
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321862969
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321862969
https://plusone.google.com/share?url=http://www.informit.com/title/9780321862969
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321862969
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321862969/Free-Sample-Chapter

 Learning iOS
Development

This page intentionally left blank

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

 Learning iOS
Development

 A Hands-on Guide to the
Fundamentals of
iOS Programming

 Maurice Sharp

Erica Sadun

Rod Strougo

 Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

 The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

 The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

 For sales outside the United States, please contact:

 International Sales
 international@pearsoned.com

 Visit us on the Web: informit.com/aw

 Library of Congress Control Number: 2013938698

Copyright © 2014 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to
use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

 ISBN-13: 978-0-321-86296-9
 ISBN-10: 0-321-86296-1

 Text printed in the United States on recycled paper at R. R. Donnelley in Crawfordsville,
Indiana.

Second P rinting: March 2014

 Editor-in-Chief

Mark Taub

 Senior Acquisitions
Editor
Trina MacDonald

 Senior
Development Editor
Chris Zahn

 Managing Editor
Kristy Hart

 Senior Project
Editors
Betsy Gratner
Jovana Shirley

 Copy Editor
Kitty Wilson

 Indexer
Tim Wright

 Proofreader
Anne Goebel

 Technical
Reviewers
Gemma Barlow
 Mark H. Granoff
 Scott Gruby
 Marcantonio
Magnarapa

 Editorial Assistant
Olivia Basegio

 Cover Designer
Chuti Prasertsith

 Senior Compositor
Gloria Schurick

 To my wife, Lois, and my daughter, Karli. They gave me the
time I needed to work on the book, even though it effectively

meant a second job on top of my day one. You did it with love
and compassion and still had energy for when I could be there.

Maurice

vi Contentsvi Contents

Contents at a Glance

 Foreword xvi

 Preface xx

Chapter 1 Hello, iOS SDK 1

 Chapter 2 Objective-C Boot Camp 21

 Chapter 3 Introducing Storyboards 65

 Chapter 4 Auto Layout 117

 Chapter 5 Localization 183

 Chapter 6 Scrolling 225

 Chapter 7 Navigation Controllers I: Hierarchies and
Tabs 253

 Chapter 8 Table Views I: The Basics 275

 Chapter 9 Introducing Core Data 317

 Chapter 10 Table Views II: Advanced Topics 341

 Chapter 11 Navigation Controllers II: Split View and the
iPad 371

 Chapter 12 Touch Basics 427

 Chapter 13 Introducing Blocks 453

viiContents viiContents

 Chapter 14 Instruments and Debugging 469

 Chapter 15 Deploying Applications 493

 Index 531

viii Contents

Table of Contents

 Foreword xvi

 Preface xx

 1 Hello, iOS SDK 1

Installing Xcode 1

About the iOS SDK 2

What You Get for Free 3

iOS Developer Program (Individual and Company) 4

Developer Enterprise Program 4

Developer University Program 5

Registering 5

iTunes U and Online Courses 5

The iOS SDK Tools 6

Testing Apps: The Simulator and Devices 7

Simulator Limitations 8

Tethering 10

iOS Device Considerations 11

Understanding Model Differences 15

Screen Size 15

Camera 16

Audio 16

Telephony 16

Core Location and Core Motion Differences 17

Vibration Support and Proximity 17

Processor Speeds 17

OpenGL ES 18

iOS 18

Summary 19

 2 Objective-C Boot Camp 21

Building Hello World the Template Way 21

Creating the Hello World Project 21

A Quick Tour of the Xcode Project Interface 25

Adding the Hello World Label 28

ixContents ixContents

Objective-C Boot Camp 30

The Objective-C Programming Language 31

Classes and Objects 35

The CarValet App: Implementing Car Class 41

Implementing Car Methods 46

Properties 50

Creating and Printing Cars 53

Properties: Two More Features 55

Custom Getters and Setters 56

Subclassing and Inheritance: A Challenge 58

Inheritance and Subclassing 59

Summary 62

Challenges 63

 3 Introducing Storyboards 65

Storyboard Basics 65

Scenes 66

Scene 1: Creating the Add/View Scene 67

Adding the Add/View Visual Elements 67

Adding the Initial Add/View Behaviors 72

Adding Car Display Behaviors 82

Adding Previous and Next Car Buttons 86

Scene 2: Adding an Editor 89

Adding the Editor Visual Elements 91

Adding Editor Behaviors 94

Hooking It All Together 98

Why Not Segue Back? 106

Improving the Storyboard: Take 1 107

Exchanging Data Using a Protocol 108

Improving the Storyboard: Take 2 112

Summary 115

Challenges 116

x Contentsx Contents

 4 Auto Layout 117

Auto Layout Basics 117

Constraints 120

Perfecting Portrait 131

Thinking in Constraints 132

What Makes a Complete Specification 133

Adding/Viewing Cars: Designing and
Implementing the Constraints 134

Edit Car: An Initial Look 155

Adding Landscape 156

Adding and Viewing Cars: Designing the
Landscape Constraints 158

Summary 180

Challenges 181

 5 Localization 183

Localization Basics 183

Redirection 184

Formats 187

Preparing the App for Localization 189

Setting Up Localization for the Add/View Car
Scene 191

German Internationalization 203

Adding the German Locale 203

Changing the Device Language 206

Updating the German Localizable.strings 207

Changing Label Constraints 209

Formatting and Reading Numbers 213

Right-to-Left: Arabic Internationalization 215

Adding Arabic Strings 215

Making Dates and Numbers Work 219

Text Alignment 222

Summary 224

Challenges 224

 6 Scrolling 225

Scrolling Basics 225

Bounce Scrolling 227

Adding a Scroll View to the View/Edit Scene 227

xiContents xiContents

Handling the Keyboard 230

Adding the Scroll View 231

Resizing for the Keyboard 234

Adding Resizing 239

Scrolling Through Content 240

Populating the Scroll View 241

Adding Paging 243

Adding Zoom 245

Rotation 248

What Car Is This? 249

Summary 250

Challenges 251

 7 Navigation Controllers I: Hierarchies and Tabs 253

Navigation Controller 254

Navigation Controller Classes 256

Message-Based Navigation 263

A Bit of Color 264

Tab Bar Controller 267

How the Tab Bar Works 268

CarValet: Adding a Tab Bar 270

Car Valet: Moving Info 272

Summary 273

Challenges 274

 8 Table Views I: The Basics 275

Introduction to Table Views 275

Project TableTry 277

Phase I: Replacing the Add/View Scene 283

Adding a Car View Cell 285

Adding New Cars 287

Removing Cars 288

Phase II: Adding an Edit Screen Hierarchy 291

Adding a View Car Scene 292

Populating the View Car Scene with Data 294

Editing Data 296

Editing the Year 307

Summary 314

Challenges 315

xii Contentsxii Contents

 9 Introducing Core Data 317

Introduction to Core Data 318

Moving CarValet to Core Data 320

Adding the CDCar Model 321

Adding Core Data Boilerplate Code 324

Converting CarTableViewController 326

Easier Tables: NSFetchedResultsController 332

Part 1: Integrating NSFetchedResults-
Controller 333

Part 2: Implementing NSFetchedResults-
ControllerDelegate 336

Summary 339

Challenges 340

 10 Table Views II: Advanced Topics 341

Custom Table View Cells 341

Adding the Custom Cell Visual Elements 343

Sections and Sorting 345

Section Headers 346

Enabling Changing of Section Groups 349

Adding an Index 355

Showing the Year in an Index 357

Searching Tables 358

Adding Searching 361

Summary 369

Challenges 370

 11 Navigation Controllers II: Split View and the iPad 371

Split View Controller 372

Adding a Split View Controller 374

Adding the Split View Controller 376

Adding App Section Navigation 379

Adding About 382

Creating MainMenuViewController 383

Polishing Menu Images 385

Accessing the Menu in Portrait 387

Implementing the DetailController
Singleton 388

xiiiContents xiiiContents

Adding Car Images 397

Adding Cars 400

Adapting the Car Table to iPad 401

Car Detail Controller 404

Car Detail Controller, Take 2: iPad Specific 407

Summary 424

Challenges 425

 12 Touch Basics 427

Gesture Recognizer Basics 427

Swiping Through Cars 428

Moving Through Cars 429

Calling nextOrPreviousCar: 432

Adding Action Selectors 433

Adding the Swipe Gestures 436

Preventing Recognizers from Working 438

Custom Recognizers 439

Recognizer States 439

Specializing Recognizer Messages 441

iPad Go Home 442

Creating the Return Gesture Recognizer 442

Adding the Gesture Recognizer to the Current
Detail 446

Creating and Responding to the Gesture
Recognizer 446

One More Gesture 448

Drag Gesture Recognizer 448

Adding the Taxi View with Drag 450

Summary 450

Challenges 451

 13 Introducing Blocks 453

Block Basics 453

Declaring Blocks 453

Using Blocks 454

Writing Blocks 455

Variable Scope 460

Copying and Modification 461

xiv Contentsxiv Contents

Replacing a Protocol 462

Step 1: Changing ViewCarTableView-
Controller 463

Step 2: Updating CarTableViewController 464

Step 3: Modifying CarDetailView-
Controller 465

Step 4: Updating MainMenuViewController 466

Summary 466

Challenges 467

 14 Instruments and Debugging 469

Instruments 469

Templates and Instruments 471

An Example Using the Time Profiler 472

A Last Word on Instruments 478

The Debugger 479

Debug Gauges: Mini “Instruments” 481

Breakpoints, and Actions, and Code...Oh My! 483

Bug Hunt: Instruments and the Debugger 486

Starting with Zombies 486

Moving On to the Debugger 489

Summary 491

Challenges 491

 15 Deploying Applications 493

Certificates, Profiles, and Apps 493

Generating a Development Certificate
and Profile 495

App ID and Provisioning 498

Prelaunch 506

Bug Reporting 506

Metrics 508

Quality Assurance Testing 509

Marketing 512

Uploading and Launching 513

App Details 515

Uploading to the App Store 521

Some Things to Watch Postlaunch 526

xvContents xvContents

Where to Go Next 526

Websites 527

Developer Groups and Conferences 528

Other Social Media 529

Summary 530

Challenges 530

 Index 531

Foreword
 It’s been an amazing five years since the first edition of the iPhone Developer’s Cookbook
debuted for the new Apple iPhone SDK. Since then, new APIs and new hardware have made the
task of keeping on top of iOS development better suited for a team than for an individual. By
the time the iOS 5 edition of the Cookbook rolled around, the book was larger than a small baby
elephant. We had to publish half of it in electronic form only. It was time for a change.

 This year, my publishing team sensibly split the Cookbook material into several manageable
print volumes. This volume is Learning iOS Development: A Hands-on Guide to the Fundamentals
of iOS Programming . My coauthors, Maurice Sharp and Rod Strougo, moved much of the tutorial
material that used to comprise the first several chapters of the Cookbook into its own volume
and expanded that material into in-depth tutorials suitable for new iOS developers.

 In this book, you’ll find all the fundamental how-to you need to learn iOS development from
the ground up. From Objective-C to Xcode, debugging to deployment, Learning iOS Development
teaches you how to get started with Apple’s development tool suite.

 There are two other volumes in this series as well:

 The Core iOS Developer’s Cookbook provides solutions for the heart of day-to-day
development. It covers all the classes you need for creating iOS applications using
standard APIs and interface elements. It offers the recipes you need for working with
graphics, touches, and views to create mobile applications.

 The Advanced iOS 6 Developer’s Cookbook focuses on common frameworks such as Store
Kit, Game Kit, and Core Location. It helps you build applications that leverage these
special-purpose libraries and move beyond the basics. This volume is for those who have
a strong grasp of iOS development and are looking for practical how-to information for
specialized areas.

 It’s been a pleasure to work with Maurice and Rod on Learning iOS Development . They are
technically sharp, experienced developers, and they’re genuinely nice guys. It’s difficult to hand
over your tech baby to be cared for by someone else, and these two have put a lot of effort into
turning the dream of Learning iOS Development into reality. Maurice, who wrote the bulk of this
volume, brings a depth of personal experience and an Apple background to the table.

 iOS has evolved hugely since the early days of iPhone, both in terms of APIs and developer
tools. Learning iOS Development is for anyone new to the platform, offering a practical, well-
explored path for picking up vital skills. From your first meeting with Objective-C to App Store
deployment, Learning iOS Development covers the basics.

 Welcome to iOS development. It’s an amazing and exciting place to be.

 —Erica Sadun, April 2013

Acknowledgments
 What do acknowledgments have to do with learning iOS development? I used to be likely to
skim or skip this section of a book—and you might be tempted to do that as well. Who are
these people? Why do I care? You care because your ability to get things done really depends
on who you know. And I am about to thank people who have helped me, many of whom
enjoy helping. You may know some of them or know someone who does. I am often surprised
how close I am to the truly great people on LinkedIn. So read on, note the names, and see how
close you are to someone who may be able to help you solve your most pressing problem.

 First, my deep thanks to Erica Sadun (series editor and code goddess) and Trina MacDonald
(editor) for the opportunity to write most of this book. When they asked me to contribute, my
first thought was “I have never written anything this big, but how hard could it be?” I found
out, and their support, along with that of Rod Strougo, Chris Zahn (please correct my grammar
some more), Jovana Shirley (so that is production editing), Kitty Wilson (are you sure you do
not know how to code?), Anne Goebel (may I use might, or might I use may?), both Olivia
Basegio and Betsy Gratner (if only I were that organized), and the entire production staff (I fed
them sketches; they produced the beautiful diagrams). All of you started my journey of learning
to be an author. I have always been a helper. Developer Technical Support enabled me to help
thousands. This book is an opportunity to help a wider audience. Thank you, all.

 I am also deeply grateful to friends old and new for answering technical questions: Mike
Engber, a superstar coder at Apple, showed me the light on blocks as well as answering other
questions. Others took time to answer questions or talk about possible solutions: Thanks to
Tim Burks, Lucien Dupont, Aleksey Novicov, Jeremy Olson (@jerols, inspired UX!), Tim Roadley
(Mr. Core Data), and Robert Shoemate (Telerik/TestStudio). Thanks also to Marc Antonio and
Mark H. Granoff for reviewing every chapter and giving suggestions and corrections on things
technical. And an extra shout out to Gemma Barlow and Scott Gruby for checking the iOS 7/
Xcode 5 changes in addition to all the other feedback.

 Contributors are not limited to engineers. German translations are from Oliver Drobnik and
David Fedor, a longtime friend. Arabic is from Jane Ann Day...take her course; she is very
good. Glyphish, aka Joseph Wain, provided the beautiful icons and user interface (UI) element
graphics. Get some great icons for your app at www.glyphish.com . The 11 car photos first used
in Chapter 6 , “Scrolling,” are courtesy of Sunipix.com.

 Thanks to those at Couchsurfing (www.couchsurfing.org) for giving me time to work on this
book, including our CEO Tony Espinoza, my friend Andrew Geweke, and the whole mobile
design and development team: Gemma Barlow, David Berrios, Evan Lange, Hass Lunsford,
Nicolas Milliard, Nathaniel Wolf, and Alex Woolf. You are a joy to serve.

 Thanks to those who have taught, inspired, and challenged me along my technical journey.
Listing them all would take a whole book, but some include the faculty and fellow students
at the University of Calgary computer science department, as well as Dan Freedman, Scott
Golubock, Bruce Thompson, Jim Spohrer, Bob Ebert, Steve Lemke, Brian Criscuolo, and many
more from Apple, Palm, eBay, Intuit, Mark/Space, ShopWell, and Couchsurfing.

http://www.glyphish.com
http://www.couchsurfing.org

xviii Acknowledgments

 Then there is one man who taught me how to be a steward (some say leader or manager):
Gabriel Acosta-Mikulasek, a coworker, then manager, and now close friend: Querido hermano .
He now teaches leadership and living, and you could not ask for a better coach. Find him at
 www.aculasek.com .

 Oddly, I’d like to also thank our kittens (now cats), who continually tried to rewrite content,
typing secret cat code such as “vev uiscmr[//I’64.” And many thanks to my family, who stood
beside me and gave me the time to work, and even provided content. My 10-year-old daughter
drew the r graphic used in Chapter 12 , “Touch Basics.”

 —Maurice Sharp

http://www.aculasek.com

About the Authors
 Maurice Sharp is a 21-year veteran of mobile development at companies both large and small,
ranging from Apple, Palm, and eBay to ShopWell and Couchsurfing. Maurice got his start as
an intern developing the Newton ToolKit prototype, then as a Developer Technical Support
(DTS) Engineer helping make the world safe and fun for Newton then Palm developers. After
mastering the DTS side, he went back to coding, and he currently manages and does mobile
development at Couchsurfing; runs his own consulting company, KLM Apps; and is ex officio
technical advisor to some mobile-focused startups. When not living and breathing mobile,
Maurice spends his time being a husband, and a father (to a precocious 10-year-old girl)—his
two most important roles.

 Erica Sadun is a bestselling author, coauthor, and contributor to several dozen books on
programming, digital video and photography, and web design, including the widely popular
 The Core iOS 6 Developer’s Cookbook , now in its fourth edition. She currently blogs at TUAW.
com and has blogged in the past at O’Reilly’s Mac Devcenter, Lifehacker, and Ars Technica.
In addition to being the author of dozens of iOS-native applications, Erica holds a Ph.D. in
computer science from Georgia Tech’s Graphics, Visualization, and Usability Center. A geek, a
programmer, and an author, she’s never met a gadget she didn’t love. When not writing, she
and her geek husband parent three geeks-in-training, who regard their parents with restrained
bemusement when they’re not busy rewiring the house or plotting global domination.

 Rod Strougo is an author, instructor, and developer. Rod’s journey in iOS and game
development started way back with an Apple, writing games in Basic. From his early passion for
games, Rod’s career moved to enterprise software development, and he spent 15 years writing
software for IBM and AT&T. These days, Rod follows his passion for game development and
teaching, providing iOS training at the Big Nerd Ranch (www.bignerdranch.com). Originally
from Rio de Janeiro, Rod now lives in Atlanta, Georgia, with his wife and sons.

http://www.bignerdranch.com

Preface
 “Mobile is the future” is a phrase you hear more and more these days. And when it comes to
mobile, nobody has more user-friendly devices than Apple.

 You want to add iOS development to your set of skills, but where do you begin? Which
resources do you need and choose? It depends on how you learn. This book is hands-on. The
goal is to get you doing things as soon as possible. You start with small things at first and then
build on what you already know.

 The result is a book that gives you the skills you need to write an app in an easily digestible
format. You can go as fast or slow as you wish. And once you are creating apps, you can turn
back to specific parts of the book for a refresher.

 So find a comfortable place, have your Mac and your iOS handheld nearby, and dig in!

 What You’ll Need
 You will need a few things before you go any further in learning iOS development:

 A modern Mac running the current or previous generation of Mac OS— As of the
writing of this book, Mac OS X Mountain Lion (v. 10.8) is the latest version with
Mavericks just around the corner (not used for this book). Before Mountain Lion was Mac
OS X Lion (v. 10.7). Ideally you want to use the latest OS, have at least 8GB of RAM, and
lots of disk space.

 An iOS device— Although Xcode includes a desktop simulator for developing apps, you
will need to run your app on an actual device to make sure it works correctly. It is helpful
to have the same kinds of units your target customers are likely to use to make sure your
app works well on all of them.

 An Internet connection— You will need to be able to download development resources.
At some point, you might also want to test wireless app functionality. And of course, you
will want to ship your app.

 Familiarity with Objective -C—You create native applications for iOS by using
Objective-C. The language is based on ANSI C, with object-oriented extensions, which
means you also need to know a bit of C. If you have programmed with Java or C++ and
are familiar with C, you’ll find that moving to Objective-C is easy. There is a short intro
to Objective-C in Chapter 2 , “Objective-C Boot Camp,” but a broader understanding will
help you learn more quickly.

 You also need Xcode, the development tool, and some sort of Apple developer account, as
discussed in Chapter 1 , “Hello, iOS SDK.”

 Your Roadmap to iOS Development
 One book can’t be everything to everyone. Try as we might, if we were to pack everything you
need to know into this book, you wouldn’t be able to pick it up. There is, indeed, a lot you
need to know to develop for the Mac and iOS platforms. If you are just starting out and don’t

xxiPreface

have any programming experience, your first course of action should be to take a college-level
course in the C programming language.

 When you know C and how to work with a compiler (something you’ll learn in that basic C
course), the rest should be easy. From there, you can hop right on to Objective-C and explore
how to program with it alongside the Cocoa frameworks. The flowchart shown in Figure
 P-1 shows you key titles offered by Pearson Education that provide the training you need to
become a skilled iOS developer.

 Figure P-1 A roadmap to becoming an iOS developer

xxii Preface

 When you know C, you have a few options for learning how to program with Objective-C. If
you want an in-depth view of the language, you can either read Apple’s documentation or pick
up one of these books on Objective-C:

 Objective-C Programming: The Big Nerd Ranch Guide by Aaron Hillegass (Big Nerd Ranch,
2012)

 Learning Objective-C: A Hands-on Guide to Objective-C for Mac and iOS Developers by Robert
Clair (Addison-Wesley, 2011)

 Programming in Objective-C 2.0 , fourth edition, by Stephen Kochan (Addison-Wesley, 2012)

 With the language behind you, next up is tackling Cocoa and the developer tools, otherwise
known as Xcode. For that, you have a few different options. Again, you can refer to Apple’s
documentation on Cocoa and Xcode. See the Cocoa Fundamentals Guide (http://developer.apple.
com/mac/library/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.
pdf) for a head start on Cocoa, and for Xcode, see A Tour of Xcode (http://developer.apple.com/
mac/library/documentation/DeveloperTools/Conceptual/A_Tour_of_Xcode/A_Tour_of_Xcode.
pdf). Or if you prefer books, you can learn from the best. Aaron Hillegass, founder of the Big
Nerd Ranch in Atlanta (www.bignerdranch.com), is the coauthor of iOS Programming: The Big
Nerd Ranch Guide , second edition, and author of Cocoa Programming for Mac OS X , soon to be
in its fourth edition. Aaron’s book is highly regarded in Mac developer circles and is the most
recommended book you’ll see on the cocoa-dev mailing list. And to learn more about Xcode,
look no further than Fritz Anderson’s Xcode 4 Unleashed from Sams Publishing.

 Note
 There are plenty of other books from other publishers on the market, including the bestsell-
ing Beginning iPhone 4 Development by Dave Mark, Jack Nutting, and Jeff LaMarche (Apress,
2011). Another book that’s worth picking up if you’re a total newbie to programming is
 Beginning Mac Programming by Tim Isted (Pragmatic Programmers, 2011). Don’t just limit your-
self to one book or publisher. Just as you can learn a lot by talking with different developers,
you can learn lots of tricks and tips from other books on the market.

 To truly master Apple development, you need to look at a variety of sources: books, blogs,
mailing lists, Apple’s documentation, and, best of all, conferences. If you get the chance to
attend WWDC (Apple’s Worldwide Developer Conference), you’ll know what we’re talking
about. The time you spend at conferences talking with other developers, and in the case
of WWDC, talking with Apple’s engineers, is well worth the expense if you are a serious
developer.

 How This Book Is Organized
 The goal of this book is to enable you to build iOS apps for iOS handheld and tablet devices.
It assumes that you know nothing about iOS development but are familiar with Objective-C.
(Although there is a boot camp in Chapter 2 , you will find it easier to learn from this book if
you are more familiar with the language.) Each chapter introduces new concepts and, where
appropriate, builds on knowledge from previous chapters.

http://www.bignerdranch.com
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/A_Tour_of_Xcode/A_Tour_of_Xcode.pdf
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/A_Tour_of_Xcode/A_Tour_of_Xcode.pdf
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/A_Tour_of_Xcode/A_Tour_of_Xcode.pdf

xxiiiPreface

 Most chapters cover extra material in addition to their core content. The additional material
doesn’t necessarily fit with the heart of a particular chapter, but it is important in creating
apps. Extra material shows you how to use specific UI elements, provides tips and tricks,
explains coding practices, and provides other helpful information.

 Here is a summary of each chapter:

 Chapter 1 , “Hello, iOS SDK”— Find out about the tools, programs, and devices used for
creating iOS apps. You start by installing Xcode and also learn about the Apple developer
programs and how to sign up. The last two sections help when you design your app. The
first covers how limitations of handheld devices inform various iOS technologies. And
the last gives a tour of model differences.

 Chapter 2 , “Objective-C Boot Camp”— An Xcode project is a container for an app’s
code, resources, and meta-information. In this chapter, you create your first project. You
also get a quick refresher on Objective-C, the language of app development.

 Chapter 3 , “Introducing Storyboards”— A user of your app sees only the interface. You
might implement app behaviors by using incredible code, but the user sees only the
effects. In this chapter, you start creating the interface by using a storyboard, a way to see
all your app screens at once. You add screens and hook them together and to underlying
code. The skills you get from this chapter are a core part of creating iOS apps.

 Chapter 4 , “Auto Layout”— So far, iOS handheld devices have two different screen sizes
and two different orientations for each screen size. Supporting four screen variations can
be challenging. In this chapter, you learn and use auto layout, Apple’s constraint-based
layout engine, to more easily support multiple screen sizes. You even use it to change
layouts when the screen rotates.

 Chapter 5 , “Localization”— iOS devices are available in at least 155 countries and many
different languages. As you go through the chapter, you create one app that supports
three languages and many countries. You build on Chapter 4 , using auto layout to adjust
interface elements for different localized string lengths. You also implement language-
and country-specific formatting of dates and times as well as left-to-right and right-to-left
writing.

 Chapter 6 , “Scrolling”— You typically want to present more information than fits on
a handheld screen. Sometimes the best way to navigate is to scroll through content.
Starting with the simplest use case, you use the built-in scroll view UI element to go from
simply bouncing a screen to scrolling through elements. You add pan and zoom as well
as display item numbers based on scroll position.

 Chapter 7 , “Navigation Controllers I: Hierarchies and Tabs”— Navigating complex
information can be challenging, especially on a phone’s relatively small screen
size. iOS provides navigation controllers to make the job easier. You start by using
 UINavigationController for moving through a hierarchy of information. Then you
use more advanced features providing further customization. Next, you use a tab bar for
moving between different kinds of information, and you learn how to work with view
controllers that are not on the storyboard.

xxiv Preface

 Chapter 8 , “Table Views I: The Basics”— Table views are an important part of apps on
both the iPhone and iPad. After learning how they work, you create a table of cars and
then implement addition and deletion of items. You go deeper, using a variation of a
table for car details. While doing this, you use a picker view for dates and protocols for
communicating data and state between scenes.

 Chapter 9 , “Introducing Core Data”— Core Data provides full data management for a
relatively small amount of work. In this chapter, you create a Core Data model for the
app and use that data for the list of cars and car detail. Next, you use built-in objects
to make managing the table view of cars even easier. You also learn ways to convert a
project to use Core Data, and you become familiar with common errors.

 Chapter 10 , “Table Views II: Advanced Topics”— There are several advanced features of
table views for adding polish to apps. As the chapter progresses, you implement different
features, including custom cells, sections, sorting, a content index, and searching. You
also learn about UISegmentedControl , a bit more on debugging, and a good way to use
 #define .

 Chapter 11 , “Navigation Controllers II: Split View and the iPad”— Apps for the iPad
usually require a different design than ones for the iPhone. In this chapter, you create
a universal app, one that works on both the iPhone and iPad. You build a separate
interface using the iPad-only UISplitViewController . You learn how to adapt iPhone
views to iPad and how to choose when to use them and when to create something new.
In addition, you implement a singleton, a special object that can have only one instance,
learn the usefulness of accessor methods, and implement custom transition animations.

 Chapter 12 , “Touch Basics”— Almost everything a user does on iOS devices involves
gestures with one or more fingers. Some features, like buttons, are easy to add. Others
take more work. In this chapter, you learn the basics of gesture recognizers and add
swiping through car detail views. Then you go deeper, creating a custom gesture
recognizer. Finally, you add a draggable view.

 Chapter 13 , “Introducing Blocks”— From animating views to error responders, blocks
are an important tool for using system calls. You learn how to create and use blocks, and
use them to add pulsing to a view. You also learn about variable scope and read-only
versus modifiable variables. Finally, you replace a protocol using blocks.

 Chapter 14 , “Instruments and Debugging”— There are two constants in app
development: Initial implementations rarely perform as you expect, and there are always
bugs. In this chapter, you start by fixing a performance problem using Instruments, a
tool for checking performance, memory use, and other important parts of your app.
Next, you learn some advanced features of breakpoints in the debugger. Then, you use
both tools to solve one of the hardest types of bugs. In this chapter, you also learn about
a process for finding and fixing problems, as well as a way to use background tasks.

 Chapter 15 , “Deploying Applications”— In the final chapter, you take your app from
your machine to the App Store. First, you create any required developer credentials and
app security certificates. You add icons and launch images, and then you learn about
useful extra functionality for your app, such as metrics and bug reporting, as well as
some of the main providers. After a brief look at marketing, you get the App Store ready
to receive your application, build it, and upload it. The chapter ends with a summary of
resources you can use as you continue your journey of creating great iOS apps.

xxvPreface

 About the Sample Code
 As you progress through this book, you develop and refine an application for valet car parking.
The CarValet app is used as a practical implementation for concepts you learn. It is not meant
to be an app shipped to the masses, although it could serve as a base for one.

 Any chapter that involves creating code usually comes with at least two projects: a starter that
incorporates code from any previous chapters in the book and a finished project, including all
changes made in the chapter. For most of the book, you can use your own completed project
from one chapter as the starter for the next. There are a couple places where this is not the
case, and the chapter makes that plain.

 Except for the very end, the sample code projects use the same unique bundled identifier:
 com.mauricesharp.CarValet . As a result, you cannot have multiple versions installed in the
simulator or on your device at the same time. If you want to have multiple versions, you can
simply add a unique string to the end of the identifier, such as com.mauricesharp.CarValet.
CH05.portrait. You’ll learn the significance of the bundle identifier in Chapter 15 .

 All the code you write and concepts you learn work with iOS 7 or later. By the end of the first
day of availability, more than 35% of existing devices were using the iOS 7, the fastest adoption
rate ever. That share will only increase. Adoption rates for iOS are usually very fast, typically
hitting 80% or higher within a few months.

 Getting the Sample Code
 All the sample code is on GitHub, at https://github.com/mauricesharp/Learning-iOS-
Development . The code is organized by chapter, with most folders containing starter and
finished projects. Some also contain projects for interim steps, as well as folders containing new
assets such as images. For example, these are the folders for Chapter 6 :

 CH06 CarValet Starter— The finished project from Chapter 5 , with no changes from
 Chapter 6 . Use either this project or your own project from the end of Chapter 5 as a
starting place for Chapter 6 additions.

 CH06 CarValet Finished— A project with all the changes from Chapter 6 . You can use
this as a reference for what changes should have been made or as a starter for the next
chapter.

 CH06 Assets CarImages— An extra folder with image resources used in changes made
during the chapter.

 The code will be refreshed as needed. If you see something that needs changing, is missing, or
even a way to implement something in a better way, feel free to...

https://github.com/mauricesharp/Learning-iOS-Development
https://github.com/mauricesharp/Learning-iOS-Development

xxvi Preface

 Contribute!
 Sample code is never a fixed target. It continues to evolve as Apple updates its SDK and the
Cocoa Touch libraries. Get involved. You can pitch in by suggesting bug fixes and corrections,
as well as by expanding the code that’s on offer. GitHub allows you to fork repositories and
grow them with your own tweaks and features, and you can share those back to the main
repository using a Pull Request on GitHub. If you come up with a new idea or approach, let us
know. We are happy to include great suggestions both at the repository and in the next edition
of this book.

 Accessing git
 You can download this book’s source code by using the git version control system. An
OS X implementation of git is available at http://code.google.com/p/git-osx-installer . OS X
git implementations include both command-line and GUI solutions, so hunt around for the
version that best suits your development needs.

 There are third-party git tools, as well—some free and some not. These are two of the most
popular:

 SourceTree— A free git hub client tool available at www.sourcetreeapp.com

 Tower— A paid client with a polished UI at www.git-tower.com

 Accessing GitHub
 GitHub (http://github.com) is the largest git-hosting site, with more than 150,000 public
repositories. It provides both free hosting for public projects and paid options for private
projects. With a custom web interface that includes wiki hosting, issue tracking, and an
emphasis on social networking of project developers, it’s a great place to find new code and
collaborate on existing libraries. You can sign up for a free account at http://github.com . When
you do that, you can copy and modify the book repository or create your own open-source iOS
projects to share with others.

 Contacting the Author
 If you have any comments, questions, or suggestions about this book, please e-mail me at
 learningios@mauricesharp.com .

 This book was written using developer preview releases of both iOS 7 and Xcode. Several
different versions were used, though the majority was done using DP (Developer Preview) 4.
Large portions of the book were checked against DP 6, the last preview before the final release,
but some earlier code does exist, especially in the CarValet sample. Check the errata for
updates.

 Now read through these pages, write the code, and do the challenges. By the end, you will
know how to create iOS apps for handhelds and tablets.

http://www.sourcetreeapp.com
http://www.git-tower.com
http://code.google.com/p/git-osx-installer
http://github.com
http://github.com

xxviiEditor’s Note

 Editor’s Note: We Want to Hear from You!
 As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

 You can e-mail or write us directly to let us know what you did or didn’t like about this book—
as well as what we can do to make our books stronger.

 Please note that we cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail we receive, we might not be able to reply to every
message.

 When you write, please be sure to include this book’s title and authors as well as your name
and phone or e-mail address.

 E-mail: trina.macdonald@pearson.com

 Mail: Trina MacDonald
Senior Acquisitions Editor
Addison-Wesley Pearson Education, Inc.
75 Arlington Street, Suite 300
Boston, MA 02116 USA

This page intentionally left blank

 1
 Hello, iOS SDK

 Developing for iOS is a joyful and fun adventure in learning Objective-C and the Apple frame-
works. Nowhere else is it so easy and quick to go from an idea to an app you can hold in your
hand on an iPhone, iPad, or iPod touch. With your code behind the glass touchscreen, you can
turn these devices into anything you can think of. An iOS device can become a flight simula-
tor, an interactive book, or just about anything else you can imagine. In this chapter, you take
the first steps in developing for iOS by learning about the iOS Software Development Kit (SDK)
and how to get the Xcode toolset installed on your Mac. (It is easy.) In the next chapter, you
dive in, create your first iOS app, and get it running on the iOS Simulator.

 The iOS family includes the iPhone, the iPad, and the iPod touch. Despite their relatively
diminutive proportions compared to desktop systems, they use increasingly powerful multi-
core CPUs to run iOS, a first-class version of OS X. iOS comes with a rich and varied SDK that
enables you to design, implement, and realize a wide range of applications. For your projects,
you can take advantage of the multitouch interface and powerful onboard features using
Xcode, Apple’s integrated development environment (IDE). In this chapter, you learn about
Apple’s various iOS Developer Programs and how you can join. Ready? Onward to the next
step: getting the Xcode application installed on your Mac.

 Installing Xcode
 The first step in developing for the iOS platform is to get Xcode : the IDE from Apple. Xcode
is the tool you use for writing Objective-C applications and compiling them for iOS devices.
Apple has recently made installing Xcode as easy as possible by providing Xcode as a free
download from the Mac App Store, as shown in Figure 1-1 .

2 Chapter 1 Hello, iOS SDK

 Figure 1-1 Xcode in the Mac App Store

 To install Xcode, follow these steps:

 1. Launch the Mac App Store application on your Mac.

 2. Search for Xcode.

 3. Click the Free button to install Xcode.

 While Xcode is downloading and being installed, you can read the rest of this chapter and
learn about the iOS SDK. That is all it takes to install Xcode and get on your way. The rest of
this chapter covers the iOS SDK, the devices, and the development programs Apple offers. In
 Chapter 2 , “Objective-C Boot Camp,” you start your journey into the Objective-C language and
application development in iOS.

 About the iOS SDK
 The iOS SDK comprises all the libraries you need to write iOS apps, as well as the iOS Simulator
for you to try out your apps on your Mac. The SDK is included with the Xcode tool, which is
used for creating iOS and Mac applications.

3About the iOS SDK

 You can register for free for the Apple Online Developer Program and download and explore
the full iOS SDK programing environment. However, as discussed in the next section, this
program doesn’t let you deploy your applications to an actual iOS device, such as the iPhone
or iPad. If you want to do that, you need to register and become a member of Apple’s iOS
Developer Program. There are four program choices, described in Table 1-1 .

 Table 1-1 iOS Developer Programs

 Program Cost Audience

 iOS Developer Program–Individual $99/Year Individual developers who want to distribute
through the App Store. The apps will appear
under your name in iTunes.

 iOS Developer Program–Company $99/Year For a company or development team that
wants to distribute through the App Store.
The apps will appear under the company
name in iTunes.

 iOS Developer Enterprise Program $299/Year Large companies building proprietary soft-
ware for employees and distributing the
apps in-house.

 iOS Developer University Program Free Free program for higher education institu-
tions that provide iPhone development cur-
riculum.

 Each program offers access to the same iOS SDK, which provides ways to build and deploy your
applications. The audience for each program is specific. Keep in mind that if your company
wants to deploy apps in the normal App Store, all you need is the iOS Developer Program–
Company. The Enterprise option is available to you only if your company wants to deploy apps
in a private in-house App Store.

 The following sections discuss the various iOS Developer Programs in more detail.

 What You Get for Free
 The free program is for anyone who wants to explore the full iOS SDK programming environ-
ment but isn’t ready to pay for further privileges. The free program limits your deployment
options to the iOS Simulator. Although you can run your applications in the simulator, you
cannot install those applications to a device or sell them in the App Store.

 Although each version of the simulator moves closer to representing iOS, you should not rely
on it for evaluating your application. An app that runs rock solid on the simulator might be
unresponsive or even cause crashes on an actual device. The simulator does not, for example,
support vibration or accelerometer readings. These and other features present on devices
are not always available in the simulator. A more detailed discussion about the simulator

4 Chapter 1 Hello, iOS SDK

and its differences from a real device follows later in this chapter, in the section “Simulator
Limitations.”

 While you can download Xcode for free and without registering, joining a full program gives
you access to much more, including the ability to run your code on devices, access to early
releases, and even the ability to ask questions of Apple developer support engineers.

 iOS Developer Program (Individual and Company)
 To receive device and distribution privileges, you pay a program fee, currently $99/year, for
the standard iOS Developer Program. You can join as an individual or as a company. When
you have paid, you gain access to App Store distribution and can test your software on actual
iOS hardware. This program adds ad hoc distribution as well, allowing you to distribute prere-
lease versions of your application to a set number of registered devices. The standard program
provides the most general solution for the majority of iOS programmers who want to be in the
App Store. If you intend to conduct business by selling applications, this is the program to sign
up for.

 The standard iOS Developer Program also offers early access to beta versions of the SDK. This is
a huge advantage for developers who need to prepare products for market in a timely manner
and to match Apple’s OS and device upgrade dates. As an example, program members gained
access to early versions iOS 7 and Xcode 5 in June 2013.

 Caution : Going from Individual to Company Is Hard to Do
 Joining the company program currently requires paperwork to prove the company is a valid
corporate entity. Changing from individual to company is even harder than starting with a com-
pany membership. If you are an individual and expect to become a company, even if only for
liability protection, you are better off creating the company first and then joining the Developer
Program, or even joining as an individual and then creating a separate company membership
later. Joining as a company does take longer, especially with the current requirement for a
DUNS (Data Universal Numbering System) number.

 Note
 In early 2010, Apple restructured its Macintosh Developer Program to match the success of the
iOS Developer Program. Currently costing $99/year, the restructured Mac program offers the
same kind of resources as the iOS program: code-level technical support incidents, developer
forum membership, and access to prerelease software. Neither program offers hardware dis-
counts. The Mac Developer Program does not give access to iOS software and vice versa.

 Developer Enterprise Program
 The Enterprise Program, currently $299/year, is meant for in-house application distribution.
It’s targeted at companies with 500 employees or more. Enterprise memberships do not offer

5About the iOS SDK

access to the Apple public App Store. Instead, you can build your own proprietary applications
and distribute them to your employees’ hardware through a private storefront. The Enterprise
Program is aimed at large companies that want to deploy custom applications such as ordering
systems to their employees.

 Developer University Program
 Available only to higher education institutions, the Developer University Program is a free
program aimed at encouraging universities and colleges to form an iOS development curricu-
lum. The program enables professors and instructors to create teams with up to 200 students,
offering them access to the full iOS SDK. Students can share their applications with each other
and their teachers, and the institution can submit applications to the App Store.

 Registering
 Register for a free or paid program at the main Apple developer site: http://developer.apple.
com/programs/register .

 Regardless of which program you sign up for, you must have access to a Mac running a current
version of Mac OS X. It also helps to have at least one—and preferably several—iPhone, iPad,
and/or iPod touch units. These are for testing to ensure that your applications work properly on
each platform, including legacy units. What better excuse for buying that iPhone, iPad, or iPod
touch you’ve been wanting...err, needing for business purposes?

 Often, signing up for paid programs involves delays. After registering, it can take time for
account approval and invoicing. When you actually hand over your money, it may take
another 24 to 72 hours for your access to advanced portal features to go live. There is a very
short delay for individual registration, and the delay is longer for companies.

 Registering for iTunes Connect, so you can sell your application through the App Store, is a
separate step. Fortunately, this is a process you can delay until after you’ve finished signing up
for a paid program. With iTunes Connect, you must collect banking information and incorpo-
ration paperwork prior to setting up your App Store account. You must also review and agree to
Apple’s distribution contracts. Apple offers full details at http://itunesconnect.apple.com . Bear
in mind that it can take several days until you are able to upload apps, so do not delay signing
up for too long.

 iTunes U and Online Courses
 When you have registered for any level of iOS development with Apple, you will have access to
the World Wide Development Conference (WWDC) videos that Apple releases each year. These
high-quality presentations, given by Apple’s own engineers, provide great insight into many
of the features in iOS and examples of how to use them. In addition, there are many iPhone
programming courses available for free on iTunes University (iTunes U inside iTunes) that you
can use as a companion to this book.

http://developer.apple.com/programs/register
http://developer.apple.com/programs/register
http://itunesconnect.apple.com

6 Chapter 1 Hello, iOS SDK

 The iOS SDK Tools
 Xcode typically runs a few gigabytes in size and installs an integrated suite of interactive design
tools onto your Macintosh. This suite consists of components that form the basis of the iOS
development environment and includes the following parts:

 ■ Project Editor— This is the heart of Xcode and provides a home for most of the features,
including project file and component management, syntax-aware source editing for both
the Objective-C language and iOS SDK, as well as a visual editor and a full debugger. A
separate window gives access to the full range of documentation for iOS, Xcode, and
other supporting documentation.

 ■ Interface Builder (IB)— IB is accessed through the project editor and provides a rapid
prototyping tool for laying out user interfaces (UIs) graphically, and linking those
prebuilt interfaces to your Xcode source code. With IB, you use powerful visual design
tools to add the visual elements of your app and then connect those onscreen elements
to objects and method calls in your application. In addition to individual screens, you
can lay out all your application screens in one document and define the ways each
screen moves to the next. You learn about this in Chapter 3 , “Introducing Storyboards.”

 In Chapter 4 , “Auto Layout,” you learn how to use IB with another powerful feature of
iOS. Auto layout is an advanced rule-based system that enables you to specify the visual
relationships between views instead of worrying about pixel-perfect placement. With it,
you can create one interface that adapts to different screen orientations and sizes.

 ■ Simulator— The iOS Simulator runs on a Macintosh and enables you to create and
test iOS apps on your desktop. You can test programs without connecting to an actual
iPhone, iPad, or iPod touch. The simulator offers the same API (Application Programming
Interface) used on iOS devices and provides a preview of how your concept designs will
look and behave. When working with the simulator, Xcode compiles Intel x86 code that
runs natively on the Macintosh rather than ARM-based code used on the iPhone. Keep in
mind that performance in the simulator is likely very different than on a physical device
as it is running with a very different CPU, GPU (graphics processor), and storage/disk
format. Your app is likely to be much faster in the simulator and have no memory or
communications problems.

 ■ Performance Tools— As you run your app in the simulator or on a device, runtime debug
gauges give an overview of performance including memory and CPU use. Instruments
provides even more detail, profiling how iPhone applications work under the hood. It
samples memory usage and monitors performance, enabling you to identify and target
problem areas in your applications and work on their efficiency. As you see in Chapter
 14 , “Instruments and Debugging,” if you tune your app as you develop, you will catch
issues early and end up with the best performance. Instruments offers graphical time-
based performance plots that show where your applications are using the most resources.
It is built around the open-source DTrace package developed by Sun Microsystems and
plays a critical role in making sure your applications run efficiently on the iOS platform.

 In addition, a static analyzer shows you places where your code might have problems.
Simply run the analyzer on a single file or on your whole project to find unused
variables, possible logic problems, potential memory leaks, and more.

7Testing Apps: The Simulator and Devices

 ■ Debugger— Chapter 14 also covers the debugger. It helps you quickly find and fix
problems in your code. With it, you can step through code and inspect values of
variables, either in a separate display area or by just hovering the mouse pointer over the
source code. You can set rich breakpoints, including conditional triggers and associated
actions such as logging messages, playing source, or even running scripts. There is even a
console for fine control.

 ■ Other Features— Xcode provides a wide array of other features supporting the app
development and deployment cycle including built-in support for branching source code
control using Git, management of developer certificates and app entitlements, testing
device management, and uploading apps to the store.

 Together, the components of the iOS SDK enable you to develop your applications. From a
native application developer’s point of view: You will spend most of your time editing and
debugging source, creating the interface, and running your app in the simulator. You will also
spend time tuning your code in instruments. In addition to these tools, there’s an important
piece not on this list. This piece ships with the SDK, but is easy to overlook: Cocoa Touch.

 Cocoa Touch is a library of classes provided by Apple for rapid iOS application development.
Cocoa Touch, which takes the form of a number of API frameworks, enables you to build
graphical event-driven applications with UI elements such as windows, text, and tables. Cocoa
Touch and UIKit on iOS is analogous to Cocoa and AppKit on Mac OS X and supports creating
rich, reusable interfaces on iOS.

 Many developers are surprised by the code base size of iOS applications; they’re tiny. Cocoa
Touch’s library support is the big reason for this. By letting Cocoa Touch handle all the heavy
UI lifting, your applications can focus on getting their individual tasks done. The result is
compact code, focused on the value provided by your app.

 Cocoa Touch lets you build applications with a polished look and feel, consistent with those
developed by Apple. Remember that Apple must approve your software. Apple judges applica-
tions on the basis of appearance, operation, and even content. Using Cocoa Touch helps you
better approximate the high design standards set by Apple’s native applications.

 Before you start creating apps, make sure you look at the Apple “iOS Human Interface
Guidelines” available in the Xcode documentation in the “User Interface” group, or on the web
at https://developer.apple.com/appstore/guidelines.html . Also read through the legal agree-
ment you signed for iTunes Connect. Breaking rules is highly likely to result in your app being
rejected from the App Store.

 Testing Apps: The Simulator and Devices
 A physical iPhone, iPad, or iPod touch is a key component of the SDK. Testing on a device is
vital. As simple and convenient as the iOS Simulator is, it is not the same as a real device. You
want your apps to run on some or all of the iOS device family, so it’s important that they run
best in the native environment. An iOS device itself offers the fully caffeinated, un-watered-
down testing platform you need.

https://developer.apple.com/appstore/guidelines.html

8 Chapter 1 Hello, iOS SDK

 Apple regularly suggests that a development unit needs to be devoted exclusively to develop-
ment. Reality has proven rather hit and miss on that point. Other than early betas, releases
of iOS have proven stable enough that you can use your devices for both development and
day-to-day tasks, including making calls on iPhones. It’s still best to have extra units on hand
devoted solely to development, but if you’re short on available units, you can probably use
your main iPhone for development; just be aware of the risks, however small. Note that as a
developer program member, you have agreed to a non-disclosure agreement (NDA) with Apple.
Beware of accidentally showing Apple confidential prereleases to others.

 Devices must be proactively set up for development use with Xcode’s Organizer. The Organizer
also lets you register your device with Apple, without having to enter its information by hand
at the provisioning portal. Chapter 15 , “Deploying Applications,” gives detailed information on
how to do this.

 When developing, it’s important to test on as many iOS platforms as possible. Be aware that
real platform differences exist between each model of iPhone, iPad, and iPod touch. For
example, two models of the fifth-generation iPod touch offer front- and back-facing cameras;
one only offers a front-facing camera. The second-generation iPad and earlier as well as the
original iPad-mini do not have retina screens. iPhones all have cameras, which none of the
iPod touches offered until the fourth generation. Certain models of the iPad and the iPhone
offer GPS technology; other models do not. A discussion of major platform device features
along with some device differences follows later in this chapter.

 Note
 iOS developers do not receive hardware discounts for development devices. You pay full price
for new devices, and you pay nonsubsidized prices for extra iPhones and iPads with carrier
access. You can get significant savings by buying used and refurbished units. Depending on
your country and other circumstances, you might be able to deduct the cost of units from your
taxes.

 Simulator Limitations
 Each release of the Macintosh-based iOS Simulator continues to improve on previous technol-
ogy. That said, there are real limitations you must take into account. From software compatibil-
ity to hardware, the simulator approximates but does not equal actual device performance.

 The simulator uses many Macintosh frameworks and libraries, offering features that are not
actually present on the iPhone or other iOS devices. Applications that appear to be completely
operational and fully debugged on the simulator might flake out or crash on a device itself
due to memory or performance limitations on iOS hardware. Even the smallest Mac nowadays
comes with 4GB of RAM, whereas the third-generation iPad has only 1GB of RAM. Instruction
set differences might cause apps to crash on older devices when they are built to support only
newer versions of the ARM architecture. You simply cannot fully debug any program solely by
using the simulator and be assured that the software will run bug-free on iOS devices.

9Testing Apps: The Simulator and Devices

 The simulator is also missing many hardware features. You cannot use the simulator to test the
onboard camera or to get accelerometer and gyro feedback. Although the simulator can read
acceleration data from your Macintosh using its sudden motion sensor (if there’s one onboard,
which is usually the case for laptops), the readings will differ from iOS device readings and are
not practical for development or testing. The simulator does not vibrate or offer multitouch
input (at least not beyond a standard “pinch” gesture).

 Note
 The open-source accelerometer-simulator project at Google Code (http://code.google.com/p/
accelerometer-simulator/) offers an iPhone application for sending accelerometer data to your
simulator-based applications, enabling you to develop and debug applications that would other-
wise require accelerometer input. A similar commercial product called iSimulate is available in
the App Store for purchase.

 From a software point of view, the basic keychain security system is not available on the simu-
lator. You cannot register an application to receive push notification either. These missing
elements mean that certain kinds of programs can be properly tested only when deployed to an
iPhone or other iOS device.

 Another difference between the simulator and the device is the audio system. The audio session
structure is not implemented on the simulator, hiding the complexity of making things work
properly on the device. Even in areas where the simulator does emulate the iOS APIs, you
might find behavioral differences because the simulator is based on the Mac OS X Cocoa frame-
works. Sometimes you have the opposite problem: Some calls do not appear to work on the
simulator but work correctly on the device. For example, if you store or access files, the simula-
tor is usually case-insensitive (depending on how the Mac is set up), but iOS is case-sensitive.

 That’s not to say that the simulator is unimportant in testing and development. Trying out a
program on the simulator is quick and easy, typically much faster than transferring a compiled
application to an iOS unit. The simulator lets you rotate your virtual device to test reorienta-
tion, produce simulated memory warnings, and try out your UI as if your user were receiving
a phone call. It’s much easier to test out text processing on the simulator because you can use
your desktop keyboard rather than hook up an external Bluetooth keyboard to your system and
you can copy and paste text from local files; this simplifies repeated text entry tasks such as
entering account names and passwords for applications that connect to the Internet.

 Another area the simulator shines is localization. As you see in Chapter 5 , “Localization,”
switching languages for your app is as easy as launching the simulator with the right
special flag.

 In the end, the simulator offers compromise: You gain a lot of testing convenience but not so
much that you can bypass actual device testing.

http://code.google.com/p/accelerometer-simulator/
http://code.google.com/p/accelerometer-simulator/

10 Chapter 1 Hello, iOS SDK

 Note
 The simulator supports Video Out emulation. There’s no actual Video Out produced, but the
simulated device responds as if you’ve added a compliant cable to its (nonexistent) connector.
You can view the “external” video in a floating simulator window.

 Apple encourages new applications to use AirPlay to send the content to the user’s TV via
AppleTV instead of relying on cables.

 Tethering
 Apple is moving away from tethered requirements in iOS but has not yet introduced a way to
develop untethered at the time this book is being written. At this time, all interactive testing is
done using a USB cable. Apple provides no way to wirelessly transfer, debug, or monitor appli-
cations as you develop. This means you perform nearly all your work tethered over a standard
iPhone USB cable.

 When you are debugging a tethered unit, try to set things up to reduce accidentally disconnect-
ing the cable. If that happens, you lose the debug session including any interactive debugging,
the console, and screenshot features.

 You want to invest in a good third-party dock for iPhones or iPod touches and possibly one for
iPads. Look for stands that allow the cable to be connected and hold the unit at a comfortable
angle for touching the screen. Even better are docks that work in both portrait and landscape.
The iPad will work in the Apple doc, though only in portrait. Alternatively, the Apple folding
cases that also act as stands work in both orientations.

 When tethered, always try to connect your unit to a port directly on your Mac. If you must
use a hub, connect to a powered system that supports USB 2.0 or higher. Most modern screens,
including Apple’s large display, come with built-in powered USB ports, but it pays to double
check.

 When it comes to the iPad, if the USB connection does not have sufficient power to charge the
device, untether your device between testing periods and plug it directly into the wall using its
10W power adapter. Some USB ports provide sufficient power to charge the iPad while you’re
using it, but this is not a universal situation.

 Note
 When testing applications that employ Video Out, you can use the Apple-branded component
and composite cables or the HDMI digital adapter. These provide both Video Out and USB
connections to allow you to tether while running your applications. The Apple-branded VGA
cable does not offer this option. You need to redirect any testing output to the screen or to
a file because you cannot tether while using VGA output. Another common way to show apps
on another device is to use AirPlay screen mirroring. It is a good idea to pick up an AppleTV
and test whether your app works well with AirPlay. It can also save money compared to buying
adapter cables for both the original 30-pin and newer lightning connectors.

11Testing Apps: The Simulator and Devices

 iOS Device Considerations
 Designing apps for mobile platforms such as the iPhone or iPad is not the same as designing
for the desktop (or laptop). There are several extra considerations such as storage, interaction
methods, and battery life. Storage limits, smaller screens, different interaction techniques, and
energy consumption are important design considerations when creating your app.

 With the iPhone, you are designing for a small touch-based screen with a good, but limited
battery life. It is not a desktop with a large screen, a mouse or trackpad, and a physical always-
on A/C power supply. Platform realities must shape and guide your development. Fortunately,
Apple has done an incredible job designing a platform that leverages flexibility from its set of
storage, interaction controls, and constrained battery life.

 Storage Considerations

 The iPhone hosts a powerful yet compact OS X–based installation. Although the entire iOS fills
no more than a few hundred megabytes of space—almost nothing in today’s culture of large
operating system installations—it provides an extensive framework library. These frameworks of
precompiled routines enable iPhone users to run a diverse range of compact applications, from
telephony to audio playback, from e-mail to web browsing. The iPhone provides just enough
programming support to create flexible interfaces while keeping system files trimmed down to
fit neatly within tight storage limits.

 Most modern devices come with at least 16GB of onboard Flash-based storage, and some have
considerably more. Some older devices running iOS 7 and later have as little as 4GB. Although
application size is limited (see the “Note: App Size”), the space for data is much larger. Having
said that, be aware that users can check how much space an app is using and might delete
hungrier apps.

 Note : App Size
 Each application is limited to a maximum size of 2GB. To the best of my knowledge, no applica-
tion has ever actually approached this size, although there are some navigation apps that are
pushing new records of deployment size, such as Navigon (1.5GB) and Tom Tom (1.4GB). Apple
currently restricts apps larger than 50MB to Wi-Fi downloading. This bandwidth was set at the
time that Apple announced its new iPad device and the possibility of delivering universal appli-
cations that could run on both platforms. Apple’s over-the-air restrictions help reduce cell data
load when media-intense applications exceed 50MB and ease the pain of long download times.
The 50MB limit is also an important design consideration. Keeping your size below the 50MB
cutoff allows mobile users to make impulse application purchases, increasing the potential
user base. Check the iTunesConnect guide for the latest maximum size.

 Data Access Considerations

 Every iOS application is sandboxed. That is, it lives in a strictly regulated portion of the file
system. Your program cannot directly access other applications, certain data, and certain
folders. Among other things, these limitations require accessing built-in application data using

12 Chapter 1 Hello, iOS SDK

system APIs including the iTunes library, calendar, photos, location services, notifications,
reminders, and built-in social services such as Facebook and Twitter.

 Your program can, however, access any data that is freely available over the air when the iOS
device is connected to a network—including any iCloud documents it owns. Your app can also
access data stored in the shared system pasteboard and data shared using a document interac-
tion controller, which offers a limited way to share document data between applications. Apps
that create or download data can send those files to applications that can then view and edit
that data. In that situation, the data is fully copied from the originating application into the
sandbox of the destination application.

 Memory Considerations

 On iOS, memory management is critical. Apple has not enabled disk swap–based virtual
memory for iOS. When you run out of memory, iOS shuts down your application; random
crashes are probably not the user experience you were hoping for. With no swap file, you must
carefully manage your memory demands and be prepared for iOS to terminate your applica-
tion if it starts swallowing too much memory at once. You must also take care concerning what
resources your applications use. Too many high-resolution images or audio files can bring your
application into the auto-terminate zone.

 Many parts of the iOS framework cache your image data in order to speed up rendering and
application performance. This caching can come at the cost of a larger memory footprint
and, on retina devices, if used improperly, can generate more memory pressure on your
app. Chapter 14 covers using the Instruments tool to figure out what parts of your applica-
tion consume too much memory and techniques to address and resolve those issues. It also
covers the debug memory gauge, a handy way to see if and when your app is approaching the
memory danger zone.

 Interaction Considerations

 For the iPhone and iPod touch, losing physical input devices such as mice and working with a
small screen doesn’t mean you lose interaction flexibility. With multitouch and the onboard
accelerometer, you can build UIs that defy expectations and introduce innovative interaction
styles. The iPhone’s touch technology means you can design applications complete with text
input and pointer control, using a virtual screen that’s much larger than the actual physical
reality held in your palm.

 Note
 Almost all iOS devices support external keyboards. You can connect Bluetooth and USB key-
boards to iOS devices for typing. Only a tiny fraction of devices running versions of iOS older
than 3.2 have no external keyboard support.

 In addition to the touchscreen, users can interact with your app using a smart autocorrecting
onscreen keyboard, built-in microphone (for all units except on the obsolete first-generation
iPod touch), and an accelerometer that detects current orientation as well as changes. When

13Testing Apps: The Simulator and Devices

designing text input, look for ways you can make it easier for the user such as splitting up
longer inputs into smaller fields or using auto completion. For longer text areas, make sure you
use scrolling text views. Most importantly, try your interface without an external keyboard, as
most users will not have one.

 Focus your design efforts on easy-to-tap interfaces rather than on desktop-like mimicry.
Remember to use just one conceptual window at a time—unlike in desktop applications, which
are free to use a more flexible multiwindow display system.

 Note
 The iPhone screen supports up to five touches at a time. The iPad screen supports up to about
11 touches at a time. With its larger screen, the iPad invites multihand interaction and gaming
in ways that the iPhone cannot, particularly allowing two people to share the same screen dur-
ing game play. Virtual instruments are another type of app that benefits from lots of fingers.
Apple has not specified the maximum number of touches for an iPad at the time of writing this
book, but empirical evidence still points to 11. See http://mattgemmell.com/2010/05/09/
ipad-multi-touch/ .

 Energy Considerations

 For mobile platforms, wise use of the battery is part of any design. Apple’s SDK features help to
design your applications to limit CPU use and avoid running down the battery. A smart use of
technology (for example, properly suspending themselves between uses) lets your applications
play nicely on the iPhone and keeps your software from burning holes in users’ pockets (some-
times almost literally, speaking historically). Some programs, when left running, produce such
high levels of waste heat that the phone becomes hot to the touch, and the battery quickly
runs down. The Camera application was one notable example.

 Heavy users of the battery include the Camera app; communications, especially over phone
networks; and high-precision location services that use the GPS hardware instead of Wi-Fi
triangulation.

 Each new generation of iOS device brings some improvement to battery life. Even so, you
should continue to keep energy consumption in mind when developing your applications.

 Application Considerations

 With iOS multitasking, applications can allow themselves to

 ■ Be suspended completely between uses (the default behavior)

 ■ Be suspended with occasional slices of background processing time

 ■ Quit entirely between uses

 ■ Run for a short period of time to finish ongoing tasks

 ■ Create background tasks that continue to run as other applications take control

http://mattgemmell.com/2010/05/09/ipad-multi-touch/
http://mattgemmell.com/2010/05/09/ipad-multi-touch/

14 Chapter 1 Hello, iOS SDK

 There is built-in support for background tasks including playing music and other audio, collect-
ing location data, and using Voice over IP (VoIP) telephony. Rather than running a simple
background daemon, these tasks are event-driven. Your application is periodically called by iOS
with new events, allowing the application to respond to audio, location, and VoIP updates.

 Since only the current app can update the UI, Apple supports pushing data from web services.
Using Push Notifications sends processing off-device to dedicated web-based services, leveraging
their always-on nature to limit on-device processing requirements. Registered services can push
badge numbers and messages to users, letting them know that new data is waiting on those
servers. Push notifications can allow the user to launch your app or bring it to the foreground,
passing a small amount of optional data while doing so.

 A special kind of notification gives your app some background execution time for updating
changes. And even if you do not use notifications, you can ask the system for regular back-
ground processing callbacks. These two mechanisms keep your app up to date before the user
brings it into the foreground.

 In addition, applications can pass control from one to the other by passing data (using the
document interaction controller) and by opening custom URL schemes.

 Apple strongly encourages developers to limit the amount of cell-based data traffic used by each
application. The tendency of carriers to meter data usage and the overall movement away from
unlimited data plans help reinforce this requirement. Applications that are perceived to use too
much cell bandwidth might be rejected or pulled from the store. If your application is heavily
bandwidth-dependent, you may want to limit that use to Wi-Fi connections.

 Almost all device families come with Wi-Fi, mostly 802.11n. For those with cellular connec-
tions, many are at least 4G (5.8Mbps HSUPA), and LTE is usually the minimum speed for new
devices.

 Note
 According to the iPhone Terms of Service, you may not use Cocoa Touch’s plug-in architecture
for applications submitted to the App Store. You can build static libraries that are included at
compile time, but you may not use any programming solution that links to arbitrary code at run-
time. That means your app cannot download new or replacement code from a server.

 That means bug fix releases need to be just that, full app releases. It also means extra code-
level features available by in-app purchase need to ship with the app.

 User Behavior Considerations

 Although this is not a physical device-based consideration, iPhone users approach phone-based
applications sporadically. They enter a program, use it for its intended purpose, and then leave
just as quickly. The handheld nature of the device means you must design your applications
around short interaction periods and prepare for your application to be interrupted as a user
receives a phone call or sticks the phone back into a pocket, purse, or backpack. Keep your
application state current between sessions and relaunch quickly to approximately the same task

15Understanding Model Differences

your user was performing the last time the program was run. This can demand diligence on
the part of the programmer, but payoff in user satisfaction is worth the time invested. Apple
does provide APIs for state restoration, though they are beyond the scope of this book. For
more information, start with the chapter on state preservation and restoration in the iOS App
Programming Guide available with the documentation that comes with Xcode.

 Understanding Model Differences
 When it comes to application development, many iOS apps never have to consider the plat-
form on which they’re being run. Most programs rely only on the display and touch input.
They can be safely deployed to all the current family of iOS devices; they require no special
programming or concern about which platform they are running on.

 There are, however, real platform differences. The most obvious difference is in screen size
between iPhones/iPod touches and iPads. Other differences are usually feature-based such as the
types of sensors, the presence or absence of cellular-based networking, and a few other items.

 These differences can play a role in deciding how you tell the App Store to sell your software
and how you design the software in the first place. Should you deploy your software only to
the iPhone family or only to the iPad? To the iPhone, the iPad, and the second-generation and
later iPod touch? Or can your application be targeted to every platform? You can use APIs and
other techniques to find out what particular features are on a given device and even enable or
disable parts of your app. The next section covers some issues to consider.

 Screen Size
 The most obvious difference is the amount of screen space available on the iPad family versus
iPhone or iPod touch. iPads have a large 1024x768 point resolution enabling the display of
much more content. iPhones and iPod touches have two display geometries: The 3.5-inch
screen used by earlier devices is 480x320 points while the newer 4-inch screen is 568x320.

 Notice that the above resolutions are in points, not pixels. Most Apple devices now use a higher
resolution retina display, doubling the number of available pixels and better matching human
vision. Luckily, instead of worrying about whether the device is 480x320 (non-retina) pixels or
960x640 (retina) pixels, you can work in the world of points. For artwork, Xcode makes it easy
to provide any appropriate resolutions and, at runtime, the system automatically chooses the
right one.

 The Apple human interface guidelines for iPad differ from those for iPhone/iPod touch.
Developing for the iPad involves creating unified interfaces rather than the staged screen-by-
screen design used by the earlier iPhone and iPod touch units, with their reduced window size.
Applications that rely on the greater screen scope that the iPad provides may not translate well
to the smaller members of the device family.

 Although the retina screens on the newer iPhones and iPod touches look great, their screen
dimensions are either 3.5- or 4-inches diagonal. That geometry, combined with the physical

16 Chapter 1 Hello, iOS SDK

realities of the human hand and fingers, prevents these units from providing the same kind
of user interaction experience that is possible on the iPad. The interaction guidelines for the
newest units remain in lock step with the earlier members of the iPhone and iPod touch family.

 Camera
 Most applications can assume there will be at least one camera. In most cases, there will be
front- and back-facing cameras, though it is still wise to check at runtime. Although some very
early devices had no camera (earlier iPod touches or the first-generation iPad), those devices
make up a very small percentage of the market, and none of them run iOS 7. There are also
devices with just a back-facing or a front-facing camera. The 16GB fifth-generation iPod touch
is an example of the latter.

 The cameras are useful. You can have the camera take shots and then send them to Flickr or
Twitter. You can use the camera to grab images for direct manipulation, augmented reality, and
so forth. The iOS SDK provides a built-in image picker controller that offers camera access to
your users. There are also ways to capture still images, capture video, play movies, and stream
content.

 Audio
 All iOS devices have headphone jacks and all but the very oldest have speakers as well. The
same is true of microphones. The SDK provides ways to capture and play back audio.

 The microphones and speakers are also used for accessibility features such as the VoiceOver
screen reader. You can build descriptions into your graphical user interface (GUI) elements to
enable your applications to take advantage of VoiceOver, so your interfaces can describe them-
selves to visually impaired end users.

 Telephony
 It may seem an overly obvious point to make, but the iPhone’s telephony system, which
handles both phone calls and SMS messaging, can and will interrupt applications when the
unit receives an incoming telephone call. Sure, users can suspend out of apps whenever they
want on the iPhone, iPad, and iPod touch platforms, but only the iPhone has to deal with the
kind of transition that’s forced by the system and not a choice by the user.

 In addition to phone calls suspending your app, the user is able to open your app while on a
call. When that happens, iOS adds a special top bar indicating the status of the call. Make sure
to test your interface with the bar open as well as the bar being open then closing. The simula-
tor lets you toggle the in-call status bar on and off.

 Consider how the different kinds of interruptions might affect your application. It’s impor-
tant to keep all kinds of possible exits in mind when designing software. Be aware that the
choice to leave your app might not always come from the user, especially on the iPhone.
Applications that use audio need to take special care to restore the correct state after phone call
interruptions.

17Understanding Model Differences

 Another fallout of telephony operations is that more processes end up running in the back-
ground on iPhones than on iPod touches and iPads, even those iPads that provide cellular data
support. These processes do reduce the amount of free memory, though for modern devices,
the effect is minimal. Having said that, it still pays to test your app on cellular-enabled devices.

 Core Location and Core Motion Differences
 Core Location depends on three different approaches, each of which might or might not be
available on a given platform. These approaches are limited by each device’s onboard capabili-
ties. Wi-Fi location, which scans for local routers and uses their MAC addresses to search a
central position database, is freely available on all iPhone, iPad, and iPod touch platforms.

 Cell location, however, depends on an antenna that is available on the iPhone and on suitably
equipped iPad models. This technology triangulates from local cell towers, whose positions are
well defined from their installations by telephone companies.

 The final and most accurate strategy, GPS location, depends on appropriate hardware. Most
modern iPhones and iPads come with the hardware, though as of the writing of this book, no
iPod touches do. You can use built-in calls to check for the presence of the hardware.

 The third-generation iPhone 3GS introduced a built-in compass (via a magnetometer) along
with the Core Location APIs to support it. The iPhone 4 and iPad 2 added a three-axis gyro,
which provides pitch, roll, and yaw feedback, all of which can be solicited via the Core Motion
framework. Most modern iPhone and iPad devices have both the compass and gyro. Modern
iPod touches have only the gyro as of the writing of this book.

 Vibration Support and Proximity
 Vibration, which adds tactile feedback to many games, is limited to iPhones. The iPad and iPod
touch do not offer vibration support. Nor do they include the proximity sensor that blanks the
screen when holding an iPhone against your ear during calls. The UIDevice class offers direct
access to the current state of the proximity sensor.

 Processor Speeds
 All modern devices come with fast Apple-designed ARM processors. The CPU includes a good
amount of fast access RAM for code execution. To save power, some devices run the CPU at
slower speeds (underclocked), and all have the ability to suspend parts of the hardware. Some
earlier devices had relatively slow processors and much less execution space though they make
up an ever-decreasing part of the market. Targeting iOS 6 or later will avoid those early devices.

 The important thing is to run your app on a representative sample of the kinds of devices you
are targeting. Make sure it performs well on the devices your customers will use. This is espe-
cially important if you plan to support iPhones prior to the 4 as well as first-generation iPads.

 If your application isn’t responsive enough on the older platforms, consider working up your
code efficiency. There is no option in the App Store at this time that lets you omit earlier

18 Chapter 1 Hello, iOS SDK

generation iPhone devices from your distribution base, although setting your minimal required
iOS version to 6.0 or higher will automatically exclude most older devices.

 There are a few places you can look for an idea of the market share for each version of iOS.
When a new version is released, check the Apple-oriented press, such as the following sites:

 ■ MacOSRumors: www.macrumors.com

 ■ MacWorld: www.macworld.com

 ■ TUAW: www.tuaw.com

 You can also check with data analysis and mobile information companies, though you might
have to dig to find the information:

 ■ Canalys: www.canalys.com

 ■ Chitika: chitika.com

 ■ Flurry: www.flurry.com/index.html

 ■ Gartner: www.gartner.com/technology/home.jsp

 ■ IDC: www.idc.com

 Finally, app developer David Smith regularly updates what OS versions are used in his app:

 ■ http://david-smith.org/iosversionstats/

 OpenGL ES
 OpenGL ES offers a royalty-free cross-platform API for 2D- and 3D-graphics development. It is
provided as part of the iOS SDK. Most devices support OpenGL ES 2.0 with the newest support
version 3.0. Some very early units supported only OpenGL ES 1.1, but you are unlikely to
encounter them.

 Note
 Devices and features remain a moving target. Apple continues to introduce new units and make
changes to iOS. As new devices are introduced, check Apple’s information pages, especially
the technical specs. For iOS, make sure you read the release notes. In addition, you can look
for summary pages on the Internet. One good source is Wikipedia: http://en.wikipedia.org/
wiki/List_of_iOS_devices .

 iOS
 One obvious difference is the version of iOS running on any given device. iOS device users are
quick to upgrade to new releases. It took comparatively little time for most devices to upgrade
from iOS 3 to 4, then 4 to 5, and 5 to 6. Although there are some models that cannot upgrade
to iOS 7, they make up a rapidly shrinking percentage of the total number of units.

http://www.macrumors.com
http://www.macworld.com
http://www.tuaw.com
http://www.canalys.com
http://www.flurry.com/index.html
http://www.gartner.com/technology/home.jsp
http://www.idc.com
http://david-smith.org/iosversionstats/
http://en.wikipedia.org/wiki/List_of_iOS_devices
http://en.wikipedia.org/wiki/List_of_iOS_devices

19Summary

 There are definitely differences in functionality between various versions of the OS. For
example, in addition to the new look, iOS 7 introduces UI Motion, UI Dynamics, and Text Kit.
All three offer ways to increase engagement with your user. Usually it is a decision of support-
ing the current version plus the one before—in this case, iOS 6 and 7. It is fairly easy to test for
the availability of features and enable or disable access in your app. The largest difference is the
user experience, though it is fairly easy to create interfaces that work on both 6 and 7 if you use
the built-in UI elements.

 Ultimately, what you support should depend on what your potential customers are using.
If they are all using devices with iOS 7, there is no need to support 6. This book focuses on
iOS 7, though with the exception of some specific features, everything will work in iOS 6. In
addition, using auto layout, covered in Chapter 4 , makes adapting your interfaces to each iOS
much easier.

 Note
 Apple expanded the iOS version of Objective-C 2.0 starting with the 4.0 SDK to introduce
blocks. Blocks are a technology that have been around for decades in languages such as
Scheme, Lisp, Ruby, and Python. Blocks allow you to encapsulate behavior as objects, so you
can pass that behavior along to methods as an alternative to using callbacks. This new feature
is introduced in Chapter 13 , “Introducing Blocks.”

 Other features, such as literals, better property declarations, and fast enumeration, make
Objective-C even more powerful. You work with all these features as you progress through
the book.

 Summary
 In this chapter, you have taken the first steps in learning to create applications for iOS. You
have downloaded and set up Xcode and covered some of the basics of the devices and Apple’s
developer program. Through the rest of the book, you continue your journey into the world
of creating iOS apps. Each chapter focuses on important skills for some area of development.
Though the territory might be unfamiliar, the book provides a focused map to guide you
through.

 In the next few chapters, you learn the Objective-C language and create your first application
in Xcode. From there, you continue to expand your knowledge of iOS development, including
user interface elements, adapting to screen size and language, performance tuning, debugging,
and how to ship your app. When you are ready, turn the page to start writing your first
iOS app.

This page intentionally left blank

 Symbols & Numerics
 #pragma mark, 325

 @ symbol, 36

 _ (underscore character), 36

 {} curly braces, 49

 3.5-inch screens, previewing constraints,
 144 - 145

 A
 about scene (CarValet project), creating,

 263 - 264

 about view, adding to universal CarValet
app, 383 - 385

 menu images, polishing, 385 - 387

 abstracting out code, 84

 accelerometer-simulator project (Google
Code), 9

 accessors, 49 - 50

 dot notation, 53

 Accounts pane (Xcode), 495 - 497

 action selectors, implementing, 434 - 435

 actions, 72 - 73 , 484 - 485

 adding to add/view scene (CarValet
project), 74 - 77

 IBAction identifier, adding to view con-
troller, 112 - 115

 ad hoc testing providers, 510

 adapting cars table for iPad, 401 - 404

 adding

 cars to table (CarValet project), 287 - 288

 color themes to navigation controllers,
 264 - 267

 German locale to CarValet project,
 203 - 206

Index

532 adding

 icons to asset catalog, 257 - 259

 index to table views, 355 - 358

 recognizers to DetailController, 446

 references to constraints, 163 - 166

 scroll view to edit scene (CarValet proj-
ect), 231 - 234

 search capability to tables, 361 - 369

 sections, 347 - 349

 add/view scene (CarValet project)

 behaviors, adding, 72 - 77

 actions, 72 - 77

 outlets, 72 - 73

 buttons, localizing, 195 - 197

 car display behaviors, adding, 82 - 85

 localization, 191 - 199

 navigation controllers, 257

 new cars, adding, 81 - 82

 replacing with table view control-
ler-based scene, 283 - 285

 scroll view, adding, 227 - 230

 toolbar

 adding, 259 - 261

 localization, 261 - 263

 visual elements, adding

 dividers, 71 - 72

 labels, 68 - 70

 allocating memory, 77 - 80

 for objects, 38 - 39

 animation, pulsing, 456 - 460

 app ID, generating, 499

 app listing

 category, selecting, 516

 creating, 513 - 520

 description, adding, 517 - 518

 details, adding, 515 - 520

 EULA, 519

 saving, 519 - 520

 screenshots, 519

 App Store, uploading apps to, 521 - 526

 configuring the project, 521 - 522

 setting up the project scheme, 522 - 523

 Appearance protocol, 267

 Apple iOS Developer Programs, 3

 Apple Online Developer Program, 3

 apps

 bug reporting, 506 - 507

 Core Data, preparing for use in,
 323 - 325

 designing, holistic goals, 66

 launching in Instruments, 470

 testing, 7 - 15 , 479

 tethering, 10

 uploading to App Store, 521 - 526

 Arabic internationalization, 215 - 223

 Arabic strings, adding, 215 - 219

 dates, formatting, 219 - 222

 numbers, 219 - 222

 text alignment, 222 - 223

 ARC (Automatic Reference Counting), 31

 arrows, using in toolbars, 263

 asset catalog, adding icons, 257 - 259 ,
 504 - 505

 assigning blocks, 455 - 456

 assistant editor preview mode, 145 - 148

 atomicity of variables, 57 - 58

 attaching recognizers to a view, 442

 attributes of recognizers, 427

 audio, differences among platforms, 16

533 buttons

 audio system on iOS Simulator, 9

 auto layout, 117 - 131

 constraints, 120 - 131

 Assistant editor preview mode,
 145 - 148

 bottom layout guides (IB), 176 - 178

 changing for orientation, 162 - 163

 completeness of specification,
 133 - 134

 content compression resistance,
 150

 content hugging, 150

 creating, 122 - 123

 dragging out, 130 - 131

 intrinsic content size, 134

 invisible container views, 137

 previewing, 144 - 145

 references, adding, 163 - 166

 relationships, 120 - 122

 top layout guides (IB), 176 - 178

 values, changing, 128 - 130

 issues popup (IB), 154 - 155

 B
 base initializer, CarValet project, 49

 Base localization, 184

 batteries, energy considerations for mobile
app development, 13

 behaviors

 adding to add/view scene (CarValet
project), 72 - 77

 actions, 72 - 77

 outlets, 72 - 74

 car display behaviors, adding (CarValet
project), 82 - 85

 editor behaviors, adding to edit scene
(CarValet project), 94 - 97

 of table views, 277

 blocks, 453

 assigning, 455 - 456

 calling, 454

 declaring, 453 - 454

 defining, 455 - 456

 pulsing animation, adding, 456 - 460

 replacing protocols with, 462 - 466

 variables, 460 - 462

 scoped variables, modifying, 462

 writing, 455 - 460

 Boolean type (Objective-C), 34

 bottom layout guides (IB), 176 - 178

 bounce scrolling, 227 - 230

 adding to CarValet project scenes, 230

 breakpoints, 483 - 484

 exception breakpoints, 486

 symbolic breakpoints, 485

 bug reporting, 506 - 507

 build number, 526

 buttons

 localizing in add/view scene (CarValet
project), 195 - 197

 Next Car button, adding to CarValet
project, 86 - 89

 Previous Car button, adding to
CarValet project, 86 - 89

 text color, changing, 266 - 267

 Xcode

 Editor buttons, 27

 Run button, 26

534 calling

 C
 calling

 blocks, 454

 functions in Objective-C, 32 - 35

 camel case, 36

 camera, differences among platforms, 16

 canalys.com, 18

 Car class, adding to CarValet project, 42 - 44

 car detail controller, iPad-specific, 407 - 424

 closing, 419 - 420

 disabling car editing, 420 - 421

 layout, 409 - 414

 loading cars, 416 - 417

 polishing, 418 - 419

 popover behavior modifications,
 421 - 424

 preparing the picker, 414 - 416

 saving cars, 417 - 418

 car display behaviors, adding (CarValet
project), 82 - 85

 car image scene (CarValet project), scroll-
ing, 240 - 249

 paging, 243 - 244

 rotation, handling, 248 - 249

 scroll view, populating, 241 - 243

 updating label with index of current
car image, 249 - 250

 zoom, adding, 245 - 248

 car view cell, adding to table view control-
ler (CarValet project), 285 - 287

 cars table

 adapting for iPad, 401 - 404

 adding cars to, 287 - 288

 converting for Core Data, 326 - 332

 accessing data with managed prop-
erty context, 327 - 328

 adding and deleting cars, 328 - 329

 adding managed property context,
 326

 switching to CDCar object class,
 330

 index, displaying year in, 357 - 358

 removing cars from, 288 - 291

 searching, 361 - 369

 details for found car, displaying,
 365 - 367

 predicate, adding to fetched results
controller, 362 - 365

 updating, 306 - 307

 user-initiated editing, 289 - 291

 CarValet project . See also universal
CarValet app, creating

 about scene, 263 - 264

 accessors, 49 - 50

 add/view scene

 behaviors, adding, 72 - 77

 buttons, localizing, 195 - 197

 navigation controllers, 257

 new cars, adding, 81 - 82

 replacing with table view control-
ler-based scene, 283 - 285

 scroll view, adding, 227 - 230

 visual elements, adding, 67 - 72

 Arabic internationalization, 215 - 223

 Arabic strings, adding, 215 - 219

 dates, formatting, 219 - 222

 numbers, 219 - 222

 text alignment, 222 - 223

 base initializer, 49

535CarValet project

 implementation file, 46 - 50

 landscape orientation, 156 - 180

 constraints, adding, 169 - 172

 constraints, creating, 167 - 169

 constraints, designing, 158 - 159

 top-level view constraints, 159 - 162

 localization, 189 - 202

 add/view scene, 191 - 199

 strings, 189 - 191

 make and model edit scene

 creating, 296 - 307

 delegate, preparing, 300 - 303

 transitions, 305 - 306

 ViewCarProtocol, adding, 303 - 305

 model year edit scene, 307 - 314

 picker, implementing, 309 - 312

 year edit protocol, adding, 312 - 314

 year editor, setting up, 308 - 309

 Next Car button, adding, 86 - 89

 properties, 50 - 53

 encapsulation, 51

 qualifiers, 55 - 56

 tab bar

 adding, 270

 car images, moving to, 271 - 272

 dynamically updating items,
 272 - 273

 table view controller, adding car view
cell, 285 - 287

 view car scene

 creating, 292 - 294

 populating, 294 - 296

 swipes, enabling support for,
 428 - 438

 Car class, adding, 42 - 44

 cars

 creating, 53 - 54

 removing from table, 288 - 291

 cars table

 adding cars to, 287 - 288

 displaying year in index, 357 - 358

 updating, 306 - 307

 user-initiated editing, 289 - 291

 constraints

 adjusting for screen height, 155

 designing, 134 - 138

 implementing, 141 - 144

 New Car button, 151

 top-level view constraints, 138 - 141

 for Total Cars label, 151

 view car area, 151 - 154

 Core Data, adding CDCar model,
 321 - 324

 creating, 41 - 42

 disclosure indicator, adding to car data
cell, 291 - 292

 edit scene, 89 - 106

 resizing scroll view for keyboard,
 234 - 240

 scroll view, adding, 227 - 230

 German internationalization, 203 - 215

 formatting numbers, 213 - 215

 German locale, adding, 203 - 206

 label constraints, changing,
 209 - 213

 Localizable.strings, updating,
 207 - 209

 header file, 44 - 45

 HybridCar class, 58 - 62

 implementation file, 59 - 61

536 categories

 categories, 324

 caution icon (IB), 149

 CDCar model, adding to CarValet project,
 321 - 324

 cells

 car view cell, adding to table view con-
troller (CarValet project), 285 - 287

 creating, 279 - 281

 custom cells, 341 - 345

 populating, 345

 visual elements, adding, 343 - 344

 deletions, 289

 index paths, 282

 certificates, 494

 changing

 constraints

 rotation, handling, 162 - 163 ,
 172 - 176

 values, 128 - 130

 device language, 206 - 207

 table views, groups, 349 - 355

 Chisnall, David, 419

 chitika.com, 18

 Clair, Robert, 31

 class clusters, 40

 classes, 31 , 35 - 41

 #pragma mark, 325

 camel case, 36

 categories, 324

 forward references, 95

 implementation file, 35

 defining, 37 - 38

 inheritance, 39 - 40 , 59 - 62

 navigation controller classes, 256 - 257

 NSCalendar, 189

 NSDate, 189

 NSDateComponents, 189

 NSDateFormatter, 188

 NSLayoutConstraint, 120

 NSNumberFormatter, 188

 NSTimeZone, 189

 objects, creating, 38 - 39

 prefixes, 24

 reducing dependencies between, 332

 singletons, 387

 superclasses

 initializing, 40

 responding to open and closed key-
board, 237 - 239

 UIGestureRecognizer, 427

 ViewController class, modifying,
 110 - 112

 closed keyboard, responding to, 237 - 239

 Cocoa Touch, 7

 color themes, adding to navigation control-
lers, 264 - 267

 comparing

 iOS device platforms

 audio, 16

 camera, 16

 Core Location, 17

 Core Motion, 17

 OpenGL ES, 18

 processor speeds, 17 - 18

 screen size, 15 - 16

 telephony, 16 - 17

 vibration support, 17

537Core Data

 landscape and portrait orientation con-
straints, 161

 VCL and full specification, 168

 conferences, 528 - 529

 configuring form views, 233 - 234

 constants, gesture state constants,
440-441

 constraints, 120 - 131 . See also VCL (Visual
Constraint Language)

 Assistant editor preview mode, 145 - 148

 bottom layout guides (IB), 176 - 178

 completeness of specification, 133 - 134

 content compression resistance, 150

 content hugging, 150

 creating, 122

 in IB, 122 - 123

 designing for CarValet project

 adjusting for screen height, 155

 edit scene, 155 - 156

 landscape orientation, 156 - 180

 New Car button, 151

 portrait orientation, 134 - 138

 top-level view constraints, 138 - 141 ,
 159 - 162

 Total Cars label, 151

 view car area, 151 - 154

 dragging out, 130 - 131

 generating from strings, 170 - 172

 intrinsic content size, 134

 invisible container views, 137

 landscape orientation

 comparing with portrait orienta-
tion, 161

 creating, 167 - 169

 top-level view constraints, 159 - 162

 troubleshooting, 178 - 180

 portrait orientation, 131 - 132

 previewing, 144 - 145

 references, adding, 163 - 166

 relationships, 120 - 122

 for scroll views, 235

 top layout guides (IB), 176 - 178

 troubleshooting, 149 - 150

 auto layout issues popup, 154 - 155

 values, changing, 128 - 130

 containers, invisible container views, 137

 content compression resistance, 150

 content hugging, 150

 content views, 233 - 232

 Continuous Flow state (recognizers), 439

 controller layer (MVC), 318

 converting

 cars table for Core Data, 326 - 332

 accessing data with managed prop-
erty context, 327 - 328

 adding and deleting cars, 328 - 329

 adding managed property context,
 326

 switching to CDCar object class,
 330

 between coordinate spaces, 236 - 237

 coordinate spaces, converting between,
 236 - 237

 Core Data, 317 - 320

 CDCar model, adding to CarValet proj-
ect, 321 - 324

 classes, 319

 converting cars table for use, 326 - 332

 accessing data with managed prop-
erty context, 327 - 328

 adding and deleting cars, 328 - 329

538 Core Data

 adding managed property context,
 326

 switching to CDCar object class,
 330

 entities, 319

 fetched results controller, 332 - 339

 NSFetchedResultsController, inte-
grating, 333 - 335

 NSFetchedResultsController-
Delegate, implementing, 336 - 339

 initializing for use, 323 - 325

 managed objects, 319 - 320

 stores, 319

 Core Location, differences among plat-
forms, 17

 Core Motion, differences among platforms,
 17

 CoreData framework, adding to projects,
 320 - 321

 count-based labels, 87 - 88

 Cox, Brad J., 31

 creating

 app listing, 513 - 520

 details, adding, 515 - 520

 cars for CarValet project, 53 - 54

 cells, 279 - 281

 constraints, 122

 in IB, 122 - 123

 landscape orientation, 167 - 169

 distribution provisioning profile,
 501 - 503

 format strings, 88 - 89

 Hello World project, 21 - 25

 objects, 38 - 39

 outlets, 73 - 74

 return gesture recognizer, 442 - 447

 table views

 cells, 279 - 281

 sections, 281 - 283

 universal CarValet app, 374 - 382

 about view, adding, 382 - 387

 app section navigation, adding,
 379 - 382

 car images view controller, adding,
 397 - 400

 Cars tab, adding, 400 - 424

 menu, accessing in portrait,
 387 - 396

 split view controller, adding,
 376 - 379

 custom cells, 341 - 345

 populating, 345

 visual elements, adding, 343 - 344

 custom getters, 56 - 58

 custom recognizers, 441 - 442

 return gesture recognizer

 creating, 442 - 447

 return gesture recognizer, creating,
 442 - 447

 custom setters, 56 - 58

 D
 data access, designing for mobile apps,

 11 - 12

 date formats, 187 - 189

 david-smith.org, 18

 debugger (iOS SDK), 7 , 479 - 486

 actions, 484 - 485

 breakpoints, 483 - 484

 EXC_BAD_ACCESS errors, troubleshoot-
ing, 489 - 491

539dynamically updating tab bar items

 DetailController

 adding recognizers to, 446

 implementing in universal CarValet
project, 388 - 396

 consolidating code, 393 - 396

 singleton, setting up, 391 - 393

 UISplitViewControllerDelegate,
adding, 389 - 391

 Developer Enterprise Program, 4 - 5

 Developer University Program, 5

 development certificate, generating,
 495 - 497

 devices

 adding to provisioning profile, 497 - 498

 language, changing, 206 - 207

 dimensions, resizing. See auto layout

 disabling

 car editing, 420 - 421

 recognizers, 438

 disclosure indicator, adding to car data
cell, 291 - 292

 displaying

 section headers, 346 - 347

 year in cars table index, 357 - 358

 distribution provisioning profile, 497 - 498

 creating, 501 - 503

 dividers, adding to add/view scene
(CarValet project), 71 - 72

 documentation, iOS Human Interface
Guidelines, 494 - 495

 dot notation, 51 - 53

 double strings, faking localization with,
 193 - 195

 drag gesture recognizers, 448 - 450

 dragging out constraints, 130 - 131

 dynamically updating tab bar items,
 272 - 273

 gauges, 481 - 482

 process view, 480

 variables view, 480 - 481

 debugging strokes, 447

 declaring

 blocks, 453 - 454

 methods, 36 - 37

 properties, 50

 defaults, 79

 defining

 blocks, 455 - 456

 implementation file, 37 - 38

 delegates, 46

 make and model edit scene (CarValet
project), preparing for, 300 - 303

 protocols, 107 - 112

 deleting

 cell data, 289

 sections, 347 - 349

 description, adding to app listing, 517 - 518

 designing for mobile apps

 application considerations, 13 - 14

 constraints, 132 - 133

 data access considerations, 11 - 12

 energy considerations, 13

 holistic goals, 66

 interaction considerations, 12 - 13

 memory considerations, 12

 storage considerations, 11

 use behavior considerations, 14 - 15

 detail view controller, 372

540 edit scene (CarValet project)

 E
 edit scene (CarValet project), 89 - 106

 constraints, 155 - 156

 editor behaviors, adding, 94 - 97

 localization, 200 - 202

 scroll view

 adding, 230 - 240

 resizing for keyboard, 234 - 240

 scroll view, adding, 227 - 234

 visual elements, adding, 91

 editing CarValet project header file, 44 - 45

 editor behaviors, adding to edit scene
(CarValet project), 94 - 97

 Editor buttons (Xcode), 27

 enabling support for swipe gestures,
 428 - 438

 encapsulation, 51

 protocols, 107 - 108

 entities (Core Data), 319

 enumerated types, 303

 EULA (end user license agreement), 519

 event aggregators, 529

 EXC_BAD_ACCESS errors, troubleshooting,
 486 - 491

 with debugger, 489 - 491

 with Zombies Instrument template,
 486 - 489

 exception breakpoints, 486

 exchanging data with protocols, 108 - 112

 F
 faking localization with double strings,

 193 - 195

 fetched results controller, 332 - 339

 NSFetchedResultsController, integrat-
ing, 333 - 335

 NSFetchedResultsControllerDelegate,
implementing, 336 - 339

 predicate, adding, 362 - 365

 section headers, displaying, 346 - 347

 finding icons, 259

 flurry.com, 18

 form view, configuring for scroll view,
 233 - 234

 format strings, 88 - 89

 forward references, 95

 frames, 235 - 239

 functional testing, 509 - 510

 functions, calling in Objective-C, 32 - 35

 G
 gartner.com, 18

 gathering metrics, 508 - 509

 gauges (debugger), 481 - 482

 generating

 app ID, 499

 constraints from strings, 170 - 172

 development certificate, 495 - 497

 German internationalization, 203 - 215

 formatting numbers, 213 - 215

 German locale, adding, 203 - 206

 label constraints, changing, 209 - 213

 Localizable.strings, updating, 207 - 209

 gestures, 427

 dragging, 448 - 450

 iPhone action selectors, enabling,
 434 - 435

541implementation file

 recognizers

 adding to DetailController, 446

 attaching to a view, 442

 attributes, 427

 custom recognizers, 441 - 442

 disabling, 438

 responding to, 446 - 447

 states, 439 - 441

 strokes, debugging, 447

 swipes, enabling support for, 428 - 438

 target/action pairs, 428

 getter methods, 36 , 56 - 58

 Google Code, accelerometer-simulator
project, 9

 groups, 345

 changing, 349 - 355

 H
 header files, 35

 CarValet project, 44 - 45

 Hello World project

 creating, 21 - 25

 labeling, 28 - 30

 hierarchies of content, 254 - 255

 leaf nodes, 254

 root scene, 255

 holistic goals for app design, 66

 hooking scenes together, 98 - 105

 prepareForSegue:sender method,
 103 - 105

 transitions, 102 - 103

 HybridCar class

 creating for CarValet project, 58 - 62

 implementation file, 59 - 61

 I
 IB (Interface Builder), 6

 bottom layout guides, 176 - 178

 constraints

 creating, 122 - 123

 troubleshooting, 149 - 150

 Size inspector, 150 - 151

 toolbar

 auto layout issues popup, 154 - 155

 constraints, adding, 126 - 127

 pin popup, 127 - 128

 top layout guides, 176 - 178

 IBAction identifier, 72 - 73

 adding to view controller, 112 - 115

 IBOutlet identifier, 72 - 73

 ibtool, localizing storyboard strings with,
 198

 icons

 adding to asset catalog, 257 - 259 ,
 504 - 505

 caution icon (IB), 149

 magnifying glass, adding to indexes,
 367 - 369

 sizes, 503 - 504

 sources of, 259

 idc.com, 18

 identifying constraint issues, 149 - 150

 implementation file, 35

 CarValet project, 46 - 50

 defining, 37 - 38

 dot notation, 52 - 53

 encapsulation, 51

 for HybridCar class, 59 - 61

542 implementing

 implementing

 constraints for CarValet project,
 141 - 144

 picker for model year edit scene
(CarValet project), 309 - 312

 index paths, 282

 indexes

 cars table, displaying year in, 357 - 358

 magnifying glass, adding, 367 - 369

 properties, 356

 inheritance, 39 - 40 , 59 - 62

 initializing

 Core Data, 323 - 325

 superclasses, 40

 installing Xcode, 1 - 2

 instance variables, properties, 50 - 53

 Instruments, 469 - 479

 EXC_BAD_ACCESS errors, troubleshoot-
ing with Zombies template, 486 - 489

 fixing problems with, 476 - 478

 launching apps in, 470

 prefetching, 476 - 477

 problem isolation, 474 - 476

 templates, 471

 Time Profiler, 472 - 478

 tree mining, 475 - 476

 integrating NSFetchedResultsController,
 333 - 335

 integration testing, 510 - 512

 interaction, designing for mobile apps,
 12 - 13

 interface, Xcode, 25 - 27

 Editor buttons, 27

 Navigator, 27

 Run button, 26

 status area, 26

 utilities area, 27

 internationalization, 189

 Arabic internationalization, 215 - 223

 Arabic strings, adding, 215 - 219

 dates, formatting, 219 - 222

 numbers, 219 - 222

 text alignment, 222 - 223

 German internationalization, 203 - 215

 label constraints, changing,
 209 - 213

 localizable.strings, updating,
 207 - 209

 intrinsic content size, 134

 invisible container views, 137

 iOS Developer Programs, 3

 Developer Enterprise Program, 4 - 5

 Developer University Program, 5

 registration, 5

 standard iOS Developer Program, 4

 iOS Human Interface Guidelines, 7 ,
 494 - 495

 iOS SDK, 2 - 7

 iOS Simulator, 6

 limitations of, 8 - 10

 audio system, 9

 keychain security, 9

 localization, 9

 testing apps, 7 - 15

 Video Out emulation, 10

 iPad

 returning to default state with custom
recognizer, 442 - 447

543 localization

 universal CarValet app, creating,
 374 - 382

 about view, adding, 382 - 387

 app section navigation, adding,
 379 - 382

 car images view controller, adding,
 397 - 400

 Cars tab, adding, 400 - 424

 menu, accessing in portrait,
 387 - 396

 split view controller, adding,
 376 - 379

 iPhone action selectors, enabling, 434 - 435

 iSimulate, 9

 ISO 639.2 standard, 185

 isolating problems with Instruments,
 474 - 476

 J-K
 Jobs, Steve, 31

 keyboard

 handling for scroll views, 234 - 240

 support on iOS devices, 12

 keywords, @ symbol, 36

 KVC (Key Value Coding), 419

 L
 labeling

 add/view scene (CarValet project),
 68 - 70

 count-based labels, 87 - 88

 Xcode projects, 28 - 30

 landscape orientation

 CarValet project, 156 - 180

 constraints, designing, 158 - 159

 constraints

 adding to CarValet project, 169 - 172

 comparing with portrait orienta-
tion, 161

 creating, 167 - 169

 troubleshooting, 178 - 180

 VCL, 166 - 168

 language support. See localization

 launch images, 505 - 506

 launching apps in Instruments, 470

 leaf nodes in hierarchies of content, 254

 limitations of iOS Simulator, 8 - 10

 audio system, 9

 keychain security, 9

 literals, 31

 localization . See also internationalization

 Base, 184

 CarValet project, 189 - 202

 add/view scene, 191 - 199

 edit scene, 200 - 202

 strings, 189 - 191

 faking with double strings, 193 - 195

 formats, 187 - 189

 on iOS Simulator, 9

 ISO 639.2 standard, 185

 language preferences, setting, 183 - 184

 redirection, 184 - 187

 string tables, 186 - 187

 toolbars, 261 - 263

 version control, 192

 via formats, 187 - 189

544 Macintosh Developer Program

 M
 Macintosh Developer Program, 4

 macosrumors.com, 18

 macros, localed string macros, 202

 macworld.com, 18

 magnifying glass, adding to indexes,
 367 - 369

 MainMenuViewController, creating for uni-
versal CarValet app, 383 - 385

 make and model edit scene (CarValet
project)

 creating, 296 - 307

 delegate, preparing, 300 - 303

 MakeModelEditViewController class,
 297 - 300

 transitions, 305 - 306

 ViewCarProtocol, adding, 303 - 305

 MakeModelEditViewController class,
 297 - 300

 managed objects, 319 - 320

 managing memory, 77 - 80

 marketing, 511 - 513

 interest, 513

 open-source projects, 511

 master view controller, 372

 memory

 allocating for objects, 38 - 39

 leaks, 79 - 80

 managing, 77 - 80

 mobile apps, designing for, 12

 message-based navigation, 263 - 264

 messages

 protocols, 46

 sending, 47

 sending with Objective-C, 32 - 35

 methods, 33

 accessor methods, 49 - 50

 dot notation, 53

 camel case, 36

 declaring, 36 - 37

 inheritance, 39 - 40

 parameters, 34 - 35 , 45

 prepareForSegue:sender method,
 103 - 105

 metrics gathering, 508 - 509

 mobile apps, designing for

 application considerations, 13 - 14

 constraints, 132 - 133

 data access considerations, 11 - 12

 energy considerations, 13

 interaction considerations, 12 - 13

 memory considerations, 12

 storage considerations, 11

 use behavior considerations, 14 - 15

 modal presentation, 275

 model layer (MVC), 318

 model year edit scene (CarValet project),
 307 - 314

 picker, implementing, 309 - 312

 year edit protocol, adding, 312 - 314

 year editor, setting up, 308 - 309

 modifying

 scoped variables of blocks, 462

 ViewController class, 110 - 112

 moving car images to tab bar, 271 - 272

 multiple string tables for localization, 202

 multitasking, 13 - 14

 MVC (Model-View-Controller), 318

 controller layer, 318

 model layer, 318

 view layer, 318

545objects

 N
 navigation controllers, 253 - 267

 color themes, adding, 264 - 267

 dynamically updating items, 272 - 273

 hierarchies of content, 254 - 255

 leaf nodes, 254

 message-based navigation, 263 - 264

 tab bar controller, 267 - 273

 adding to CarValet project, 270

 car images, moving to, 271 - 272

 toolbars, 257 - 263

 arrows, 263

 populating, 259 - 261

 UINavigationController, 256

 Navigator (Xcode), 27

 NDA (non-disclosure agreement), 8

 new cars, adding to table (CarValet project),
 287 - 288

 NeXT, 31

 Next Car button, adding to CarValet project,
 86 - 89

 nonatomic properties, 57 - 58

 nonretina icon sizes, 503 - 504

 notifications, 14

 responding to open and closed key-
board, 237 - 239

 NSCalendar class, 189

 NSDate class, 189

 NSDateComponents class, 189

 NSDateFormatter class, 188

 NSFetchedResultsController, 332 - 339

 integrating, 333 - 335

 NSFetchedResultsControllerDelegate, imple-
menting, 336 - 339

 NSIndexPath object, 282

 NSLayoutConstraint class, 120

 NSManagedObjectContext class, 319

 NSManagedObjectModel class, 319

 NSNumberFormatter class, 188

 NSPersistentStoreCoordinator class, 319

 NSTimeZone class, 189

 numbers

 Arabic internationalization, 219 - 222

 formats, 187 - 189

 German internationalization, 213 - 215

 O
 Objective-C, 30 - 41

 @ symbol, 36

 Boolean type, 34

 camel case, 36

 classes, 35 - 41

 implementation file, 35

 functions, calling, 32 - 35

 implementation file, defining, 37 - 38

 messages, sending, 32 - 35

 methods, 33

 declaring, 36 - 37

 inheritance, 39 - 40

 parameters, 34 - 35

 objects, 35 - 41

 pointing to, 40 - 41

 selector, 47

 underscore character (_), 36

 object-oriented programming, 31

 objects, 31 , 35 - 41

 creating, 38 - 39

 defaults, 79

546 objects

 delegates, 46

 dot notation, 51 - 53

 managed objects, 319 - 320

 memory, allocating, 38 - 39

 NSIndexPath, 282

 pointing to, 40 - 41

 targets, 428

 observers, responding to open and closed
keyboard, 237 - 239

 open keyboard, responding to, 237 - 239

 OpenGL ES, differences among platforms,
 18

 opening XIB files, 263 - 264

 orientation . See also portrait orientation,
constraints; landscape orientation

 constraints, changing to handle rota-
tion, 162 - 163

 rotation

 constraints, changing to handle
rotation, 172 - 176

 scroll views, handling, 248 - 249

 outlets, 72 - 73

 creating, 73 - 74

 P
 paging, 240 - 241 , 243 - 244

 parameters of methods, 34 - 35 , 45

 performance, metrics gathering, 508 - 509

 performance tools (iOS SDK), 6

 persistence, Core Data, 318 - 320

 CDCar model, adding to CarValet proj-
ect, 321 - 324

 converting cars table for use, 326 - 332

 entities, 319

 fetched results controller, 332 - 339

 managed objects, 319 - 320

 stores, 319

 pickers, 308

 implementing for model year edit
scene, 309 - 312

 pin popup (IB), 127 - 128

 pixels, 120

 platforms (iOS devices)

 differences in

 audio, 16

 camera, 16

 Core Location, 17

 Core Motion, 17

 OpenGL ES, 18

 processor speeds, 17 - 18

 screen size, 15 - 16

 telephony, 16 - 17

 vibration support, 17

 versions of iOS, 18 - 19

 Plausible Crash Reporter project, 506

 pointing to classes, 40 - 41

 points, 120

 populating

 custom cells, 345

 scroll views, 241 - 243

 toolbars, 259 - 261

 view car scene (CarValet project),
 294 - 296

 popups (IB)

 auto layout issues popup, 154 - 155

 creating constraints, 126 - 128

547protocols

 portrait orientation, constraints, 131 - 132

 designing for CarValet project, 134 - 141

 implementing for CarValet project,
 141 - 144

 previewing, 144 - 145

 postlaunch activities, 525

 predefined cells, creating (TableTry project),
 279

 predicate, adding to fetched results control-
ler, 362 - 365

 prefetching, 476 - 477

 prefixes, 24

 prelaunch activities

 bug reporting, 506 - 507

 marketing, 511 - 513

 interest, 513

 open-source projects, 511

 metrics gathering, 508 - 509

 QA testing, 509 - 512

 functional testing, 509 - 510

 integration testing, 510 - 512

 unit testing, 509 - 510

 prepareForSegue:sender method, 103 - 105

 preparing

 Core Data for apps, 323 - 325

 make and model edit scene (CarValet
project) for delegate, 300 - 303

 previewing constraints, 144 - 145

 Previous Car button, adding to CarValet
project, 86 - 89

 printing cars for CarValet project, 53 - 54

 privacy laws, 509

 private keys, 494

 process view (debugger), 480

 processor speeds, differences among plat-
forms, 17 - 18

 Project Editor, 6

 projects

 CarValet. See CarValet project

 localization, 184 - 185

 TableTry, 277 - 283

 universal projects, creating, 374 - 382

 Xcode

 creating, 21 - 25

 labeling, 28 - 30

 options, 23 - 25

 properties, 50 - 53

 declaring, 50

 dot notation, 51 - 53

 encapsulation, 51

 qualifiers, 55 - 56

 read-only, 55 - 56

 setters, 56 - 58

 of table indexes, 356

 variables

 atomicity, 57 - 58

 temporary, 78

 protocols, 46 , 107 - 112

 Appearance protocol, 267

 encapsulation, 107 - 108

 exchanging data with, 108 - 112

 replacing with blocks, 462 - 466

 reusability, 107

 ViewController class, modifying,
 110 - 112

 year edit protocol, adding to model year
edit scene, 312 - 314

548 provisioning profile, adding devices to

 provisioning profile, adding devices to,
 497 - 498

 public keys, 494

 pulsing animation, adding, 456 - 460

 Push notifications, 14

 Q
 QA (quality assurance) testing, 509 - 512

 integration testing, 510 - 512

 unit testing, 509 - 510

 qualifiers, 55 - 56

 memory-related, 78

 R
 read-only properties, 55 - 56

 recognizers, 427- 428

 adding to DetailController, 446

 attaching to a view, 442

 attributes, 427

 custom recognizers, 441 - 442

 return gesture recognizer, creating,
 442 - 447

 disabling, 438

 drag gesture recognizers, 448 - 450

 responding to, 446 - 447

 states, 439 - 441

 redirection

 Base localization, 184

 ISO 639.2 standard, 185

 project-level localization, 184 - 185

 string tables, 186 - 187

 reducing dependencies between classes,
 332

 references, adding to changing constraints,
 163 - 166

 registering for iOS Developer Programs, 5

 removing

 cars from table (CarValet project),
 288 - 291

 sections, 347 - 349

 replacing

 add/view scene (CarValet project) with
table view controller-based scene,
 283 - 285

 protocols with blocks, 462 - 466

 reporting bugs, 506 - 507

 resizing

 dimensions. See auto layout

 keyboard for scroll views, 234 - 240

 scroll views, 239 - 240

 resources

 books, 525 - 527

 conferences, 528 - 529

 social media, 529 - 530

 websites, 527 - 528

 responding

 to open and closed keyboard, 237 - 239

 to recognizers, 446 - 447

 retain cycles, 79 - 80

 retina, 120

 icon sizes, 503 - 504

 return gesture recognizer

 creating, 442 - 447

 return gesture recognizer, creating,
 442 - 447

 reusability of protocols, 107

 right-to-left languages, internationalization,
 215 - 223

549scroll views

 Roadley, Tim, 318

 root views, 255

 tabs, 268 - 273

 rotation

 constraints, changing for orientation,
 162 - 163 , 172 - 176

 scroll views, handling, 248 - 249

 rows, creating, 281 - 282

 Run button (Xcode), 26

 S
 Sadun, Erica, 456

 saving app listing, 519 - 520

 scenes, 66 - 67

 about scene (CarValet project), 263 - 264

 add/view scene (CarValet project)

 behaviors, adding, 72 - 77

 buttons, localizing, 195 - 197

 car display behaviors, adding,
 82 - 85

 dividers, 71 - 72

 labels, 68 - 70

 localization, 191 - 199

 new cars, adding, 81 - 82

 replacing with table view control-
ler-based scene, 283 - 285

 scroll view, adding, 227 - 230

 toolbar, adding, 259 - 261

 car image scene (CarValet project),
scrolling, 240 - 249

 edit scene (CarValet project), 89 - 106

 constraints, 155 - 156

 localization, 200 - 202

 scroll view, adding, 227 - 234

 hooking together, 98 - 105

 prepareForSegue:sender method,
 103 - 105

 transitions, 102 - 103

 make and model edit scene (CarValet
project)

 creating, 296 - 307

 delegate, preparing, 300 - 303

 transitions, 305 - 306

 ViewCarProtocol, adding, 303 - 305

 model year edit scene (CarValet proj-
ect), 307 - 314

 picker, implementing, 309 - 312

 year edit protocol, adding, 312 - 314

 year editor, setting up, 308 - 309

 view car scene (CarValet project)

 creating, 292 - 294

 populating, 294 - 296

 scoped variables, modifying, 462

 screen size

 auto layout, 117 - 131 . See also auto
layout

 differences among platforms, 15 - 16

 intrinsic content size, 134

 standard distance, 119

 toggling (view controllers), 145

 screens, 65

 screenshots, providing for app listing, 519

 scroll views

 adding

 to add/view scene (CarValet proj-
ect), 227 - 230

 to edit scene (CarValet project),
 227 - 234

550 scroll views

 constraints, 235

 form view, configuring, 233 - 234

 paging, 240 - 241 , 243 - 244

 populating, 241 - 243

 resizing, 239 - 240

 for keyboard, 234 - 240

 rotation, handling, 248 - 249

 zooming content, 226 , 245 - 248

 scrolling, bounce scrolling, 227 - 230

 SDKs

 iOS Developer Programs, 3

 Developer Enterprise Program, 4 - 5

 Developer University Program, 5

 Macintosh Developer Program, 4

 registration, 5

 standard iOS Developer Program, 4

 iOS SDK, tools, 6 - 7

 searching table views, 358 - 369

 index, adding, 367 - 369

 predicate, adding to fetched results
controller, 362 - 365

 sections, 346 - 349

 adding and deleting, 347 - 349

 creating, 282 - 283

 in tables, 281 - 282

 groups, changing, 349 - 355

 index paths, 282

 segues, 103 - 106

 selecting category for your app, 516

 selectors, 47

 iPhone action selectors, enabling,
 434 - 435

 responding to open and closed key-
board, 237 - 239

 self-configuring content views, 233 - 232

 sending messages, 47

 with Objective-C, 32 - 35

 setter methods, 36 , 56 - 58

 setting language preferences, 183 - 184

 simulator, changing device language,
 206 - 207

 singletons, 387

 DetailController singleton, implement-
ing, 388 - 396

 Size Inspector, 150 - 151

 sizes of icons, 503 - 504

 Smalltalk, 31

 Smith, David, 18

 sorting, 345

 sources of icons, 259

 split view controller, 372 - 374

 detail view controller, 374

 master view controller, 373

 universal CarValet app, creating

 car detail controller, 407 - 424

 car images view controller, adding,
 397 - 400

 DetailController singleton, imple-
menting, 388 - 396

 standard distance, 119

 standard iOS Developer Program, 4 , 59 - 61

 status area (Xcode), 26

 storage

 Core Data, 317 - 320

 CDCar model, adding to CarValet
project, 321 - 324

 classes, 319

 converting cars table for use,
 326 - 332

551table views

 entities, 319

 fetched results controller, 332 - 339

 managed objects, 319 - 320

 mobile apps, designing for, 11

 stores (Core Data), 319

 storyboards, 65 - 67

 auto layout, 124 - 126

 scenes, 66 - 67

 edit scene (CarValet project),
 89 - 106

 hooking together, 98 - 105

 transitions, 102 - 103

 screens, 65

 strings, localizing with ibtool, 198

 string tables

 localization, 186 - 187

 multiple string tables, 202

 strings

 Arabic strings, adding for international-
ization, 215 - 219

 format strings, 88 - 89

 generating constraints from, 170 - 172

 localization

 CarValet project, 189 - 191

 faking localization with double
strings, 193 - 195

 storyboard strings, localizing with
ibtool, 198

 VCL, 166 - 167

 strokes, debugging, 447

 strong qualifier, 78

 subclasses, inheritance, 39 - 40 , 59 - 62

 subscripting, 31

 superclasses, 40

 initializing, 40

 responding to open and closed key-
board, 237 - 239

 swipes, 428 - 438

 iPhone action selectors, enabling,
 434 - 435

 recognizers

 custom recognizers, 441 - 442

 disabling, 438

 states, 439 - 441

 symbolic breakpoints, 485

 syntax

 methods, 36 - 37

 Objective-C methods, 32 - 35

 T
 tab bar controller, 267 - 273

 adding to CarValet project, 270

 car images, moving to tab bar,
 271 - 272

 dynamically updating items, 272 - 273

 table view controllers, adding car view cell,
 285 - 287

 table views, 275 - 277 , 282 - 283

 behaviors, 277

 CarValet project

 new cars, adding, 287 - 288

 removing cars from, 288 - 291

 user-initiated editing, 289 - 291

 cells

 creating, 279 - 281

 deleting, 289

552 table views

 custom cells, 341 - 345

 populating, 345

 visual elements, adding, 343 - 344

 groups, 345

 changing, 349 - 355

 index paths, 282

 indexes

 adding, 355 - 358

 properties, 356

 rows, creating, 281 - 282

 searching, 358 - 369

 index, adding, 367 - 369

 predicate, adding to fetched results
controller, 362 - 365

 sections, 346 - 349

 adding and deleting, 347 - 349

 creating, 281 - 283

 sorting, 345

 updating, 306 - 307

 TableTry project, 277 - 283

 cells, creating, 279 - 281

 index paths, 282

 predefined cells, creating, 279

 rows, creating, 281 - 282

 sections, creating, 281 - 283

 target audience for iOS Developer
Programs, 3

 targets, 428

 telephony, differences among platforms,
 16 - 17

 templates (Instruments), Time Profiler,
 472 - 478

 temporary variables, 78

 ternary operators, 83

 testing

 apps, 479

 tethering, 10

 apps with iOS Simulator, 7 - 15

 functional testing, 509 - 510

 unit testing, 509 - 510

 tethering, 10

 text alignment, Arabic internationalization,
 222 - 223

 text color of buttons, changing, 266 - 267

 text fields, adding to edit scene (CarValet
project), 91

 third-party bug reporting services, 507

 Time Profiler template (Instruments),
 472 - 478

 problem isolation, 474 - 476

 toggling between screen sizes (view control-
lers), 145

 toolbar (IB)

 auto layout issues popup, 154 - 155

 constraints, adding, 126 - 127

 pin popup, 127 - 128

 toolbars, 257 - 263

 arrows, 263

 color themes, 264 - 267

 localization, 261 - 263

 populating, 259 - 261

 top layout guides (IB), 176 - 178

 top-level view constraints (CarValet project)

 landscape orientation, 159 - 162

 portrait orientation, 138 - 141

 touchscreen interaction, designing for
mobile apps, 12 - 13

553uploading apps to App Store

 transitions, 102 - 103

 adding to view cars scene (CarValet
project), 305 - 306

 tree mining, 475 - 476

 troubleshooting

 constraints, 149 - 150

 auto layout issues popup, 154 - 155

 landscape orientation, 178 - 180

 EXC_BAD_ACCESS errors, 486 - 491

 with debugger, 489 - 491

 with Zombies Instrument template,
 486 - 489

 with Instruments, 474 - 476

 search code, 361

 tuaw.com, 18

 U
 UI (user interface), Xcode, 25 - 27

 Editor buttons, 27

 Navigator, 27

 Run button, 26

 status area, 26

 utilities area, 27

 UIBarButton class, 256

 UIGestureRecognizer class, 427

 UILabel, 82

 UINavigationBar class, 256

 UINavigationController, 253 , 256

 hierarchies of content, 254 - 255

 UINavigationItem class, 256

 UIPickerView, 307

 UIScrollView, 225 - 226 , 240 - 250

 paging, 243 - 244

 zooming, 245 - 248

 UISplitViewController, 371

 UITabBar class, 269

 UITabBarController, 253 , 268 - 273

 UITabBarItem class, 269

 UITextField, 91

 UIToolBar class, 256

 underscore character (_), 36

 unit testing, 509 - 510

 universal apps, 374 - 382

 universal CarValet app, creating

 about view, adding, 382 - 387

 MainMenuViewController, creat-
ing, 383 - 385

 menu images, polishing, 385 - 387

 app section navigation, adding,
 379 - 382

 car detail controller, 404 - 406

 iPad-specific, 407 - 424

 car images view controller, adding,
 397 - 400

 Cars tab, adding, 400 - 424

 car table, adapting to iPad, 401 - 404

 menu, accessing in portrait, 387 - 396

 DetailController singleton, imple-
menting, 388 - 396

 split view controller, adding, 376 - 379

 updating

 form views, 233 - 234

 labels of car image scene, 249 - 250

 Localizable.strings, 207 - 209

 tab bar items, 272 - 273

 table views, 306 - 307

 uploading apps to App Store, 521 - 526

 configuring the project, 521 - 522

 setting up the project scheme, 522 - 523

554 user-initiated editing (cars table)

 user-initiated editing (cars table), 289 - 291

 utilities

 ibtool, localizing storyboard strings
with, 198

 Instruments, 469 - 479

 utilities area (Xcode), 27

 V
 variables, 31

 atomicity, 57 - 58

 block access to, 460 - 462

 properties, 50 - 53

 temporary, 78

 variables view (debugger), 480 - 481

 VCL (Visual Constraint Language), 166 - 168

 versus full specification, 168

 strings, 166 - 167

 version control, 192

 versions of iOS, 18 - 19

 vibration, support for in iOS devices, 17

 Video Out emulation (iOS Simulator), 10

 videos, WWDC, 5

 view car area (CarValet project), con-
straints, 151 - 154

 view car scene (CarValet project)

 creating, 292 - 294

 populating, 294 - 296

 swipes, enabling support for, 428 - 438

 view controllers

 IBAction identifier, adding, 112 - 115

 responding to open and closed key-
board, 237 - 239

 scenes, 66 - 67

 ViewController class, modifying,
 110 - 112

 view layer (MVC), 318

 ViewCarProtocol, adding to make and
model edit scene (CarValet project),
 303 - 305

 views

 attaching recognizers to, 442

 constraints, 120 - 131

 Assistant editor preview mode,
 145 - 148

 bottom layout guides (IB), 176 - 178

 changing for orientation, 162 - 163

 completeness of specification,
 133 - 134

 content compression resistance,
 150

 creating, 122 - 123

 dragging out, 130 - 131

 intrinsic content size, 134

 previewing, 144 - 145

 references, adding, 163 - 166

 relationships, 120 - 122

 top layout guides (IB), 176 - 178

 values, changing, 128 - 130

 content views, 233 - 232

 frames, 235 - 239

 invisible container views, 137

 root view, 255

 screen sizes, toggling, 145

 scroll views

 adding to add/view scene (CarValet
project), 227 - 230

555 Xcode

 adding to edit scene (CarValet proj-
ect), 227 - 230

 constraints, 235

 paging, 240 - 241 , 243 - 244

 populating, 241 - 243

 resizing, 239 - 240

 zooming content, 226 , 245 - 248

 table views

 behaviors, 277

 groups, 345

 index, adding, 355 - 358

 searching, 358 - 369

 sections, 346 - 349

 sorting, 345

 updating, 306 - 307

 UIPickerView, 307

 UIScrollView, 225 - 226

 visual elements

 adding

 to custom cells, 343 - 344

 to edit scene (CarValet project), 91

 add/view scene (CarValet project)

 dividers, 71 - 72

 labels, 68 - 70

 W
 Wain, Joseph, 259

 weak qualifier, 78

 websites, 527 - 528

 canalys.com, 18

 chitika.com, 18

 flurry.com, 18

 gartner.com, 18

 glyphish.com, 259

 idc.com, 18

 macosrumors.com, 18

 macworld.com, 18

 Plausible Crash Reporter project, 506

 tuaw.com, 18

 workspaces, 21

 writing blocks, 455 - 460

 WWDC (World Wide Development
Conference) videos, 5

 X
 Xcode

 Accounts pane, 495 - 497

 debugger, 7

 Hello World project

 creating, 21 - 25

 IB, 6

 bottom layout guides, 176 - 178

 constraints, creating, 122 - 123

 top layout guides, 176 - 178

 installing, 1 - 2

 interface, 25 - 27

 Editor buttons, 27

 Navigator, 27

 Run button, 26

 status area, 26

 utilities area, 27

 iOS Simulator, 6

 limitations of, 8 - 10

 localization, 9

 testing apps, 7 - 15

 Video Out emulation (iOS
Simulator), 10

556 Xcode

 performance tools, 6

 Project Editor, 6

 projects, labeling, 28 - 30

 workspaces, 21

 XIB files, opening, 263 - 264

 Y-Z
 year editor, setting up for model year edit

scene, 308 - 309

 Zombies template (Instruments), trouble-
shooting EXC_BAD_ACCESS errors,
 486 - 489

 zooming content with scroll views, 226 ,
 245 - 248

This page intentionally left blank

More Resources for
Mac and iOS Developers

Cocoa Programming
for Mac OS X,
Fourth Edition
Aaron Hillegass
and Adam Preble

ISBN-13: 978-0-321-77408-8

Effective
Objective-C 2.0
Matt Galloway

ISBN-13: 978-0-321-91701-0

iOS UICollectionView
Ash Furrow

ISBN-13: 978-0-13-341094-5

iOS 6 App Development
Fundamentals
LiveLessons Part I
(Video Training)
Paul Deitel

ISBN-13: 978-0-13-293190-8

iOS Auto Layout
Demystified
Erica Sadun

ISBN-13: 978-0-13-344065-2

Xcode and Instruments
Fundamentals
LiveLessons
Brandon Alexander

ISBN-13: 978-0-321-91204-6

Objective-C
Advanced
Programming
LiveLessons
(Video Training)
Jiva DeVoe

ISBN-13: 978-0-321-90287-0

For more information and to
read sample material, please
visit informit.com/learnmac.

Titles are also available at
safari.informit.com.

ESSENTIAL REFERENCES FOR
PROGRAMMING PROFESSIONALS

Developer’s Library

Developer’s Library books are available at most retail and online
bookstores. For more information or to order direct, visit our
online bookstore at informit.com/store.

Online editions of all Developer’s Library titles are available by
subscription from Safari Books Online at safari.informit.com.

informit.com/devlibrary

Developer’s
Library

Programming in
Objective-C,
Fifth Edition

Stephen G. Kochan
ISBN-13: 978-0-321-88728-3

The Core iOS 6 Developer's
Cookbook, Fourth Edition

Erica Sadun
ISBN-13: 978-0-321-88421-3

The Advanced iOS 6
Developer's Cookbook

Erica Sadun
ISBN-13: 978-0-321-88422-0

Other Developer’s Library Titles

TITLE AUTHOR ISBN-13

Objective-C Phrasebook, David Chisnall 978-0-321-81375-6
Second Edition

Test-Driven iOS Graham Lee 978-0-321-77418-7
Development

Cocoa® Programming David Chisnall 978-0-321-63963-9
Developer’s Handbook

Cocoa Design Patterns Erik M. Buck / Donald A. Yacktman 978-0-321-53502-3
Applications for the iPhone

informit.com/devlibrary

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

 InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

12 consecutive monthly billing cycles. Safari Library is not available in all countries.

Try Safari Books Online FREE for 15 days
Get online access to Thousands of Books and Videos

FREE 15-DAY TRIAL + 15% OFF*
informit.com/safariebooktrial

Feed your brain
Gain unlimited access to thousands of books and videos about technology,
digital media and professional development from O’Reilly Media,
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE’S MORE!
Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts
pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project
Copy and paste code, create smart searches that let you know when new
books about your favorite topics are available, and customize your library
with favorites, highlights, tags, notes, mash-ups and more.

	Table of Contents
	Foreword
	Preface
	1 Hello, iOS SDK
	Installing Xcode
	About the iOS SDK
	What You Get for Free
	iOS Developer Program (Individual and Company)
	Developer Enterprise Program
	Developer University Program
	Registering
	iTunes U and Online Courses
	The iOS SDK Tools

	Testing Apps: The Simulator and Devices
	Simulator Limitations
	Tethering
	iOS Device Considerations

	Understanding Model Differences
	Screen Size
	Camera
	Audio
	Telephony
	Core Location and Core Motion Differences
	Vibration Support and Proximity
	Processor Speeds
	OpenGL ES
	iOS

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

