
Maurice Kelly
Joshua Nozzi

Develop and DesigN

Final spine: 0.5847 in

Mastering
Xcode
Second edition
Covers Xcode 4

DEVELOP AND DESIGN

Mastering Xcode
SECOND EDITION

Maurice Kelly and
Joshua Nozzi

PEACHPIT PRESS
WWW.PEACHPIT.COM

http://WWW.PEACHPIT.COM

Mastering Xcode: Develop and Design, Second Edition

Maurice Kelly and Joshua Nozzi

Peachpit Press

www.peachpit.com

To report errors, please send a note to errata@peachpit.com
Peachpit Press is a division of Pearson Education.

Copyright © 2014 by Joshua Nozzi

Editor: Robyn G. Thomas
Production editor: David Van Ness
Copyeditor: Scout Festa
Technical editor: Mark Goody
Compositor: David Van Ness
Indexer: Valerie Haynes Perry
Cover design: Aren Straiger
Interior design: Mimi Heft

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without the prior written permission of the publisher. For information on getting
permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in
the preparation of the book, neither the authors nor Peachpit shall have any liability to any person or entity with respect to
any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained in this book or by the
computer software and hardware products described in it.

Trademarks

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and Peachpit was aware of a trademark claim, the designations appear as requested
by the owner of the trademark. All other product names and services identified throughout this book are used in editorial
fashion only and for the benefit of such companies with no intention of infringement of the trademark. No such use, or the
use of any trade name, is intended to convey endorsement or other affiliation with this book.

ISBN-13: 978-0-321-86162-7
ISBN-10: 0-321-86162-0

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

http://www.peachpit.com

To my wife, Fiona, and our beautiful daughters, Aoibhínn and Caoimhe—
I thank you for your support and patience while I’ve been distracted by this book.

To my parents—thank you for buying our first family computer and
setting me on the course that led me to do what I love.

— Maurice Kelly

Thanks to my peers, my friends, my family, and my partner
for their enthusiastic support. Special thanks to my coauthor:

May our Caoimhes live long, happy lives.

— Joshua Nozzi

MAURICE KELLY

ABOUT THE AUTHOR

Maurice Kelly has been a software engineer since leaving university in 2001. After spending
a decade working on carrier-grade server software in C, C++, and Java, he decided to take
a career departure and switched to developing Mac and iOS software. As well as being an
eager consumer of all things tech, he has a passion for consuming and creating music. He
lives with his wife and children just outside Dromara, a small village in the small country of
Northern Ireland.

ACKNOWLEDGMENTS

I would like to thank Josh for giving me the opportunity to work on this project in ever-
increasing capacities. The first edition of this book gave me inspiration to change my career,
and it has been an honor to work with him in producing the second edition. I would also
like to thank my employers, Andrew Gough and Andrew Cuthbert at GCD Technologies
(www.gcdtech.com), for allowing me to take on this side-project and for introducing me to
Mark Goody—a newfound friend, an amazing developer, and an excellent technical editor. I
would like to extend many thanks to Robyn Thomas for her encouragement and for guiding
this ship through patches of both stormy water and dead calm!

While Xcode is the day-to-day tool of my trade, there were a number of tools without
which this book could not have been completed:

 � Sublime Text 2 (www.sublimetext.com/2). Combined with Brett Terpstra’s Markdown-
Editing package, this makes a much better writing environment than Xcode’s editor!

 � Marked (http://markedapp.com). For previewing Markdown output, there is no better
application than Marked.

 � ScreenFloat (www.screenfloatapp.com). Capturing and managing the quantity of screen-
shots required for this book needed an app like ScreenFloat.

iv MAURICE KELLY

http://markedapp.com
http://www.screenfloatapp.com
http://www.gcdtech.com
http://www.sublimetext.com/2

JOSHUA NOZZI

ABOUT THE AUTHOR

Joshua Nozzi is a self-taught technologist who has been developing software for the Mac
platform since Mac OS X 10.0 debuted. He’s been using Xcode since version 1 for publishing,
increasing productivity, and building scientific research applications. He’s haunted several
developer communities over the years, offering help and snark in equal measures. He loves
to teach technology to others. Josh lives with his partner in Southern Virginia, where he toils
in obscurity, usually in sweatpants and little else.

ACKNOWLEDGMENTS

I wish to thank the following people, whose work I used while writing this book.
Cyril Godefroy: Cyril’s masterfully broken code examples demonstrated some nice high-

lights of the Clang static analyzer. You can find them at http://xcodebook.com/cgodefroy.
Colin Wheeler: Colin’s Xcode shortcut cheat sheet has saved me loads of tedium on

many projects. You can find the original, downloadable version that Colin maintains at
http://xcodebook.com/cwheeler.

JOSHUA NOZZI v

http://xcodebook.com/cgodefroy
http://xcodebook.com/cwheeler

CONTENTS

Introduction . x

Welcome to Xcode . xii

PART I Getting Started
CHAPTER 1 INSTALLING XCODE . 2

Downloading . 4

Getting With the Program . 5

Even More Stuff . 5

Wrapping Up . 5

CHAPTER 2 EXPLORING THE ENVIRONMENT . 6

You Get One Window . 8

Creating a Project . 8

The Workspace Window . 10

The Navigator Area . 11

The Jump Bar . 17

The Editor Area . 18

The Utility Area . 22

The Debug Area . 23

The Activity Viewer . 23

Tabbed Coding . 24

The Organizer Window . 25

Wrapping Up . 25

CHAPTER 3 GETTING HELP . 26

The Help Menu . 28

The Organizer’s Documentation Tab . 29

The Source Editor . 30

Community Help and Feedback . 32

Wrapping Up . 32

vi CONTENTS

PART II Building Applications
CHAPTER 4 SETTING UP YOUR WORKSPACE . 36

Workspaces Defined . 38

When to Use a Workspace . 39

Creating the Lighting Suite Workspace . 40

Wrapping Up . 41

CHAPTER 5 ADDING RESOURCES AND CODE . 42

Working with Files . 44

Adding Files to Lamp . 48

Working with the Source Editor . 48

Wrapping Up . 55

CHAPTER 6 VERSION CONTROL WITH XCODE SNAPSHOTS 56

Xcode Snapshots . 58

Wrapping Up . 61

CHAPTER 7 BUILDING USER INTERFACES . 62

Understanding Nibs . 64

Getting Familiar with Interface Builder . 66

Adding User Interface Elements . 73

Storyboards . 81

Wrapping Up . 87

CHAPTER 8 CREATING CORE DATA MODELS . 88

Introducing Core Data . 90

Using the Data Model Editor . 92

Creating a Basic Data Model for Lamp . 94

Wrapping Up . 99

CHAPTER 9 DEBUGGING YOUR APPLICATIONS . 100

Interactive Debugging . 102

Debugging Flashlight . 107

Static Analysis . 109

Wrapping Up . 112

CHAPTER 10 DEPLOYING . 114

Archiving . 116

Validating Your Application . 118

Distribution Channels . 120

Alternatives to Archiving . 129

Wrapping Up . 130

CONTENTS vii

PART III Further Exploration
CHAPTER 11 USING OLDER PROJECTS IN XCODE 4 . 134

Project Modernization Methods . 136

Code Modernization Methods . 140

Wrapping Up . 145

CHAPTER 12 ADVANCED EDITING . 146

Renaming Symbols . 148

Refactoring . 149

Organizing with Macros . 153

Changing Editor Key Bindings . 154

Adjusting Project Settings . 156

Using the Search Navigator . 157

Searching Within Files . 162

Wrapping Up . 163

CHAPTER 13 THE BUILD SYSTEM . 164

An Overview . 166

Working with Targets . 168

Working with Schemes . 184

Entitlements and Sandboxing . 196

Wrapping Up . 198

CHAPTER 14 WORKING WITH FRAMEWORKS . 200

What Are Libraries, Frameworks, and Bundles? 202

Using Existing Libraries and Frameworks . 204

Creating a Framework . 210

Wrapping Up . 215

CHAPTER 15 IMPROVING CODE QUALITY . 216

Debugging . 218

Instruments . 224

Unit Testing . 236

Wrapping Up . 247

viii CONTENTS

CHAPTER 16 SCRIPTING AND PREPROCESSING . 248

Extending Your Workflow with Custom Scripts . 250

Examining a Simple Scripting Example . 254

Using the Preprocessor . 260

Wrapping Up . 268

CHAPTER 17 XCODE’S COMMAND LINE INTERFACE . 270

The Command Line Tools . 272

Building from the Command Line . 274

Using Multiple Versions of Xcode . 279

Accessing the Command Line Tools . 280

Wrapping Up . 281

CHAPTER 18 VERSION CONTROL WITH AN SCM SYSTEM 282

Working with Git and Subversion . 284

Working with Hosted Git Services . 300

Wrapping Up . 305

APPENDIX A MANAGING YOUR iOS DEVICES . 306

Using the Organizer’s Devices Tab . 308

Installing iOS on a Device . 311

Managing Device Screenshots . 311

Managing Apps and Data . 314

Reviewing Logs . 315

APPENDIX B DOCUMENTATION UPDATES . 318

Setting Documentation Preferences . 320

APPENDIX C OTHER RESOURCES . 322

The Book Site . 324

Apple Resources . 324

Third-Party Resources . 324

Index . 326

CONTENTS ix

INTRODUCTION

This book is an intermediate-level introduction to Xcode 4, Apple’s integrated development
environment. It assumes you have some development experience and are familiar with
Objective-C and the Cocoa and Cocoa Touch APIs. It won’t teach you how to write code or
much at all about the frameworks needed to develop OS X and iOS applications. There are
other books for that. This one is strictly focused on how to use Xcode itself, whatever your
development endeavors.

Of course, since Xcode is most often used with the Cocoa and Cocoa Touch APIs and
Objective-C, there are basic introductions to concepts and a few code samples sprinkled
here and there to illustrate various points. In these cases, you will be pointed to the docu-
mentation that Apple provides (to save you some trouble looking it up), but remember that
the focus of this book is really on getting the most out of the tools and not necessarily on
what you’ll be building with them.

A MOVING TARGET

When the first edition of this book was released, Xcode 4.0 had just become Xcode 4.1. It was
hard for anyone to predict how rapidly Apple would iterate, but in a short space of time there
have been five major versions of Xcode 4 released. Each version brings enhancements, fixes,
and new tools—and headaches to the authors of this book.

So just as in the introduction to the first edition, we will once again make our excuses
up front and say that this book was current when we wrote it, and may or may not be by the
time you read it. We hope that, however Apple chooses to change Xcode, our guidance is still
relevant for the foreseeable future and that this book will be a trusty companion for up-and-
coming developers for some time to come.

x INTRODUCTION

WHAT YOU WILL LEARN

This book is divided into three major parts and includes appendixes.

PART I: GETTING STARTED

In very short order, you’ll install Xcode and take a tour around its interface’s major points of
interest, and you’ll learn where to look for answers when you need help.

PART II: BUILDING APPLICATIONS

Next, you’ll dive into the process of building OS X and iOS applications. Through the devel-
opment of a pair of basic apps, you will learn how to create projects and workspaces; manage
resources and code; build and edit user interfaces; and debug and deploy your work.

PART III: FURTHER EXPLORATION

Then you’ll dive a little deeper and find out how to bring older Xcode projects into the mod-
ern era, tackle advanced editing and refactoring, and unravel the complexity of Xcode’s build
system. You’ll work with libraries and frameworks, and you’ll improve the quality of your
work using a combination of profiling, analysis, advanced debugging, and unit testing. You
will investigate the extension possibilities offered by Xcode scripting support and command-
line interfaces, and you’ll wrap up with an overview of Xcode’s integrated source code man-
agement support.

APPENDIXES

Appendix A helps you manage your iOS devices. Appendix B shows you how to man-
age Xcode documentation updates. Appendix C provides you with Apple and third-party
resources for additional information.

INTRODUCTION xi

WELCOME TO XCODE

Whether you are a complete newcomer or a seasoned programmer, Xcode can be
an intimidating environment for a developer getting involved in Apple develop-
ment for the first time. Under its shiny, easy-to-use interface, a lot of power lurks.
Xcode 4 lets you write and manage your code, design and build user interfaces,
analyze and debug your apps, and more.

INTERFACE BUILDER

Build and edit rich user interfaces with

Interface Builder. Drag and drop outlets and

actions directly into your code using the

Assistant editor.

CLANG STATIC ANALYZER

Find subtle errors in your programs with the

Clang static analyzer. Follow the blue arrows

through your code as the problem is broken

down step by step.

xii WELCOME TO XCODE

INSTRUMENTS

Trace and profile your code with Instruments.

Follow your application’s activity through

time to find and analyze performance prob-

lems and more.

SOURCE CODE MANAGEMENT

Manage your source code with the inte-

grated source code management features.

Branch, merge, pull, push, and resolve

conflicts—all from within Xcode.

WELCOME TO XCODE xiii

This page intentionally left blank

CHAPTER 4

Setting Up Your
Workspace

In Part I, the Tour.app project was just that—an Xcode project.

The collection of files and folders in an Xcode project are bound

by an .xcodeproj file that contains all the project-wide settings

(such as a description of your schemes and targets). So far, the

word “workspace” has been used as a general description of the

project and the window that contains it all. A true workspace in

Xcode, however, is a container that encompasses multiple proj-

ects that share common resources.

From this point forward, we’re going to need something a

bit more complex than a single project to demonstrate Xcode’s

organizational capabilities. We’re going to create an application

suite consisting of an OS X application, an iOS application, and a

shared framework that encapsulates all the common components.

For this book’s demonstration, we’ll create our own version

of one of the most innovative and popular uses of a bright white

screen—the comical “flashlight” app. The suite will be composed

of Flashlight.app (for iOS devices) and Lamp.app (for OS X). We’ll

call the workspace “Lighting Suite.”

37

WORKSPACES DEFINED

Xcode 4 introduced the idea of a workspace as a kind of project binder—a container for
multiple projects. A project groups its related files and settings; a workspace binds multiple
related projects. A workspace merely contains pointers to Xcode projects. Projects remain
distinct in that you can remove them from a workspace without affecting the project’s con-
tent or settings. In other words, the project can still be opened and edited outside its work-
space. Workspaces give you several advantages over projects that reference files and built
products from other projects.

Projects contained within the same workspace share a common build location. This
makes it possible for one project to use another’s built products. This one feature makes a
world of difference for managing complex applications and application suites. It makes it far
easier, for example, to include the built product of a common framework project into one or
more of your application projects.

The automatic dependency detection that you’ll learn about in Chapter 13 extends to
the workspace level as well. This means that including a product’s framework in the target
of an application project within the same workspace usually requires no additional work
for Xcode to recognize the dependency. As with dependent targets within the same project,
Xcode will see this dependency and build the framework before building the application. In
other words, you don’t have to copy shared libraries into each project folder in which you
intend to use the library.

Another benefit of a workspace is shared indexing. A project index is used primarily for
features such as code completion (sometimes referred to as “code sense”). Xcode’s automatic
code completion and refactoring facilities will take the symbols of all projects included
in the workspace into account. This means code completion will automatically find your
framework project’s symbols and make them available to you when you’re editing source
files in the application project that uses the framework.

Still another benefit of workspaces pertains to schemes (Chapter 13). A standalone
project might contain a primary scheme for building, testing, and profiling a primary prod-
uct in addition to schemes for smaller, dependent targets (such as a Spotlight plug-in). In a
workspace, you may only want to see the scheme for each project’s primary product. Using
the Manage Schemes panel that you’ll explore in Chapter 13 you can specify whether the
schemes for those smaller “sub-targets” are visible at the workspace level or only when the
project is opened individually. This can help keep the list of schemes short and manageable,
hiding unnecessary detail within the workspace.

NOTE: Xcode may not be able to detect complex dependencies automatically. In
such cases, you’ll need to disable the Find Implicit Dependencies setting of the

affected scheme and add and sort the interdependent targets manually.

38 CHAPTER 4 SETTING UP YOUR WORKSPACE

WHEN TO USE A WORKSPACE

It’s hopefully obvious that a workspace is useless without two or more projects. Less obvi-
ous but just as important is that a workspace doesn’t help with multiple unrelated projects.
A workspace is only helpful for two or more projects that share each other’s code and
resources. Let’s look at two real-world examples.

DISTINCT APPLICATIONS

Imagine Acme Corporation has a host of unrelated desktop (and even mobile) applications.
Here, unrelated means a calculator application, a calendar application, and an address book
application. Each of these applications has only one thing in common: They’re products of
Acme Corporation.

Being the property of the same business entity, the applications presumably use the same
software registration system, company logo, contact information, and so on. They may even
be able to share user data among them. This means each application would use the same
code, the same resources, or both.

A change to the Person and Event classes, for example, might need to be updated in both
the address book and calendar applications. While these classes may or may not be wrapped
in a library or framework, it makes little sense to maintain two copies of Person and Event
(one in each project). Here, a separate project that at least contains the common model-layer
classes (and corresponding unit tests) makes sense. A separate framework project makes
even better sense.

Since the applications are otherwise unrelated, each application might have its own
workspace that includes the application project and the shared framework project. The
benefit of such a setup is that changes made to a project that belongs to a workspace are
available to that workspace. For example, if you have two applications (each in its own
workspace) that share a common framework, changes to the framework from one app are
automatically available to the other by virtue of including the framework in their respective
workspaces.

APPLICATION SUITES

Imagine Acme Corporation’s desktop calendar application has gone where no calendar
application has gone before. Against all odds, it has become a best seller, and users are
clamoring for mobile versions for their various devices. Acme Corporation, in addition to
its other products that share company-wide resources, now has a product that supports two
platforms, shares company-wide resources, and has a device synchronization library to let
users share calendar information between their devices and their desktop computers.

In this case it would make sense to have a workspace containing the two application
projects (OS X and iOS), their sync library project, and the company-wide resource project.

WHEN TO USE A WORKSPACE 39

CREATING THE LIGHTING SUITE WORKSPACE

FIGURE 4.1 Saving a workspace

FIGURE 4.2 Adding the project to a workspace using

the Add To menu

Creating a workspace is easy. Choose File > New > Workspace from the main menu. A new
workspace window will appear, with a Save As sheet prompting you for a location in which
to save it (Figure 4.1). Again, I recommend the desktop for convenience. Create a folder
called Lighting Suite to hold everything, and select it. Name the workspace Lighting Suite
and click Save.

You’ll be presented with an eerily empty workspace window, whose workspace file lives
inside the Lighting Suite folder you created. Now on to the projects. As mentioned, we’ll
need two projects: the Mac app and the iOS app. The projects will live inside the Lighting
Suite folder, along with the workspace, for good organization.

ADDING PROJECTS TO THE WORKSPACE

Now we’ll create the individual projects.
Let’s do iOS first. This project will contain a universal app that will work on iPhones,

iPod touches, and iPads. Choose File > New > Project. Pick the iOS Application category, and
select the Single View Application template. Click Next. We’ll call this product Flashlight.

Accept the rest of the defaults (Use Storyboards, Use Automatic Reference Counting,
Include Unit Tests), but choose Universal from the Devices menu. Click Next. You can
choose whether or not you want to create a Git repository for the project, but make sure
that you choose Lighting Suite from the Add To menu (Figure 4.2). Also make sure the main
Lighting Suite folder is selected, and click Create.

40 CHAPTER 4 SETTING UP YOUR WORKSPACE

Now for the desktop version of Flashlight, Lamp.app. Choose File > New > Project, and
select the OS X Application category. Pick Cocoa Application, and click Next. We’ll call this
product Lamp. This time we want to select Use Core Data, Use Automatic Reference Count-
ing, and Include Unit Tests (we don’t want a Spotlight importer). Click Next. Choose Light-
ing Suite from the Add To menu, and make sure the main Lighting Suite folder is selected
to ensure the projects are kept together. This time, an extra Group option appears when
you’re asked to save. Make sure the group is set to the Lighting Suite workspace. Again, you
can select “Create local git repository for this project” if you wish. You should end up with a
workspace that looks like Figure 4.3, all contained within the Lighting Suite folder in Finder.

WRAPPING UP

The idea of Xcode’s new workspaces feature can seem intimidating at first. You’ve seen
that it’s really quite straightforward. A workspace provides a way of tying related projects
together to take advantage of Xcode’s (usually) intelligent dependency discovery. In the next
chapter, you’ll add some code and resources to Lighting Suite’s projects.

FIGURE 4.3 A freshly

minted workspace con-

taining two projects

WRAPPING UP 41

A
action connections, explained 68
Activity viewer, features 23–24
Add Files sheet

Add to Targets option 45
Destination check box 44–45
Folders option 45
using 44–45

Analyze action, invoking 110
API Reference, accessing 28
APIs vs. SDKs 278

See also build settings
App Store

code signing apps 123
distributing iOS apps in 122–123
ecosystem 5

Apple’s developer forums 32
application data

downloading 315
uploading 315

application sandboxing
activating 197
explained 196

apps. See also iOS apps; Mac apps
installing 314
managing 314–315
uninstalling 314

ARC (Automatic Reference Counting)
converting targets to 144
previewing conversions 145

architectures 278–279
archive action, described 277
Archive configuration, editing for beta

scheme 266
archive files

dSYM folder 117
as packages 117

archives
action of Validate button 118–119
annotating in Organizer 116
creating 115
displaying with action buttons 118
dSYM files 116
finding 116–117
finding Lamp.app 118
storing 117

archiving
alternatives to 129–130
build environment 130
on release builds 257–259

arrays, subscript notation for 142–143
Assistant panes

adding 19–20
removing 19–20

Assistant tool
changing behavior modes 21
controls 21
dragging connections into 79
features 19
layout options 20
Manual mode 21
opening files in 19

attributes, adding to data model 93–94
automatic snapshot, creating 137

B
Beta Release configuration, using 267
BETABUILD macro, defining 264–267
BetaBuilder app, using with iOS apps 124
blocks of code 263
bookmarks, storing in framework project 212
Bookmarks framework

downloading 208
embedding 209
linking against 209
using in code 209–210

Bookmarks mode, using in Organizer 30
Bookmarks project, creating 210–211
branches

creating 296–297, 303–304
merging locally 304
switching 296–297

breakpoint editor
Action tool 220
Condition field 219
Enable/Disable check box 219
Ignore directive 220
Options 220

Breakpoint navigator
Edit Breakpoint option 105
features 15
setting exceptions 105
setting symbolic 105
Share Breakpoint option 105
using 105

breakpoints. See also debugging
customizing 219–220
enabling 105
managing in Source editor 105

INDEX

326 INDEX

pausing at 108
use of 104
watchpoints as 218–219

browsing history 298–299
build actions

archive 277
build 277
clean 277
install 277
installsrc 277
test 277

build environment
macros in 264–267
manipulating for iOS apps 130

build phases 167
build rules 167
build settings 166

See also APIs vs. SDKs
build steps, viewing failures of 273
build system. See also schemes; targets

configurations 167
entitlements 196–198
run destinations 167
sandboxing 196–198
schemes 166
targets 166

build time vs. runtime 268
builds, triggering 9
bundles, loadable 203–204

C
call stack viewing in Debug bar 103
Clang static analyzer, using 110–112
CI (continuous integration) 274
Clang compiler. See also pragma directives

ignoring warnings 262
removing warnings 263
warnings 262

classes. See subclasses
clean action, described 277
Clean command, using 277
Cocoa applications. See also Core Data

memory leaks 111
nibs 64–65

Cocoa Auto Layout Guide, accessing 77
Cocoa Dev Central, described 324
Cocoa Fundamentals Guide 63
CocoaDev Wiki, described 324
code

adding automatically 50–54
focusing on 49–50
folding 50
string creation 141–142
updating 141–144

code blocks, excluding at build time 263
code completion, using 50–52
code focus ribbon 10

See also tabbed coding
code modernization, updating tools 140–141
code quality. See debugging; Instruments

application; unit testing
code signing 197

ad-hoc distribution of IOS apps 124
automatic identities 122
identity for Mac App Store 127
iOS apps for App Store 123
requirement 121

Code Snippet library
accessing 52
using 53–54

Command key. See keyboard shortcuts
command line

architectures 278–279
build options 277
building from 274–279
CI (continuous integration) 274
projects 276
schemes 275–276
SDKs 278
targets 276
workspaces 275–276
xcodebuild 274–276

command line tools
accessing 280–281
failing build steps 273
log viewer 272
xcrun tool 280

Command Line Tools package, installing 281
command sets, managing 155–156
command-line interface. See debugger console
commands

executing in terminal window 273
getting help with 223

community help, Apple’s developer forums 32
Compile step detail 273
compile time vs. runtime 268
compiling projects 275
conditionals

excluding blocks of code 263
using in preprocessor 263–264

configurations
defining for targets 169–170
described 167

connections
dragging into Assistant 79
making 78–81

connections window 68
console logs, accessing for devices 316

See also debugger console

INDEX 327

Step Out button 103
Step Over button 103
Threads and Stacks navigator 103
varying button functionality 103

debug logs, selecting 16
Debug navigator

features 14–15
using 107

debugger. See also Source editor
attachment of 102
breakpoints 104–105
pausing 104
Variables pane 104

debugger console. See also console logs
command structure 222
command-line interface 220
dot notation 222
extending LLDB with Python 223
getting help with commands 223
logging returned strings 221
printing objects 221–222
printing values 221–222
program execution 223
using dot notation 222
working in 104

debugging. See also breakpoints; LLDB debugger;
static analysis

Flashlight app 107–109
modifying variables 218–219
observing variables 218–219

debugging symbols, getting copy of 116
deleting

items in Data Model editor 92
schemes 185

deployment. See also distribution channels
alternatives to archiving 129–130
archiving 116–118
validating applications 118–120

developer forums, getting help from 32
Developer ID-signed apps 128
developer preview version, switching to 280
development certificates, creating 308–309
device logs

removing 316
reviewing 315–316

device screenshots
comparing 312
list 311
taking 312
using as default images 313

devices
console logs 316
installing iOS on 311

dictionaries, subscript notation for 142–143

constraints
adding 77–78
adjusting properties of 76
using 77

continue-to-here button, using 106
Control key. See keyboard shortcuts
Convert to Modern Objective-C Syntax 152
Convert to Objective-C ARC 152
converting projects 143–145
copying items into project folders 208
Core Data. See also Cocoa applications; data model

entities 91, 98–99
managed object contexts 91
MOMs (managed object models) 90
persistent stores 91

CPP (C preprocessor) 153
See also preprocessor; scripting example

Create Superclass feature, using 150

D
data, managing 314–315
data model. See also Core Data

attribute 94
building 94–95
clicking On/Off button 94–95
Event entity 94
generating subclasses 96–99
planning 94
purpose of 90
using 94

Data Model editor
attributes 93
deleting items 92
editor area 92
graph style 93
inspector 93
interface 91
jump bar 92
model graph mode 93
MOM (managed object model) in 91
outline 92
relationships 93
table style 93

Debug area
customizing 23
features 23

Debug bar
execution controls 103
locating 10
Pause/Continue button 103
Show/Hide button 103
Step Into button 103

328 INDEX

Hardware controls 198
iCloud settings 198
Network check boxes 197–198
setting 197–198

Entitlements controls 196
Entitlements option, using in Project editor 171
environment variables

accessing 254
for post-action scripts 251
for pre-action scripts 251
using with iOS apps 130

errors. See issues
Event entity, creating 94
exporting

Mac app archive 129
schemes 186

Extract operation, performing 150

F
feedback, providing about documentation 32
file contents, drilling down into 17
File inspector, displaying 156
File Template library, using 47

See also templates
files

Add Files sheet 44–45
adding to Lamp project 48
choosing subclasses 46
creating 46
dragging and dropping 45
opening in Assistant 19
removing from projects 47
searching within 162
sharing between targets 183

Find options in Search navigator
Find In 159
find scopes 159–160
Help Books 160
Hits Must 159
Match Case 159
Style 159

finding
phrases 162
quickly 162
schemes 184
system-defined macros 261
system-defined symbols 261
words 162

Flashlight app
background color 109
debugging 107–109
inspecting data 108
iOS view controller 107–108
pausing at breakpoint 108

distribution channels. See also deployment
code signing 121–122
iOS apps 122–126
Mac apps 126–129
provisioning profiles 120–121

documentation
feedback about errors 32
searching for selected text 31
viewing information about 321

documentation preferences, setting 320–321
Documentation section, accessing 29
documentation sets

adding third-party 321
information panel 321

documentation updates
disabling automatic updating 321
forcing update checks 321

dot notation, using in debugger console 222
dSYM files, explained 116
dSYM folder, locating 117
duplicating

Release configuration 265
schemes 186

dynamic libraries 202

E
Edit All in Scope command, using 148
editing. See also Source editor

adjusting project settings 156–157
organizing with macros 153–154
refactoring 149–153
renaming symbols 148
searching within files 162
using Search navigator 157–161

Editor area
Assistant 19
changing layout behavior 20
features 18
Source editor 18

editor key bindings. See Key Bindings preferences
panel

Encapsulate tool, using 151
enterprise distribution 125–126
entities

Event for Lamp 94
explained 91
inverse of relationships 91
planning 98–99
relationships 91

entitlements
activating 197
Apps controls 198
file system 198

INDEX 329

help command, using with console 223
Help menu

displaying 28
User Guide 28

history
browsing 298–299
comparing 298–299

HockeyApp service, using with iOS apps 124
hosted Git services

adding projects 300–303
creating repositories 301–302
feature branches 303–305
pull requests 304–305
synchronizing repositories 303

I
.icns file, contents of 119
importing

.ipa files into iTunes 124
provisioning profiles 120
schemes 186

Info.plist file, editing information in 172
Inspector pane 10
Inspector selector bar 10
install action, described 277
installing

apps 314
iOS on devices 311

installsrc action, described 277
Instruments application

Attach to Process menu 226
call tree 234
Call Tree segment 235
CPU strategy 229
Detail view 231–232
Extended Detail view 232–233
Inspection Range controls 227
instrument chooser pop-up 229
Instruments view 230
launching 224–226
Library control 228
list of templates 225
mutable array 233
percentages for time profiling 235
Record control 227
scrubber 227
Search control 228
source code with heat map 234
specifying points in time 227
status control 227
strategy bar 228–230
system libraries 235
Target control 227
Target control’s menu 225

focused code 10
focusing on code 49–50
folding code 50
framework project

adding code to 212–213
code visibility 214
configuring headers 213–215
Copy Headers phase 214
creating 210–211
file structure 215
installation directory 214
storing bookmarks 212
target 211
test application targets 215
workspace 211

frameworks. See also system framework
example

adding to projects 208–210
Bookmarks project 210–211
expanding in Project navigator 210
explained 203
SenTestingKit 238–239
third-party 208–210

Full Screen button, accessing 74
functions, using macros as 261

G
Gatekeeper 126
GC (garbage collection), use of 144
GCC compiler 140
GDB debugger 140
Git. See also version control

comparing to SVN (Subversion) 284
hosted services 300–305
repositories 286–289
reset options 300

Git branches
creating 296–297
switching 296–297

Git repository
merging changes 295–296
pulling changes 295–296
pushing changes 295
updating changes 295–296

Google.com, loading into web view 206–207
groups

identifying 11
nesting 11

H
help

getting from community websites 32
getting in Utility area 30–31

Help Books, accessing 160

330 INDEX

iOS devices
adding to portal 309
development certificates 308–309
Devices tab 308–310
provisioning 308
provisioning profiles 310
registering 309

iOS view controller 107–108
.ipa files, importing into iTunes 124
Issue navigator

checking 139
features 13–14

issues
checking code for 109
defined 109
expanding into steps 110
highlighting in Source editor 109

iTunes, importing .ipa files into 124

J
jump bar

locating 17
managing pop-up 153–154

K
Key Bindings preferences panel

command sets 155–156
opening 154
shortcut keys 154–155

keyboard shortcuts
builds 9
customizing 20, 154–156
finding quickly 162
locating 154–155
running unit tests 245
searching within files 162
tab use 24

KVC (Key-Value Coding), using 96

L
Lamp archive, displaying in Organizer 116
Lamp project

adding files to 48
code signing 122
creation of 94
pausing in debugger 102

Lamp.storedata file, contents of 95
layout behavior, changing 20
libraries

comparing to loadable bundles 204
defined 202
dynamic 202
static 202

template chooser 224
templates 235
Threads strategy 230
Time Profiler 226–227
time profiling 233–235
toolbar 227–228
trace document 226
tracing strategies 228–230
tracks in Time Profiler 226–227
user interface 226–227
View controls 227

interactive debugging. See debugging
Interface Builder. See also user interface elements

action connections 68, 78–81
Assistant 72
Attributes inspector 69
Auto Layout 76–78
Autosizing control 75
Bindings inspector 71
changing Class attribute 80
Connections inspector 70
connections window 68
constraints in Auto Layout 76
Editor area 67–68
Example control 75
full-screen mode 74
Identity inspector 69
inspectors 69
libraries 71
Libraries pane 71
nib in 66
outlet connections 67–68
Size inspector 70
storyboard file 82
Utility area 69–71
View Effects inspector 71

inverse relationship, requirement of 91
iOS, installing on devices 311
iOS apps. See also apps; Mac apps

ad-hoc distribution 123–124
App Store distribution 122–123
BetaBuilder app 124
build settings 139
choosing distribution method 123
Developer ID-signed 128
enterprise distribution 125–126
HockeyApp service 124
importing .ipa files 124
Mac app archive 129
Mac Installer package 129
modernizing 139
TestFlight service 124
testing 5
unsigned distribution 129
Xcode archive 126

INDEX 331

MOMs (managed object models) 90
in Data Model editor 91
in model graph mode 93

Mountain Lion, displaying Library folder in 95
Move Down tool, using 151
Move Up tool, using 151

N
navigation bar 10
navigation selection bar 10
Navigator area

Breakpoint navigator 15
Debug navigator 14–15
Issue navigator 13–14
Log navigator 16
Project navigator 11–12
Search Navigator 13
Symbol navigator 12

nibs
actions 64–65
compartmentalization 65
controller objects 64
File’s Owner 64
in Interface Builder 66
outlets 64–65
owners 64

nil, managing 142

O
Objective-C ARC, converting to 152
Objective-C syntax, updating 143
OCUnit

assertions 239
SenTestingKit framework 238–239
test case classes 238–239
test results 240
test suite runs 240
test targets 238–239
unit test failures 240

On/Off button, clicking 94–95
on-off switch, adding 73–74
OOP (object-oriented programming),

encapsulation 97–99
Organizer

annotating archives 116
Archives tab 116–117
Bookmarks mode 30
Documentation section 29
Explore mode 29
opening 25
Repositories tab 285
Search mode 30

OS X 3

Libraries pane 10
Library folder, displaying 95
Library selection bar 10
Lighting Suite workspace

creating 40
creating archive in 116

LinkedWeb project, creating 204
LLDB debugger. See also debugging

changing to 141
extending with Python 223
integration of 102

LLVM (low-level virtual machine) compiler 140
loadable bundles

comparing to libraries 204
contents 203
types 203

Log navigator 16
log viewer 272
logic errors 112
logs

retrieving to Macs 316
reviewing 315–316

M
Mac app archive, exporting 129
Mac app distribution

Gatekeeper consideration 126
Mac App Store 127–128

Mac applications, icon files for 119
Mac apps. See also apps; iOS apps

64-bit processor 138
Base SDK setting 138–139
build settings 138
for i386 279
modernizing 138–139

Mac Installer package, choosing 129
macros. See also preprocessor macros

finding system-defined 261
as hard errors 261
organizing with 153–154
#pragma mark directive 153–154
using poison directive with 261

managed object contexts 91
memory, managing with ARC 144–145
memory leaks 111
modern Objective-C syntax, converting to 143
modernizations, previewing 143
modernizing

considering 139
iOS apps 139
Mac apps 138–139

modifier keys, controls for Debug bar 103
mogenerator tool 99, 324

See also subclasses

332 INDEX

Target Summary tab 171
URL types for targets 174

project folders, copying items into 208
project modernization. See also versions of Xcode

automatic snapshot 137
considering 137
Validate Project Settings warning 136

Project navigator
features 11–12
SCM status badges 291

project settings
adjusting 156–157
File inspector 156

ProjectBuilder 3
projects

adding to workspaces 40–41
choosing templates 9
compiling 275
converting 143
creating 8–9
searching 13
setting options for 9
source files 10
using in workspaces 276

provisioning devices 308–310
provisioning profiles 310

creation of 120
downloading 121
explained 120
importing 120
maintenance 120

Q
Quick Help utility, using 30–31

R
Refactor preview 152–153
Refactor tools

Convert to Modern Objective-C Syntax 152
Convert to Objective-C ARC 152
Create Superclass 150
Encapsulate 151
Extract 150
Move Down tool 151
Move Up tool 151
Rename 149

relationships
inverses 91
requirements 91

release builds, archiving on 257–259
Release configuration, duplicating 265
Release mode 115
removing Assistant panes 19

P
packages

archive files as 117
Command Line Tools 281

persistent stores 91
phrases, finding 162
poison directive, using 261–262
post-action scripts

environment variables 251
managing 250–252
Run Script action 251

pragma directives. See also Clang compiler
diagnostic ignored 261
ignore 263
poison 261

#pragma mark directive, using 153–154
pre-action scripts

environment variables 251
managing 250–252
Run Script action 251

preprocessor. See also CPP (C preprocessor)
conditionals 263–264
poison directive 261–262

preprocessor macros. See also macros
BETABUILD 264–267
in build environment 264–267
#define directive 260–261
duplicating Release configuration 265
managing schemes 266
placing 260
using 153
using as functions 261

project content, renaming 157
Project editor. See also targets

App Icons 172
Build Phases tab 177–180
Build Rules tab 180
Build Settings tab 174–177
choosing keys for targets 173
Compile Sources phase 178
Copy Bundle Resources phase 178, 182
Copy Files phase 178–179
Copy Headers phase 179
defining UTIs for targets 174
Deployment Target 170
Document Types for targets 173
Info tab 172–174
Info.plist file 172
Link Binary With Libraries phase 178
Linked Frameworks and Libraries 170, 172
Run Script phase 180
sandbox entitlements 171
Summary tab 170–172
system services for targets 174
Target Dependencies phase 178

INDEX 333

scheme containers, defining 186
Scheme Editor sheet

Analyze action, invoking 194
Archive action 194
Build action 188–189
controls 187–188
post-action scripts 195
pre-action scripts 195
Profile action 193–194
Run action 189–191
Test action 192

Scheme Manager sheet 185
schemes. See also build system

auto-creating 186
building from workspaces 275–276
creating 185
described 166, 184
duplicating 186
exporting 186
finding 184
importing 186
managing for macros 266
removing 185
reordering 186
run destinations 184
sharing 186

SCM (source code management). See Git; SVN
(Subversion); version control

SCM servers, SSH key 290
SCM status

checking in Project navigator 291–293
filtering Project navigator by 292

SCM tasks
browsing history 298–299
checking status 291–293
committing changes 293–295
comparing history 298–299
creating branches 296–297
discarding local changes 300
folders in SVN (Subversion) 291
merging changes 295–296
pushing changes 295–296
reverting local changes 300
revisions jump bar 298
scrubbing revision timeline 298
switching branches 296–297
updating changes 295–296

screenshots. See device screenshots
scripting example. See also CPP (C preprocessor)

Archive action 256
archive post-action run script 258–259
archiving on release builds 257–259
conditional archive 257–258
creating script 255–256
extending 259

Rename operation, performing 149
renaming

project content 157
symbols 148

repositories. See also version control
adding manually 288–289
change inclusion control 294
checking out 290
cloning 290
commit review sheet 293
committing changes 293–295
creating 286–288
creating with hosted service 301–302
Git 286–287
merging changes 295–296
in Organizer window 285–286
pulling changes 295–296
pushing changes 295
remote Git 288
specifying remote locations 290
SSH key for authentication 290
SVN (Subversion) 287–288
synchronizing 303
updating changes 295–296

resource files, navigating 11
resources. See also websites

Apple’s developer forums 324
Cocoa Dev Central 324
CocoaDev Wiki 324
mogenerator 324
Stack Overflow 324
third-party 324
Xcode-Users Mailing List 324

restoring snapshots 60
revision control. See version control
revision timeline, scrubbing 298
revisions, accessing history of 299
revisions jump bar 298
Run, clicking 272
Run Active Script example, creating 255
run destinations, described 167
run logs, selecting 16
Run Script build phases 252–254
runtime

vs. compile time 268
debugging 102

S
sandbox entitlements, configuring 171
sandboxing

activating 197
explained 196

saving workspaces 40
scenes, creating with storyboards 84–85

334 INDEX

split pane editor. See Assistant tool
Spotlight plug-in, using with targets 181–182
springs, using 75
SSH key, setting for SCM servers 290
Stack Overflow, described 324
static analysis. See also debugging

flagging logic issues 112
garbage collection 111
logic errors 112

static analyzer
memory leaks 111
output 111–112
using 110–112

static libraries 202
storyboard file, opening 82
storyboards

advantage 81
scenes 84–85
segues 85–87
user interface 83

string-creation methods 141–142
struts, using 75
subclasses. See also mogenerator tool

choosing 46
encapsulation 97–99
generating 95–99
managing 99
moving symbols to 151

subscripting
array access with 143
dictionary access with 143

superclasses
creating 150
moving symbols from 151

SVN (Subversion). See also version control
changing branches 297
comparing to Git 284
folder management 291
locally hosted repository 287–288
repository layout 289
reverse merge 300

Symbol navigator 12
symbols

finding documentation for 31
finding system-defined 261
as hard errors 261
moving to subclasses 151
renaming 148
using poison directive with 261

system framework example. See also frameworks
creating 204–206
LinkedWeb project 204
linking against 206–207
web view 205

Run Script action 259
scenario 255
testing 256

scripts
post-action 250–254
pre-action 250–254
Run Script build phase 252

scrubbing revision timeline 298
SDKs vs. APIs 278

See also build settings
Search mode, using in Organizer 30
Search navigator

context menu 158
displaying results in 157
features 13
Find options 158–159
previewing replacements 161
replacing text 161
scope of search 158
symbol definitions 158

search operation, initiating 157
searching within files 162
security, sandboxing 196–198
segues, creating between scenes 85–87
SenTestingKit framework 238
sentinel, managing 142
Shift key. See keyboard shortcuts
shortcut keys. See keyboard shortcuts
snapshots

configuring 58
creating 137
managing 59
restoring from 60
review sheets 60
taking 58–60

snippets
creating 54
inserting placeholder tokens 54
protocol methods 54
viewing contents of 53

Source editor. See also debugger; editing
adding code automatically 50–54
Code Snippet library 52–54
continue-to-here button 106
displaying 18, 48
features 49
Find panel 162
focusing on code 49–50
help in Utility area 30–31
highlighting issues in 109
inspecting variables in 106
managing breakpoints in 105
moving execution pointer 107

source files
explained 10
navigating 11

INDEX 335

failures in Issue navigator 245
passing 246–247
Person class for Testable 241
PersonTests class 243, 247
running 245
Test action with tests 245
test case class 243
testing 245
writing 242–245

unsigned app distribution 129
updating code 141–144
User Guide, accessing

API Reference 28
documentation 28

user interface elements. See also Interface
Builder

making connections 78–81
on-off switch 73–74
springs 75
storyboards 83
struts 75

user interfaces, nibs 64–65
Utility area

features 22
libraries in bottom panel 22
Quick Help 30–31

UTIs (Uniform Type Identifiers), defining for
targets 174

V
Validate button, action of 118–120
Validate Project Settings warning,

clicking 136
variables

inspecting in Source editor 106
modifying 218–219
observing 218–219
uninitialized 112
using watchpoints 218–219

Variables pane, displaying 104
version control. See also Git; repositories; SVN

(Subversion)
explained 57
feature branches 303–305
snapshots feature 58–60

Version editor
Blame mode 299
displaying 298
Log mode 299

versions of Xcode. See also project
modernization

developer preview 280
using 279–280

T
tabbed coding 24

See also code focus ribbon
target dependency, establishing 183
TargetExplorer project, creating 170
TargetExplorer target, Product Name

field 176–177
TargetImporter target, building 182–183
targets. See also build system; Project editor

Add Target button 170
adding 181–183
applications 170
choosing keys for 173
Configurations group 169–170
controls in filter bar 176
defining UTIs for 174
Deployment Target group 169
described 166
finding 169
for framework project 211
Localization group 170
project-wide settings 169–170
property list in Project editor 173
resources 182
selecting 169
sharing files between 183
specifying from command line 276
Spotlight plug-in 181–182
template chooser 168
types 168
Validate Settings button 170

templates, choosing for projects 9
See also File Template library

test action, described 277
Test Build action, using for unit testing

236–237
TestFlight service, using with iOS apps 124
Threads and Stacks navigator, using 103
toolbar 10
Tour.app project

creating 8–9
running 9

U
unit testing

defined 236
Include Unit Tests check box 237
OCUnit 238–240
Test Build action 236–237
in Xcode 236–237

unit tests
designing 242
determining 241–242

336 INDEX

workspaces
adding projects to 40–41
benefits 38
building 275–276
creating 40
defined 38
guidelines for use of 39
saving 40

X
Xcode

archive distribution 126
changing active 280
developer preview version 280
downloading 4
tools from earlier versions 5
using multiple versions of 279–280

Xcode projects. See projects
Xcode versions. See project modernization;

versions of Xcode
Xcode window 8

See also workspace window
xcodebuild command

build actions 277
running 274–276
for SDKs 278
version option 279

xcrun tool, using 280
xibs

actions 64–65
compartmentalization 65
controller objects 64
File’s Owner 64
in Interface Builder 66
outlets 64–65
owners 64

W
warnings

ignoring in Clang compiler 262
removing from Clang compiler 262

watchpoints
as breakpoints 218–219
lifetime 219
using with variables 218–219

web views
developing 204–205
loading Google.com into 206–207

WebKit
framework 207
linking against 206–207

websites. See also resources
BetaBuilder app 124
Bookmarks framework 208
Cocoa Auto Layout Guide 77
Cocoa Fundamentals Guide 63
Git 284
Git-themed SSH key 290
HockeyApp service 124
icon file 119
mogenerator tool 99
SVN (Subversion) 284
TestFlight service 124

windows. See workspace window; Xcode window
words, finding 162
workspace window. See also Xcode window

code focus ribbon 10
debug bar 10
filter bar 10
focused code 10
Inspector pane 10
Inspector selector bar 10
Libraries pane 10
Library selection bar 10
navigation bar 10
navigation selection bar 10
toolbar 10

INDEX 337

	Contents
	Introduction
	Welcome to Xcode
	CHAPTER 4 SETTING UP YOUR WORKSPACE
	Workspaces Defined
	When to Use a Workspace
	Creating the Lighting Suite Workspace
	Wrapping Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

