # (pound) characters, 18–19
on advanced user input, 210
on arrays, 108–109, 131
on asking questions of users, 43
on automated testing, 202
on Boolean logic, 96
on branches, 119
on browsers, 231
on comments, 18–19
on copying åles, 61
on else conditions, 101
on escape sequences, 40
on årst programs, 17
on format strings, 35
on functions, generally, 65
on functions, values from, 76
on functions and åles, 71–72
on functions and variables, 67–68, 87
on has-a phrases, 161–162
on hashes, 144
on if- statements, 99
on inheritance, 186–187
on is-a phrases, 161–162
on for-loop, 108–109
on making decisions, 103–104
on math, 22
on memorizing logic, 92
on names, 25–26
on numbers, 22
on object-oriented analysis, 177
on object-oriented programming, 151, 156
on practicing code, 83, 87
on printing, 33, 37
on prompting and passing, 51
on reading and writing åles, 54, 58
on sentences, 217
on skeleton directories, 195–196
on strings, 31
on symbols, 127

on text, 31
on variables, 25–26, 47–48
on website creation, 223
on while-loop, 112

Functions
branches and, 115–119
checklists for, 64, 70
code and, 62–65
def (deåne function) for, 152
åles and, 70–72
in game creation, 189
importing and running, 84–86
names and, 62–65
overview of, 62–64
questions about, 65, 71–72, 76
Study Drills on, 64, 71, 75–76
style of, 189
values and, 74–76
variables and, 62–68, 84–87

G

Game engine analysis. See also Games
class hierarchies in, 167–168
coding classes in, 168
extracting/researching concepts in, 166
object maps in, 167–168
reåning code in, 169–170
testing classes in, 168–169
top down versus bottom up approach to,

170–176
writing/drawing problems in, 165–166

Game engines
analysis of. See Game engine analysis
creation of, 238–240
refactoring of, 232–237
session-based, 238–241

Game lexicon
exceptions in, 206
introduction to, 204
lexicon types in, 205
numbers in, 206
sentence breaks in, 204–205
writing scanners and, 205

“Shaw_Index” — 2014/11/8 — 17:18 — page 296 — #6

296 INDEX

Games
analysis of engines for. See Game engine

analysis
arrays in, 129–131
branches in, 116–119
class style in, 189–190
code style in, 190
comments in, 190–191
debugging, 120–121
designing, 120–121
engines for. See Game engines
evaluating, 188–189, 191
function style in, 189
functions in, generally, 116–119
introduction to, 188
lexicon in. See Game lexicon
user input in. See Advanced user input
on the web. See Web games

gedit text editor
setup and, 8–9, 11
viewing åles in, 283

gem, 218–219
get commands, 141
gets.chomp

asking questions of users with, 42–48
opening åles with, 52–54
prompting and passing with, 50–51

Github.com, 80
Gitorious.org, 80
Global variables, 68
Google, 10
”Gothons from Planet Percal #25,” 170–176
Grammar, 213

H

Handlers, 222–223, 227
Hard coding, 52
Hard way overview

copy-pasting vs., 3
details, signiåcance of, 2
differences, signiåcance of, 3
ease of learning in, 2
instructional videos, 3

persistence in, 3–4
practice in, 3
reading/writing Ruby in, 2
warnings for programmers in, 4–5

has-a phrases
introduction to, 158–159
overview of, 159–161
questions about, 161–162
Study Drills on, 161

Hashes
arrays and, 132–133, 142–144
code description for, 140–142
as data structures, 136
exercises in, 133–136
hash_key, 141
introduction to, 132–133
modules and, 136–139, 146–148
questions about, 144
Study Drills on, 143–144
when to use, 143

”Hello World” project, 219–220. See also
Websites

HTML (HyperText Markup Language)
forms in, 225–231
session-based game engines in, 238–241
websites created in, 222–223

I

Idiomatic Ruby, 11
if- statements

arrays and, 106
else conditions and, 100–101
exercises in, 98–99
making decisions with, 102–104
questions about, 99
rules for, 120
Study Drills on, 99

Implicit inheritance, 179
Increment by (+=) operators, 71–72, 99
Index.GET, 221–224
Inheritance

altering before/after, 180–182
combining types of, 182–183

“Shaw_Index” — 2014/11/8 — 17:18 — page 297 — #7

INDEX 297

composition vs., 183–186
deånition of, 178–179
implicit, 179
introduction to, 178
overriding explicitly, 180
questions about, 186–187
Study Drills on, 186
super() with initialize, 183
when to use, 185–186

initialize, 183
Input methods, 42–47
Instantiating classes, 148–149
Instructional videos, 3
Integer() functions, 206
Intended readers, 4
International programming, 16
Internet

browsers and. See Browsers
games on. See Web games
searching, 10

Irb interpreter, 53–54, 85–86
is-a phrases

exercises in, 159–161
introduction to, 158–159
questions about, 161–162
Study Drills on, 161

K

Keywords, 122–123

L

Launchpad.net, 80
Layout templates, 228–229
Learn C the Hard Way, 242
Learn Python the Hard Way,

4, 242
Learn Ruby the Hard Way, 3–4
Learning programming languages, 243–244
Learning Ruby, overview. See Hard way

overview
Left bracket ([), opening arrays with,

106–108
Lexicon. See Game lexicon

Linux
cat (stream åle) in, 285
cd (change directory) in, 260–261
command line tools in, 252–253
cp (copy åle) in, 277–278
exit (exit terminal) in, 289
less command in, 284
ls (list directory) in, 265
mkdir (make directory) in, 257
mv (move åle) in, 281
popd (return to saved location) in,

273–274
pushd (save location, go to new location)

in, 273–274
pwd command in, 255
rm (remove åle) in, 286–287
rmdir (remove directory) in, 270
setup on, 8–10
Terminal setup in, 251
touch (create empty åle) in, 276–277

Lisp, 5
list, 141
List directory (ls), 264–269
Localhost, 220–225
Loops

arrays and, 106–112
for-loop, 106–108, 112, 120
while-loop, 110–112, 120, 169

ls (list directory), 264–269

M

Mac OS X
cat (stream åle) in, 285
cd (change directory) in, 260–261
command line tools in, generally, 252–253
cp (copy åle) in, 277–278
exit (exit terminal) in, 289
årst programs on, 12, 14
less command in, 284
ls (list directory) in, 265
mkdir (make directory) in, 257
mv (move åle) in, 281
popd (return to saved location) in, 273–274

“Shaw_Index” — 2014/11/8 — 17:18 — page 298 — #8

298 INDEX

Mac OS X (Continued)
pushd (save location, go to new location)

in, 273–274
pwd command in, 255
rmdir (remove directory) in, 270
running åles on, 14
setup on, 6–7
Terminal setup in, 251
touch (create empty åle) in, 276–277

Make directory (mkdir), 257–259
Mapping

of hashes, 133–136
of objects, 167–168
in refactoring, 232–237

Match and peek, 212–213
Math. See also Numbers

algorithms for data structures, 140
overview of, 20–21
questions about, 22
Study Drills on, 21

Mechanize, 242
Memorization

of characters, 78
of command line tools, 250
of logic, 90–92
of truth tables, 91–92
of truth terms, 90–91

mkdir (make directory), 257–259
Modules

classes and, 148
hashes and, 136–139, 146–148
in object-oriented programming, generally,

146–151
Modulus (%) operators, 22, 35
mv (move åle) command, 281

N

Names
functions and, 62–65
overview of, 24–25
questions about, 25–26
Study Drills on, 25

new (create initializer) command, 140

new-item (create empty åle) command,
276–277

nil

classes and, 160–162
as data type, 124
hashes and, 132–139

Not (!) expressions, 91–96
Not equal (!=) characters, 91–96
Notepad++

årst programs in, 13
setup and, 7
viewing åles in, 283

Numbers. See also Math
in game lexicon, 206
overview of, 20–21
questions about, 22
Study Drills on, 21

O

Object maps, 167–168
Object scope (@), 125
Object-oriented analysis

introduction to, 164–165
questions about, 177
of simple game engines. See Game engine

analysis
Study Drills on, 176–177
top down versus bottom up approach in,

170–176
Object-oriented programming (OOP)

analysis in. See Object-oriented analysis
classes in, 148–149
english option in, 156
examples of, 150–151
exercises in, 152
getting things from things in, 150
hashes in, 146–148
introduction to, 148–149
modules in, 146–149
objects in, 148–149
phrase drills for, 152–153
questions about, 151, 156
reading code in, 153–156

“Shaw_Index” — 2014/11/8 — 17:18 — page 299 — #9

INDEX 299

require in, 148–149
Study Drills on, 151
word drills for, 152

Objects
@ for, 125
classes vs., 158–161
instantiating, 148–149
maps of, 167–168
in object-oriented programming, generally,

146–151
require and, 148–149

Octothorpe, 18–19
OED (Oxford English Dictionary), 136
OOP (object-oriented programming). See

Object-oriented programming (OOP)
open(filename), 52–58
Opening arrays with left bracket ([), 106–108
Operators, deåned, 125. See also speciåc

operators
Or (||) expressions, 91–96
Overriding inheritance, 180
Oxford English Dictionary (OED), 136

P

Padrino, 242
Parameters, 46–47
Parent classes, 179–186
Parentheses Exponents Multiplication Division

Addition Subtraction (PEMDAS), 22
Parsers, 213–216
PEMDAS (Parentheses Exponents

Multiplication Division Addition
Subtraction), 22

Persistence, 3–4
Phrase drills, 152–153
popd (return to saved location), 273–276
Port 8080, 219–223
Pound (#) characters, See # (pound) characters
PowerShell

årst programs in, 15–16
references on, 290
running åles in, 15
setup and, 6–8

Practicing code
exercises in, 82–86
importance of, 3
questions about, 83, 87
Study Drills on, 83, 87

Printing
format strings, 34–35
practice exercises in, 32–33, 36–37
print for, 42
print_ two for, 62
pwd (print working directory) for, 254–256
questions about, 33, 37
Study Drills on, 33, 37
variables, 28–29

Programmers
advice for, 246–247
bad versus good, 86
details, signiåcance of, 2
differences, signiåcance of, 3
warnings for, 4–5

Programming languages, 243–244
Project skeleton directories. See Skeleton

directories
Prompting

> for, 50–51
for numbers, 44
passing and, 50–51
questions about, 51
Study Drills on, 44, 51

pushd (save location, go to new location),
273–276

puts command
comments and, 18–19
format strings and, 34–36
introduction to, 12–13
math symbols and, 20–21
strings and, 30–32

pwd (print working directory), 254–256

Q

Questions asked by students. See Frequently
asked questions

“Shaw_Index” — 2014/11/8 — 17:18 — page 300 — #10

300 INDEX

Questions asked of users. See Asking questions
of users

R

rake test

automated testing with, 199–202
setting up, 194
syntax errors in, 202
websites and, 230, 232

Rakefile, 193–194, 199–202
.rb sufåx, 12
Reading code

for åles. See Reading åles
in object-oriented programming, 153–156
resources for, 80–81
in Ruby, generally, 2
symbols in, 126

Reading åles
backward, 24–26
exercises in, 52–53, 56–57
questions about, 54, 58
read command for, 56
readline command for, 56
Study Drills on, 53, 57–58

Refactoring game engines, 232–237
References, 242, 290
Reåning code, 169–170
Remove directory (rmdir), 269–272
Remove åle (rm), 286–289
Requests, deåned, 225–226
require, 148–149
Researching game concepts, 166. See also

Game engine analysis
Responses, deåned, 226
Return to saved location (popd), 273–276
Right bracket (]), closing arrays with,

106–108
rm (remove åle), 286–289
rmdir (remove directory), 269–272
Room class, 232–237
Ruby, introduction to

årst programs in, 12–17
idiomatic Ruby, 11

learning, generally. See Hard way overview
setting up, 6–11

Ruby on Rails, 242
RubyMotion, 242
Ruby-Processing, 242
Rules

for if- statements, 120
for for-loop, 120
for while-loop, 120

Running åles, 13, 15

S

Save location, go to new location (pushd),
273–276

Scanners, 205
Searching Internet, 10
Sentences

breaks in, 204–205
creating, generally, 212
exceptions in, 213
grammar in, 213
match and peek in, 212–213
parsers in, 213–216
questions about, 217
Study Drills on, 217
testing of, 217

Servers, deåned, 226
Session-based game engines, 238–241
Sessions, 237–238
set, 141–142
Setup

for command line tools, 251
generally, 6
Internet searches for, 10
on Linux, 8–10
on Mac OS X, 6–7
warnings about, 10–11
on Windows, 7–8

Shells, 249
Sinatra

browser interactions with, 220
errors in, 221–222
”Hello World” project in, 219–220

“Shaw_Index” — 2014/11/8 — 17:18 — page 301 — #11

INDEX 301

installing, 218–219
stopping/reloading, 221
templates in, 222–223

Single equal (=) characters. See = (equal)
characters

Skeleton directories
creating, 192–193
ånal structure of, 193–194
introduction to, 192
questions about, 195–196
quiz on, 195
testing setup of, 194
using, 195

Sourceforge.net, 80
Stateless sessions, 237
Stream åle (cat) command, 285–286
String escape sequences, 124. See also Escape

sequences
Strings

arrays and, 128–129
escape sequences and, 38
format, 34–35
questions about, 31
Study Drills on, 31
text and, 30–31
variables and, 28–29

Student questions. See Frequently asked
questions

Study Drills
on # characters, 18–19
on accessing elements of arrays, 115
on advanced user input, 209
on arrays, 108, 131
on asking questions of users, 43
on automated testing, 202
on Boolean logic, 96
on branches, 118
on browsers, 230–231
on comments, 18–19
on copying åles, 61
on else conditions, 101
on escape sequences, 40
on årst programs, 16

on functions, generally, 64
on functions and åles, 71
on functions and values, 75–76
on functions and variables, 67, 87
on has-a phrases, 161
on hashes, 143–144
on if- statements, 99
on inheritance, 186
on is-a phrases, 161
on for-loop, 108
on making decisions, 103
on math, 21
on names, 25
on numbers, 21
on object-oriented analysis,

176–177
on object-oriented programming, 151
on practicing code, 83, 87
on printing, 29, 33, 37
on prompting and passing, 51
on prompting for numbers, 44
on reading åles, 53, 57–58
on sentences, 217
on strings, 31
on symbols, 126–127
on text, 31
on variables, 25, 29, 47
on website creation, 223
on while-loop, 112
on writing åles, 57–58

Style, 189–190
sudo gem install, 218–221, 229
super() with initialize, 183
super(name), 160–162
Symbols. See also speciåc symbols

data types, 124
introduction to, 122
keywords, 122–123
operators, 125
questions about, 127
reading code and, 126
string escape sequences, 124
Study Drills on, 126–127

“Shaw_Index” — 2014/11/8 — 17:18 — page 302 — #12

302 INDEX

Syntax errors
branches and, 118
deåned, 16
in if- statements, 100
rake test and, 202

T

Templates, 222–223, 228–229
Terminal

Boolean logic in, 94
årst programs in, 13–16
running åles in, 14
setup and, 6–11

Testing
automated. See Automated testing
classes, in game engine analysis,

168–169
correcting bad code and, 88
procedures for, 207–209
rake for. See rake test

in sentence creation, 217
of skeleton directory setup, 194
user input and, 206–209

Text
questions about, 31
strings and, 30–31
Study Drills on, 31

Text editors
creating, 56–58
gedit, 8–11, 283
Notepad++ as. See Notepad++
running åles on, 12–17
setting up, 6–11
Terminal as. See Terminal
TextWrangler as. See TextWrangler

TextWrangler
årst programs in, 12
setup and, 6, 11
viewing åles in, 283

Thor, 242
Top down versus bottom up analysis, 170–176.

See also Object-oriented analysis
touch (create empty åle) command, 276–277

Tracking sessions/users, 237–238
Triple quotes (" " "), 37–38
True

format strings and, 34–35
math operators and, 20–21
strings and, 31

truncate command, 56–58
Truth tables, 91–92
Truth terms, 90–91
txt = open(filename), 52–54
Typing, importance of, 2

U

Underscore (_) characters, 24
UNIX Bash, 290
Unpacking arguments/variables, 44,

46–48
Upgrades, 240–241
URLs, 220–225
Users

asking questions of, 42–43, 102–104
input of. See Advanced user input
tracking, 237–238

V

Values, 74–76, 121
Variables

ARGV. See ARGV (argument variable)
f, 70–71
functions and, 62–68, 84–87
global, 68
naming, 24–26
overview of, 24–25
passing to scripts, 46–47
printing, 28–29
questions about, 25–26, 47–48,

67–68
setting to numbers, 44–45
setting to strings, 30–33
strings and, 28–33
Study Drills on, 25, 47, 67

Videos, 3
Viewing åles, 283–285

“Shaw_Index” — 2014/11/8 — 17:18 — page 303 — #13

INDEX 303

W

'w,' 56–61
Warnings, 4–5, 10–11
Web games

engine creation for, 238–240
introduction to, 232
refactoring engines for, 232–237
sessions in, 237–238
tracking users in, 237–238
upgrades to, 240–241

Websites
browsers and. See Browsers
creating, generally, 218
error repair in, 221–222
”Hello World” project, 219–220
questions about, 223
Sinatra for, installing, 218–219
Sinatra for, stopping/reloading, 221
Study Drills on, 223
template creation in, 222–223

The Well-Grounded Rubyist, 242
while true, 116–119
while-loop

exercises in, 110–112
in game creation, 169
for-loop vs., 112
questions about, 112
rules for, 120
Study Drills on, 112

Windows
cat (stream åle) in, 285–286
cd (change directory) in, 261–263

command line tools in, 253–254
cp (copy åle) in, 278–280
exit (exit terminal) in, 285–286
årst programs on, 13, 15
ls (list directory) in, 265–269
mkdir (make directory) in, 258–259
more command in, 284
mv (move åle) in, 281–283
new-item (create empty åle) in,

276–277
popd (return to saved location), 274–275
PowerShell setup in, 252
pushd (save location, go to new location),

274–275
pwd command in, 255
rm (remove åle) in, 287–288
rmdir (remove directory) in, 271–272
running åles on, 15
setup on, 7–8

Word drills, 152
Writing åles

exercises in, 56–57
questions about, 58
Study Drills on, 57–58
write('stuff') command for, 56

Writing problems, 165–166
Writing scanners, 205
Writing skills, importance of, 2

Z

Zen koans, 158

This page intentionally left blank

“Shaw_Index” — 2014/11/8 — 17:18 — page 316 — #26

PEARSONALWAYS LEARNING

The Addison-Wesley

Professional Ruby Series

informit.com/ruby

ISBN-13: 978-0-321-58410-6

ISBN-13: 978-0-321-94427-6

Expert reference books, eBooks, and videos

from experienced practitioners

ISBN-13: 978-0-321-72133-4 ISBN-13: 978-0-321-83205-4

ISBN-13: 978-0-13-303999-3

Look for these titles and more on informit.com/ruby.

Available in print and eBook formats

ISBN-13: 978-0-132-80826-2

“Shaw_Index” — 2014/11/8 — 17:18 — page 317 — #27

Zed Shaw has perfected the

world’s best system for learning

Python. Follow it and you will

succeed—just like the hundreds

of thousands of beginners Zed

has taught to date! You bring

the discipline, commitment, and

persistence; the author supplies

everything else.

In Learn Python the Hard Way,

Third Edition, you’ll learn Python

by working through 52 brilliantly

crafted exercises. Read them. Type their code precisely. (No copying

and pasting!) Fix your mistakes. Watch the programs run. As you do,

you’ll learn how software works; what good programs look like; how

to read, write, and think about code; and how to find and fix your

mistakes using tricks professional programmers use.

This tutorial will reward you for every minute you put into it. Soon,

you’ll know one of the world’s most powerful, popular programming

languages. You’ll be a Python programmer.

Watch Zed, too! The accompanying DVD contains 5+ hours of

passionate, powerful teaching: a complete Python video course!

PEARSONALWAYS LEARNING

For more information and sample content visit informit.com/hardway.

eBook and print formats available

You Will Learn Python!
informit.com/hardway

“Shaw_Index” — 2014/11/8 — 17:18 — page 318 — #28

“Shaw_Index” — 2014/11/8 — 17:18 — page 319 — #29

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

aw_regthisprod_7x9.125.indd 1aw_regthisprod_7x9.125.indd 1 12/5/08 3:36:19 PM12/5/08 3:36:19 PM

	Contents
	Preface
	Acknowledgments

	The Hard Way Is Easier
	Reading and Writing
	Attention to Detail
	Spotting Differences
	Do Not Copy-Paste
	Using the Included Videos
	A Note on Practice and Persistence
	A Warning for the Smarties

	Exercise 1 A Good First Program
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 2 Comments and Pound Characters
	What You Should See
	Study Drills
	Common Student Questions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

