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  Introduction  

     This Book’s Scope  

 As the title suggests, this book is about the object-oriented (OO) thought process. Although 
choosing the theme and title of a book are important decisions, these decisions are not at all 
straightforward when dealing with a highly conceptual topic. Many books deal with one level 
or another of programming and object orientation. Several popular books cover topics includ-
ing OO analysis, OO design, OO programming, design patterns, OO data (XML), the Unified 
Modeling Language (UML), OO Web development, OO Mobile development, various OO 
programming languages, and many other topics related to OO programming.  

 However, while poring over all these books, many people forget that all these topics are built 
on a single foundation: how you think in OO ways. Often, many software professionals, as 
well as students, dive into these books without taking the appropriate time and effort to  really  
understand the design concepts behind the code.  

 I contend that learning OO concepts is not accomplished by learning a specific development 
method, a programming language, or a set of design tools. Doing things in an OO manner is, 
simply put, a way of thinking. This book is all about the OO thought process.  

 Separating the languages, development practices, and tools from the OO thought process is not 
an easy task. Often, people are introduced to OO concepts by diving headfirst into a program-
ming language. For example, many years ago, a large number of C programmers were first 
introduced to object orientation by migrating directly to C++ before they were even remotely 
exposed to OO concepts. Other software professionals’ first exposure to object orientation was 
in the context of presentations that included object models using UML—again, before they 
were even exposed directly to OO concepts. Even now, a couple of decades after the emergence  
of the Internet as a business platform, it is not unusual to see programming books and profes-
sional training materials defer OO concepts until later in the discussion.  

 It is important to understand the significant difference between learning OO concepts and 
programming in an OO language. This came into sharp focus for me well before I worked on 
the first edition of this book, when I read articles like Craig Larman’s “What the UML Is—and 
Isn’t.” In this article, he states,  

  Unfortunately, in the context of software engineering and the UML diagramming language, acquiring 
the skills to read and write UML notation seems to sometimes be equated with skill in object-oriented 
analysis and design. Of course, this is not so, and the latter is much more important than the former. 
Therefore, I recommend seeking education and educational materials in which intellectual skill in 
object-oriented analysis and design is paramount rather than UML notation or the use of a case tool.   
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 Thus, although learning a modeling language is an important step, it is much more important 
to learn OO skills first. Learning UML before fully understanding OO concepts is similar to 
learning how to read an electrical diagram without first knowing anything about electricity.  

 The same problem occurs with programming languages. As stated earlier, many C programmers 
moved into the realm of object orientation by migrating to C++ before being directly exposed 
to OO concepts. This would always come out in an interview. Many times, developers who 
claim to be C++ programmers are simply C programmers using C++ compilers. Even now, with 
languages such as C# .NET, VB .NET, Objective-C, and Java well established, a few key questions 
in a job interview can quickly uncover a lack of OO understanding.  

 Early versions of Visual Basic are not OO. C is not OO, and C++ was  developed  to be backward 
compatible with C. Because of this, it is quite possible to use a C++ compiler writing only C 
syntax while forsaking all of C++’s OO features. Objective-C was designed as an extension to 
the standard ANSI C language. Even worse, a programmer can use just enough OO features to 
make a program incomprehensible to OO and non-OO programmers alike.  

 Thus, it is of vital importance that while you’re learning to use OO development environments, 
you first learn the fundamental OO concepts. Resist the temptation to jump directly into a 
programming language (such as Objective-C, VB .NET, C++, C# .NET, or Java) or a modeling 
language (such as UML), and instead take the time to learn the object-oriented thought process.  

 After programming in C for many years, I took my first Smalltalk class in the late 1980s. The 
company I was with at the time had determined that its software developers needed to learn 
this up-and-coming technology. The instructor opened the class by stating that the OO para-
digm was a totally new way of thinking ( despite the fact that it has been around since the 60s ). 
He went on to say that although all of us were most likely very good programmers, about 
10%–20% of us would never really grasp the OO way of doing things. If this statement is  
indeed true, it is most likely because some good programmers never take the time to make the 
paradigm shift and learn the underlying OO concepts.   

  What’s New in the Fourth Edition  

 As stated often in this introduction, my vision for the first edition was to stick to the concepts 
rather than focus on a specific emerging technology. Although I still adhere to this goal for the 
second, third, and fourth editions, I have included chapters on several application topics that 
fit well with object-oriented concepts.  Chapters   1   –   10    cover the fundamental object-oriented 
concepts, and  Chapters   11   –   15    are focused on applying these concepts to some general object-
oriented technologies. For example,  Chapters   1   –   10    provide the foundation for a course on 
object-oriented fundamentals (such as encapsulation, polymorphism, inheritance, and the like), 
with  Chapters   11   –   15    adding some practical applications.  

 For the fourth edition, I expanded on many of the topics of the previous editions. These revised 
and updated topics include coverage of the following:  

    •   Mobile device development, which includes phone apps, mobile apps and mobile/web, 
hybrids, and so on   

   •   Objective-C code examples to include the iOS environment   
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   •   Human-readable data interchange using XML and JSON   

   •   Rendering and transformation of data using CSS, XSLT, and so on   

   •   Web services, including Simple Object Access Protocol (SOAP), RESTful Web Services, and 
the like   

   •   Client/server technologies and marshaling objects   

   •   Persistent data and serializing objects   

   •   Expanded code examples, for certain chapters, in Java, C# .NET, VB .NET, and 
Objective-C available online on the publisher’s website     

  The Intended Audience  

 This book is a general introduction to fundamental OO concepts, with code examples to rein-
force the concepts. One of the most difficult juggling acts was to keep the code conceptual 
while still providing a solid code base. The goal of this book is to enable a reader to understand 
the concepts and technology without having a compiler at hand. However, if you do have a 
compiler available, there is code to be executed and explored.  

 The intended audience includes business managers, designers, developers, programmers, project 
managers, and anyone who wants to gain a general understanding of what object orientation 
is all about. Reading this book should provide a strong foundation for moving to other books 
covering more advanced OO topics.  

 Of these more advanced books, one of my favorites is  Object-Oriented Design in Java , by Stephen 
Gilbert and Bill McCarty. I really like the approach of the book and have used it as a textbook 
in classes I have taught on OO concepts. I cite  Object-Oriented Design in Java  often throughout 
this book, and I recommend that you graduate to it after you complete this one.  

 Other books that I have found very helpful include  Effective C++ , by Scott Meyers;  Classical and 
Object-Oriented Software Engineering , by Stephen R. Schach;  Thinking in C++ , by Bruce Eckel;  UML 
Distilled , by Martin Fowler; and  Java Design , by Peter Coad and Mark Mayfield.  

 While teaching intro-level programming and web development classes to programmers at 
corporations and universities, it quickly became obvious to me that most of these programmers 
easily picked up the language syntax; however, these same programmers struggled with the OO 
nature of the language.   

  The Book’s Approach  

 It should be obvious by now that I am a firm believer in becoming comfortable with the object-
oriented thought process before jumping into a programming language or modeling language. 
This book is filled with examples of code and UML diagrams; however, you do not need to 
know a specific programming language or UML to read it. After all I have said about learn-
ing the concepts first, why is there so much Java, C# .NET, VB .NET, and Objective-C code, as 
well as so many UML diagrams? First, they are great for illustrating OO concepts. Second, they 
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are vital to the  OO process and should be addressed at an introductory level. The key is not 
to focus on Java, C# .NET, VB .NET, and Objective-C or UML, but to use them as aids in the 
understanding of the underlying concepts.  

 Note that I really like using UML class diagrams as a visual aid in understanding classes, and 
their attributes and methods. In fact, the class diagrams are the only component of UML that is 
used in this book. I believe that the UML class diagrams offer a great way to model the concep-
tual nature of object models. I continue to use object models as an educational tool to illustrate 
class design and how classes relate to one another.  

 The code examples in the book illustrate concepts such as loops and functions. However, under-
standing the code itself is not a prerequisite for understanding the concepts; it might be helpful 
to have a book at hand that covers specific languages’ syntax if you want to get more detailed.  

 I cannot state too strongly that this book does  not  teach Java, C# .NET, VB .NET, Objective-C, 
or UML, all of which can command volumes unto themselves. It is my hope that this book will 
whet your appetite for other OO topics, such as OO analysis, object-oriented design, and OO 
programming.   

  This Book’s Conventions  

 The following conventions are used in this book:  

    •   Code lines, commands, statements, and any other code-related terms appear in a 
 monospace  typeface.   

   •   Throughout the book, there are special sidebar elements, such as     the following:

  Tip 

 A Tip offers advice or shows you an easy way of doing something.   

  Note 

 A Note presents interesting information related to the discussion—a little more insight or a 
pointer to some new technique.   

  Caution 

 A Caution alerts you to a possible problem and gives you advice on how to avoid it.    

  Source Code Used in This Book  

 The sample code described throughout this book is available on the publisher’s website. Go to 
 informit.com/register  and register your book for access to downloads.     
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 Advanced Object-Oriented 

Concepts  

     Chapter   1   , “Introduction to Object-Oriented Concepts,” and  Chapter   2   , “How to Think in 
Terms of Objects,” cover the basics of object-oriented (OO) concepts. Before we embark on our 
journey to learn some of the finer design issues relating to building an OO system, we need 
to cover a few more advanced OO concepts, such as constructors, operator overloading, and 
multiple inheritance. We also will consider error-handling techniques and the importance of 
understudying how scope applies to object-oriented design.  

 Some of these concepts might not be vital to understanding an OO design at a higher level, but 
they are necessary to anyone involved in the design and implementation of an OO system.   

     Constructors  

  Constructors  may be a new concept for structured programmers. Although constructors are not 
normally used in non-OO languages such as COBOL, C, and Basic, the  struct , which is part of 
C/C++, does include constructors. In the first two chapters, we alluded to these special methods 
that are used to  construct  objects. In some OO languages, such as Java and C#, constructors are 
methods that share the same name as the class. Visual Basic .NET uses the designation  New  
and Objective-C uses the  init  keyword. As usual, we will focus on the concepts of constructors 
and not cover the specific syntax of all the languages.  Let’s take a look at some Java code that 
implements a constructor.  

 For example, a constructor for the  Cabbie  class we covered in  Chapter   2    would look like this:  

  public Cabbie(){
      /* code to construct the object */
  }   

 The compiler will recognize that the method name is identical to the class name and consider 
the method a constructor.  
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  Caution 

 Note that in this Java code (as with C# and C++), a constructor does not have a return value. If 
you provide a return value, the compiler will not treat the method as a constructor.   

 For example, if you include the following code in the class, the compiler will not consider this 
a constructor because it has a return value—in this case, an integer:  

  public int Cabbie(){
      /* code to construct the object */
  }   

 This syntax requirement can cause problems because this code will compile but will not behave 
as expected.  

  When Is a Constructor Called?  

 When a new object is created, one of the first things that happens is that the constructor is 
called. Check out the following code:  

  Cabbie myCabbie = new Cabbie();   

 The  new  keyword creates a new instance of the  Cabbie  class, thus allocating the required 
memory. Then the constructor itself is called, passing the arguments in the parameter list. The 
constructor provides the developer the opportunity to attend to the appropriate initialization.  

 Thus, the code  new Cabbie()  will instantiate a  Cabbie  object and call the  Cabbie  method, 
which is the constructor.   

  What’s Inside a Constructor?  

 Perhaps the most important function of a constructor is to initialize the memory allocated 
when the  new  keyword is encountered. In short, code included inside a constructor should set 
the newly created object to its initial, stable, safe state.  

 For example, if you have a counter object with an attribute called  count , you need to set  count  
to zero in the constructor:  

  count = 0;   

  Initializing Attributes  

 In structured programming, a routine named housekeeping (or initialization) is often used for ini-
tialization purposes. Initializing attributes is a common function performed within a constructor.    
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  The Default Constructor  

 If you write a class and do not include a constructor, the class will still compile, and you can 
still use it. If the class provides no explicit constructor, a default constructor will be provided. 
It is important to understand that at least one constructor always exists, regardless of whether 
you write a constructor yourself. If you do not provide a constructor, the system will provide a 
default constructor for you.  

 Besides the creation of the object itself, the only action that a default constructor takes is to 
call the constructor of its superclass. In many cases, the superclass will be part of the language 
framework, like the  Object  class in Java. For example, if a constructor is not provided for the 
 Cabbie  class, the following default constructor is inserted:  

  public Cabbie(){
      super();
  }   

 If you were to decompile the bytecode produced by the compiler, you would see this code. The 
compiler actually inserts it.  

 In this case, if  Cabbie  does not explicitly inherit from another class, the  Object  class will be 
the parent class. Perhaps the default constructor might be sufficient in some cases; however, 
in most cases, some sort of memory initialization should be performed. Regardless of the situ-
ation, it is good programming practice to always include at least one constructor in a class. If 
there are attributes in the class, it is always good practice to initialize them. Moreover, initializ-
ing variables is always a good practice when writing code, object-oriented or not.  

  Providing a Constructor  

 The general rule is that you should  always  provide a constructor, even if you do not plan to 
do anything inside it. You can provide a constructor with nothing in it and then add to it later. 
Although there is technically nothing wrong with using the default constructor provided by the 
compiler, for documentation and maintenance purposes, it is always nice to know exactly what 
your code looks like.   

 It is not surprising that maintenance becomes an issue here. If you depend on the default 
constructor and then subsequent maintenance adds another constructor, the default construc-
tor is no longer created. In short, the default constructor is added only if you don’t include any 
constructors. As soon as you include just one, the default constructor is not provided.   

  Using Multiple Constructors  

 In many cases, an object can be constructed in more than one way. To accommodate this situ-
ation, you need to provide more than one constructor. For example, let’s consider the  Count  
class presented here:  

  public class Count {
  
      int count;
  



56 Chapter 3 Advanced Object-Oriented Concepts

      public Count(){
          count = 0;
      }
  }   

 On the one hand, we want to initialize the attribute  count  to count to zero: We can easily 
accomplish this by having a constructor initialize  count  to zero as follows:  

  public Count(){
      count = 0;
  }   

 On the other hand, we might want to pass an initialization parameter that allows  count  to be 
set to various numbers:  

  public Count (int number){
      count = number;
  }   

 This is called  overloading a method  (overloading pertains to all methods, not just constructors). 
Most OO languages provide functionality for overloading a method.  

  Overloading Methods  

 Overloading allows a programmer to use the same method name over and over, as long as the 
signature of the method is different each time. The signature consists of the method name and 
a parameter list (see  Figure   3.1   ).  

 Thus, the following methods  all  have different signatures:  

  public void getCab();
  
  
  // different parameter list
  public void getCab (String cabbieName);
  
  // different parameter list
  public void getCab (int numberOfPassengers);   

 

public String getRecord(int key)

Signature  = getRecord            (int key)
method name + parameter list

Signature

 Figure 3.1   The components of a signature.         
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  Signatures  

 Depending on the language, the signature may or may not include the return type. In Java and 
C#, the return type is not part of the signature. For example, the following methods would con-
flict even though the return types are different:  

  public void getCab (String cabbieName);
  public int getCab (String cabbieName);

  The best way to understand signatures is to write some code and run it through the compiler.    

 By using different signatures, you can construct objects differently depending on the construc-
tor used. This functionality is very helpful when you don’t always know ahead of time how 
much information you have available. For example, when creating a shopping cart, customers 
may already be logged in to their account (and you will have all of their information). On the 
other hand, a totally new customer may be placing items in the cart with no account informa-
tion available at all. In each case, the constructor would initialize differently.   

  Using UML to Model Classes  

 Let’s   return to the database reader example we used earlier in  Chapter   2   . Consider that we have 
two ways we can construct a database reader:    

    •   Pass the name of the database and position the cursor at the beginning of the database.   

   •   Pass the name of the database and the position within the database where we want the 
cursor to position itself.    

  Figure   3.2    shows a class diagram for the  DataBaseReader  class. Note that the diagram lists 
two constructors for the class. Although the diagram shows the two constructors, without 
the parameter list, there is no way to know which constructor is which. To distinguish the 
constructors, you can look at the corresponding code in the  DataBaseReader  class listed next.  

 

dbName:String
startPosition:int

+DataBaseReader:
+DataBaseReader:
+open:void
+close:void
+goToFirst:void
+goToLast:void
+howManyRecords:int
+areThereMoreRecords:boolean
+positionRecord:void
+getRecord:String
+getNextRecord:String

DataBaseReader

 Figure 3.2   The  DataBaseReader  class diagram.         
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  No Return Type  

 Notice that in this class diagram, the constructors do not have a return type. All other methods 
besides constructors must have return types.   

 Here is a code segment of the class that shows its constructors and the attributes that the 
constructors initialize (see  Figure   3.3   )  :  

 

Class

Object

Object

Object

Class class = new Object();

Constructor

 Figure 3.3   Creating a new object.         

  public class DataBaseReader {
  
      String dbName;
      int startPosition;
  
      // initialize just the name
      public DataBaseReader (String name){
          dbName = name;
        startPosition = 0;
      };
  
      // initialize the name and the position
      public DataBaseReader (String name, int pos){
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          dbName = name;
          startPosition = pos;
      };
  
      .. // rest of class
  }   

 Note how  startPosition  is initialized in both cases. If the constructor is not passed the infor-
mation via the parameter list, it is initialized to a default value, such as 0  .   

  How the Superclass Is Constructed  

 When using inheritance, you must know how the parent class is constructed. Remember that 
when you use inheritance, you are inheriting everything about the parent. Thus, you must 
become intimately aware of all the parent’s data and behavior. The inheritance of an attribute is 
fairly obvious. However, how a constructor is inherited is not as obvious. After the  new  keyword 
is encountered and the object is allocated, the following steps occur (see  Figure   3.4   ):  

    1.   Inside the constructor, the constructor of the class’s superclass is called. If there is no 
explicit call to the superclass constructor, the default is called automatically; however, 
you can see the code in the bytecodes.   

   2.   Each class attribute of the object is initialized. These are the attributes that are part of 
the class definition (instance variables), not the attributes inside the constructor or any 
other method (local variables). In the  DataBaseReader  code presented earlier, the integer 
 startPosition  is an instance variable of the class.   

   3.   The rest of the code in the constructor executes.    

 

Constructing an Object

Super
Class

User
Class

DBReader
Class

Call DBReader Constuctor

Call SuperClass Constructor First

 Figure 3.4   Constructing an object.           
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  The Design of Constructors  

 As we have already seen, when designing a class, it is good practice to initialize all the attri-
butes. In some languages, the compiler provides some sort of initialization. As always, don’t 
count on the compiler to initialize attributes! In Java, you cannot use an attribute until it is 
initialized. If the attribute is first set in the code, make sure that you initialize the attribute to 
some valid condition—for example, set an integer to zero.  

 Constructors are used to ensure that the application is in a stable state (I like to call it a “safe” 
state). For example, initializing an attribute to zero, when it is intended for use as a denomina-
tor in a division operation, might lead to an unstable application. You must take into consid-
eration that a division by zero is an illegal operation. Initializing to zero is not always the best 
policy.  

 During the design, it is good practice to identify a stable state for all attributes and then initial-
ize them to this stable state in the constructor.    

  Error Handling  

 It is extremely rare for a class to be written perfectly the first time. In most, if not all, situa-
tions, things  will  go wrong. Any developer who does not plan for problems is courting danger.  

 Assuming that your code has the capability to detect and trap an error condition, you can 
handle the error in several ways: On page 223 of their book  Java Primer Plus , Tyma, Torok, and 
Downing (9781571690623) state that there are three basic solutions to handling problems 
that are detected in a program: fix it, ignore the problem by squelching it, or exit the runtime 
in some graceful manner. On page 139 of their book  Object-Oriented Design in Java  (978-
1571691347), Gilbert and McCarty expand on this theme by adding the choice of throwing an 
exception:  

    •   Ignore the problem—not a good idea!   

   •   Check for potential problems and abort the program when you find a problem.   

   •   Check for potential problems, catch the mistake, and attempt to fix the problem.   

   •   Throw an exception. (Often this is the preferred way to handle the situation.)    

 These strategies are discussed in the following sections.  

  Ignoring the Problem  

 Simply ignoring a potential problem is a recipe for disaster. And if you are going to ignore the 
problem, why bother detecting it in the first place? It is obvious that you should not ignore any 
known problem. The primary directive for all applications is that the application should never 
crash. If you do not handle your errors, the application will eventually terminate ungracefully 
or continue in a mode that can be considered an unstable state. In the latter case, you might 
not even know you are getting incorrect results, and that can be much worse than a program 
crash.   
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  Checking for Problems and Aborting the Application  

 If you choose to check for potential problems and abort the application when a problem is 
detected, the application can display a message indicating that a problem exists. In this case, 
the application gracefully exits, and the user is left staring at the computer screen, shaking her 
head and wondering what just happened. Although this is a far superior option to ignoring the 
problem, it is by no means optimal. However, this does allow the system to clean up things and 
put itself in a more stable state, such as closing files and forcing a system restart.   

  Checking for Problems and Attempting to Recover  

 Checking for potential problems, catching the mistake, and attempting to recover is a far 
superior solution than simply checking for problems and aborting. In this case, the problem is 
detected by the code, and the application attempts to fix itself. This works well in certain situa-
tions. For example, consider the following code:  

  if (a == 0)
      a=1;
  
  c = b/a;   

 It is obvious that if the conditional statement is not included in the code, and a zero makes 
its way to the divide statement, you will get a system exception because you cannot divide 
by zero. By catching the exception and setting the variable  a  to  1 , at least the system will not 
crash. However, setting  a  to  1  might not be a proper solution because the result would be 
incorrect. The better solution would be to prompt the user to reenter the proper input value.  

  A Mix of Error-Handling Techniques  

 Despite the fact that this type of error handling is not necessarily object-oriented in nature, I 
believe that it has a valid place in OO design. Throwing an exception (discussed in the next sec-
tion) can be expensive in terms of overhead. Thus, although exceptions may be a valid design 
choice, you will still want to consider other error-handling techniques (even tried-and-true struc-
tured techniques), depending on your design and performance needs.   

 Although the error-checking techniques mentioned previously are preferable to doing nothing, 
they still have a few problems. It is not always easy to determine where a problem first appears. 
And it might take a while for the problem to be detected. In any event, it is beyond the scope 
of this book to explain error handling in great detail. However, it is important to design error 
handling into the class right from the start, and often the operating system itself can alert you 
to problems that it detects.   

  Throwing an Exception  

 Most OO languages provide a feature called  exceptions . In the most basic sense, exceptions are 
unexpected events that occur within a system. Exceptions provide a way to detect problems 
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and then handle them. In Java, C#, C++, Objective-C, and Visual Basic, exceptions are handled 
by the keywords  catch  and  throw . This might sound like a baseball game, but the key concept 
here is that a specific block of code is written to handle a specific exception. This solves the 
problem of trying to figure out where the problem started and unwinding the code to the 
proper point.  

 Here is the structure for a Java  try / catch  block:  

  try {
  
      // possible nasty code
  
  } catch(Exception e) {
  
      // code to handle the exception
  }   

 If an exception is thrown within the  try  block, the  catch  block will handle it. When an excep-
tion is thrown while the block is executing, the following occurs:  

    1.   The execution of the  try  block is terminated.   

   2.   The  catch  clauses are checked to determine whether an appropriate  catch  block for the 
offending exception was included. (There might be more than one  catch  clause per  try  
block.)   

   3.   If none of the  catch  clauses handles the offending exception, it is passed to the next 
higher-level  try  block. (If the exception is not caught in the code, the system ultimately 
catches it, and the results are unpredictable—that is, an application crash.)   

   4.   If a  catch  clause is matched (the first match encountered), the statements in the  catch  
clause are executed.   

   5.   Execution then resumes with the statement following the  try  block.    

 Suffice it to say that exceptions are an important advantage for OO programming languages. 
Here is an example of how an exception is caught in Java:  

  try {
  
      // possible nasty code
      count = 0;
      count = 5/count;
  
  } catch(ArithmeticException e) {
  
      // code to handle the exception
      System.out.println(e.getMessage());
      count = 1;
  
  }
  System.out.println(“The exception is handled.”);   
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  Exception Granularity  

 You can catch exceptions at various levels of granularity. You can catch all exceptions or check 
for specific exceptions, such as arithmetic exceptions. If your code does not catch an excep-
tion, the Java runtime will—and it won’t be happy about it!   

 In this example, the division by zero (because  count  is equal to  0 ) within the  try  block will 
cause an arithmetic exception. If the exception was generated (thrown) outside a  try  block, the 
program would most likely have been terminated (crashed). However, because the exception 
was thrown within a  try  block, the  catch  block is checked to see whether the specific excep-
tion (in this case, an arithmetic exception) was planned for. Because the  catch  block contains 
a check for the arithmetic exception, the code within the  catch  block is executed, thus setting 
 count  to  1 . After the  catch  block executes, the  try / catch  block is exited, and the message  The 
exception  is handled.  appears on the Java console. The logical flow of this process is illus-
trated in  Figure   3.5   .  
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 Figure 3.5   Catching an exception.         

 If you had not put  ArithmeticException  in the  catch  block, the program would likely have 
crashed. You can catch all exceptions by using the following code:  

  try {
  
      // possible nasty code
  
  } catch(Exception e) {
  
      // code to handle the exception
  }   

 The  Exception  parameter in the  catch  block is used to catch any exception that might be 
generated within a  try  block.  

  Bulletproof Code  

 It’s a good idea to use a combination of the methods described here to make your program as 
bulletproof to your user as possible.     
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  The Importance of Scope  

 Multiple objects can be instantiated from a single class. Each of these objects has a unique iden-
tity and state. This is an important point. Each object is constructed separately and is allocated 
its own separate memory. However, some attributes and methods may, if properly declared, be 
shared by all the objects instantiated from the same class, thus sharing the memory allocated 
for these class attributes and methods.  

  A Shared Method  

 A constructor is a good example of a method that is shared by all instances of a class.   

 Methods represent the behaviors of an object; the state of the object is represented by attri-
butes. There are three types of attributes:  

    •   Local attributes   

   •   Object attributes   

   •   Class attributes    

  Local Attributes  

 Local attributes are owned by a specific method. Consider the following code:  

  public class Number {
  
      public method1() {
          int count;
  
      }
  
      public method2() {
  
      }
  
  }   

 The method  method1  contains a local variable called  count . This integer is accessible only 
inside  method1 . The method  method2  has no idea that the integer  count  even exists.  

 At this point, we introduce a very important concept: scope. Attributes (and methods) exist 
within a particular scope. In this case, the integer count exists within the scope of  method1 . 
In Java, C#, C++ and Objective-C, scope is delineated by curly braces ( {} ). In the  Number  class, 
there are several possible scopes—just start matching the curly braces.  

 The class itself has its own scope. Each instance of the class (that is, each object) has its own 
scope. Both  method1  and  method2  have their own scopes as well. Because  count  lives within 
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 method1 ’s curly braces, when  method1  is invoked, a copy of  count  is created. When  method1  
terminates, the copy of  count  is removed.  

 For some more fun, look at this code:  

  public class Number {
  
      public method1() {
          int count;
      }
  
      public method2() {
          int count;
      }
  
  }   

 This example has two copies of an integer  count  in this class. Remember that  method1  and 
 method2  each has its own scope. Thus, the compiler can tell which copy of  count  to access 
simply by recognizing which method it is in. You can think of it in these terms:  

  method1.count;
  
  method2.count;   

 As far as the compiler is concerned, the two attributes are easily differentiated, even though 
they have the same name. It is almost like two people having the same last name, but based on 
the context of their first names, you know that they are two separate individuals.   

  Object Attributes  

 In many design situations, an attribute must be shared by several methods within the same 
object. In  Figure   3.6   , for example, three objects have been constructed from a single class. 
Consider the following code:  

  public class Number {
  
      int count;    // available to both method1 and method2
  
      public method1() {
          count = 1;
      }
  
      public method2() {
          count = 2;
      }
  
  }   
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 Figure 3.6   Object attributes.         

 Note here that the class attribute count is declared outside the scope of both  method1  and 
 method2 . However, it is within the scope of the class. Thus,  count  is available to both  method1  
and  method2 . (Basically, all methods in the class have access to this attribute.) Notice that the 
code for both methods is setting  count  to a specific value. There is only one copy of  count  
for the entire object, so both assignments operate on the same copy in memory. However, this 
copy of  count  is not shared between different objects.  

 To illustrate, let’s create three copies of the  Number  class:  

  Number number1 = new Number();
  Number number2 = new Number();
  Number number3 = new Number();   

 Each of these objects— number1 ,  number2 , and  number3 —is constructed separately and is allo-
cated its own resources. There are three separate instances of the integer  count . When  number1  
changes its attribute  count , this in no way affects the copy of  count  in object  number2  or 
object  number3 . In this case, integer  count  is an  object attribute .  

 You can play some interesting games with scope. Consider the following code:  

  public class Number {
  
      int count;
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      public method1() {
          int count;
      }
  
      public method2() {
          int count;
      }
  
  }   

 In this case, three totally separate memory locations have the name of  count  for each object. 
The object owns one copy, and  method1()  and  method2()  each have their own copy.  

 To access the object variable from within one of the methods, say  method1() , you can use a 
pointer called  this  in the C-based languages:  

  public method1() {
          int count;
  
          this.count = 1;
  }   

 Notice that some code looks a bit curious:  

  this.count = 1;   

 The selection of the word  this  as a keyword is perhaps unfortunate. However, we must live 
with it. The use of the  this  keyword directs the compiler to access the object variable  count  
and not the local variables within the method bodies.  

  Note 

 The keyword  this  is a reference to the current object.    

  Class Attributes  

 As mentioned earlier, it is possible for two or more objects to share attributes. In Java, C#, C++ 
and Objective-C, you do this by making the attribute  static :  

  public class Number {
  
      static int count;
  
      public method1() {
      }
  
  }   



68 Chapter 3 Advanced Object-Oriented Concepts

 By declaring  count  as static, this attribute is allocated a single piece of memory for all objects 
instantiated from the class. Thus, all objects of the class use the same memory location for 
 count . Essentially, each class has a single copy, which is shared by all objects of that class (see 
 Figure   3.7   ). This is about as close to global data as we get in OO design.  
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 Figure 3.7   Class attributes.         

 There are many valid uses for class attributes; however, you must be aware of potential synchro-
nization problems. Let’s instantiate two  Count  objects:  

  Count Count1 = new Count();
  Count Count2 = new Count();   

 For the sake of argument, let’s say that the object  Count1  is going merrily about its way and is 
using  count  as a means to keep track of the pixels on a computer screen. This is not a problem 
until the object  Count2  decides to use attribute  count  to keep track of sheep. The instant that 
 Count2  records its first sheep, the data that  Count1  was saving is lost.    
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  Operator Overloading  

 Some OO languages allow you to overload an operator. C++ is an example of one such 
language. Operator overloading allows you to change the meaning of an operator. For example, 
when most people see a plus sign, they assume it represents addition. If you see the equation  

  X = 5 + 6;   

 you expect that  X  would contain the value  11 . And in this case, you would be correct.  

 However, at times a plus sign could represent something else. For example, in the following 
code:  

  String firstName = “Joe”, lastName = “Smith”;
  
  String Name = firstName + “ “ + lastName;   

 You would expect that  Name  would contain  Joe Smith . The plus sign here has been overloaded 
to perform string concatenation.  

  String Concatenation  

  String concatenation  occurs when two separate strings are combined to create a new, single 
string.   

 In the context of strings, the plus sign does not mean addition of integers or floats, but concat-
enation of strings.  

 What about matrix addition? You could have code like this:  

  Matrix a, b, c;
  
  c = a + b;   

 Thus, the plus sign now performs matrix addition, not addition of integers or floats.  

 Overloading is a powerful mechanism. However, it can be downright confusing for people who 
read and maintain code. In fact, developers can confuse themselves. To take this to an extreme, 
it would be possible to change the operation of addition to perform subtraction. Why not? 
Operator overloading allows you to change the meaning of an operator. Thus, if the plus sign 
were changed to perform subtraction, the following code would result in an  X  value of  –1 :  

  x = 5 + 6;   

 More recent OO languages like Java, .NET, and Objective-C do not allow operator overloading.  

 Although these languages do not allow the option of overloading operators, the languages 
themselves do overload the plus sign for string concatenation, but that’s about it. The designers 
of Java must have decided that operator overloading was more of a problem than it was worth. 
If you must use operator overloading in C++, take care by documenting and commenting prop-
erly not to confuse the people who will use the class.   
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  Multiple Inheritance  

 We cover inheritance in much more detail in  Chapter   7   , “Mastering Inheritance and 
Composition.” However, this is a good place to begin discussing multiple inheritance, which is 
one of the more powerful and challenging aspects of class design.  

 As the name implies,  multiple inheritance  allows a class to inherit from more than one class. In 
practice, this seems like a great idea. Objects are supposed to model the real world, are they not? 
And many real-world examples of multiple inheritance exist. Parents are a good example of multi-
ple inheritance. Each child has two parents—that’s just the way it is. So it makes sense that you 
can design classes by using multiple inheritance. In some OO languages, such as C++, you can.  

 However, this situation falls into a category similar to operator overloading. Multiple inheri-
tance is a very powerful technique, and in fact, some problems are quite difficult to solve 
without it. Multiple inheritance can even solve some problems quite elegantly. However, multi-
ple inheritance can significantly increase the complexity of a system, both for the programmer 
and the compiler writers.  

 As with operator overloading, the designers of Java, .NET, and Objective-C decided that the 
increased complexity of allowing multiple inheritance far outweighed its advantages, so they 
eliminated it from the language. In some ways, the Java, .NET, and Objective-C language 
construct of interfaces compensates for this; however, the bottom line is that Java, .NET, and 
Objective-C do not allow conventional multiple inheritance.  

  Behavioral and Implementation Inheritance  

 Interfaces are a mechanism for behavioral inheritance, whereas abstract classes are used 
for implementation inheritance. The bottom line is that interface language constructs provide 
behavioral interfaces, but no implementation, whereas abstract classes may provide both inter-
faces and implementation. This topic is covered in great detail in  Chapter   8   , “Frameworks and 
Reuse: Designing with Interfaces and Abstract Classes.”    

  Object Operations  

 Some of the most basic operations in programming become more complicated when you’re 
dealing with complex data structures and objects. For example, when you want to copy or 
compare primitive data types, the process is quite straightforward. However, copying and 
comparing objects is not quite as simple. On page 34 of his book  Effective C++ , Scott Meyers 
devotes an entire section to copying and assigning objects.  

  Classes and References  

 The problem with complex data structures and objects is that they might contain references. 
Simply making a copy of the reference does not copy the data structures or the object that it 
references. In the same vein, when comparing objects, simply comparing a pointer to another 
pointer only compares the references—not what they point to.   
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 The problems arise when comparisons and copies are performed on objects. Specifically, the 
question boils down to whether you follow the pointers. Regardless, there should be a way to 
copy an object. Again, this is not as simple as it might seem. Because objects can contain refer-
ences, these reference trees must be followed to do a valid copy (if you truly want to do a deep 
copy).  

  Deep Versus Shallow Copies  

 A  deep copy  occurs when all the references are followed and new copies are created for all 
referenced objects. Many levels might be involved in a deep copy. For objects with references to 
many objects, which in turn might have references to even more objects, the copy itself can cre-
ate significant overhead. A  shallow copy  would simply copy the reference and not follow the lev-
els. Gilbert and McCarty have a good discussion about what shallow and deep hierarchies are 
on page 265 of  Object-Oriented Design in Java  in a section called “Prefer a Tree to a Forest.”   

 To illustrate, in  Figure   3.8   , if you do a simple copy of the object (called a  bitwise copy ), only the 
references are copied—not any of the actual objects. Thus, both objects (the original and the 
copy) will reference (point to) the same objects. To perform a complete copy, in which all refer-
ence objects are copied, you must write code to create all the subobjects.  
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 Figure 3.8   Following object references.         
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 This problem also manifests itself when comparing objects. As with the copy function, this is 
not as simple as it might seem. Because objects contain references, these reference trees must be 
followed to do a valid comparison of objects. In most cases, languages provide a default mecha-
nism to compare objects. As is usually the case, do not count on the default mechanism. When 
designing a class, you should consider providing a comparison function in your class that you 
know will behave as you want it to.    

     Conclusion  

 This chapter covered a number of advanced OO concepts that, although perhaps not vital to 
a general understanding of OO concepts, are quite necessary in higher-level OO tasks, such as 
designing a class. In  Chapter   4   , “The Anatomy of a Class,” we start looking specifically at how 
to design and build a class.   
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  Example Code Used in This Chapter  

 The following code is presented in C# .NET. Code for other languages, such as VB .NET and 
Objective-C, are available electronically on the publisher’s website. These examples correspond 
to the Java code that is listed inside the chapter itself.  

  The TestNumber Example: C# .NET  
  using System;
  
  namespace TestNumber
  {
      class Program
      {
          public static void Main()
          {
  
              Number number1 = new Number();
              Number number2 = new Number();
              Number number3 = new Number();
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          }
      }
  
      public class Number
      {
  
          int count = 0;     // available to both method1 and method2
  
          public void method1()
          {
              count = 1;
          }
  
          public void method2()
          {
              count = 2;
          }
  
      }
  }       
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