I dedicate this book to the Storytron development team:

Louis Dargin, Facundo Dominguez, and Laura Mixon,

who pushed the technology of interactive storytelling to new heights.
Chris Crawford earned a Master of Science degree in Physics from the University of Missouri in 1975. After teaching physics for several years, he joined Atari as a game designer in 1979. There he created a number of games: *Energy Czar*, an educational simulation about the energy crisis; *Scram*, a nuclear power plant simulation; *Eastern Front (1941)*, a wargame; *Gossip*, a social interaction game; and *Excalibur*, an Arthurian game.

Following the collapse of Atari in 1984, Crawford took up the Macintosh. He created *Balance of Power*, a game about diplomacy; *Patton Versus Rommel*, a wargame; *Trust & Betrayal*, a social interaction game; *Balance of the Planet*, an environmental simulation game; and *Patton Strikes Back*, a wargame. In 1992, Crawford decided to leave game design and concentrate his energies on interactive storytelling, a field that he believed would become important. He created a major technology for interactive storytelling systems, patenting it in 1997. He is now commercializing his technology at his company website at storytron.com.

Crawford has written five published books: *The Art of Computer Game Design*, now recognized as a classic in the field, in 1982; *Balance of Power* in 1986; *The Art of Interactive Design* in 2002; *Chris Crawford on Game Design* in 2003; and *Chris Crawford on Interactive Storytelling* in 2004.

He created the first periodical on game design, the *Journal of Computer Game Design*, in 1987. He founded and served as Chairman of the Computer Game Developers’ Conference, now known as the Game Developers’ Conference.

Crawford has given hundreds of lectures at conferences and universities around the world, and published dozens of magazine articles and academic papers.

Crawford served as computer system designer and observer for the 1999 and 2002 NASA Leonid MAC airborne missions; he also has done some analysis of the resulting data. He lives in southern Oregon with his wife, 3 dogs, 7 cats, and 16 ducks. You can read more about him on his website at www.erasmatazz.com.
Table of Contents

Introduction .. xi

PART I The Basics .. 1

Chapter 1 Storytelling ... 3
 The History of Storytelling ... 4
 Two Mechanisms of Thinking .. 6
 The Tyranny of the Visual .. 22
 Spatial Thinking ... 24
 Temporal Discontinuity ... 26
 Conclusions ... 26

Chapter 2 Interactivity ... 27
 My Definition of Interactivity 28
 Second-Person Insight .. 30
 A Model for Human Understanding 32
 Ego Control .. 35
 Degrees of Interactivity ... 37
 So What? .. 42
 Conclusions ... 44

Chapter 3 Interactive Storytelling 45
 Extrapolation from Games .. 47
 Interactivized Movies .. 50
 Plot vs. Interactivity .. 50
 Interactive Storytelling Is Unique 54
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PART I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Individuation</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>What Can’t Be Part of Interactive Storytelling?</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Conclusions</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>PART II</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Mentalities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstraction</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Justice</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Science</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Finance</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>The Moral of These Stories</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Playing God</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Translating Principle into Instance</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Conclusions</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Chapter 5</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Verb Thinking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verb vs. Noun</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Case in Point: Multimedia</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Getting Started with Verb Thinking</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Conclusions</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Chapter 6</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>The Agony of Math</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Embracing Mathematics</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Causal Relationships</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Modeling as a Metaphor</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Conclusions</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Chapter 7</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Two Cultures, No Hits, No Runs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neurophysiological Basis</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>History of Games and Stories</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Exhortations and Prognostications</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>Conclusions</td>
<td>111</td>
</tr>
<tr>
<td>PART III</td>
<td>Evolutionary Strategies ... 113</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Branching Trees .. 115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overall Game Structure .. 118</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Solution: State Variables .. 123</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conclusions .. 126</td>
<td></td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Interactive Fiction ... 127</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Text Adventures .. 128</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Graphic Adventures .. 128</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IF: Son of Text Adventure ... 129</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Puzzles ... 130</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A Real Example ... 131</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Under the Hood ... 133</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is It Interactive Storytelling? ... 138</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Future of IF .. 140</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conclusion .. 140</td>
<td></td>
</tr>
<tr>
<td>Chapter 10</td>
<td>Role-Playing Games .. 141</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Verbs .. 142</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Little Room for Creativity .. 143</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Dangers of Overspecialization: Koalas vs. Goats 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What About MMORPGs? ... 147</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Audience ... 149</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conclusions .. 150</td>
<td></td>
</tr>
<tr>
<td>Chapter 11</td>
<td>Video Games ... 151</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constipated Stories .. 152</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiple Endings ... 153</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Branching Trees ... 154</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Open-Ended Stories ... 155</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fully Player-Driven Stories .. 156</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cost vs. Storytelling ... 156</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conclusions .. 158</td>
<td></td>
</tr>
<tr>
<td>PART IV</td>
<td>Component Technologies ... 159</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Modeling .. 161</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Medium ... 162</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basics ... 163</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adding More Complexity ... 166</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstracting the Process .. 169</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fine Points .. 172</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conclusions .. 175</td>
<td></td>
</tr>
<tr>
<td>Chapter 13</td>
<td>Bounded Numbers .. 177</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overruns. .. 180</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bounded Numbers ... 181</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bell Curves and People .. 183</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical Details ... 184</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Blend Operator ... 185</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boolean Calculations ... 189</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conclusions .. 192</td>
<td></td>
</tr>
<tr>
<td>Chapter 14</td>
<td>Personality Models .. 193</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complete ... 194</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concise .. 194</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orthogonal ... 194</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Behaviorally Discriminating 196</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overspecific .. 197</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Types of Personality Traits .. 198</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expanding on the Three Core Personality Traits 203</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical Traits ... 204</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moods .. 204</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inclination Formulae .. 206</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two Exercises ... 208</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conclusions .. 208</td>
<td></td>
</tr>
<tr>
<td>Chapter 15</td>
<td>Fate Makes the Storyworld Go ’Round 209</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Listen ... 210</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Think ... 213</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Speak .. 214</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scoring .. 223</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conclusion ... 226</td>
<td></td>
</tr>
<tr>
<td>Chapter 16</td>
<td>Verbs and Events .. 227</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verb Counts .. 228</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Generalized Verb Handling 229</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentence Structure 231</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plans and Events 232</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HistoryBooks ... 233</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conclusions ... 244</td>
<td></td>
</tr>
<tr>
<td>Chapter 17</td>
<td>Languages .. 245</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Using Devices to Talk 246</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Sapir-Whorf Hypothesis 247</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Faking Real Language 248</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creating a New Language 258</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conclusions ... 267</td>
<td></td>
</tr>
<tr>
<td>Chapter 18</td>
<td>Scripting Languages 269</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desiderata ... 270</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample Script for Text Generation 283</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conclusions ... 286</td>
<td></td>
</tr>
<tr>
<td>Chapter 19</td>
<td>Engines ... 287</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Event-Based Engines 288</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clock-Based Engines 288</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plot-Based Engines 295</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conclusions ... 296</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 20 High-Level Structures ... 297
 Plot Points .. 298
 Goals .. 300
 Anticipation ... 301
 Conclusions .. 332

PART V Wrapping Up ... 309

Chapter 21 Academic Research ... 311
 Comme il Faut .. 315
 Prom Week .. 316
 Release the Kraken! .. 316
 The IRIS Project .. 318
 Conclusions .. 318

Chapter 22 The Future .. 319
 It Will Be Big .. 320
 Negative Predictions ... 321
 Positive Predictions .. 322
 Conclusions .. 325

For Further Reading .. 327
 Books .. 327
 Conference Proceedings 330
 Internet .. 330

Index ... 332
Introduction

Interactive storytelling is a young field; first conceived in the late 1980s and first experimented with in the 1990s, it did not attract substantial attention until the new millennium. By 2010 it had become a hot topic. The field’s youth has endowed it with a diversity of ideas and a cacophony of discussions. Like the proverbial elephant, everybody perceives it from his or her own vantage point. Moviemakers see it as a form of cinema, video-game people claim it as an extension of their own field, computer scientists think of it as part of the broader field of artificial intelligence, and experts in the art of improv consider it to be the computerization of their skills.

The truth is that interactive storytelling is not an extension of or variation on any of these fields; it must be approached as something new and unique. An appreciation of all these fields (and several more) certainly helps you appreciate the challenges of interactive storytelling, but to use one of these fields as a platform from which to launch your thinking is a grievous mistake. There is no launching point; you must hurl yourself into the raging waters and kick, paddle, and swim through as best you can.

Many fields of study are based on combinations of other, more fundamental fields. A good moviemaker must understand storytelling as well as optics, the human visual system, and camera technology. A good game designer must understand programming, games, and user interface issues. Interactive storytelling is no different; indeed, it stands on the shoulders of many fields, including games, cinema, storytelling, programming, and mathematics. Because interactive storytelling is a new and poorly understood field, this book approaches it from many different angles. It also devotes space to negative viewpoints; you can better understand what interactive storytelling is if you appreciate what it isn’t.

I wrote the first edition of this book in 2004; in the intervening years, everything has changed except the underlying principles. This edition of the book explains those principles with the greater clarity I have learned from eight years of work on interactive storytelling. This second edition also presents more technical details that will surely be superseded within 20 years, by which time I will have prepared a third edition.
A cautionary note: My writing style is unconventional and might set you aback. (Here I express my gratitude to my editor, Robyn Thomas, for reining in my worst excesses, straightening out my tangled prose, and saving me from my misanthropic tendencies.) My objective in writing is not to impress you with my erudition, but to help you understand a difficult subject. I will goad you to think about the material by presenting ideas in their strongest, starkest terms. I will not waste your time with qualifiers and mush-mouthing nothingburger pap. You’re smart enough to fill in the exceptions for yourself. If you find yourself in agreement with everything in this book, you haven’t been reading closely enough.

I’d rather serve up chili than oatmeal.

My Interactive Storytelling Journey
The starting point for my interactive-storytelling quest came way back in 1983 with the realization that when games finally matured as a medium of artistic expression, they would have to be about people, not things. All other artistic and entertainment media are fundamentally about people, but games were unique in their obsession with things. In games, you chase things, things chase you; you shoot things, and things shoot at you. You search for things, acquire things, navigate things, move things, destroy things—it’s always things, things, things and never any dramatically significant interactions with people in games. That, I decided was the fundamental difference between games and other media, and that was the central problem I had to tackle.

What would a game about people look like? I came up with a simple idea for a game based on interpersonal interactions. It was called Gossip, and all the player did in the game was talk to people on the telephone about who likes or dislikes whom. There were eight characters on the screen; the player was the one in the upper left (Figure 1).

The basic concept of the game was to call up other people and gossip about who feels what about whom. By carefully calibrating your statements to the preferences of your listener, you could build up your popularity.

Sadly, Gossip came out not long before Atari collapsed, so it was a commercial failure.
I made my next attempt in 1987 with the design of *Trust & Betrayal*, a strange game that I still consider to be the finest, most creative game I ever designed. By then, I had identified the central problem for games about people to be the difficulty of language. You really can’t have much of an interaction with other people if you can’t talk to them, so I decided that I had to come up with a language system (Figure 2).
FIGURE 3 *Le Morte D’Arthur*, a game that included a graphics system for presenting individual character faces that could have different emotional expressions.

This game’s ploy is that it takes place on an alien world where different intelligent species communicate with each other by means of a telepathic language. I created a simple language so I could represent it with a set of 87 icons. This game also saw my first use of an inverse parser, a personality model, the emphasis on verbs, face displays with emotional expressions, and interstitial stories. It, too, was a commercial failure.

But I wasn’t about to give up. In 1992, I began working on *Le Morte D’Arthur* (*Figure 3*), a game about the Arthurian legends. For this game, I developed my first general-purpose interactive storytelling engine. I also came up with a graphics system for presenting individual character faces that could have different emotional expressions.
Introduction

FIGURE 4 Erasmatron, a system for computer users to create their own storyworlds

Sadly, I couldn’t get funding to complete the game.

A few years later, I got funding to develop an interactive storytelling system with which typical computer users could build their own storyworlds. I got carried away and built a huge system, called Erasmatron, that included a scripting language, a development editor, a powerful storytelling engine with advanced linguistic capabilities, and even an editor allowing the user to design unique faces for each character (Figure 4).

There was only one hitch: The system was far too complicated for anybody to use, much less a typical user. We built some interesting storyworlds with it, but they were incomplete and just weren’t entertaining. Erasmatron flopped.

In 2007, I recruited Laura Mixon, Louis Dargin, and Facundo Dominguez to build the next generation of my technology, dubbed Storytron (Figure 5). The Storytron technology was a huge leap forward and it pioneered many of the technologies presented in this book. Indeed, the stuff we had working was more powerful than what I describe here.
The problem with Storytron was the same problem that killed Erasmatron—it was too complicated. Despite an avid following of determined storyworld authors, nobody was able to build a complete, working, entertaining storyworld. I built one, *Balance of Power 21st Century*. It stank. We gave up on Storytron in 2010.

Since then, I’ve continued thinking about interactive storytelling, and have carefully digested the many mistakes I made with previous efforts. I am resuming work on the project, with some major new design concepts. With so many failures behind me, how can I go wrong?
THE PROBLEM OF PLOT VERSUS interactivity, discussed in Chapter 3, sometimes takes another form: control versus interactivity. In its simplest form, the problem is phrased as follows:

If the story is to be truly interactive, then the player must be able to change the story. But, if the player changes the story, then the artist cannot control its development and the player will likely ruin the story.

The solution to the problem is, in a word, abstraction. Let’s look at some examples of how abstraction has solved some analogous problems.
Chapter 4

Justice

The problem of exercising control over a complex system is an old one, and in every case, we find that the solution has always been to resort to higher levels of abstraction. For example, let’s consider the problem of providing justice to society. In small societies, justice can be provided by a single chief. The disputants present their case to the chief, who hears each side and then pronounces judgment. All very simple. But as societies grow, the number of cases grows and the chief—now known as king—finds himself overwhelmed with an impossible caseload. The solution is to delegate his powers of adjudication to lower officials called judges. This solution, however, creates a new problem: How is the chief to maintain control over the judges to ensure justice?

The solution is law. The chief declares the rules under which the judges will operate, and those rules are then applied to all concerned. The solution is not perfect. Judges can still apply the laws unevenly (if they are biased), misinterpret the laws, or even apply the wrong law to a given situation. But disputants who believe they have been shortchanged can appeal to the king in hope of a correct application of the law.

In this manner, the king can continue to exercise control over the society. The king gives up direct control of justice for indirect control. The king’s power is exerted through the laws that are applied by the judges. The ultimate power still resides with the king, whose laws control every aspect of daily life. The king may not be looking over the shoulder of each of his subjects, but he still retains indirect control.

Conflicting Laws

The problem with the use of law is not so much the application of law as the formulation of law. The king must bring great insight and wisdom to bear in creating his laws. Here’s an example from the first recorded set of laws. Nearly 4000 years ago, Hammurabi of Babylonia promulgated a set of 281 laws. Here are two of them:

- If anyone steals the property of a temple or of the court, he shall be put to death, and also the one who receives the thing from him shall be put to death.
If anyone steals cattle or sheep, or ass, or pig, or goat, if it belong to a god or to the court, the thief shall pay thirtyfold for it; if they belonged to a freed man, he shall pay tenfold; if the thief has nothing with which to pay, he shall be put to death.

These two laws contradict each other; one says that the punishment is death, the other that it is 30 times the value of the stolen item. During the process of compiling 281 laws, Hammurabi forgot about the first law when he wrote the second law. It’s important that laws not contradict each other. The larger the body of law, however, the harder it is to be certain that a new law doesn’t conflict with an existing law.

All-Encompassing Laws

Another problem in formulating laws is that they must properly address every possible situation in which they might be applied. There’s an old, apocryphal story about the early days of the Environmental Protection Act. A provision of the law was that if a company wanted to build a factory in an air pollution administrative district, it had to compensate for any pollution the factory would make by paying another polluting company to install equipment that would reduce its pollution by the same amount that the first business was adding. In other words, if you’re going to emit pollution, you’ve got to do something to cancel it out.

Sounds like a good idea, doesn’t it? The law doesn’t punish owners of old polluting factories; it requires builders of new factories to install the equipment to reduce pollution in the older factories. No new pollution is added to the air district.

Then one day a businessman in Louisiana decided that he wanted to build a furniture factory. Unfortunately, his factory would emit a small amount of heavy hydrocarbons from the varnish and other coatings necessary to manufacture the furniture. So he searched for another factory in the same air district that he could upgrade. There were no other factories because it was a poor region with no industry—but the law must be obeyed. So when some bright fellow pointed out that trees emit heavy hydrocarbons just like varnish, the businessman had his solution. He bought a large tract of forestland and cut down all the trees. Problem solved.
Obviously, it was not the intent of the U.S. Congress that forests would be cut down in the name of the Environmental Protection Act, but the wording of the law wasn’t careful enough to provide for this situation.

This problem of abstracting reality to terms that can be addressed in a law haunts all lawmaking processes. Courts will sometimes annul laws that are so poorly worded that they permit entirely unintended results. It’s a tough problem.

The same thing applies to interactive storytelling: If your algorithm doesn’t consider all the possibilities, you’ll get a nasty screwup.

Science

Let us now turn to the biggest, most complex system of all: reality. Our efforts to understand reality have yielded an increasingly complex intellectual system: science. At first, science was a great mass of disconnected tidbits of information—essentially, random fragments of truth that people had noticed over the generations. The big step forward was the realization that different tidbits of information could be connected together to form a more coherent, albeit more abstract, whole.

For example, people had long been aware that some stars in the sky moved in relation to the other stars. Some moved faster and some moved slower, and they all seemed to move along the same path. Ptolemy assembled these disparate facts into a coherent whole and suggested that these objects (the planets) circled around the earth. This was an abstraction; nobody could actually see the evidence directly. But this more abstract view of the solar system tied together a great many observations and, therefore, provided a better explanation.

That trick—finding an abstraction that ties together simpler truths—has been the basic strategy of science ever since. Chemistry stumbled forward, building up a mass of knowledge about how various chemicals reacted with each other, until the idea of atoms forming molecules took hold and explained it all in a more powerful, more unifying, and more abstract fashion. With the development of the theory of quantum mechanics, scientists were able to explain the mechanics of chemical reactions, thereby obtaining a more broadly encompassing view of chemistry—at the expense of abstractions that are more difficult for mere humans to understand. With the development of biochemistry, chemistry and biology were merged at a
fundamental level that gave us insights into the genetic processes that govern all living systems—but again, the price we paid was greater abstraction.

Meanwhile the physicists continued their search for the fundamental laws of the universe. Isaac Newton unified all motion under three simple laws. James Clerk Maxwell unified electric theory with magnetic theory and light to demonstrate that all light is an electromagnetic wave. Einstein unified electricity with magnetism by showing that magnetism is a relativistic effect of electricity. Chemistry was further unified when physicists showed that all atoms are combinations of electrons, protons, and neutrons. In probing the nature of these three particles, physicists discovered a whole zoo of new particles—and then reduced them further by showing them to be composed of yet more fundamental (and even weirder and more abstract) particles called quarks. Meanwhile, theoreticians struggled to reduce the universe to its most fundamental constants and equations, making slow and jerky progress. The end result of all these labors is a highly abstract system of ideas that explain the workings of the universe—but this system is so abstract that it lies beyond the reach of all but a few specialists.

Mathematics followed a similar course. Starting with simple counting combined with simple addition and subtraction, people developed the ideas of multiplication and division, and arithmetic was born. Algebra, a more abstract approach to mathematics, came next. Then, in the 17th century, mathematics exploded with analytic geometry, calculus, probability, and so forth. Nowadays, of course, mathematics has reached levels of abstraction utterly beyond everybody but the specialists.

In science, we see the same process that we saw in justice: As our knowledge expanded, we had to resort to ever more abstract ideas to stay on top of all that knowledge.

Finance

The earliest economic interactions were direct barter: I’ll give you my goat for ten bushels of your wheat. Because such transactions are as explicit and direct as possible, they were easy to evaluate and police. One party examines the goat and the other party examines the wheat. They each see what they’re getting and there is no further cause for interaction after the exchange is made. Thus, the earliest forms of financial interaction were direct, explicit, and utterly devoid of abstraction.
This was sometimes clumsy: What if you were willing to sell only five bushels of wheat? I couldn’t sell you half a goat. This problem was solved by stepping up to a higher level of abstraction: the use of precious metals. I’ll sell you my goat for three shekels of silver. A shekel, by the way, was originally a unit of weight, not a coin.

Problems then arose when people cheated by trying to pass off these precursors to coins that really didn’t contain as much precious metal as they were supposed to contain. This required a new jump to a higher level of abstraction: the standardized coin. This was a chunk of precious metal that was manufactured by the state and guaranteed to be of pure metal and the correct weight. The proof of the value of the coin was the face of the king who issued it: “King So_And_So the Great guarantees that this coin is trustworthy.”

Note how coinage moved the economy to a higher level of abstraction. At that point, all fiscal accounts were kept in the otherwise arbitrary units of coinage. A rich man might be worth 10,000 sisterces. What does that mean? It’s an even more abstract concept.

Coinage worked well for a long time, until another new problem arose in the Middle Ages. Traders were traveling over longer distances, but the roads weren’t particularly safe. Traveling across Europe carrying a few pounds of gold was an open invitation to highway robbery. Merchants needed a safe way to handle their transactions. Thus was born a new and even higher level of abstraction: the bill of exchange.

This was nothing more than a note saying “Joe the Merchant authorizes Fred the Banker to transfer 50 ducats from Joe’s account to the account of Charlie the Merchant.” In other words, the bill of exchange was basically the same thing as an endorsed check. This meant that merchants could carry around pieces of paper rather than coins, making them robber-proof.

This was an immensely important leap in abstraction because, for the first time, the concept of value was divorced from a tangible object. Instead of transferring wealth through tangible intermediaries such as precious metals, wealth could now be transferred through a piece of paper. This represented a higher level of abstraction of the concept of wealth.

These bills of exchange stimulated the European economy and pretty soon they were flying all over Europe. Keeping track of them was becoming quite a hassle.
If a bill of exchange bounced (due to insufficient funds), it was a huge hassle to track down the deadbeat and get your money.

Banks solved this problem by issuing generic bills of exchange. These were notes from a bank promising that the bank itself would pay the bearer a standard amount of coin. There were notes for one ducat, five ducats, ten ducats, and so forth. You gave your coins to the bank, and they gave you bank notes equivalent in value (after bank charges) to your coins. Then you paid other merchants with the bank notes. The merchants didn’t have to trust you; they had only to trust the bank that issued the note.

Of course, there was even more abstraction involved in this solution: Now the value existed in a bank that didn’t actually have the money. The prudent banker loaned out most of its money to get interest, and kept only a small amount in reserve to handle payments. So now you had to think in terms of value that resided in a bank and value that consisted of all the bank’s assets, most of which weren’t even coins.

This worked well, but there was still a problem: Sometimes banks would go bankrupt and the people holding all the banknotes from that bank lost their money. So then governments stepped in and established national banks, which were guaranteed not to go bankrupt. The banknotes issued by those national banks are what we now call paper currency. If you read your dollar bill carefully, you’ll see that it’s really a “Federal Reserve Note”—a banknote from the Federal Reserve Bank.

This idea of a national bank pushed the abstraction up another notch. As you might guess, a new problem arose: Those paper notes could be stolen just like the coins. So people learned to keep most of their money in banks and use banknotes only for “walking around money.” This pushed the abstraction even further: Now your wealth wasn’t measured by the banknotes in your possession, but by a number in the bank’s records for your account. You could have a million dollars in the bank but only a hundred dollars in your pocket. So now money had become *really* abstract—just a number stored in a book somewhere.

The next step in the process was the credit card. This is nothing more than a piece of plastic with your account number on it. You charge something to your credit card, and your signature constitutes a promise to pay that amount. The bank that issued your credit card pays the merchant and deducts that amount from your credit card account.
Let’s trace the levels of abstraction at work here: Your credit card points to your credit card account, which you pay off with money from your regular bank account. Your regular bank account contains a number that represents the amount of money that you have deposited with the bank. The money represents some amount of precious metal—well, it used to do that—which in turn represents a concept called wealth. Whew! That’s a lot of indirection!

Thus, as economies grew larger and more complex, the financial system underlying them grew more and more abstract.

The Moral of These Stories

Over and over we see the same idea: To grow intellectually, and to understand and cope with more complex problems, we always move to higher levels of abstraction. This can be summarized in a simple lesson.

Lesson 16

When you can’t work through a problem, go over its head.

Recall that in Chapter 3, “Interactive Storytelling,” Lesson 13 resolves the dilemma of control versus interactivity: “There is no conflict between process-driven narrative and interactivity.” The solution to the dilemma is to exert control at a higher level of abstraction. As with all the examples, that abstraction will be more difficult to understand, but it will extend our intellectual reach. Many storytellers, locked in the traditions of conventional storytelling, will be unable (and perhaps unwilling) to grasp such abstractions and will reject the whole concept. No matter—there will always be plenty of room in this world for traditional stories. But interactive storytelling demands that we move to a higher level of abstraction.

To understand the abstractions presented in this book, you must first let go of the very notion of plot. A plot is a fixed sequence of events that communicates some larger message about the human condition. In interactive storytelling, we replace the plot with a web of possibilities that comprise the same truth. Since this concept confuses most people, let’s look at a number of examples at different levels.
Let’s use the classic movie *Star Wars: A New Hope* as our starting point. Here is the direct representation (sequence) of the story:

1. Luke Skywalker leaves home, meets Obi-Wan, travels with him to Mos Eisely spaceport, and flies away in a spaceship. But their ship is captured by the bad guys; they fool the bad guys, rescue Princess Leia, and escape from the Death Star. The bad guys attack the last bastion of the rebels, and Luke helps to attack the Death Star. Luke destroys the Death Star and gets rewarded by the princess.

Now let’s look at the same story in a more abstract fashion:

2. A young man ventures out into the world, makes new friends, and experiences many adventures. He learns much and triumphs over adversity, winning the admiration of a pretty girl.

Now let’s make it even more abstract:

3. A boy confronts the challenge of growing up to become a man. He faces many difficulties, but ultimately triumphs over adversity and establishes his manhood.

It is at these higher levels of abstraction that we design storyworlds. Instead of thinking about Luke Skywalker, we think about a young man—any young man. Instead of thinking about space combat, we think about adventures—many different kinds of adventures. Instead of thinking about blowing up the Death Star, we think about triumphing over adversity.

We don’t assemble storyworlds event by event. Instead, our high-level design requires us to construct storyworlds concept by concept. There aren’t many variations of “rescue Princess Leia,” but there are millions of versions of “faces many difficulties.” Put another way, there is only one version of the first story, but there are thousands of versions of the second story and millions of versions of the third story. For now, the third level of the story is too abstract. But, if you think in terms of the second level, then you can design a storyworld that can generate thousands of different stories. Remember, there’s no such thing as an interactive story; if it’s already a story, then it has been nailed down and you can’t interact with it. Instead, we’re pursuing the concept of interactive *storytelling*, which springs from a storyworld—and a storyworld is what you create, not a story.
As long as you think in terms of a strict sequence of events (a plot), then you’ll never understand the concept of interactive storytelling. Instead, you must think in terms of an entire dramatic universe of potential stories: a storyworld.

Can you be more specific?

Sure. Consider these sentences from different stories:

“You look magnificent, darling!”

“I don’t think I’ve ever seen anybody as beautiful as you.”

“You’re such a dashing fellow!”

“Ooh! You’re so strong and brave!”

I’m sure that you’ve read thousands of variations on these sentences, all of them cleverer than these. They all boil down to this single statement:

“I compliment you.”

Yuck! The abstract version is cold, lifeless, and utterly mechanical. You can’t seriously propose that we present something like this to our audience!

No, I’m not proposing that we present “something like this” to our audience. Instead, we have to use one of several strategies for presenting the idea behind it. Internally, our interactive storytelling engine will still be thinking in terms of “I compliment you,” but the presentation of that idea can be dressed up into a more palatable form. (I explain how to do this in Chapter 18, “Scripting Languages.”)

Playing God

The same concept of resorting to a higher level of abstraction provides a partial solution to the knotty problem of free will versus determinism discussed in Chapter 3. This solution embraces physics and rationalizes faith. It says that God is omnipotent with respect to process, not data. That is, God controls the universe through its laws, but not through the details. God does not dictate the position and velocity of every electron and proton in the universe; instead, he
merely declares, “Let there be physics” and then allows the clockwork of the universe to run according to his laws. In an indirect way, we could say that he does control everything that happens in the universe, but it is abstract control. God determines the principles under which the universe operates, but grants us free will to choose as we wish within that universe. He even works a little randomness—in the form of quantum mechanics—into the system to ensure that we aren’t automatons responding robot-like to our environments. The important point is this: God is an abstract designer!

The king who formulates laws is controlling his kingdom in a similar way. He doesn’t wander through the kingdom, ordering people to reap this crop, milk those cows, or build that house. Instead, he creates a set of rules constraining their behavior. His rule can be benevolent or harsh, but it is always abstract and indirect.

And the same resolution works with the apparent conflict between plot and interactivity. If you are a data-intensive designer, then you are a deterministic one. Like some Bible-thumping fundamentalist, you insist that every single word you write be obeyed literally by the characters in the story. The fundamentalist focuses all his or her beliefs in the explicit data of the Bible rather than the abstract processes behind it.

But if you are a process-intensive designer like God, then the characters in your universe can have free will within the confines of your laws of “dramatic physics.” You must abandon the self-indulgence of direct control and instead rely on indirect, abstract control. That is, instead of specifying the data of the plotline, you must specify the processes of the dramatic conflict. Instead of defining who does what to whom, you must define how people can do different things to each other.

This is too esoteric, too indirect to allow the richness of tone that a good story requires.

True, but consider what a story really communicates. A story is an instance that communicates a principle. Moby Dick is not about a whale; it is about obsession. Luke Skywalker never really existed; the truths about growing up and facing the challenges of manhood are the movie’s real messages. Stories are false at the direct level yet true at the abstract level. The instances they relate never happened, but the abstract principles they embody are the truth that we appreciate. They are false in their data but true in their process.
Given this, consider the nature of the communication between storyteller and audience. The storyteller seeks to communicate some truth, some principle of the human condition. Rather than communicate the truth itself, he creates a particular set of circumstances that instantiate the truth he seeks to communicate. This instantiation is what he communicates to his audience. The audience then interprets the story; it figures out the higher, more abstract principles from the story’s details. Note, however, the circumlocution of this process. The storyteller seeks to communicate some truth of the human condition; the audience seeks to learn the same. Instead of just telling the principle, the storyteller translates the principle into an instantiation, then communicates the instantiation; the audience then translates the instantiation back into a principle. This is truly a roundabout way to get the job done.

Interactive storytelling alters this process in two important ways. First, the process of translating principle into instance is delegated to the computer. The storyteller retains full artistic control, but now she must exercise that control at a more abstract level. The basic process of translating principle into instance is retained, but is now performed by the computer in partnership with the player. This, of course, entails considerable effort in algorithm creation. The second difference is that, because the story is generated in direct response to the player’s actions, the resultant story is customized to the needs and interests of the player. Thereby, the story more than makes up for any loss in polish with its greater emotional involvement.

Translating Principle into Instance

The key to applying abstraction is the process of converting principle into instance. The author must be able to express a principle in a form the computer can process, then provide algorithms that translate that principle into instances that are specific to the context. Here’s a very simple example:

Principle: Women dislike unwanted attentions.

First draft articulation: “Unwanted attentions” are actions of a romantic nature by a man to a woman that do not naturally flow from previous events. Women react to unwanted attentions by rejecting the man.

Second draft: “Unwanted attentions” comprise any form of touch with sexual or romantic connotations, or overt expressions of sexual desire. A woman’s
rejection of unwanted attentions is proportional to the degree of inappropriateness of the unwanted attentions.

Third draft: The verbs that can constitute unwanted attentions are kiss, any form of the verb touch, and any instance of declare, inquire, or demand taking as a secondary verb any verb with sexual content. The verbs that can be used to express rejection are declare (dislike), declare (shock), state imperative (desist), and strike (with hand).

This example serves only to show, in a general way, how to go about solving the problem. Details of how to implement this kind of approach appear in later chapters.

This is great theory, but in practice, the act of reducing storytelling to grand principles is beyond human intellectual ability. Nobody could ever handle so deeply intellectual a process.

This process-intensive style of storytelling is done all the time—and by amateurs, no less. Here’s Grandpa taking little Annie up to bed:

“Tell me a story, Grandpa!” she asks.

“OK,” he replies. “Once upon a time there was a pretty little girl who had a pony…”

“Was it a white pony?” Annie interrupts.

“Oh, my, yes, it was as white as snow. It was so white that the sunlight reflected off its coat dazzled the eye. And the little girl and the pony would go riding along the beach…”

“Did they go riding in the mountains, too?”

“Why yes, as a matter of fact, they did. After riding along the beach, they would ride up the green canyons, jumping over the brush and ducking under tree branches, until they came to the very top of the mountains. And there they would play at jumping over boulders…”

“I don’t like to jump.”

“Well then, instead of jumping, she would let her pony graze in the rich deep grass on the mountain’s summit while she sat in the sun…”
And so the story goes on. Note that Grandpa does not respond to Annie’s interruptions with, “Shuddup, kid, you’re messing up my carefully prepared plot!” He wants those interruptions; his storytelling thrives on them. Grandpa does not enter the room with a carefully planned and polished plot, all set to dazzle Annie. Grandpa knows basic principles of storytelling, and then he makes up the story as he goes along—in response to Annie’s needs and interests. The story is the joint creation of Grandpa and Annie. It is their very special story, just for Annie and Grandpa, and no other story will ever be the same. Because it is their very special story, it means more and has more emotional power than any high-tech Hollywood extravaganza. Yes, it lacks the careful plotting, the intricate development, and the glorious special effects of the Hollywood product. But its roughness is more than compensated for by its customization. Sure, Annie likes *The Lion King*—but she treasures *Annie and the White Pony*.

Everybody understands the basic principles of storytelling. Everybody tells stories many times a day. Everybody knows how to translate the basic principles of storytelling into specific stories. If an amateur storytelling Grandpa can pull that off, why can’t we big-shot professionals do the same?

Conclusions

Abstraction is the means by which we can transcend distracting arguments over plot versus interactivity. Instead of thinking about a specific instance (a plot), we must learn to think in terms of something more abstract. I refuse to resort to the pseudointellectual term “metaplot.” Instead, “storyworld” describes the same concept more clearly. A storyworld is a complete, closed dramatic universe of ideas about a specific theme. “The Human Condition” is the largest storyworld of all. “Romance” is a smaller storyworld; “Tragic Romance” is an even smaller storyworld. For now, we shall have to confine our efforts to tiny storyworlds that address narrow themes.

Each storyworld contains within it myriad possible plotlines. Just as the variable \(x \) can hold an infinity of possible numbers, or a law can address a passel of possible actions, or a scientific law can describe zillions of possible physical actions, or a bank account can hold many different amounts of money, a storyworld contains implicit within it the possibility of many different plots.
Index

Numbers
3D graphics, 90, 107. see also graphics

A
abstraction
Comme il Faut system, 315
computer modeling and, 163–166, 169–171
constructing storyworlds, 76–78
finance and, 71–74
higher levels of, 74–76
justice and, 68–70
science and, 70–71
translating principle into instance, 78–80
academic research
difficulties in, 311–312
drama managers and, 312–314
goal-seeking NPCs and, 314
interactive storytelling from, 321–322
IRIS project, 318
limitations of CiF system, 316–318
Prom Week and, 316
Acceptable scripts, storytelling engines and, 293–294
acCORDance personality variable, 199
addition
bounded numbers and, 185, 189
converting Boolean OR to, 167–168, 170–171
multiplication vs., 173–174
Adventure (game), 128, 250
adventures, text. see text adventures
Affection_Disdain variable, modeling and, 166–168
agency. see interactivity
Aha! insights, 15
Alexander the Great, 85
algorithmic design
for anticipation factor, 302–304
Boolean vs. numeric, 178–179
bounded numbers in, 181–183
function analyzer and, 279–281
overruns in, 180–181
scoring performance and, 225–226
All of Me (movie), 104, 205
all-encompassing laws, 69–70
anatomy drawing, 94–96
AND (Boolean operator)
converting to numeric multiplication, 167–168, 170–171
function of, 190
OR vs., 173–174
Angry_Fearful variable, 205
anticipation of reactions
example of, 301
inference engines and, 305–306
problem of, 301–302
solution challenges, 303–304
solution for, 302–303
tree analysis and, 306–308
verb options for, 304–305
applause, for player's performance, 223, 224–225
Apple Inc., 250–251
arcade games, 89–90. see also video games
Aristotle, 21
Aroused_Disgusted variable, 205
artificial intelligence (AI) techniques
involving goal-seeking NPCs, 314
linguistic interpretation and, 252
artistic community
cultivate logical thinking, 109–110
learn programming, 111
pattern-based thinking and, 105
scientific community vs., 103–104
second-person insight in, 30–31
standardize terminology, 110–111
Ascetic_Sensual variable, 203
assembly language
for computer programs, 137
difficulties of, 317
associative memory, 32–34
Audience variable, in verb data structure, 230
audiences
ego control and, 35–36
plot interaction and, 52
for role-playing games, 149
second-person insight and, 30–31, 34–35
audio, for Facade storyworld, 255
Austen, Jane, 57
Index

authorial control
interactivity vs., 50–54
MMORPGs and, 147–148

B
babel fish puzzle, 130–131
backstory, in HistoryBooks, 234–235
Balance of Power (game), 256, 257
BASIC programming language
concepts taught with, 137
interactivity speed with, 38–39
behavior(s)
Fate monitoring, 212–213, 214
Inform 7 and, 136
modeling. see modeling behavior
behaviorally discriminating personality models, 196–197
bell curves, distribution of human qualities and, 183–184
Berne’s Transactional Analysis, 315
bill of exchange, 72–73
biochemistry, 70–71
bits, algorithmic design and, 178–179
blend operator
inclination formulae and, 206–207
one-factor use of, 188
two-factor use of, 189
for weighting factors, 185–188
Bless the Child (movie), 62
Blue Lacuna (interactive fiction), 139
Bobrow, Daniel, 248
Boolean bias of Inform 7, 138
Boolean calculations
changing to numeric, 167–168
for event-based engines, 288
features of, 189–192
limitations of, 316–317
numeric vs., 177–179
of relevant variables, 170–171
in scripting languages, 271
bottom-up engines
anticipation factor in, 301–308
goals and, 300
limitations of, 297
plot points and, 298–300
bounded numbers
bell curves and, 183–184
blend operator with, 185–189
calendar implementation of, 184–185
in modeling algorithms, 181–183
scripting languages and, 271

brain function
environmental knowledge and, 5
language and, 5–6
mental module interaction in, 7–9
social reasoning and, 5
thinking mechanisms and, 6–7
in visual-spatial module, 4–5
branching trees
dialogue trees and, 118–119
for event-based engines, 288
foldback schemes in, 121–122
geometric growth of, 115–117
interactive fiction and, 139
maze trees and, 120–121
with state variables, 123–125
text formulation and, 256–258
in video game stories, 154–155
bytes, algorithmic design and, 178–179

C
C# programming language, 137, 271
Cameron, Andy, 51
canned audio, for Façade (storyworld), 255
capabilities of Inform 7, 135–137
Carmack, John, 52
causal relationships, mathematics and, 96–97
CD-ROMs, multimedia craze and, 88–90
Chaplin, Charlie, 21
characters
event-based engines and, 288
Fate monitoring, 212–213
in interactive storytelling, 324
reactions of. see anticipation of reactions
in scripting languages, 272
Chaste_Licentious variable, 203
chemistry, 70–71
Choice of Games, 183
choices
interactivity and, 40–42
in stories, 20
GIF. see Comme il Faut (CiF) system
Clausewitz, Carl von, 40
clock-based engines
Acceptable/Desirable scripts and, 293–294
overview of, 288–289
Plan execution by, 290–291
Plans and, 290
real-time vs. turn-sequenced, 289
Role execution by, 292–293
Roles and, 291–292
coinage, abstraction and, 72
colored text, scripted languages and, 272
Comme il Faut (CiF) system
 features of, 315
 limitations of, 316–318
 Prom Week (game) and, 316
communication of gossip. see gossip
competitive advantage, of interactivity, 42–43
completeness, of personality models, 194
color languages and. see languages
computer graphics. see graphics
computer modeling for interactive storytelling. see
 modeling behavior
computer programming
 assembly language for, 137
 for bounded numbers, 184–185
 high-level architecture for, 138
 noun prejudice in, 86
 noun-verb relationships in, 82–83, 84
scripting languages and. see scripting languages
 vertical code layout in, 279–281
conciseness
 of personality models, 194
 through orthogonality, 194–196
conflict
 Fate monitoring, 212
 role of, 18–19
conflicting laws, justice and, 68–69
Consequences, Plan execution and, 290
consequences, player behavior and, 220–223
constipated stories, video games and, 152–153
conversation
 computers and, 245–246. see also language(s)
 interactivity in, 28–30
 cosmetic factors. see also graphics
 in games vs. stories, 48
 in interactive storytelling, 323
cost, of video game stories, 156–158
Crawford’s First Law of Software Design, 42, 54, 90, 313, 322
The Creation of Adam (artwork), 36
creative options, 63
creativity, role-playing and, 143–145
credit cards, abstraction and, 73–74
cultural knowledge, storytelling and, 9–10
curiosity, verb thinking and, 91–92
cut scenes
 development of, 106
 inclusion of video in, 107
Cyc project, 248

d
Da Vinci, Leonardo, 94–95
Daglow, Don, 141
data capacity, 86–87
data structure, verb, 229–230
data types, as objects, 270
decision making
 balanced choices for, 55
 frequent but minor, 55–57
 significant, 54–55
 unsatisfying outcomes and, 58–59
defaults, fully functional, 275–276
defities, environmental knowledge and, 7–8
denial, lies and, 241
depth, of interactivity, 39–40
Desirable scripts, storytelling engines and, 293–294
determinism, free will vs., 53–54
development environments
 Inform 7 and, 133–138
 for text adventures, 129
dialogue trees, 118–119
dictionaries, for interactive fiction, 132
digital cameras, speed and, 39
digital storytelling, 44
directed graphs
 for event-based engines, 288
 features of, 123–125
DirObject(s)
 creating languages and, 266
 handling verbs and, 230
 with intent to harm, 240
 NPC relationship to, 239
 reaction to Events and, 291
 Role requirement for, 292
 sentence structure and, 231
disabling information, HistoryBooks and, 234
division, bounded numbers and, 185
divisiveness, Two Cultures and, 104
Dominguez, Facundo, 281–282
Doom (game), 52, 107, 223
Dragon’s Lair (game), 89–90, 219
drama managers
 limitations of, 312–314
 story development and, 210
dramatic conflict, Fate monitoring, 212
dramatic time, 26
Dramaturgical Analysis, 315
dropping the fourth wall, Fate and, 218
dullness, monitoring of, 211
Dungeons & Dragons (game), 141
economics, verb thinking and, 82–83, 85
editing, menu-driven, 276–277
ego control, interactivity and, 35–36
Einstein, Albert, 71
Eliza computer program, 248–250
empathy, second-person insight and, 31–32
enabling information, HistoryBooks and, 234
Energetic_Tired variable, 205
engines, storytelling
bottom-up, 297
clock-based, 288–294
event-based, 288
plot-based, 295–296
entertainers, second-person insight and, 31
environmental knowledge module
function of, 5
pattern-based thinking and, 7
social reasoning and, 7–8
environmental manipulation, Fate and, 214–215
Environmental Protection Act, 69–70
equations, modeling behavior and, 163–166
error(s)
handling, scripting and, 278–279
round-off, 179
ESP-based (extra sensory perception-based)
language, 258–259
eucalyptol, 145
Europe, interactive storytelling in, 323–324
evaluation, of player’s performance, 223–224
event-based engines, 288
Events
Consequences for/reactions to, 290–291
HistoryBooks and, see HistoryBooks
in interactive storytelling, 232
recording, 235–236
scripting languages and, 272
Excalibur (game), 106
Exclusive-OR (Boolean operator), 190
Execution_Time variable, in verb data structure, 231
exponentiation, weighting factors and, 172–173
extra sensory perception-based (ESP-based)
language, 258–259
real-time play in, 64, 289, 296
tight constraints of, 253–254
facial expression, Façade storyworld and, 254
factory work, verb thinking and, 82–83, 84
Fairmath, 183
FALSE Boolean flag
handling verbs and, 230
indicating lies, 240
Fate
drama manager comparison, 313–314
dropping the fourth wall, 218
environmental manipulation and, 214–215
goal injection/personality shifting and, 215
interstitial stories and, 216–217
listening function of, 210–213
overview of, 209–210
plot points and, 215–216
reacting to Events, 290, 291
scoring by, 223–226
thinking function of, 213–214
feature bloat, 41
Final Fantasy (movie), 21–22
finance, abstraction and, 71–74
first-person personality traits, 198–199
five factor personality model, 200
floppy disks, 88, 90
flow control
branches for, 274
loops and, 273–274
standardized sequencing for, 275
foldback schemes
branching trees and, 121–122
with state variables, 123–125
text formulation and, 256–258
FORTRAN programming language, 137
free will, determinism vs., 53–54
Freitag, Rosa, 64
fully functional defaults, in scripting process, 275–276
fully player-driven stories, video games and, 156
function analyzer, in scripting process, 279–281
functional significance, of choices, 41
future, of interactive storytelling, 320–325

Façade (storyworld)
facial expression in, 254
limitations of, 255–256
linguistic system for, 252–253
overview of, 251

games. see video games
Gardner, Martin, 15
gender bias, in styles of thinking, 105, 322–323
Generous_Greedy variable, 203
geometric growth, of branching trees, 115–117
Index

Gilligan’s Island (TV show), 212
Glassner, Dr. Andrew, 51
goals
 injection by Fate, 215
 seeking, AI methods for, 314
 in storyworlds, 300
Godzilla, 48
Goffman’s Dramaturgical Analysis, 315
The Gold Rush (movie), 21
gossip
 anticipating reactions to, 301–304
 communication of, 236–237
 grapevine and, 242–244
 initiation of, 237
 intent to harm in, 240–241
 lies and, 239–240
 mechanism for, 238–239
 for misdirection/denial, 241
 motivation for, 238
 recording Events and, 235–236
 secrets and, 241–242
 solution challenges, 303–304
 verb choice and, 304–305
Gossip (game), 308
grapevine, in interactive storytelling, 242–244
graphical adventures, 128–129
graphical user interfaces (GUIs), as verbs, 227
graphics
 3D, 90, 107
 development of, 22–23
 in games vs. stories, 48
 interactive storytelling and, 323
Griffith, D.W., 99
gross trust, Fate monitoring, 211
groups, storytelling engines and, 294
Guns & Butter (game), 106

H
Hamlet, 190–192, 224
Hammurabi of Babylonia, 68–69
hand-eye coordination, 48–49
Happy_Sad variable, 205
headline generator system, 256–258
headline list, gossip and, 236
history, of storytelling, 4–6
HistoryBooks
 backstory in, 234–235
 extra information in, 235
 gossip systems in. see gossip

looping behavior in, 233–234
moods in, 233
moving Plans into, 290
The Hitchhiker’s Guide to the Galaxy (game), 130
The Hollow (book), 49
Honest_False variable, for behavior modeling, 202
Huckleberry Finn (book), 25
human qualities
 bell curves illustrating, 183–184
 Boolean expression of, 191–192
 Fate shifting, 215
 AND vs. OR for, 173–174
 quantifying with numbers, 99–102, 163–166
 types of, 198–199
 weighting factors for, 172–173, 185–189
human understanding, model for, 32–35
humanities community
 cultivate logical thinking, 109–110
 learn programming, 111
 pattern-based thinking and, 105
 scientific community vs., 103–104
 standardize terminology, 110–111
Humble_Proud variable, 203

I
I_Know Boolean flag
 gossip and, 239
 lies and, 240
 in recording Events, 235–236
ICIDS (International Conference on Interactive Digital Storytelling), 323
iconic languages
 semantic volume in, 264–265
 SympolTalk, 262–264
 for Trust & Betrayal, 258–262
id Software, 107
IF. see interactive fiction (IF)
IF statements, in scripting languages, 274
if-then statements, 5, 7
image, role of in stories, 22–23
inclination formulae
 anticipating reactions and, 304
 determining story progression, 213
 exercises for, 208
 with personality models, 206–207
independent developers, interactive storytelling
 and, 323
individuation, importance of, 61–62
IndObject, 244, 266
inference engines
 anticipation factor and, 305–306
 lies requiring, 241
 plot-based engines and, 295
Inform 7
 capabilities of, 135–137
 language of, 133–135
 uncanny valley problem and, 265
 weaknesses of, 137–138
Ingold, Jon, 131
initiation, of gossip, 237
input, for Inform 7, 136
instantiation, of higher principles, 78–80
Integrating Research in Interactive Storytelling (IRIS) project, 318, 324
intensifiers, text formulation and, 257
interactive fiction (IF)
 Adventure program and, 250
 beginning of, 129–130
 development environments for, 133–138
 example of, 131–133
 future of, 140
 graphic adventures and, 128–129
 limitations of, 139–140
 text adventures and, 128
interactive storytelling
 abstraction and, 74–78
 academic research into. see academic research
 branching trees and. see branching trees
 creative options in, 63
 decision-making in, 54–57
 different angles in, 59–60
 employing mathematics for, 94–96, 99–102
 free will vs. determinism and, 53–54
 future of, 320–325
 generalized verb handling in, 229–231
 gossip systems and. see gossip
 grapevine in, 242–244
 HistoryBooks and. see HistoryBooks
 immersion in, 224–225
 individuation in, 61–62
 interactive fiction vs., 139–140
 language and. see language(s)
 lies in, 239–241
 in MMORPGs, 147–148
 modeling for. see modeling behavior
 other media for, 98–99
 Plans/Events in, 232
 plot vs., 50–52
 principle into instance in, 78–80
scripting languages for. see scripting languages
 secrets in, 241–242
 social reasoning and, 57–58
 Third Option and, 62–63
 three cultures of, 108
 tragedy in, 223–224
 turn-sequenced play in, 63–64
 unsatisfying outcomes in, 58–59
 verb counts in, 228–229
 video game comparison, 47–50
 women and, 322–323
WordSockets in, 231–232
Interactive Storytelling for Video Games (Lebowitz & Klug), 29, 152–158
interactivity
 competitive advantage of, 42–43
 definition of, 28, 210, 245
 depth of, 39–40
 ego control in, 35–36
 human understanding and, 32–35
 movies incorporating, 50
 power of, 43–44
 process-driven narrative and, 53–54
 quality of, 28–30
 revolutionary nature of, 43
 richness of choices in, 40–42
 second-person insight in, 30–32
 speed of, 37–39
 verb thinking and, 87–88
 interactivized movies, 50
International Conference on Interactive Digital Storytelling (ICIDS), 323
Internet, speed and, 39
interstitial stories, Fate and, 216–217
intuitive thinking. see pattern-based thinking
inverse parsers, language construction and, 260–262
iPhone, Siri for, 250–251
IRIS (Integrating Research in Interactive Storytelling) project, 318, 324

J
JavaScript programming language, 137, 184–185, 276
Jurassic Park (movie), 18, 20, 44, 48
justice
 all-encompassing laws and, 69–70
 conflicting laws and, 68–69
 maintaining, 68
K
“kill ‘em if they stray” technique, 220–223
King Lear (play), 223
Klug, Chris, 152
koalas, overspecialization in, 145–147
Koyaanisqatsi (movie), 17, 246
L
language module
function of, 5–6
mental module interaction and, 7–9
sequential thinking and, 7
storytelling and, 9–15
language(s)
Adventure (game) and, 250
computers and, 245–246, 247–248
creating, 266–267
Eliza program, 248–250
ESP-based, 258–259
Façade storyworld, 251–256
headline generator system and, 256–258
of Inform 7, 133–135, 136
inverse parsers, 260–262
noun prejudice in, 85
Sappho scripting language, 277
scripting. see scripting languages
semantic volume and, 264–265
Siri language user interface, 250–251
SymptolTalk, 262–264
Laurel, Brenda, 209–210, 312
laws
all-encompassing, 69–70
conflicting, 68–69
Le Morte D’Arthur (game), 298
Lebowitz, Josiah, 152
lies
intent to harm in, 240–241
in interactive storytelling, 239–241
for misdirection/denial, 241
listening functions
of Fate, 210–213
in interactivity, 28–30
prevention of Two Cultures, 108–109
The Little Mermaid (book), 229
logical plot points, 299
logical thinking. see sequential thinking loops
controlling, 273–274
in HistoryBooks, 233–234
Loquacious_Taciturn variable, 203
Lord of the Flies (book), 254
The Lord of the Rings (book/movie), 17, 18, 49,
169–171
M
Macbeth, 20
MacWrite, 228
Make It Good (Ingold), 131, 139–140
market image
role-playing games and, 149
video games and, 321
Martin, Steve, 104, 205
massively multiplayer online role-playing games
(MMORPGs), 147–148
Mateas, Michael, 64, 255
mathematics. see also numeric calculations
abstraction and, 71
causal relationships and, 96–97
Inform 7 and, 137
for interactive storytelling, 94–96
as metaphorical, 98–99
quantifying human qualities, 99–102, 163–166
The Matrix (movie), 20, 92
Maxwell, James Clerk, 71
maze trees, 120–121
mechanism, for gossip, 238–239
Meehan, James R., 295
mental modules
development of, 105
environmental knowledge, 5
interaction of, 7–9
language, 5–6
social reasoning, 5
thinking mechanisms and, 6–7
visual-spatial, 4–5
menu-driven editing, 276–277
metaphors, mathematical modeling as, 98–102
Michelangelo, 36, 60, 94–95
military science, verb thinking and, 82–83, 84,
85–86
misdirection, lies and, 241
Mixed Emotions (storyworld), 64
MMORPGs (massively multiplayer online role-
playing games), 147–148
modeling behavior
abstract thinking in, 163–166
adding complexity to, 166–168
addition vs. multiplication in, 173–174
Boolean calculations for, 189–192
bounded numbers for, 181–183
computer as medium for, 162
Index

interactive storytelling and, 161
steps to follow for, 169–171
weighting factors in, 172–173
modularization, scripting process and, 283
Momentous_Trivial variable
 headline list and, 236
 rabble-rousing plot points and, 300
 sharing gossip and, 239
 for verbs, 229
moods
 HistoryBooks and, 233
 personality traits and, 204–205
motivation, for gossip, 238
Motivational Analysis, 315
movies
 earliest years of, 98–99
 interaction and, 29–30
 language and, 246
Ms. Pac-Man (game), 322
multimedia craze, software development and,
 88–90
multiple ending stories, video games and, 153–154
multiplication
 addition vs., 173–174
 bounded numbers and, 185
 converting Boolean AND to, 167–168, 170–171
music, scoring performance and, 223
Myst (interactive fiction), 129

N
Name variable, for verb data structure, 229
Napoleon, 85–86
narrativity, interactivity vs., 50–52
national banks, abstraction and, 73–74
The National Enquirer (tabloid), 256
negative predictions, 321–322
Newton, Isaac, 71, 85
Nice_Nasty variable, for modeling, 201
non-player characters (NPCs)
 canned audio and, 255
 goal-seeking, 314
 sharing gossip, 238–239
NOT (Boolean operator), 190
nouns
 bias toward, 85–88
 as complement to verbs, 82–83
 verbs vs., 82–83
NPCs. see non-player characters (NPCs)
numbers
 indicating verb value, 229
 in scripting languages, 271
numeric calculations. see also mathematics
 Boolean vs., 191–192
 bounded numbers in, 181–185
 changing Boolean to, 167–168
 for event-based engines, 288
 inclination formulae as, 206–207
 Inform 7 and, 137
 for interactive storytelling, 177–179
 modeling behavior and, 170–171
 overruns and, 180–181

O
objects, data types as, 270
The Odyssey (poem), 25, 142–143, 223
one-factor use of blend operator, 188
opportunistic plot points, 299–300
optical disk games, 89–90
Option(s)
 acceptability/desirability of, 293–294
 creative, 63
 for Roles, 292–293
 Third, 62–63
OR (Boolean operator)
 AND (Boolean) vs., 173–174
 converting to numeric addition, 167–168,
 170–171
 function of, 190
orthogonality, of personality models, 194–196
output, with Inform 7, 136
overruns, algorithmic design and, 180–181
overspecialization, role-playing games and,
 145–147
overview variables
 description of, 210–211
 determining story progression, 213–214
 plot points based on, 216
 scoring algorithms and, 225
The Ox-Bow Incident (book), 254

P
Pac-Man (game), 123–125, 223
parameter prompts, in scripting process, 278
parsers, inverse, 260–262
Pascal programming language, 137
pattern-based thinking
 in arts/humanities, 104
 cultivating logical thinking, 109–110
development of, 105
features of, 6–7
people, role of, 17–18
personality models
 additional traits for, 203–204
 behaviorally discriminating, 196–197
 as complete/concise, 194
 exercises for, 208
 five factor, 200
 inclination formulae with, 206–207
 moods and, 204–205
 as orthogonal, 194–196
 overspecific, 197
 physical traits for, 204
 three core traits for, 201–202
 types of traits in, 198–199
personality shifts, Fate and, 215
personality traits. see human qualities
PHP programming language, 137
Phrontisterion conferences, 324
physical intervention, by Fate, 214–215
physical traits, behavior modeling and, 204
physics, verb thinking and, 82–83, 84, 85
Pilot programming language, 137
Plans
 aborting, 294
 execution of, 290–291
 in interactive storytelling, 232
 for storytelling engines, 290
player behavior, correcting, 220–223
player skills dependency, MMORPGs and, 147–148
player-driven stories, video games and, 156
the Playwright, 209–210
plot
 enforcement of, 219
 higher abstraction and, 74–75
 interactivity vs., 50–54
plot points
 definition of, 298
 Fate and, 215–216
 logical, 299
 opportunistic, 299–300
 rabble-rousing, 300
 timed, 298–299
plot-based engines, 295–296, 297
Poetics (Aristotle), 21
poison, for run-time errors, 279
Polycritus, 36
predictions, for interactive storytelling, 320–325
preferred player behavior, 222–223
Preparation_Time variable, for verb data structure, 231
Pride and Prejudice (Austin), 57
principle, translating into instance, 78–80
print stories, 106
process-driven narrative
 abstract control and, 76–78
 interactivity and, 53–54
processing capacity, video games and, 86–87
Prom Week (game), 255, 316
prompts, parameter, 278
props
 IndObjects and, 266
 Inform 7 and, 136
 in scripting process, 271
Ptolemy, 70
puzzles
 babel fish, 130–131
 in games vs. stories, 49
 role of, 19–20
Q
 quantifiers, scripting process and, 284
R
 rabble-rousing plot points, 300
reactions
 anticipation of, 301–304
 interaction vs., 29
 verb choice and, 304–305
reality
 language reflecting, 247–248
 modeling and, 161
real-time play
 clock-based engines and, 289
 in traditional storytelling, 63–64
reasonable player behavior, 222–223
recorded video, early, 107
recursion, 302
Reiss’ Motivation Analysis, 315
religion, social reasoning and, 7–8
repeated behavior, in HistoryBooks, 233–234
representational art, visual-spatial modules and, 8, 9
requirement script, of Roles, 291–292
resource management skills, 49–50
Return of the Jedi (movie), 254
revolutionary nature, of interactivity, 43
The Rise of the Image, the Fall of the Word (book), 22
robots, goal-seeking, 314
role-playing games (RPGs)
 audience and, 149
 creativity/change in, 143–145
MMORPGs and, 147–148
overspecialization in, 145–147
overview of, 141–142
verbs in, 142–143
Roles, in clock-based engines, 291–292
Romeo and Juliet (play), 59, 224
round-off errors, 179
run-time errors, 278–279

S
Sapir, Edward, 247–248
Sapir-Whorf hypothesis, 247–248
Sappho scripting language
 editing process with, 277
 run-time errors and, 279
 story recording/playback in, 282
 vertical code layout in, 280–281
Saving Private Ryan (movie), 22
science
 abstraction and, 70–71
 sequential thinking and, 8, 104–105
scientific community
 cultivating intuitive thinking, 109–110
 terminology standardized for, 110–111
scoring
 algorithms for, 225–226
 by Fate, 223–224
 feedback and, 224–225
scripting languages
 colored type in, 272
 computer programming for, 269–270
 flow control in, 272–275
 fully functional defaults in, 275–276
 function analyzer for, 279–281
 limiting data types in, 270–272
 menu-driven editing in, 276–277
 modularization in, 283
 parameter prompting in, 278
 run-time errors and, 278–279
 sample script, 283–285
 story recording/playback, 281–282
second-person insight
 facets of, 31–32
 human understanding and, 32–35
 in interactive storytelling, 30–31
second-person personality traits, 198–199
Secret Boolean flag, 241
secrets
 calculating betrayal of, 304
 in interactive storytelling, 241–242
 verb choice and, 305
semantic volume, in iconic languages, 264–265
sentence structure, verbs and, 231–232
sequence control, in scripting process, 275
sequential thinking
 cultivating intuitive thinking, 109–110
 development of, 105
 features of, 6–7
 science and, 8, 104
The Seventh Guest (game), 107
Shakespeare, William, 224
Show, C.P., 103
Shrek (movie), 21–22
simplicity of themes, 48
The Sims (game), 156
Siri language user interface, 250–251
Smart_Stupid variable, 204
Smith, Adam, 85
social acceptability of violence, Fate and, 211
social conflict, role of, 18–19
social reasoning module
 environmental knowledge and, 7–8
 function of, 5
 interactivity and, 40, 57–58, 323
 pattern-based thinking and, 7
 storytelling and, 8, 9
 women and, 322–323
Socrates, 190
software development
 of Fate. see Fate
 multimedia craze and, 88–90
space, Inform 7 and, 135
spatial thinking
 storytelling and, 24–26
 video games and, 322
speaking functions
 dropping the fourth wall, 218
 environmental manipulation, 214–215
 goal injection/shifting personalities, 215
 in interactivity, 28–30
 interstitial stories, 216–217
 plot enforcement, 219
 plot points, 215–216
spectacle, in stories, 20–22
speed, interactivity and, 37–39
Spielberg, Steven, 18
spying, storytelling engines and, 294
stages
 with Inform 7, 135
 in scripting languages, 271
 storytelling and, 24–26
standardized sequencing, in interactive storytelling, 275
Star Trek (movie), 25–26, 246
Star Wars (movie), 18, 20, 24, 25, 48, 49, 50, 254
Stern, Andrew, 64
stories
 choices in, 20
 conflict in, 18–19
 constipated, 152–153
 cost of adding, 156–158
 interstitial, 213–214
 multiple ending, 153–154
 open-ended, 155–156
 player-driven, 156
 puzzles in, 19–20
 recording/playback of, 281–282
 role of people in, 17–18
 spatial thinking in, 24–26
 spectacle in, 20–22
 structure of, 16–17
 temporal discontinuity in, 26
 video games adding, 106–107, 151–152
 visual thinking in, 22–23
storytelling
 development of, 9–15
 engines. see engines, storytelling
 history of, 4–6
 purpose of, 3–4
 social reasoning and, 8, 9
 traditional elements of, 62–64
Storytron (storyworld), 265, 296
storyworlds
 anticipation in, 301–308
 exploration of verb set in, 211–212
 goals in, 300
 plot points in, 298–300
 scripting for. see scripting languages
structure
 Inform 7 and, 138
 sentence, 231–232
 of stories, 16–17
structured memory, 32–34
Subject(s)
 creating languages and, 266
 handling verbs and, 230
 NPC relationship to, 239
 reactions of, 291
 reactions to, 302
 sentence structure and, 231
subtraction, bounded numbers and, 185
supporting characters, in storyworlds, 300
syllogisms, mathematics and, 96–97
symmetry, creating languages and, 266
SympolTalk, 262–264
TaleSpin (story-generation program), 295
T
 teachers, second-person insight in, 32, 34
 temporal discontinuity, 26
The Terminator (movie), 48, 49
text
 colored for scripted languages, 272
 handling capabilities of Inform 7, 136
 label for verbs, 229
 sample script for generation of, 283–285
text adventures
 development of IF, 129–130
 example of, 131–133
 features of, 128
 as puzzles, 130–131
talking functions
 of Fate, 213–214
 in interactivity, 28–30
 as pattern-based/sequential, 6–7
 shifting to verb thinking, 90–92
Third Option, in interactive storytelling, 62–63
third-person personality traits, 198–199, 307–308
three cultures, in interactive storytelling, 108
time
 dramatic vs. physical, 26
 with Inform 7, 135
time frame, for emergence of interactive storytelling, 324–325
timed plot points, 215–216, 298–299
Tomlin, Lily, 104
traditional storytelling
 creative options and, 63
 real-time play in, 63–64
 Third Option in, 62–63
tragedy, in interactive storytelling, 223–224
Transactional Analysis, 315
tree analysis, anticipation and, 306–308
TRUE Boolean flag
 gossip and, 239
 in handling verbs, 230
 lies and, 240
 recording Events and, 236
Trust & Betrayal (game), 106, 216–217, 258–262
truth, translation into instance, 78
turn-sequenced play
 clock-based engines and, 289
 with Inform 7, 135
 in interactive storytelling, 63–64
Two Cultures (Snow), 103
Two Cultures problem
divisiveness of, 103–104
games/stories and, 106–108
neuropathological basis of, 105
prevention of, 108–111
two-factor use of blend operator, 189

U
uncanny valley problem, 265
user interface languages
Sapir-Whorf hypothesis and, 246
Siri as, 250–251

V
variables
Boolean, 189–192
deciding on/naming, 170–171
modeling behavior and, 163–166
overruns and, 180–181
overview, 210–211, 213–214, 216, 225
personality types as, 198–199
in verb data structure, 229–231
weighting factors for, 172–173, 185–189
verb(s)
anticipation factor and, 304–305
complementing nouns, 82–83
counts, 228–229
creating languages and, 266, 272
designing personality models and, 196–197
for Façade (storyworld), 252–253, 255
generalized handling of, 229–231
intent to harm and, 240
in interactive storytelling, 57–58
inverse parsers and, 260–262
noun prejudice and, 85–88
nouns vs., 82–83
role-playing games and, 142–143
Roles attached to, 291–292
WordSockets for, 231–232
verb-based thinking
adapting to, 90–92
importance of, 227
vertical code layout, function analyzer and,
279–281
video games
adding stories to, 106–107, 151–152
branching tree approach to, 154–155
compared to interactive storytelling, 47–50
constipated stories and, 152–153
cost of stories in, 156–158
definition of, 47, 48
fully player-driven stories for, 156
market image of, 320–321
multimedia craze and, 89–90
multiple ending stories for, 153–154
noun prejudice and, 86–87
open-ended stories for, 155–156
plot vs. interactivity in, 53–54
video-generated facial expression, in Façade
(storyworld), 254
violence
Fate monitoring, 211
in games vs. stories, 48
role of, 19
VisiCalc spreadsheet, speed and, 37–38
visual-spatial modules
function of, 4–5
pattern-based thinking and, 7
storytelling and, 22–26
visual art/writing and, 8, 9

W
weaknesses, of Inform 7, 137–138
The Wealth of Nations (Smith), 85
weighting factors
blend operator for, 185–189
in modeling behavior, 172–173
Weizenbaum, Joseph, 248
Whorf, Benjamin, 247–248
Willful_Pliant variable, for behavior modeling,
202
Wing Commander (game), 106
Witnesses variable, for verb data structure,
230–231
witnesses, to Events, 290–291
Wolfenstein 3D (game), 107
women, interactive storytelling and, 322–323
WordSockets, for verbs, 231–232
writing, visual-spatial modules and, 8, 9, see also
scripting languages

Y
Yar’s Revenge (game), 106
yin-yang relationships, verb thinking and, 82–83

Z
Zork (game), 128
WATCH
READ
CREATE

Unlimited online access to all Peachpit, Adobe Press, Apple Training, and New Riders videos and books, as well as content from other leading publishers including: O'Reilly Media, Focal Press, Sams, Que, Total Training, John Wiley & Sons, Course Technology PTR, Class on Demand, VTC, and more.

No time commitment or contract required!
Sign up for one month or a year.
All for $19.99 a month

SIGN UP TODAY
peachpit.com/creativeedge