
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321884497
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321884497
https://plusone.google.com/share?url=http://www.informit.com/title/9780321884497
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321884497
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321884497/Free-Sample-Chapter

Database Design
for Mere
Mortals®

Third Edition

This page intentionally left blank

Database Design
for Mere
Mortals®

A Hands-on Guide to Relational
Database Design

Third Edition

Michael J. Hernandez

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibil-
ity for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or pro-
grams contained herein.

The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions and/or
custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Cataloging-in-Publication Data is on file with the Library of Congress.

Copyright © 2013 by Michael J. Hernandez

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission to use material from this work, please submit a
written request to Pearson Education, Inc., Permissions Department, One Lake
Street, Upper Saddle River, New Jersey 07458, or you may fax your request to
(201) 236-3290.

ISBN-13: 978-0-321-88449-7
ISBN-10: 0-321-88449-3
Text printed in the United States on recycled paper at Edwards Brothers Malloy in
Ann Arbor, Michigan.
First printing, February 2013

For my wife, who has always believed in me and continues

to do so.

To those who have helped me along my journey—teachers,

mentors, friends, and colleagues.

Dedicated to anyone who has unsuccessfully attempted

to design a relational database.

This page intentionally left blank

 vii

About the Author

Michael J. Hernandez has been an indepen-

dent relational database consultant specializ-

ing in relational database design. He has more

than twenty years of experience in the tech-

nology industry, developing database applica-

tions for a broad range of clients. He’s been a

contributing author to a wide variety of maga-

zine columns, white papers, books, and

periodicals, and is coauthor of the best-selling

SQL Queries for Mere Mortals® (Addison-Wesley, 2007). Mike has been a

top-rated and noted technical trainer for the government, the military,

the private sector, and companies throughout the United States. He

has spoken at numerous national and international conferences, and

has consistently been a top-rated speaker and presenter.

Aside from his technical background, Mike has a diverse set of skills

and interests that he also pursues, ranging from the artistic to the

metaphysical. His greatest interest is still the guitar, as he’s been a

practicing guitarist for more than forty years and played profession-

ally for fifteen years. He is a great cook, loves to teach (writing, public

speaking, music), has a gift for bad puns, and even reads tarot cards.

He says he’s never going to retire, per se, but rather just change what-

ever it is he’s doing whenever he finally gets tired of it and move on to

something else that interests him.

This page intentionally left blank

 ix

Contents

Foreword xxi

Preface xxv

Acknowledgments xxvii

Introduction xxix
What’s New in the Third Edition xxxii

Who Should Read This Book xxxii

The Purpose of This Book xxxiv

How to Read This Book xxxvi

How This Book Is Organized xxxvii

Part I: Relational Database Design xxxvii

Part II: The Design Process xxxvii

Part III: Other Database Design Issues xxxix

Part IV: Appendixes xxxix

A Word About the Examples and Techniques in This Book xl

A New Approach to Learning xli

PART I: RELATIONAL DATABASE DESIGN 1

Chapter 1: The Relational Database 3

Topics Covered in This Chapter 3

Types of Databases 4

Early Database Models 5

The Hierarchical Database Model 5

The Network Database Model 9

x Contents

The Relational Database Model 12

Retrieving Data 15

Advantages of a Relational Database 16

Relational Database Management Systems 18

Beyond the Relational Model 19

What the Future Holds 21

A Final Note 22

Summary 22

Review Questions 24

Chapter 2: Design Objectives 25

Topics Covered in This Chapter 25

Why Should You Be Concerned with Database Design? 25

The Importance of Theory 27

The Advantage of Learning a Good Design Methodology 29

Objectives of Good Design 30

Benefits of Good Design 31

Database Design Methods 32

Traditional Design Methods 32

The Design Method Presented in This Book 34

Normalization 35

Summary 38

Review Questions 39

Chapter 3: Terminology 41

Topics Covered in This Chapter 41

Why This Terminology Is Important 41

Value-Related Terms 43

Data 43

Information 43

Null 45

The Value of Nulls 46

The Problem with Nulls 47

 Contents xi

Structure-Related Terms 49

Table 49

Field 52

Record 53

View 54

Keys 56

Index 58

Relationship-Related Terms 59

Relationships 59

Types of Relationships 60

Types of Participation 65

Degree of Participation 66

Integrity-Related Terms 67

Field Specification 67

Data Integrity 68

Summary 69

Review Questions 70

PART II: THE DESIGN PROCESS 73

Chapter 4: Conceptual Overview 75

Topics Covered in This Chapter 75

The Importance of Completing the Design Process 76

Defining a Mission Statement and Mission Objectives 77

Analyzing the Current Database 78

Creating the Data Structures 80

Determining and Establishing Table Relationships 81

Determining and Defining Business Rules 81

Determining and Defining Views 83

Reviewing Data Integrity 83

Summary 84

Review Questions 86

xii Contents

Chapter 5: Starting the Process 89

Topics Covered in This Chapter 89

Conducting Interviews 89

Participant Guidelines 91

Interviewer Guidelines (These Are for You) 93

The Case Study: Mike’s Bikes 98

Defining the Mission Statement 100

The Well-Written Mission Statement 100

Composing a Mission Statement 102

Defining the Mission Objectives 105

Well-Written Mission Objectives 106

Composing Mission Objectives 108

Summary 112

Review Questions 113

Chapter 6: Analyzing the Current Database 115

Topics Covered in This Chapter 115

Getting to Know the Current Database 115

Paper-Based Databases 118

Legacy Databases 119

Conducting the Analysis 121

Looking at How Data Is Collected 121

Looking at How Information Is Presented 125

Conducting Interviews 129

Basic Interview Techniques 130

Before You Begin the Interview Process . . . 137

Interviewing Users 137

Reviewing Data Type and Usage 138

Reviewing the Samples 140

Reviewing Information Requirements 144

Interviewing Management 152

Reviewing Current Information Requirements 153

Reviewing Additional Information Requirements 154

 Contents xiii

Reviewing Future Information Requirements 155

Reviewing Overall Information Requirements 155

Compiling a Complete List of Fields 157

The Preliminary Field List 157

The Calculated Field List 164

Reviewing Both Lists with Users and Management 165

Case Study 166

Summary 171

Review Questions 172

Chapter 7: Establishing Table Structures 175

Topics Covered in This Chapter 175

Defining the Preliminary Table List 176

Identifying Implied Subjects 176

Using the List of Subjects 178

Using the Mission Objectives 182

Defining the Final Table List 184

Refining the Table Names 186

Indicating the Table Types 192

Composing the Table Descriptions 192

Associating Fields with Each Table 199

Refining the Fields 202

Improving the Field Names 202

Using an Ideal Field to Resolve Anomalies 206

Resolving Multipart Fields 210

Resolving Multivalued Fields 212

Refining the Table Structures 219

A Word about Redundant Data and Duplicate Fields 219

Using an Ideal Table to Refine Table Structures 220

Establishing Subset Tables 228

Case Study 233

Summary 240

Review Questions 242

xiv Contents

Chapter 8: Keys 243

Topics Covered in This Chapter 243

Why Keys Are Important 244

Establishing Keys for Each Table 244

Candidate Keys 245

Primary Keys 253

Alternate Keys 260

Non-keys 261

Table-Level Integrity 261

Reviewing the Initial Table Structures 261

Case Study 263

Summary 269

Review Questions 270

Chapter 9: Field Specifications 273

Topics Covered in This Chapter 273

Why Field Specifications Are Important 274

Field-Level Integrity 275

Anatomy of a Field Specification 277

General Elements 277

Physical Elements 285

Logical Elements 292

Using Unique, Generic, and Replica Field Specifications 300

Defining Field Specifications for Each Field in the Database 306

Case Study 308

Summary 310

Review Questions 311

Chapter 10: Table Relationships 313

Topics Covered in This Chapter 313

Why Relationships Are Important 314

Types of Relationships 315

One-to-One Relationships 316

One-to-Many Relationships 319

 Contents xv

Many-to-Many Relationships 321

Self-Referencing Relationships 329

Identifying Existing Relationships 333

Establishing Each Relationship 344

One-to-One and One-to-Many Relationships 345

The Many-to-Many Relationship 352

Self-Referencing Relationships 358

Reviewing the Structure of Each Table 364

Refining All Foreign Keys 365

Elements of a Foreign Key 365

Establishing Relationship Characteristics 372

Defining a Deletion Rule for Each Relationship 372

Identifying the Type of Participation for Each Table 377

Identifying the Degree of Participation for Each Table 380

Verifying Table Relationships with Users and Management 383

A Final Note 383

Relationship-Level Integrity 384

Case Study 384

Summary 389

Review Questions 391

Chapter 11: Business Rules 393

Topics Covered in This Chapter 393

What Are Business Rules? 393

Types of Business Rules 397

Categories of Business Rules 399

Field-Specific Business Rules 399

Relationship-Specific Business Rules 401

Defining and Establishing Business Rules 402

Working with Users and Management 402

Defining and Establishing Field-Specific Business Rules 403

Defining and Establishing Relationship-Specific Business

Rules 412

xvi Contents

Validation Tables 417

What Are Validation Tables? 419

Using Validation Tables to Support Business Rules 420

Reviewing the Business Rule Specifications Sheets 425

Case Study 426

Summary 431

Review Questions 434

Chapter 12: Views 435

Topics Covered in This Chapter 435

What Are Views? 435

Anatomy of a View 437

Data View 437

Aggregate View 442

Validation View 446

Determining and Defining Views 448

Working with Users and Management 449

Defining Views 450

Reviewing the Documentation for Each View 458

Case Study 460

Summary 465

Review Questions 466

Chapter 13: Reviewing Data Integrity 469

Topics Covered in This Chapter 469

Why You Should Review Data Integrity 470

Reviewing and Refining Data Integrity 470

Table-Level Integrity 471

Field-Level Integrity 471

Relationship-Level Integrity 472

Business Rules 472

Views 473

Assembling the Database Documentation 473

Done at Last! 475

 Contents xvii

Case Study—Wrap-Up 475

Summary 476

PART III: OTHER DATABASE DESIGN ISSUES 477

Chapter 14: Bad Design—What Not to Do 479

Topics Covered in This Chapter 479

Flat-File Design 480

Spreadsheet Design 481

Dealing with the Spreadsheet View Mind-set 483

Database Design Based on the Database Software 485

A Final Thought 486

Summary 487

Chapter 15: Bending or Breaking the Rules 489

Topics Covered in This Chapter 489

When May You Bend or Break the Rules? 489

Designing an Analytical Database 489

Improving Processing Performance 490

Documenting Your Actions 493

Summary 495

In Closing 497

PART IV: APPENDIXES 499

Appendix A: Answers to Review Questions 501
Chapter 1 501

Chapter 2 502

Chapter 3 504

Chapter 4 505

Chapter 5 506

Chapter 6 508

Chapter 7 510

xviii Contents

Chapter 8 513

Chapter 9 516

Chapter 10 518

Chapter 11 520

Chapter 12 521

Appendix B: Diagram of the Database Design Process 525

Appendix C: Design Guidelines 543
Defining and Establishing Field-Specific Business Rules 543

Defining and Establishing Relationship-Specific Business

Rules 543

Elements of a Candidate Key 544

Elements of a Foreign Key 544

Elements of a Primary Key 545

Rules for Establishing a Primary Key 545

Elements of the Ideal Field 545

Elements of the Ideal Table 546

Field-Level Integrity 546

Guidelines for Composing a Field Description 547

Guidelines for Composing a Table Description 547

Guidelines for Creating Field Names 548

Guidelines for Creating Table Names 548

Identifying Relationships 549

Identifying View Requirements 549

Interview Guidelines 550

Participant Guidelines 550

Interviewer Guidelines 550

Mission Statements 551

Mission Objectives 551

Relationship-Level Integrity 551

Resolving a Multivalued Field 552

Table-Level Integrity 552

Appendix D: Documentation Forms 553

 Contents xix

Appendix E: Database Design Diagram Symbols 557

Appendix F: Sample Designs 559

Appendix G: On Normalization 567
Please Note . . . 568

A Brief Recap 569

How Normalization Is Integrated into My Design Methodology 572

Logical Design versus Physical Design and Implementation 575

Appendix H: Recommended Reading 577

Glossary 579

References 595

Index 597

This page intentionally left blank

 xxi

Foreword

To the Third Edition

Here it is, ten years later, and Mike and I cross paths even less than

we used to. For those who were unaware, we share the same birth-

day (although he’s much older than me, at least one full year), and we

meet up at least once each year and congratulate ourselves for making

it another year. It’s also funny how Microsoft “reboots” its technology

every ten years or so, and now, revisiting the foreword I wrote ten years

ago, nothing much has changed—I’m still hip-deep in a new Microsoft

technology, but this time it’s all about WinRT and Windows 8, rather

than .NET. One thing that hasn’t changed, however, is the need for

carefully planned and executed database design. Nothing Mike wrote

in his original volume has changed very much, and although this

new edition modifies some details, the basics of good database design

 haven’t changed in the ensuing ten years. I must confess a little jeal-

ousy that Mike has written a book with such enduring shelf life, but, if

he’s going to have a book that succeeds for this many years, at least it’s

a good one. Whether this is your first visit to Mike’s detailed explana-

tion of database design, or your second or third, be assured that you’ll

find a carefully considered, helpful path through the vagaries of data-

base design here. But let’s get past the intro, and get to work!

—Ken Getz, November 14, 2012

From the Second Edition . . .

I don’t see Mike Hernandez as much as I used to. Both our profes-

sional lives have changed a great deal since I first wrote the foreword

to his original edition. If nothing else, we travel less, and our paths

cross less often than they did. If you’ll indulge me, I might try to add

that the entire world has changed since that first edition. On the most

xxii Foreword

mundane level, my whole development life has changed, since I’ve

bought into this Microsoft .NET thing whole-heartedly and full-time.

One thing that hasn’t changed, however, is the constant need for data,

and well-designed data. Slapping together sophisticated applications

with poorly designed data will hurt you just as much now as when

Mike wrote his first edition—perhaps even more. Whether you’re just

getting started developing with data, or are a seasoned pro; whether

you’ve read Mike’s previous book, or this is your first time; whether

you’re happier letting someone else design your data, or you love doing

it yourself—this is the book for you. Mike’s ability to explain these con-

cepts in a way that’s not only clear, but fun, continues to amaze me.

—Ken Getz, October 10, 2002

From the First Edition . . .

Perhaps you’re wondering why the world needs another book on data-

base design. When Mike Hernandez first discussed this book with me,

I wondered. But the fact is—as you may have discovered from leafing

through pages before landing here in the foreword—the world does

need a book like this one. You can certainly find many books detailing

the theories and concepts behind the science of database design, but

you won’t find many (if any) written from Mike’s particular perspec-

tive. He has made it his goal to provide a book that is clearly based

on the sturdy principles of mathematical study, but has geared it

toward practical use instead of theoretical possibilities. No matter what

specific database package you’re using, the concepts in this book will

make sense and will apply to your database-design projects.

I knew this was the book for me when I turned to the beginning of

Chapter 6 and saw this suggestion:

Do not adopt the current database structure as the basis for the new
database structure.

 Foreword xxiii

If I’d had someone tell me this when I was starting out on this data-

base developer path years ago I could have saved a ton of time! And

that’s my point here: Mike has spent many years designing databases

for clients; he has spent lots of time thinking, reading, and studying

about the right way to create database applications; and he has put it

all here, on paper, for the rest of us.

This book is full of the right stuff, illustrated with easy-to-understand

examples. That’s not to say that it doesn’t contain the hardcore infor-

mation you need to do databases right—it does, of course. But it’s

geared toward real developers, not theoreticians.

I’ve spent some time talking with Mike about database design. Over

coffee, in meetings, writing courseware, it’s always the same: Mike is

passionate about this material. Just as the operating system designer

seeks the perfect, elegant algorithm, Mike spends his time looking for

just the right way to solve a design puzzle and—as you will read in

this book—how best to explain it to others. I’ve learned much of what

I know about database design from Mike over the years and feel sure

that I have a lot more to learn from this book. After reading through

this concise, detailed presentation of the information you need to know

in order to create professional databases, I’m sure you’ll feel the same

way.

—Ken Getz, MCW Technologies (KenG@mcwtech.com)

This page intentionally left blank

 xxv

Preface

Life, as the most ancient
of all metaphors insists, is a journey . . .

—JONATHAN RABAN,
FOR LOVE AND MONEY

Paths may change and
the course may need adjustment,

but the journey continues . . .
—MICHAEL J. HERNANDEZ

DATABASE DESIGN FOR MERE MORTALS®, SECOND EDTION

To say that the technology field, and database management in par-

ticular, has changed significantly in the nine years since the second

edition of this book was published would be an understatement, to be

sure. Small, handheld devices containing storage capacity and pro-

cessing power that once would have required several room-sized main-

frame computers are now so ubiquitous that many people take them

for granted, especially the more recent generations. (My young nephew

would likely never understand the excitement I experienced when I

purchased my first 40MB storage expansion card for my IBM PC. But

that’s another story.) Database management systems can now handle

terabytes of data, and there’s recently been a considerable amount of

emphasis on storing, managing, and accessing data “in the cloud.”

Is there still a need, then, for a book such as the one you hold in your

hands? Absolutely! Regardless of how complex or complicated database

management becomes, there will always be a need for a book on the

basics of database design. You must learn the fundamentals in order

to know how and why things work the way they do. This is true of

many other areas of expertise, whether they are technical disciplines

such as architectural design and engineering or artistic disciplines

such as music and cooking.

xxvi Preface

My journey has taken me along new and different paths in recent

years, and I’m really enjoying what I do. I’ve been doing a lot more

writing lately, which is why I thought it was time to do this new edi-

tion. I thought I’d share some new nuggets of information I’ve learned

along the way and perhaps clarify my perspectives on this subject a

little more. Now that I’ve completed this work, I can’t wait to see where

my journey takes me next.

An important note to readers:

Visit Informit.com/titles/0321884493 to access additional

 content referenced in the book.

http://www.Informit.com/titles/0321884493

 xxvii

Acknowledgments

Writing is truly a cooperative effort, despite what you may have heard

about it. I’m so grateful for the editors, colleagues, friends, and family

who continue to be ready and willing to lend their help. These are the

people who provided encouragement and kept me focused on the task

at hand, and it is to them that I extend my most heartfelt appreciation.

First and foremost, I want to thank my wonderful editor, Joan Mur-

ray, for the opportunity to write yet another edition of my book. We

had been talking about this project for a couple of years, and it was

her perseverance, patience, kindness, and leadership that helped me

decide to take on this work and bring it to successful completion. I also

want to thank production editor Caroline Senay for guiding the author

review process with such a deft hand and copy editor Audrey Doyle for

her precise and detailed review of the content. And a special thanks

to John Fuller and his production staff—they did great work, as they

always do! I’ve always had a wonderful relationship with the Addison-

Wesley team, and I just can’t imagine why I’d ever want to write techni-

cal books for anyone else.

Next, I’d like to acknowledge my distinguished technical review team:

Tracy Thornton, Tony Wiggins, and Theodor Richardson. These folks

graciously and generously gave their time, effort, and expertise to pro-

vide me with a wealth of valuable feedback and suggestions. This book

definitely benefitted from their contributions. My thanks once again to

each of you for your time and input and for helping to make this edi-

tion even better than I first envisioned.

xxviii Acknowledgments

I want to extend a very special thanks to Ken Getz for once again

providing the foreword for my book. Ken is a well-respected expert, a

colleague, and a good friend. I’m so pleased to have his thoughts and

comments at the beginning of the book.

A special thanks also goes to all of those readers who took the time to

send me their thoughts and comments. I am humbled by their praise

and support and particularly appreciative of the good, constructive

criticism that eventually helped me to improve the material in this

edition. I also wish to thank all the academic institutions, government

agencies, and commercial organizations that have adopted my book

and made it “standard reading” for those just beginning their database

careers. I am honored by their support of my work.

Finally, I want to thank my wife for her unending patience while I was

enmeshed in my writing. Her help and support have been invaluable,

and once again, I owe her a great debt. I would tell you exactly how I

feel about her, but she abhors any sort of PDA (public display of affec-

tion). Instead, I’ll just extend her a laurel and hardy handshake.

 xxix

Introduction

Plain cooking cannot be entrusted to plain cooks.
—COUNTESS MORPHY

In the past, the process of designing a database has been a task

performed by people in information technology (IT) departments and

professional database developers. These people usually had mathemat-

ical, computer science, or systems design backgrounds and typically

worked with large mainframe databases. Many of them were experi-

enced programmers and had coded a number of database application

programs consisting of thousands of lines of code. (And these people

were usually very overworked due to the nature and importance of

their work!)

People designing database systems at that time needed to have a solid

educational background because most of the systems they created

were meant to be used companywide. Even when creating databases

for single departments within a company or for small businesses, data-

base designers still required extensive formal training because of the

complexity of the programming languages and database application

programs they were using. As technology advanced, however, those

educational requirements evolved.

Database software programs have evolved quite a bit since the 1980s,

too. Many vendors developed software that ran on desktop computers

and could be more easily programmed to collect, store, and manage

data than their mainframe counterparts. As computing power and

demand for complexity grew, vendors produced software that allowed

groups of people to access and share centralized data within a variety

xxx Introduction

of environments, such as client/server architectures on computers

connected within local area networks (LANs) and wide area networks

(WANs). People within a company or organization were no longer

strictly dependent on mainframe databases or on having their infor-

mation needs met by centralized IT departments.

The emergence and wide use of the laptop computer and the evolu-

tion and greater acceptance of the Internet have also played a part in

database software development. Laptops have become quite powerful,

with gigabytes of memory and storage, and extremely fast processing

power. They’ve become so ubiquitous that they’ve all but replaced the

desktop computer in many environments. They’ve also allowed people

to be connected to the Internet even in such mundane places as coffee

shops, restaurants, and airports. (And I won’t even mention the pleth-

ora of other devices that now allow the same type of access—that’s for

another book and another discussion.) As such, there’s been a greater

push by both software vendors and businesses to run database soft-

ware and manage databases from the Internet, thus allowing people

to access their applications and data from anywhere at any time. It

will be interesting to see how this whole idea progresses over the next

several years.

Vendors continue to add new features and enhance the tool sets in

their database software, enabling database developers to create more

powerful and flexible database applications. They’re also constantly

improving the ease with which the software can be used, enabling

many people to create their own database applications. Today’s data-

base software greatly simplifies the process of creating efficient data-

base structures and intuitive user interfaces.

Most programs provide sample database structures that you can copy

and alter to suit your specific needs. Although you might initially

think that it would be quite advantageous for you to use these sam-

ple structures as the basis for a new database, you should stop and

 Introduction xxxi

reconsider that move for a moment. Why? Because you could easily

and unwittingly create an improper, inefficient, and incomplete design.

Then you would eventually encounter problems in what you believed to

be a dependable database design. This, of course, raises the question,

“What types of problems would I encounter?”

Most problems that surface in a database fall into two categories:

application problems and data problems. Application problems include

such things as problematic data entry/edit forms, confusing menus

and toolbars, confusing dialog boxes, and tedious task sequences.

These problems typically arise when the database developer is inexpe-

rienced, is unfamiliar with a good application design methodology, or

knows too little about the software he’s using to implement the data-

base. Problems of this nature are common and important to address,

but they are beyond the scope of this work.

❖ Note One good way to solve many of your application prob-

lems is to purchase and study third-party “developer” books that

cover the software you’re using. Such books discuss application

design issues, advanced programming techniques, and various

tips and tricks that you can use to improve and enhance an

application. Armed with these new skills, you can revamp and

fine-tune the database application so that it works correctly,

smoothly, and efficiently.

Data problems, on the other hand, include such things as missing

data, incorrect data, mismatched data, and inaccurate information.

Poor database design is typically the root cause of these types of prob-

lems. A database will not fulfill an organization’s information require-

ments if it is not structured properly. Although poor design is typically

generated by a database developer who lacks knowledge of good data-

base design principles, it shouldn’t necessarily reflect negatively on

xxxii Introduction

the developer. Many people, including experienced programmers and

database developers, have had little or no instruction in any form of

database design methodology. Many are unaware that design method-

ologies even exist. Data problems and poor design are the issues that

this work will address.

What’s New in the Third Edition

I revised this edition to improve readability, update or extend existing

topics, add new content, and enhance its educational value. Here is a

list of the changes you’ll find in this edition.

• Portions of the text have been rewritten to improve clarity and

reader comprehension.

• Figures have been updated for improved relevance as

appropriate.

• The discussion on data types has been updated.

• The Recommended Reading section includes the latest editions of

the books and now includes each book’s ISBN.

• A new appendix on Normalization very briefly explains the con-

cept and then explains in detail how it is incorporated into the

design process presented in this book.

Visit Informit.com/titles/0321884493 to access additional content ref-

erenced in the book.

Who Should Read This Book

 No previous background in database design is necessary to read this

book. The reason you have this book in your hands is to learn how

to design a database properly. If you’re just getting into database

 Who Should Read This Book xxxiii

management and you’re thinking about developing your own data-

bases, this book will be very valuable to you. It’s better that you learn

how to create a database properly from the beginning than that you

learn by trial and error. Believe me, the latter method takes much

longer.

If you fall into the category of those people who have been working

with database programs for a while and are ready to begin developing

new databases for your company or business, you should read this

book. You probably have a good feel for what a good database structure

should look like, but aren’t quite sure how database developers arrive

at an effective design. Maybe you’re a programmer who has created a

number of databases following a few basic guidelines, but you have

always ended up writing a lot of code to get the database to work prop-

erly. If this is the case, this book is also for you.

It would be a good idea for you to read this book even if you already

have some background in database design. Perhaps you learned a

design methodology back in college or attended a database class that

discussed design, but your memory is vague about some details, or

there were parts of the design process that you just did not completely

understand. Those points with which you had difficulty will finally

become clear once you learn and understand the design process pre-

sented in this book.

This book is also appropriate for those of you who are experienced

database developers and programmers. Although you may already

know many of the aspects of the design process presented here, you’ll

probably find that there are some elements that you’ve never before

encountered or considered. You may even come up with fresh ideas

about how to design your databases by reviewing the material in this

book because many of the design processes familiar to you are pre-

sented here from a different viewpoint. At the very least, this book can

serve as a great refresher course in database design.

xxxiv Introduction

The Purpose of This Book

In general terms, there are three phases to the overall database devel-

opment process.

 1. Logical design: The first phase involves determining and defin-

ing tables and their fields, establishing primary and foreign

keys, establishing table relationships, and determining and

establishing the various levels of data integrity.

 2. Physical implementation: The second phase entails creating the

tables, establishing key fields and table relationships, and using

the proper tools to implement the various levels of data integrity.

 3. Application development: The third phase involves creating an

application that allows a single user or group of users to interact

with the data stored in the database. The application develop-

ment phase itself can be divided into separate processes, such

as determining end-user tasks and their appropriate sequences,

determining information requirements for report output, and

creating a menu system for navigating the application.

You should always go through the logical design first and execute it as

completely as possible. After you’ve created a sound structure, you can

then implement it within any database software you choose. As you

begin the implementation phase, you may find that you need to modify

the database structure based on the pros and cons or strengths and

weaknesses of the database software you’ve chosen. You may even

decide to make structural modifications to enhance data processing

performance. Performing the logical design first ensures that you

make conscious, methodical, clear, and informed decisions concern-

ing the structure of your database. As a result, you help minimize the

potential number of further structural modifications you might need to

make during the physical implementation and application development

phases.

 The Purpose of This Book xxxv

This book deals with only the logical design phase of the overall devel-

opment process, and the book’s main purpose is to explain the process

of relational database design without using the advanced, orthodox

methodologies found in an overwhelming majority of database design

books. I’ve taken care to avoid the complexities of these methodologies

by presenting a relatively straightforward, commonsense approach to

the design process. I also use a simple and straightforward data mod-

eling method as a supplement to this approach, and present the entire

process as clearly as possible and with a minimum of technical jargon.

There are many database design books out on the market that include

chapters on implementing the database within a specific database

product, and some books even seem to meld the design and implemen-

tation phases together. (I’ve never particularly agreed with the idea

of combining these phases, and I’ve always maintained that a data-

base developer should perform the logical design and implementation

phases separately to ensure maximum focus, effectiveness, and effi-

ciency.) The main drawback that I’ve encountered with these types of

books is that it can be difficult for a reader to obtain any useful or rele-

vant information from the implementation chapters if he or she doesn’t

work with the particular database software or programming language

that the book incorporates. It is for this reason that I decided to write a

book that focuses strictly on the logical design of the database.

This book should be easier to read than other books you may have

encountered on the subject. Many of the database design books on the

market are highly technical and can be difficult to assimilate. I think

most of these books can be confusing and overwhelming if you are not

a computer science major, database theorist, or experienced database

developer. The design principles you’ll learn within these pages are

easy to understand and remember, and the examples are common and

generic enough to be relevant to a wide variety of situations.

Most people I’ve met in my travels around the country have told me

that they just want to learn how to create a sound database structure

xxxvi Introduction

without having to learn about normal forms or advanced mathematical

theories. Many people are not as worried about implementing a struc-

ture within a specific database software program as they are about

learning how to optimize their data structures and how to impose data

integrity. In this book, you’ll learn how to create efficient database

structures, how to impose several levels of data integrity, as well as

how to relate tables together to obtain information in an almost infinite

number of ways. Don’t worry; this isn’t as difficult a task as you might

think. You’ll be able to accomplish all of this by understanding a few

key terms and by learning and using a specific set of commonsense

techniques and concepts.

You’ll also learn how to analyze and leverage an existing database,

determine information requirements, and determine and implement

business rules. These are important topics because many of you will

probably inherit old databases that you’ll need to revamp using what

you’ll learn by reading this book. They’ll also be just as important

when you create a new database from scratch.

When you finish reading this book, you’ll have the knowledge and tools

necessary to create a good relational database structure. I’m confident

that this entire approach will work for a majority of developers and the

databases they need to create.

How to Read This Book

I strongly recommend that you read this book in sequence from begin-

ning to end, regardless of whether you are a novice or a professional.

You’ll keep everything in context this way and avoid the confusion

that generally comes from being unable to see the “big picture” first.

It’s also a good idea to learn the process as a whole before you begin to

focus on any one part.

 How This Book Is Organized xxxvii

If you are reading this book to refresh your design skills, you could

read just those sections that are of interest to you. As much as pos-

sible, I’ve tried to write each chapter so that it can stand on its own;

nonetheless, I still recommend that you glance through each chapter

to make sure you’re not missing any new ideas or points on design that

you may not have considered up to now.

How This Book Is Organized

Here’s a brief overview of what you’ll find in each part and each

chapter.

Part I: Relational Database Design

This section provides an introduction to databases, the idea of data-

base design, and some of the terminology you’ll need to be familiar

with in order to learn and understand the design process presented in

this book.

Chapter 1, “The Relational Database,” provides a brief discussion of

the types of databases you’ll encounter, common database models, and

a brief history of the relational database.

Chapter 2, “Design Objectives,” explores why you should be concerned

with design, points out the objectives and advantages of good design,

and provides a brief introduction to Normalization and normal forms.

Chapter 3, “Terminology,” covers the terms you need to know in order

to learn and understand the design methodology presented in this book.

Part II: The Design Process

Each aspect of the database design process is discussed in detail in

Part II, including establishing table structures, assigning primary

xxxviii Introduction

keys, setting field specifications, establishing table relationships, set-

ting up views, and establishing various levels of data integrity.

Chapter 4, “Conceptual Overview,” provides an overview of the design

process, showing you how the different components of the process fit

together.

Chapter 5, “Starting the Process,” covers how to define a mission

statement and mission objectives for the database, both of which pro-

vide you with an initial focus for creating your database.

Chapter 6, “Analyzing the Current Database,” covers issues concern-

ing the existing database. We look at reasons for analyzing the current

database, how to look at current methods of collecting and presenting

data, why and how to conduct interviews with users and management,

and how to compile initial field lists.

Chapter 7, “Establishing Table Structures,” covers topics such as

determining and defining what subjects the database should track,

associating fields with tables, and refining table structures.

Chapter 8, “Keys,” covers the concept of keys and their importance to

the design process, as well as how to define candidate and primary

keys for each table.

Chapter 9, “Field Specifications,” covers a topic that a number of data-

base developers tend to minimize. Besides indicating how each field

is created, field specifications determine the very nature of the values

a field contains. Topics in this chapter include the importance of field

specifications, types of specification characteristics, and how to define

specifications for each field in the database.

Chapter 10, “Table Relationships,” explains the importance of table

relationships, types of relationships, setting up relationships, and

establishing relationship characteristics.

 How This Book Is Organized xxxix

Chapter 11, “Business Rules,” covers types of business rules, deter-

mining and establishing business rules, and using validation tables.

Business rules are very important in any database because they pro-

vide a distinct level of data integrity.

Chapter 12, “Views,” looks into the concept of views and why they are

important, types of views, and how to determine and set up views.

Chapter 13, “Reviewing Data Integrity,” reviews each level of integrity

that has been defined and discussed in previous chapters. Here you

learn that it’s a good idea to review the final design of the database

structure to ensure that you’ve imposed data integrity as completely as

you can.

Part III: Other Database Design Issues

This section deals with topics such as avoiding bad design and bend-

ing the rules set forth in the design process.

Chapter 14, “Bad Design—What Not to Do,” covers the types of designs

you should avoid, such as a flat-file design and a spreadsheet design.

Chapter 15, “Bending or Breaking the Rules,” discusses those rare

instances in which it may be necessary to stray from the techniques

and concepts of the design process. This chapter tells you when you

should consider bending the rules, as well as how it should be done.

Part IV: Appendixes

These appendices provide information that I thought would be valuable

to you as you’re learning about the database design process and when

you’re working on developing your database.

Appendix A, “Answers to Review Questions,” contains the answers to

all of the review questions in Chapters 1 through 12.

xl Introduction

Appendix B, “Diagram of the Database Design Process,” provides a

diagram that maps the entire database design process.

Appendix C, “Design Guidelines,” provides an easy reference to the

various sets of design guidelines that appear throughout the book.

Appendix D, “Documentation Forms,” provides blank copies of the

Field Specifications, Business Rule Specifications, and View Specifica-

tions sheets, which you can copy and use on your database projects.

Appendix E, “Database Design Diagram Symbols,” contains a quick

and easy reference to the diagram symbols used throughout the book.

Appendix F, “Sample Designs,” contains sample database designs that

can serve as the basis for ideas for databases you may want or need to

create.

Appendix G, “On Normalization,” provides a discussion on how I incor-

porated Normalization into my design methodology.

Appendix H, “Recommended Reading,” provides a list of books that

you should read if you are inte rested in pursuing an in-depth study of

database technology.

Glossary contains concise definitions of various words and phrases

used throughout the book.

IMPORTANT: READ THIS SECTION!

A Word About the Examples and
Techniques in This Book

You’ll notice that there are a wide variety of examples in this book.

I’ve made sure that they are as generic and relevant as possible. How-

ever, you may notice that several of the examples are rather simplified,

 A Word About the Examples and Techniques in This Book xli

incomplete, or occasionally even incorrect. Believe it or not, I created

them that way on purpose.

I’ve created some examples with errors so that I could illustrate spe-

cific concepts and techniques. Without these examples, you wouldn’t

see how the concepts or techniques are put to use, as well as the

results you should expect from using them. Other examples are simple

because, once again, the focus is on the technique or concept and not

on the example itself. For instance, there are many ways that you can

design an order-tracking database. However, the structure of the sam-

ple order-tracking database I use in this book is simple because the

focus is specifically on the design process, not on creating an elaborate

order-tracking database system.

So what I’m really trying to emphasize here is this:

Focus on the concept or technique and its intended results, not

on the example used to illustrate it.

A New Approach to Learning

Here’s an approach to learning the design process (or pretty much any-

thing else, for that matter) that I’ve found very useful in my database

design classes.

Think of all the techniques used in the design process as a set of tools;

each tool (or technique) is used for a specific purpose. The idea here

is that once you learn how a tool is used generically, you can then use

that tool in any number of situations. The reason you can do this is

because you use the tool the same way in each situation.

Take a Crescent wrench, for example. Generically speaking, you use

a Crescent wrench to fasten and unfasten a nut to a bolt. You open or

close the jaw of the wrench to fit a given bolt by using the adjusting

screw located on the head of the wrench. Now that you’re clear about its

use, try using it on a few bolts. Try it on the legs of an outdoor chair, or

xlii Introduction

the fan belt cover on an engine, or the side panel of an outdoor cooling

unit, or the hinge plates of an iron gate. Do you notice that regard-

less of where you encounter a nut and bolt, you can always fasten and

unfasten the nut by using the Crescent wrench in the same manner?

The tools used to design a database work in exactly the same way.

Once you understand how a tool is used generically, it will work the

same way regardless of the circumstances under which it is used. For

instance, consider the tool (or technique) for decomposing a field value.

Say you have a single ADDRESS field in a CUSTOMERS table that con-

tains the street address, city, state, and zip code for a given customer.

You’ll find it difficult to use this field in your database because it

contains more than one item of data; you’ll certainly have a hard time

retrieving information for a particular city or sorting the information

by a specific zip code.

The solution to this apparent dilemma is to decompose the ADDRESS

field into smaller fields. You do this by identifying the distinct items

that make up the value of the field, and then treating each item as its

own separate field. That’s all there is to it! This process constitutes a

“tool” that you can now use on any field containing a value composed

of two or more distinct data items, such as these sample fields. The

following table shows the results of the decomposition process.

Current Field Name Sample Value New Field Names

Address 7402 Kingman Dr., Seattle,
WA 98012

Street Address, City,
State, Zip Code

Phone (206) 555-5555 Area Code, Phone
Number

Name Michael J. Hernandez First Name, Middle
Initial, Last Name

EmployeeCode ITDEV0516 Department, Category,
ID Number

 A Word About the Examples and Techniques in This Book xliii

❖ Note You’ll learn more about decomposing field values in

Chapter 7, “Establishing Table Structures.”

You can use all of the techniques (“tools”) that are part of the design

process presented in this book in the same manner. You’ll be able to

design a sound database structure using these techniques regardless

of the type of database you need to create. Just be sure to remember

this:

Focus on the concept or technique being presented and its

intended results, not on the example used to illustrate it.

This page intentionally left blank

 243

8
Keys

A fact in itself is nothing. It is valuable only for the idea
attached to it, or for the proof which it furnishes.

—CLAUDE BERNARD

Topics Covered in This Chapter

Why Keys Are Important

Establishing Keys for Each Table

Table-Level Integrity

Reviewing the Initial Table Structures

Case Study

Summary

Review Questions

By now you’ve identified all the subjects that the database will track

and defined the table structures that will represent those subjects.

Furthermore, you’ve put the structures through a screening process

to control their makeup and quality. In this next stage of the data-

base design process, you’ll begin the task of assigning keys to each

table. You’ll soon learn that there are different types of keys, and each

plays a particular role within the database structure. All but one key

is assigned during this stage; you’ll assign the remaining key later

(in Chapter 10, “Table Relationships”) as you establish relationships

between tables.

244 Chapter 8 Keys

Why Keys Are Important

Keys are crucial to a table structure for the following reasons.

• They ensure that each record in a table is precisely identified.

As you already know, a table represents a singular collection

of similar objects or events. (For example, a CLASSES table

represents a collection of classes, not just a single class.) The

complete set of records within the table constitutes the collec-

tion, and each record represents a unique instance of the table’s

subject within that collection. You must have some means of

accurately identifying each instance, and a key is the device that

allows you to do so.

• They help establish and enforce various types of integrity. Keys are

a major component of table-level integrity and relationship-level

integrity. For instance, they enable you to ensure that a table has

unique records and that the fields you use to establish a relation-

ship between a pair of tables always contain matching values.

• They serve to establish table relationships. As you’ll learn in

Chapter 10, you’ll use keys to establish a relationship between a

pair of tables.

Always make certain that you define the appropriate keys for each

table. Doing so will help you guarantee that the table structures are

sound, that redundant data within each table is minimal, and that the

relationships between tables are solid.

Establishing Keys for Each Table

Your next task is to establish keys for each table in the database.

There are four main types of keys: candidate, primary, foreign, and non-

keys. A key’s type determines its function within the table.

 Establishing Keys for Each Table 245

Candidate Keys

The first type of key you establish for a table is the candidate key,

which is a field or set of fields that uniquely identifies a single instance

of the table’s subject. Each table must have at least one candidate key.

You’ll eventually examine the table’s pool of available candidate keys

and designate one of them as the official primary key for the table.

Before you can designate a field as a candidate key, you must make cer-

tain it complies with all of the Elements of a Candidate Key. These ele-

ments constitute a set of guidelines you can use to determine whether

the field is fit to serve as a candidate key. You cannot designate a field

as a candidate key if it fails to conform to any of these elements.

Elements of a Candidate Key

• It cannot be a multipart field. You’ve seen the problems with

 multipart fields, so you know that using one as an identifier is

a bad idea.

• It must contain unique values. This element helps you guard

against duplicating a given record within the table. Duplicate

records are just as bad as duplicate fields, and you must avoid

them at all costs.

• It cannot contain null values. As you already know, a null value

represents the absence of a value. There’s absolutely no way a

candidate key field can identify a given record if its value is null.

• Its value cannot cause a breach of the organization’s security or

 privacy rules. Values such as passwords and Social Security

numbers are not suitable for use as a candidate key.

• Its value is not optional in whole or in part. A value that is optional

implies that it may be null at some point. You can infer, then,

that an optional value automatically violates the previous ele-

ment and is, therefore, unacceptable. (This caveat is especially

246 Chapter 8 Keys

applicable when you want to use two or more fields as a candi-

date key.)

• It comprises a minimum number of fields necessary to define

uniqueness. You can use a combination of fields (treated as a

single unit) to serve as a candidate key, so long as each field

contributes to defining a unique value. Try to use as few fields

as possible, however, because overly complex candidate keys

can ultimately prove to be difficult to work with and difficult to

understand.

• Its values must uniquely and exclusively identify each record in

the table. This element helps you guard against duplicate records

and ensures that you can accurately reference any of the table’s

records from other tables in the database.

• Its value must exclusively identify the value of each field within a

given record. This element ensures that the table’s candidate keys

provide the only means of identifying each field value within the

record. (You’ll learn more about this particular element in the

section on primary keys.)

• Its value can be modified only in rare or extreme cases. You should

never change the value of a candidate key unless you have an

absolute and compelling reason to do so. A field is likely to have

difficulty conforming to the previous elements if you can change

its value arbitrarily.

Establishing a candidate key for a table is quite simple: Look for a field

or set of fields that conforms to all of the Elements of a Candidate Key.

You’ll probably be able to define more than one candidate key for a

given table. Loading a table with sample data will give you the means

to identify potential candidate keys accurately. (You used this same

technique in the previous chapter.)

See if you can identify any candidate keys for the table in Figure 8.1.

 Establishing Keys for Each Table 247

You probably identified EMPLOYEE ID, SOCIAL SECURITY NUMBER, EMPLAST

NAME, EMPFIRST NAME and EMPLAST NAME, EMPZIPCODE, and EMPHOME PHONE

as potential candidate keys. But you’ll need to examine these fields more

closely to determine which ones are truly eligible to become candidate

keys. Remember that you must automatically disregard any field(s) fail-

ing to conform to even one of the Elements of a Candidate Key.

Upon close examination, you can draw the following conclusions.

• EMPLOYEE ID is eligible. This field conforms to every element of a

candidate key.

• SOCIAL SECURITY NUMBER is ineligible because it could contain null

values and will most likely compromise the organization’s privacy

rules. Contrary to what the sample data shows, this field could

contain a null value. For example, there are many people working

in the United States who do not have Social Security numbers

because they are citizens of other countries.

❖ Note Despite its wides pread use in many types of databases, I

strongly recommend that you refrain from using SOCIAL SECURITY

NUMBER as a candidate key (or as a primary key, for that matter)

Employees

EmpFirst Name

Kira

Timothy

Shannon

Estela

Susan

Katherine

Timothy

Social Security Number

987-65-9938

987-65-0039

987-65-1299

987-65-5583

987-65-6529

987-65-6531

987-65-1734

EmpLast Name

Bently

Ennis

Black

Rosales

Black

Erlich

Sherman

EmpStreet Address

1204 Bryant Road

7402 Kingman Drive

4141 Lake City Way

101 C Street, Apt. 32

2100 Mineola Avenue

101 C Street, Apt. 32

66 NE 120th

EmpCity

Seattle

Redmond

Seattle

Bellevue

Seattle

Bellevue

Bothell

EmpState

WA

WA

WA

WA

WA

WA

WA

EmpZipcode

98157

98115

98136

98046

98115

98046

98216

EmpHome Phone

363-9948

527-4992

336-5992

322-6992

572-9948

322-6992

522-3232

Employee ID

1000

1002

1003

1005

1004

1001

1006

Figure 8.1 Are there any candidate keys in this table?

continues

248 Chapter 8 Keys

in any of your database structures. In many instances, it doesn’t

conform to the Elements of a Candidate Key.

The Philadelphia Region section of the Social Security Online web

site provides some very interesting facts about Social Security

numbers and identify theft, which is yet another good reason why

you should avoid using SSNs as candidate/primary keys. You can

access their site here: www.ssa.gov/phila/ProtectingSSNs.htm.

• EMPLAST NAME is ineligible because it can contain duplicate values.

As you’ve learned, the values of a candidate key must be unique.

In this case there can be more than one occurrence of a particu-

lar last name.

• EMPFIRST NAME and EMPLAST NAME are eligible. The combined values

of both fields will supply a unique identifier for a given record.

Although multiple occurrences of a particular first name or last

name will occur, the combination of a given first name and last

name will always be unique. (Some of you are probably saying,

“This is not necessarily always true.” You’re absolutely right.

Don’t worry; we’ll address this issue shortly.)

• EMPZIPCODE is ineligible because it can contain duplicate values.

Many people live in the same zip code area, so the values in

EMPZIPCODE cannot possibly be unique.

• EMPHOME PHONE is ineligible because it can contain duplicate values

and is subject to change. This field will contain duplicate values

for either of these two reasons.

 1. One or more family members work for the organization.

 2. One or more people share a residence that contains a single

phone line.

http://www.ssa.gov/phila/ProtectingSSNs.htm

 Establishing Keys for Each Table 249

You can confidently state that the EMPLOYEES table has two can-

didate keys: EMPLOYEE ID and the combination of EMPFIRST NAME and

EMPLAST NAME.

Mark candidate keys in your table structures by writing the letters

“CK” next to the name of each field you designate as a candidate key. A

candidate key composed of two or more fields is known as a composite

candidate key, and you’ll write “CCK” next to the names of the fields

that make up the key. When you have two or more composite candidate

keys, use a number within the mark to distinguish one from another.

If you had two composite candidate keys, for example, you would mark

one as “CCK1” and the other as “CCK2.”

Apply this technique to the candidate keys for the EMPLOYEES table

in Figure 8.1. Figure 8.2 shows how your structure should look when

you’ve completed this task.

Table Structures

Employees

EmpLast Name CCK

EmpStreet Address

EmpCity

EmpZipcode

EmpHome Phone

Employee ID CK

EmpState

EmpFirst Name CCK

Social Security Number

Figure 8.2 Marking candidate keys in the EMPLOYEES table structure

250 Chapter 8 Keys

Now try to identify as many candidate keys as you can for the PARTS

table in Figure 8.3.

At first glance, you may believe that PART NAME, MODEL NUMBER, the

combination of PART NAME and MODEL NUMBER, and the combination of

MANUFACTURER NAME and PART NAME are potential candidate keys. After

investigating this theory, however, you come up with the following

results.

• PART NAME is ineligible because it can contain duplicate values. A

given part name will be duplicated when the part is manufac-

tured in several models. For example, this is the case with Faust

Brake Levers.

• MODEL NUMBER is ineligible because it can contain null values. A

candidate key value must exist for each record in the table. As

you can see, some parts do not have a model number.

• PART NAME and MODEL NUMBER are ineligible because either field can

contain null values. The simple fact that MODEL NUMBER can con-

tain null values instantly disqualifies this combination of fields.

• MANUFACTURER NAME and PART NAME are ineligible because the values

for these fields seem to be optional. Recall that a candidate key

Parts

Part Name

Shimka XT Cranks

Faust Brake Levers

MiniMite Pump

Hobo Fanny Pack

Diablo Bike Pedals

Shimka Truing Stand

Faust Brake Levers

Model Number

XT-113

BL / 45

Mtn-A26

SP-100

BL / 60

Manufacturer Name

Shimka Incorporated

Faust USA

MiniMite

Hobo Bike Company

Diablo Sports

Faust USA

Retail Price

199.95

53.79

35.00

59.00

129.50

37.95

79.95

Figure 8.3 Can you identify any candidate keys in the PARTS table?

 Establishing Keys for Each Table 251

value cannot be optional in whole or in part. In this instance,

you can infer that entering the manufacturer name is optional

when it appears as a component of the part name; therefore, you

cannot designate this combination of fields as a candidate key.

It’s evident that you don’t have a single field or set of fields that quali-

fies as a candidate key for the PARTS table. This is a problem because

each table must have at least one candidate key. Fortunately, there is a

solution.

Artificial Candidate Keys

When you determine that a table does not contain a candidate key,

you can create and use an artificial (or surrogate) candidate key. (It’s

artificial in the sense that it didn’t occur “naturally” in the table; you

have to manufacture it.) You establish an artificial candidate key by

creating a new field that conforms to all of the Elements of a Candi-

date Key and then adding it to the table; this field becomes the official

candidate key.

You can now solve the problem in the PARTS table. Create an artificial

candidate key called PART NUMBER and assign it to the table. (The new

field will automatically conform to the Elements of a Candidate Key

because you’re creating it from scratch.) Figure 8.4 shows the revised

structure of the PARTS table.

When you’ve established an artificial candidate key for a table, mark

the field name with a “CK” in the table structure, just as you did for

the EMPLOYEES table in the previous example.

You may also choose to create an artificial candidate key when it

would be a stronger (and thus, more appropriate) candidate key than

any of the existing candidate keys. Assume you’re working on an

EMPLOYEES table and you determine that the only available candi-

date key is the combination of the EMPFIRST NAME and EMPLAST NAME

252 Chapter 8 Keys

fields. Although this may be a valid candidate key, using a single-field

candidate key might prove more efficient and may identify the subject

of the table more easily. Let’s say that everyone in the organization

is accustomed to using a unique identification number rather than a

name as a means of identifying an employee. In this instance, you can

choose to create a new field named EMPLOYEE ID and use it as an arti-

ficial candidate key. This is an absolutely acceptable practice—do this

without hesitation or reservation if you believe it’s appropriate.

❖ Note I commonly create an ID field (such as EMPLOYEE ID, VEN-

DOR ID, DEPARTMENT ID, CATEGORY ID, and so on) and use it as an

artificial candidate key. It always conforms to the Elements of a

Candidate Key, makes a great primary key (eventually), and, as

you’ll see in Chapter 10, makes the process of establishing table

relationships much easier.

Review the candidate keys you’ve selected and make absolutely certain

that they thoroughly comply with the Elements of a Candidate Key.

Don’t be surprised if you discover that one of them is not a candidate

key after all—incorrectly identifying a field as a candidate key happens

Parts

Part Number

41000

41001

41002

41003

41004

41005

41006

Part Name

Shimka XT Cranks

Faust Brake Levers

MiniMite Pump

Hobo Fanny Pack

Diablo Bike Pedals

Shimka Truing Stand

Faust Brake Levers

Model Number

XT-113

BL / 45

Mtn-A26

SP-100

BL / 60

Manufacturer Name

Shimka Incorporated

Faust USA

MiniMite

Hobo Bike Company

Diablo Sports

Faust USA

Retail Price

199.95

53.79

35.00

59.00

129.50

37.95

79.95

Figure 8.4 The PARTS table with the artificial candidate key PART NUMBER

 Establishing Keys for Each Table 253

occasionally. When this does occur, just remove the “CK” designator

from the field name in the table structure. Deleting a candidate key

won’t pose a problem so long as the table has more than one candidate

key. If you discover, however, that the only candidate key you identi-

fied for the table is not a candidate key, you must establish an artificial

candidate key for the table. After you’ve defined the new candidate key,

remember to mark its name with a “CK” in the table structure.

Primary Keys

By now, you’ve established all the candidate keys that seem appropri-

ate for every table. Your next task is to establish a primary key for each

table, which is the most important key of all.

• A primary key field exclusively identifies the table throughout the

database structure and helps establish relationships with other

tables. (You’ll learn more about this in Chapter 10.)

• A primary key value uniquely identifies a given record within

a table and exclusively represents that record throughout the

entire database. It also helps to guard against duplicate records.

A primary key must conform to the exact same elements as a candi-

date key. This requirement is easy to fulfill because you select a pri-

mary key from a table’s pool of available candidate keys. The process

of selecting a primary key is somewhat similar to that of a presidential

election. Every four years, several people run for the office of President

of the United States. These individuals are known as “candidates”

and they have all of the qualifications required to become president. A

national election is held, and a single individual from the pool of avail-

able presidential candidates is elected to serve as the country’s official

president. Similarly, you identify each qualified candidate key in the

table, run your own election, and select one of them to become the offi-

cial primary key of the table. You’ve already identified the candidates,

so now it’s election time!

254 Chapter 8 Keys

Assuming that there is no other marginal preference, here are a couple

of guidelines you can use to select an appropriate primary key.

 1. If you have a simple (single-field) candidate key and a composite

candidate key, choose the simple candidate key. It’s always best

to use a candidate key that contains the least number of fields.

 2. Choose a candidate key that incorporates part of the table name

within its own name. For example, a candidate key with a name

such as SALES INVOICE NUMBER is a good choice for the SALES

INVOICES table.

Examine the candidate keys and choose one to serve as the primary

key for the table. The choice is largely arbitrary—you can choose the

one that you believe most accurately identifies the table’s subject or the

one that is the most meaningful to everyone in the organization. For

example, consider the EMPLOYEES table again in Figure 8.5.

Table Structures

Employees

EmpLast Name CCK

EmpStreet Address

EmpCity

EmpZipcode

EmpHome Phone

Employee ID CK

EmpState

EmpFirst Name CCK

Social Security Number

Figure 8.5 Which candidate key should become the primary key of the
 EMPLOYEES table?

 Establishing Keys for Each Table 255

Either of the candidate keys you identified within the table could serve

as the primary key. You might decide to choose EMPLOYEE ID if everyone

in the organization is accustomed to using this number as a means of

identifying employees in items such as tax forms and employee bene-

fits programs. The candidate key you ultimately choose becomes the

primary key of the table and is governed by the Elements of a Primary

Key. These elements are exactly the same as those for the candidate

key, and you should enforce them to the letter. For the sake of clarity,

here are the Elements of a Primary Key:

Elements of a Primary Key

• It cannot be a multipart field.

• It must contain unique values.

• It cannot contain null values.

• Its value cannot cause a breach of the organization’s security or

privacy rules.

• Its value is not optional in whole or in part.

• It comprises a minimum number of fields necessary to define

uniqueness.

• Its values must uniquely and exclusively identify each record in

the table.

• Its value must exclusively identify the value of each field within a

given record.

• Its value can be modified only in rare or extreme cases.

Before you finalize your selection of a primary key, it is imperative that

you make absolutely certain that the primary key fully complies with

this particular element:

Its value must exclusively identify the value of each field within a
given record.

256 Chapter 8 Keys

Each field value in a given record should be unique throughout the

entire database (unless it is participating in establishing a relationship

between a pair of tables) and should have only one exclusive means of

identification—the specific primary key value for that record.

You can determine whether a primary key fully complies with this ele-

ment by following these steps.

 1. Load the table with sample data.

 2. Select a record for test purposes and note the current primary

key value.

 3. Examine the value of the first field (the one immediately after

the primary key) and ask yourself this question:

Does this primary key value exclusively identify the current

value of <fieldname>?

 a. If the answer is yes, move to the next field and repeat the

question.

 b. If the answer is no, remove the field from the table, move to the

next field, and repeat the question.

 4. Continue this procedure until you’ve examined every field value

in the record.

A field value that the primary key does not exclusively identify indi-

cates that the field itself is unnecessary to the table’s structure; there-

fore, you should remove the field and reconfirm that the table complies

with the Elements of the Ideal Table. You can then add the field you

just removed to another table structure, if appropriate, or you can dis-

card it completely because it is truly unnecessary.

Here’s an example of how you might apply this technique to the partial

table structure in Figure 8.6. (Note that INVOICE NUMBER is the primary

key of the table.)

 Establishing Keys for Each Table 257

First, you load the table with sample data. You then select a record for

test purposes—we’ll use the third record for this example—and note

the value of the primary key (13002). Now, pose the following question

for each field value in the record.

Does this primary key value exclusively identify the current

value of . . .

INVOICE DATE? Yes, it does. This invoice number will always

identify the specific date that the invoice was

created.

CUSTFIRST NAME? Yes, it does. This invoice number will always

identify the specific first name of the particular

customer who made this purchase.

CUSTLAST NAME? Yes, it does. This invoice number will always

identify the specific last name of the particular

customer who made this purchase.

EMPFIRST NAME? Yes, it does. This invoice number will always

identify the specific first name of the particular

employee who served the customer for this sale.

Sales Invoices

363-9948

527-4992

336-5992

322-6992

572-9948

322-6992

EmpHome Phone

Rosales

Bently

Bently

Rosales

Black

Erlich

EmpLast Name

Estela

Kira

Kira

Estela

Shannon

Katherine

EmpFirst Name

DeSoto

Aguilar

Cunningham

DeSoto

Aguilar

Mattson

CustLast Name

Frank

Carmen

David

Frank

Carmen

Gregory

CustFirst Name

06/15/02

06/16/02

06/15/02

06/15/02

06/16/02

06/17/02

Invoice Date

13000

13003

13001

13002

13004

13005

Invoice Number

Figure 8.6 Does the primary key exclusively identify the value of each field in
this table?

258 Chapter 8 Keys

EMPLAST NAME? Yes, it does. This invoice number will always

identify the specific last name of the particular

employee who served the customer for this sale.

EMPHOME PHONE? No, it doesn’t! The invoice number indirectly

identifies the employee’s home phone number

via the employee’s name. In fact, it is the current

value of both EMPFIRST NAME and EMPLAST NAME

that exclusively identifies the value of EMPHOME

PHONE—change the employee’s name and you

must change the phone number as well. You

should now remove EMPHOME PHONE from the

table for two reasons: The primary key does

not exclusively identify its current value and

(as you’ve probably already ascertained) it is an

unnecessary field. As it turns out, you can dis-

card this field completely because it is already

part of the EMPLOYEES table structure.

After you’ve removed the unnecessary fields you identified during this

test, examine the revised table structure and make sure it complies

with the Elements of the Ideal Table.

The primary key should now exclusively identify the values of the

remaining fields in the table. This means that the primary key is truly

sound and you can designate it as the official primary key for the

table. Remove the “CK” next to the field name in the table structure

and replace it with a “PK.” (A primary key composed of two or more

fields is known as a composite primary key, and you mark it with the

letters “CPK.”) Figure 8.7 shows the revised structure of the SALES

INVOICES table with INVOICE NUMBER as its primary key.

As you create a primary key for each table in the database, keep these

two rules in mind:

 Establishing Keys for Each Table 259

Rules for Establishing a Primary Key

 1. Each table must have one—and only one—primary key. Because

the primary key must conform to each of the elements that gov-

ern it, only one primary key is necessary for a particular table.

 2. Each primary key within the database must be unique—no two

tables should have the same primary key unless one of them is

a subset table. You learned at the beginning of this section that

the primary key exclusively identifies a table throughout the

database structure; therefore, each table must have its own

unique primary key in order to avoid any possible confusion

or ambiguity concerning the table’s identity. A subset table is

excluded from this rule because it represents a more specific

version of a particular data table’s subject—both tables must

share the same primary key.

Later in the database design process, you’ll learn how to use the pri-

mary key to help establish a relationship between a pair of tables.

Table Structures

Sales Invoices

CustLast Name

EmpFirst Name

EmpLast Name

Ship Date

Invoice Date

Shipper Name

CustFirst Name

Invoice Number PK

Figure 8.7 The revised SALES INVOICES table with its new primary key

260 Chapter 8 Keys

Alternate Keys

Now that you’ve selected a candidate key to serve as the primary key

for a particular table, you’ll designate the remaining candidate keys as

alternate keys. These keys can be useful to you in an RDBMS program

because they provide an alternative means of uniquely identifying a par-

ticular record within the table. If you choose to use an alternate key in

this manner, mark its name with “AK” or “CAK” (composite alternate key)

in the table structure; otherwise, remove its designation as an alternate

key and simply return it to the status of a normal field. You won’t be

concerned with alternate keys for the remainder of the database design

process, but you will work with them once again as you implement the

database in an RDBMS program. (Implementing and using alternate

keys in RDBMS programs is beyond the scope of this work—our only

objective here is to designate them as appropriate. This is in line with the

focus of the book, which is the logical design of a database.)

Figure 8.8 shows the final structure for the EMPLOYEES table with the

proper designation for both the primary key and the alternate keys.

Table Structures

Employees

EmpLast Name CAK

EmpStreet Address

EmpCity

EmpZipcode

EmpHome Phone

Employee ID PK

EmpState

EmpFirst Name CAK

Social Security Number

Figure 8.8 The EMPLOYEES table with designated primary and alternate keys

 Reviewing the Initial Table Structures 261

Non-keys

A non-key is a field that does not serve as a candidate, primary, alter-

nate, or foreign key. Its sole purpose is to represent a characteristic

of the table’s subject, and its value is determined by the primary key.

There is no particular designation for a non-key, so you don’t need to

mark it in the table structure.

Table-Level Integrity

This type of integrity is a major component of overall data integrity,

and it ensures the following.

• There are no duplicate records in a table.

• The primary key exclusively identifies each record in a table.

• Every primary key value is unique.

• Primary key values are not null.

You began establishing table-level integrity when you defined a pri-

mary key for each table and ensured its enforcement by making abso-

lutely certain that each primary key fully complied with the Elements

of a Primary Key. In the next chapter, you’ll enhance the table’s integ-

rity further as you establish field specifications for each field within

the table.

Reviewing the Initial Table Structures

Now that the fundamental table definitions are complete, you need to

conduct interviews with users and management to review the work

you’ve done so far. This set of interviews is fairly straightforward and

should be relatively easy to conduct.

262 Chapter 8 Keys

During these interviews, you will accomplish these tasks.

• Ensure that the appropriate subjects are represented in the data-

base. Although it’s highly unlikely that an important subject is

missing at this stage of the database design process, it can hap-

pen. When it does happen, identify the subject, use the proper

techniques to transform it into a table, and develop it to the same

degree as the other tables in the database.

• Make certain that the table names and table descriptions are

suitable and meaningful to everyone. When a name or descrip-

tion appears to be confusing or ambiguous to several people in

the organization, work with them to clarify the item as much as

possible. It’s common for some table names and descriptions to

improve during the interview process.

• Make certain that the field names are suitable and meaningful to

everyone. Selecting field names typically generates a great deal

of discussion, especially when there is an existing database in

place. You’ll commonly find people who customarily refer to a

particular field by a certain name because “that’s what it’s called

on my screen.” When you change a field name—you have good

reasons for doing so—you must diplomatically explain to these

folks that you renamed the field so that it conforms to the stan-

dards imposed by the new database. You can also tell them that

the field can appear with the more familiar name once the data-

base is implemented in an RDBMS program. What you’ve said

is true; many RDBMSs allow you to use one name for the field’s

physical definition and another name for display purposes. This

feature, however, does not change, reduce, or negate the need

for you to follow the guidelines for creating field names that you

learned in Chapter 7, “Establishing Table Structures.”

• Verify that all the appropriate fields are assigned to each table.

This is your best opportunity to make certain that all of the nec-

essary characteristics pertaining to the subject of the table are

 Reviewing the Initial Table Structures 263

in place. You’ll commonly discover that you accidentally over-

looked one or two characteristics earlier in the design process.

When this happens, identify the characteristics, use the appro-

priate techniques to transform them into fields, and follow all the

necessary steps to add them to the table.

When you’ve completed the interviews, you’ll move to the next phase of

the database design process and establish field specifications for every

field in the database.

CASE STUDY

It’s now time to establish keys for each table in the Mike’s Bikes

database. As you know, your first order of business is to establish

candidate keys for each table. Let’s say you decide to start with the

CUSTOMERS table in Figure 8.9.

As you review each field, you try to determine whether it conforms to

the Elements of a Candidate Key. You determine that STATUS, CUSTHOME

Table Structures

Customers

CustStreet Address

CustCity

CustState

CustZipcode

Status

CustFirst Name

CustHome Phone

CustLast Name

Figure 8.9 The CUSTOMERS table structure in the Mike’s Bikes database

264 Chapter 8 Keys

PHONE, and the combination of CUSTFIRST NAME and CUSTLAST NAME are

potential candidate keys, but you’re not quite certain whether any of

them will completely conform to all of the elements. So you decide to

test the keys by loading the table with sample data as shown in

Figure 8.10.

Customers

CustHome Phone

422-4982

363-9360

363-9360

365-7199

441-3987

322-1178

332-0499

Status

Valued

Valued

Preferred

Valued

Preferred

CustZipcode

98004

98225

98225

98115

98001

98126

98026

CustState

WA

WA

WA

WA

WA

WA

WA

CustCity

Bellevue

Redmond

Redmond

Seattle

Bothell

Kent

Seattle

CustStreet Address

2121 NE 35th

7525 Taxco Lane

7525 Taxco Lane

301 N Main

750 Pike Street

101 9th Avenue

115 Pine Place

CustLast Name

Berlin

Brigan

Carmichael

Chavez

Chavez

Bradley

Cooper

CustFirst Name

Bridget

Kel

Barbara

Daniel

Daniel

Phillip

Sandi

Figure 8.10 Testing candidate keys in the CUSTOMERS table

Always remember that a field must comply with all of the Elements of a

Candidate Key in order to qualify as a candidate key. You must imme-

diately disqualify the field if it does not fulfill this requirement.

As you examine the table, you draw these conclusions.

• STATUS is ineligible because it will probably contain duplicate val-

ues. As business grows, Mike is going to have many “Valued”

customers.

• CUSTHOME PHONE is ineligible because it will probably contain dupli-

cate values. The sample data reveals that two customers can live

in the same residence and have the same phone number.

• CUSTFIRST NAME and CUSTLAST NAME are ineligible because they will

probably contain duplicate values. The sample data reveals that

the combination of first name and last name can represent more

than one distinct customer.

 Reviewing the Initial Table Structures 265

These findings convince you to establish an artificial candidate key for

this table. You then create a field called CUSTOMER ID, confirm that it

complies with the requirements for a candidate key, and add the new

field to the table structure with the appropriate designation.

Figure 8.11 shows the revised structure of the CUSTOMERS table.

Table Structures

Customers

CustStreet Address

CustCity

CustState

CustZipcode

Status

CustFirst Name

CustHome Phone

CustLast Name

Customer ID CK

Figure 8.11 The CUSTOMERS table with the new artificial candidate key,
 CUSTOMER ID

Now you’ll repeat this procedure for each table in the database.

Remember to make certain that every table has at least one candidate

key.

The next order of business is to establish a primary key for each table.

As you know, you select the primary key for a particular table from the

table’s pool of available candidate keys. Here are a few points to keep

in mind when you’re choosing a primary key for a table with more than

one candidate key.

• Choose a simple (single-field) candidate key over a composite

candidate key.

266 Chapter 8 Keys

• If possible, pick a candidate key that has the table name incorpo-

rated into its own name.

• Select the candidate key that best identifies the subject of the

table or is most meaningful to everyone in the organization.

You begin by working with the EMPLOYEES table in Figure 8.12. As

you review the candidate keys, you decide that EMPLOYEE NUMBER is a

much better choice for a primary key than the combination of EMPFIRST

NAME and EMPLAST NAME because Mike’s employees are already accus-

tomed to identifying themselves by their assigned numbers. Using

EMPLOYEE NUMBER makes perfect sense, so you select it as the primary

key for the table.

Table Structures

Employees

EmpLast Name CCK

EmpStreet Address

EmpCity

EmpZipcode

EmpHome Phone

Employee Number CK

EmpState

EmpFirst Name CCK

Social Security Number

Figure 8.12 The EMPLOYEES table structure in the Mike’s Bikes database

Now you perform one final task before you designate EMPLOYEE NUM-

BER as the official primary key of the table: You make absolutely cer-

tain that it exclusively identifies the value of each field within a given

record. So you test EMPLOYEE NUMBER by following these steps.

 Reviewing the Initial Table Structures 267

 1. Load the EMPLOYEES table with sample data.

 2. Select a record for test purposes and note the current value of

EMPLOYEE NUMBER.

 3. Examine the value of the first field (the one immediately after

EMPLOYEE NUMBER) and ask yourself this question:

Does this primary key value exclusively identify the current

value of <fieldname>?

 a. If the answer is yes, move to the next field and repeat the

question.

 b. If the answer is no, remove the field from the table, move to

the next field, and repeat the question. (Be sure to determine

whether you can add the field you just removed to another

table structure, if appropriate, or discard it completely

because it is truly unnecessary.)

 4. Continue this procedure until you’ve examined every field value

in the record.

You know that you’ll have to remove any field containing a value that

EMPLOYEE NUMBER does not exclusively identify. EMPLOYEE NUMBER does

exclusively identify the value of each field in the test record, however,

so you use it as the official primary key for the EMPLOYEES table and

mark its name with the letters “PK” in the table structure. You then

repeat this process with the rest of the tables in Mike’s new database

until every table has a primary key.

Remember to keep these rules in mind as you establish primary keys

for each table.

• Each table must have one—and only one—primary key.

• Each primary key within the database should be unique—no two

tables should have the same primary key (unless one of them is a

subset table).

268 Chapter 8 Keys

As you work through the tables in Mike’s database, you remember that

the SERVICES table is a subset table. You created it during the previ-

ous stage of the design process (in Chapter 7), and it represents a more

specific version of the subject represented by the PRODUCTS table. The

PRODUCT NAME field is what currently relates the PRODUCTS table to the

SERVICES subset table. You now know, however, that a subset table

must have the same primary key as the table to which it is related, so

you’ll use PRODUCT NUMBER (the primary key of the PRODUCTS table)

as the primary key of the SERVICES table. Figure 8.13 shows the

 PRODUCTS and SERVICES tables with their primary keys.

Table Structures

ServicesProducts

Service TypeProduct Name

Retail Price

Materials ChargeProduct Description

Service Charge

Service Date

Category

Wholesale Price

Quantity On Hand

Product Number PKProduct Number PK

Figure 8.13 Establishing the primary key for the SERVICES subset table

The last order of business is to conduct interviews with Mike and his

staff and review all the work you’ve performed on the tables in the

database. As you conduct these interviews, make certain you check

the following.

• The appropriate subjects are represented in the database.

• The table names and descriptions are suitable and meaningful to

everyone.

 Summary 269

• The field names are suitable and meaningful to everyone.

• All the appropriate fields are assigned to each table.

By the end of the interview, everyone agrees that the tables are in

good form and that all the subjects with which they are concerned are

represented in the database. Only one minor point came up during the

discussions: Mike wants to add a CALL PRIORITY field to the VENDORS

table. There are instances in which more than one vendor supplies a

particular product, and Mike wants to create a way to indicate which

vendor he should call first if that product is unexpectedly out of stock.

So you add the new field to the VENDORS table and bring the inter-

view to a close.

Summary

The chapter opened with a discussion of the importance of keys. You

learned that there are different types of keys, and each type plays a

different role within the database. Each key performs a particular

function, such as uniquely identifying records, establishing various

types of integrity, and establishing relationships between tables. You

now know that you can guarantee sound table structure by making

certain that the appropriate keys are established for each table.

We then discussed the process of establishing keys for each table. We

began by identifying the four main types of keys: candidate, primary,

foreign, and non-keys. First, we looked at the process of establishing

candidate keys for each table. You learned about the Elements of a

Candidate Key and how to make certain that a field (or set of fields)

complies with these elements. Then you learned that you can create

and use an artificial candidate key when none of the fields in a table

can serve as a candidate key or when a new field would make a stron-

ger candidate key than any of the existing candidate key fields.

270 Chapter 8 Keys

The chapter continued with a discussion of primary keys. You learned

that you select a primary key from a table’s pool of candidate keys and

that the primary key is governed by a set of specific elements. We then

covered a set of guidelines that help you determine which candidate

key to use as a primary key. Next, you learned how to ensure that the

chosen primary key exclusively identifies a given record and its set of

field values. When the primary key does not exclusively identify a par-

ticular field value, you know that you must remove the field from the

table in order to ensure the table’s structural integrity. You also know

that each table must have a single, unique primary key.

You then learned that you designate any remaining candidate keys

as alternate keys. These keys will be most useful to you when you

implement the database in an RDBMS program because they provide

an alternate means of identifying a given record. We then discussed

the non-key field, which is any field not designated as a candidate,

primary, alternate, or foreign key. You now know that a non-key field

represents a characteristic of the table’s subject and that the primary

key exclusively identifies its value.

Table-level integrity was the next subject of discussion, and you learned

that it is established through the use of primary keys and enforced by

the Elements of a Primary Key.

The chapter closed with some guidance on conducting further inter-

views with users and management. You now know that these inter-

views provide you with a means of reviewing the work you have

performed on the tables and help you to verify and validate the current

database structure.

Review Questions

 1. State the three reasons why keys are important.

 2. What are the four main types of keys?

 Review Questions 271

 3. What is the purpose of a candidate key?

 4. State four items of the Elements of a Candidate Key.

 5. True or False: A candidate key can be composed of more than one

field.

 6. Can a table have more than one candidate key?

 7. What is an artificial candidate key?

 8. What is the most important key you assign to a table?

 9. Why is this key important?

 10. How do you establish a primary key?

 11. State four items of the Elements of a Primary Key.

 12. What must you do before you finalize your selection of a primary

key?

 13. What is an alternate key?

 14. What do you ensure by establishing table-level integrity?

 15. Why should you review the initial table structures?

This page intentionally left blank

 597

Index

A
Abbreviations

in field names, 289, 294
in Field Specifications. 284
in table names, 188-189, 204

Accuracy of data, 17, 26
Acronyms

in field names, 511, 548
in Field Specifications, 284,
in table names, 188-189, 204

Action-oriented questions, 335–336
Aggregate functions, effects of nulls,

49
Aggregate views, 442–446
Aliases element, 281–283
Alphanumeric data type, 288
Alternate keys, 260
Analytical databases, 4, 489–490
Analyzing current databases

adopting the current structure,
117–118

case study, 166–171
conducting interviews, 129–137
data collection, 121–124
in the design process, 78–79
goals of analysis, 117
human-knowledge databases, 117
information presentation, 125–129
legacy databases, 116–117,

119–121
overview, 115–118
paper-based databases, 116,

118–119

reports, 125–126
screen presentations, 125, 126–128
slide shows, 125
web pages, 125, 128–129

Anomalies, using ideal field to
resolve, 206-218

Ansa Software, 19
Answers to review questions,

501–523
Application-oriented business rules,

397–399
Approximate Numeric data type, 287
Artificial candidate keys, 251–253
Ashton-Tate, 19
Associative questions, 335
Associative tables. See Linking

tables.
Attributes. See Fields.

B
Bad design

design based on RDBMS
capability, 485–486

flat-file design, 480–481
improper design methodology, 26
spreadsheet design, 481–485

Base tables, 54, 435
Binary data type, 287
Blank values, 228–229
Books and publications

recommended reading, 577–578
SQL Queries for Mere Mortals, 15

Boolean data type, 287

598 Index

Bowling league, sample database
design, 564

Business Rules
application-oriented, 397–399
case study, 426–431
categories of, 399–402
constraints, 408
data integrity, 472
database-oriented, 397–399
defining and establishing,

402–417
in the design process, 81–82
determining and defining, 81–82
example, 394–397
field-specific, 399–400, 403–411,

543
overview, 393–394
relationship-specific, 401–402,

412–417, 543–544
types of, 397–399

Business Rules Specifications sheet
advantages of, 409
case study, 429
contents of, 409–410
examples, 411, 418, 424, 429, 555
reviewing, 425–426

Business rules, validation tables
description, 419–420
examples, 419
overview, 417, 419
sample Business Rule

Specifications sheet, 418
supporting business rules,

420–424
Business-specific range of values,

295

C
Calculated field lists

compiling, 164–165
interviews with management,

165–166
reviewing with users and

management, 165–166

Calculated fields
definition, 53
in views, 452–455

Candidate keys
artificial, 251–253
composite candidate keys, 249
elements of, 245–246, 544
establishing, 246–249
identifying, 250–251
overview, 245
Social Security numbers as,

247–248
Car rental, sample database design,

565
Cascade deletion rule, 372–377
Case study (Mike's Bikes)

analyzing current databases,
166–171

business rules, 426–431
data integrity, 475–476
field specifications, 308–310
fields, in table structure, 233–240
final table list, 233–240
keys, 263–269
mission objectives, 111–112
mission statement, 104–105
overview, 98–99
preliminary table list, 233–240
table relationships, 384–389
views, 460–464

Character data type, 286
Character Support element, 289–290
Characteristic-Identification

Technique, 136
Characteristics

current, identifying, 134–136
items representing, 159–160
new, identifying, 161–164
review and refine, 157–160

Child tables, 5–9, 60–61
Closed questions, in interviews, 131
Codd, Edgar F., 12
Comparisons Allowed element,

296–298

 Index 599

Composite candidate keys, 249
Composite primary keys, 56, 63, 352
Concatenation, 165, 172, 298, 302
Consistency, data, 17, 26
Contextual questions, 335
Controlling interviews, 97
Criteria, 83, 86, 159, 455
Criterion, 455
Crows foot symbol, 321
Current databases, analyzing

adopting the current structure,
117–118

case study, 166–171
conducting interviews, 129–137
data collection, 121–124
in the design process, 78–79
goals of analysis, 117
human-knowledge databases, 117
information presentation, 125–129
legacy databases, 116–117,

119–121
overview, 115–118
paper-based databases, 116,

118–119
reports, 125–126
screen presentations, 125,

126–128
slide shows, 125
web pages, 125, 128–129

D
Data

accuracy, 17, 26
consistency, 17, 26
definition, 43
inconsistent, 119, 470, 480, 486,

491, 576
redundant, 7, 29, 34, 59-67, 206,

214–217, 219–221, 242
Data collection, analyzing current

methods, 121–124
Data dictionary, 275
Data independence, advantages of

relational databases, 17

Data integrity
advantages of relational

databases, 16–17
bending or breaking the rules,

491–492
business rules, 472
case study, 475–476
design methodology, 26
field-level, 275–276, 471–472, 546
integrity-specific range of values,

294
objectives of good design, 31
related terminology, 67–69. See

also specific terms.
relationship-level, 384, 472,

551–552
reviewing and refining, 83–84,

469–473
table-level, 261, 471, 552
views, 473

Data modeling phase, 33–34
Data structures in the design

process, 80–81
Data table symbol, 316
Data tables, final table list, 186
Data types

alphanumeric, 288
approximate numeric, 287
binary, 287
Boolean, 287
character, 286
DateTime, 287, 288
exact numeric, 287
extended, 287
general, 288
interval, 287
national character, 286
numeric, 288
SQL standard, 286–288

Data Types element, 286–288
Data views, 437–442
Data warehousing, 21–22
Database-oriented business rules,

397–399

600 Index

Database design See also Design
methodology.

Database models
hierarchical, 5–9, 584
network, 9 –12, 586
relational, 3, 12-19, 590

Databases
analytical, 4, 489–490
analyzing. See Analyzing current

databases.
data models, 5–12. See also

Relational databases.
designing. See Design methodology;

Design process.
examples of. See Case study

(Mike's Bikes); Sample
designs.

operational, 4
types of, 4

DateTime data type, 287, 288
Decimal Places element, 289
Default Value element, 294
Degree of table participation in

relationships, 66–67
Deletion rules, defining, 372–377
Deny deletion rule, 372–377
Design methodology. See also Design

process; Sample designs.
advantages of, 29–32
bending or breaking the rules,

489–493
data modeling phase, 33–34
importance of, 25–27
improper, results of, 26. See also

Bad design.
objectives of good design, 30–31
requirements analysis phase, 32
theory, importance of, 27–29
traditional methods, 32–34
as used in this book, 34–35
using tools, 26

Design methodology, normalization
definition, 34
description, 35–38
in the design process, 34, 567–576

implementation issues, 575–576
logical design versus physical

design, 575–576
Design process. See also Design

methodology.
analyzing current databases,

78–79
business rules, 81–82
data structures, 80–81
importance of, 76–77
mission objectives, 77–78
mission statements, 77–78
reviewing data integrity, 83–84
table relationships, 81
validation tables, 82
views, 82

Diagrams
database design process, 525–541
symbols for, 557–558

Diagrams, self-referencing
relationships

many-to-many, 332
one-to-many, 331
one-to-one, 330

Diagrams, table relationships
crows foot symbol, 321
data table symbol, 316
many-to-many, 323–324
one-to-many, 321, 350
one-to-one, 318
self-referencing many-to-many,

332
self-referencing one-to-many, 331
self-referencing one-to-one, 330
subset table symbol, 316
table structure, 343

Direct relationships, 334
Display Format element, 291
Dispute arbitration, interviews, 92
Documentation

of bent or broken rules, 493–494
database, assembling, 473–475
database design process

diagrams, 525–541
importance of, 474

 Index 601

types of, 473–474
view diagrams, 452, 457–458
View Specifications sheet, 457–

458, 556
Documentation, Business Rule

Specifications sheet
advantages of, 409
case study, 429
contents of, 409–410
examples, 411, 418, 424, 429, 555
reviewing, 425–426

Documentation, Field Specifications
sheet

case study, 309–310
example, 554
full sheet, 278
general elements, 285
generic field specifications, 303
logical elements, 299
physical elements, 292
replica field specifications, 305
unique field specifications, 301

Documentation, self-referencing
relationship diagrams

many-to-many, 332
one-to-many, 331
one-to-one, 330

Documentation, table relationship
diagrams

crows foot symbol, 321
data table symbol, 316
many-to-many, 323–324
one-to-many, 321, 350
one-to-one, 318
self-referencing many-to-many,

332
self-referencing one-to-many, 331
self-referencing one-to-one, 330
subset table symbol, 316
table structure, 343

Documentation, View Specifications
sheet

advantages of, 458
case study, 460
contents of, 457 –458

examples, 459, 462, 464
reviewing, 458

Domain integrity, 68, 574, 582
Duplicate fields, 219–220, 222–227
Duplicate items, 178–182

E
Edit Rule element, 296–297,

369–370
Entertainment agency, sample

database design, 560
Entity integrity, 68, 583
Enumerated lists. See Value lists.
Events versus objects, in tables,

50–51
Exact Numeric data type, 287
Examples. See Case study (Mike's

Bikes); Sample designs.
Extended data type, 287

F
Field Description element, 283–285,

368, 547
Field lists, compiling, 157–166. See

also Calculated field lists;
Preliminary field lists.

Field names, 277, 279, 548
Field specifications

case study, 308–310
for each field in the database,

306–308
for foreign keys, 368–371
generic, 280, 300–305
guidelines for, 283–285
importance of, 274–275
overview, 273–274
replica, 280, 300–305
unique, 280, 300–305

Field specifications, general elements
aliases, 281–283
field descriptions, 283–285, 368
field names, 277, 279
label, 279
overview, 277
parent table, 279, 368

602 Index

Field specifications, general elements
(continued)

shared by, 281
source specification, 281, 368
specification type, 368

Field specifications, logical elements
comparisons allowed, 296–298
default value, 294
edit rule, 296–297, 369–370
key structure, 292
key type, 292, 368
null support, 293
operations allowed, 298–299
range of values, 294–295, 369
required value, 294
specification sheet example, 299
uniqueness, 292–293, 368–369
values entered by, 293, 369

Field specifications, physical
elements

character support, 289–290
data types, 286–288
decimal places, 289
display format, 291
input mask, 290–291
length, 289
overview, 285

Field Specifications sheet, examples
case study, 309–310
full sheet, 278, 554
general elements, 285
generic field specifications, 303
logical elements, 299
physical elements, 292
replica field specifications, 305
unique field specifications, 301

Field-level integrity, 275–276,
471–472, 546

Fields
associating with tables, 199–201
calculated, 53
multipart, 53
multivalued, 53, 350–352
overview, 52–53
types of, 53

Fields, in table structure
anomalies, resolving, 206–210
case study, 233–240
duplicates, 219–220, 222–227
ideal, 206–210
multipart, resolving, 210–212
multivalued, resolving, 212–218
naming conventions, 202–206
reference, 222

Field-specific business rules, 399–
400, 403–411, 543

File systems. See Paper-based
databases.

Filtering data in views, 455–456
Final table list. See also Preliminary

table list.
case study, 233–240
data tables, 186
definition, 184
example, 185
interviewing users and

management, 196–199
linking tables, 186
subset tables, 186
table descriptions, 186, 192–199
table names, naming conventions,

187–191
table types, 186, 192
validation tables, 186

First-order predicate logic, 13, 28
Flat-file design, 480–481
Foreign keys. See also Primary keys.

elements of, 365–371, 544
example, 57
field specifications, 368–371
one-to-one relationships, 346
overview, 58
refining, 365–371

Fox Software, 19

G
General data type, 288
General elements, field specifications

aliases, 281–283
field descriptions, 283–285, 368

 Index 603

field names, 277, 279
label, 279
overview, 277
parent table, 279, 368
shared by, 281
source specification, 281, 368
specification type, 368

General range of values, 294
Generic field specifications, 280,

300–305
Grouping fields, 446

H
Hierarchical databases, 5–9
Human-knowledge databases, 117

I
IBM

data warehousing, 21–22
object-oriented databases, 20–21
object-relational databases, 21
RDBMS programs, 18
System R, 18

Ideal fields, 206–210, 545–546
Ideal table elements, 364–365, 546
Implicit information, 110-111
Implied subjects, 176-177, 529
Inconsistent data, 80, 81–84
Indexed views, 56, 436
Indexes, 58–59
Indirect relationships, 334
Information, definition, 43–44
Information presentation, analyzing

current methods, 125–129
Information requirements, reviewing

with
management, 153–157
users, 144–152

INGRES (Interactive Graphics
Retrieval System), 18

Inherited database. See Current
database.

Inmon, Bill, 21
Input Mask element, 290–291
Integrity. See Data integrity.

Interval data type, 287
Interviewer guidelines, 91–93,

550–551
Interviews

about current databases, 129–137
in the analysis phase, 129–137
closed questions, 131
controlling, 97
in the design phase, 89–98
dispute arbitration, 92
group leadership, 94–95
guidelines for, 91–93, 550–551
importance of, 90–91
interviewer guidelines, 91–93
number of participants, 93
open-ended questions, 95, 131
overview, 89–90
pacing, 97
participant guidelines, 91–93
separating users from

management, 94
setting, 93
taking notes, 95–96

Interviews, basic techniques
characteristic-identification

technique, 136
characteristics, identifying,

134–136
closed questions, 131
importance of questions, 130
interview process, 131
open-ended questions, 131
subject-identification technique,

133
subjects, identifying, 132–133

Interviews, with management
business rules, defining and

establishing, 402–417
calculated field lists, reviewing,

165–166
compiling field lists, 157–166
defining views, 449–450
final table list, 196–199
information requirements,

reviewing, 153–157

604 Index

Interviews, with management
(continued)

keys, 261–263
main issues, 152
preliminary field lists, reviewing,

165–166
separating from user interviews, 94
separating from users, 94
verifying table relationships, 383

Interviews, with users
business rules, defining and

establishing, 402–417
calculated field lists, reviewing,

165–166
data type and usage, 138–139
defining views, 449–450
final table list, 196–199
information requirements,

reviewing, 144–152
keys, 261–263
main issues, 137
preliminary field lists, reviewing,

165–166
sample conversation, 138–139
samples, reviewing, 140–144
separating from management, 94
table descriptions, 196–199
verifying table relationships, 383

K
Key structure element, 292
Key Type element, 292, 368
Keyboard characters, field

specifications, 289–290
Keys

alternate, 260
case study, 263–269
importance of, 244
versus indexes, 59
non-key fields, 261
reviewing with users and

management, 261–263
Social Security numbers as,

247–248
table-level integrity, 261

types of, 244. See also specific
types.

Keys, candidate
artificial, 251–253
composite candidate keys, 249
elements of, 245–246, 544
establishing, 246–249
identifying, 250–251
overview, 245
surrogate, 251–253

Keys, foreign. See also Keys, primary.
elements of, 365–371, 544
example, 57
field specifications, 368–371
one-to-one relationships, 346
overview, 58
refining, 365–371

Keys, primary. See also Keys,
foreign.

elements of, 255–256
fields, 253
overview, 253–255
rules for establishing, 259, 545
selecting, 254–259
unnecessary fields, 256
values, 253

L
Label element, 279
Leadership, interviews with, 94–95
Legacy databases, 116–117, 119–121.

See also Current databases.
Length element, 289
Letters, field specifications, 289–290
Linking tables

definition, 59
final table list, 186
many-to-many relationships, 63,

352–358
Logical elements, field specifications

comparisons allowed, 296–298
default value, 294
edit rule, 296–297, 369–370
key structure, 292
key type, 292, 368

 Index 605

null support, 293
operations allowed, 298–299
range of values, 294–295, 369
required value, 294
specification sheet example, 299
uniqueness, 292–293, 368–369
values entered by, 293, 369

Lookup tables. See Validation tables.

M
Management, interviewing. See

Interviews, with management.
Mandatory participation, 377
Mandatory table participation in

relationships, 65–66
Many-to-many relationships

composite primary keys, 352
diagramming, 323–324
establishing, 352–358
linking tables, 352–358
overview, 63–65, 321–324
problems with, 324–329
redundant data, 355–356
self-referencing, 331–332, 362–364

Materialized views, 56, 436–437
Microrim, 19
Microsoft

object-relational databases, 21
RDBMS programs, 19

Microsoft Access, saved queries, 54
Mike's Bikes. See Case study (Mike's

Bikes).
Missing values, 46
Mission objectives

case study, 111–112
characteristics of, 106–107, 551
composing, 108–111
in the design process, 77–78
overview, 105–106
reviewing for preliminary table

list, 182–184
Mission statements

case study, 104–105
characteristics of, 100–102, 551
completeness, 103

composing, 102–104
in the design process, 77–78

Multipart fields
definition, 53
resolving, 210–212

Multitable data views, 439–442
Multivalued fields

definition, 53
resolving, 212–218, 350–352, 552

N
National Character data type, 286
Network databases, 9–12
Non-key fields, 261
Normal forms, 34–36, 570
Normalization

definition, 34
description, 35–38
in the design process, 34, 567–576
implementation issues, 575–576
logical design versus physical

design, 575–576
Null Support element, 293
Nullify deletion rule, 372–377
Nulls

definition, 45
disadvantages of, 47–49
effects on aggregate functions, 49
missing values, 46
problems with, 47-49
reasons for, 45–46
support for, 46–47
unknown values, 46
value of, 46–47

Numbers, field specifications,
289–290

Numeric data type, 288

O
Object-oriented databases, 20–21
Object-relational databases, 20–21
Objects versus events, in tables,

50–51
Office inventory, sample database

design, 563

606 Index

OMG (Object Management Group),
20

One-to-many relationships
diagramming, 321, 350
establishing, 349–350
multivalued fields, resolving,

350–352
overview, 61–62, 319–321
self-referencing, 330–331,

358–362
One-to-one relationships

diagramming, 318
establishing, 345–349
foreign keys, 346
overview, 60–61, 316–319
parent/child relationships, 60–61
self-referencing, 330, 358–362
subset tables, 317

Open-ended questions, in interviews,
95, 131

Operational databases, 4
Operations Allowed element,

298–299
Optional participation, 377
Optional table participation in

relationships, 65–66
Oracle, RDBMS programs, 18–19
Orphaned records, preventing,

372–377
Ownership-oriented questions,

335–336

P
Paper-based databases, 116,

118–119. See also Current
databases.

Parent table element, 279, 368
Parent tables, 6
Parent/child relationships, 6, 60–61
Participant guidelines, interviews,

91–93
Participation degree, identifying,

380–382
Participation type, identifying,

377–380

Performance
improving, 490–493
relational databases, 17

Physical elements, field
specifications

character support, 289–290
data types, 286–288
decimal places, 289
display format, 291
input mask, 290–291
length, 289
overview, 285

Prefixes
in field lists, 157–159
in field names, 202–203, 205
refining items with same name,

158, 162, 202
PostgreSQL Global Development

Group, 21
Preliminary field lists

case study, 166–171
definition, 157
generic items, 158
identifying new characteristics,

161–164
items representing characteristics,

159–160
items with same name, 158–159
review and refine characteristics,

157–160
reviewing with users and

management, 165–166
value lists, 163–164

Preliminary table list. See also Final
table list.

case study, 233–240
duplicate items, 178–180
example, 184
implied subjects, identifying,

176–178
items representing same subject,

180–181
list of subjects, merging, 178–184
mission objectives, reviewing,

182–184

 Index 607

Primary keys. See also Foreign keys.
composite, 56, 63
in data views, 442
definition, 50
elements of, 255–256, 545
example, 57
fields, 253
overview, 56–57, 253–255
rules for establishing, 259, 545
selecting, 254–259
Social Security numbers as,

247–248
unnecessary fields, 256
values, 253

Publications
recommended reading, 577–578
SQL Queries for Mere Mortals, 15

Q
Questions, in interviews, 95, 130–131

R
Range of Values element, 294–295,

369
Ranges of values

business-specific, 295
general, 294
integrity-specific, 294

RDBMS (relational database
management systems), 18–19.
See also specific RDBMS
programs.

Readings. See Books and
publications.

Records, 53–54
Recursive relationships. See Self-

referencing relationships.
Redundant data, 219–220, 355–356
Reference fields, 222–227
Referential integrity, 7, 37, 68,

571–575
Relational databases

advantages of, 16–18
data storage, 13. See also Fields;

Records; Tables.

disadvantages of, 17
mathematical roots, 12–13, 28
object-oriented model, 20–21
object-relational model, 20–21
performance issues, 17
table relationships, 13. See also

specific relationships.
Relations, definition, 13, 49
Relationship-level data integrity, 472,

551–552
Relationship-related terminology,

59–67. See also specific terms.
Relationships. See Table

relationships.
Relationship-specific business rules,

401–402, 412–417, 543–544
Replica field specifications

defining, 300–305
overview, 280

Reports, analyzing current methods,
125–126

Required Value element, 294
Requirements analysis phase, 32
Restrict deletion rule, 372–377
Retrieving data. See also SQL

(Structured Query Language).
advantages of relational

databases, 17
overview, 15–16

Reviewing table structure, 364–365
Rules

bending or breaking, 489–493
business. See Business rules.
cascade deletion, 372–377
deletion, 372–377
deny deletion, 372–377
edit, 296–297, 369–370
establishing primary keys, 259
nullify deletion, 372–377
restrict deletion, 372–377
set default deletion, 373–377

S
Sales orders, sample database

design, 562

608 Index

Sample designs
bowling league, 564
car rental, 565
entertainment agency, 560
office inventory, 563
sales orders, 562
school, 561

Saved queries, 54. See also Views.
School, sample database design, 561
Screen presentations, analyzing

current, 125, 126–128
Self-referencing relationships

identifying, 338–340
many-to-many, 331–332, 362–364
one-to-many, 330–331, 358–362
one-to-one, 330, 358–362
overview, 329

Self-referencing relationships,
diagramming

many-to-many, 332
one-to-many, 331
one-to-one, 330

Self-referencing relationships,
establishing

many-to-many, 362–364
one-to-many, 358–362
one-to-one, 358–362

Set default deletion rule, 373–377
Set structures, 9–12
Set theory, 13, 28
Shared By element, 281
Single-table data views, 438–439
Slide shows, analyzing current, 125
Social Security numbers as keys,

247–248
Source Specification element, 281, 368
Special Characters, field

specifications, 289–290
Specification Type element, 368
Spreadsheet design, 481–485
Spreadsheet view mind-set, 483–485
SQL (Structured Query Language),

15–16. See also Retrieving data.
SQL Queries for Mere Mortals, 15
SQL standard data types, 286–288

Structure-related terminology,
49–59. See also specific terms.

Subject-Identification Technique, 133
Subjects, identifying current,

132–133
Subset table symbol, 316
Subset tables

final table list, 186
one-to-one relationships, 317
subordinate subjects, 229–232
table structure, 228–232

Surrogate candidate keys, 251–253
System R, 18

T
Table descriptions

composing, 547
final table list, 186, 192–199

Table names, 187–191, 548–549
Table relationships

case study, 384–389
deletion rules, defining, 372–377
in the design process, 81
ideal table elements, 364–365
identifying, 549
importance of, 314–315
linking tables, 59, 63
mandatory participation, 377
most common type, 62
optional participation, 377
participation degree, identifying,

380–382
participation type, identifying,

377–380
between records within a

table. See Self-referencing
relationships.

reviewing table structure,
364–365

types of, 60, 315–316. See also
specific types.

unlimited degree of participation,
382

verifying with users and
management, 383

 Index 609

Table relationships, diagramming
crows foot symbol, 321
data table symbol, 316
many-to-many, 323–324
one-to-many, 321, 350
one-to-one, 318
self-referencing many-to-many,

332
self-referencing one-to-many, 331
self-referencing one-to-one, 330
subset table symbol, 316
table structure, 343

Table relationships, identifying
action-oriented questions,

335–336
associative questions, 335
contextual questions, 335
direct relationships, 334
indirect relationships, 334
overview, 333–334
ownership-oriented questions,

335–336
relationship type, determining,

340–343
relationships between tables,

333–338
relevant questions, 335–338
self-referencing relationships,

338–340
Table relationships, table

participation
degree of, 66–67
mandatory, 65–66
minimum/maximum record

count, 66–67
optional, 65–66
types of, 65–66

Table structure
associating fields with tables,

199–201
blank values, 228–229
case study, 233–240
diagramming, 343
duplicate fields, 219–220, 222–227
final table list, 184–199

ideal tables, 220–227
preliminary table list, 176–184
redundant data, 219–220
reference fields, 222–227
refining, 219–232
refining fields, 202–218
reviewing, 364–365
subset tables, 228–232
types of, 184-199

Table-level data integrity, 471, 552
Tables. See also Foreign keys;

Primary keys.
data, 51
examples of, 14
objects versus events, 50–51
overview, 49–52
typical structure, 50
validation, 51–52

Taking notes, interviews, 95–96
Terminology. See also specific terms.

importance of, 41–42
integrity-related, 67–69
relationship-related, 59–67
structure-related, 49–59
value-related, 43–49

Tuples. See Records.

U
Unique field specifications

defining, 300–305
overview, 280

Uniqueness element, 292–293,
368–369

Unknown values, 46
Unlimited degree of participation,

382
Unresolved many-to-many

relationships, 63–65
Users, interviewing. See Interviews,

with users.

V
Validation tables

in the design process, 82
final table list, 186

610 Index

Validation tables (continued)
overview, 51–52
versus validation views, 446–447

Validation tables, business rules
description, 419–420
examples, 419
overview, 417, 419
sample Business Rule

Specifications sheet, 418
supporting business rules,

420–424
Validation views, 56, 446–448
Value lists, 163–164
Value-related terminology, 43–49.

See also specific terms.
Values Entered By element, 293, 369
Versant Corporation, 20–21
View diagrams, 452, 457–458
View Specifications sheet, 457–458,

556
Views

aggregate, 442–446
base tables, 54, 435
case study, 460–464
data, 437–442
data integrity, 473
in the design process, 82
documenting, 452, 457–458
grouping fields, 446
importance of, 55–56
indexed, 56, 436

materialized, 56, 436–437
multitable data, 439–442
overview, 54–56, 435–437
primary keys, 442
purpose of, 436–437
reviewing documentation,

458–460
single-table data, 438–439
types of, 437. See also specific

types.
validation, 56, 446–448

Views, creating
calculated fields, 452–455
defining views, 450–452
documentation, 452, 457–458
filtering data, 455–456
interviewing users and

management, 449–450
requirements, identifying, 449–

450, 549–550
view diagrams, 452, 457–458
View Specifications sheet,

457–458

W
Web pages, analyzing current, 125,

128–129

Z
Zero, 45, 288
Zero-length string, 45

	Contents
	Foreword
	Preface
	Acknowledgments
	Introduction
	What’s New in the Third Edition
	Who Should Read This Book
	The Purpose of This Book
	How to Read This Book
	How This Book Is Organized
	Part I: Relational Database Design
	Part II: The Design Process
	Part III: Other Database Design Issues
	Part IV: Appendixes

	A Word About the Examples and Techniques in This Book
	A New Approach to Learning

	Chapter 8: Keys
	Topics Covered in This Chapter
	Why Keys Are Important
	Establishing Keys for Each Table
	Table-Level Integrity
	Reviewing the Initial Table Structures
	Summary
	Review Questions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

