
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321861276
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321861276
https://plusone.google.com/share?url=http://www.informit.com/title/9780321861276
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321861276
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321861276/Free-Sample-Chapter

The Object-Oriented
Thought Process

Fourth Edition

informit.com/devlibrary

Developer’s
Library

Developer’s Library books are designed to provide practicing programmers with
unique, high-quality references and tutorials on the programming languages and
technologies they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners
who are especially skilled at organizing and presenting information in a way that’s
useful for other programmers.

Key titles include some of the best, most widely acclaimed books within their
topic areas:

PHP & MySQL Web Development
Luke Welling & Laura Thomson
ISBN 978-0-672-32916-6

MySQL
Paul DuBois
ISBN-13: 978-0-672-32938-8

Linux Kernel Development
Robert Love
ISBN-13: 978-0-672-32946-3

Python Essential Reference
David Beazley
ISBN-13: 978-0-672-32978-4

Programming in Objective-C
Stephen Kochan
ISBN-13: 978-0-672-32756-8

C++ Primer Plus
Stephen Prata
ISBN-13: 978-0321-77640-2

Developer’s Library books are available at most retail and online bookstores, as well
as by subscription from Safari Books Online at safari.informit.com

ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library

The Object-Oriented
Thought Process

Fourth Edition

Matt Weisfeld

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

The Object-Oriented Thought Process, Fourth Edition

Copyright © 2013 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-13: 978-0-321-86127-6
ISBN-10: 0-321-86127-2

Library of Congress Cataloging-in-Publication data is on file.

First Printing March 2013

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Bulk Sales

Pearson offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales. For more information, please contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales

international@pearsoned.com

Acquisitions Editor

Mark Taber

Development
Editor

Songlin Qiu

Managing Editor

Sandra Schroeder

Project Editor

Seth Kerney

Copy Editor

Barbara Hacha

Indexer

Brad Herriman

Proofreader

Sarah Kearns

Technical Reviewer

Jon Upchurch

Editorial Assistant

Vanessa Evans

Interior Designer

Gary Adair

Cover Designer

Chuti Prasertsith

Compositor

Bronkella
Publishing LLC

Contents at a Glance

 Introduction 1

 1 Introduction to Object-Oriented Concepts 5

 2 How to Think in Terms of Objects 37

 3 Advanced Object-Oriented Concepts 53

 4 The Anatomy of a Class 75

 5 Class Design Guidelines 87

 6 Designing with Objects 105

 7 Mastering Inheritance and Composition 119

 8 Frameworks and Reuse: Designing with Interfaces and Abstract
Classes 141

 9 Building Objects and Object-Oriented Design 167

 10 Creating Object Models 183

 11 Objects and Portable Data: XML and JSON 197

 12 Persistent Objects: Serialization, Marshaling, and Relational
Databases 219

 13 Objects in Web Services, Mobile Apps, and Hybrids 237

 14 Objects and Client/Server Applications 263

 15 Design Patterns 277

 Index 297

Table of Contents

 Introduction 1

This Book’s Scope 1

What’s New in the Fourth Edition 2

The Intended Audience 3

The Book’s Approach 3

This Book’s Conventions 4

Source Code Used in This Book 4

 1 Introduction to Object-Oriented Concepts 5

The Fundamental Concepts 5

Objects and Legacy Systems 6

Procedural Versus OO Programming 7

Moving from Procedural to Object-Oriented Development 11

Procedural Programming 11

OO Programming 12

What Exactly Is an Object? 12

Object Data 12

Object Behaviors 13

What Exactly Is a Class? 17

Creating Objects 18

Attributes 19

Methods 20

Messages 20

Using Class Diagrams as a Visual Tool 20

Encapsulation and Data Hiding 21

Interfaces 21

Implementations 22

A Real-World Example of the Interface/Implementation Paradigm 23

A Model of the Interface/Implementation Paradigm 23

Inheritance 25

Superclasses and Subclasses 26

Abstraction 26

Is-a Relationships 27

viiContents

Polymorphism 28

Composition 31

Abstraction 32

Has-a Relationships 32

Conclusion 32

Example Code Used in This Chapter 33

The TestPerson Example: C# .NET 33

The TestShape Example: C# .NET 34

 2 How to Think in Terms of Objects 37

Knowing the Difference Between the Interface and the Implementation 38

The Interface 40

The Implementation 40

An Interface/Implementation Example 41

Using Abstract Thinking When Designing Interfaces 45

Providing the Absolute Minimal User Interface Possible 47

Determining the Users 48

Object Behavior 49

Environmental Constraints 49

Identifying the Public Interfaces 49

Identifying the Implementation 50

Conclusion 51

References 51

 3 Advanced Object-Oriented Concepts 53

Constructors 53

When Is a Constructor Called? 54

What’s Inside a Constructor? 54

The Default Constructor 55

Using Multiple Constructors 55

The Design of Constructors 60

Error Handling 60

Ignoring the Problem 60

Checking for Problems and Aborting the Application 61

Checking for Problems and Attempting to Recover 61

Throwing an Exception 61

viii Contents

The Importance of Scope 64

Local Attributes 64

Object Attributes 65

Class Attributes 67

Operator Overloading 69

Multiple Inheritance 70

Object Operations 70

Conclusion 72

References 72

Example Code Used in This Chapter 72

The TestNumber Example: C# .NET 72

 4 The Anatomy of a Class 75

The Name of the Class 75

Comments 77

Attributes 77

Constructors 79

Accessors 81

Public Interface Methods 83

Private Implementation Methods 84

Conclusion 84

References 85

Example Code Used in This Chapter 85

The TestCab Example: C# .NET 85

 5 Class Design Guidelines 87

Modeling Real-World Systems 87

Identifying the Public Interfaces 88

The Minimum Public Interface 88

Hiding the Implementation 89

Designing Robust Constructors (and Perhaps Destructors) 90

Designing Error Handling into a Class 91

Documenting a Class and Using Comments 91

Building Objects with the Intent to Cooperate 92

Designing with Reuse in Mind 92

ixContents

Designing with Extensibility in Mind 93

Making Names Descriptive 93

Abstracting Out Nonportable Code 94

Providing a Way to Copy and Compare Objects 94

Keeping the Scope as Small as Possible 94

A Class Should Be Responsible for Itself 96

Designing with Maintainability in Mind 97

Using Iteration in the Development Process 98

Testing the Interface 98

Using Object Persistence 100

Serializing and Marshaling Objects 101

Conclusion 102

References 102

Example Code Used in This Chapter 102

The TestMath Example: C# .NET 102

 6 Designing with Objects 105

Design Guidelines 105

Performing the Proper Analysis 109

Developing a Statement of Work 109

Gathering the Requirements 109

Developing a Prototype of the User Interface 110

Identifying the Classes 110

Determining the Responsibilities of Each Class 110

Determining How the Classes Collaborate with Each Other 110

Creating a Class Model to Describe the System 111

Prototyping the User Interface 111

Object Wrappers 111

Structured Code 112

Wrapping Structured Code 113

Wrapping Nonportable Code 115

Wrapping Existing Classes 116

Conclusion 117

References 117

x Contents

 7 Mastering Inheritance and Composition 119

Reusing Objects 119

Inheritance 120

Generalization and Specialization 124

Design Decisions 124

Composition 126

Representing Composition with UML 127

Why Encapsulation Is Fundamental to OO 129

How Inheritance Weakens Encapsulation 130

A Detailed Example of Polymorphism 132

Object Responsibility 132

Abstract Classes, Virtual Methods, and Protocols 136

Conclusion 138

References 138

Example Code Used in This Chapter 138

 8 Frameworks and Reuse: Designing with Interfaces and Abstract

Classes 141

Code: To Reuse or Not to Reuse? 141

What Is a Framework? 142

What Is a Contract? 144

Abstract Classes 145

Interfaces 147

Tying It All Together 149

The Compiler Proof 152

Making a Contract 153

System Plug-in Points 155

An E-Business Example 155

An E-Business Problem 155

The Non-Reuse Approach 156

An E-Business Solution 158

The UML Object Model 158

Conclusion 163

References 163

Example Code Used in This Chapter 163

The TestShop Example: C# .NET 164

xiContents

 9 Building Objects and Object-Oriented Design 167

Composition Relationships 168

Building in Phases 169

Types of Composition 171

Aggregations 172

Associations 172

Using Associations and Aggregations Together 174

Avoiding Dependencies 174

Cardinality 175

Multiple Object Associations 178

Optional Associations 178

Tying It All Together: An Example 179

Conclusion 181

References 181

 10 Creating Object Models 183

What Is UML? 183

The Structure of a Class Diagram 184

Attributes and Methods 186

Attributes 186

Methods 186

Access Designations 187

Inheritance 188

Interfaces 190

Composition 191

Aggregations 191

Associations 192

Cardinality 194

Conclusion 195

References 196

 11 Objects and Portable Data: XML and JSON 197

Portable Data 197

The Extensible Markup Language (XML) 199

XML Versus HTML 199

XML and Object-Oriented Languages 200

Sharing Data Between Two Companies 202

Validating the Document with the Document Type Definition (DTD) 202

xii Contents

Integrating the DTD into the XML Document 204

Using Cascading Style Sheets 210

JavaScript Object Notation (JSON) 212

Conclusion 217

References 217

 12 Persistent Objects: Serialization, Marshaling, and Relational

Databases 219

Persistent Objects Basics 219

Saving the Object to a Flat File 221

Serializing a File 222

Implementation and Interface Revisited 224

What About the Methods? 225

Using XML in the Serialization Process 226

Writing to a Relational Database 228

Accessing a Relational Database 230

Conclusion 232

References 232

Example Code Used in This Chapter 233

The Person Class Example: C# .NET 233

 13 Objects in Web Services, Mobile Apps, and Hybrids 237

Evolution of Distributed Computing 237

Object-Based Scripting Languages 238

A JavaScript Validation Example 241

Objects in a Web Page 244

JavaScript Objects 245

Web Page Controls 247

Sound Players 248

Movie Player 248

Flash 249

Distributed Objects and the Enterprise 249

The Common Object Request Broker Architecture (CORBA) 251

Web Services Definition 254

Web Services Code 258

Representational State Transfer (ReST) 260

xiiiContents

Conclusion 261

References 261

 14 Objects and Client/Server Applications 263

Client/Server Approaches 263

Proprietary Approach 264

Serialized Object Code 264

Client Code 265

Server Code 267

Running the Proprietary Client/Server Example 268

Nonproprietary Approach 270

Object Definition Code 271

Client Code 272

Server Code 273

Running the Nonproprietary Client/Server Example 275

Conclusion 276

References 276

Example Code Used in This Chapter 276

 15 Design Patterns 277

Why Design Patterns? 278

Smalltalk’s Model/View/Controller 279

Types of Design Patterns 280

Creational Patterns 281

Structural Patterns 286

Behavioral Patterns 288

Antipatterns 290

Conclusion 290

References 291

Example Code Used in This Chapter 291

C# .NET 291

 Index 297

About the Author

Matt Weisfeld is a college professor, software developer, and author based in
Cleveland, Ohio. Prior to teaching college full time, he spent 20 years in the
information technology industry as a software developer, entrepreneur, and
adjunct professor. Weisfeld holds an MS in computer science and an MBA. Besides
the first three editions of The Object-Oriented Thought Process, he has authored
two other software development books and published many articles in magazines
and journals, such as developer.com, Dr. Dobb’s Journal, The C/C++ Users Journal,
Software Development Magazine, Java Report, and the international journal Project
Management.

Dedication

❖

To Sharon, Stacy, Stephanie, and Duffy

❖

Acknowledgments

As with the first three editions, this book required the combined efforts of many people. I
would like to take the time to acknowledge as many of these people as possible, for without
them, this book would never have happened.

First and foremost, I would like to thank my wife Sharon for all her help. Not only did she
provide support and encouragement throughout this lengthy process, she is also the first line
editor for all my writing.

I would also like to thank my mom and the rest of my family for their continued support.

It is hard to believe that the work on the first edition of this book began in 1998. For all these
years, I have thoroughly enjoyed working with everyone at Pearson—on all four editions.
Working with editors Mark Taber, Songlin Qiu, Barbara Hacha, and Seth Kerney has been a
pleasure.

A special thanks goes to Jon Upchurch for his expertise with much of the code as well as the
technical editing of the manuscript. Jon’s insights into an amazing range of technical topics
have been of great help to me.

I would also like to thank Donnie Santos for his insights into mobile and hybrid development,
as well as Objective-C.

Finally, thanks to my daughters, Stacy and Stephanie, and my cat, Duffy, for always keeping me
on my toes.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like
about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name
and email address. We will carefully review your comments and share them with the author
and editors who worked on the book.

Email: feedback@developers-library.info

Mail: Reader Feedback
Addison-Wesley Developer’s Library
Pearson Education
800 East 96th Street
Indianapolis, IN 46240

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

 Introduction

 This Book’s Scope

 As the title suggests, this book is about the object-oriented (OO) thought process. Although
choosing the theme and title of a book are important decisions, these decisions are not at all
straightforward when dealing with a highly conceptual topic. Many books deal with one level
or another of programming and object orientation. Several popular books cover topics includ-
ing OO analysis, OO design, OO programming, design patterns, OO data (XML), the Unified
Modeling Language (UML), OO Web development, OO Mobile development, various OO
programming languages, and many other topics related to OO programming.

 However, while poring over all these books, many people forget that all these topics are built
on a single foundation: how you think in OO ways. Often, many software professionals, as
well as students, dive into these books without taking the appropriate time and effort to really
understand the design concepts behind the code.

 I contend that learning OO concepts is not accomplished by learning a specific development
method, a programming language, or a set of design tools. Doing things in an OO manner is,
simply put, a way of thinking. This book is all about the OO thought process.

 Separating the languages, development practices, and tools from the OO thought process is not
an easy task. Often, people are introduced to OO concepts by diving headfirst into a program-
ming language. For example, many years ago, a large number of C programmers were first
introduced to object orientation by migrating directly to C++ before they were even remotely
exposed to OO concepts. Other software professionals’ first exposure to object orientation was
in the context of presentations that included object models using UML—again, before they
were even exposed directly to OO concepts. Even now, a couple of decades after the emergence
of the Internet as a business platform, it is not unusual to see programming books and profes-
sional training materials defer OO concepts until later in the discussion.

 It is important to understand the significant difference between learning OO concepts and
programming in an OO language. This came into sharp focus for me well before I worked on
the first edition of this book, when I read articles like Craig Larman’s “What the UML Is—and
Isn’t.” In this article, he states,

 Unfortunately, in the context of software engineering and the UML diagramming language, acquiring
the skills to read and write UML notation seems to sometimes be equated with skill in object-oriented
analysis and design. Of course, this is not so, and the latter is much more important than the former.
Therefore, I recommend seeking education and educational materials in which intellectual skill in
object-oriented analysis and design is paramount rather than UML notation or the use of a case tool.

2 Introduction

 Thus, although learning a modeling language is an important step, it is much more important
to learn OO skills first. Learning UML before fully understanding OO concepts is similar to
learning how to read an electrical diagram without first knowing anything about electricity.

 The same problem occurs with programming languages. As stated earlier, many C programmers
moved into the realm of object orientation by migrating to C++ before being directly exposed
to OO concepts. This would always come out in an interview. Many times, developers who
claim to be C++ programmers are simply C programmers using C++ compilers. Even now, with
languages such as C# .NET, VB .NET, Objective-C, and Java well established, a few key questions
in a job interview can quickly uncover a lack of OO understanding.

 Early versions of Visual Basic are not OO. C is not OO, and C++ was developed to be backward
compatible with C. Because of this, it is quite possible to use a C++ compiler writing only C
syntax while forsaking all of C++’s OO features. Objective-C was designed as an extension to
the standard ANSI C language. Even worse, a programmer can use just enough OO features to
make a program incomprehensible to OO and non-OO programmers alike.

 Thus, it is of vital importance that while you’re learning to use OO development environments,
you first learn the fundamental OO concepts. Resist the temptation to jump directly into a
programming language (such as Objective-C, VB .NET, C++, C# .NET, or Java) or a modeling
language (such as UML), and instead take the time to learn the object-oriented thought process.

 After programming in C for many years, I took my first Smalltalk class in the late 1980s. The
company I was with at the time had determined that its software developers needed to learn
this up-and-coming technology. The instructor opened the class by stating that the OO para-
digm was a totally new way of thinking (despite the fact that it has been around since the 60s).
He went on to say that although all of us were most likely very good programmers, about
10%–20% of us would never really grasp the OO way of doing things. If this statement is
indeed true, it is most likely because some good programmers never take the time to make the
paradigm shift and learn the underlying OO concepts.

 What’s New in the Fourth Edition

 As stated often in this introduction, my vision for the first edition was to stick to the concepts
rather than focus on a specific emerging technology. Although I still adhere to this goal for the
second, third, and fourth editions, I have included chapters on several application topics that
fit well with object-oriented concepts. Chapters 1 – 10 cover the fundamental object-oriented
concepts, and Chapters 11 – 15 are focused on applying these concepts to some general object-
oriented technologies. For example, Chapters 1 – 10 provide the foundation for a course on
object-oriented fundamentals (such as encapsulation, polymorphism, inheritance, and the like),
with Chapters 11 – 15 adding some practical applications.

 For the fourth edition, I expanded on many of the topics of the previous editions. These revised
and updated topics include coverage of the following:

 • Mobile device development, which includes phone apps, mobile apps and mobile/web,
hybrids, and so on

 • Objective-C code examples to include the iOS environment

3The Book’s Approach

 • Human-readable data interchange using XML and JSON

 • Rendering and transformation of data using CSS, XSLT, and so on

 • Web services, including Simple Object Access Protocol (SOAP), RESTful Web Services, and
the like

 • Client/server technologies and marshaling objects

 • Persistent data and serializing objects

 • Expanded code examples, for certain chapters, in Java, C# .NET, VB .NET, and
Objective-C available online on the publisher’s website

 The Intended Audience

 This book is a general introduction to fundamental OO concepts, with code examples to rein-
force the concepts. One of the most difficult juggling acts was to keep the code conceptual
while still providing a solid code base. The goal of this book is to enable a reader to understand
the concepts and technology without having a compiler at hand. However, if you do have a
compiler available, there is code to be executed and explored.

 The intended audience includes business managers, designers, developers, programmers, project
managers, and anyone who wants to gain a general understanding of what object orientation
is all about. Reading this book should provide a strong foundation for moving to other books
covering more advanced OO topics.

 Of these more advanced books, one of my favorites is Object-Oriented Design in Java , by Stephen
Gilbert and Bill McCarty. I really like the approach of the book and have used it as a textbook
in classes I have taught on OO concepts. I cite Object-Oriented Design in Java often throughout
this book, and I recommend that you graduate to it after you complete this one.

 Other books that I have found very helpful include Effective C++ , by Scott Meyers; Classical and
Object-Oriented Software Engineering , by Stephen R. Schach; Thinking in C++ , by Bruce Eckel; UML
Distilled , by Martin Fowler; and Java Design , by Peter Coad and Mark Mayfield.

 While teaching intro-level programming and web development classes to programmers at
corporations and universities, it quickly became obvious to me that most of these programmers
easily picked up the language syntax; however, these same programmers struggled with the OO
nature of the language.

 The Book’s Approach

 It should be obvious by now that I am a firm believer in becoming comfortable with the object-
oriented thought process before jumping into a programming language or modeling language.
This book is filled with examples of code and UML diagrams; however, you do not need to
know a specific programming language or UML to read it. After all I have said about learn-
ing the concepts first, why is there so much Java, C# .NET, VB .NET, and Objective-C code, as
well as so many UML diagrams? First, they are great for illustrating OO concepts. Second, they

4 Introduction

are vital to the OO process and should be addressed at an introductory level. The key is not
to focus on Java, C# .NET, VB .NET, and Objective-C or UML, but to use them as aids in the
understanding of the underlying concepts.

 Note that I really like using UML class diagrams as a visual aid in understanding classes, and
their attributes and methods. In fact, the class diagrams are the only component of UML that is
used in this book. I believe that the UML class diagrams offer a great way to model the concep-
tual nature of object models. I continue to use object models as an educational tool to illustrate
class design and how classes relate to one another.

 The code examples in the book illustrate concepts such as loops and functions. However, under-
standing the code itself is not a prerequisite for understanding the concepts; it might be helpful
to have a book at hand that covers specific languages’ syntax if you want to get more detailed.

 I cannot state too strongly that this book does not teach Java, C# .NET, VB .NET, Objective-C,
or UML, all of which can command volumes unto themselves. It is my hope that this book will
whet your appetite for other OO topics, such as OO analysis, object-oriented design, and OO
programming.

 This Book’s Conventions

 The following conventions are used in this book:

 • Code lines, commands, statements, and any other code-related terms appear in a
 monospace typeface.

 • Throughout the book, there are special sidebar elements, such as the following:

 Tip

 A Tip offers advice or shows you an easy way of doing something.

 Note

 A Note presents interesting information related to the discussion—a little more insight or a
pointer to some new technique.

 Caution

 A Caution alerts you to a possible problem and gives you advice on how to avoid it.

 Source Code Used in This Book

 The sample code described throughout this book is available on the publisher’s website. Go to
 informit.com/register and register your book for access to downloads.

 3
 Advanced Object-Oriented

Concepts

 Chapter 1 , “Introduction to Object-Oriented Concepts,” and Chapter 2 , “How to Think in
Terms of Objects,” cover the basics of object-oriented (OO) concepts. Before we embark on our
journey to learn some of the finer design issues relating to building an OO system, we need
to cover a few more advanced OO concepts, such as constructors, operator overloading, and
multiple inheritance. We also will consider error-handling techniques and the importance of
understudying how scope applies to object-oriented design.

 Some of these concepts might not be vital to understanding an OO design at a higher level, but
they are necessary to anyone involved in the design and implementation of an OO system.

 Constructors

 Constructors may be a new concept for structured programmers. Although constructors are not
normally used in non-OO languages such as COBOL, C, and Basic, the struct , which is part of
C/C++, does include constructors. In the first two chapters, we alluded to these special methods
that are used to construct objects. In some OO languages, such as Java and C#, constructors are
methods that share the same name as the class. Visual Basic .NET uses the designation New
and Objective-C uses the init keyword. As usual, we will focus on the concepts of constructors
and not cover the specific syntax of all the languages. Let’s take a look at some Java code that
implements a constructor.

 For example, a constructor for the Cabbie class we covered in Chapter 2 would look like this:

 public Cabbie(){
 /* code to construct the object */
 }

 The compiler will recognize that the method name is identical to the class name and consider
the method a constructor.

54 Chapter 3 Advanced Object-Oriented Concepts

 Caution

 Note that in this Java code (as with C# and C++), a constructor does not have a return value. If
you provide a return value, the compiler will not treat the method as a constructor.

 For example, if you include the following code in the class, the compiler will not consider this
a constructor because it has a return value—in this case, an integer:

 public int Cabbie(){
 /* code to construct the object */
 }

 This syntax requirement can cause problems because this code will compile but will not behave
as expected.

 When Is a Constructor Called?

 When a new object is created, one of the first things that happens is that the constructor is
called. Check out the following code:

 Cabbie myCabbie = new Cabbie();

 The new keyword creates a new instance of the Cabbie class, thus allocating the required
memory. Then the constructor itself is called, passing the arguments in the parameter list. The
constructor provides the developer the opportunity to attend to the appropriate initialization.

 Thus, the code new Cabbie() will instantiate a Cabbie object and call the Cabbie method,
which is the constructor.

 What’s Inside a Constructor?

 Perhaps the most important function of a constructor is to initialize the memory allocated
when the new keyword is encountered. In short, code included inside a constructor should set
the newly created object to its initial, stable, safe state.

 For example, if you have a counter object with an attribute called count , you need to set count
to zero in the constructor:

 count = 0;

 Initializing Attributes

 In structured programming, a routine named housekeeping (or initialization) is often used for ini-
tialization purposes. Initializing attributes is a common function performed within a constructor.

55Constructors

 The Default Constructor

 If you write a class and do not include a constructor, the class will still compile, and you can
still use it. If the class provides no explicit constructor, a default constructor will be provided.
It is important to understand that at least one constructor always exists, regardless of whether
you write a constructor yourself. If you do not provide a constructor, the system will provide a
default constructor for you.

 Besides the creation of the object itself, the only action that a default constructor takes is to
call the constructor of its superclass. In many cases, the superclass will be part of the language
framework, like the Object class in Java. For example, if a constructor is not provided for the
 Cabbie class, the following default constructor is inserted:

 public Cabbie(){
 super();
 }

 If you were to decompile the bytecode produced by the compiler, you would see this code. The
compiler actually inserts it.

 In this case, if Cabbie does not explicitly inherit from another class, the Object class will be
the parent class. Perhaps the default constructor might be sufficient in some cases; however,
in most cases, some sort of memory initialization should be performed. Regardless of the situ-
ation, it is good programming practice to always include at least one constructor in a class. If
there are attributes in the class, it is always good practice to initialize them. Moreover, initializ-
ing variables is always a good practice when writing code, object-oriented or not.

 Providing a Constructor

 The general rule is that you should always provide a constructor, even if you do not plan to
do anything inside it. You can provide a constructor with nothing in it and then add to it later.
Although there is technically nothing wrong with using the default constructor provided by the
compiler, for documentation and maintenance purposes, it is always nice to know exactly what
your code looks like.

 It is not surprising that maintenance becomes an issue here. If you depend on the default
constructor and then subsequent maintenance adds another constructor, the default construc-
tor is no longer created. In short, the default constructor is added only if you don’t include any
constructors. As soon as you include just one, the default constructor is not provided.

 Using Multiple Constructors

 In many cases, an object can be constructed in more than one way. To accommodate this situ-
ation, you need to provide more than one constructor. For example, let’s consider the Count
class presented here:

 public class Count {

 int count;

56 Chapter 3 Advanced Object-Oriented Concepts

 public Count(){
 count = 0;
 }
 }

 On the one hand, we want to initialize the attribute count to count to zero: We can easily
accomplish this by having a constructor initialize count to zero as follows:

 public Count(){
 count = 0;
 }

 On the other hand, we might want to pass an initialization parameter that allows count to be
set to various numbers:

 public Count (int number){
 count = number;
 }

 This is called overloading a method (overloading pertains to all methods, not just constructors).
Most OO languages provide functionality for overloading a method.

 Overloading Methods

 Overloading allows a programmer to use the same method name over and over, as long as the
signature of the method is different each time. The signature consists of the method name and
a parameter list (see Figure 3.1).

 Thus, the following methods all have different signatures:

 public void getCab();

 // different parameter list
 public void getCab (String cabbieName);

 // different parameter list
 public void getCab (int numberOfPassengers);

public String getRecord(int key)

Signature = getRecord (int key)
method name + parameter list

Signature

 Figure 3.1 The components of a signature.

57Constructors

 Signatures

 Depending on the language, the signature may or may not include the return type. In Java and
C#, the return type is not part of the signature. For example, the following methods would con-
flict even though the return types are different:

 public void getCab (String cabbieName);
 public int getCab (String cabbieName);

 The best way to understand signatures is to write some code and run it through the compiler.

 By using different signatures, you can construct objects differently depending on the construc-
tor used. This functionality is very helpful when you don’t always know ahead of time how
much information you have available. For example, when creating a shopping cart, customers
may already be logged in to their account (and you will have all of their information). On the
other hand, a totally new customer may be placing items in the cart with no account informa-
tion available at all. In each case, the constructor would initialize differently.

 Using UML to Model Classes

 Let’s return to the database reader example we used earlier in Chapter 2 . Consider that we have
two ways we can construct a database reader:

 • Pass the name of the database and position the cursor at the beginning of the database.

 • Pass the name of the database and the position within the database where we want the
cursor to position itself.

 Figure 3.2 shows a class diagram for the DataBaseReader class. Note that the diagram lists
two constructors for the class. Although the diagram shows the two constructors, without
the parameter list, there is no way to know which constructor is which. To distinguish the
constructors, you can look at the corresponding code in the DataBaseReader class listed next.

dbName:String
startPosition:int

+DataBaseReader:
+DataBaseReader:
+open:void
+close:void
+goToFirst:void
+goToLast:void
+howManyRecords:int
+areThereMoreRecords:boolean
+positionRecord:void
+getRecord:String
+getNextRecord:String

DataBaseReader

 Figure 3.2 The DataBaseReader class diagram.

58 Chapter 3 Advanced Object-Oriented Concepts

 No Return Type

 Notice that in this class diagram, the constructors do not have a return type. All other methods
besides constructors must have return types.

 Here is a code segment of the class that shows its constructors and the attributes that the
constructors initialize (see Figure 3.3) :

Class

Object

Object

Object

Class class = new Object();

Constructor

 Figure 3.3 Creating a new object.

 public class DataBaseReader {

 String dbName;
 int startPosition;

 // initialize just the name
 public DataBaseReader (String name){
 dbName = name;
 startPosition = 0;
 };

 // initialize the name and the position
 public DataBaseReader (String name, int pos){

59Constructors

 dbName = name;
 startPosition = pos;
 };

 .. // rest of class
 }

 Note how startPosition is initialized in both cases. If the constructor is not passed the infor-
mation via the parameter list, it is initialized to a default value, such as 0 .

 How the Superclass Is Constructed

 When using inheritance, you must know how the parent class is constructed. Remember that
when you use inheritance, you are inheriting everything about the parent. Thus, you must
become intimately aware of all the parent’s data and behavior. The inheritance of an attribute is
fairly obvious. However, how a constructor is inherited is not as obvious. After the new keyword
is encountered and the object is allocated, the following steps occur (see Figure 3.4):

 1. Inside the constructor, the constructor of the class’s superclass is called. If there is no
explicit call to the superclass constructor, the default is called automatically; however,
you can see the code in the bytecodes.

 2. Each class attribute of the object is initialized. These are the attributes that are part of
the class definition (instance variables), not the attributes inside the constructor or any
other method (local variables). In the DataBaseReader code presented earlier, the integer
 startPosition is an instance variable of the class.

 3. The rest of the code in the constructor executes.

Constructing an Object

Super
Class

User
Class

DBReader
Class

Call DBReader Constuctor

Call SuperClass Constructor First

 Figure 3.4 Constructing an object.

60 Chapter 3 Advanced Object-Oriented Concepts

 The Design of Constructors

 As we have already seen, when designing a class, it is good practice to initialize all the attri-
butes. In some languages, the compiler provides some sort of initialization. As always, don’t
count on the compiler to initialize attributes! In Java, you cannot use an attribute until it is
initialized. If the attribute is first set in the code, make sure that you initialize the attribute to
some valid condition—for example, set an integer to zero.

 Constructors are used to ensure that the application is in a stable state (I like to call it a “safe”
state). For example, initializing an attribute to zero, when it is intended for use as a denomina-
tor in a division operation, might lead to an unstable application. You must take into consid-
eration that a division by zero is an illegal operation. Initializing to zero is not always the best
policy.

 During the design, it is good practice to identify a stable state for all attributes and then initial-
ize them to this stable state in the constructor.

 Error Handling

 It is extremely rare for a class to be written perfectly the first time. In most, if not all, situa-
tions, things will go wrong. Any developer who does not plan for problems is courting danger.

 Assuming that your code has the capability to detect and trap an error condition, you can
handle the error in several ways: On page 223 of their book Java Primer Plus , Tyma, Torok, and
Downing (9781571690623) state that there are three basic solutions to handling problems
that are detected in a program: fix it, ignore the problem by squelching it, or exit the runtime
in some graceful manner. On page 139 of their book Object-Oriented Design in Java (978-
1571691347), Gilbert and McCarty expand on this theme by adding the choice of throwing an
exception:

 • Ignore the problem—not a good idea!

 • Check for potential problems and abort the program when you find a problem.

 • Check for potential problems, catch the mistake, and attempt to fix the problem.

 • Throw an exception. (Often this is the preferred way to handle the situation.)

 These strategies are discussed in the following sections.

 Ignoring the Problem

 Simply ignoring a potential problem is a recipe for disaster. And if you are going to ignore the
problem, why bother detecting it in the first place? It is obvious that you should not ignore any
known problem. The primary directive for all applications is that the application should never
crash. If you do not handle your errors, the application will eventually terminate ungracefully
or continue in a mode that can be considered an unstable state. In the latter case, you might
not even know you are getting incorrect results, and that can be much worse than a program
crash.

61Error Handling

 Checking for Problems and Aborting the Application

 If you choose to check for potential problems and abort the application when a problem is
detected, the application can display a message indicating that a problem exists. In this case,
the application gracefully exits, and the user is left staring at the computer screen, shaking her
head and wondering what just happened. Although this is a far superior option to ignoring the
problem, it is by no means optimal. However, this does allow the system to clean up things and
put itself in a more stable state, such as closing files and forcing a system restart.

 Checking for Problems and Attempting to Recover

 Checking for potential problems, catching the mistake, and attempting to recover is a far
superior solution than simply checking for problems and aborting. In this case, the problem is
detected by the code, and the application attempts to fix itself. This works well in certain situa-
tions. For example, consider the following code:

 if (a == 0)
 a=1;

 c = b/a;

 It is obvious that if the conditional statement is not included in the code, and a zero makes
its way to the divide statement, you will get a system exception because you cannot divide
by zero. By catching the exception and setting the variable a to 1 , at least the system will not
crash. However, setting a to 1 might not be a proper solution because the result would be
incorrect. The better solution would be to prompt the user to reenter the proper input value.

 A Mix of Error-Handling Techniques

 Despite the fact that this type of error handling is not necessarily object-oriented in nature, I
believe that it has a valid place in OO design. Throwing an exception (discussed in the next sec-
tion) can be expensive in terms of overhead. Thus, although exceptions may be a valid design
choice, you will still want to consider other error-handling techniques (even tried-and-true struc-
tured techniques), depending on your design and performance needs.

 Although the error-checking techniques mentioned previously are preferable to doing nothing,
they still have a few problems. It is not always easy to determine where a problem first appears.
And it might take a while for the problem to be detected. In any event, it is beyond the scope
of this book to explain error handling in great detail. However, it is important to design error
handling into the class right from the start, and often the operating system itself can alert you
to problems that it detects.

 Throwing an Exception

 Most OO languages provide a feature called exceptions . In the most basic sense, exceptions are
unexpected events that occur within a system. Exceptions provide a way to detect problems

62 Chapter 3 Advanced Object-Oriented Concepts

and then handle them. In Java, C#, C++, Objective-C, and Visual Basic, exceptions are handled
by the keywords catch and throw . This might sound like a baseball game, but the key concept
here is that a specific block of code is written to handle a specific exception. This solves the
problem of trying to figure out where the problem started and unwinding the code to the
proper point.

 Here is the structure for a Java try / catch block:

 try {

 // possible nasty code

 } catch(Exception e) {

 // code to handle the exception
 }

 If an exception is thrown within the try block, the catch block will handle it. When an excep-
tion is thrown while the block is executing, the following occurs:

 1. The execution of the try block is terminated.

 2. The catch clauses are checked to determine whether an appropriate catch block for the
offending exception was included. (There might be more than one catch clause per try
block.)

 3. If none of the catch clauses handles the offending exception, it is passed to the next
higher-level try block. (If the exception is not caught in the code, the system ultimately
catches it, and the results are unpredictable—that is, an application crash.)

 4. If a catch clause is matched (the first match encountered), the statements in the catch
clause are executed.

 5. Execution then resumes with the statement following the try block.

 Suffice it to say that exceptions are an important advantage for OO programming languages.
Here is an example of how an exception is caught in Java:

 try {

 // possible nasty code
 count = 0;
 count = 5/count;

 } catch(ArithmeticException e) {

 // code to handle the exception
 System.out.println(e.getMessage());
 count = 1;

 }
 System.out.println(“The exception is handled.”);

63Error Handling

 Exception Granularity

 You can catch exceptions at various levels of granularity. You can catch all exceptions or check
for specific exceptions, such as arithmetic exceptions. If your code does not catch an excep-
tion, the Java runtime will—and it won’t be happy about it!

 In this example, the division by zero (because count is equal to 0) within the try block will
cause an arithmetic exception. If the exception was generated (thrown) outside a try block, the
program would most likely have been terminated (crashed). However, because the exception
was thrown within a try block, the catch block is checked to see whether the specific excep-
tion (in this case, an arithmetic exception) was planned for. Because the catch block contains
a check for the arithmetic exception, the code within the catch block is executed, thus setting
 count to 1 . After the catch block executes, the try / catch block is exited, and the message The
exception is handled. appears on the Java console. The logical flow of this process is illus-
trated in Figure 3.5 .

System

System Throws
Exception

Your
Application

Application Catches
and Handles

Exception

System

System is
Happy

 Figure 3.5 Catching an exception.

 If you had not put ArithmeticException in the catch block, the program would likely have
crashed. You can catch all exceptions by using the following code:

 try {

 // possible nasty code

 } catch(Exception e) {

 // code to handle the exception
 }

 The Exception parameter in the catch block is used to catch any exception that might be
generated within a try block.

 Bulletproof Code

 It’s a good idea to use a combination of the methods described here to make your program as
bulletproof to your user as possible.

64 Chapter 3 Advanced Object-Oriented Concepts

 The Importance of Scope

 Multiple objects can be instantiated from a single class. Each of these objects has a unique iden-
tity and state. This is an important point. Each object is constructed separately and is allocated
its own separate memory. However, some attributes and methods may, if properly declared, be
shared by all the objects instantiated from the same class, thus sharing the memory allocated
for these class attributes and methods.

 A Shared Method

 A constructor is a good example of a method that is shared by all instances of a class.

 Methods represent the behaviors of an object; the state of the object is represented by attri-
butes. There are three types of attributes:

 • Local attributes

 • Object attributes

 • Class attributes

 Local Attributes

 Local attributes are owned by a specific method. Consider the following code:

 public class Number {

 public method1() {
 int count;

 }

 public method2() {

 }

 }

 The method method1 contains a local variable called count . This integer is accessible only
inside method1 . The method method2 has no idea that the integer count even exists.

 At this point, we introduce a very important concept: scope. Attributes (and methods) exist
within a particular scope. In this case, the integer count exists within the scope of method1 .
In Java, C#, C++ and Objective-C, scope is delineated by curly braces ({}). In the Number class,
there are several possible scopes—just start matching the curly braces.

 The class itself has its own scope. Each instance of the class (that is, each object) has its own
scope. Both method1 and method2 have their own scopes as well. Because count lives within

65The Importance of Scope

 method1 ’s curly braces, when method1 is invoked, a copy of count is created. When method1
terminates, the copy of count is removed.

 For some more fun, look at this code:

 public class Number {

 public method1() {
 int count;
 }

 public method2() {
 int count;
 }

 }

 This example has two copies of an integer count in this class. Remember that method1 and
 method2 each has its own scope. Thus, the compiler can tell which copy of count to access
simply by recognizing which method it is in. You can think of it in these terms:

 method1.count;

 method2.count;

 As far as the compiler is concerned, the two attributes are easily differentiated, even though
they have the same name. It is almost like two people having the same last name, but based on
the context of their first names, you know that they are two separate individuals.

 Object Attributes

 In many design situations, an attribute must be shared by several methods within the same
object. In Figure 3.6 , for example, three objects have been constructed from a single class.
Consider the following code:

 public class Number {

 int count; // available to both method1 and method2

 public method1() {
 count = 1;
 }

 public method2() {
 count = 2;
 }

 }

66 Chapter 3 Advanced Object-Oriented Concepts

Memory
Allocation

attribute count

Memory
Allocation

Memory
AllocationObject

number3

Object
number2

Object
number1

Object Attributes

attribute count

attribute count

 Figure 3.6 Object attributes.

 Note here that the class attribute count is declared outside the scope of both method1 and
 method2 . However, it is within the scope of the class. Thus, count is available to both method1
and method2 . (Basically, all methods in the class have access to this attribute.) Notice that the
code for both methods is setting count to a specific value. There is only one copy of count
for the entire object, so both assignments operate on the same copy in memory. However, this
copy of count is not shared between different objects.

 To illustrate, let’s create three copies of the Number class:

 Number number1 = new Number();
 Number number2 = new Number();
 Number number3 = new Number();

 Each of these objects— number1 , number2 , and number3 —is constructed separately and is allo-
cated its own resources. There are three separate instances of the integer count . When number1
changes its attribute count , this in no way affects the copy of count in object number2 or
object number3 . In this case, integer count is an object attribute .

 You can play some interesting games with scope. Consider the following code:

 public class Number {

 int count;

67The Importance of Scope

 public method1() {
 int count;
 }

 public method2() {
 int count;
 }

 }

 In this case, three totally separate memory locations have the name of count for each object.
The object owns one copy, and method1() and method2() each have their own copy.

 To access the object variable from within one of the methods, say method1() , you can use a
pointer called this in the C-based languages:

 public method1() {
 int count;

 this.count = 1;
 }

 Notice that some code looks a bit curious:

 this.count = 1;

 The selection of the word this as a keyword is perhaps unfortunate. However, we must live
with it. The use of the this keyword directs the compiler to access the object variable count
and not the local variables within the method bodies.

 Note

 The keyword this is a reference to the current object.

 Class Attributes

 As mentioned earlier, it is possible for two or more objects to share attributes. In Java, C#, C++
and Objective-C, you do this by making the attribute static :

 public class Number {

 static int count;

 public method1() {
 }

 }

68 Chapter 3 Advanced Object-Oriented Concepts

 By declaring count as static, this attribute is allocated a single piece of memory for all objects
instantiated from the class. Thus, all objects of the class use the same memory location for
 count . Essentially, each class has a single copy, which is shared by all objects of that class (see
 Figure 3.7). This is about as close to global data as we get in OO design.

Class Attribute

Object 1

Object 2

Memory
allocation
attribute

count

Object 3

 Figure 3.7 Class attributes.

 There are many valid uses for class attributes; however, you must be aware of potential synchro-
nization problems. Let’s instantiate two Count objects:

 Count Count1 = new Count();
 Count Count2 = new Count();

 For the sake of argument, let’s say that the object Count1 is going merrily about its way and is
using count as a means to keep track of the pixels on a computer screen. This is not a problem
until the object Count2 decides to use attribute count to keep track of sheep. The instant that
 Count2 records its first sheep, the data that Count1 was saving is lost.

69Operator Overloading

 Operator Overloading

 Some OO languages allow you to overload an operator. C++ is an example of one such
language. Operator overloading allows you to change the meaning of an operator. For example,
when most people see a plus sign, they assume it represents addition. If you see the equation

 X = 5 + 6;

 you expect that X would contain the value 11 . And in this case, you would be correct.

 However, at times a plus sign could represent something else. For example, in the following
code:

 String firstName = “Joe”, lastName = “Smith”;

 String Name = firstName + “ “ + lastName;

 You would expect that Name would contain Joe Smith . The plus sign here has been overloaded
to perform string concatenation.

 String Concatenation

 String concatenation occurs when two separate strings are combined to create a new, single
string.

 In the context of strings, the plus sign does not mean addition of integers or floats, but concat-
enation of strings.

 What about matrix addition? You could have code like this:

 Matrix a, b, c;

 c = a + b;

 Thus, the plus sign now performs matrix addition, not addition of integers or floats.

 Overloading is a powerful mechanism. However, it can be downright confusing for people who
read and maintain code. In fact, developers can confuse themselves. To take this to an extreme,
it would be possible to change the operation of addition to perform subtraction. Why not?
Operator overloading allows you to change the meaning of an operator. Thus, if the plus sign
were changed to perform subtraction, the following code would result in an X value of –1 :

 x = 5 + 6;

 More recent OO languages like Java, .NET, and Objective-C do not allow operator overloading.

 Although these languages do not allow the option of overloading operators, the languages
themselves do overload the plus sign for string concatenation, but that’s about it. The designers
of Java must have decided that operator overloading was more of a problem than it was worth.
If you must use operator overloading in C++, take care by documenting and commenting prop-
erly not to confuse the people who will use the class.

70 Chapter 3 Advanced Object-Oriented Concepts

 Multiple Inheritance

 We cover inheritance in much more detail in Chapter 7 , “Mastering Inheritance and
Composition.” However, this is a good place to begin discussing multiple inheritance, which is
one of the more powerful and challenging aspects of class design.

 As the name implies, multiple inheritance allows a class to inherit from more than one class. In
practice, this seems like a great idea. Objects are supposed to model the real world, are they not?
And many real-world examples of multiple inheritance exist. Parents are a good example of multi-
ple inheritance. Each child has two parents—that’s just the way it is. So it makes sense that you
can design classes by using multiple inheritance. In some OO languages, such as C++, you can.

 However, this situation falls into a category similar to operator overloading. Multiple inheri-
tance is a very powerful technique, and in fact, some problems are quite difficult to solve
without it. Multiple inheritance can even solve some problems quite elegantly. However, multi-
ple inheritance can significantly increase the complexity of a system, both for the programmer
and the compiler writers.

 As with operator overloading, the designers of Java, .NET, and Objective-C decided that the
increased complexity of allowing multiple inheritance far outweighed its advantages, so they
eliminated it from the language. In some ways, the Java, .NET, and Objective-C language
construct of interfaces compensates for this; however, the bottom line is that Java, .NET, and
Objective-C do not allow conventional multiple inheritance.

 Behavioral and Implementation Inheritance

 Interfaces are a mechanism for behavioral inheritance, whereas abstract classes are used
for implementation inheritance. The bottom line is that interface language constructs provide
behavioral interfaces, but no implementation, whereas abstract classes may provide both inter-
faces and implementation. This topic is covered in great detail in Chapter 8 , “Frameworks and
Reuse: Designing with Interfaces and Abstract Classes.”

 Object Operations

 Some of the most basic operations in programming become more complicated when you’re
dealing with complex data structures and objects. For example, when you want to copy or
compare primitive data types, the process is quite straightforward. However, copying and
comparing objects is not quite as simple. On page 34 of his book Effective C++ , Scott Meyers
devotes an entire section to copying and assigning objects.

 Classes and References

 The problem with complex data structures and objects is that they might contain references.
Simply making a copy of the reference does not copy the data structures or the object that it
references. In the same vein, when comparing objects, simply comparing a pointer to another
pointer only compares the references—not what they point to.

71Object Operations

 The problems arise when comparisons and copies are performed on objects. Specifically, the
question boils down to whether you follow the pointers. Regardless, there should be a way to
copy an object. Again, this is not as simple as it might seem. Because objects can contain refer-
ences, these reference trees must be followed to do a valid copy (if you truly want to do a deep
copy).

 Deep Versus Shallow Copies

 A deep copy occurs when all the references are followed and new copies are created for all
referenced objects. Many levels might be involved in a deep copy. For objects with references to
many objects, which in turn might have references to even more objects, the copy itself can cre-
ate significant overhead. A shallow copy would simply copy the reference and not follow the lev-
els. Gilbert and McCarty have a good discussion about what shallow and deep hierarchies are
on page 265 of Object-Oriented Design in Java in a section called “Prefer a Tree to a Forest.”

 To illustrate, in Figure 3.8 , if you do a simple copy of the object (called a bitwise copy), only the
references are copied—not any of the actual objects. Thus, both objects (the original and the
copy) will reference (point to) the same objects. To perform a complete copy, in which all refer-
ence objects are copied, you must write code to create all the subobjects.

Class
B

Class
C

Class
A

Copy of
Class A

References
Class B

References
Class B

References
Class C References

Class C

 Figure 3.8 Following object references.

72 Chapter 3 Advanced Object-Oriented Concepts

 This problem also manifests itself when comparing objects. As with the copy function, this is
not as simple as it might seem. Because objects contain references, these reference trees must be
followed to do a valid comparison of objects. In most cases, languages provide a default mecha-
nism to compare objects. As is usually the case, do not count on the default mechanism. When
designing a class, you should consider providing a comparison function in your class that you
know will behave as you want it to.

 Conclusion

 This chapter covered a number of advanced OO concepts that, although perhaps not vital to
a general understanding of OO concepts, are quite necessary in higher-level OO tasks, such as
designing a class. In Chapter 4 , “The Anatomy of a Class,” we start looking specifically at how
to design and build a class.

 References

 • Meyers, Scott. 2005. Effective C++ , 3rd edition. Boston, MA: Addison-Wesley Professional.

 • Gilbert, Stephen, and Bill McCarty. 1998. Object-Oriented Design in Java . Berkeley, CA: The
Waite Group Press.

 • Tyma, Paul, Gabriel Torok, and Troy Downing. 1996. Java Primer Plus . Berkeley, CA: The
Waite Group.

 Example Code Used in This Chapter

 The following code is presented in C# .NET. Code for other languages, such as VB .NET and
Objective-C, are available electronically on the publisher’s website. These examples correspond
to the Java code that is listed inside the chapter itself.

 The TestNumber Example: C# .NET
 using System;

 namespace TestNumber
 {
 class Program
 {
 public static void Main()
 {

 Number number1 = new Number();
 Number number2 = new Number();
 Number number3 = new Number();

73Example Code Used in This Chapter

 }
 }

 public class Number
 {

 int count = 0; // available to both method1 and method2

 public void method1()
 {
 count = 1;
 }

 public void method2()
 {
 count = 2;
 }

 }
 }

This page intentionally left blank

Index

 A
 abstract classes, 136 - 137 , 141

 contracts, 145 - 147

 abstract thinking, interface design, 45 - 46

 abstraction, inheritance, 26

 access designations, object models,

 187 - 188

 accessors, 81 - 82

 aggregations

 composition, 172 - 173 , 174

 UML (Unified Modeling Language)
class diagrams, 191

 Alexander, Christopher, 278

 Ambler, Scott, 97 , 290

 anti-design patterns, 290

 API (application-programming interface)

 contracts, 144 - 145

 documentation, 143

 applications

 aborting, 61

 client/server, 263 - 264

 client code, 265 - 267

 nonproprietary, 270 - 275

 proprietary, 264 - 270

 server code, 267 - 268

 parsers, 201

 recovering, 61

 “Architecture of Complexity, The,” 169-170

 associations

 composition, 171 - 174

298 associations

 objects

 cardinality, 175 - 178

 multiple, 178

 optional, 178

 UML (Unified Modeling Language)
class diagrams, 192 - 194

 attributes

 class diagrams, 186

 classes, 67 - 68 , 77 - 79

 local, 64 - 65

 objects, 19 , 65 - 67

 B
 behavioral design patterns, 288 - 289

 behaviors, objects, 13 - 16

 building objects, 167 , 179 - 180

 avoiding dependencies, 174 - 175

 composition relationships, 168 - 169

 composition types, 171 - 174

 phases, 169 - 170

 C
 calling constructors, 54

 cardinality

 associations, 175 - 178

 object models, 194 - 195

 Cascading Style Sheets (CSS), 200 ,

 210 - 212

 specifications, 210

 CheckingAccount class, 271 - 272

 Child class, 176

 Circle class, 29 , 96 , 133

 class diagrams

 attributes, 186

 methods, 186 - 187

 structure, 184 - 186

 UML (Unified Modeling Language), 16

 using as visual tool, 20 - 21

 classes, 17 - 20 , 75

 abstract, 136 - 137 , 141

 contracts, 145 - 147

 accessors, 81 - 82

 associations, cardinality, 176

 attributes, 67 - 68 , 77 - 79

 CheckingAccount, 271 - 272

 Child, 176

 Circle, 29 , 96 , 133 , 146

 collaboration, 110

 comments, 77

 documenting, 91 - 92

 constructors, 79 - 80

 coupled, 97

 designing, 10 , 87 - 88

 error handling, 91 - 92

 extensibility, 93 - 97

 iteration, 98

 maintainability, 97 - 100

 object persistence, 100 - 101

 determining responsibilities, 110

 Division, 176

 Employee, 176

 identifying, 110

 interfaces, 39

 JobDescription, 176

 modeling, UML (Unified Modeling
Language), 57 - 59

 names, 75 - 77

 making descriptive, 93

 Rectangle, 146

 Shape, 28 , 133

 Spouse, 176

 subclasses, 26

 superclasses, 26

 construction, 59

299creating objects

 templates, 18

 TextMessage, 264 - 267

 Triangle, 135

 wrapping existing, 116 - 117

 client/server applications

 nonproprietary, 270 - 275

 client code, 272 - 273

 server code, 273 - 275

 objects, 263 - 264

 proprietary, 264 - 270

 client code, 265 - 267

 running, 268 - 270

 server code, proprietary, 267 - 268

 Coad, Peter, 120

 code

 client

 nonproprietary, 272 - 273

 proprietary, 265 - 267

 compilers, proving is-a relationships,
 152

 nonportable

 abstracting out, 94

 wrapping, 115 - 116

 object definition, 271 - 272

 plug-in points, 155

 proprietary, server code, 267 - 268

 reusing, 141 - 142 , 155 - 156

 serialized object, 264 - 265

 server

 nonproprietary, 273 - 275

 proprietary, 267 - 268

 structured, 112 - 113

 wrapping, 113 - 115

 testing, 122

 web services, 258 - 260

 code listings, Data Definition Document for

Validation (11.1), 203

 collaboration, classes, 110

 Command Prompt, client/server applica-

tions, running, 268

 comments, classes, 77

 documenting, 91 - 92

 Common Object Request Broker

Architecture (CORBA), 251 - 254

 comparing objects, 70 , 94

 compilers, interface is-a relationship, prov-

ing, 152

 composition, 6 , 31 - 32 , 119 , 126 - 128 ,

 171 - 174

 aggregations, 172 - 174

 associations, 171 - 174

 object models, 191 - 194

 relationships, 168 - 169

 UML (Unified Modeling Language),
representing, 127 - 128

 consequences, design patterns, 279

 constructors, 53 - 60

 calling, 54

 classes, 79 - 80

 contents, 54

 default, 55

 designing, 60 , 90 - 91

 multiple, 55 - 59

 contracts, 144 - 145 , 149 - 152

 abstract classes, 145 - 147

 creating, 153 - 155

 interfaces, 147 - 149

 plug-in points, 155

 controls, web pages, 247 - 248

 movie players, 248

 sound players, 248

 copying objects, 70 - 72 , 94

 CORBA (Common Object Request

Architecture), 251 - 254

 coupled classes, 97

 creating objects, 18 - 19

300 creational design patterns

 creational design patterns, 281 - 286

 CSS (Cascading Style Sheets), 200 ,

 210 - 212

 specifications, 210

 D
 data

 hiding, 10 , 21 - 24

 objects, 12

 portable, XML (Extensible Markup
Language), 198 - 199

 sharing between two companies, 202

 databases, relational, writing to, 228 - 231

 deep copies, objects, 71

 dependencies, objects, avoiding, 174 - 175

 descriptive names, classes, 93

 design patterns, 277 - 281

 antipatterns, 290

 behavioral, 288 - 289

 consequences, 279

 creational, 281 - 286

 elements, 279

 names, 279

 problems, 279

 solutions, 279

 structural, 286 - 288

 Design Patterns: Elements of Reusable
Object-Oriented Software , 278

 designing

 classes, 10 , 87 - 88

 error handling, 91 - 92

 extensibility, 93 - 97

 iteration, 98

 maintainability, 97 - 100

 object persistence, 100 - 101

 constructors, 60 , 90 - 91

 interfaces, abstract thinking, 45 - 46

 with objects, 105 - 117

 objects, reuse, 92

 destructors, designing, 90 - 91

 distributed computing, 237 - 238

 distributed objects, 249 - 261

 Division class, 176

 Document Type Definition (DTD). See DTD

(Document Type Definition)

 documentation, API (application-program-

ming interface), 143

 documenting classes, comments, 91 - 92

 DTD (Document Type Definition), 200

 document validation, 202 - 204

 XML document integration, 204 - 210

 E
 e-business example, 155 - 156

 code reuse, 155 - 156

 problem, 155 - 158

 solution, 158

 UML (Unified Modeling Language)
object model, 158 - 163

 Effective C++: 50 Specific Ways to Improve
Your Programs and Designs, 70

 Employee class, 176

 encapsulation, 6 , 21 - 24 , 129 - 137

 inheritance, 130 - 132

 error handling, 60 - 63

 class design, 91 - 92

 exceptions, throwing, 61 - 63

 existing classes, wrapping, 116 - 117

 Extensible Markup Language (XML). See

XML (Extensible Markup Language)

 extensibility, designing classes, 93 - 97

301interfaces

 interfaces, 38 - 45 , 50 - 51 , 224 - 225

 private methods, 84

 inheritance, 6 , 25 - 28 , 119 , 120 - 126

 abstraction, 26

 encapsulation, 130 - 132

 is-a relationships, 27 - 28

 multiple, 70

 object models, 188 - 189

 subclasses, 26

 superclasses, 26

 Integrated Development Environment (IDE),

 268

 interface/implementation paradigm,

 23 - 24 , 41 - 45

 interfaces, 21 - 22 , 141

 API (application-programming inter-
face)

 contracts, 144 - 145

 documentation, 143

 bare bones, 47 - 51

 classes, 39

 contracts, 147 - 149

 designing, abstract thinking, 45 - 46

 determining users, 48

 developing prototype, 110 - 111

 environmental constraints, 49

 GUIs (graphical user interfaces), 38 ,
 148

 identifying public, 49 - 50

 implementations, 38 - 45 , 50 - 51 ,
 224 - 225

 interface/implementation paradigm,
 23 - 24

 is-a relationships, proving, 152

 object behavior, 49

 object models, 190

 public

 identifying, 88 - 90

 F
 files

 flat, saving objects to, 221 - 225

 serialization, XML (Extensible Markup
Language), 226 - 228

 serializing, 222 - 223

 Flash objects, web pages, 249

 flat files, objects, saving to, 221 - 225

 Ford, Henry, 126

 frameworks, 142 - 143

 .NET, 197

 access modifiers, 188

 G
 Gamma, Erich, 278

 generalization, 124

 Gilbert, Stephen, 60 , 71 , 88 , 98 , 169 , 175

 GUIs (graphical user interfaces), 38 , 148

 H
 has-a relationships, 32

 Helm, Richard, 278

 hiding

 data, 10 , 21 - 24

 implementations, 89 - 90

 HTML (Hypertext Markup Language), 199

 rendering documents, 240 - 239

 versus XML (Extensible Markup
Language), 199 - 200

 I
 IDE (Integrated Development Environment),

 268

 IIOP (Internet Inter-ORB Protocol), 254

 implementations, 22

 hiding, 89 - 90

 interface/implementation paradigm, 22

302 interfaces

 messages

 objects, 20

 XML (Extensible Markup Language),
SOAP (Simple Object Access Protocol),
 254 - 258

 methods

 class diagrams, 186 - 187

 objects, 20

 overloading, 56 - 57

 private implementation, 84

 public interface, 83 - 84

 virtual, 136 - 137

 Meyers, Scott, 70 , 88

 modeling classes, UML (Unified Modeling

Language), 57 - 59

 models (object), 183

 access designations, 187 - 188

 cardinality, 194 - 195

 composition, 191 - 194

 inheritance, 188 - 189

 interfaces, 190

 UML (Unified Modeling Language),
 183 - 184

 class diagrams, 184 - 187

 movie players, web pages, 248

 multiple constructors, 55 - 59

 multiple inheritance, 70

 multiple object associations, 178

 MVC (Model/View/Controller), Smalltalk,

 278 - 280

 N
 names

 classes, 75 - 77

 making descriptive, 93

 design patterns, 279

 .NET framework, 197

 access modifiers, 188

 methods, 83 - 84

 minimum, 88 - 89

 testing, 98 - 100

 internal access modifier (.NET), 188

 Internet Inter-ORB Protocol (IIOP), 254

 is-a relationships, 27 - 28

 iteration, class design, 98

 iterator design patterns, 289

 J
 Java Primer Plus , 60-72

 JavaScript

 objects, 245 - 246

 validation, 241 - 244

 JavaScript Object Notation (JSON). See

JSON (JavaScript Object Notation)

 JobDescription class, 176

 Johnson, Johnny, 290

 Johnson, Ralph, 278

 JSON (JavaScript Object Notation), 197 ,

 212 - 217

 K-L
 Koenig, Andrew, 290

 legacy systems, 6 - 7

 life cycles, objects, 219 - 220

 listings, Data Definition Document for

Validation (11.1), 203

 local attributes, 64 - 65

 M
 maintainability, class design, 97 - 100

 marshaling objects, 101

 McCarty, Bill, 60 , 71 , 88 , 98 , 169 , 175

 memory leaks, 91

303OO (object-oriented) concepts

 client/server applications, 263 - 264

 proprietary, 264 - 270

 comparing, 70 , 94

 copying, 70 - 72 , 94

 CORBA (Common Object Request
Architecture), 251 - 254

 creating, 18 - 19

 data, 12

 definition code, 271 - 272

 designing, reuse, 92

 designing with, 105 - 117

 distributed, 249 - 261

 Flash, web pages, 249

 JavaScript, 245 - 246

 life cycles, 219 - 220

 marshaling, 101

 messages, 20

 methods, 20

 operations, 70 - 72

 persistence, 100 - 101

 persistent, 219 - 221

 file serialization, 222 - 223

 writing to relational databases,
 228 - 231

 responsibilities, 132 - 136

 reusing, 119 - 120

 serializing, 101

 UML (Unified Modeling Language)
model, 158 - 163

 web pages, 244 - 249

 ODBC (Open Database Connectivity), 231

 OO (object-oriented) concepts, 5 - 6

 advanced, 53

 constructors, 53 - 60

 error handling, 60 - 63

 multiple inheritance, 70

 object operations, 70 - 72

 operator overloading, 69

 scope, 64 - 68

 nonportable code

 abstracting out, 94

 wrapping, 115 - 116

 nonproprietary client/server applications,

 270 - 275

 null value, 80

 O
 object models, 183

 access designations, 187 - 188

 cardinality, 194 - 195

 composition, 191 - 194

 inheritance, 188 - 189

 interfaces, 190

 UML (Unified Modeling Language),
 183 - 184

 class diagrams, 184 - 187

 Object Primer, The , 97

 Object Request Broker (ORB), 253

 object wrappers, 7 , 111 - 117

 object-based scripting languages, 238 - 241

 Object-Oriented Design in Java, 60, 71, 88,

98, 169, 175

 objects, 6 - 7 , 12 - 16 , 37 - 38 , 263

 associations

 cardinality, 175 - 178

 multiple, 178

 optional, 178

 attributes, 19 , 65 - 67

 behavior, interfaces, 49

 behaviors, 13 - 16

 building, 167 , 179 - 180

 avoiding dependencies, 174 - 175

 composition relationships, 168 - 169

 composition types, 171 - 174

 cooperation, 92

 phases, 169 - 170

304 OO (object-oriented) objects

 private access modifier (.NET), 188

 private implementation methods, 84

 problems, design patterns, 279

 procedural programming

 moving from to OO (object-oriented),
 11 - 12

 versus OO (object-oriented), 7 - 10

 program spaces, 17

 proprietary client/server applications,

 264 - 270

 protected access modifier (.NET), 188

 protocols, 136 - 137

 Objective-C, 137

 proving is-a relationships, interfaces, 152

 public access modifier (.NET), 188

 public interface methods, 83 - 84

 public interfaces

 identifying, 88 - 90

 minimum, 88 - 89

 R
 Recipe Markup Language (RecipeML), 199

 recovering applications, 61

 Rectangle class, 146

 relational databases

 accessing, 230 - 231

 writing to, 228 - 231

 relationships

 composition, 168 - 169

 has-a, 32

 is-a, 27 - 28

 proving, 152

 remote procedure calls (RPC), 255

 Representational State Transfer (ReST),

 260 - 261

 request for proposal (RFP), 109

 composition, 6 , 31 - 32 , 126 - 128

 types, 171 - 174

 encapsulation, 6 , 21 - 24 , 129 - 137

 inheritance, 6 , 25 - 28 , 120 - 126

 legacy systems, 6 - 7

 objects, 6 - 7

 polymorphism, 6 , 28 - 31 , 132

 OO (object-oriented) design, 167

 OO (object-oriented) programming

 moving from procedural to, 11 - 12

 versus procedural, 7 - 10

 OO (object-oriented) software development,

 5

 OO (object-oriented) thought process, 1-2

 Open Database Connectivity (ODBC), 231

 operations, objects, 70 - 72

 operators, overloading, 69

 optional object associations, 178

 overloading

 methods, 56 - 57

 operators, 69

 P
 parsers, 201

 Pattern Language, A: Towns, Buildings,
Construction , 278

 patterns. See design patterns

 persistent objects, 100 - 101 , 219 - 221

 file serialization, 222 - 223

 flat files, saving to, 221 - 225

 relational databases, writing to,
 228 - 231

 phases, building objects, 169 - 170

 plug-in points, code, 155

 polymorphism, 28 - 31 , 132

 portable data, XML (Extensible Markup

Language), 198 - 199

305user interfaces, developing prototype

 SOW (statement of work), developing, 109

 Spouse class, 176

 statement of work (SOW), developing, 109

 structural design patterns, 286 - 288

 structured code, 112 - 113

 wrapping, 113 - 115

 stubs, test, 98 - 100

 subclasses, 26

 superclasses, 26

 construction, 59

 system plug-in points, 155

 T
 tags (HTML), 200

 templates, class, 18

 testing interfaces, 98 - 100

 TextMessage class, 264 - 267

 throwing exceptions, 61 - 63

 Triangle class, 135

 U
 UML (Unified Modeling Language), 183 - 184

 class diagrams, 183 - 186

 aggregations, 191

 associations, 192 - 194

 attributes, 186

 interface relationships, 190

 methods, 186 - 187

 singleton, 282

 composition, representing, 127 - 128

 interface diagram, 148

 modeling classes, 57 - 59

 object model, 158 - 163

 user interfaces, developing prototype,

 110 - 111

 responsibilities

 classes, determining, 110

 objects, 132 - 136

 ReST (Representational State Transfer),

 260 - 261

 reusing

 code, 141 - 142 , 155 - 156

 objects, 119 - 120

 RFP (request for proposal), 109

 RPC (remote procedure calls), 255

 running client/server applications

 nonproprietary, 275

 proprietary, 268 - 270

 S
 saving objects to persistent objects,

 221 - 225

 serialization, files, 222 - 223

 XML (Extensible Markup Language),
 226 - 228

 serialized object code, 264 - 265

 serializing objects, 101

 server code

 nonproprietary, 273 - 275

 proprietary, 267 - 268

 SGML (Standard Generalized Markup

Language), 199

 shallow copies, objects, 71

 Shape class, 28 , 133

 Simon, Herbert, 169

 singleton design patterns, 281 - 286

 Smalltalk, 237

 MVC (Model/View/Controller),
 278 - 280

 SOAP (Simple Object Access Protocol), XML

messages, 254 - 258

 solutions, design patterns, 279

 sound players, web pages, 248

306 validation, Javascript

 V-W
 validation, JavaScript, 241 - 244

 virtual methods, 136 - 137

 Vlissides, John, 278

 web pages

 controls, 247 - 248

 movie players, 248

 sound players, 248

 Flash objects, 249

 objects, 244 - 249

 web services, 254 - 258

 code, 258 - 260

 wrappers (object), 7 , 111 - 117

 wrapping

 existing classes, 116 - 117

 nonportable code, 115 - 116

 structured code, 113 - 115

 X
 XML (Extensible Markup Language), 197 ,

 199 , 200 - 201

 CSS (Cascading Style Sheets), 210 - 212

 DTD (Document Type Definition), doc-
umentation integration, 205 - 210

 file serialization, 226 - 228

 versus HTML (Hypertext Markup
Language), 199 - 200

 messages, SOAP (Simple Object Access
Protocol), 254 - 258

 portable data, 197 - 199

 sharing data between two companies,
 202

 XML Notepad, 206

 XML validator, 209

	Table of Contents
	Introduction
	This Book’s Scope
	What’s New in the Fourth Edition
	The Intended Audience
	The Book’s Approach
	This Book’s Conventions
	Source Code Used in This Book

	3 Advanced Object-Oriented Concepts
	Constructors
	When Is a Constructor Called?
	What’s Inside a Constructor?
	The Default Constructor
	Using Multiple Constructors
	The Design of Constructors

	Error Handling
	Ignoring the Problem
	Checking for Problems and Aborting the Application
	Checking for Problems and Attempting to Recover
	Throwing an Exception

	The Importance of Scope
	Local Attributes
	Object Attributes
	Class Attributes

	Operator Overloading
	Multiple Inheritance
	Object Operations
	Conclusion
	References
	Example Code Used in This Chapter
	The TestNumber Example: C# .NET

	Index

