
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321861283
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321861283
https://plusone.google.com/share?url=http://www.informit.com/title/9780321861283
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321861283
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321861283/Free-Sample-Chapter

Praise for Building Windows 8 Apps with JavaScript

“This is going to be the Windows 8 app book YOU MUST have in your
library! It’s well written and expertly covers every aspect of how to build
an HTML/JS app for Windows 8!”
—Jonathan Antoine, Infinite Square and Microsoft MVP

“Great introduction to app development for Windows 8. After so many
years in the XAML space, this book made me want to consider the
JavaScript/HTML route.”
—Shawn Wildermuth, Microsoft MVP (Data), author, trainer, and speaker,
www.wilderminds.com

“What you hold in your hands right now is an excellent walkthrough
of how to build, ship, and profit from building apps using HTML and
JavaScript for Windows 8. While I’ve been working on Windows 8 for the
last two years, I can honestly say that I have learned about new parts of the
platform from this book and can’t wait to build an app that uses them.”
—From the Foreword by Chris Anderson, Distinguished Engineer, Windows
Libraries for JavaScript, Microsoft Corp.

“Chris and Brandon have gone to the heart of Windows 8 programming
and produced a clear, concise, and easily understood tutorial that should
be on every Windows 8 programmer’s bookshelf. If you are programming
Windows 8 with HTML and JavaScript, this is the book you need.”
—Jesse Liberty, Windows 8 technical evangelist, Telerik

“I feel that this book will be the must-read reference for anyone who is ded-
icated to building a great Windows 8 app, and will be the book by which
all others are compared. Yes, that’s a pretty bold statement, but consider-
ing that both of the authors have been deeply involved in Windows 8 app
 development for a LONG time, especially while they were at Microsoft, I
feel confident in that statement.”
—From the Foreword by Rey Bango, Developer Relations, Microsoft Corp.

http://www.wilderminds.com

“This is easily the most well-written book on building Windows 8 apps
with JavaScript that I have read. It has been an invaluable resource for
helping me to transfer my experience with building large JavaScript
applications and thick-client applications into a Windows 8 environment.
Chris and Brandon do a masterful job of explaining that this is just HTML,
JavaScript, and CSS, while at the same time distilling all of the intricate
details and subtleties of running web technologies in a native Windows
application environment, with the full power of WinRT and the JavaScript
extensions for it.”
—Derick Bailey, independent consultant, screencaster, speaker, and author, http://
mutedsolutions.com and http://watchmecode.net

“Chris and Brandon do a truly excellent job explaining how to create great
Windows 8 applications. While reading this book I learned things about
the platform.”
—Josh Williams, Principal Development Lead for WinJS, Microsoft Corp.

http://mutedsolutions.com
http://mutedsolutions.com
http://watchmecode.net

Building Windows 8 Apps
with JavaScript

The Windows Development Series grew out of the award-winning Microsoft .NET Development

Series established in 2002 to provide professional developers with the most comprehensive

and practical coverage of the latest Windows developer technologies. The original series has

been expanded to include not just .NET, but all major Windows platform technologies and tools.

It is supported and developed by the leaders and experts of Microsoft development technologies,

including Microsoft architects, MVPs and RDs, and leading industry luminaries. Titles and resources

in this series provide a core resource of information and understanding every developer needs to

write effective applications for Windows and related Microsoft developer technologies.

“ This is a great resource for developers targeting Microsoft platforms. It covers all bases, from expert

perspective to reference and how-to. Books in this series are essential reading for those who want to

judiciously expand their knowledge and expertise.”

– JOHN MONTGOMERY, Principal Director of Program Management, Microsoft

“ This series is always where I go f irst for the best way to get up to speed on new technologies. With its

expanded charter to go beyond .NET into the entire Windows platform, this series just keeps getting

better and more relevant to the modern Windows developer.”

– CHRIS SELLS, Vice President, Developer Tools Division, Telerik

Visit informit.com/mswinseries for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

Microsoft Windows Development Series

Building Windows 8
Apps with JavaScript

 Chris Sells
 Brandon Satrom

with Don Box

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United
States and/or other countries and is used under license from Microsoft.

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries/regions.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2012953216

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-86128-3
ISBN-10: 0-321-86128-0

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, December 2012

Chris would like to dedicate this book to his mbelle.

Brandon would like to dedicate this book to his three constants:
Sarah, Benjamin, and Jack.

This page intentionally left blank

ix

Contents

Foreword by Chris Anderson xvii
Foreword by Rey Bango xix
Preface xxi
Acknowledgments xxvii
About the Authors xxxiii

 1 Hello, Windows 8! 1
Your First Windows Store App 2
Getting Started in Visual Studio 2012 6
Controls, Binding, and Styling in Blend 16
Navigation 24
Networking in WinJS and WinRT 29
Split App Template 34
The Rest 40
Where Are We? 40

 2 Binding and Controls 41
Binding 41

Binding Objects 42

Initializers 51
Binding List 53
Sorting and Filtering 55

 x Contents

Grouping 58
Templates 60
Controls 63

HTML Elements 63

WinRT Controls 64

WinJS Controls 66

Custom Controls 70

Where Are We? 78

 3 Layout 79
Layouts: Taming the Device Matrix 79

Windows 8: Consumer Choice without the Tyranny of Devices 81

Layouts in Windows 8 81

Working with Screen Sizes 84

Orientations 93

View States 95

Using CSS Layout Capabilities to Adapt Your App 99
The CSS3 Grid Layout Specification 100

Adaptive Layouts for Application Content 103

Creating Adaptive UIs with CSS and WinJS 104
Using the CSS Flexbox for Adaptive UIs 104

Using CSS Multi-Column Layout for Adaptive Content 107

Creating Adaptive Collections with the ListView 111

Responding to Layout Changes in JavaScript 113

Where Are We? 116

 4 Typography 119
Typography in Windows Store Apps 119

Segoe UI 120

Cambria 122

Calibri 123

CSS3 Web Fonts 124

Using CSS to Tweak Your Typography 129

Working with Platform Iconography 136
Using and Manipulating Icon Fonts in a Windows Store App 147
Where Are We? 153

xi Contents

 5 Media 155
Working with Audio and Video 155
Getting Started with Media in Windows 8 156
Styling Media and Creating Custom Controls 159
Adding Subtitles to Video 163
Adding Video Effects 167
Working with Audio in Windows Store Apps 170

Creating Background Audio 171

Working with User Media Libraries via a File Picker 175
Selecting Multiple Files 180
Other File Picker Types 182
Working with Captured Media 185
Making Your App Connectable with Play To 189
Where Are We? 192

 6 Drawing and Animation 193
HTML5 Graphics with SVG and Canvas 193

Introducing SVG 194

Introducing Canvas 199

Choosing between Canvas and SVG 204

Manipulating Pixels 206
Pixel Manipulation with Canvas 206

Pixel Manipulation with Windows.Graphics.Imaging 209

Animation in Windows Store Apps 212
Animations in Windows Store Apps: Fast and Fluid 213

Transforming and Animating with CSS 213

Working with the WinJS Animation Library 220

Where Are We? 224

 7 App State 225
Settings 226

The Settings Charm 228

Lifetime 238
WinJS Lifetime Event Helpers 241

Sessions 242

Debugging Sessions 246

WinJS Session Helpers 250

 xii Contents

Files 252
WinJS File Helpers 255

Libraries 256
File Activation 259

File Pickers 261

Where Are We? 266

 8 Networking 267
Network Capabilities 267
Mobile Networking 269
XMLHttpRequest 273

Parsing XML Results 274

Progress and Errors 274

Parsing JSON Results 275

Syndication 277
Background Data Transfer 280
Web Content 284

HTML Content 285

iframe Hosting 286

The Web Context 287

Where Are We? 292

 9 Shell Contracts 293
The Windows 8 Shell 294
Contracts 295
Search Contract 297

Implementing Search 298

Search Suggestions 303

Share Contract 305
Share Target 310

Accessing Shared Data 316

Reporting Sharing Progress 321

Contacts Contract 322
Contact Picker 322

Contact Providers 325

Debugging Contract Providers 331
Where Are We? 332

xiii Contents

10 Shell Integration 333
Live Tiles 333

Your App’s Tile 335

Tile Updates 335

Small and Large Tile Updates 338

Tile Images 340

Tile Peeking 340

Scheduled Tile Updates 342

Secondary Tiles 343

Badges 348
Background Tasks 350

Triggering a Background Task 351

Creating a Background Task 352

Lock-Screen Apps 355

Avoiding Task Duplication 357

Toast Notifications 358
App Activation from Toast 361

Scheduled Toast 362

Where Are We? 363

11 Device Interaction 365
An Introduction to Touch 366

Touch-Friendly HTML Controls 367

Touch-Friendly WinJS Controls 369

Building Touch-Friendly Apps with Screen Edges 370

Creating Touch-Friendly Interactions with SemanticZoom 374

Supporting Mouse and Keyboard Interactions 379

Working with Device Capabilities 380
Declaring Device Capabilities 380

Working with Recording Devices 381

Adding In-App Print Capabilities 384

Working with Location Data 387
Using the Geolocator Object 387

Watching for Location Changes 390

Using Location Data with Bing Maps 391

Simulating Location Information 393

 xiv Contents

Working with Sensors 394
Working with the Light Sensor 396

Working with the Accelerometer 398

Working with the Compass 400

Working with the Simple Orientation Sensor 402

Working with Other Sensors 403

Where Are We? 403

12 Native Extensibility 405
Multiple Languages, One App 406
Getting Started 407
WinRT and the JavaScript Environment 411
WinRT Classes 413

Classes and Methods 414

Methods and Exceptions 416

Classes and Properties 420

WinRT Objects 421
Objects and Handles 422

WinRT Types in C++/CX and JavaScript 424
Strings 429

Arrays 431

WinRT Value Types 433

Delegates and Functions 435
C++11 Lambdas 436

Creating WinRT Delegates from C++11 Lambdas 439

Events 440
Concurrency and Asynchrony 443
Where Are We? 451

13 Making Money 453
Preparing for Submission 454

Setting Up a Developer Account 454

Reserving Your App Name 454

Preparing Your App for Local Testing 457

Running the Windows App Certification Kit (WACK) 458

xv Contents

Submitting Your App to the Windows Store 463
Completing the Windows Store Submission Process 464

The Certification Waiting Game 471

Dealing with Rejection 473

Submitting an Update 474

Working with Ads 476
Rules for Ads in Windows 8–Style Apps 476

Working with the Windows 8 Ads SDK 477

Working with Media-Based Ads 477

Working with Text-Based Ads 480

Enabling Trial Mode in Your App 483
Introducing the Windows Store API and Simulator 483

Simulating and Testing Trial Functionality 485

Working with In-App Purchases 488
Creating In-App Purchase Functionality 489

Defining In-App Offers in the Windows Store Submission Process 494

Design for Monetization 495
Marketing and Managing Your App 496

Tracking Your App from the Windows Store Dashboard 496

Getting Your App Featured in the Windows Store 496

Getting Paid 498

Where Are We? 499

A JavaScript for C-Family Programmers 501
Hello, World 502

Separation of Concerns 503

Using the id As an object 505

WinJS Activation 505

Values and Types 507
Operators 508
Objects 510
Dates 511
Regular Expressions 511
Arrays 512

 xvi Contents

Object Prototypes (“Classes”) 514
Constructors 514

Prototypes 515

Prototypal Inheritance 518

Static Members 519

Class Definitions via WinJS 519

Functions 520
Function Arguments 522

Call and Bind 523

Closures 525

Debug Output 525
Scoping 526

Hoisting 526

Modules 527

Namespaces 528

WinJS Namespaces 528

Strict 529
Serialization 531

B Presentation and Style at a Glance 533
Using HTML for App Content and Structure 534

What Is HTML? 534

What’s New in HTML5? 535

Using CSS for App Layout and Style 541
What Is CSS? 541

Where Should I Define My CSS? 553

How CSS Rules Cascade 555

CSS in Windows Store Apps 558
Overriding Default Windows Store App Styles 560

 Index 565

xvii

Foreword by Chris Anderson

Windows 8 represents a significant change in the Microsoft developer eco-
system. While the consumer-oriented changes in Windows 8 get much of
the spotlight (new user experience, touch, tablet computers, etc.), there is
a tectonic shift at the core of Windows 8. In Windows 8, developers are
presented with a choice of programming environments to build their craft;
DirectX, XAML, and HTML. Beyond this, there is now a built-in platform
for monetizing their products.

For the past two years I have been working as a development lead and
architect for the Windows Library for JavaScript, or WinJS. When we first
thought about having HTML and JavaScript be a first-class platform for
building native Windows applications, one of the biggest challenges we
faced was how to balance the standards-based world of HTML/JS with
the native platform features of Windows. With the advent of the Windows
Runtime (WinRT) we had the technical tool to simply integrate new fea-
tures into the web platform, but there was a constant tension about where
to stick to the standards and where to innovate.

Our mantra on the WinJS team was to “code to the standard,” and we
used WinRT functionality in the implementation of WinJS very sparingly.
We felt that it was better to let the app developers decide how much plat-
form dependency they should take.

 xviii Foreword by Chris Anderson

JavaScript is also a world of heterogeneous toolkits. People often blend
together jQuery, require, Modernizer, and Backbone to accomplish their
job. When building WinJS we attempted to build a suite of toolkits, which
can be mixed and matched with other existing toolkits. You can trivially
use Knockout as your binding solution in the WinJS ListView; you can
plug jQuery UI controls easily into the WinJS declarative control process-
ing. There are places where we built large toolkits (ListView being the
most obvious example), and others where we have very small toolkits (e.g.,
the CommonJS Promise/A implementation contained in base.js).

As we built WinJS we continually adjusted our design patterns to try
to mesh more seamlessly into the existing conventions of the JavaScript
community. I remember one of our earlier patterns was to attempt to freeze
and seal the prototype definitions for many of our constructor functions.
We quickly got feedback that wasn’t how JavaScript developers did it. We
switched to mutable prototypes and have learned the power of being able
to monkey-patch definitions at runtime.

I had the privilege of working with Chris Sells for several years at
Microsoft. I never got to work with Brandon Satrom, but judging from the
quality of this book I’m guessing he has the same passion for developers,
the love of programming, and the art of writing that Chris Sells has.

What you hold in your hands right now is an excellent walk-through
of how to build, ship, and profit from building apps using HTML and
JavaScript for Windows 8. While I’ve been working on Windows 8 for the
last two years, I can honestly say that I have learned about new parts of
the platform from this book and can’t wait to build an app that uses them.

I hope you enjoy reading it, and happy coding!

— Chris Anderson
Distinguished Engineer, Windows Libraries for JavaScript, Microsoft Corp.
August 2012

xix

Foreword by Rey Bango

There’s never been a better time to be a developer. The Internet has opened
up more avenues of opportunities for programmers than at any time I
can recall in my 20+ years in information technology. I cringe (with some
fondness) at how learning a new technology, especially a programming
language, was a fairly arduous task involving terse manuals, glowing
monochrome screens, and CRTs as big as some small TVs. But the Internet
has changed all of that, allowing us to learn anywhere we want via numer-
ous types of connected devices and have a wealth of information presented
to us in the blink of an eye.

And while developers are reaping the benefits of this, the ones truly
benefitting are the typical, everyday computer users who no longer need
to rely on the White or Yellow Pages to find a local plumber, or a dedicated
GPS to get directions, or a DVD player to watch a great movie. The Internet
has allowed us all to stay better connected today than at any point in his-
tory and it’s been made possible by the ingenuity of us: developers.

As consumers become savvier, so do their needs and demands. They
want information faster, and they want it in a clear and concise fashion
across their devices so that they don’t have to relearn how to do things
every time they pick up a phone or switch on a computer.

 xx Foreword by Rey Bango

That’s the beauty of Windows 8. It aims to bring uniformity and cohe-
sion across all experiences so that consumers can enjoy themselves, easily
finding the information they want in a consistent and fluid fashion. And
the best part of this is the opportunity for developers to help build those
great experiences through the Windows 8 app ecosystem.

Windows 8 users are already accustomed to being connected, and apps
play an important role in providing unique experiences for the information
and services they depend on. With an install base of several hundred mil-
lion Windows users, Windows 8 app developers are in an amazing posi-
tion to not only enhance the experience for consumers but also to leverage
a new platform that offers the technological and monetization frameworks
to build a successful and profitable business. And with Microsoft includ-
ing the ability to use JavaScript, HTML, and CSS to build these apps, it
opens the platform to savvy web developers who also want to jump on this
opportunity.

I’ve had the pleasure of working with both Chris Sells and Brandon
Satrom here at Microsoft. I was very flattered when they asked if I’d write
a foreword for their book and can honestly say that I accepted without
hesitation. I knew that they would produce something that would bring
immediate value to developers who are serious about leveraging the Win-
dows 8 platform. Having spent time reviewing the manuscript, I feel that
this book will be the must-read reference for anyone who is dedicated to
building a great Windows 8 app and will be the book by which all others
are compared. Yes, that’s a pretty bold statement, but considering that both
of the authors have been deeply involved in Windows 8 app development
for a LONG time, especially while they were at Microsoft, I feel confident
in that statement.

— Rey Bango
Developer Relations, Microsoft Corp.
October 2012

xxi

Preface

There is a certain beauty in man-made things. In some ways, that beauty
cannot match nature. In other ways, that beauty is unparalleled because it
exhibits the best qualities men and women are able to achieve with their
own hands.

Art and architecture are oft-cited examples of man-made beauty, and we
recognize this, conveying social and financial reward upon those creations
that best exhibit the creative spirit—or even boundless will—of humanity.

But there is a simpler, yet more pervasive proof in the beauty of man-
made things: that is the beauty of comfort and familiarity, of feeling like
you belong, no matter where you may find yourself. This beauty is all the
more meaningful because it speaks to the deep-seated social needs we all
possess. It often feels less essential because it is so subtle, and also because
we’re only acutely aware of this need when it’s not being met.

Imagine yourself in a foreign airport or the transit station of an unfamil-
iar city for the first time. Now suppose that you just stepped off a train or
plane with a limited amount of time to get from your gate to the next one.
Where do you go? How do you find information?

If you have a firsthand memory of such a place and experience, recall-
ing that memory might even evoke a physical response: dilated pupils,
an increased heart rate, clammy hands, and shortness of breath. Stress.
Anxiety.

 xxii Preface

The unfamiliar evokes a need for familiarity, so what do you do? If you
are traveling with friends or family, your stress is lessened, but the task
remains. What do you do?

You look for familiarity—for anchoring clues: signs, numbers, letters,
and text. Anything to help you find your way. A sign with the text “B
Gates” and an arrow leading in a specific direction may provide instant
relief. A bank of monitors might do the same. Perhaps all you require is the
appearance of a stick figure pointing to the closest restroom. Whatever it
may be, you would look for, and gravitate to, anything familiar that helps
you accomplish the most important task at hand. And once found, those
familiar things would anchor you, and provide comfort.

There is beauty in this! When numbers and letters and symbols can
anchor us to a deeper reality and point us home, that is sublime art that
nothing else can equal.

This, then, is metro—creating experiences that anchor us in reality,
even in the face of the unfamiliar and the artificial. Further, these experi-
ences do more than simply try to transpose and replicate our comfort from
one medium to another. I don’t need the subway signs in Chicago to look
exactly like those in Manhattan or Munich. As long as there is just enough
present to evoke familiarity, I am comfortable. Better still, I don’t need the
sign for the men’s restroom in Beijing to be a life-like photograph of a six-
foot-tall, white male. To paraphrase Scott McCloud,1 iconography is pow-
erful not just because it is abstract, but because its abstract nature makes
it identifiable, and we connect best with that which we identify. A stick
figure is sufficient because I see myself therein, and that provides familiar-
ity and comfort.

Metro is not Windows. Or Windows Phone. Or Xbox. It is not live
tiles, black backgrounds, Segoe UI, or boxes with straight corners. It’s not
HTML5, CSS, or JavaScript. Metro is not even Microsoft. It can live in the
browser or in the desktop. It can even live in iOS or Android, because it
was never really about a platform at all.

1. Published in 1994, McCloud’s masterwork Understanding Comics is just as much about
the art and science of visual communication as it is about comics specifically. Buy and
read this book now; you’ll thank us for it.

xxiii Preface

In a time when the metro design language is increasingly being used to
instruct developers to find and delete every border-radius rule in their CSS,
to follow a design checklist, or even to capture a design in a series of boxes,
it’s important that we remember that metro—like every great design idea
ever conceived—is about building something that is beautiful for others. It
is about delivering something that anchors us in reality and helps us find
our way. It’s about creating something that is beautiful because it’s useful
and comfortable.

You can’t code your way to metro, except perhaps by accident. Even
then, what you create will likely seem more artificial than authentic.

You can’t even design your way to metro; no tutorial, checklist, or book
will deliver a “metro experience” simply because you added colorful tiles,
fancy page-flip effects, or a digital representation of a tabletop calendar.

All software is and has always been about the beneficiary of our work,
and metro is no different. Never has there been a checklist or process to
unlock what is most beneficial for every case because the real value lies in
the process of discovery. Once you discover what the person using your
application needs, it is up to you to discover how to best meet that need.
With the results of this discovery, metro is about placing comfort and
familiarity on an even footing with utility.

So, learn metro. Read the design guides and use the checklists. Watch
the videos and think more like a designer, no matter what you are build-
ing. Before any of that, though, think about comfort and familiarity, and
how your application or site can deliver those basic human needs better
than any other.

That’s what metro really means.

Some Terminology

During the development of Windows 8, the names of features and tech-
nologies have changed, so I thought I’d provide an up-to-date guide as of
the writing of this book (after the RTM but before the General Availability).

• Metro and Metro style: The design language that describes the UI
and experience of using Windows 8, Windows Phone 7, Windows

 xxiv Preface

Phone 8, and the latest Xbox dashboard is called metro. For a while,
that term was used to describe the new kinds of Windows 8 apps that
are building in this design language—that is, “metro style apps” (no
hyphen). Because of a large grocery store chain in Germany, that’s
no longer the case.

• Windows Store apps: The replacement term from Microsoft for
“metro style apps” is “Windows Store apps.” This refers to the fact
that Windows 8 apps in the new style—that is, not the desktop apps
that we’ve had since Windows 95—are deployed to consumers via
Microsoft’s new Windows Store. However, this isn’t a very accurate
term, since enterprise apps built in the Windows Store style aren’t
deployed via the Windows Store at all. Oh well.

• WinRT and WinRT apps: The Windows Runtime (WinRT) is the core
on which all Windows Store apps are built. However, Microsoft also
uses the name to refer to the ARM version of Windows 8 and the tab-
lets on which it runs—for example, the WinRT Surface refers to the
ARM version of Microsoft’s Surface tablet. This would have been a
good, accurate name for Windows 8 apps in the “new” style, but alas,
it was not meant to be.

• Modern apps: Another name you sometimes hear for “Windows
Store apps” is “modern apps,” which is just a slap in the face to any-
one building apps of any other kind, including Windows 8 apps that
run on the desktop. Hopefully this term won’t stick.

In this book, we mostly use the term “Windows Store app.”

What This Book Is For

The goal of this book is to give you a broad look at the range of capabili-
ties you have in building your Windows Store app. It is not an exhaustive
reference, but rather a survey of the tools, libraries, concepts, and tech-
niques you need to go from starting a new app, to adding the features you
want it to have, to shipping it into the Windows Store and making money.

xxv Preface

Throughout the book we provide links to online resources we recommend
you use for more details, but the big ones are these two:

http://design.windows.com

http://dev.windows.com

These two web sites are for the design and development of Windows
Store apps. Further, the design web site is where you’ll learn all about the
metro design language, although you’re unlikely to see that name on the
site itself.

Who This Book Is For

This book is for web developers of all kinds—jQuery, PHP, ASP.NET, Rails,
and so forth—who want to understand how to bring their web knowledge
to the Windows 8 platform to build first-class applications.

This book is for designers who want to gain an understanding of how
Windows Store apps are built from web technologies.

This book is for .NET, Win32, MFC, or Visual Basic developers who
want to know how the next generation of Windows programs will be writ-
ten using web technologies.

This book is not for developers who don’t already have programming
experience. A grasp of the basics of HTML, JavaScript, and CSS is going
to help you greatly, but if you’re brand new to these technologies, I rec-
ommend the appendixes at the end of the book, which are meant to pro-
vide a useful foundation of the web platform available to you in building
Windows Store apps.

In short, this book is for anyone who’s ever written a Windows pro-
gram or written a web site and is interested in building Windows Store
apps for Windows 8.

http://design.windows.com
http://dev.windows.com

 xxvi Preface

Sample Code and Errata

The sample code and any errata for this book can be found at http://
sellsbrothers.com/writing/win8jsbook.

To run this book’s sample code, you’ll need the Windows 8 RTM, Visual
Studio 2012 RTM, and Blend for Visual Studio 2012 (all of which are avail-
able at http://dev.windows.com).

How to Contact the Authors

Chris Sells is a Vice President for Telerik in the Developer Tools division.
He can be reached at

E-mail: csells@sellsbrothers.com, Chris.Sells@telerik.com
Twitter: @csells
Blog: http://sellsbrothers.com

Brandon Satrom is a Program Manager for Telerik in the Kendo UI
division. He can be reached at

E-mail: bsatrom@gmail.com, Brandon.Satrom@telerik.com
Twitter: @BrandonSatrom
Blog: http://userinexperience.com

Don Box is a Distinguished Engineer for Microsoft in the XBOX division.
He can be reached at

E-mail: dbox@microsoft.com

http://sellsbrothers.com/writing/win8jsbook
http://sellsbrothers.com/writing/win8jsbook
http://dev.windows.com
http://sellsbrothers.com
http://userinexperience.com

xxvii

Acknowledgments

From Chris Sells

This book has been a very long journey for me. I started it in September
2010, the same month I started on the Visual Studio 2012 team working on
the end-to-end Windows 8 story for JavaScript programmers. I sat down
the hall from Chris Anderson, Josh Williams, Chris Tavares, Jeff Fisher,
David Owens, Vijaye Raji, Andy Sterland, Anson Horton, and Michael
Booth, who comprised the bulk of the WinJS team and a big chunk of the
Visual Studio 2012 team working on JavaScript for Win8 apps. I remember
haggling over WinJS app models with Chris Anderson, building the first
full-featured Win8/JavaScript templates with David Owens, re-working
them with Michael Booth, and complaining to Josh Williams about the lack
of a developer-friendly data source in WinJS. (Josh invented the binding
list just to shut me up.) These guys taught me more about the web platform
in 12 months than I’d learned in the previous 15 years of running my own
web site.

It was Chris Anderson who wrote the initial outline of this book. The
Windows division was putting together a “holiday build” of what was to
become Windows 8. You see, most ’softies ended up taking a portion of
the month of December off because of the use-it-or-lose-it vacation policy.
However, a large number of them are such type A+ personalities that they
can’t actually take that much time off without going crazy, so they often

 xxviii Acknowledgments

write programs for fun during that time. With that in mind, the holiday
build of Win8 was to be prepared before the 1st of December as a stocking
stuffer for bored employees from whom we wanted to gather feedback.
For this to work, there needed to not only be the right conglomeration of
bits but also documentation to get folks started. Mr. Anderson wrote the
first draft of those docs, handed them to me, and said, “Finish this up, will
you?”

What Chris had written was a 20-page document with sections like
“Getting Started,” “Layout,” “Animation,” et cetera, giving a short intro
for each topic. I took one look at that and thought to myself, “This is enough
for an entire book.” And so, in two months, Kraig Brockschmidt (of Inside
OLE fame) and I wrote the first book on Win8 for JavaScript program-
mers. The first chapter of this book was originally published in September
2011 at the first BUILD conference on msdn.com, titled “Create your first
Windows Store app using JavaScript (Windows).”1

I told you all of that so that I could tell you this: I need to thank John
Montgomery for hiring me into the middle of the whole mess, and the
WinJS and Visual Studio 2012 teams for taking me in, making me feel wel-
come, and letting me take part in the creation of an entirely new platform
for programming Windows. That happens about once every decade or so,
and it was an honor to participate. This book is the direct result of that expe-
rience, so you guys should consider this your book—I was only the scribe.

Or rather, I was only the scribe for my parts. Brandon wrote half of this
book and I’m thankful he did. Except for the time when he informed me
that he was in high school in 1995 when I wrote my first book (bastard!), he
has been a joy to work with. He comes with all kinds of real-world, web-
based JavaScript experience that I was lacking, so he influenced a lot of the
thinking on my chapters.

Brandon and I didn’t write the whole book, however. My longtime
friend and colleague, and the undisputed King of COM, Don Box, wrote
Chapter 12, “Native Extensibility.” Ostensibly, that chapter is about
extending your JavaScript apps using C++, but it’s really about the connec-
tive tissue between the two languages known as the Windows Runtime

1. http://msdn.microsoft.com/en-US/library/windows/apps/br211385
(http://tinysells.com/282).

http://msdn.microsoft.com/en-US/library/windows/apps/br211385
http://tinysells.com/282

xxix Acknowledgments

(WinRT). The WinRT is the next version of Microsoft’s venerable Compo-
nent Object Model, so who better than the author of Essential COM to write
that chapter? Hopefully it will inspire him to write Essential WinRT some-
day. Thanks, Don, not only for writing that chapter but also for dragging
me along into the world of writing in the first place and for showing me
how to do it with integrity.

I’d like to thank Michael Weinhardt from the bottom of my heart for
what seems like a lifetime of coauthoring. Michael was the developmen-
tal editor on this project, which means that he regularly kicked all three
of our asses to make sure that what we were saying actually made sense.
Michael is also a longtime friend; one of the best parts of any writing pro-
ject is always working with Michael, because I refuse to write without him.

I also need to thank the reviewers: Chris Anderson, Josh Williams, Jona-
than Antoine, and Shawn Wildermuth. I’d especially like to thank Shawn
for helping me with the research into Chapter 9, “Shell Contracts,” and
Chapter 10, “Shell Integration.” My new gig keeps me very busy and he
helped lay a lot of the foundation for those chapters. I couldn’t have done
those without you, Shawn.

I need to thank Joan Murray, my editor at Addison-Wesley. She’s suf-
fered through my tardiness on two books now, the aborted Programming
Data, (I wrote my half—honest!), and now this one. Joan provides an effec-
tive mix of “soft” and “hard,” with a bit of “grandmother guilt” thrown in.
The fact that this book is published so near to the General Availability of
Windows 8 is because Joan was “encouraging” me right along.

And finally, I need to thank my family for being so understanding when
I had to steal time away from them to spend with this book. After 14 books
(although lucky #13 never saw the light of day), I intend for this one to be
my last. I’ve been doing this since the Sells brothers were born, using their
names in my example programs because even when I was writing, I was
also missing them. Of course, I have to thank my girlfriend, Michelle, for
the home-cooked meals she brought while I was writing this book, and her
son, Marcus, for lending his name to some of the last samples I wrote. It’s
been a great run and you’ve all been very supportive, but I’m not going to
ask you to do so again. Oh, maybe I’ll noodle on a novel in a cabin by the
sea when I’m safely retired and I’m no longer working two jobs (the book

 xxx Acknowledgments

and my real job), but from now on, I’m going to let the next generation
document the new technologies that come along.

OK, Mr. Anderson. I’m all finished.

From Brandon Satrom

I love history because history is the backstory that makes us care about the
“now” of a narrative. This is true in fiction and in life. Not surprisingly,
it’s also true of the technical work you’re about to read. So let me tell you a
story…

In the spring of 2011, while I was still working for Microsoft, I got the
itch to write a book. Not just any book, but one about HTML5, specifically
the ubiquity of the web platform, and the potential for web technologies to
be used beyond the browser and in desktops and devices. Little did I know
at the time that the Windows team was in the midst of revolutionizing its
platform for customers and developers alike. Fast-forward to September
2011 when, as a BUILD attendee, I was introduced to Windows 8, WinJS,
and the WinRT. Over the course of the week I spent in Anaheim, I realized
that I didn’t just want to write an HTML5 book; I wanted to write a book
about building HTML5 apps for Windows 8.

Chris and I actually met during that first BUILD, though it wasn’t
then that we teamed up to write this book. You see, Chris already had a
coauthor, and I merely approached him after his excellent Day One key-
note to say “hi,” congratulate him and the team, and ask for mentoring
and advice on writing a book myself. He kindly agreed, and we chatted a
few times as I began planning a solo Win8 book. (No matter what he says,
I remain convinced that Chris does not remember meeting me at BUILD.
After all, I’m just some lowly web developer, and he’s Chris “COM” Sells!)

In another stroke of interesting coincidence, Chris and I both left Micro-
soft for Telerik less than one month apart, where we landed in different
divisions of the company. It was at this time that Chris was on the hunt
for a coauthor for the book you now hold in your hands. By chance, we
reconnected, and Chris took me on as his coauthor. The rest, as they say, is
infamy. Or something like that.

Now, the backstory of this book is coming to a close as we make our final
revisions, pore over hundreds of pages to remove all mention of “Metro,”

xxxi Acknowledgments

retake screenshots for the fiftieth time, and recompile code samples for the
hundredth time. And in this moment of reflection, I first want to thank my
coauthor, Chris Sells. Chris took a chance on a no-name web developer
whose only writing experience was a handful of articles for MSDN maga-
zine and a bunch of unfinished fiction, and I am deeply grateful to him for
the opportunity. I’m also grateful for his early honesty about the writing
process. You were certainly right, Chris: It’s not at all fun. And yet, some-
how it still seems so worthwhile.

I’m humbled beyond belief to have my name adorn the cover of a book
alongside none other than Don Box and Chris Sells. It feels simultaneously
amazing and surreal. Somehow, I still feel that my name should be about
half its current size and printed in transparent gray. All that’s to say: It’s
been an honor to work alongside these two men and to soak up their many
years of expertise.

Thanks as well to Michael Weinhardt, our developmental editor on
this book. Michael and Chris were both wonderful mentors to me during
the writing process, especially as I made the transition from magazine-
length technical writing to book-length technical writing. My first chapter,
Chapter 3, “Layout,” was an early challenge for me, but Michael and Chris
kept on pushing me to rewrite and revise until a story emerged. The pro-
cess of peer review among the three of us was an amazing developmental
experience for me, and I am grateful to Michael and Chris for pushing for
my best work and for encouraging me when it poured forth.

I’m also grateful for the work of our reviewers: Chris Anderson, Josh
Williams, Jonathan Antoine, and Shawn Wildermuth. Thanks especially
to Jonathan, whose attention to detail, fact-checking, and ability to spot
platform changes from one prerelease version of Win8 to the next saved
my butt more than a few times. Thanks as well to our editor, Joan Murray.
Thanks for putting up with us, and keeping us on track, Joan!

Finally, I want to thank my wife, Sarah, and my sons, Benjamin and
Jack. Sarah, you are my partner, my friend, and the love of my life. Thank
you for recognizing my gifts and for encouraging me to write. Thank you
for supporting me as I worked on this book, for celebrating with me during
the highs, and for helping any way you could during the lows. Benjamin
and Jack, my sons, I love you both, and I am so blessed to be your father.

 xxxii Acknowledgments

Thank you both for hugs and kisses when I needed them, as well as for the
interruptions and breaks from writing that I needed even more.

To all three of you: Thanks for your patience and understanding during
those times when writing meant time apart. It’s time I owe you, and it’s
time I intend to pay back, with interest. Starting now.

From Don Box

Don would like to thank Deon Brewis, Martin Gudgin, Herb Sutter, Zach
Johnson, and Logananth Seetharaman for their thoughtful feedback, and
encourages Logan to not spend his five dollars in one place.

xxxiii

About the Authors

Chris Sells (@csells) is Vice President of the Developer Tools division at
Telerik. He’s written several books, including Programming WPF, Windows
Forms 2.0 Programming, and ATL Internals. In his free time, Chris makes a
pest of himself on Microsoft forums and mailing lists. More information
about Chris and his various projects is available at www.sellsbrothers.com.

Brandon Satrom (@BrandonSatrom) is Program Manager for Kendo UI at
Telerik and is based in Austin, Texas. A longtime web developer, Brandon
loves to talk about HTML, JavaScript, CSS, open source, and whatever new,
shiny tool or technology has distracted him from that other thing he was
working on. Brandon speaks at events all around the world, and he loves
hanging out with and learning from other passionate developers, both
online and in person. He also loves writing and has had several articles
featured in publications like MSDN magazine, The Architecture Journal,
and .net magazine. Brandon can be reached online at his blog, www.
UserInExperience.com.

Don Box, contributing author, is a Distinguished Engineer at Microsoft.
At Microsoft, Don has worked on platform and developer technologies
for .NET, SQL, and most recently, Xbox. Prior to Microsoft, Don roamed
the Earth helping developers come to terms with COM, including writing
Essential COM for Addison-Wesley.

http://www.sellsbrothers.com
http://www.UserInExperience.com
http://www.UserInExperience.com

This page intentionally left blank

1

 1

Hello, Windows 8!

W indows 8 brings together a number of ways to develop and
think about developing apps. If you want to continue to build
Windows desktop apps with WPF/Silverlight, Windows Forms,

and/or DirectX, you are free to do so. Likewise, if you’d like to continue to
build web sites using ASP.NET, HTML, and JavaScript, you’re free to do
that, too. Further, if you want to build touch-centric Windows Phone apps
with Silverlight or XNA, that’s OK.

However, in this book, we’re focusing on how to build a new kind of app
which is a hybrid of all three of these existing kinds of apps; this hybrid is
called a Windows Store app. A Windows Store app is like a desktop app in
that it’s installed on your computer, unlike a web site. On the other hand, a
Windows Store app is like a web site in that you can build it using HTML5,
JavaScript, and CSS. However, instead of generating the UI on the server
side, you’ll see that the JavaScript framework for building Windows Store
apps and the underlying Windows Runtime (WinRT) allows you to build
apps with client-side state, offline storage, controls, templates and binding,
along with a whole host of other services. Further, because Windows 8 is
a tablet OS as well as a desktop OS, Windows Store apps are meant to be
used via touch like Windows Phone apps as well as with the keyboard and
mouse like traditional desktop apps. Of course, the big feature of Windows
Store apps is that they can be submitted into the new Windows Store that is
available front and center on the new Windows 8 Start screen.

 2 Chapter 1: Hello, Windows 8!

In short, Windows Store apps are meant to work across different
devices, taking maximum advantage of each and merging the best parts
of desktop, web, and mobile apps into a single user and developer experi-
ence, all available from the Windows Store. In this chapter, we’re going to
dig into both the developer and the user experience, focusing on the for-
mer, of course, given that this is a programming book.

And because I like to start my programming books with a bit of pro-
gramming, let’s get right to it.

Your First Windows Store App

A Windows Store app built using HTML, JavaScript, and CSS starts with
an HTML file:

<!DOCTYPE html>
<html>
<head><title>Hello, Metro/JS</title></head>
<body><h1>Hello and welcome to Windows Store apps for JavaScript!</h1>
</body>
</html>

This HTML, if it were loaded in the web browser, would result in the
world’s most boring web page. Further, a web page (or series of web pages,
styles, code, resources, etc.) is not a Windows Store app. A Windows Store
app includes these things but also includes the following metadata and
resources to define the app for the Windows 8 Start screen:

• A manifest file to describe your app, including the name,
description, start page, and so on

• A set of large and small logo images to be displayed on the Start
Screen

• A store logo to be displayed by the Windows Store

• A splash screen to show when your app starts

3 Your First Windows Store App

The manifest file is an XML file called appxmanifest.xml, and a mini-
mal one looks like this:

<?xml version="1.0" encoding="utf-8"?>
<Package xmlns="http://schemas.microsoft.com/appx/2010/manifest">
 <Identity
 Name="a8c906d0-f878-4bd4-b727-5363ce0bfb52"
 Version="1.0.0.0"
 Publisher="CN=csells" />

 <Properties>
 <DisplayName>hello</DisplayName>
 <PublisherDisplayName>csells</PublisherDisplayName>
 <Logo>images\storelogo.png</Logo>
 </Properties>

 <Prerequisites>
 <OSMinVersion>6.2.1</OSMinVersion>
 <OSMaxVersionTested>6.2.1</OSMaxVersionTested>
 </Prerequisites>

 <Resources>
 <Resource Language="en-US" />
 </Resources>

 <Applications>
 <Application Id="App" StartPage="default.html">
 <VisualElements
 DisplayName="hello"
 Logo="images\logo.png"
 SmallLogo="images\smalllogo.png"
 Description="hello"
 ForegroundText="light"
 BackgroundColor="#000000">

 <SplashScreen Image="images\splashscreen.png" />

 </VisualElements>
 </Application>
 </Applications>
</Package>

The manifest1 has things in it like the name and description, references
to the logo images, and, most importantly, the name of the HTML file that
represents the app’s start page (default.html in this case).

1. You can read about the appxmanifest.xml file format here: http://msdn.microsoft.
com/library/windows/apps/br211474.aspx (http://tinysells.com/164).

http://msdn.microsoft.com/library/windows/apps/br211474.aspx
http://msdn.microsoft.com/library/windows/apps/br211474.aspx
http://tinysells.com/164

 4 Chapter 1: Hello, Windows 8!

With the manifest and supporting files in place, the most basic way to get
our super-exciting app registered with the system starts with PowerShell,2
which you can access from the Start screen, and its appx module. The appx
module in the Windows 8 PowerShell provides a number of commands
that allow you to manage the Windows Store apps installed on your com-
puter.3 The term appx is used by Microsoft to refer to packaged Windows
Store apps, all of which have an .appx extension.4

If you’re going to package and sign your app for submission to the
Windows Store, you may decide to use the MakeAppx.exe and SignTool.
exe command-line tools (which are part of the Windows Store devel-
oper tools), but to simply install an app on your own machine, the Add-
AppxPackage PowerShell command from the appx module will do the
trick, as Figure 1.1 illustrates.

After a successful execution of Add-AppxPackage, the Get-AppxPackage
command will show you that it has been installed correctly, as Figure 1.1
also shows. Even more exciting, your app is now listed on the Start screen,5
as Figure 1.2 shows.

Besides our new hello tile, you’ll notice that the Start screen shows tiles
of different sizes with both static and dynamic information (I told Brandon
that Portland wasn’t cloudy every day!). For information about tiles, you’ll
want to read Chapter 10, “Shell Integration.”

At this point, you’re free to launch the app and see the “Hello and wel-
come to Windows Store apps for JavaScript!” inspirational message dis-
played (and which is too boring for a screen shot).

2. PowerShell is the next-gen command-line shell built into Windows.
3. You can see the complete list of commands in the appx module here: http://technet.

microsoft.com/en-us/library/hh856045.aspx (http://tinysells.com/158).
4. An appx file is a file in the Open Packaging Conventions (OPC) format, which essen-

tially means it’s a .zip file with a few extras.
5. You can get to the Start screen by pressing the Windows key on your keyboard, by

pressing Ctrl+Esc; by clicking in the lower left-hand corner of your screen; by moving
your mouse to the upper right or lower right of your screen and clicking the Start
button; by swiping in from the right-hand side of your screen using your finger and
pressing the Start button; or by pressing Win+C and clicking on the Start button.
Microsoft really wants you to be able to Start things.

http://technet.microsoft.com/en-us/library/hh856045.aspx
http://technet.microsoft.com/en-us/library/hh856045.aspx
http://tinysells.com/158

5 Your First Windows Store App

FIGURE 1.1: Adding an appx file and verifying that it’s been added

FIGURE 1.2: Our sample app installed into the Start screen

 6 Chapter 1: Hello, Windows 8!

A Windows Store app will always take up the screen space available to
it—there are no overlapping Windows Store app windows. However, your
app still needs to be able to run at multiple resolutions for different devices
and for different “modes,” such as portrait, landscape, snapped, and filled,
all of which you can read about in Chapter 3, “Layout.”

After seeing the minimal set of files, tools, and steps needed to build
and install a Windows Store app, you’re probably already hoping for a tool
to help you create, edit, package, launch, and debug your apps. For that,
we’ve got Microsoft Visual Studio 2012.

Getting Started in Visual Studio 2012

Visual Studio is the premiere tool for Microsoft developers building apps
for the Web and Windows, and has been for quite a while. It provides pro-
ject management for keeping your app’s source files together; integrated
build, deployment, and launching support; HTML, CSS, JavaScript, graph-
ics, and Windows Store app manifest editing and debugging; and a whole
lot more. There are several editions of Visual Studio, but we’ll use Micro-
soft Visual Studio 2012 Express for Windows 8 (a.k.a. VS), which is avail-
able for free6 and includes everything you need to build, package, and
deploy your Windows Store apps.

To show you Visual Studio 2012 in action, we’re going to need some-
thing more interesting to build than an app with a static message (no
matter how inspirational it may be). Developers new to any platform seem
to have canonical apps that they build: Computer science students build
text editors, compiler writers build Pascal compilers, web programmers
build blogs, and, for some reason, mobile platform developers build news
readers. So, let’s build ourselves a little Really Simple Syndication (RSS)
Reader and start from my favorite template: the Navigation App (as Fig-
ure 1.3 shows us doing).

6. You can download Visual Studio 2012 for Windows 8, read the docs, browse the sam-
ples, and ask your questions here: http://dev.windows.com.

http://dev.windows.com

7 Getting Started in Visual Studio 2012

The Windows Store app project templates provided with Visual Studio
2012 are as follows:

• Blank App: This is pretty much the smallest Windows Store app you
can build with the correct manifest and graphics files that includes
the Windows Library for JavaScript (a.k.a. WinJS). This is a good
template for when you’d like to start from scratch and build up.

• Grid App: This is a simple but complete Windows Store app with three
pages, navigation support, and the Windows 8 look and feel. This is a
good template for starting with a full app that you’d like to modify.

• Split App: This is like the Grid App but with two different pages.

• Fixed Layout App: This is just like the Blank App template except
that it allows you to build an app in a fixed-size area, like a casual
game at 1024 × 768, and let Windows scale it up or down for you,
based on the available space.

• Navigation App: This template is the core of both the Grid and Split
App templates, except with a single blank page instead of a set of
fully functioning pages. This template gives you the navigation sup-
port you often want in your apps, but it also lets you build up largely
from scratch.

FIGURE 1.3: Creating a Windows Store Navigation App in Visual Studio 2012

 8 Chapter 1: Hello, Windows 8!

Running the Navigation App template produces a Visual Studio 2012
Windows Store app project file for JavaScript (.jsproj) along with nearly
the same set of files used to create our first sample, as Figure 1.4 shows.

The format and the contents of the package.appxmanifest file are
the same as the .appxmanifest.xml file we’ve already seen, but the
.appxmanifest extension allows the file to have a custom editor in Visual
Studio 2012, as Figure 1.5 shows.

The manifest editor gives you a much easier way to edit the metadata
associated with your app than getting all of the angle brackets right in the
raw XML file.

FIGURE 1.4: The files generated by the Visual Studio 2012 Windows Store Navigation
App project template

9 Getting Started in Visual Studio 2012

The other interesting artifact added to the project is the Windows
Library for JavaScript SDK reference. This brings in a reference to WinJS, a
set of JS libraries produced by Microsoft to bring together the web platform;
that is, HTML5, JavaScript, and CSS, with WinRT to make for a productive
app framework for Windows Store apps built with JavaScript. You’ll see
a lot of both WinJS and WinRT in this book, but to get you started, take a
look at the default.html file generated by the Navigation App template:

<!DOCTYPE html>
<!-- default.html -->
<html>
<head>
 <meta charset="utf-8" />
 <title>RssReader</title>

FIGURE 1.5: The Visual Studio 2012 Manifest Designer

 10 Chapter 1: Hello, Windows 8!

 <!-- WinJS references -->
 <link href="//Microsoft.WinJS.1.0/css/ui-dark.css" rel="stylesheet" />
 <script src="//Microsoft.WinJS.1.0/js/base.js"></script>
 <script src="//Microsoft.WinJS.1.0/js/ui.js"></script>

 <!-- RssReader references -->
 <link href="/css/default.css" rel="stylesheet" />
 <script src="/js/default.js"></script>
 <script src="/js/navigator.js"></script>
</head>
<body>
 <div id="contenthost" data-win-control="Application.PageControlNavigator"
 data-win-options="{home: '/pages/home/home.html'}"></div>

</body>

</html>

In the head section of the HTML, you’ll notice the link and script
elements that reference the styles and JS files that provide the functionality
of WinJS. Part of that functionality is parsing the data-win-control and
 data-win-options attributes on the contenthost div toward the bottom
of the file.

The data-win-control and data-win-options7 attributes enable
declarative controls in Windows Store apps, essentially turning the HTML
div element into an instance of a PageControlNavigator control from the
RssReader namespace defined with this project. The data-win-options
attribute is a simple JavaScript Object Notation (JSON) object passed to
the control at runtime as constructor arguments. This declarative syntax
allows programmers to easily lay out their controls using either the text
editor built into Visual Studio 2012 or, as we’ll soon see, using visual tools.

In the case of the PageControlNavigator control, what’s happening is
that the default.html file is really just a host for one or more logical pages
that are loaded as your users navigate from one page to another. And, as
you can see in the options for the control, the first page to be loaded is
 homePage.html, which the Navigation App template also generates:

7. The HTML5 specification leaves the data-* attributes as suggested library-specific and
app-specific extensibility points that WinJS takes advantage of along with JavaScript
libraries like Kendo UI, jQuery, and KnockoutJS.

11 Getting Started in Visual Studio 2012

<!DOCTYPE html>
<!-- homePage.html -->
<html>
<head>
 <meta charset="utf-8" />
 <title>homePage</title>

 <!-- WinJS references -->
 <link href="//Microsoft.WinJS.1.0/css/ui-dark.css"”
 rel="stylesheet" />
 <script src="//Microsoft.WinJS.1.0/js/base.js"></script>
 <script src="//Microsoft.WinJS.1.0/js/ui.js"></script>

 <link href="/css/default.css" rel="stylesheet" />
 <link href="/pages/home/home.css" rel="stylesheet" />
 <script src="/pages/home/home.js"></script>
</head>
<body>
 <!-- The content that will be loaded and displayed. -->
 <div class="fragment homepage">
 <header aria-label="Header content" role="banner">
 <button class="win-backbutton" aria-label="Back" disabled
 type="button"></button>
 <h1 class="titlearea win-type-ellipsis">
 Welcome to RssReader!
 </h1>
 </header>
 <section aria-label="Main content" role="main">
 <p>Content goes here.</p>
 </section>
 </div>
</body>
</html>

The HTML in homePage.html is a little bit more complicated than in
default.html because it provides a Back button, a title, and a section
making it pretty clear where Microsoft recommends that you put your
content. In addition, the generated HTML pulls in the homePage.js file,
which is where you put the logic that governs how the home page for your
app is going to function. The generated skeleton code looks like this:

// home.js
(function () {
 "use strict";

 12 Chapter 1: Hello, Windows 8!

 WinJS.UI.Pages.define("/pages/home/home.html", {
 // This function is called whenever a user navigates to this page.
 // It populates the page elements with the app's data.
 ready: function (element, options) {
 // TODO: Initialize the page here.
 }
 });
})();

The code inside homePage.js is wrapped in a self-executing, anony-
mous function, which is a JavaScript trick to keep everything in the func-
tion from leaking into global scope, providing the JavaScript equivalent of
a private module. The "use strict" string is the JavaScript way of adding
extra error checking at runtime, which is another good practice.8

Inside the module, the skeleton code provides a definition of a page
control based on the ready function and the path to the HTML file associ-
ated with the page. A WinJS control is a reusable set of UI and behavior,
whereas a page control is a control created around a logical page of HTML.
The navigation support in the Windows Store app templates simply loads
and unloads page controls as the user navigates between pages.

The ready event is fired when the page control is added to the HTML
 Document Object Model (DOM) and it’s an excellent place for us to show a
list of feeds for our RSS Reader:

// home.js
...
// define the feeds
window.feeds = [
 { title: "Brandon Satrom",
 url: "http://feeds.feedburner.com/userinexperience/tYGT" },
 { title: "Chris Sells",
 url: "http://sellsbrothers.com/posts/?format=rss" },
 { title: "Channel 9",
 url: "http://channel9.msdn.com/Feeds/RSS" },
];

8. Specifically, “use strict” is a feature of ECMAScript 5, which is the latest standard ver-
sion of JavaScript (see http://ecmascript.org/). If you have a .NET background but
are unfamiliar with the basics of JavaScript, I recommend that you read Appendix A,
“JavaScript for C-family Programmers.”

http://ecmascript.org/

13 Getting Started in Visual Studio 2012

WinJS.UI.Pages.define("/pages/home/home.html", {
 ready: function (element, options) {
 // show the feeds
 var section = element.querySelector("section");
 section.innerHTML = "";

 feeds.forEach(function (feed) {
 var div = document.createElement("div");
 div.innerText = feed.title;
 section.appendChild(div);
 });
 }
});
...

The ready function is passed the div that presents the page in the
HTML DOM via the element argument, so it’s a good place to do a query
for the section element to hold our list of feeds. The code inside the ready
function is standard HTML DOM manipulation code using the global
feeds data defined above the function.

Running the app provides a full-screen Windows Store app that looks
like Figure 1.6.

FIGURE 1.6: A list of feed titles in a Navigation App template project

 14 Chapter 1: Hello, Windows 8!

If, in the process of developing this slightly functional app, you find
yourself with issues, you can debug your app using Visual Studio 2012 by
choosing Debug | Start Debugging, which gives you the following debug-
ging tools:

• Debugger: Set breakpoints, use the various step debugger com-
mands, and watch JavaScript data and behavior.

• JavaScript Console: Interact with JavaScript objects at a command
line.

• DOM Explorer: Dig through the HTML DOM and see styles by
element.

• Call Stack: Drill into the current JavaScript call stack.

• Exceptions dialog: Turn on the option to break when a JavaScript
runtime exception is thrown.

In addition to debugging your app on the local machine (which is the
default), you have two other options: remote machine and the simulator.
You can change these options by choosing Project | Properties and select-
ing the debugger to launch, as Figure 1.7 shows.

FIGURE 1.7: Choosing to debug against the local machine, the simulator, or a remote
machine

15 Getting Started in Visual Studio 2012

The idea of remote machine debugging is that you can develop on a
high-powered developer machine but debug on a more modest consumer-
grade machine, like a tablet. This is handy to make sure your app works
well on the type of machine you’re targeting.

The simulator option, on the other hand, creates a remote desktop ses-
sion back to the machine on which you’re already running, providing a
frame that lets you simulate various resolutions, landscape/portrait rota-
tions, and touch, even if you’re not using a touch-capable device. Figure 1.8
shows our sample app running in the simulator.

And, as if that weren’t enough, Visual Studio 2012 is not the only tool
you get when you install Visual Studio 2012 Express for Windows 8. If
you’d like a WYSIWYG design experience for the visual portion of your
app, you’ve got Microsoft Blend for Visual Studio 2012 (a.k.a. Blend).

FIGURE 1.8: A Windows Store app running in the simulator

 16 Chapter 1: Hello, Windows 8!

Controls, Binding, and Styling in Blend

Previous versions of Blend focused on the XAML developer. The Windows 8
version of Blend adds support for HTML to enable the design of Windows
Store apps specifically with the following features:

• Integration with Visual Studio: You can load the same projects in
both Visual Studio 2012 and Blend at the same time. In fact, you can
load the project you’re currently working on in VS by right-clicking
on a project in the Solution Explorer and choosing Open in Blend.

• Project Templates: Visual Studio 2012 and Blend have the same set of
project templates.

• WYSIWYG Design for HTML: Each page of your app is laid out as
you’d see it when the app is running because Blend is actually run-
ning your app to display it accurately as you edit.

• Interactive Mode: You can throw a switch in Blend to run your app
interactively as you navigate from page to page; then, when you get
to a page you’d like to edit, you can flip the switch again and design
the elements currently in view.9

• HTML Tool Palettes: The full set of controls and options are available
from a tool palette and property editor.

• Layout Simulator: In the same way that VS provides a device simu-
lator, Blend allows your app to be run and edited in one of several
sizes and rotations.

Figure 1.9 shows Blend in action on our RSS Reader sample so far.
You’ll notice in Figure 1.9 that even though we’re inside Blend, our

JavaScript code is executing, which is producing the list of feed titles we
have. Blend executes your HTML, JavaScript, and CSS as it detects changes
to make sure that you’re editing the live version of your app. Sometimes
it gets a little confused, however, so you can kick it in the pants manually
with the Refresh button in the upper right of the design surface.

9. This is one of the most amazing development features of any platform ever. Highly
recommended.

17 Controls, Binding, and Styling in Blend

To take advantage of that power, let’s do a little work in Blend. Right
now the JavaScript code is generating a bunch of div elements instead of
using one of the many controls that comes out of the box for Windows Store
development. In particular, we’d like to use a ListView control to display
those feed titles. Before we do that, however, we want to open the home.js
file either in Blend (via the Projects tab in the upper left) or in Visual Studio
2012 (making sure to save it and let Blend reload it when it asks) to remove
the code in the ready function:

// home.js
(function () {
 "use strict";

 // define the feeds
 window.feeds = new WinJS.Binding.List([
 { title: "Brandon Satrom", url: ... },
 ...
]);

 WinJS.UI.Pages.define("/pages/home/home.html", {
 ready: function (element, options) {
 // let the ListView show the feeds
 }
 });
})();

FIGURE 1.9: Microsoft Blend for Visual Studio 2012

 18 Chapter 1: Hello, Windows 8!

In addition to removing the code in the ready function that creates
the div elements for our feed titles, we’ve wrapped our feed data in an
instance of the WinJS.Binding.List object, which will let the ListView
consume it via data binding.

Once we’ve updated home.js, Blend will show that there are no ele-
ments showing the feed data (and if it doesn’t, the Refresh button in the
upper right above the design surface will put it right). Instead, it will show
the paragraph element that says, “Content goes here.” You can delete
that by clicking on it twice—first to select the contenthost element on
default.html, and then again to select the paragraph in the hosted home.
html—and then pressing the Delete key.

To see the set of WinJS controls so that you can add a ListView control,
click on the Assets tab in the top left and choose JavaScript Controls. Fig-
ure 1.10 shows the Assets tab and the ListView control.

FIGURE 1.10: Using Blend to add a ListView control to a Windows Store app

19 Controls, Binding, and Styling in Blend

Before adding a ListView, make sure you’ve got the section where
we’ve been putting our content selected so that it makes a big target. The
easiest way to do that is to drill into the Live DOM on the lower left until
you find it, as Figure 1.10 also shows. Now, you can drag the ListView
from the Assets tab either onto the section tag in the Live DOM or onto the
design surface—it’s up to you.

Once you have the ListView in the DOM, you can edit the HTML and
CSS properties on the right, as Figure 1.11 shows.

The Windows App Controls section of the HTML Attributes tab (as seen
in Figure 1.11) is where you get to set all of the options specific to a particu-
lar control. For the ListView, we want to set the itemDataSource prop-
erty to bind to the feeds data we created earlier in home.js. Specifically,
we want to set itemDataSource to feeds.dataSource, which is a prop-
erty of the WinJS.Binding.List object we created earlier, specifically for
binding with list controls. Once we’ve done that, you’ll see the ListView
update itself immediately to show the data, as Figure 1.11 shows, in a jum-
bled mess.

The problem is that we’re no longer separating the data from the feeds
list into the specific parts we want to show (the title) and the parts
we don’t want to show (the url). To do that, we’ll need to provide the
ListView with a template.

FIGURE 1.11: Using Blend to bind a ListView to a list of data

 20 Chapter 1: Hello, Windows 8!

A template is a reusable chunk of HTML that is provided for the pur-
pose of binding items, like what we want to do here. The easiest way to
do this is to click on the itemTemplate property right underneath the
itemDataSource property and choose the <Create new template> option,
which will give you the Create New Template dialog shown in Figure 1.12.

Once you identify your new template, you’ll see that the display has
updated a little, as Figure 1.13 shows.

FIGURE 1.12: Using Blend to create a data template

FIGURE 1.13: Using Blend to examine the contents of a data template

21 Controls, Binding, and Styling in Blend

By selecting an item from the ListView, you’ll see that the textContent
for that item is binding to the entirety of each object, which you can see
by clicking on the little square next to the textContent field and choos-
ing Edit Data Binding. The “Binding value” dialog shows the binding to
the this value, but we only want to bind to the title property of each
object instead of the whole object. To fix this, set the value of the binding to
text instead of this, click the Refresh button, and you’ll get exactly what
you’re after, as Figure 1.14 shows.

Some important stuff is going on under the covers in the HTML
with respect to binding and controls that you’ll want to read all about in
Chapter 2, “Binding and Controls.”

In addition to editing HTML—especially HTML5, which works well with
WinJS—Blend is also excellent at managing CSS styles. To see the set of styles
in our project, click on the Style Rules tab on the upper left (Figure 1.15).

FIGURE 1.14: Using Blend to modify the contents of a data template

FIGURE 1.15: Using Blend to manage the styles in your project

 22 Chapter 1: Hello, Windows 8!

If we want to increase the size of the feed titles to make them more
visible, we’ll first want to create a new style, which you can do by right-
clicking on home.css, choosing Add Style Rule, and then entering the
selector of your new style; for example, .feedTitle (including the leading
dot). To associate the new CSS class with your feed titles, select one of the
feed titles on the design surface and set the class property in the HTML
tab to the new class; for example, feedTitle (no leading dot). Figure 1.16
shows what this looks like.

Associating the feedTitle class with one of the feed titles in the list
actually sets it for all of them because the feed titles come from a repeating
template, and Blend knows that. You can see this by selecting .feedTitle
from the Applied Rules list of the CSS Properties tab, as Figure 1.17 shows.

The boxes around the feed titles in Figure 1.18 make it clear what ele-
ments will be affected when you make CSS property changes. Now,
it’s very easy to set the width and font size for all feed titles at once, as
Figure 1.18 shows.

FIGURE 1.16: Using Blend to associate a class with one item from a template associates
it with all items from that template.

FIGURE 1.17: Selecting a CSS rule in Blend shows all elements to which that rule is
applied.

23 Controls, Binding, and Styling in Blend

Blend allows you to edit an app interactively while it’s running, which
gives you a very fast turnaround time when you’re designing the look and
feel of your app. For a much more thorough examination of what you can
do with CSS in Windows Store apps, including Blend’s support for styl-
ing and view modes (e.g., landscape, portrait, etc.), you’ll want to read
Chapter 3.

So, at this point our feed titles are attractive. However, they’re not yet
interactive. As the user invokes one of the items—using the keyboard,
mouse, or finger—we want to take the user to a page showing the items
from that feed. And for that, we’ll need navigation.

FIGURE 1.18 Using Blend to change CSS properties interactively

 24 Chapter 1: Hello, Windows 8!

Navigation

The idea of navigation between pages is not new. In fact, it’s the Hyper-
text part of the Hypertext Markup Language (HTML). As the user clicks on
links (or HTML elements with onclick handlers), we often want to bring
up a whole new page of data, controls, images, and so forth. In the browser,
when this happens, we most often pull down a new page, blanking out the
screen and clearing out all of the current state. While we can navigate in a
Windows Store app in the same way we can in the browser, we generally
prefer to use the navigation service built into WinJS, which gives us much
greater control over the UI as we move from page to page and allows us to
keep the app state we build up over time, like we can with our list of feeds.

However, before we navigate anywhere, we need somewhere to navi-
gate to. And for that, you’ll want to right-click on the pages folder in your
project from the Solution Explorer and add a new folder for your page
using Add | New Folder, calling it postsPage. This will hold the files
for your new page, which you can add to that folder by right-clicking
and choosing Add | New Item and then choosing the Page Control item
from the JavaScript | Windows Store category. What you’ll see looks like
Figure 1.19.

FIGURE 1.19: The Add New Item dialog for Windows Store apps

25 Navigation

Each of the item templates in the Windows Store category produces a
set of three files—an HTML file, a CSS file, and a JavaScript file—that com-
pose a page control suitable for use in WinJS navigation. The Page Control
template creates a blank page control. The other three templates help you
implement shell contracts, which you can read all about in Chapter 9,
“Shell Contracts.”

Entering the name, such as postsPage.html, and pressing Add creates
the three new files for our page control, as Figure 1.20 shows.

That’s all we need to do to get a page ready to be a navigation target—
the question is, how do we perform the navigation? In the case of the
ListView, we need to let the ListView know we’d like to be notified when
an item is invoked, as shown in the code on the following page.

FIGURE 1.20: A new page control added to a Windows Store app

 26 Chapter 1: Hello, Windows 8!

<!DOCTYPE html>
<!-- home.html -->
<html>
<body>
 ...
 <section aria-label="Main content" role="main">
 <div data-win-control="WinJS.UI.ListView"
 data-win-options="{
 itemDataSource: feeds.dataSource,
 itemTemplate: select('#feedTemplate'),
 selectionMode: 'none',
 oniteminvoked: feedInvoked}">
 </div>
 </section>
 </div>
</body>
</html>

Remember when we added the ListView control to the design surface
in Blend? All that did was add the div and set the data-win-control and
data-win-options attributes. The div represents the WinJS control in the
HTML DOM, and WinJS.UI.ListView is the name of the JS constructor
function (which you can learn all about in Chapter 2). You may also recog-
nize the itemDataSource and itemTemplate settings we set in the Blend
properties panel.

You don’t have to use Blend to edit those properties; your favorite text
editor will do. In this case, we need to set the selection mode to none (we
don’t want selection—we want invocation), and we set the name of the
handler we want to call when the user invokes an item. The handler is
implemented in the corresponding JavaScript file:

// home.js
(function () {
 "use strict";

 window.feeds = new WinJS.Binding.List([
 { title: "Brandon Satrom", url: ... },
 ...
]);

 // mark the event handler as safe for declarative use
 window.feedInvoked = WinJS.UI.eventHandler(function (e) {
 // navigate to the page to show the feed's posts
 var feed = feeds.getAt(e.detail.itemIndex);

27 Navigation

 WinJS.Navigation.navigate(
 "/pages/postsPage/postsPage.html", { feed: feed });
 });

 ...
})();

The feedInvoked handler is wrapped in the eventHandler func-
tion, which marks it as safe for use from the data-win-options in the
home.html file. This is a security measure to make sure that HTML down-
loaded from the Internet doesn’t get to hijack your apps.

The implementation of the feedInvoked handler reaches into the
detail property of the event object to find the index of the item that was
invoked. This feed object is passed to the postsPage using the navigate
method. The navigation services of WinJS then loads the postsPage and
passes the feed object to the ready function via the options parameter:

// postsPage.js
(function () {
 "use strict";

 WinJS.UI.Pages.define("/pages/postsPost/postsPage.html", {
 ready: function (element, options) {
 // TODO: do something with the feed object the user invoked
 var feed = options.feed;
 },
 });
})();

Now that we have an invoke handler set up on the ListView, clicking
on a feed title on the home page (Figure 1.21) brings us to the page we’ve
built to show the feed’s posts (Figure 1.22).

By now, you may have noticed that while the Back button element
is present in home.html, it’s not showing in Figure 1.21, even though it is
showing in the postsPage.html shown in Figure 1.22. That’s because the
navigation support in the templates is smart enough to know that there is
no history before the home page to go back to, which is why it only shows
the Back button where there is a “back” to go back to. Further, you can’t see
this, but the templates also support the Back and Forward keystrokes that
the browser supports (like Alt+Left Arrow and Alt+Right Arrow).

 28 Chapter 1: Hello, Windows 8!

All of this means that you can write your pages as page controls and
pass objects around, letting the navigation support in the templates do the
heavy lifting.

Of course, we’re not done with even the basic functionality of our RSS
Reader yet because we still haven’t downloaded the posts from the selected
feed. To do that, we’ve got to write a little networking code.

FIGURE 1.21: Triggering the invoke event on a ListView control

FIGURE 1.22: Navigating to a page control using the WinJS navigation service

29 Networking in WinJS and WinRT

Networking in WinJS and WinRT

A large number of client-side apps require access to data provided over
the Web, among them e-mail, photo browsing, social networks, music
playback, document syncing, and multiplayer games. If you can name a
popular app built in the past decade, chances are that it makes use of data
accessed over a network. Toward that end, Windows Store apps have sev-
eral ways to access data over the network, including the most basic: the
 XMLHttpRequest object.

XMLHttpRequest (XHR) is the name of the object that sparked the AJAX10/
Web 2.0 revolution in 2005 (although the object has been part of Internet
Explorer since version 5.0, released in 1999).11 It provides for downloading data
using HTTP. The xhr function provided with WinJS is an XMLHttpRequest
wrapper that only requires the URL from which to retrieve data:

// postsPage.js
...
WinJS.UI.Pages.define("/pages/postsPage/postsPage.html", {
 ready: function (element, options) {
 // download the feed
 this.feed = options.feed;
 var pageTitle = element.querySelector(".pagetitle");
 pageTitle.innerText = this.feed.title;

 this.section = document.querySelector("section[role=main]");
 this.section.innerHTML = "<p>downloading...</p>";

 // download using XMLHttpRequest by creating a promise and
 // telling it what to do when it's done

 // the long way
 var xhrPromise = WinJS.xhr({ url: this.feed.url });
 xhrPromise.done(
 processPosts.bind(this), downloadError.bind(this));

 // the short way (recommended)
 WinJS.xhr({ url: this.feed.url }).
 done(processPosts.bind(this), downloadError.bind(this));
 },
});

10. Asynchronous JavaScript And XML, as coined by Jesse James Garrett in 2005.
11. Brandon likes to claim that he was doing AJAX “before it was cool,” as far back as

2001 using XHR, ASP 3.0, VB6, and COM, though we haven’t found anyone to corrob-
orate his story.

 30 Chapter 1: Hello, Windows 8!

Before downloading the feed data, we stash the feed object into a prop-
erty associated with this instance of the postsPage page control, set the
page title using the feed’s title, and set a progress indicator for download.
The reason we let the user know that we’re downloading is because there’s
no telling how long it’s going to take to do the actual download. Further,
when we call the xhr function, passing in the URL for the feed, the result
is not returned to us synchronously, blocking UI updates until the data
winds its way back from some random server on the Internet. Instead, the
return from xhr is a promise.

In fact, all asynchronous functions in WinJS (and in the WinRT) return
an instance of WinJS.Promise, which represents results to be provided
at some time in the future. The Promise object exposes the done method,
which takes three functions as optional arguments: one for success, one for
failure, and one for progress.

Upon success, our processPosts method is called:

// process using XMLHttpRequest
function processPosts(request) {
 // clear the progress indicator
 this.section.innerHTML = "";

 // parse the RSS
 var items = request.responseXML.querySelectorAll("item");
 for (var i = 0, len = items.length; i < len; i++) {
 var item = items[i];
 var parent = document.createElement("div");
 appendDiv(parent,
 item.querySelector("title").textContent, "postTitle");
 appendDiv(parent,
 item.querySelector("pubDate").textContent, "postDate");
 appendDiv(parent,
 item.querySelector("description").textContent, "postContent");
 this.section.appendChild(parent);
 }
}

function appendDiv(parent, html, className) {
 var div = document.createElement("div");
 div.innerHTML = toStaticHTML(html);
 div.className = className;
 parent.appendChild(div);
}

31 Networking in WinJS and WinRT

This code is pretty standard HTML DOM manipulation and XML pro-
cessing code familiar to any experienced JavaScript programmer, creating
div elements as we did earlier in the chapter. The only thing that’s unique
to Windows Store apps is the call to the toStaticHTML method. This call
is specifically for when we have random HTML from an unknown source.
By default, when setting the HTML of an element, the HTML engine will
throw an exception if it finds a piece of dynamic HTML such as a script tag.
The toStaticHTML call strips out any dynamic HTML it finds, rendering
the content unable to take over your app.12

In the event that there’s an error, we let the user know:

function downloadError(feed) {
 this.section.innerHTML = "<p>error</p>";
}

With this code in place as well as some styling in postsPage.css, our
app is finally starting to rock, as you can see in Figure 1.23.

At this point, there are a few nits in our networking code that we might
like to work through. For example, Brandon puts a summary of his posts in
his feed’s description field, whereas I put my entire set of content in there
(both approaches are valid). Also, the XML parsing code we’ve written is
specific to RSS,13 whereas most blogs these days support Atom.14 Luckily,
because RSS and Atom are so prevalent on the Internet, the WinRT library
provides a set of types for dealing with feeds of both syndication formats:

WinJS.UI.Pages.define("/pages/postsPage/postsPage.html", {
 ready: function (element, options) {
 ...
 // download using WinRT
 var syn = new Windows.Web.Syndication.SyndicationClient();
 var url = new Windows.Foundation.Uri(this.feed.url);
 syn.retrieveFeedAsync(url).done(
 processPosts.bind(this), downloadError.bind(this));
 },
});

12. If you’d like to know more about your options for bringing external HTML into your
app safely, see Chapter 8, “Networking.”

13. The RSS format is an XML language for publishing updates to content-oriented data.
14. The Atom syndication format is the successor to RSS.

 32 Chapter 1: Hello, Windows 8!

In this code, we’ve replaced the use of the xhr function with the WinRT
 SyndicationClient and Uri types from the Windows.Web.Syndication
and Windows.Foundation namespaces, respectively. Like the xhr func-
tion, the retrieveFeedAsync function is asynchronous, returning a prom-
ise that works exactly like every other async function in WinJS or WinRT.
In our success handler, we handle a list of posts instead of raw XML:

// process using WinRT
function processPosts(request) {
 // clear the progress indicator
 this.section.innerHTML = "";

 // iterate over the items
 for (var i = 0, len = request.items.length; i < len; i++) {
 var item = request.items[i];
 var parent = document.createElement("div");
 appendDiv(parent, item.title.text, "postTitle");
 appendDiv(parent, item.publishedDate, "postDate");
 appendDiv(parent, item.summary.text, "postContent");
 this.section.appendChild(parent);
 }
}

FIGURE 1.23: Showing the contents of an RSS feed using WinJS.xhr

33 Networking in WinJS and WinRT

The updated networking code is a little smarter about where Brandon
keeps all of his content, as Figure 1.24 shows.

And not only is the WinRT smart about Brandon’s feed and RSS versus
Atom, but you’ll notice that Visual Studio 2012 is smart about the WinRT.
At no time did I need to add a WinRT reference or do anything else spe-
cial to access a WinRT type or namespace. In fact, if you start typing “Win-
dows.” inside Visual Studio 2012, you’ll see that it knows all about it (see
Figure 1.25).

You’ll see a great deal more of WinRT throughout this book, but I
encourage you to dig around the Windows namespace on your own;
there’s a lot of good stuff in there.

FIGURE 1.24: Showing the contents of an RSS feed using the WinRT SyndicationClient

FIGURE 1.25: Visual Studio 2012 knows WinRT!

 34 Chapter 1: Hello, Windows 8!

Split App Template

Further, not only does Visual Studio 2012 know about the WinRT names-
paces and types, but also it has been built to know about the Windows
8 user experience style guidelines themselves. As I mentioned, the Blank
App, Fixed Layout App, and Navigation App project templates all produce
apps that are essentially blank, making for a good base from which to build
up. However, the Grid and Split App project templates are meant to be liv-
ing, breathing Windows Store apps that follow the UX guidelines to the
letter, helping you make sure that you’ll build great Windows 8 apps as
easily as possible.

For example, if you run the Split App project template and run the app
without any changes, you’ll have an app with two pages, as shown in Fig-
ure 1.26 and Figure 1.27.

FIGURE 1.26: The itemsPage.html page from the Split App project template, showing
groups of things

35 Split App Template

The home page shown in Figure 1.26 is meant to act as a group of things,
such as teams of players, groups of people, or, as in our case, feeds of news
items. The page you get when you click on one of the groups is shown in
Figure 1.27. It represents a list of items in a group; for example, players in
a team, people in a group, or news items from a particular feed. In short,
the Split App is perfect for our RSS Reader app. The data is all static sam-
ple data hardcoded in data.js, but replacing the static data with dynamic
data is a pretty easy thing to do:

// data.js
...
var list = new WinJS.Binding.List();
...
// TODO: Replace the data with your real data.
// You can add data from asynchronous sources whenever it becomes available.

FIGURE 1.27: The itemsPage.html page from the Split App project template, showing
a list of items

 36 Chapter 1: Hello, Windows 8!

//generateSampleData().forEach(function (item) {
// list.push(item);
//});

var feeds = [
{ key: "feed1", title: "Brandon Satrom", subtitle: "blog",
 backgroundImage: darkGray,
 description: "blog",
 url: "http://feeds.feedburner.com/userinexperience/tYGT"
},
{ key: "feed2", title: "Chris Sells", subtitle: "blog",
 backgroundImage: lightGray,
 description: "blog",
 url: "http://sellsbrothers.com/posts/?format=rss"
},
{ key: "feed3", title: "Channel 9", subtitle: "blog",
 backgroundImage: mediumGray,
 description: "blog",
 url: "http://channel9.msdn.com/Feeds/RSS"
}];

feeds.forEach(function (feed) {
 // download the feed
 var syn = new Windows.Web.Syndication.SyndicationClient();
 var url = new Windows.Foundation.Uri(feed.url);
 syn.retrieveFeedAsync(url).done(processPosts.bind(feed));
});

function processPosts(request) {
 var feed = this;
 request.items.forEach(function (item) {
 // create a post for each item
 var post = {
 group: feed,
 title: item.title.text,
 subtitle: item.publishedDate,
 description: "post",
 content: toStaticHTML(item.summary.text),
 backgroundImage: feed.backgroundImage,
 };

 // let the list know about each post
 list.push(post);
 });
}
...

37 Split App Template

Toward the top of data.js is a comment that begs us to replace the use
of the sample data with our real data. Here we’ve dropped in our array of
feeds to iterate over, pulling in our posts asynchronously, just as we did
earlier in the chapter. The code to pull in our data and matching it to the
shape of the group and item data assumed in the rest of the app is all that’s
required to build the complete RSS Reader built up manually throughout
this chapter (and shown in Figure 1.28 and Figure 1.29).

As you can see in Figure 1.29, the second page of the Split App (the
splitPage page control) is fancier than what we built: It uses the CSS Grid
for layout, changing the content the user is viewing on the right based on
the item he chose on the left. The other major feature that the built-in Split

FIGURE 1.28: The itemsPage.html page from the Split App project template, showing
real data

 38 Chapter 1: Hello, Windows 8!

and Grid App project templates have is support for view state changes as
the user moves between landscape, portrait, filled, and snapped modes.
Figure 1.30 shows our shiny new RSS Reader in snapped mode (which you
can get to most easily by pressing Win+period).

You can read all about the view states in Chapter 3, “Layout.”

FIGURE 1.29: The splitPage.html page from the Split App project template, showing
real data

39 Split App Template

FIGURE 1.30: The snapped mode support built into the Split App project template

 40 Chapter 1: Hello, Windows 8!

The Rest

But wait! There’s more!

• If you wanted to add support for the media enclosures that the
Channel 9 feed provides, you can learn how to do that in Chapter 5,
“Media.”

• To add cool animation support as the user navigates between pages,
read Chapter 6, “Drawing and Animation.”

• For keeping track of the posts that users have previously read
between sessions of the app or to let them choose which feeds
they’d like to read, check out Chapter 7, “App State.”

• To let users create posts tagged with their current GPS coordinates or
to refresh the feed data when users shake their tablets, read Chap-
ter 11, “Device Interaction.”

• If you need to extend your Windows Store app with native code writ-
ten in C++ to do something heavy-duty, like calculating the 10,000th
digit of pi, you’ll want to dig into Chapter 12, “Native Extensibility.”

• And finally, to learn how to deploy your app, handle trial mode, or
stick advertisements at the bottom of each post, you’ll want to read
Chapter 13, “Making Money.”

Where Are We?

This chapter has been a whirlwind tour through the tools, techniques, and
technologies associated with Windows Store apps built using JavaScript
for Windows 8 via Visual Studio 2012 and Blend. It may seem like a lot, but
we’ve really only scratched the surface. Keep reading; we’re just getting
started!

565

Index

Symbols
$ (dollar sign) in substring attribute

selectors, 552
& (ampersand) in C++ references, 423
-> (arrow) operator, 423
* (asterisk)

in C++ pointers, 423
in substring attribute selectors, 552
universal selector, 544

^ (caret)
in substring attribute selectors, 552
type modifier in C++/CX, 422

> (child selector), 546
: (colon) in pseudo-class and pseudo-

element selectors, 549
. (dot)

class selector, 545
dot operator, 413

= (equals sign)
=== and !== operators, using for object

identify, 424
== (equal to) operator in JavaScript, 509
=== (identity) operator in JavaScript, 509

! (exclamation mark) as warning icon, 149
@font-face rule, 125, 148

referencing in font-family property, 126
(hash symbol), id selector, 545
[] (square brackets), array operator, 55, 432
_ (underscore), pefixing property and

method names, 73

A
ABI (application binary interface), 406
Accelerated Massive Parallelism (AMP), 405
AccelerationX, Y, and Z values, 399
accelerometer, 398
accessibility

HTML5 video integrated into
applications, 166

information on your app, 464
activation, 240

activated event, WinRT, 245
activate event, 239
app activation from toast, 361
checking for toast activation, 362
file, 259–261
primary and secondary tiles, 347
search, 300
Share target, 311, 314
WinJS, 505
WinJS activated helper event, 252

ActivationKind
file, 260
search, 300

Add-AppxPackage command, 4
addEventListener method, 76, 442, 443
Add New Item dialog, 24
adjustVolume function, 162
ad platforms, 453
ads in your app, 476–482

media-based ads, 477–480

 566 Index

ads in your app (contd.)
rules for Windows 8–style apps, 476
text-based ads, working with, 480–483
working with Windows 8 Ads SDK, 477

adUnitId value, 478, 481
advanced features, specifying for your app,

466
::after pseudo-element, 138
age rating and rating certification, 466
AJAX (Asynchronous JavaScript and XML),

273
AMP (Accelerated Massive Parallelism),

405
animatable properties, 217
animation, 193

activation and dismissal, Win8 touch apps,
373

circle in Canvas, 203
fade effects, for ad control, 482
in Windows Store apps, 212–224

fast and fluid, 213
transforming and animating with CSS,

213–219
using WinJS Animation library, 220–224

SVG animation with JavaScript, 198
animation-direction property, 219
animation-duration property, 219
animation-iteration-count property, 219
animation-name property, 219
animation-timing-function property, 219
anonymous functions, 521
AppBarCommands, 140

referencing AppBarIcon enum values, 146
Windows 8 touch-style control, 373

AppBar control, 140
building for Windows 8–style apps, 372
Pin to Start Screen button, 344, 346
touch, mouse, and keyboard interactions

with, 379
WinJS animation, 221

AppBarIcon enumeration, 140
enumeration values and icons, 142–146

appIconStreamReference helper, 304
application binary interface (ABI), 406
ApplicationData class, 227, 252–254

current.localFolder property, 253
Application object

activated event, 241, 506
local, roaming, and temp file folders, 255
settings event, 230

ApplicationView class, 113
ApplicationViewState enumeration, 113
app name, reserving, 454, 456
AppPackages folder, 467
AppSimulator object, 486
Apps search provider, 297
app state, 225–266

files, 252–256
libraries, 256–265
lifetime, 238–252
settings, 226–238

.appx files, 4
adding and verifying addition of, 5

appxmanifest.xml file, 3
example, 3

appx module, 4
.appxupload file, 467
arcs, drawing in Canvas, 201
arguments (functions in JavaScript), 522
Array object, 433, 514
ArrayReference class, 432
arrays

JavaScript, 54, 512–514
WinRT types in C++/CX and JavaScript,

427, 431
arrow (->) operator, 423
article element, 538
as method, 46
assignment versus binding, 42
Asynchronous JavaScript and XML (AJAX),

273
asynchrony

asynchronous data model, 62
asynchronous functions, 32
concurrency and, 443–451
show Async method, MessageDialog

class, 64
AsyncStatus::Error, 445
Atom syndication format, 31, 278
attribute selectors, 548
attributes (HTML), adding to controls via

Blend, 19
audio and video, 155–156

adding subtitles to video, 163–170
adding video effects, 167–170
audio formats supported in Windows

Store apps, 159
audio in Windows Store apps, 170
creating background audio, 171–192

audio bar, playing HTML5 audio, 159

567 Index

audio element, 156, 539
assigning audioFile objectUrl to, 384
attributes, 158
recording device, 381

audioFile object, 384

B
back buttons, 136

icon for, 137
background audio, creating, 171–192
BackgroundCapableMedia property, audio,

172
background data transfer, 280–283
BackgroundDownloader object, 280
BackgroundTaskBuilder object, 352
background tasks, 350–358

app with, declaration in manifest, 351
avoiding task duplication, 357
creating, 352–354
lock screen apps, 355–357
triggering, 351–352

backgroundtasks.js file, 351
badges, 348–350

for lock screen apps, 355
pulling in badge data from the Internet,

350
Badge Update Manager (BUM), 348
base.js file, 506
::before pseudo-element, 138

Heydings font for, 150
bind function implemented with the call

function, 524
binding. See data binding
bind method, 51
Bing

app, front and back with peeking, 334
Map control, hosting in Windows Store

app, 288–291
Maps, using location data with, 391
search results, 275

bitmap data, sharing, 320
BitmapTransform object, 211
Blank App template, 7
Blend, 15

adding CSS media queries in, 87–90
changing display resolution in, 86
controlling device orientation, 94
controlling view states, 97
controls, binding, and styling in, 16–23

adding ListView control via, 18
binding ListView to data source, 19
managing CSS styles, 21

Flexbox section in CSS Properties window,
106

high-resolution view of application, 92
Multi-Column Layout, 109
viewing CSS Grid Layout lines, 101

blockquote element, 130
body element, Grid layout defined on, 100
borders, style rules for, 138
BUM (Badge Update Manager), 348

C
Cached File Updater contract, 296
Calibri font, 120, 123–124

with font-feature-settings applied, 134
callback parameters, UICommand object, 65
call function, 523–525
Call Stack (Visual Studio 2012), 14
Cambria font, 120, 122
camelCase, 412
CameraCaptureUI API, 185–189
CameraCaptureUIMode, 188

video, 188
canceling ongoing downloads, 272
cancelled event, background tasks, 353
Canvas, 199–204

animating a circle, 203
choosing between SVG and, 204–206
drawing context for, 200
fill and stroke functions, 201
HTML5 graphics with, 193
pixel manipulation with, 206–209

canvas element, 75, 199, 538
capabilities, device, 380–387

adding in-app print capabilities, 384–387
recording devices, 381–384

captions
adding subtitles to video, 163–170
caption element, removing float on, 98

captions.vtt file, 164
captured media, working with, 185–189
Cascading Style Sheets. See CSS
case

setting with text-transform property, 131
WinRT declarations projected into

JavaScript, 412
category and subcategory for your app, 464

 568 Index

C/C++
C++ 11 lambdas, 436–439
C++ for high-performance games, 205
JavaScript programs interacting with, 405
projecting WinRT constructs into C++, 407

C++/CX (C++ Component Extensions), 407
addding C++ component to JavaScript

program, 407–409
concurrency and asynchrony, 443–451
defining WinRT types, 411
delegates and functions, 435–440
WinRT classes, 413–421
WinRT objects, 421–424
WinRT types in C++/CX and JavaScript,

424–435
arrays, 431–433
strings, 429–431
value types, 433–435

certification by Windows Store, 471
certification failure report, 473
Character Map application, 138

Segoe UI Symbol characters viewed in,
139

visualizing custom fonts in, 149
Charms bar, 294

initiating contract via, 295
Search charm, 297

checkboxes, adapting to touch, 368
checkpoint event, 242, 251
child selector, (>), 546
circle element, 195
circles

animation in Canvas, 203
drawing with Canvas, 199
drawing with SVG, 195
styling SVG circle, 196

Class.define method, 519
Class.derive and Class.mix methods, 520
classes

class keyword in WinRT type declarations,
414

definitions via WinJS, 519
WinRT, 413–421

methods, 414
WinRT types in C++/CX and JavaScript,

425
class selector (.), 545
clipboard, 293
closures, 435, 525
code examples for this book, 75

colors
adding background color to svg container,

196
CSS background-color rule applied to svg

element, 197
defining for gradients, 195
defining for radial gradient in Canvas,

200
defining for radial gradient in JavaScript,

197
column-count property, 108, 109
column-fill property, 109, 110
column-gap property, 109, 110
column-rule-color property, 109, 110
column-rule-style property, 109, 110
COM (Component Object Model), 406

HRESULTs, 417
LPCWSTR-based APIs, 429
Windows Runtime Library (WRL), 407

commandsrequested event, SettingsPane
object, 229

Common Language Infrastructure (CLI)
metadata format, 406

Common Language Runtime (CLR), 406
Communications value,

msAudioDeviceType attribute, 171
compass, 400

readings, 401
concurrency and asynchrony, 443–451
concurrency::concurrent_vector<T>, 451
conditions for background triggers, 352
Console value, msAudioDeviceType

attribute, 171
const modifier, 432
constructors

JavaScript, 514–515
WinRT classes, 413
WinRT, defining and invoking from

JavaScript, 421
const wchar_t* values, 429
contactnremoved event, 329
ContactPicker object, 322–325

contactPickerUI argument, 326
contact providers, 324, 325–332

debugging in Visual Studio 2012, 332
Contacts contract, 322–330

Contact Picker, 296, 322–325
filtering contacts, 324

contact providers, 325–330
contacts.html file, 327

569 Index

content property, 138
contracts, 295–297. See also shell contracts

list of Windows 8 contracts, 296
control attribute, 478
Control Panel, 294
controls, 63–78

adding via Blend, 17
ads from Advertising SDK, 478
caption bar on video controls, 165
custom, 70–78

control class, 72
events, 75
properties and methods, 73

custom video controls with JavaScript,
161

families of, 63
HTML5, 63
MediaControl object, for background

audio, 174
page control for WinJS navigation, 25
playback controls for audio and video

elements, 158
settings panel, 234
templates, 60–63
touch-friendly HTML controls, 367–369
touch, mouse, and keyboard interactions

with, 379
WinJS, 66–69
WinJS animations, 221
WinJS touch-friendly controls, 369–370
WinRT, 64

controls attribute, video element, 162
converter function, 52
costType function, 270
counters

C++/CX implementation, 440
consuming C++/CX counter in JavaScript,

440
JavaScript implementation, 439

crashes and hangs test, 460
Create App Package wizard, 460, 474
createEventProperties method, WinJS.

Utilities, 76
createFileAsync function, 253
createFiltered function, 56
createGrouped function, 59
Create New Template dialog, 20
createSorted function, 56
createToastNotifier method, 361
cryptography, 466

CSS, 9, 533
changing properties using Blend, 23
CSS3 Web Fonts, 124–128
execution by Blend, 16
layout capabilities, using to adapt your

app, 99–104
adaptive layouts for app content, 103
CSS3 Grid Layout specification, 100–103

managing styles with Blend, 21–23
media queries

checking app orientation, 95
high-definition resolutions support, 91
styles for Snapped and Filled views, 97
using to adapt to resolutions, 86–91

styled HTML elements as control
containers, 63

styling icon fonts, 150–154
styling media, 159

HTML5 video elements, 160
styling SVG elements and their children,

197
transforming and animating with, 213–219

animation, 218
transitions, 215
WinJS wrapper functions for, 223

transforms, 151
using Flexbox for adaptive UIs, 104–107
using for app layout and style, 541–558

CSS and Windows Store apps, 558–564
how CSS rules cascade, 555–560
where to define for Windows Store apps,

553–555
using Multi-Column Layout for adaptive

content, 107–110
using to tweak typography, 129–135

CSS3 Media Queries module, 87
CurrentApp object, 494
currentApp property, Store namespace, 483
CurrentAppSimulator object, 483, 486, 494
cursive fonts, 127

D
DalekIpsum.com, 214
data-* attributes (HTML5), 10, 539–541
data/begin/end/size, 429
data binding, 41–63

data list to ListView control for file picker,
182

grouping of binding lists, 58–59

 570 Index

data binding (contd.)
initializers, 51–53
lists, 53
ListView, using Blend, 19
objects, 42–51

change in data updating bound
elements, 47

listening for value to change, 50
rebinding different objects to same

elements, 49
view model, 48

sorting and filtering binding lists, 55–57
tile updates, 339
types of, 42
using templates, 60–63
WinJS.Binding.List object, 18

data context, setting in binding operation,
45, 48

data conversion, 52
numeric age into words, 52

data.js file, 62, 236, 247
Data namespace, 235

appIconStreamReference helper, 304
resolveItemResource method, 305

DataPackage object, 306, 310
DataPackageView class, 319
datarequested event, 307
dataSource property, 54
data templates, creating in Blend, 20
data transfer, background, 280–283
DataTransferManager object, datarequested

event, 305
data types. See types
data-win-bind attribute, 44, 60

bind handler processing of, 51
data-win-control attribute, 10, 60

control creation via, 68
data-win-control declarations, 370

WinJS.UI.AppBar, 373
WinJS.UI.AppBarCommand, 373

data-win-options attribute, 10
ad initialization, 478
custom clock control, 74
DatePicker control, 68
groupHeaderTemplate and itemTemplate

properties, 61
Date object, 68, 511
DatePicker control, 66, 369
debug configuration test, 460
Debugger (Visual Studio 2012), 14
debugging

Debug Output, 525

sessions, 246–249
using VS2012, 14

decoders and encoders for images, 211
default attribute, track element, 165
default.css page, 89
default.html file, 3, 9
default.js file, 506

Share contract support, handling
datarequested event, 307

[DefaultOverload] metadata attribute, 416
deferral, 240

getting and completing in WinJS, 241
define function, 72
defineProperties method, Object class, 73
delay property, 217
delegate keyword, 436
delegates, 427, 435–440

creating WinRT delegates from C++ 11
lambdas, 439–451

using with events, 440–443
descendant selector, 547
description field, WinRT exceptions, 419
description of your app, 468–471

promotional images, 496
Desktop, 294
details object, events, 77
DevCenter, 454
Developer account, setting up, 454
developer low-res, 84
developer skills, Canvas versus SVG, 204
device interaction, 365–404

touch, 366–380
working with device capabilities, 380–387
working with location data, 387–394
working with sensors, 394–403

Digi-Key sensor boards, 395
digital signatures or DRM, 466
dispatchEvent method, 77
display property, 101

setting for Flexbox on container element,
104

setting for grid container element, 100
div element

AppBar control, 140
data-win-bind attribute, 60
Grid layout defined on, 100
host for WinJS control content, 66
HTML5 semantic markup and, 538
id attribute, using as JavaScript object, 505
SemanticZoom control in, 377

DLL files, 407, 409
DLNA-certified devices, 189

571 Index

documentLibrary, PickerLocationID enum,
177

document object, 504
DOMContentLoaded event, 504
DOM (Document Object Model), 504

adding ListView control via Blend, 19
page control added to, 12

DOMEventMixin class, 76
DOM Explorer (VS2012), 14
Dosis web font, 126
dot (.) operator, 413
download, pausing, 282
download progress, 274, 282
DPI. See resolutions
drawing and animation, 193–224

animation in Windows Store apps, 212–224
HTML5 graphics with SVG and Canvas,

193–206
manipulating pixels, 206–212

duration property, 217

E
E_BOUNDS HRESULT, 417
ECCN (Export Commodity Classification

Number), 467
ECMA, 501

Common Language Infrastructure (CLI)
metadata format, 406

ECMA-262 version 5.1, 501
ECMAScript, 501

ECMAScript 5 specification, 73
element animations with WinJS, 221
element property

custom clock control, 71, 74
DatePicker control, 67

ellipse element, 195
embed tags, SVG file in, 194
Encoder object, 211
enterPage and exitPage functions, 223
enumerations, WinRT enum type, 412
ErrorCode property, 445
error codes, WinRT ABI, 417
errors

app resources validation, 461
download, 282

European Computer Manufacturers
Association (ECMA), 501

even and odd keywords, 553
EventArgs class, 442
event handlers

feedInvoked handler (example), 27

for slider change event, video element,
and mute button clicks, 163

sourceRequested event, Play To,
191

events, 440–443
custom control, 75

methods for event subscriptions and
dispatching events, 76

JavaScript event handling, 506
resize event listener, 115
WinRT application events, 239
WinRT classes, 413

exceptions
WinRT class methods and, 416–419
WinRT exceptions projected into

JavaScript, 419
Exceptions dialog (VS2012), 14
execUnsafeLocalFunction, 286
exists function, 256
Export Commodity Classification Number

(ECCN), 467
external style sheets for CSS, 554

F
Facebook, 295
fadeIn effects, 222
fast and fluid animations in Windows Store

apps, 213
feedInvoked handler (example), 27
feeds, RSS and Atom, 31
field access with dot (.) operator, 413
figcaption element, 82
figure element, 82

resizing, 98
File Explorer, 294
FileIO functions, 261
FileOpenPicker object, 176, 261

with thumbnail view of user’s image
library, 177

File Picker contract, 296
file picker, working with media libraries,

175–180
other file picker types, 182
selecting multiple files, 180–192

files, 252–256
activation, 259–261
file encoding test, 460
WinJS file helpers, 255–256

FileSavePicker object, 183
Files search provider, 297
File Type Association declaration, 260

 572 Index

fileTypeFilter property, FileOpenPicker
object, 177

Filled view state, 95–98
fill effect, creating for video, 170
fills

in Canvas, 201
in SVG, 195

Fixed Layout App template, 7
Flexbox (CSS), 104–107
Flickr, 295
flip effect, video element, 168
flipping images. See also transforms

using BitmapTransform in Windows.
Graphics.Imaging, 211

fluid animations, 213
FolderPicker object, 182, 263–265
fontDisplay class, 150
font-family property, 120, 126, 138
font property, 126
fonts

animating icon fonts, 219
Calibri, 123–124
Cambria, 122
CSS3 Web Fonts, 124–128
for use in Windows Store apps, 120
icon fonts in Windows Store app, 147–153
licensing, 126
Segoe UI, 120

font-size property, 151, 542
font-style property, 126
font-weight propety, 126
footer element, 538
forEach method, Array object, 513
for-in loop (JavaScript), iterating over

arrays, 513
for loop (JavaScript), iterating over arrays,

513
forms, creating, 43
frac Opentype feature, 134
fr sizing construct in CSS, 100
fullscreen-portrait media query, 103
Full Screen view state, 95
functions

delegates and, 435–440
creating WinRT delegates from C++ 11

lambdas, 439–451
JavaScript, 520–525

arguments, 522
call and bind, 523
closures, 525

function scope in JavaScript, 526
Future Access List Service, 264

G
games, ratings board certificates for, 466
geolocation support in Win8-style apps,

387
Geolocator object, 387

positionchanged event, 391
get and set methods

creating properties from, 73
for WinRT class properties, 420

Get-AppxPackage command, 4
getBitmapAsync method, 320
getCostType function, 271
getFileAsync function, 254, 259
getInternetConnectionProfile method,

NetworkInformation, 269
GET, PUT, POST HTTP methods, 273
getStorageItemsAsync method, 320
global positioning system (GPS) data, 387
global scope in JavaScript, 526
glyphs, 136

badge, 349
character mappings to, in Heydings font,

148
in icon fonts, 147

Google Web Fonts project, 126
gradients

creating radial gradient with Canvas, 200
creating radial gradient with JavaScript,

197
radial gradient defined in svg element, 195

graphics
HTML5, with SVG and Canvas, 193–206
pixel manipulation with Canvas, 206–209
pixel manipulation with Windows.

Graphics.Imaging, 209–212
Grid App template, 7

data.js file, asynchronous data model, 62
Grid Layout (CSS3), 100, 115

adaptive layouts for application context,
103

groupHeaderTemplate property, 61
grouping

binding list data, 58–59
creating grouped ListView, 376
group headers for ListView control, 60

gyrometer sensor, 403

H
handles

Platform::Array, 432

573 Index

Platform::String, 430
WinRT objects and, 422–424

handle-to-object (^) type modifier, 423, 436
hangs test, 460
hasKey function, 227
head element, style block in, 554
header element, 538
headers, selectors for, 127
Heydings, 148
high-definition resolutions, supporting with

media queries, 91
history, navigation, 244
hoisting, 526
homePage.html file, 10
homePage.js file, 11
hover transition with rotation, 217
HRESULTs, 417

C++/CX exception types encapsulating,
418

E_BOUNDS HRESULT, 417
HTML

binding object to set of HTML elements, 43
HTML Tool Palettes (in Blend), 16
navigation, 24
separation of JavaScript code from, 503
shareTarget.html file, 312
sharing HTML data, 306
stripping out dynamic HTML returned by

XMLHttpResponse, 31
using for app content and structure,

534–541
web content, 285–286
WYSIWYG Design for HTML (in Blend),

16
HTML5, 9

data-* attributes, 10
DOCTYPE, 502
documentation, 63
elements as controls, 63
Geolocation API, 387
graphics with SVG and Canvas, 193–206
media elements, 156
new features in, 535

data attributes, 539–541
media markup, 538
semantic markup, 536

state management facilities, 225

I
IAsyncAction interface, 444
IAsyncInfo interface, 444

IAsyncOperation interface, 444
IAsyncOperation<T> interface, 445
icon option property, 146

AppBar control, 140
icons

animating icon fonts, 219
icon fonts in Windows Store app, 147–153
working with platform iconography,

136–146
IDL (Interface Definition Language), 444
id parameters, UICommand object, 65
id selector (#), 545
iframe element

hosting remote HTML content, 286
web context and, 287–291

IListDataAdapter interface, 54
IListDataSource interface, 54
illuminanceInLux reading, light sensor, 397
images

Canvas image inverter, 207
file picker for, 175–178
on live tiles, 340

Imaging API, 209–213
img tags, 155

WinJS animation of, 221
!important CSS rule, 557
importScripts function, WorkerGlobalScope

object, 354
in-app purchases, 488–495

creating in-app purchase functionality,
489–493

defining offers in store submission
process, 494

inclinometer sensor, 403
IndexedDB, 225
initializers, 51–53
inline styles, 553
input element

new types in HTML5, 535
settings for video, 161

instance properties and methods, 73
instant commit, settings panels, 234
Interactive Mode (Blend), 16
Interface Definition Language (IDL), 444
Internet (Client) capability, 268, 340
Internet connection, information on, 269
isAutoCollapseEnabled property, ad

controls, 479
isAutoRefreshEnabled property, ad controls,

479
itemDataSource property, setting for

ListView, 19

 574 Index

_itemInvoked handler, 302
itemsPage.html page (Split App template),

34
showing real data, 37

itemTemplate property, 61
IUnknown interface, 406

J
JavaScript, 9, 501–532, 533

adding C++ component to JavaScript
application, 407–409

arrays, 54, 512–514
calling WinRT class method from, 415
Canvas API, 200
concurrency, 451
Debug output, 525–526
execution by Blend, 16
functions, 520–525
interaction with audio and video

elements, 161
interaction with programs in C/C++,

405
object prototypes (classes), 514–520
objects, 510
operators, 508–509
projecting WinRT constructs into, 407

delegates and functions, 435–440
WinRT classes, 413–421
WinRT objects, 421–424

scoping, 526–529
selecting and manipulating SVG via, 197
separation of code from HTML, 503–504
serialization, 531
shareTarget.js file, 313
showing search results, 301
struct mode, 529–530
updating tiles for apps, 336
values and types, 507–508
Windows Library for JavaScript SDK

classes, 136
Windows Store app project file for, 8
WinJS activation, 505
WinRT and JavaScript environment,

411–413
WinRT asynchronous operations projected

into, 445
WinRT events, accessing, 442
WinRT types in C++/CX and JavaScript,

424–435
JavaScript Console (VS2012), 14
“Josh’s List”, 53

JSON (JavaScript Object Notation), 59, 531
parsing results from WinJS.xhr, 275

JSON object, 227
JSON.parse function, 227, 250
JSON.stringify function, 227, 250

K
keyboard interaction, 366

supporting, 379
keyframes, defining in CSS, 218
KnownFolder enumeration, 210
KnownFolders object, 259

L
lambdas, 435, 525

C++11 lambdas, 436–439
concurrency and asynchrony, 446
creating WinRT delegates from C++11

lambdas, 439–451
LINQ-oriented C#, 521

landscape mode, 93
view states for apps in, 95

last rule (in CSS), 555
Latin characters, Heydings font values, 148
launch attribute, toast element, 361
layout, 79–118

creating adaptive UIs with CSS and WinJS,
104–115

responding to layout changes in
JavaScript, 113–115

using CSS Flexbox, 104–107
using CSS Multi-Column Layout,

107–110
taming the device matrix, 79–98

layouts in Windows 8, 81
orientations, 93–95
view states, 95–98
Windows 8, choice without device

tyranny, 81
working with screen sizes, 84–93

using CSS layout capabilities to adapt
your app, 99–104

Layout Simulator (Blend), 16
letter-spacing property, 130
libraries, 256–265

enabling library-related capabilities in
manifest file, 257

enumerating files from, 259
file activation, 259–261
file pickers, 261–265

575 Index

licenseInfo object, licensechanged event, 488
LicenseInformation element, 486

ExpirationDate child element, 487
LicenseInformation object, 491
licensing, fonts, 148
lifetime, 238–252

sessions, 242–246
debugging, 246–249

WinJS lifetime event helpers, 241–242
WinRT app lifetime states and events, 239

lifetime management (C++), 437
liga OpenType feature, 135
light sensors, 396–397
line element, 196
link element, 10
LinkUri element, 484
ListLayout, 115
List object, 53
lists

binding, 53
grouping binding list data, 58

list property, FileOpenPicker object, 176
ListView control

adding via Blend, 18
setting itemDataSource property, 19

binding to data source, 19
bound to dataSource property of items

object, 53
containing contacts, 328–330
creating adaptive collections with, 111–112
displaying images selected in multi file

picker, 180–192
grouped, 376
grouping a binding list, 58
invoke handler on, 25
responding to layout changes in

JavaScript, 113–115
SemanticZoom and, 375
templates for, 60
touch interactions, 374
touch, mouse, and keyboard interactions

with, 379
updating as binding list updates, 54

live tiles, 333–348
for lock screen apps, 356
scheduled tile updates, 342
secondary tiles, 343–348
small and large tile updates, 338
tile images, 340
tile peeking, 340
tile updates, 335–338
your app’s tiles, 335

local and web contexts, permission
differences, 288

localFolder property, ApplicationData class,
253

localization, captions for video, 166
local machine, debugging from, 14
local, roaming, and temp objects,

Application object, 255
localSettings property, ApplicationData

class, 227
local storage, 225
local testing, preparing your app for, 457
location data, working with, 387

Bing Maps, 391
simulating location information, 393–394
using Windows.Devices.Geolocation.

Geolocator object, 387–390
watching for location changes, 390

location object, 388
WinJS Navigation service, 244

locationStatus property, 388
lock screen apps, 355–357
Lock Screen Settings panel, 356
logo images, 2
“Lorem Ipsum” text generators, 214
LPCWSTR-based APIs, 429
lux value readings, light sensor, 397

M
magnetic north, 400
MakeApp.exe tool, 4
making money on your app, 453–500

ads in your app, 476–482
design for monetization, 495
in-app purchases, 488–495
marketing and managing your app,

496–499
preparing for submission, 454–463
submitting app to Windows Store, 463–476
trial mode, enabling, 483–488

Manifest Designer (Visual Studio 2012), 9
manifest file, 2

example, 3
format and resources test for, 459

Map control, hosting in Windows Store app,
288–291

marker element, 196
marketing and managing your app, 496–499

getting paid, 498–499
getting your app featured in Windows

Store, 496

 576 Index

marketing and managing your app (contd.)
tracking your app from Store dashboard,

496
Math.PI * 2, 201
media, 155–192

and pixel manipulation, 193
audio and video, 155–156
getting started with, in Windows 8,

156–159
making application connectable with Play

To, 189–191
markup in HTML5, 538
styling and creating custom controls,

159–163
working with captured media, 185–189
working with libraries via file picker,

175–180
media-based ads, 477–480
MediaCapture API, 189
MediaCapture object, 185

preparing for recording, 382
MediaControl object, 173
media queries (CSS)

checking app orientation with, 95
fullscreen-portrait media query, 103
supporting high-definition resolutions

with, 91
tweaking styles for Snapped and Filled

views, 97
using to adapt to resolutions, 86–91

member enumeration with dot (.) operator,
413

MessageDialog class, 64
metered networks, responsiveness to, 272
methods

custom control, 73
defining for WinRT class, 415
WinRT classes, 413, 414

and exceptions, 416–419
Microsoft Ads SDK, 453
Microsoft Advertising, 477
Microsoft Blend for Visual Studio 2012.

See Blend
Microsoft.Maps namespace, 290
mix method, 76
mobile computing, 366
mobile networking, 269–272
Model-View-ViewModel (MVVM), 48
modules (in JavaScript), 527
mouse, 366

supporting mouse and keyboard
interactions, 379

ms-appx URL format, 340
ms-appx-web prefix to URLs, 289
msAudioCategory attribute, audio element,

171
BackgroundCapableMedia, 172

msAudioDeviceType attribute, audio
element, 171

MSDN
guidelines for using text and typography,

120
-ms-flexbox display property, 105
-ms-flex-direction property, 105
-ms-font-feature-settings property, 134
-ms-grid-columns property, 101

using to lay out container elements, 102
-ms-grid display property, 100
-ms-grid-rows property, 101

using to lay out container elements, 102
msHorizontalMirror attribute, video

element, 168
msPlayToSource property, 191
-ms-view-state conditions, 97
msZoom attribute, video element, 168
Multi-Column Layout (CSS), 107–110
multimedia. See media
Multimedia value, msAudioDeviceType

attribute, 171
multiple languages, one app, 406–407
musicLibrary, PickerLocationId enum, 177
mutable keyword, using with lambdas,

438
mute button, 161
MVVM. See Model-View-ViewModel

N
name, reserving for your app, 454, 456
namespaces

JavaScript, 528
WinJS, 528
WinRT declarations projected into

JavaScript, 412
native extensibility, 405–452

adding C++ component to JavaScript
application, 407–409

concurrency and asynchrony, 443–451
delegates and functions, 435–440
events, 440–443
multiple languages, one app, 406–407
WinRT and JavaScript environment,

411–413
WinRT classes, 413–421

577 Index

WinRT objects, 421–424
WinRT types in C++/CX and JavaScript,

424–435
natural user interfaces (or NUIs), 366
nav element, 538
navigation, 24–28

animation of, 223
serializing navigation stack and restoring

it in session, 251
Navigation App template, 7

default.html file generated by, 9
files generated by, 8

Navigation object, 244
NetworkInformation class, 269
networking, 267–292

background data transfer, 280–283
in WIN JS and WinRT, 29–33
mobile, 269–272
network capabilities, 267–268
syndication, 277–280
web content, 284–291
XMLHttpRequest object, 273–276

networkstatuschanged event,
NetworkInformation class, 269

new operator, 421
noprint class, 386
Notes to Testers screen, 471
NUIs (natural user interfaces), 366
nullptr keyword, 423
null values, 507
Number field, WinRT exceptions, 419
numbers, badge template, 349

O
Object.create method, 517
Object.defineProperties method, 73
object identity, WinRT and JavaScript, 424
object prototypes (classes) in JavaScript,

514–520
object references, 406

WinRT, passing between C++/CX and
JavaScript, 422

objects
binding, 42–51
JavaScript, 510
WinRT, 421–424

and handles, 422–429
odd and even keywords, 553
onactivated event, WebUIApplication

object, 240
one-time binding, 42

oneTime function, 51
on<eventname> field, 442
one-way binding, 42
onquerysubmitted event, 299
onresize function, 114
OpenType layout features, 133–135
operators, JavaScript, 508–509
options object, 74
orientations, 93–95

changing Flexbox orientation in portrait
mode, 106

working with simple orientation sensor,
402

overflow-y property, 83
overloading of methods and constructors,

WinRT support for, 415

P
package.appxmanifest file, 8

declarations, listed, 298
declaring device capabilities, 380
enabling library-related capabilities, 257
FileSavePicker in Capabilities tab, 183
format and resources test for, 459
Pictures Library, Capabilities tab, 210
properties of your app’s tiles, 335
setting up background audio in

Declarations tab, 172
toast notifications, 359
Webcam in Capabilities tab, 186

packages
creating for your app, 457
uploading your app package, 467

page animations with WinJS, 223
Page Control item template, 327
PageControlNavigator control, 10
Page Control template, 25
Parallel Patterns Library (PPL), 405, 446
PascalCased names, 412
path element, 196
pausing a download, 282
payment for your app, 498
peeking (tile), 334, 340
People app, 324
performance

Canvas versus SCG graphics, 204
performance test for your app, 460

PeriodicUpdateRecurrence enumeration,
343

Permissions flyout, Settings charm, 389
photo gallery app (example), 81

 578 Index

photographs
built-in Photos app, 295
photo mode, CameraCaptureUIMode, 188
sharing picture from Photos app, 295, 321

PickerLocationId enumeration, 176
pickSingleContactAsync function,

ContactPicker object, 323
pictureLibrary, PickerLocationID enum, 177
pinButton object, 347
pinch gestures, 379
Pin to Start Screen button, 344
PixelDataProvider object, 211
pixels, manipulating, 206–212

using Canvas, 206–209
using Windows.Graphics.Imaging,

209–212
Platform::Array reference type, 432
Platform::ArrayReference type, 432
Platform::COMException object, 417, 419
Platform::Exception object, 419
Platform::Object::ReferenceEquals method,

424
Platform::OutOfBoundsException object, 417
platform-specific features, apps targeting, 457
Platform::String::Data, 431
Platform::String reference type, 429
Platform::StringReference type, 430
Platform::WriteOnlyArray method, 433
Play To, 189–191, 296

accessing via Devices charm, 190
configuring, 190

PlayToManager object, 191
pointers, C++/CX handles and, 423
populateSettings function, SettingsFlyout

control, 230
PopupMenu class, 65
portrait mode, 93
positional pseudo-class selector, 552
positionchanged event, Geolocator object,

391
PositionStatus enum, 388
poster atttribute, video element, 157

invalid URL with, 159
POST HTTP method, 273
postMessage function, 290
posts.html page, adding Print button, 384
PPL (Parallel Patterns Library), 405, 446
presentation and style, 533–564

using CSS for app layout and style,
541–558

using for app content and structure,
534–541

previousExecutionState property, 245, 246
pricing information, 464
print capabalities, in-app, 384–387
PrintManager object, 384
private keyword

private members of WinRT types, 428
properties and methods in JavaScript, 73

processAll function, 45
calling for data-win-control property, 68

processPosts function, 274
productLicenses object, 491
programming languages (multiple), one

app, 406–407
project templates

Create New Template dialog, 20
Visual Studio 2012 and Blend, 16
Windows Runtime Component, 409
Windows Store app, 7

Promise object, 30, 281
cancel method, 272

Promotional Images section, Description
page, 496

properties
CSS, 543
custom control, 73
WinRT classes, 413, 420–422

property property, 216
prototypal inheritance in JavaScript, 518
prototypes in JavaScript, 515–518
pseudo-classes, 138
pseudo-class selectors, 549
pseudo-elements, 138
pseudo-element selectors, 549
public keyword

C++/CX and, 412
WinRT class methods, 414

purchases, in-app. See in-app purchases

Q
querySelectorAll function, 197
querysubmitted handler, 302
queryText, containing search string, 300

R
radial gradients, 195

creating with Canvas, 200
creating with JavaScript, 197

range control, 161
rating certificates, 466
Rating control, 82, 370

579 Index

readingchanged event, light sensor, 396
readTextAsync function, 254
readText function, 256
ready function

adding logic for recording devices, 381
contacts page control, 328
in page controls, 235

recording devices, 381–384
rect element, 196
Reference Manager dialog, 409
ref keyword, 407

in WinRT class declarations, 414
ref new operator, 423
ref struct keywords, WinRT class definitions,

414
regular expressions in JavaScript, 511–512
rejection by Windows Store, dealing with, 473
remote machine, debugging from, 14
removeEventListener method, 76, 442
render method, Template object, 60
reportDataRetrieved method, 321
reportError function, 319
reportInterval property, sensors, 396
reportStarted method, 321
requestCreateForSelectionAsync function,

347
requestProductPurchaseAsync method, 491
resize event listener, 115
resolutions

high-definition, supporting with media
queries, 91

testing apps in Win8 simulator, 84
using CSS media queries to adapt to, 86–91

resolveItemResource method, 305
resources

app resources validation errors, 461
test for manifest file, 459

resultsuggestionchosen handler, 304
resuming applications, 243

debugging resume, 246
resume event, 242
resuming event, 244
sessionState object and, 251

retrieveFeedAsync function, 32
roamingFolder property, ApplicationData

class, 253
roaming object, Application object, 255
roaming settings, 228
rotation, 214

hover transition with clockwise rotation,
217

RSS (Really Simple Syndication), 31, 278

S
Scalable Vector Graphics. See SVG
scaling, 214
ScheduledTileNotification object, 342
scheduled tile updates, 342

updating based on multiple URLs, 343
ScheduledToastNotification object, 362
scoping in JavaScript, 526–529

hoisting, 526
modules, 527
namespaces, 528
WinJS namespaces, 528

screen edges, touch-friendly apps with,
370–374

screen resolutions. See resolutions
screenshots of your application, 468
screen sizes, 84–93

high-definition resolutions, supporting
with media queries, 91–93

using CSS media queries to adapt to
resolutions, 86–91

script element, 10
src attribute, 503

sealed keyword, 414
Search contract, 297, 297–305

implementing search, 298–303
search suggestions, 303
Share target, 310, 310–316
Windows 8 Search panel, 298

Search Contract item template, 301
searchResults.js file, 302
SecondaryTile constructor, 346
secondary tiles, 343–348

activation on application launch, 347
confirmation dialog, placement of, 346
creating, 344

security, Windows security features test,
460

Segoe UI font, 120
contrast between Calibri and, 124
OpenType layout features, 134

Segoe UI Symbol, 121, 370
characters viewed in Character Map, 139
Unicode values in, 141

selectionChanged handler, 307
selectors, 138, 542, 543–553

advanced, 548–551
CSS3, 551–553

Selling details screen, submission process,
464

semantic markup, 536

 580 Index

SemanticZoom control, 375–379
adding to apps, 376
creating, 377
support of pinch and stretch gestures,

379
touch, mouse, and keyboard interactions

with, 379
sensor boards, third-party, 395
sensors, working with, 394–403

accelerometer, 398
compass, 400
light sensors, 396–397
orientation sensor, 402
other, 403

serialization, 531
sessions, 242–246

debugging, 246–249
WinJS session helpers, 250–252

sessionState object, 250–252
session state, saving, 244
session storage, 225
setOptions method, 74
settings, 226–238

local, 227
roaming, 228
Settings charm, 228–238

Microsoft guidelines for settings panels,
234

Permissions flyout, 389
settings event, Application object, 230
SettingsFlyout control, 230, 233
SettingsPane object, 229
Settings search provider, 297
shaken event for accelerometer, 399
Share charm, 295
Share contract, 305–322

accessing shared data, 316–321
data types supported, 306
reporting sharing progress, 321
sharing a selected item, 309

ShareOperation object, 315
reportCompleted method, 316
reportError function, 319

Share Target Contract item template, 312
shareTarget.html file, 312
shareTarget.js file, 313
shell contracts, 293–332

Contacts contract, 322–330
contracts, 295–297
Search contract, 297–305
Share contract, 305–322
Windows 8 shell, 294–295

shell integration, 333–364
background tasks, 350–358
badges, 348–350
live tiles, 333–348
toast notifications, 358–363

shimmer effect, SVG animation with
JavaScript, 198

shimmer function, 197
showAsync method, MessageDialog class,

64
sideloading requirements, 457
SignTool.exe tool, 4
SIL Open Font License, 148
SimpleOrientation enum, 402
SimpleOrientationSensor object, 402
simulator

debugging from, 14
location simulation feature, 393
sample app running from, 15
using to capture app screenshots, 470

skewing, 214
SkyDrive app, 263

integration with file pickers, 265
sliders, setting up for video playback, 163
small caps (smcp) OpenType feature, 134
smartphones, 366
SmtpClient object, 295
Snapped view state, 95–98
sorting binding lists, 56–57
span element

displaying current volume for video, 162
using for recording device, 381

specificity in CSS, 556
splash screen, 2

display during activation of app, 240
Split App template, 7, 34–38

data.js file, asynchronous data model, 62
snapped mode support, 39

split.js file, 307
SQLite, 226
square size, 339
src property, 126
stack field, WinRT exceptions, 419
StandardDataFormats enumeration, 319
Start Screen, 294

live tiles, 333
sample app installed into, 5
secondary tiles, pinning to, 344
zoomed-out view of, 375

state objects, WinJS Navigation service, 244
static properties and methods, 73
std::vector, 432

581 Index

std::vector<T>, 451
std::wstring, 429
step attribute, input element, 162
stops element, 198

changing stop-color attributes, 203
StorageFile object, 177, 261
StorageFolder object, 264
Store API and simulator, 483–485
store logo, 2
stretch gestures, 379
String constructor, 431
stringify function, 227
StringReference class, 430
strings, 422, 427

WinRT types in C++/CX and JavaScript,
429–431

stroking
in SVG, 196
modifying stroke properties in SVG, 197
stroke effects with Canvas, 201

struct mode in JavaScript, 529–530
structs

struct keyword in WinRT type
declarations, 414

WinRT types in C++/CX and JavaScript,
425

<style> blocks for pages, 553
stylistic sets (ssXX tag), 135
submission of apps to Windows Store

preparing for, 454–463
submitting your app, 463–476

substring attribute selectors, 551
subtitles, adding to video, 163–170
suggestions for search, 303
suggestionsrequested event, 303
Supported Windows 8–style API test, 460
suspended applications, 242

debugging suspend and resume, 246
suspend event, 239, 242
WinJS sessionState object and, 251

svg element, 194, 538
SVG (Scalable Vector Graphics), 193,

194–199
choosing between Canvas and, 204
compass, 400
HTML5 graphics with SVG and Canvas,

193
selecting and styling elements, 197

syndication, 277–280
SyndicationClient class, 32, 277

showing contents of RSS feed with, 33
System.Graphics.Imaging, 212

system-provided search providers, 297
%SystemRoot%\WinMetadata winmd files,

407
system trigger types and requirements, 355

T
tablet devices, 366
task model, PPL, 446, 449
templates

badge, 349
tile, 336
using in data binding, 60–63

temp object, Application object, 255
temporaryFolder property, ApplicationData

class, 253
terminated applications, resuming, 243
terminate event, 239
testing

Notes to Testers screen, 471
preparing your app for local testing, 457

text-based ads, working with, 480
text-shadow property, 132

adding to icon font, 153
text-transform property, 131
this keyword

in JavaScript, 510
lambdas and, 439

this-> qualification, lambda member access
and, 439

this variable, 353, 523–525
thumbnails, previewing media in file picker,

176
tileId, 348
TileNotification object, 338, 342
tiles. See live tiles
tileSquarePeekImageAndText01 template,

341
TileTemplateType enumeration, 336
Tile Update Manager (TUM), 336

notification queue, 343
tileWideImageAndText01 template, 336, 338
Timed Text Markup Language (TTML), 163
TimePicker control, 369
timer, selecting for background task, 355
TimeTrigger object, 357
timing functions, 217

animation-timing-function property, 219
toast element, 361
ToastNotificationManager object, 359
toast notifications, 358–363

app activation from toast, 361

 582 Index

toast notifications (contd.)
scheduled toast, 362

ToggleSwitch control, 234, 369
Tom8to app, 463
touch, 366–380

building apps with screen edges,
370–374

creating touch-friendly interactions with
SemanticZoom, 374–379

HTML controls, 367–369
supporting mouse and keyboard

interactions in Win8 apps, 379
WinJS controls, 369–370

touch-first, 379
track element

placing inside video element, 164
srclang and label attributes, 166

transform functions, 215
transforms (CSS), 214

animating, 217
resources for information, 215
SVG compass rose, 401

transition property, 217
transitions

between pages, 223
CSS, 215–217
CSS animations and, 218
SVG compass rose, 401
WinJS wrapper functions for, 222

translation, 214
in CSS animation, 219

trial details, 464, 465
trial mode, enabling in your app, 483–488

simulating and testing trial functionality,
485

triggering background tasks, 351–352
triggers for background tasks, 355
true north, 400
truth values in JavaScript, 509
TTML (Timed Text Markup Language), 163
TUM (Tile Update Manager), 336

notification queue, 343
Twitter, 295
two-way binding, 42
type modifier (^) in C++/CX, 422
typeof operator, 507
types

JavaScript, 507–508
object prototypes (classes) in JavaScript,

514–520
WinRT class method called in JavaScript,

415

WinRT declarations projected into
JavaScript, 412

WinRT types in C++/CX and JavaScript,
424–435

arrays, 431–433
strings, 429–431
value types, 433–435

type selector, 545
typography, 119–154

icon fonts in Windows Store app, 147–153
in Windows Store apps, 119–135

Calibri font, 123–124
Cambria font, 122
CSS3 Web Fonts, 124–128
Segoe UI font, 120
tweaking with CSS, 129–135

Microsoft guidelines for, 120
working with platform iconography,

136–146

U
UICommand object, 65
ui-dark or ui-light WinJS stylesheets, 369
ui.js file, 222, 506
unbind method, 51
undefined values, 507
Unicode

values in Heydings icon font, 148
values in Segoe UI Symbol font, 138, 141

universal selector (*), 544
updateLayout method, page object, 115
update process for Windows Store apps, 474
Uri class, 32
URL object, 177
URLs

ms-appx URL format, 340
ms-appx-web prefix, 289
objectUrl for audioFile, assigning to audio

element, 384
using object URLs for file system

resources, 177
user experience (UX) practices, 301

guidelines for Windows Store apps, 220

V
value keyword, 407
values in JavaScript, 507
values property, ApplicationData class, 227
value types, WinRT types in C++/CX and

JavaScript, 433–435

583 Index

var keyword, 507
vertical-align property, 138
video

CameraCaptureUIMode, 188
formats supported in Win8 Windows

Store apps, 156
using file picker for, 178

video element, 156, 539
attributes, 157, 158
Microsoft’s extension effects, 167

videoLibrary, PickerLocationID enum, 177
viewMode property, FileOpenPicker object,

176
views, application, 113
view states, 95–98, 115

controlling in Blend, 97
Visual Studio 2012

adding SDK references, 392
Blend integration with, 16
creating instance of Search Contract item

template, 301
debugging contract providers, 332
debugging suspend and resume, 247
getting started in, 6–15

debugging tools, 14
Manifest Designer, 9
Windows Store app project templates, 7

WinRT and, 33
volume

adjusting and displaying for video, 162
adjusting for videos, 161

W
W3C

CSS3 Flexible Box Layout specification,
104

CSS3 Grid Layout specification, 100
CSS3 specification, 87
SVG 1.1 2nd Edition specification, 194
TTML and WebVTT, 163
video tag, overview of, 157

WACK (Windows App Certification Kit),
running, 458–463

warning icon, 149
web content, 284–291

HTML, 285
web context, 287–291

web fonts, 124–128
web platform, 9
WebUIApplication object, 239
WebUIBackgroundTaskInstance object, 353

WebVTT (Web Video Text Tracks), 163–170
Wi-Fi connections, 270
win-backbutton class, 136
winControl property, 60

custom clock control, 71, 74
DatePicker control, 67

window object, 526
window.onresize function, 114
Windows 8, 79

availability on different devices, 81
screen resolutions supported, 84

Windows 8 Ads SDK, 477
Windows 8 PowerShell, appx module, 4
Windows 8 shell, 294–295
Windows App Certification Kit (WACK),

running, 458–463
Windows.ApplicationModel.Background

namespace, 352
Windows.ApplicationModel.Contacts

namespace, 323
Windows.ApplicationModel.DataTransfer

namespace, 305
Windows.ApplicationModel.Store

namespace, 483
Windows.Data.Xml.Dom namespace, 283
Windows DevCenter, information about

keyboard and mouse interactions,
379

Windows.Devices.Geolocation.Geolocator
object, 387

Windows.Devices.Geolocation.
PositionStatus enum, 388

Windows.Devices.Sensors namespace, 394
Windows.Foundation namespace, 32
Windows::Foundation::TypedEventHand

ler, 442
Windows.Graphics.Imaging, 206

pixel manipulation with, 209–212
Windows.Graphics.Printing.PrintManager

object, 385
Windows Library for JavaScript SDK

classes, 136
Windows Library for JavaScript SDK

reference, 9
Windows.Media.Capture namespace, 185
Windows.Media.MediaControl object, 173
Windows Media Player, 191
Windows Metadata. See winmd files
Windows.Networking.BackgroundTransfer

namespace, 280
Windows.Networking.Connectivity.

NetworkInformation namespace, 269

 584 Index

Windows Runtime. See WinRT
Windows Runtime Component project

template, 409
Windows Runtime Library (WRL), 407
Windows Simulator folder, Pictures library,

468
Windows.Storage.ApplicationData

namespace, 227, 252–254
Windows.Storage.KnownFolder

enumeration, 210, 259
Windows Store, 453

getting your app featured, 496
Store API and simulator, 483–485
submitting your app to, 463–476

Windows Store apps
animation in, 212–224
audio formats supported in Win8, 159
building your first app, 2–6

adding and verifying .appx file, 5
HTML file, 2
metadata and resources, 2

CSS and, 558–564
network capabilities available for, 268
typography in, 119–135
using and manipulating icon fonts in,

147–153
video element extension effects, 167
video formats supported in Win8, 156
WebVTT and TTML support, 164

WindowsStoreProxy.xml file, 483
in-app purchase information, 489
LicenseInformation element, 486

EspirationDate element, 487
Windows.UI.Notifications namespace, 336
Windows.UI.StartScreen namespace, 346
Windows.UI.ViewManagement namespace,

113
Windows.UI.WebUI namespace, 239, 353
Windows.Web.Syndication namespace, 32,

277
WinJS, 9

activation, 505
Animation library, working with, 220–224

benefits of using, 221
element animations, 221
page animations, 223

application lifetime states and events, 242
binding, types of, 42
class definitions via, 519
controls, 18, 63, 66–69

list of, 69

creating adaptive collections with
ListView, 111–112

file helpers, 255–256
initializers, 51
lifetime event helpers, 241
namespaces, 528
Navigation object, 244
networking in, 29–33
Rating control, 82
responding to layout changes in

JavaScript, 113–115
session helpers, 250–252
SettingsFlyout control, 230
stylesheets for touch controls, 369
touch-friendly controls, 369–370

WinJS.Application object, 230
WinJS.Binding.List object, 18, 182

dataSource property, 19
WinJS.Binding namespace, 45
WinJS.Binding.Template class, 60
WinJS.Class namespace, 73, 76
WinJS.Namespace namespace, 72
WinJS.Promise class, 30
WinJS.UI.AppBar, 373
WinJS.UI.AppBarCommand, 373
WinJS.UI.ListView, 26
WinJS.Utilities namespace, 76
WinJS.xhr, 273–276

parsing JSON results, 275
parsing XML results, 274

win-listview class, 112
winmd files, 406, 409
WinRT

and JavaScript environment, 411–413
application binary interface (ABI), 406
application lifetime states and events,

239
bringing web platform together with, 9
classes, 413–421
concurrency and asynchrony, 443–451
controls, 63, 64
delegates and functions, 435–440
events, 440–443
Geolocator object, 387
networking in, 29
objects, 421–424
onactivated event, 240
projecting constructs into different

languages, 407
SettingsPane object, 229
shaken event, 399

585 Index

sydication API, handling RSS and Atom,
279

types in C++/CX and JavaScript, 424–435
XmlDocument object, 283

.win-star class, 370
WOFF version of Heydings font, 148
word-spacing property, 130
WorkerGlobalScope object, 353

importScripts function, 354
writeTextAsync function, 253
writeText function, 255
WRL (Windows Runtime Library), 407
WYSIWYG Design for HTML (in Blend), 16

X
XAML, 534
XHR. See XMLHttpRequest object
xhr function, 29

showing contents of RSS feed, 32
XML

badge templates, 349
parsing results of XHR call, 274

SVG as, 195
toast element, 361
TTML (Timed Text Markup Language),

163
use by Tile Update Manager in tile

updates, 336, 342
XmlDocument object, 283
XMLHttpRequest object, 29, 273–276

parsing XML results, 274
progress and errors, 274

XPath, 283
X-WINS-Expires header, HTTP response,

343

Y
YAML, WebVTT similarity to, 163

Z
.zip-compliant appx packaging format, 457
zoom effect, video element, 168
/ZW option, C++ compiler, 409

	Contents
	Foreword
	Foreword
	Preface
	Acknowledgments
	About the Authors
	1 Hello, Windows 8!
	Your First Windows Store App
	Getting Started in Visual Studio 2012
	Controls, Binding, and Styling in Blend
	Navigation
	Networking in WinJS and WinRT
	Split App Template
	The Rest
	Where Are We?

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

