

Praise for
Visual Studio Team Foundation Server 2012:

Adopting Agile Software Practices

“Agile dominates projects increasingly from IT to product and business
development, and Sam Guckenheimer and Neno Loje provide pragmatic context
for users seeking clarity and specifics with this book. Their knowledge of past
history and current practice, combined with acuity and details about Visual
Studio’s Agile capabilities, enable a precise path to execution. Yet their voice and
advice remain non-dogmatic and wise. Their examples are clear and relevant,
enabling a valuable perspective to those seeking a broad and deep historical
background along with a definitive understanding of the way in which Visual
Studio can incorporate Agile approaches.”

—Melinda Ballou, Program Director, Application Lifecycle Management and
Executive Strategies Service, International Data Corporation (IDC)

“Sam Guckenheimer and Neno Loje have forgotten more about software
development processes than most development ‘gurus’ ever knew, and that’s a
good thing! In Visual Studio Team Foundation Server 2012, Sam and Neno distill the
essence of years of hard-won experience and hundreds of pages of process
theory into what really matters—the techniques that high-performance software
teams use to get stuff done. By combining these critical techniques with
examples of how they work in Visual Studio, they created a de-facto user guide
that no Visual Studio developer should be without.”

—Jeffrey Hammond, Principal Analyst, Forrester Research

“If you employ Microsoft’s Team Foundation Server and are considering Agile
projects, this text will give you a sound foundation of the principles behind its
Agile template and the choices you will need to make. The insights from
Microsoft’s own experience in adopting Agile help illustrate challenges with
scale and the issues beyond pure functionality that a team needs to deal with.
This book pulls together into one location a wide set of knowledge and practices
to create a solid foundation to guide the decisions and effective transition, and
will be a valuable addition to any team manager’s bookshelf.”

—Thomas Murphy, Research Director, Gartner

“This book presents software practices you should want to implement on your
team and the tools available to do so. It paints a picture of how first-class teams
can work, and in my opinion, is a must-read for anyone involved in software
development. It will be mandatory reading for all our consultants.”

—Claude Remillard, President, InCycle

“This book is the perfect tool for teams and organizations implementing Agile practices
using Microsoft’s Application Lifecycle Management platform. It proves disciplined
engineering and agility are not at odds; each needs the other to be truly effective.”

—David Starr, Scrum.org

“Sam Guckenheimer and Neno Loje have written a very practical book on how Agile
teams can optimize their practices with Visual Studio. It describes not only how Agile
and Visual Studio work, but also the motivation and context for many of the functions
provided in the platform. If you are using Agile and Visual Studio, this book should be
a required read for everyone on the team. If you are not using Agile or Visual Studio,
then reading this book will describe a place that perhaps you want to get to with your
process and tools.”

—Dave West, Analyst, Forrester Research

“Sam Guckenheimer and Neno Loje are leading authorities on Agile methods and
Visual Studio. The book you are holding in your hand is the authoritative way to bring
these two technologies together. If you are a Visual Studio user doing Agile, this book is
a must-read.”

—Dr. James A. Whittaker, Software Engineering Director, Google

“Agile development practices are a core part of modern software development.
Drawing from our own lessons in adopting Agile practices at Microsoft, Sam
Guckenheimer and Neno Loje not only outline the benefits, but also deliver a hands-on,
practical guide to implementing those practices in teams of any size. This book will help
your team get up and running in no time!”

—Jason Zander, Corporate Vice President, Microsoft Corporation

Visual Studio Team Foundation
Server 2012: Adopting Agile

Software Practices

This page intentionally left blank

Sam Guckenheimer
Neno Loje

Visual Studio Team
Foundation Server
2012: Adopting
Agile Software
Practices
From Backlog to Continuous
Feedback

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers
and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in
this book, and the publisher was aware of a trade-
mark claim, the designations have been printed
with initial capital letters or in all capitals.

The Visual Studio and .NET logos are either a regis-
tered trademark or trademark of Microsoft Corpo-
ration in the United States and/or other countries
and is used under license from Microsoft.

The authors and publisher have taken care in the
preparation of this book, but make no expressed or
implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in
connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this
book when ordered in quantity for bulk purchases
or special sales, which may include electronic ver-
sions and/or custom covers and content particular
to your business, training goals, marketing focus,
and branding interests. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

The Library of Congress cataloging-in-publication
data is on file.

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of
America. This publication is protected by copyright,
and permission must be obtained from the pub-
lisher prior to any prohibited reproduction, storage
in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopy-
ing, recording, or likewise. For information regard-
ing permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

Microsoft, Windows, Visual Studio, Team Founda-
tion Server, Visual Basic, Visual C#, and Visual C++
are either registered trademarks or trademarks of
Microsoft Corporation in the U.S.A. and/or other
countries/regions.

ISBN-13: 978-0-321-86487-1
ISBN-10: 0-321-86487-5

Text printed in the United States on recycled paper
at R.R. Donnelly in Crawfordsville, Indiana.

First printing September 2012

To Monica, Zoe, Grace, Eli, and Nick,
whose support made this book possible.

—Sam

This page intentionally left blank

ix

Contents

Forewords xii
Preface xvi
Acknowledgments xxiii
About the Authors xxiv

1 The Agile Consensus 1
The Origins of Agile 2
Agile Emerged to Handle Complexity 2
Empirical Process Models 4
A New Consensus 5
Scrum 6
An Example 12
Self-Managing Teams 14
Summary 15
Endnotes 16

2 Scrum, Agile Practices, and Visual Studio 19
Visual Studio and Process Enactment 20
Process Templates 21
Process Cycles and TFS 24
Inspect and Adapt 37
Task Boards 37
Kanban 38
Fit the Process to the Project 39
Summary 42
Endnotes 43

3 Product Ownership 45
What Is Product Ownership? 46
Scrum Product Ownership 50
Release Planning 51
Qualities of Service 69
How Many Levels of Requirements 73
Summary 75
Endnotes 75

4 Running the Sprint 77
Empirical over Defined Process Control 78
Scrum Mastery 80
Use Descriptive Rather Than Prescriptive Metrics 86
Answering Everyday Questions with Dashboards 91
Choosing and Customizing Dashboards 98
Using Microsoft Outlook to Manage the Sprint 100
Summary 101
Endnotes 101

5 Architecture 103
Architecture in the Agile Consensus 104
Exploring Existing Architectures 107
Summary 124
Endnotes 126

6 Development 129
Development in the Agile Consensus 130
The Sprint Cycle 131
Keeping the Codebase Clean 132
Staying “in the Groove” 139
Detecting Programming Errors Early 143
Catching Side Effects 154
Preventing Version Skew 162
Making Work Transparent 170
Summary 171
Endnotes 173

7 Build and Lab 175
Cycle Time 176
Defining Done 177

Visual Studio Team Foundation Server 2012: Adopting Agile Software Practicesx

Continuous Integration 179
Automating the Build 181
Automating Deployment to Test Lab 186
Elimination of Waste 199
Summary 203
Endnotes 204

8 Test 207
Testing in the Agile Consensus 208
Testing Product Backlog Items 211
Actionable Test Results and Bug Reports 215
Handling Bugs 223
Which Tests Should Be Automated? 223
Automating Scenario Tests 224
Load Tests, as Part of the Sprint 228
Production-Realistic Test Environments 234
Risk-Based Testing 236
Summary 238
Endnotes 239

9 Lessons Learned at Microsoft Developer Division 241
Scale 242
Business Background 243
Improvements after 2005 247
Results 256
Acting on the Agile Consensus 256
Lessons Learned 258
The Path to Visual Studio 2012 262
Endnotes 263

10 Continuous Feedback 265
Agile Consensus in Action 266
Continuous Feedback Allows Build/Measure/Learn 267
There’s No Place Like Production 269
Summary 271
Endnotes 274

Index 275

Contents xi

Foreword to Third Edition

Sam and I met in 2003 over a storyboard. We were on this new team with
a mission to take Visual Studio—the world’s leading individual develop-
ment environment—and turn it into the world’s leading team development
environment. He had just joined Microsoft and wanted to convince me that
we would succeed not just by building the best tools, but by creating the
best end-to-end integration, and he used a storyboard to show the ideas.1

He convinced me and the rest of the team.
He also persuaded us that we should think of enabling Agile process

flow from the beginning. A key idea was that we minimize time spent in
transitions. We would build our tools to make all their data transparent and
squeeze as much waste and overhead as possible out of the software
process. That way, the team could focus on delivering a flow of value to its
customers.

That vision, which we now call the Agile Consensus, informed the first
versions of Team Foundation Server and Visual Studio Team System, as our
product line was called in 2005. The first edition of this book was the expla-
nation of the reasons we made the leap.

Neno was one of our first customers and consultants. He quickly
became one of our strongest advocates and critics, seizing the vision and
identifying the gaps that we would need to fill release after release. He is
now one of the clear experts in the product line, knowing as much about
how our customers use the Visual Studio product line as just about anyone.

Since we released v1, we’ve also been on our own journey of Agile trans-
formation across Microsoft Developer Division. Our products have helped

1 In VS 2012, we made storyboarding a part of the product too.

make that change possible. First, in the wave to VS 2008, we set out to apply
Agile software engineering practices at scale. You’ll recognize these in our
product capabilities today like unit testing, gated check-in, parallel devel-
opment, and test lab management. These helped us reduce waste and cre-
ate trustworthy transparency. Once we achieved those goals, we could set
out to really increase the flow of customer value, in the second wave lead-
ing to VS 2010. And most recently, with VS 2012, we have really addressed
our cycle time. The clearest example of this is the hosted Team Foundation
Service, which is now deploying to customers every three weeks. Chapter
9 tells this story well.

Together, Sam and Neno have written the why book for modern soft-
ware practices and their embodiment in the Visual Studio product line. This
book does not attempt to replace the product documentation by telling you
which button to click. Rather, it covers your software life cycle holistically,
from the backlog of requirements to deployment, and shows examples of
how to apply modern best practices to develop the right thing.

If you are an executive whose business depends on software, then you’ll
want to read this book. If you’re a team lead trying to improve your team’s
velocity or the fit of your software to your customers’ needs, read this book.
If you’re a developer or tester, and you want to work better, with more time
on task, and have more fun, read this book.

Brian Harry
Microsoft Technical Fellow

General Manager, Team Foundation Server

Foreword to Third Edition xiii

Foreword to Second Edition

It is my honor to write a foreword for Sam’s book, Agile Software Engineering

with Visual Studio. Sam is both a practitioner of software development and a
scholar. I have worked with Sam for the past three years to merge Scrum
with modern engineering practices and an excellent toolset, starting with
Microsoft’s VS 2010. We are both indebted to Aaron Bjork of Microsoft, who
developed the Scrum template that instantiates Scrum in Visual Studio
through the Scrum template.

I do not want Scrum to be prescriptive. I left many holes, such as what
is the syntax and organization of the product backlog, the engineering prac-
tices that turned product backlog items into a potentially shippable incre-
ment, and the magic that would create self-organizing teams. In his book,
Sam has superbly described one way of filling in these holes. He describes
the techniques and tooling, as well as the rationale of the approach that he
prescribes. He does this in detail, with scope and humor. As I have worked
with Microsoft since 2004 and Sam since 2009 on these practices and tool-
ing, I am delighted. Our first launch was a course, the Professional Scrum
Developer .NET course, that taught developers how to use solid increments
using modern engineering practices on VS (working in self-organizing,
cross-functional teams). Sam’s book is the bible to this course and more,
laying it all out in detail and philosophy. If you are on a Scrum team build-
ing software with .NET technologies, this is the book for you. If you are
using Java, this book is compelling enough to read anyway, and may be
worth switching to .NET.

When we devised and signed the Agile Manifesto in 2001, our first value
was “Individuals and interactions over processes and tools.” Well, we have

the processes and tools nailed for the Microsoft environment. In Sam’s
book, we have something developers, who are also people, can use to
understand the approach and value of the processes and tools. Now for the
really hard work, people. After 20 years of being treated as resources,
becoming accountable, creative, responsible people is hard. Our first chal-
lenge will be the people who manage the developers. They could use the
metrics from the VS tooling to micromanage the processes and developers,
squeezing the last bit of creativity out and leaving agility flat. Or, they could
use the metrics from the tools to understand the challenges facing the
developers. They could then coach and lead them to a better, more creative,
and more productive place. This is the challenge of any tool. It may be
excellent, but how it is used will determine its success.

Thanks for the book, Sam and Neno.

Ken Schwaber
Co-Creator of Scrum

Foreword to Second Edition xv

Preface

Seven years ago, we extended Microsoft Visual Studio to include Applica-
tion Lifecycle Management (ALM). This change made life easier and more
productive for hundreds of thousands of our users and tens of thousands
of our Microsoft colleagues. In 2010, when we shipped Visual Studio 2010
Premium, Ultimate, Test Professional, and Team Foundation Server, we
achieved our goal of being widely recognized as the industry leader.1 In
2012, we complemented the Server with the public preview of the hosted
Team Foundation Service and started delivering even more value more fre-
quently to software teams.

We’ve learned a lot from our customers in the past seven years. Visual
Studio enables a high-performance Agile software team to release higher-
quality software more frequently. It is broadly recognized as the market-
leading, innovative solution for software teams, regardless of technology
choice. We set out to enable a broad set of scenarios for our customers. We
systematically attacked major root causes of waste in the application life
cycle, elevated transparency for the broadly engaged team, and focused on
flow of value for the end customer. We have eliminated unnecessary silos
among roles, to focus on empowering a multidisciplinary, self-managing
team. Here are some examples:

No more no repro. One of the greatest sources of waste in software
development is a developer’s inability to reproduce a reported defect. Tra-
ditionally, this is called a “no repro” bug. A tester or user files a bug and
later receives a response to the effect of “Cannot reproduce,” or “It works
on my machine,” or “Please provide more information,” or something of

the sort. Usually this is the first volley in a long game of Bug Ping-Pong, in
which no software gets improved but huge frustration gets vented. Bug
Ping-Pong is especially difficult for a geographically distributed team. As
detailed in Chapters 1, “The Agile Consensus,” and 8, “Testing,” VS 2012
shortens or eliminates this no-win game.

No more waiting for build setup. Many development teams have
mastered the practice of continuous integration to produce regular builds
of their software many times a day, even for highly distributed Web-based
systems. Nonetheless, testers regularly wait for days to get a new build
to test because of the complexity of getting the build deployed into a
production-realistic lab. By virtualizing the test lab and automating the
deployment as part of the build, VS 2012 enables testers to take fresh builds
daily or intraday with no interruptions. Chapter 7, “Build and Lab,”
describes how to work with build and lab automation.

No more UI regressions. The most effective user interface (UI) testing is
often exploratory, unscripted manual testing. However, when bugs are
fixed, it is often hard to tell whether they have actually been fixed or if they
simply haven’t been found again. VS 2012 removes the ambiguity by cap-
turing the action log of the tester’s exploration and allowing it to be con-
verted into an automated test. Now fixes can be retested reliably and
automation can focus on the actually observed bugs, not the conjectured
ones. Chapter 8 covers both exploratory and automated testing.

No more performance regressions. Most teams know the quickest way
to lose a customer is with a slow application or Web site. Yet teams don’t
know how to quantify performance requirements and accordingly, don’t
test for load capacity until right before release, when it’s too late to fix the
bugs that are found. VS 2012 enables teams to begin load testing early. Per-
formance does not need to be quantified in advance because the test can
answer the simple question, “What has gotten slower?” And from the end-
to-end result, VS profiles the hot paths in the code and points the developer
directly to the trouble spots. Chapter 6, “Development,” and Chapter 8
cover profiling and load testing.

No more missed changes. Software projects have many moving parts,
and the more iterative they are, the more the parts move. It’s easy for devel-
opers and testers to misunderstand requirements or overlook the impact

Preface xvii

Visual Studio Team Foundation Server 2012: Adopting Agile Software Practicesxviii

of changes. To address this, Visual Studio Test Professional introduces test
impact analysis. This capability compares the changes between any two
builds and recommends which tests to run, both by looking at the work
completed between the builds and by analyzing which tests cover the
changed code based on prior coverage. Chapters 3, “Product Ownership,”
and 4, “Running the Sprint,” describe the product backlog and change
management, and Chapters 6 through 8 show test impact analysis and the
corresponding safety nets from unit testing, build automation, and accept-
ance testing.

No more planning black box. In the past, teams have often had to guess
at their historical velocity and future capacity. VS 2012 draws these directly
from the Team Foundation Server database and builds an Excel worksheet
that allows the team to see how heavily loaded every individual is in the
sprint. The team can then transparently shift work as needed. Examples of
Agile planning are discussed in Chapter 2, “Scrum, Agile Practices, and
Visual Studio,” and Chapter 4.

No more late surprises. Agile teams, working iteratively and incremen-
tally, often use burndown charts to assess their progress. Not only does VS
2012 automate the burndowns, but project dashboards go beyond burn-
downs to provide a real-time view of quality and progress from many
dimensions: requirements, tasks, tests, bugs, code churn, code coverage,
build health, and impediments. Chapter 4 introduces the “happy path” of
running a project and discusses how to troubleshoot project “smells.”

No more legacy fear. Very few software projects are truly “greenfield,”
developing brand-new software on a new project. More frequently, teams
extend or improve existing systems. Unfortunately, the people who worked
on earlier versions are often no longer available to explain the assets they
have left behind. VS 2012 makes it much easier to work with the existing
code by introducing tools for architectural discovery. VS 2012 reveals the
patterns in the software and enables you to automatically enforce rules that
reduce or eliminate unwanted dependencies. These rules can become part
of the check-in policies that ensure the team’s definition of done to prevent
inadvertent architectural drift. Architectural changes can also be tied to
bugs or work, to maintain transparency. Chapter 5, “Architecture,” covers

the discovery of existing architecture, and Chapter 7 shows you how to
automate the definition of done.

No more distributed development pain. Distributed development is a
necessity for many reasons: geographic distribution, project complexity,
release evolution. VS 2012 takes much of the pain out of distributed devel-
opment processes both proactively and retrospectively. Gated check-in
proactively forces a clean build with verification tests before accepting a
check-in. Branch visualization retrospectively lets you see where changes
have been applied. The changes are visible both as code and work item
updates (for example, bug fixes) that describe the changes. You can visually
spot where changes have been made and where they still need to be pro-
moted. Chapters 6 and 7 show you how to work with source, branches, and
backlogs across distributed teams.

No more technology silos. More and more software projects use mul-
tiple technologies. In the past, teams often have had to choose different
tools based on their runtime targets. As a consequence, .NET and Java
teams have not been able to share data across their silos. Visual Studio Team
Foundation Server 2012 integrates the two by offering clients in both the
Visual Studio and Eclipse IDEs, for .NET and Java, respectively. This
changes the either-or choice into a both-and, so that everyone wins. Again,
Chapters 6 and 7 include examples of working with your Java assets along-
side .NET.

These scenarios are not an exhaustive list, but a sampling of the moti-
vation for VS 2012. All of these illustrate our simple priorities: reduce
waste, increase transparency, and accelerate the flow of value to the end
customer. This book is written for software teams considering running a
software project using VS 2012. This book is more about the why than
the how.

This book is written for the team as a whole. It presents information in
a style that will help all team members get a sense of each other’s view-
point. I’ve tried to keep the topics engaging to all team members. I’m fond
of Einstein’s dictum “As simple as possible, but no simpler,” and I’ve tried
to write that way. I hope you’ll agree and recommend the book to your col-
leagues (and maybe your boss) when you’ve finished with it.

Preface xix

Enough about Visual Studio 2012 to Get You
Started

When I write about Visual Studio (or VS) I’m referring to the full product
line. As shown in Figure P.1, the VS 2012 family is made up of a server and
a small selection of client-side tools, all available as VS Ultimate.

Visual Studio Team Foundation Server 2012: Adopting Agile Software Practicesxx

Figure P.1: Team Foundation Server forms the collaboration hub of VS 2012. The client
components are available in VS Ultimate.

Team Foundation Server (TFS) is the ALM backbone, providing source
control management, build automation, work item tracking, test case man-
agement, reporting, and dashboards. Part of TFS is Lab Management,
which extends the build automation of TFS to integrate physical and virtual
test labs into the development process.

If you just have TFS, you get a client called Team Explorer that launches
either stand-alone or as a plug-in to the Visual Studio Professional IDE.
Team Explorer Everywhere, a comparable client written in Java, launches
as an Eclipse plug-in. You also get Team Web Access and plug-ins that let
you connect from Microsoft Excel or Project. SharePoint hosts the dash-
boards.

Preface xxi

Visual Studio Premium adds the scenarios that are described in Chap-
ter 6 around working with the code. Visual Studio Test Professional,
although it bears the VS name, is a separate application outside the IDE,
designed with the tester in mind. You can see lots of Test Professional exam-
ples in Chapter 8. VS Ultimate, which includes Test Professional, adds
architectural modeling and discovery, discussed in Chapter 5.

There is also a rich community of partner products that use the extensi-
bility to provide additional client experiences on top of TFS. Figure P.2
shows examples of third-party extensions that enable MindManager,
Microsoft Word, and Microsoft Outlook as clients of TFS. You can find a
directory at www.visualstudiowidgets.com/.

Figure P.2: A broad catalog of partner products extend TFS. Shown here are Ekobit Team-
Companion, CloudShare hosted dev/test labs, and the open source TFS Word Add-in avail-
able on CodePlex.

www.visualstudiowidgets.com/

Of course, all the clients read and feed data into TFS, and their trends
surface on the dashboards, typically hosted on SharePoint. Using Excel Ser-
vices or SQL Server Reporting Services, you can customize these dash-
boards. Dashboard examples are the focus of Chapter 4.

Of course, there’s plenty more to learn about VS at the Developer Cen-
ter of http://msdn. microsoft.com/vstudio/.

A Note to Readers about Editions of the Book

We are pleased to bring you the third edition of the book. If you have been
with the book since the first edition, Software Engineering with Microsoft
Visual Studio Team System (published May 2006), you will notice significant
changes and essentially an entire rewrite of the book. If you purchased the
second edition, Agile Software Engineering with Visual Studio: From Concept to
Continuous Feedback, published last year, you will notice little has changed.
This third edition has been revised with a focus on Visual Studio 2012 and
is recommended if you are working with Visual Studio 2012.

Visual Studio Team Foundation Server 2012: Adopting Agile Software Practicesxxii

http://msdn.microsoft.com/vstudio/

xxiii

Acknowledgments

Hundreds of colleagues and millions of customers have contributed to
shaping Visual Studio. In particular, the roughly two hundred “ALM
MVPs” who relentlessly critique our ideas have enormous influence.
Regarding this book, there are a number of individuals who must be sin-
gled out for the direct impact they made. Ken Schwaber convinced me that
this book was necessary. The inexhaustible Brian Harry and Cameron Skin-
ner provided detail and inspiration. Jason Zander gave me space and
encouragement to write. Tyler Gibson illustrated the Scrum cycles to unify
the chapters. Natalie Wells, Martin Woodward, and Amit Chopra helped us
with builds, virtual machines, and prerelease logistics to get the work done
in time. Among our reviewers, David Starr, Claude Remillard, Aaron Bjork,
David Chappell, and Adam Cogan stand out for their thorough and careful
comments. And a special thanks goes to Joan Murray, our editor at Pearson,
whose patience was limitless.

About the Authors

Sam Guckenheimer
When I wrote the predecessor of this book, I had been at Microsoft less than
three years. I described my history like this:

I joined Microsoft in 2003 to work on Visual Studio Team System (VSTS),
the new product line that was just released at the end of 2005. As the group
product planner, I have played chief customer advocate, a role that I have
loved. I have been in the IT industry for twenty-some years, spending most
of my career as a tester, project manager, analyst, and developer.

As a tester, I’ve always understood the theoretical value of advanced
developer practices, such as unit testing, code coverage, static analysis, and
memory and performance profiling. At the same time, I never understood
how anyone had the patience to learn the obscure tools that you needed to
follow the right practices.

As a project manager, I was always troubled that the only decent data we
could get was about bugs. Driving a project from bug data alone is like driv-
ing a car with your eyes closed and only turning the wheel when you hit
something. You really want to see the right indicators that you are on course,
not just feel the bumps when you stray off it. Here, too, I always understood
the value of metrics, such as code coverage and project velocity, but I never
understood how anyone could realistically collect all that stuff.

As an analyst, I fell in love with modeling. I think visually, and I found
graphical models compelling ways to document and communicate. But the
models always got out of date as soon as it came time to implement any-
thing. And the models just didn’t handle the key concerns of developers,
testers, and operations.

In all these cases, I was frustrated by how hard it was to connect the dots
for the whole team. I loved the idea in Scrum (one of the Agile processes)
of a “single product backlog”—one place where you could see all the
work—but the tools people could actually use would fragment the work
every which way. What do these requirements have to do with those tasks,
and the model elements here, and the tests over there? And where’s the
source code in that mix?

From a historical perspective, I think IT turned the corner when it
stopped trying to automate manual processes and instead asked the ques-
tion, “With automation, how can we reengineer our core business
processes?” That’s when IT started to deliver real business value.

They say the cobbler’s children go shoeless. That’s true for IT, too. While
we’ve been busy automating other business processes, we’ve largely neg-
lected our own. Nearly all tools targeted for IT professionals and teams
seem to still be automating the old manual processes. Those processes
required high overhead before automation, and with automation, they still
have high overhead. How many times have you gone to a 1-hour project
meeting where the first 90 minutes were an argument about whose num-
bers were right?

Now, with Visual Studio, we are seriously asking, “With automation,
how can we reengineer our core IT processes? How can we remove the
overhead from following good process? How can we make all these differ-
ent roles individually more productive while integrating them as a high-
performance team?”

Obviously, that’s all still true.
Neno Loje
I started my career as a software developer—first as a hobby, later as pro-
fession. At the beginning of high school, I fell in love with writing software
because it enabled me to create something useful by transforming an idea
into something of actual value for someone else. Later, I learned that this
was generating customer value.

However, the impact and value were limited by the fact that I was just
a single developer working in a small company, so I decided to focus on
helping and teaching other developers. I started by delivering pure techni-
cal training, but the topics soon expanded to include process and people,

About the Authors xxv

because I realized that just introducing a new tool or a technology by itself
does not necessarily make teams more successful.

During the past six years as an independent ALM consultant and TFS
specialist, I have helped many companies set up a team environment and
software development process with VS. It has been fascinating to watch
how removing unnecessary, manual activities makes developers and entire
projects more productive. Every team is different and has its own problems.
I’ve been surprised to see how many ways exist (both in process and tools)
to achieve the same goal: Deliver customer value faster though great soft-
ware.

When teams look back at how they worked before, without VS, they
often ask themselves how they could have survived without the tools they
use now. However, what had changed from the past were not only the
tools, but also the way they work as a team.

Application Lifecycle Management and practices from the Agile Con-
sensus help your team to focus on the important things. VS and TFS are a
pragmatic approach to implement ALM (even for small, nondistributed
teams). If you’re still not convinced, I urge you to try it out and judge for
yourself.

Endnotes
1 See, for example: Thomas E. Murphy and Jim Duggan, “Magic Quadrant for Applica-

tion Life Cycle Management,” 5 June 2012 ID:G00218016, available at http://www.
gartner.com/technology/reprints.do?id=1-1ASCXON&ct=120606&st=sb.

Visual Studio Team Foundation Server 2012: Adopting Agile Software Practicesxxvi

http://www.gartner.com/technology/reprints.do?id=1-1ASCXON&ct=120606&st=sb
http://www.gartner.com/technology/reprints.do?id=1-1ASCXON&ct=120606&st=sb

2

Scrum, Agile Practices, and
Visual Studio

One methodology cannot possibly be the “right” one, but…
there is an appropriate, different way of working for each project
and project team.1

—Alistair Cockburn

19

Figure 2.1: The rhythm of a crew rowing in unison is a perfect example of flow in both the
human and management senses. Individuals experience the elation of performing optimally,
and the coordinated teamwork enables the system as a whole (here, the boat) to achieve its
optimum performance. It’s the ideal feeling of a “sprint.”

T
H E P R E C E D I N G C H A P T E R D I S C U S S E D the Agile Consensus of the past
decade. That chapter distinguished between complicated projects, with

well-controlled business or technical risk, and complex ones, where the
technology and business risks are greater. Most new software projects are
complex; otherwise, the software would not be worth building.

This chapter covers the next level of detail—the characteristics of soft-
ware engineering and management practices, the “situationally specific”
contexts to consider, and the examples that you can apply in Visual Studio
(VS). In this chapter, you learn about the mechanisms that VS (primarily
Team Foundation Server [TFS]) provides to support the team enacting the
process. Whereas Chapter 1, “The Agile Consensus,” gave an outside-in
view of what a team needs, this chapter provides an inside-out overview
of the tooling that makes the enactment possible.

Visual Studio and Process Enactment

Through three classes of mechanisms, VS helps the team follow a defined
software process:

1. As illustrated in Chapter 1, TFS captures backlogs, workflow, status,
and metrics. Together, these keep the work transparent and guide
the users to the next appropriate actions. TFS also helps ensure the
“doneness” of work so that the team cannot accrue technical debt
without warning and visibility.

2. Each team project tracked by TFS starts off with a process template
that defines the standard workflows, reports, roles, and artifacts for
the process. These are often changed later during the course of the
team project as the team learns and tunes its process, but their initial
defaults are set according to the chosen process template.

3. On the IDE clients (VS or Eclipse), there are user experiences that
interact with the server to ensure that the policies are followed and
that any warnings from policy violations are obvious.

CHAPTER 2: Scrum, Agile Practices, and Visual Studio20

Process Templates

The process template supports the workflow of the team by setting the
default work item types, reports, queries, roles (i.e., security groups), team
portal, and artifacts. Work item types are the most visible of these because
they determine the database schema that team members use to manage the
backlog, select work, and record status as it is done. When a team member
creates a team project, the Project Creation Wizard asks for a choice of
process template, as shown in Figure 2.2.

Process Templates 21

Figure 2.2: The Project Creation Wizard lets you create a team project based on any of the
currently installed process templates.

Microsoft provides three process templates as standard:

1. Microsoft Visual Studio Scrum: This process template directly
supports Scrum, and was developed in collaboration with Ken
Schwaber based on the Scrum Guide.2 The Scrum process template
defines work item types for Product Backlog Item, Bug, Task,

Impediment, Test Case, Shared (Test) Steps, Code Review Request/
Response, and Feedback Request/Response. The reports are Backlog
Overview, Release Burndown, Sprint Burndown, and Velocity.

2. MSF for Agile Software Development: MSF Agile is also built
around an agile base but incorporates a broader set of artifacts than
the Scrum process template. In MSF Agile, product backlog items
(PBIs) are called user stories and impediments are called issues. The
report shown in Figure 1.4 in Chapter 1 is taken from MSF Agile.

3. MSF for CMMI Process Improvement: This process template is also
designed for iterative work practices, but with more formality than
the other templates. This one is designed to facilitate a team’s prac-
tice of Capability Maturity Model Integration (CMMI) Level 3 as
defined by the Software Engineering Institute.3 Accordingly, it
extends MSF Agile with more formal planning, more documentation
and work products, more sign-off gates, and more time tracking.
Notably, this process template adds Change Request and Risk work
item types and uses a Requirement work item type that is more elab-
orate than the user stories of MSF Agile.

Other companies provide their own process templates and can have
these certified by Microsoft. For example, Sogeti has released a version of
its Test Management Approach (TMap) methodology as a certified process
template, downloadable from the Visual Studio Developer Center at
http://msdn.microsoft.com/vstudio/aa718795.aspx.

When you create a team project with TFS, you choose the process tem-
plate to apply, as shown in Figure 2.2.

Teams
Processes tend to prescribe team structure. Scrum, for example, has three
roles. The Product Owner is responsible for the external definition of the
product, captured in the product backlog, and the management of the
stakeholders and customers. The Team of Developers is responsible for the
implementation. And the Scrum Master is responsible for ensuring that the
Scrum process is followed.

CHAPTER 2: Scrum, Agile Practices, and Visual Studio22

http://msdn.microsoft.com/vstudio/aa718795.aspx

In Scrum, the team has three to nine dedicated members. Lots of evi-
dence indicates that this is the size that works best for close communica-
tion. Often, one of the developers doubles as the Scrum Master. If work is
larger than can be handled by one team, it should be split across multiple
teams, and the Scrum Masters can coordinate in a scrum of scrums. A Prod-
uct Owner can serve across multiple scrum teams but should not double
as a Scrum Master.

In TFS, each team has a home page with data from the current sprint of
its project, like an up-to-date burndown chart and the remaining, incom-
plete PBIs, as shown in Figure 2.3. Additionally, the team gets its own prod-
uct backlog and a task board—both are available using the Web browser. To
support larger projects with multiple teams, TFS enables the concept of
master backlogs that consolidate each team’s product backlog into a single
view.4

Process Templates 23

Figure 2.3: The tiles on the team’s home page represent the team’s current progress as
well as favorite metrics, including work items, testing, source control, and the automated
build and test results. Additionally, you can jump to all important views from this page.

In most cases, it is bad Scrum to use tooling to enforce permissions
rather than to rely on the team to manage itself. Instead, it is generally bet-
ter to assume trust, following the principle that “responsibility cannot be
assigned; it can only be accepted.”5 TFS always captures the history of
every work item change, thereby making it easy to trace any unexpected
changes and reverse any errors.

Nonetheless, sometimes permissions are important (perhaps because of
regulatory or contractual circumstances, for example). Accordingly, you
can enforce permissions in a team project in four ways:

1. By role

2. By work item type down to the field and value

3. By component of the system (through the area path hierarchy of
work items and the folder and branch hierarchy of source control)

4. By builds, reports, and team site

For example, you can set a rule on the PBI work item type that only a
Product Owner can update PBIs. In practice, this is rarely done.

Process Cycles and TFS

A core concept of the convergent evolution discussed in Chapter 1 is itera-
tive and incremental development. Scrum stresses the basis of iteration in
empirical process control because through rapid iteration the team reduces
uncertainty, learns by doing, inspects and adapts based on its progress, and
improves as it goes.6 Accordingly, Scrum provides the most common rep-
resentation of the main macro cycles in a software project: the release and
the sprint (a synonym for iteration), as shown in Figure 2.4. Scrum provides
some simple rules for managing these.

Release
The release is the path from vision to delivered software. As Ken Schwaber
and Jeff Sutherland explain in the Scrum Guide:

CHAPTER 2: Scrum, Agile Practices, and Visual Studio24

Release planning answers the questions, “How can we turn the
vision into a winning product in the best possible way? How can we
meet or exceed the desired customer satisfaction and Return on
Investment?” The release plan establishes the goal of the release, the
highest priority Product Backlog, the major risks, and the overall fea-
tures and functionality that the release will contain. It also establishes
a probable delivery date and cost that should hold if nothing
changes.7

Process Cycles and TFS 25

Continuous
Integration

Potentially
Shippable
Increment

Sprint
Daily
Standup

Check-in

Sprint
Backlog

Acceptance
Testing

Deploy
to Lab

Daily
Build

Figure 2.4: Software projects proceed on many interlocking cycles, ranging from the “code-
edit-test-debug-check in” cycle, measured in minutes, to continuous integration, to daily
testing cycles, to the sprint. These are views of both the process and the flow of data, auto-
mated by the process tooling.

The release definition is contained in the product backlog, which consists
of requirements, unsurprisingly named product backlog items, as shown in
Figure 2.5. Throughout the release, the Product Owner keeps the PBIs stack
ranked to remove ambiguity about what to do next. As DeMarco and Lister
have put it:

Rank-ordering for all functions and features is the cure for two ugly
project maladies: The first is the assumption that all parts of the prod-
uct are equally important. This fiction is preserved on many projects
because it assures that no one has to confront the stakeholders who
have added their favorite bells and whistles as a price for their coop-
eration. The same fiction facilitates the second malady, piling on, in
which features are added with the intention of overloading the proj-
ect and making it fail, a favorite tactic of those who oppose the proj-
ect in the first place but find it convenient to present themselves as
enthusiastic project champions rather than as project adversaries.8

CHAPTER 2: Scrum, Agile Practices, and Visual Studio26

Figure 2.5: A product backlog item, shown here as accessed inside the VS IDE, can also
be viewed from the Web Portal, Microsoft Excel, Microsoft Project, and many third-party
plug-in tools available for TFS.

A common and useful practice is stating the PBIs, especially the func-
tional requirements, as user stories. User stories take the form As a <target

customer persona>, I can <achieve result> in order to <realize value>. Chapter
3, “Product Ownership,” goes into more detail about user stories and other
forms of requirements.

Sprint
In a Scrum project, every sprint has the same duration, typically two to four
weeks. Prior to the sprint, the team helps the Product Owner groom the
product backlog, estimating a rough order of magnitude for the top PBIs.
This estimation has to include all costs associated with completing the PBI
according to the team’s agreed-upon definition of done. The rough estima-
tion method most widely favored these days is Planning Poker, adapted by
Mike Cohn as a simple, fast application of what had been described by
Barry Boehm as the Wideband Delphi Method.9 Planning Poker is easy and
fast, making it possible with minimal effort to provide estimates that are
generally as good as those derived from much longer analysis. Estimates
from Planning Poker get entered as story points in the PBI work item. Plan-
ning Poker is discussed further in Chapter 4, “Running the Sprint.”

Another great practice is to define at least one acceptance test for each
PBI. These are captured in TFS as test cases, a standard work item type.
Defining acceptance tests early has three benefits:

1. They clarify the intent of the PBI.

2. They provide a done criterion for PBI completion.

3. They help inform the estimate of PBI size.

At the beginning of the sprint, the team commits to delivering a poten-
tially shippable increment of software realizing some of the top-ranked prod-
uct backlogs. The commitment factors the cumulative estimate of the PBIs,
the team’s capacity, and the need to deliver customer value in the poten-
tially shippable increment. Then, only the PBIs committed for the current
sprint are broken down by the team into tasks. These tasks are collectively
called the sprint backlog (see Figure 2.6).

Process Cycles and TFS 27

Figure 2.6: The sprint backlog, shown here as accessed from the Web Portal, consists of
the tasks for the current sprint, grouped under the PBIs to which the team has committed.

Don’t Confuse Product Backlog and Sprint Backlog

In our experience, the most common confusion around Scrum terminology
is the use of the word backlog in two different instances. To some extent, the
confusion is a holdover from earlier project management techniques. The
product backlog holds only requirements and bugs deferred to future
sprints and is the interface between the Product Owner, representing cus-
tomers and other stakeholders, and the team. PBIs are assessed in story
points only.

The sprint backlog consists of implementation tasks, test cases, bugs of
the current sprint, and impediments and is for the implementation team.
When working on a task, a team member updates the remaining hours on
these tasks, but typically does not touch the PBI, except to mark it as ready
for test or completed. Stakeholders should not be concerned with the sprint
backlog, only with the PBIs.

CHAPTER 2: Scrum, Agile Practices, and Visual Studio28

Using tasks, the team lays out an initial plan for how to transform the
selected PBIs into working software. Estimating each task’s remaining
hours helps the team verify the effort is not exceeding their capacity, as
shown in Figure 2.7.

Process Cycles and TFS 29

Figure 2.7: For each sprint the team sets its capacity. Each individual can identify primary
activity and identify planned days off. The work pane compares available time against the
estimated hours for the team, both for each team member and grouped at the level of activi-
ties like development or testing.

Handling Bugs

Bugs should be managed according to context. Different teams view bugs
differently. Product teams tend to think of anything that detracts from cus-
tomer value as a bug, whereas contractors stick to a much tighter definition.

In either case, do not consider a PBI done if there are outstanding bugs
because doing so would create technical debt. Accordingly, treat bugs that

are found in PBIs of the current sprint as simply undone work and manage
them in the current iteration backlog.

In addition, you often discover bugs unrelated to the current PBIs, and
these can be added to the product backlog, unless you have spare capacity
in the current sprint. (The committed work of the sprint should normally
take precedence, unless the bug found is an impediment to achieving the
sprint goal.) This can create a small nuisance for grooming the product
backlog, in that individual bugs are usually too fine-grained and numerous
to be stack ranked against the heftier PBIs. In such a case, create a PBI as a
container or allotment for a selection of the bugs, make it a “parent” of them
in TFS, and rank the container PBI against its peers (see Figure 2.8).

CHAPTER 2: Scrum, Agile Practices, and Visual Studio30

Figure 2.8: The product backlog contains the PBIs that express requirements and the bugs
that are not handled in the current sprint. This can be accessed from any of the TFS clients;
here it is shown in the VS IDE.

Avoiding Analysis Paralysis

A great discipline of Scrum is the strict timeboxing of the sprint planning
meeting, used for commitment of the product backlog (the “what”) and for
initial task breakdown of the sprint backlog (the “how”). For a one-month
sprint, the sprint planning meeting is limited to a day before work begins
on the sprint. For shorter sprints, the meeting should take a proportionally
shorter length of time.

Note that this does not mean that all tasks are known on the first day of
the sprint. On the contrary, tasks may be added to the sprint backlog when-
ever necessary. Rather, timeboxing sprint planning means that the team
needs to understand the committed PBIs well enough to start work. In this
way, only 5% of the sprint time is consumed by planning before work
begins. (Another 5% of the calendar, the last day of a monthly sprint, is
devoted to review and retrospective.) In this way, 90% of the sprint is
devoted to working through the sprint backlog.

Bottom-Up Cycles
In addition to the two macro cycles of release and sprint, TFS uses the two
finer-grained cycles of check-in and test to collect data and trigger automa-
tion. In this way, with no overhead for the users, TFS can provide mecha-
nisms to support both automating definitions of done and transparently
collecting project metrics.

Personal Development Preparation
As discussed in Chapter 6, “Development,” VS provides continuous feed-
back to the developer to practice test-driven development; correct syntax
suggestions with IntelliSense; and check for errors with local builds, tests,
and check-in policy reviews. These are private activities, in the sense that
VS makes no attempt to persist any data from these activities before the
developer decides to check in.

Check-In Cycle
The finest-grained coding cycle at which TFS collects data and applies
workflow is the check-in (that is, any delivery of code by the developer from

Process Cycles and TFS 31

a private workspace to a shared branch). This cycle provides the first oppor-
tunity to measure done on working code. The most common Agile practice
for the check-in cycle is continuous integration, in which every check-in
triggers a team build from a TFS build definition. The team build gets the
latest versions of all checked-in source from all contributors, provisions a
build server, and runs the defined build workflow, including any code
analysis, lab deployment, or build verification tests that have been defined
in the build. (See Chapter 7, “Build and Lab,” for more information.)

Continuous integration is a great practice, if build breaks are rare. In that
case, it is a great way to keep a clean, running drop of the code at all times.
The larger the project, however, the more frequent build breaks can
become. For example, imagine a source base with 100 contributors. Sup-
pose that they are all extraordinary developers, who make an average of
only one build break per three months. With continuous integration, their
build would be broken every day.

To avoid the frequent broken builds, TFS offers a form of continuous
integration called gated check-in. Gated check-in extends the continuous
integration workflow, in that it provisions a server and runs the team build
before check-in. Only if the full build passes, then the server accepts the code
as checked in. Otherwise, the check-in is returned to the developer as a
shelveset with a warning detailing the errors. Chapter 9, “Lessons Learned
at Microsoft Developer Division,” describes how we use this at Microsoft.

In addition, prior to the server mechanisms of continuous integration or
gated check-in, TFS runs check-in policies on the clients. These are the earli-
est and fastest automated warnings for the developer. They can validate
whether unit tests and code analysis have been run locally, work items
associated, check-in notes completed, and other “doneness” criteria met
before the code goes to the server for either continuous integration or gated
check-in.

Test Cycle
Completed PBIs need to be tested, as do bug fixes. Typically, team members
check in code in small increments many times before completing a PBI.
However, when a PBI is completed, a test cycle may start. In addition, many
PBIs and bug fixes are often completed in rapid succession, and these can

CHAPTER 2: Scrum, Agile Practices, and Visual Studio32

be combined into a single test cycle. Accordingly, a simple way to handle
test cycles is to make them daily.

TFS allows for multiple team build definitions, and a good practice is to
have a daily build in addition to the continuous integration or gated check-
in build. When you do this, every daily “build details” page shows the
increment in functionality delivered since the previous daily build, as
shown in Figure 2.9.

Process Cycles and TFS 33

Figure 2.9: Every build has a “build details” page that serves as an automated release
note, accessible from the dashboard or inside the IDE clients. In this case, it is shown inside
Eclipse, as a team working with Java code would see.

In addition, Microsoft Test Manager (MTM, part of the VS product line)
enables you to compare the current build against the last one tested to see
the most important tests to run based on both backlog changes and new or
churned code, as shown in Figure 2.10. (See Chapter 8, “Test,” for more
information.)

Figure 2.10: This build assignment in Microsoft Test Manager is a great way to start the
test cycle because it shows the new work delivered since the last tested build and can
recommend tests accordingly.

Daily Cycle

The Scrum process specifies a daily scrum, often called a “daily stand-up
meeting,” to inspect progress and adapt to the situation. Daily scrums
should last no more than 15 minutes. As the Scrum Guide explains, during
the meeting, each team member explains the following:

1. What has the team member accomplished since the last meeting?

2. What will the team member accomplish before the next meeting?

3. What obstacles currently impede the team member?

Daily scrums improve communications, eliminate other meetings, iden-
tify and remove impediments to development, highlight and promote
quick decision making, and improve everyone’s level of project knowledge.

CHAPTER 2: Scrum, Agile Practices, and Visual Studio34

Although TFS does not require daily builds, and the process rules do not
mandate combining the daily and testing cycles, treating the daily cycle
and test cycle as the same is certainly convenient. TFS helps considerably
with preparation for the Scrum questions:

• As Figures 2.9 and 2.10 show, the automated release note of the
“build details” page and the test recommendations of MTM help
resolve any discrepancies in assumptions for question 1.

• The task board, shown in Figure 2.11, should align with question 2.

• The Open Impediments or Open Issues query, shown in Figure 2.12,
should match question 3.

Process Cycles and TFS 35

Figure 2.11: The TFS task board shows the progress of the sprint backlog visually grouped
by PBI. Alternative queries allow different groupings, such as by team member.

Figure 2.12: The Open Impediments query shows the current state of blocking issues as of
the daily scrum.

These tools don’t replace the daily scrum, but they remove any dispute
about the data of record. In this way, the team members can focus the meet-
ing on crucial interpersonal communication rather than on questions about
whose data to trust.

Definition of Done at Every Cycle
For each of these cycles—check-in, test, release, and sprint—the team
should have a common definition of done and treat it as a social contract.
The entire team should be able to see the status of done transparently at all
times. Without this social contract, it is impossible to assess technical debt
and, accordingly, impossible to ship increments of software predictably.

With Scrum and TFS working together, every cycle has a done mecha-
nism. Check-in has its policies and the build workflows, test has the test
plans for the cycle, and sprint and release have work items to capture their
done lists.

CHAPTER 2: Scrum, Agile Practices, and Visual Studio36

Inspect and Adapt

In addition to the daily 15 minutes, Scrum prescribes that the team have
two meetings at the end of the sprint to inspect progress (the sprint review)
and identify opportunities for process improvement (the sprint retrospec-
tive). Together, these should take about 5% of the sprint, or one day for a
monthly sprint. Alistair Cockburn has described the goal of the retrospec-
tive well: “Can we deliver more easily or better?”10 Retrospectives force the
team to reflect on opportunities for improvement while the experience is
fresh.

Based on the retrospective, the sprint end is a good boundary at which
to make process changes. You can tune based on experience, and you can
adjust for context. For example, you might increase the check-in require-
ments for code review as your project approaches production and use TFS
check-in policies, check-in notes, and build workflow to enforce these
requirements.

Task Boards

Scrum uses the sprint cadence as a common cycle to coordinate prioritiza-
tion of the product backlog and implementation of the iteration backlog.
The team manages its capacity by determining how much product backlog
to take into the coming sprint, usually based on the story points delivered
in prior sprints. This is an effective model for running an empirical process
in complex contexts, as defined in Figure 1.3 in Chapter 1.

TFS includes an automated task board that visualizes the sprint backlog,
as shown in Figure 2.11. It provides a graphical way to interact with TFS
work items and an instant visual indicator of sprint status.
Automated task boards are especially useful for geographically distributed
teams and scrums. You can hang large touch screens in meeting areas at
multiple sites, and other participants can see the same images on their lap-
tops. Because they all connect to the same TFS database, they are all current
and visible. At Microsoft, we use these to coordinate Scrum teams across
Redmond, Raleigh, Hyderabad, and many smaller sites.

Task Boards 37

Kanban

The history of task boards is an interesting study in idea diffusion. For Agile
teams, they were modeled after the so-called Kanban (Japanese for “sign-
board”) that Taiichi Ohno of Toyota had pioneered for just-in-time manu-
facturing. Ohno created his own model after observing how American
supermarkets stocked their shelves in the 1950s.11 Ohno observed that
supermarket shelves were stocked not by store employees, but by distrib-
utors, and that the card at the back of the cans of soup, for example, was the
signal to put more soup on the shelf. Ohno introduced this to the factory,
where the card became the signal for the component supplier to bring a
new bin of parts.

Surprisingly, only in the past few years have software teams discovered
the value of the visual and tactile metaphor of the task board. And Toyota
only recently looked to bring Agile methods into its software practices,
based not on its manufacturing but on its observation again of Western
work practices.12 So, we’ve seen an idea move from American supermar-
kets to Japanese factories to American software teams back to Japanese soft-
ware teams, over a period of 50 years.

In software practices, Kanban has become the name of more than the
task board; it is also the name of an alternative process, most closely asso-
ciated with David J. Anderson, who has been its primary proponent.13

Where Scrum uses the team’s commitments for the sprint to regulate capac-
ity, Kanban uses work-in-progress (WIP) limits. Kanban models workflow
more deterministically with finer state transitions on PBIs, such as Analysis
Ready, Dev Ready, Test Ready, Release Ready, and so on. The PBIs in each
such state are treated as a queue, and each queue is governed by a WIP
limit. When a queue is above the WIP limit, no more work may be pulled
from earlier states, and when it falls below, new work is pulled.

Kanban is more prescriptive than Scrum in managing queues. The Kan-
ban control mechanism allows for continuous adjustment, in contrast to
Scrum, which relies on the team commitment, reviewed at sprint bound-
aries. Kanban can readily be used inside the sprint boundaries to keep
WIP low.

CHAPTER 2: Scrum, Agile Practices, and Visual Studio38

Fit the Process to the Project

Based on your project context and your retrospectives, you may choose to
customize your process template. Ideally, this is a team decision, but certain
stakeholders may have special influence. Even then, every team member
should understand the rationale of the choice and the value of any practice
that the process prescribes. If the value cannot be identified, it is unlikely
that it can be realized. Sometimes the purpose might not be intuitive (cer-
tain legal requirements for example), but if understood can still be
achieved.

As Barry Boehm and Richard Turner have described, it is best to start
small:

Build Your Method Up, Don’t Tailor It Down

Plan-driven methods have had a tradition of developing all-inclusive
methods that can be tailored down to fit a particular situation.
Experts can do this, but nonexperts tend to play it safe and use the
whole thing, often at considerable unnecessary expense. Agilists
offer a better approach of starting with relatively minimal sets of
practices and only adding extras where they can be clearly justified
by cost-benefit.14

Fortunately, TFS assumes that a team will “stretch the process to fit”—
that is, take a small core of values and practices and add more as necessary
(see Figure 2.13).

One of the tenets of the Agile Consensus is to keep overhead to a mini-
mum. Extra process is waste unless it has a clear purpose whose return jus-
tifies the cost. Three common factors might lead to more steps or done
criteria in the process than others: geographic distribution; required docu-
mentation; and governance, risk management, and compliance.

Fit the Process to the Project 39

Figure 2.13: The Process Template Editor (in the TFS Power Tools on the VS Gallery)
enables you to customize work item types, form design, and workflows.

Geographic Distribution
Most organizations are now geographically distributed. Individual Scrum
teams of seven are best collocated, but multiple Scrum teams across multi-
ple locations often need to coordinate work. For example, on VS, we are
running scrums of scrums and coordinating sprint reviews and planning
across Redmond, Raleigh, and Hyderabad, and several smaller sites, a
spread of 12 time zones. In addition to TFS with large screens, we use
Microsoft Lync for the video and screen sharing, and we record meetings
and sprint review demos so that not everyone needs to be awake at weird
hours to see others’ work.

Tacit Knowledge or Required Documentation
When you have a geographically distributed team, it is harder to have
spontaneous conversations than when you’re all in one place, although
instant messaging and video chat help a lot. When you’re spread out, you

CHAPTER 2: Scrum, Agile Practices, and Visual Studio40

cannot rely just on tacit knowledge. You can also use internal documenta-
tion to record contract, consensus, architecture, maintainability, or approval
for future audit. Whatever the purpose, write the documentation for its
audience and to its purpose and then stop writing. Once the documentation
serves its purpose, more effort on it is waste. Wherever possible, use TFS
work items as the official record so that there is a “single source of truth.”
Third-party products such as Ekobit TeamCompanion, shown in Chapter 4,
can help by converting email into TFS work items for a visible and
auditable record.

Governance, Risk Management, and Compliance
Governance, risk management, and compliance (GRC) are closely related terms
that are usually considered together since the passage of the Sarbanes-
Oxley Act of 2002 (SOX) in the United States. For public and otherwise reg-
ulated companies, GRC policies specify how management maintains its
accountability for IT. GRC policies may require more formality in docu-
mentation or in the fields and states of TFS work items than a team would
otherwise capture.

One Project at a Time Versus Many Projects at Once
One of the most valuable planning actions is to ensure that your team mem-
bers can focus on the project at hand without other commitments that drain
their time and attention. Gerald Weinberg once proposed a rule of thumb to
compute the waste caused by project switching, shown in Table 2.1.15

Table 2.1: Waste Caused by Project Switching

Number of Percent of Working Time Loss to Context
Simultaneous Projects Available per Project Switching

1 100% 0%

2 40% 20%

3 20% 40%

4 10% 60%

5 5% 75%

Fit the Process to the Project 41

That was 20 years ago, without suitable tooling. In many organizations
today, it is a fact of life that individuals have to work on multiple projects,
and VS is much easier to handle now than it was when Weinberg wrote. In
Chapter 6, I discuss how VS is continuing to help you stay in the groove
despite context switching, but it is still a cognitive challenge.

Summary

As discussed in Chapter 1, in the decade since the Agile Manifesto, the
industry has largely reached consensus on software process. Scrum is at its
core, complemented with Agile engineering practices, and based on Lean
principles. This convergent evolution is the basis for the practices sup-
ported by VS.

This chapter addressed how VS, and TFS in particular, enacts process.
Microsoft provides three process templates with TFS: Scrum, MSF for Agile
Software Development, and MSF for CMMI Process Improvement. All are
Agile processes, relying on iterative development, iterative prioritization,
continuous improvement, constituency-based risk management, and situ-
ationally specific adaptation of the process to the project. Microsoft partners
provide more process templates and you can customize your own.

Core to all the processes is the idea of work in nested cycles: check-in,
test, sprint, and release. Each cycle has its own definition of done, reinforced
with tooling in TFS. The definitions of done by cycle are the best guards
against the accumulation of technical debt and, thus, are the best aids in
maintaining the flow of potentially shippable software in every sprint.

Consistent with Scrum, it is important to inspect and adapt not just the
software but also the process itself. TFS provides a Process Template Edi-
tor to adapt the process to the needs of the project. The process design
should reflect meaningful business circumstances and what the team learns
as it matures from sprint to sprint.

Finally, inspect and adapt. Plan on investing in process and tooling early
to improve the economics of the project over its life span. By following an
Agile approach, you can achieve considerable long-term benefits, such as
the development of high-quality and modifiable software without a long

CHAPTER 2: Scrum, Agile Practices, and Visual Studio42

tail of technical debt. However, such an approach, and its attendant bene-
fits, requires conscious investment.

The next chapter pulls back to the context around the sprint and dis-
cusses product ownership and the many cycles for collecting and acting on
feedback. That chapter covers the requirements in their many forms and
the techniques for eliciting them and keeping them current in the backlog.

Endnotes
1 Alistair Cockburn coined the phrase stretch to fit in his Crystal family

of methodologies and largely pioneered this discussion of context
with his paper “A Methodology per Project,” available at http://
alistair.cockburn.us/crystal/articles/mpp/methodologyperproject.
html.

2 Ken Schwaber and Jeff Sutherland, Scrum Guide, February 2010,
available at www.scrum.org/scrumguides/.

3 www.sei.cmu.edu
4 See Gregg Boer’s blog, http://blogs.msdn.com/b/greggboer/

archive/2012/01/27/tfs-vnext-configuring-your-project-to-have-
a-master-backlog-and-sub-teams.aspx.

5 Kent Beck with Cynthia Andres, Extreme Programming Explained:
Embrace Change, Second Edition (Boston: Addison-Wesley, 2005), 34.

6 Mentioned in the Scrum Guide, and discussed in somewhat greater
length in Ken Schwaber and Mike Beedle, Agile Software Development
with Scrum (Upper Saddle River, NJ: Prentice Hall, 2001), 25.

7 Scrum Guide, 9.
8 Tom DeMarco and Timothy Lister, Waltzing with Bears: Managing

Risk on Software Projects (New York: Dorset House, 2003), 130.
9 Mike Cohn, Agile Estimating and Planning (Upper Saddle River, NJ:

Prentice Hall, 2005).
10 Cockburn, op. cit.
11 Ohno, op. cit., 26.

Endnotes 43

www.scrum.org/scrumguides/
www.sei.cmu.edu
http://blogs.msdn.com/b/greggboer/archive/2012/01/27/tfs-vnext-configuring-your-project-to-havea-master-backlog-and-sub-teams.aspx
http://blogs.msdn.com/b/greggboer/archive/2012/01/27/tfs-vnext-configuring-your-project-to-havea-master-backlog-and-sub-teams.aspx
http://blogs.msdn.com/b/greggboer/archive/2012/01/27/tfs-vnext-configuring-your-project-to-havea-master-backlog-and-sub-teams.aspx
http://alistair.cockburn.us/crystal/articles/mpp/methodologyperproject.html
http://alistair.cockburn.us/crystal/articles/mpp/methodologyperproject.html
http://alistair.cockburn.us/crystal/articles/mpp/methodologyperproject.html

12 Henrik Kniberg, “Toyota’s Journey from Waterfall to Lean Software
Development,” posted March 16, 2010, at http://blog.crisp.se/
henrikkniberg/2010/03/16/1268757660000.html.

13 David J. Anderson, Kanban, Successful Evolutionary Change for Your
Technology Business (Seattle: Blue Hole Press, 2010). This control
mechanism is very similar to the drum-buffer-rope described by Eli
Goldratt in The Goal.

14 Barry Boehm and Richard Turner, Balancing Agility with Discipline:
A Guide for the Perplexed (Boston: Addison-Wesley, 2004), 152.

15 Gerald M. Weinberg, Quality Software Management: Systems Thinking
(New York: Dorset House, 1992), 284.

CHAPTER 2: Scrum, Agile Practices, and Visual Studio44

http://blog.crisp.se/henrikkniberg/2010/03/16/1268757660000.html
http://blog.crisp.se/henrikkniberg/2010/03/16/1268757660000.html

Index

275

7-Day Bug Trend Rates chart, 95
7-Day Issue Trend Rates chart, 93

A
acceptance tests, 27
Active Bugs by Assignment chart, 95
Active Bugs by Priority chart, 95
activity diagrams, 118
Agile Alliance, 2
Agile Consensus

back to basics, 15
flow of value

defined, 5
Scrum, 8-9

principles, 5-6
transparency

defined, 5
Scrum, 8
self-managing teams, 11

waste reduction
defined, 5
Taiichi Ohno’s Taxonomy of Waste,

9-11
Agile Manifesto, 2
ALM (Application Lifecycle

Management), 258
analysis

automated code, 152
paralysis, 31

Anderson, David J., 38
application performance problems,

diagnosing, 233-234
architecture

ball of mud, 113
dependency graphs, creating, 107

broad coverage, 107
code indexing, 108
Quick Cluster layout, 109
sequence of interactions between,

110-113
Solution Explorer, 109
top-down, 107

designing just enough, 104
documenting, 119
emergent, 105
existing, 107
Explorer, 114
maintainability, 106-107
structures, controlling, 113-117

code mapping, 114
existing codebases, 117
intended dependencies, defining, 114
layer validation, 115

transparency, 105-106
UML diagrams, 118

activity, 118
artifacts, sharing, 120
component/class/sequence, 119

extending, 122-124
use case, 118
work item links, creating, 122

artifacts, sharing, 120
Austin, Robert, 86
automating

builds, 181
agents, maintaining, 185
definitions, maintaining, 184
BVTs, 182-183
configuring, 181
daily builds, 182
deployment to test labs, 192, 196
reports, 183-184

code analysis, 152
definition of done, 179
scenario tests, 224-227
task boards, 37
tests, 223-224, 260

B
back to basics, 15
back-alley tours, 210
backlog

iteration, 253-254
product. See product backlog
sprint, 27-28

ball of mud, 113
baseless merges, 167
behaviors

distorting, 88
unexpected, isolating, 154-155

Beizer, Boris, 219
Blank, Steve, 267
bottom-up cycles, 31
branching, 164

benefits, 165
by release, 165
changes, 167
viewing, 167
work isolation, 165

broken windows theory, 90-91
Brown, Tim, 58

brownfield projects
defined, 107
dependency graphs, creating, 107

broad coverage, 107
code indexing, 108
Quick Cluster layout, 109
sequence of interaction between,

110-113
Solution Explorer, 109
top-down, 107

layer diagrams, 117
bugs

charts, 94-95
dashboard, 95
deferral, 245
handling, 29, 223
Ping-Pong, 12-13
Progress Chart, 94-95
reactivations, 95
reproducing, 218

DDAs, 215
evolving tests, 219-221
immersive app testing on

Windows 8, 221
solving, 218

trends chart, 95
Build/Measure/Learn, 267-269
builds

agents, 185
automated, 181

agents, maintaining, 185
BVTs, 182-183
definitions, maintaining, 184
reports, 183-184
configuring, 181
daily builds, 182
waste reduction, 12

check-in policies, 137
daily, 33

chart, 94
failures, 202
testing, 196

dashboard, 98

INDEX276

definitions, 184
failures, 202
process templates, 184
Quality Indicators report, 171, 203
test lab deployment, automating,

192, 196
reports, 183-184
Status chart, 94
Success Over Time report, 202
verification tests, 149, 182-183

Burndown dashboard, 92-93
business goals (DevDiv), 243-244

company culture, 244-245
debt crisis, 246
waste, 245

business value
problems, 47
release planning, 51

BVTs (build verification tests), 149,
182-183

C
Capability Maturity Model Integration

(CMMI), 22
celebrating successes, 261
Change by Design (Brown), 58
changesets, 133, 167
chaos theory, 273
chaotic management situations, 3
charts

7-Day Bug Trend Rates, 95
7-Day Issue Trend Rates, 93
Active Bugs by Assignment, 95
Active Bugs by Priority, 95
Bug Progress, 94-95
Bug Reactivations, 95
Build Status, 94
Code Churn, 95
Code Coverage, 95
Manual Test Activity, 97
Recent Builds, 98
Sprint Burndown, 93
Task Burndown, 93
Task Progress, 93

Test Case Readiness, 96
Test Failure Analysis, 98
Test Plan Progress, 93, 96
User Story Progress, 93
User Story Test Status, 97

check-ins
cycle, 31-32
error catching, 132-133

check-in policies, 135
gated check-ins, 136-137

policies, 32, 135
work items, 140

CI (continuous integration), 179-180
class diagrams, 119
clean codebase

catching errors at check-in, 132-133
check-in policies, 135
gated check-ins, 136-137

shelving code, 138-139
clean layering dependencies, 113

code mapping, 114
existing codebases, 117
intended dependencies, defining, 114
validation, 115

clones (code), finding, 151
cloud, 263

feedback, 270-271
test environments, 198

CloudShare, 198
CMMI (Capability Maturity Model

Integration), 22
code

automated analysis, 152
brownfield projects, 107
Churn chart, 95
clean

catching errors at check-in, 132-137
shelving code, 138-139

clones, finding, 151
coverage

chart, 95
monitoring, 203
unit test gaps, pinpointing, 147-148

INDEX 277

dependency graphs, creating, 107
broad coverage, 107
code indexing, 108
Quick Cluster layout, 109
sequence of interaction between,

110-113
Solution Explorer, 109
top-down, 107

indexing, 108
integrating frequently, 199
maintenance

build verification tests, 149
data, varying, 148
redundant code, 151-152
unit test gaps, pinpointing, 147-148
without tests, 145

metrics, 153
redundant, 151-152
reviews, 140-141
sequence diagrams, 110-113
shelving, 138-139
UI tests (Web performance tests),

224-227
creating, 225
running, 226
test data, varying, 227

Cohn, Mike, 53
company culture, 244-245
comparing quantities, 82
compilers, versioning, 163
completing PBIs, 199
complex management situations, 3-4
complicated management situations, 3
component diagrams, 119
configurations

automated builds, 181
testing

critical cases, 189
labs, 187-189
test machines, 189, 192

continuous delivery, 177-178
continuous deployment test labs

automating, 192, 196
cloud, 198

continuous feedback
after every sprint cycle, 268
Build/Measure/Learn, 267-269
cloud, 270-271
cycle, 266-269
developers, 269
priorities/execution, 268
production, 269-271
tests, 269

continuous flow, 262
continuous integration (CI), 179-180
controlling structures, 113, 117

code mapping, 114
existing codebases, 117
intended dependencies, defining, 114
layer validation, 115

Conway’s law, 244
crowd wisdom, 83
culture, 244-245
cumulative flow diagram, 200-201
customers

clear goals, 52
paint points, 52
problems, 47
release planning, 53
sprint reviews, including, 263
user stories, 53
validation, 63-69
vision statements, 52

customizing
dashboards, 98-99
processes to projects, 39

documentation, 41
geographic distribution, 40
GRC, 41
Process Template Editor, 39
project switching, 41

cycles
continuous feedback, 266-269
daily. See daily cycles
process, 24

bottom-up, 31
check-in, 31-32

INDEX278

done, defining, 36
personal development, 31
release, 24, 27
sprint, 27
test, 32-36

Scrum, 7
time

PBIs, 176-177
reducing, 199-203

D
daily builds, 33

chart, 94
failures, 202
testing, 196

daily cycles
antipatterns, 131-132
automated builds, 182
branching, 164

benefits, 165
by release, 165
merging changes, 167
tracking changes, 167
viewing, 167
work isolation, 165

clean codebase
catching errors at check-in, 132-133
check-in policies, 135
gated check-ins, 136-137
shelving code, 138-139

Eclipse/Windows shell, 169
existing code maintenance

build verification tests, 149
data, varying, 148
gaps, pinpointing, 147-148
redundant code, 151-152
without tests, 145

interruptions, minimizing, 139
checking in work, 140
code reviews, 140-141
My Work pane, 139
suspending work, 140

programming errors, catching, 143
automated code analysis, 152
code metrics, calculating, 153
TDD, 143-145

scrums, 34-36
side effects, 154

operational issues, isolating, 157
performance, tuning, 159-162
unexpected behaviors, isolating,

154-155
transparency, 170-171
versioning, 162-163

dashboards
Bugs, 95
Build, 98
Burndown, 92-93
customizing, 98-99
overview, 91
Quality, 93-95
Test, 96-98

data, querying, 100
database schema, versioning, 163
DDAs (diagnostic data adapters), 215
debt crisis, 246
deferring bugs, 245
defined process models, 3, 78-80
defining done, 177-178

post-2005 improvements, 248-249
validating

build automation, 181-185
continuous integration (CI), 179-180

delivering software continuously,
177-178

dependencies
clean layering, 113

code mapping, 114
existing codebases, 117
intended dependencies, defining, 114
validation, 115

graphs, creating, 107
broad coverage, 107
code indexing, 108

INDEX 279

format, 124
Quick Cluster layout, 109
sequence of interactions between,

110-113
Solution Explorer, 109
top-down, 107

unwanted, viewing, 115
deployment

builds to test labs, 192-196
continuous, 192-198
test machines, 192

descriptive metrics, 89
designs

architecture, 104
levels of requirements, 73
load tests, 228
manageability, 71-72
performance, 70
products

desirability, viability, feasibility, 58-59
storyboards, 60-62

security/privacy, 70
user experience, 70

desirability, 59
DevDiv (Microsoft Developer

Division), 242
business goals, 243-244

company culture, 244-245
debt crisis, 246
waste, 245

improvements after 2005, 247
defining done, 249
engineering principles, 256
flow of value, 256-258
iteration backlog, 253-254
MQ, 247
product planning, 250-252
results, 256

lessons learned
broken quality gates, 261
product backlog, planning, 259
product ownership, 259

quality fundamentals, ensuring
early, 259

social contracts, renewing, 258
successes, celebrating, 261
teams effects on each other, 260
test automation, 260

scale of work, 242-243
Visual Studio 2012, 262-263

continuous flow, expanding, 262
customer feedback, 263
geographic coordination, 262
including customers in sprint

reviews, 263
public cloud, 263

Developer Team (Scrum), 22
development

continuous feedback, 269
daily activities. See daily cycles
potentially shippable increment, 130

DGML (Directed Graph Markup
Language), 124

diagnostic data adapters (DDAs), 215
diagrams

activity, 118
class, 119
component, 119
extending, 122-124
layer

code mapping, 114
existing codebases, 117
extensibility, 117
intended dependencies, defining, 114
technical debt, reducing, 117
validation, 115

sequence
dependencies, 110-113
UML, 119

storing, 118
UML, 118

activity, 118
artifacts, sharing, 120
component/class/sequence, 119

INDEX280

extending, 122-124
use case, 118
work item links, creating, 122

use case, 118
work item links, creating, 122

Directed Graph Markup Language
(DGML), 124

dissatisfies, 54-58
distortion, preventing, 89-90
documentation

architectures, 119
fitting processes to projects, 41
models, 117

domains (UML diagrams), 118
activity, 118
artifacts, sharing, 120
component/class/sequence, 119
extending, 122-124
use case, 118
work item links, sharing, 122

done
broken windows theory, 90-91
defining, 36, 177-178

post-2005 improvements, 248-249
validating, 179-185

measuring, 32
server enforcement, 136-137

E
Eclipse development tools, 169
edge of chaos, 3-4, 273
elevator pitch, 53
eliminating waste. See waste,

eliminating
emergent architecture, 105
empirical process model, 5, 80
engineering principles, 256
equivalence classes, 227
errors

catching at check-in, 132-133
check-in policies, 135
gated check-ins, 136-137

operational, isolating, 157

performance, diagnosing, 159-162
programming, catching, 143

automated code analysis, 152
code metrics, calculating, 153
TDD, 143-145

estimating PBIs, 82-84
benefits, 82
crowd wisdom, 83
disadvantages, 84
inspect and adapt, 83
quantity comparisons, 82
rapid cognition, 83
story point estimates, 82
velocity, measuring, 83-84

exciters, 54-58
existing architectures

code, 107
dependency graphs, creating, 107

broad coverage, 107
code indexing, 108
Quick Cluster layout, 109
sequence of interactions between,

110-113
Solution Explorer, 109
top-down, 107

structures, controlling, 113-117
code mapping, 114
existing codebases, 117
intended dependencies, defining, 114
layer validation, 115

UML diagrams, 118
activity, 118
artifacts, sharing, 120
component/class/sequence, 119
extending, 122-124
use case, 118
work item links, creating, 122

exploratory testing, 210, 219-221
extensibility

diagrams, 122-124
layer diagrams, 117

extra processing, 10

INDEX 281

F
failures. See bugs
fault models, 236
feasibility, 58
features

crews, 249
product planning, 252
progress, 254

feedback
after every sprint cycle, 268
Build/Measure/Learn, 267
cloud, 270-271
continuous

Build/Measure/Learn, 269
cycle, 266-267
cycle activities, 269

customers, 52
clear goals, 52
pain points, 52
user stories, 53
validation, 63-69
vision statements, 52

cycle activities, 268
developers, 269
effective, 64
Feedback Client for TFS, 65-66
priorities/execution, 268
production, 269-271
querying, 67
requests, creating, 64-69
responses, 66
test labs, 269
testing from user perspective, 269
unit tests, 269

files, versioning, 163
flow

continuous, 262
cumulative flow diagram, 200-201
inefficiencies, detecting, 200
measures, 271
remaining work, tracking, 200-201
storyboards, 60-62

value
defined, 5
post-2005 improvements, 256-258
product backlog, 8-9
testing, 209
transparency/waste reduction,

reinforcing, 6

G–H
gated check-ins, 136-137, 179-180
geographic distribution, 40
goals, customer feedback, 52
graphs (dependency), creating, 107

broad coverage, 107
code indexing, 108
format, 124
Quick Cluster layout, 109
sequence of interactions between,

110-113
Solution Explorer, 109
top-down, 107

GRC (governance, risk management,
and compliance), 41

Great Recession, 273
greenfield projects, 107

handling bugs, 29, 223
HR practices (Microsoft), 244
Hyper-V Server, 188

I
immersive app testing (Windows 8), 221
improvements after 2005

broken quality gates, 261
defining done, 249
DevDiv, 247
engineering principles, 256
flow of value, 256-258
iteration backlog, 253-254
MQ, 247
product

backlog, 259
ownership, 259
planning, 250-252

INDEX282

quality fundamentals, ensuring
early, 259

results, 256
social contracts, renewing, 258
successes, celebrating, 261
teams effects on each other, 260
test automation, 260

indexing code, 108
individual performance, measuring, 86
inspect and adapt, 37, 83
inspecting working software, 105
installing test machines, 189
integration

continuous (CI), 136-137, 179-180
feature crews, 249
frequent, 199

IntelliTrace, 155
interruptions, minimizing, 139

checking in work items, 140
code reviews, 140-141
My Work pane, 139
suspending work items, 140

iron triangle, 78
isolating

feature crews, 249
operational issues, 157
unexpected behaviors, 154-155
work, 165

iteration backlog improvements,
253-254

J–K–L
Kanban, 38
Kaner, Cem, 90
Kano analysis, 55-58

labs. See tests, labs
layer diagrams

code mapping, 114
existing codebases, 117
extensibility, 117
intended dependences, defining, 114
technical debt, reducing, 117
validation, 115

layering dependencies
clean, 113
code mapping, 114
existing codebases, 117
intended dependencies, defining, 114
validation, 115

Lean origins, 1
lessons learned. See DevDiv, lessons

learned
load testing, 228

designing, 228
output, 232
performance problems, diagnosing,

233-234
Logan, Dave, 244

M
The Machine That Changed the World

(Womack), 1
maintainability, 106-107
maintenance

builds, 184-185
existing code

build verification tests, 149
data varying, 148
redundant code, 151-152
unit test gaps, pinpointing, 147-148
without tests, 145

management
designs, 71-72
self, 15

Scrum, 7
Toyota example, 14
transparency, 11

situations, 3-4
sprint, 100

manual tests
Activity chart, 97
playing, 216

mastering Scrum, 80-81
contrasting techniques, 84
estimation (Planning Poker), 82-84
team sizes, 81

McConnell, Steve, 79

INDEX 283

measuring
done, 32
individual performance, 86
success, 104
velocity, 83-84

merging branches, 167
methodologies (Scrum)

cycles, 7
potentially shippable increments, 8
product backlog, 8-9
self-managing teams, 7

metrics
broken windows theory, 90-91
descriptive, 89
distortion, preventing, 89-90
prescriptive, 87-88
programming errors, catching, 153

Microsoft
Developer Division. See DevDiv
HR practices, 244
Outlook, 100
public cloud, 263
Test Manager. See MTM

milestone quality (MQ), 247
minimizing

interruptions, 139
checking in work items, 140
code reviews, 140-141
My Work pane, 139
suspending work items, 140

overhead, 39
models

documenting, 117
process

defined, 3, 78-80
empirical, 5, 80

projects
artifacts, sharing, 120
UML diagrams, 118-119, 122-124
work item links, creating, 122

monitoring, 203
motion, 10

MQ (milestone quality), 247
MSF for Agile Software Development

process template, 22
MSF for CMMI Process Improvement

process template, 22
MTM (Microsoft Test Manager), 33, 211

bugs, reproducing, 218
DDAs (diagnostic data adapters), 215
exploratory testing, 219-221
immersive app testing on

Windows 8, 221
solving, 218

build comparisons, 33
manual tests, playing, 216
Recommended Tests list, 213-214
test cases

inferring, 212
organizing/tracking, 213
plans, 213
running, 216
shared steps, 214
test steps, 214

muda, 9-10
Multi-Tier Analysis, 159-160
mura, 9-10
muri, 9-10
My Work pane

checking in work items, 140
code reviews, 140-141
personal task backlog, organizing, 139
suspending work items, 140

N–O
negative tests, 210

OData (Open Data Protocol), 100
operational issues, isolating, 157
organizing test cases, 213
overburden, 10
overhead, minimizing, 39
overproduction, 10
ownership. See product ownership

INDEX284

P
pain points, 52
PBIs. See product backlog, items
peanut buttering, 47, 250
performance

application problems, diagnosing,
233-234

backlog, ensuring, 259
individuals, measuring, 86
QoS, 70
tuning, 159-162
Wizard, 159-160

perishable requirements, 48-50
permissions, 24
personal task backlog, organizing, 139
pesticide paradox, 219
The Pet Shoppe (Python sketch), 47
planning

products, 250
backlog, 259
experiences, 252
features, 252
scenarios, 251-252
taxonomy, 250
value propositions, 251

release, 51
business value, 51
customer value, 52-53
scale, 54

tests, 213
Planning Poker, 27, 82-84

benefits, 82
crowd wisdom, 83
disadvantages, 84
inspect and adapt, 83
quantity comparisons, 82
rapid cognition, 83
story point estimates, 82
velocity, measuring, 83-84

plug-ins, 143
policies

build check-in, 137
check-in, 32, 135

Poppendieck, Mary and Tom, 10
post-2005 improvements

DevDiv, 247
done, defining, 248-249
engineering principles, 256
flow of value, 256-258
iteration backlog, 253-254
lessons learned

broken quality gates, 261
product backlog, planning, 259
product ownership, 259
quality fundamentals, ensuring

early, 259
social contracts, renewing, 258
successes, celebrating, 261
teams effects on each other, 260
test automation, 260

MQ, 247
product planning, 250-252
results, 256

potentially shippable increments, 8, 130
prescriptive metrics, 87-88
privacy (QoS), 70
Process Template Editor, 39
processes

Agile, 2
customizing to projects, 39

documentation, 41
geographic distribution, 40
GRC, 41
Process Template Editor, 39
project switching, 41

cycles, 24
bottom-up, 31
check-in, 31-32
done, defining, 36
personal development, 31
release, 24, 27
sprint, 27
test, 32-36

enactment, 20
models

defined, 3, 78-80
empirical, 5, 80

INDEX 285

team structures
permissions, 24
Scrum, 22
TFS, 23

templates, 21-22
product backlog, 8-9

business value, 51
creating, 51
customer feedback, 52
exciters, satisfiers, dissatisfiers, 54-58
items

acceptance tests, 27
bugs, handling, 29
completing, 199
cycle time, 176-177
diagram links, 122
estimating. See estimating PBIs, 82-84
minimum quality, 178
progress chart, 93
release cycle, 25
testing, 213-214

planning, 259
QoS, 69

ensuring, 259
manageability, 71-72
performance, 70
security and privacy, 70
user experience, 70

release cycle definition, 25
requirements, 73
scale, 54
sprint backlog, compared, 28
user stories, 53
velocity, 84
work breakdown, 73

Product Owner (Scrum), 22
product ownership

defined, 46
explicit agreement, 259
problems, 47-48
QoS, 69-72

release planning, 51
business value, 51
customer validation, 63-69
customer value, 52-53
design, 58-59
exciters, satisifiers, dissatisfiers, 54-58
scale, 54
storyboards, 60-62

requirements
levels, 73
perishable, 48-50

Scrum, 50
work breakdown, 73

production
feedback, 269-271
realistic test environments, 234-235

products
backlog. See product backlog
design

desirability, viability, feasibility, 58-59
storyboards, 60-62

desirability, 59
feasibility, 58
ownership. See product ownership
performance/reliability, 259
planning, 250-252
viability, 58

programming errors, catching, 143
automated code analysis, 152
code metrics, calculating, 153
TDD, 143-145

programs, support, 163
progress, viewing, 254
projects

brownfield. See brownfield projects
Creation Wizard, 21
greenfield, 107
switching, 41

public cloud (Microsoft), 263
Python, Monty, 47

INDEX286

Q
QoS

backlog
ensuring, 259
minimum, 178

done, defining, 177-178
potentially shippable increment, 130
requirements, 69

manageability, 71-72
performance, 70
security and privacy, 70
user experience, 70

understanding during sprints, 106
Quality dashboard, 93-95
quality gates, 248, 261
quantity comparisons, 82
query-based suites, 213
querying data, 100
Quick Cluster layout (dependency

graphs), 109

R
rapid cognition, 83
Rapid Development (McConnell), 79
reactivations (bugs), 95
readiness, 96
Recent Builds chart, 98
Recommended Tests list (MTM),

213-214
Red-Green-Refactor, 143
reducing

cycle time
build failures, 202
code coverage/tests, monitoring, 203
flow inefficiencies, detecting, 200
integrating frequently, 199
PBIs, completing, 199
remaining work, tracking, 200-201

waste
Bug Ping-Pong, 12-13
build automations, 12
defined, 5

flow of value/transparency,
reinforcing, 6

Taiichi Ohno’s Taxonomy of Waste,
9-11

testing, 210
redundant code, 151-152
release planning, 24, 27, 51

business value, 51
customer validation, 63-69
customer value, 52-53
design, 58-59
exciters, satisfiers, dissatisfiers, 54-58
scale, 54
storyboards, 60-62
user stories, 53

released versions (solutions),
tracking, 165

reliability, 259
remaining work, tracking, 200-201
Remove Customer Dissatisifiers, 252
renewing social contracts, 258
reports

Build, 183-184
Build Quality Indicators, 171, 203
Build Success Over Time, 202
production realistic test

environments, 234
reproducing bugs, 218

DDAs, 215
evolving tests, 219-221
immersive app testing on

Windows 8, 221
solving, 218

requirements
perishable, 48-50
product backlog, 73
QoS, 69-72

results, 256
reviews

code, 140-141
sprints, 263

Ries, Eric, 267

INDEX 287

risks
testing, 236-238

capturing risks as work items, 237
fault models, 236
security testing, 238

work items, 237

S
satisfiers, 54-58
scale

user stories, 54
work, 242-243

scenarios
product planning, 251-252
tests, automating, 224-227

Schmea Compare, 163
Schwaber, Ken, 3
scope creep problems, 48
Scrum

cycles, 7, 24-27
daily, 34-36
inspect and adapt, 37
mastery, 22, 80-81

contrasting techniques, 84
estimation (Planning Poker), 82-84
team sizes, 81

overview, 80
potentially shippable increments,

8, 130
process template, 21
product backlog, 8-9
product ownership, 50
self-managing teams, 7, 11
task boards, 37-38
taxonomy of waste, 9-11
team structures, 22

SCVMM test environments
(System Center Virtual Machine
Manager), 188

security
QoS, 70
testing, 238

self-managing teams, 15
Scrum, 7
Toyota example, 14
transparency, 11

sequence diagrams
dependencies, 110-113
UML, 119

servers, done enforcement, 136-137
sharing

artifacts, 120
work item steps, 214

shelving code, 138-139
side effects, 154

operational issues, isolating, 157
performance, tuning, 159-162
unexpected behaviors, isolating,

154-155
simple management situations, 3
social contracts, renewing, 258
software, working, 105
Sogeti Test Management Approach

(TMap) process template, 22
Solution Explorer, 109
Source Code Explorer, 167
Source Control Explorer, 163
sprint, 27

backlog, 27-28
bugs

charts, 94
handling, 29
trends, 95

burndown charts, 93
code coverage/churn, 95
crowd wisdom, 83
daily builds chart, 94
dashboards

Bugs, 95
Build, 98
Burndown, 92-93
overview, 91
Quality, 93-95
Test, 96-98

INDEX288

impediments, 93
inspect and adapt, 37, 83
managing with Microsoft Outlook, 100
metrics

broken windows theory, 90-91
descriptive, 89
distortion, preventing, 89-90
prescriptive, 87-88

overview, 80
Planning Poker, 27, 82-84
QoS, understanding, 106
quantity comparison, 82
rapid cognition, 83
reviews, 263
task boards, 37-38
team sizes, 81
test cases

progress, tracking, 93
readiness, 96

timeboxing, 31
velocity, 83-84

Stacey Matrix, 3-4
Stacey, Ralph D., 3
standard process templates, 21
standard test environments, 188
staying in the groove, 139

checking in work items, 140
code reviews, 140-141
My Work pane, 139
suspending work items, 140

storing diagrams, 118
story points

estimating, 82
measuring, 83-84

story units, 82
storyboards, 60-62
Strategic Management and Organisational

Dynamics (Stacey), 3
structures, control, 113-117

code mapping, 114
existing codebases, 117

intended dependencies, defining, 114
layer validation, 115

successes
celebrating, 261
measuring, 104

support programs, versioning, 163
suspending work items, 140
Swedish Vasa, 48
System Center Operations

Manager, 157
System Center Virtual Machine

Manager (SCVMM), 188

T
tacit knowledge, 41
Taiichi Ohno’s Taxonomy of Waste, 9-11
task boards, 37-38
Task Burndown chart, 93
Task Progress chart, 93
taxonomy of waste (Taiichi Ohno), 9-11
TDD (test-driven development), 143-145
Team Companion, 100
teams

behaviors, distorting, 88
distortion, preventing, 89-90
effects on each other, 260
geographic distribution, 40
meetings, 34-37
permissions, 24
project switching, 41
self-managing, 15

Scrum, 7
Toyota, 14
transparency, 11

sizes, 81
structures, 22-23
task boards, 37-38
velocity, measuring, 83-84

technical debt, 11-12
defined, 11
layer diagrams, 117

INDEX 289

templates
build process, 184
process, 21

custom, 22
customizing, 39-41
MSF for Agile software

Development, 22
MSF for CMMI Process

Improvement, 22
Project Creation Wizard, 21
Scrum, 21
Sogeti Test Management Approach

(TMap) process template, 22
tests

acceptance, 27
automating, 223-224
automation, 260
bugs, reproducing, 218

DDAs, 215
evolving tests, 219-221
immersive app testing on

Windows 8, 221
solving, 218

cases
inferring, 212
organizing/tracking, 213
readiness, 96
shared steps, 214
sprint, 93
steps, 214

choosing, 213-214
configuration, 189, 192

critical cases, 189
deploying test machines, 192
installing test machines, 189

cycles, 32-36
daily builds, 196
dashboard, 96-98
driven development (TDD), 143-145
exploratory, 210, 219-221
Failure Analysis chart, 98
flow of value, 209
handling bugs, 223

integrating frequently, 199
labs

build deployment, automating,
192, 196

cloud, 198
continuous feedback, 269
Management feature, 188
multiple, 196
physical and virtual machines,

189, 192
production-realistic, 234-235
SCVMM, 188
setting up, 187-189
standard, 188
support, 186
tests, running, 196

load, 228
designing, 228
output, 232
performance problems, diagnosing,

233-234
Management Approach (TMap)

process template, 22
manual

Activity chart, 97
playing, 216

monitoring, 203
MTM. See MTM
negative, 210
Plan Progress chart, 93, 96
plans, 213
production-realistic environments,

234-235
risks, 236-238
running, 216
scenario, automating, 224-227
security, 238
settings, 216
test-run failures chart, 98
transparency, 211
unit. See unit testing
waste reduction, 210
Web performance, 225-227

INDEX290

timeboxing sprint planning, 31
TMap (Test Management Approach)

process template, 22
top-down dependency graphs, 107
tours, 210
Toyota self-management example, 14
tracking

branch changes, 167
test cases, 213

transparency
architecture, 105-106
defined, 5
development activities, 170-171
flow of value/waste reduction,

reinforcing, 6
Scrum, 8
self-managing teams, 11
testing, 211

transportation, 10
Tribal Leadership (Logan et al.), 244
tuning performance, 159-162

U
UML, 117-118

activity, 118
artifacts, sharing, 120
component/class sequence, 119
extending, 122-124
Model Explorer, 120
use case, 118
work item links, creating, 122

unexpected behaviors, isolating, 154-155
unit testing, 143

automated code analysis, 152
build verification tests, 149
code metrics, calculating, 153
continuous feedback, 269
data, varying, 148
existing code without tests, 145
gaps, pinpointing, 147-148
redundant code, 151-152
TDD, 143-145

unreasonableness, 10

unwanted dependencies, 115
use case diagrams, 118
user experience (designs), 70
user stories, 53-54

Progress chart, 93
Test Status chart, 97

User Stories: For Agile Software
Development, 53

V
validating

customers, 63-69
definition of done

build, automating, 181-185
continuous integration (CI), 179-180

dependency layers, 115
value

business
problems, 47
release planning, 51

customer, 52-53
clear goals, 52
pain points, 52
problems, 47
release planning, 53
user stories, 53
vision statements, 52

defining, 15
flow

defined, 5
measures, 271
post-2005 improvements, 256-258
product backlog, 8-9
testing, 209
transparency/waste reduction,

reinforcing, 6
propositions, 251

Vasa, 48
velocity, 83-84
versioning, 162

branching, 164
benefits, 165
by release, 165

INDEX 291

merging changes, 167
tracking changes, 167
viewing, 167
work isolation, 165

compilers, 163
database schema, 163
files, 163
support programs, 163

viability, 58
viewing

branches, 167
features progress, 254
unwanted dependencies, 115

virtual machines. See VMs
vision statements, 52
Visual Studio 2012, 262-263
Visualization and Modeling SDK,

122-124
VMs (virtual machines), test labs, 186

build deployment, automating,
192, 196

cloud, 198
multiple, 196
physical and virtual machines, 189, 192
SCVMM, 188
setting up, 187-189
standard, 188
support, 186
tests, running, 196

VS Developer Center website, 22

W–Z
waiting, 10
waste

DevDiv, 245
eliminating

build failures, 202
code coverage/tests, monitoring, 203
done PBIs, 199
flow inefficiencies, detecting, 200
integrating frequently, 199
remaining work, tracking, 200-201

no repro (bugs), 218
DDAs, 215
evolving tests, 219-221
immersive app testing on

Windows 8, 221
solving, 218

project switching, 41
reduction

Bug Ping-Pong, 12-13
build automations, 12
defined, 5
flow of value/transparency,

reinforcing, 6
Taiichi Ohno’s Taxonomy of Waste,

9-11
testing, 210
Web performance tests, 227

creating, 225
running, 226
test data, varying, 227

websites
CloudShare, 198
unit testing plug-ins, 143
VS Developer Center, 22

Windows
immersive app testing, 221
shell, 169

wizards
Performance, 159-160
Project Creation, 21

Womack, Jim, 1
work

breakdown, 73
isolation, 165
items

checking in, 140
links, creating, 122
risks, 237
shared steps, 214
suspending, 140

working software, inspecting, 105

INDEX292

	Contents
	Forewords
	Preface
	Acknowledgments
	About the Authors
	2 Scrum, Agile Practices, and Visual Studio
	Visual Studio and Process Enactment
	Process Templates
	Process Cycles and TFS
	Inspect and Adapt
	Task Boards
	Kanban
	Fit the Process to the Project
	Summary
	Endnotes

	Index
	A
	B
	C
	D
	E
	F
	G-H
	I
	J-K-L
	M
	N-O
	P
	Q
	R
	S
	T
	U
	V
	W-Z

