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 Foreword  

 I have been working with the iPhone SDK (now iOS SDK) since the first beta released in 2008. 
At the time, I was focused on writing desktop apps for the Mac and hadn’t thought much 
about mobile app development.  

 If you chose to be an early adopter, you were on your own. In typical Apple fashion, the 
documentation was sparse, and since access to the SDK required an NDA—and apparently, 
a secret decoder ring—you were on your own. You couldn’t search Google or turn to 
StackOverflow for help, and there sure as hell weren’t any books out yet on the SDK.  

 In the six years (yes, it really has only been six years) since Apple unleashed the original iPhone 
on the world, we’ve come a long way. The iPhone SDK is now the iOS SDK. There are dozens 
of books and blogs and podcasts and conferences on iOS development. And ever since 2009, 
WWDC has been practically impossible to get into, making it even harder for developers—old 
and new—to learn about the latest features coming to the platform. For iOS developers, there is 
so much more to learn.  

 One of the biggest challenges I have as an iOS developer is keeping on top of all the 
components and frameworks available in the kit. The iOS HIG should help us with that, but it 
doesn’t go far enough—deep enough. Sure, now I can find some answers by searching Google 
or combing through StackOverflow but, more often than not, those answers only explain the 
how and rarely the why, and they never provide the details you really need.  

 And this is what Kyle and Joe have done with this book—they’re providing the detail needed so 
you can fully understand the key frameworks that make up the iOS SDK.  

 I’ve had the pleasure of knowing Kyle and Joe for a number of years. They are two of the 
brightest developers I have ever met. They have each written some amazing apps over the 
years, and they continuously contribute to the iOS development community by sharing their 
knowledge—speaking at conferences and writing other books on iOS development. If you have 
a question about how to do something in iOS, chances are good that Kyle and Joe have the 
answer for you.  

 But what makes these guys so awesome is not just their encyclopedic knowledge of iOS, it’s 
their willingness to share what they know with everyone they meet. Kyle and Joe don’t have 
competitors, they have friends.  

 Kyle and Joe’s in-depth knowledge of the iOS SDK comes through in this book. It’s one of the 
things I like about this book. It dives into the details for each component covered at a level 
that you won’t always find when searching online.  

 I also like the way the book is structured. This is not something that you’ll read cover to cover. 
Instead, you’ll pick up the book because you need to learn how to implement a collection 
view or sort out some aspect of running a task in a background thread that you can’t quite 
wrangle. You’ll pick up the book when you need it, find the solution, implement it in your 
own code, and then toss the book back on the floor until you need it again. This is what makes 
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 iOS Components and Frameworks  an essential resource for any iOS developer—regardless  of your 
experience level. You might think you’re a master with Core Location and MapKit, but I reckon 
you’ll find something here that you never knew before.  

 Kyle and Joe don’t come with egos. They don’t brag. And they sure don’t act like they are 
better than any other developer in the room. They instill the very spirit that has made the Mac 
and iOS developer community one of the friendliest, most helpful in our industry, and this 
book is another example of their eagerness to share their knowledge.  

 This book, just like the seminal works from Marks and LaMarche or Sadun, will always be 
within arm’s reach of my desk. This is the book I wish I had when I first started developing iOS 
apps in 2008. Lucky you, it’s here now.  

 —Kirby Turner,  

 Chief Code Monkey at White Peak Software, author of  Learning iPad Programming, A Hands on 
Guide to Building Apps for the iPad, Second Edition  (Addison-Wesley Professional), and Cocoa 
developer community organizer and conference junkie  

 August 28, 2013    



 Preface  

 Welcome to  iOS Components and Frameworks: Understanding the Advanced Features of the iOS SDK !  

 There are hundreds of “getting started with iOS” books available to choose from, and there are 
dozens of advanced books in specific topics, such as Core Data or Security. There was, however, 
a disturbing lack of books that would bridge the gap between beginner and advanced niche 
topics.  

 This publication aims to provide development information on the intermediate-to-advanced 
topics that are otherwise not worthy of standalone books. It’s not that the topics are 
uninteresting or lackluster, it’s that they are not large enough topics. From topics such as 
working with JSON to accessing photo libraries, these are frameworks that professional iOS 
developers use every day but are not typically covered elsewhere.  

 Additionally, several advanced topics are covered to the level that many developers need 
in order to just get started. Picking up a 500-page Core Data book is intimidating, whereas 
 Chapter   13    of this book provides a very quick and easy way to get started with Core Data. 
Additional introductory chapters are provided for debugging and instruments, TextKit, 
language features, and iCloud.  

 Topics such as Game Center leaderboards and achievements, AirPrint, music libraries, Address 
Book, and Passbook are covered in their entirety. Whether you just finished your first iOS 
project or you are an experienced developer, this book will have something for you.  

 The chapters have all been updated to work with iOS 7 Beta 4. As such, there were several iOS 7 
features that were still in active development that might not work the same as illustrated in the 
book after the final version of iOS 7 is released. Please let us know if you encounter issues and 
we will release updates and corrections.  

 If you have suggestions, bug fixes, corrections, or anything else you’d like to contribute to a 
future edition, please contact us at  icf@dragonforged.com . We are always interested in hearing 
what would make this book better and are very excited to continue refining it.  

 —Kyle Richter and Joe Keeley    



 Prerequisites  

 Every effort has been made to keep the examples and explanations simple and easy to digest; 
however, this is to be considered an intermediate to advanced book. To be successful with it, 
you should have a basic understanding of iOS development, Objective-C, and C. Familiarity of 
the tools such as Xcode, Developer Portal, iTunes Connect, and Instruments is also assumed. 
Refer to  Programming in Objective-C,  by Stephen G. Kochan, and  Learning iOS Development,  by 
Maurice Sharp, Rod Strougo, and Erica Sadun, for basic Objective-C and iOS skills.    



 What You’ll Need  

 Although you can develop iOS apps in the iOS simulator, it is recommended that you have at 
least one iOS device available for testing:  

    ■    Apple iOS Developer Account:    The latest version of the iOS developer tools including 
Xcode and the iOS SDKs can be downloaded from Apple’s Developer Portal ( http://
developer.apple.com/ios ). To ship an app to the App Store or to install and test on a 
personal device, you will also need a paid developer account at $99 per year.   

   ■    Macintosh Computer:    To develop for iOS and run Xcode, you will need a modern Mac 
computer capable of running the latest release of OS X.   

   ■    Internet Connection:    Many features of iOS development require a constant Internet 
connection for your Mac as well as for the device you are building against.      

http://developer.apple.com/ios
http://developer.apple.com/ios


 How This Book Is Organized  

 With few exceptions (Game Center and Core Data), each chapter stands on its own. The 
book can be read cover to cover but any topic can be skipped to when you find a need for 
that technology; we wrote it with the goal of being a quick reference for many common iOS 
development tasks.  

 Here is a brief overview of the chapters you will encounter:  

    ■     Chapter   1   , “UIKit Dynamics”:     iOS 7 introduced UI Kit Dynamics to add physics-like 
animation and behaviors to UIViews. You will learn how to add dynamic animations, 
physical properties, and behaviors to standard objects. Seven types of behaviors are 
demonstrated in increasing difficulty from gravity to item properties.   

   ■     Chapter   2   , “Core Location, MapKit, and Geofencing”:     iOS 6 introduced new, Apple-
provided maps and map data. This chapter covers how to interact with Core Location to 
determine the device’s location, how to display maps in an app, and how to customize 
the map display with annotations, overlays, and callouts. It also covers how to set up 
regional monitoring (or geofencing) to notify the app when the device has entered or 
exited a region.   

   ■     Chapter   3   , “Leaderboards”:     Game Center leaderboards provide an easy way to add 
social aspects to your iOS game or app. This chapter introduces a fully featured iPad game 
called Whack-a-Cac, which walks the reader through adding leaderboard support. Users 
will learn all the required steps necessary for implementing Game Center leaderboards, as 
well as get a head start on implementing leaderboards with a custom interface.   

   ■     Chapter   4   , “Achievements”:     This chapter continues on the Whack-a-Cac game 
introduced in  Chapter   3   . You will learn how to implement Game Center achievements 
in a fully featured iPad game. From working with iTunes Connect to displaying 
achievement progress, this chapter provides all the information you need to quickly get 
up and running with achievements.   

   ■     Chapter   5   , “Getting Started with Address Book”:     Integrating a user’s contact 
information is a critical step for many modern projects. Address Book framework is one 
of the oldest available on iOS; in this chapter you’ll learn how to interact with that 
framework. You will learn how to use the people picker, how to access the raw address 
book data, and how to modify and save that data.   

   ■     Chapter   6   , “Working with Music Libraries”:     This chapter covers how to access the 
user’s music collection from a custom app, including how to see informational data 
about the music in the collection, and how to select and play music from the collection.   

   ■     Chapter   7   , “Working with and Parsing JSON”:     JSON, or JavaScript Object Notation, 
is a lightweight way to pass data back and forth between different computing platforms 
and architectures. As such, it has become the preferred way for iOS client apps to 
communicate complex sets of data with servers. This chapter describes how to create 
JSON from existing objects, and how to parse JSON into iOS objects.   
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   ■     Chapter   8   , “Getting Started with iCloud”:     This chapter explains how to get started 
using iCloud, for syncing key-value stores and documents between devices. It walks 
though setting up an app for iCloud, how to implement the key-value store and 
document approaches, and how to recognize and resolve conflicts.   

   ■     Chapter   9   , “Notifications”:     Two types of notifications are supported by iOS: local 
notifications, which function on the device with no network required, and remote 
notifications, which require a server to send a push notification through Apple’s Push 
Notification Service to the device over the network. This chapter explains the differences 
between the two types of notifications, and demonstrates how to set them up and get 
notifications working in an app.   

   ■     Chapter   10   , “Bluetooth Networking with Game Kit”:     This chapter will walk you 
through creating a real-time Bluetooth-based chat client, enabling you to connect with 
a friend within Bluetooth range and send text messages back and forth. You will learn 
how to interact with the Bluetooth functionality of Game Kit, from finding peers to 
connecting and transferring data.   

   ■     Chapter   11   , “AirPrint”:     An often underappreciated feature of the iOS, AirPrint enables 
the user to print documents and media to any wireless-enabled AirPrint-compatible 
printer. Learn how to quickly and effortlessly add AirPrint support to your apps. By the 
end of this chapter you will be fully equipped to enable users to print views, images, 
PDFs, and even rendered HTML.   

   ■     Chapter   12   , “Core Data Primer”:     Core Data can be a vast and overwhelming topic. This 
chapter tries to put Core Data in context for the uninitiated, and explains when Core 
Data might be a good solution for an app and when it might be overkill. It also explains 
some of the basic concepts of Core Data in simple terminology.   

   ■     Chapter   13   , “Getting Up and Running with Core Data”:     This chapter demon-strates 
how to set up an app to use Core Data, how to set up a Core Data data model, and how 
to implement many of the most commonly used Core Data tools in an app. If you 
want to start using Core Data without digging through a 500-page book, this chapter 
is for you.   

   ■     Chapter   14   , “Language Features”:     Objective-C has been evolving since iOS was 
introduced. This chapter covers some of the language and compiler-level changes that 
have occurred, and explains how and why a developer would want to use them. It covers 
the new literal syntaxes for things like numbers, array, and dictionaries; it also covers 
blocks, ARC, property declarations, and some oldies but goodies including dot notation, 
fast enumeration, and method swizzling.   

   ■     Chapter   15   , “Integrating Twitter and Facebook Using Social Framework”:     Social 
integration is the future of computing and it is accepted that all apps have social features 
built in. This chapter will walk you through adding support for Facebook and Twitter to 
your app using the Social Framework. You will learn how to use the built-in composer 
to create new Twitter and Facebook posts. You will also learn how to pull down feed 
information from both services and how to parse and interact with that data. Finally, 
using the frameworks to send messages from custom user interfaces is covered. By the 
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end of this chapter, you will have a strong  background in Social Framework as well as 
working with Twitter and Facebook to add social aspects to your apps.   

   ■     Chapter   16   , “Working with Background Tasks”:     Being able to perform tasks when 
the app is not the foreground app was a big new feature introduced in iOS 4, and more 
capabilities have been added since. This chapter explains how to perform tasks in the 
background after an app has moved from the foreground, and how to perform specific 
background activities allowed by iOS.   

   ■     Chapter   17   , “Grand Central Dispatch for Performance”:     Performing resource-intensive 
activities on the main thread can make an app’s performance suffer with stutters and 
lags. This chapter explains several techniques provided by Grand Central Dispatch for 
doing the heavy lifting concurrently without affecting the performance of the main 
thread.   

   ■     Chapter   18   , “Using Keychain to Secure Data”:     Securing user data is important and 
an often-overlooked stage of app development. Even large public companies have been 
called out in the news over the past few years for storing user credit card info and 
passwords in plain text. This chapter provides an introduction to not only using the 
Keychain to secure user data but developmental security as a whole. By the end of the 
chapter, you will be able to use Keychain to secure any type of small data on users’ 
devices and provide them with peace of mind.   

   ■     Chapter   19   , “Working with Images and Filters”:     This chapter covers some basic image-
handling techniques, and then dives into some advanced Core Image techniques to 
apply filters to images. The sample app provides a way to explore all the options that 
Core Image provides and build filter chains interactively in real time.   

   ■     Chapter   20   , “Collection Views”:     Collection views, a powerful new API introduced 
in iOS6, give the developer flexible tools for laying out scrollable, cell-based content. 
In addition to new content layout options, collection views provide exciting new 
animation capabilities, both for animating content in and out of a collection view, and 
for switching between collection view layouts. The sample app demonstrates setting up 
a basic collection view, a customized flow layout collection view, and a highly custom, 
nonlinear collection view layout.   

   ■     Chapter   21   , “Introduction to TextKit”:     iOS 7 introduced TextKit as an easier-to-use 
and greatly expanded update to Core Text. TextKit enables developers to provide rich 
and interactive text formatting to their apps. Although TextKit is a very large subject, 
this chapter provides the basic groundwork to accomplish several common tasks, from 
adding text wrapping around an image to inline custom font attributes. By the end of 
this chapter, you will have a strong background in TextKit and have the groundwork laid 
to explore it more in depth.   

   ■     Chapter   22   , “Gesture Recognizers”:     This chapter explains how to make use of gesture 
recognizers in an app. Rather than dealing with and interpreting touch data directly, 
gesture recognizers provide a simple and clean way to recognize common gestures and 
respond to them. In addition, custom gestures can be defined and recognized using 
gesture recognizers.   
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   ■     Chapter   23   , “Accessing Photo Libraries”:     The iPhone has actually become a very 
popular camera, as evidenced by the number of photos that people upload to sites such 
as Flickr. This chapter explains how to access the user’s photo library, and handle photos 
and videos in a custom app. The sample app demonstrates rebuilding the iOS 6 version 
of Photos.app.   

   ■     Chapter   24   , “Passbook and PassKit”:     With iOS6, Apple introduced Passbook, a 
standalone app that can store “passes,” or things like plane tickets, coupons, loyalty 
cards, or concert tickets. This chapter explains how to set up passes, how to create and 
distribute them, and how to interact with them in an app.   

   ■     Chapter   25   , “Debugging and Instruments”:     One of the most important aspects of 
development is to be able to debug and profile your software. Rarely is this topic covered 
even in a cursory fashion. This chapter will introduce you to debugging in Xcode and 
performance analysis using Instruments. Starting with a brief history of computer bugs, 
the chapter walks you through common debugging tips and tricks. Topics of breakpoints 
and debugger commands are briefly covered, and the chapter concludes with a look into 
profiling apps using the Time Profiler and memory analysis using Leaks. By the end of 
this chapter, you will have a clear foundation  on how to troubleshoot and debug iOS 
apps on both the simulator and the device.      



 About the Sample Code  

 Each chapter of this book is designed to stand by itself; therefore, each chapter with the 
exception of  Chapter   25   , “Debugging and Instruments,”  Chapter   12   , “Core Data Primer,” and 
 Chapter   14   , “Language Features,” has its own sample project.  Chapter   3   , “Leaderboards,” and 
 Chapter   4   , “Achievements,” share a base sample project, but each expands on that base project 
in unique ways. Each chapter provides a brief introduction to the sample project and walks the 
reader through any complex sections of the sample project not relating directly to the material 
in the chapter.  

 Every effort has been made to create simple-to-understand sample code, which often results 
in code that is otherwise not well optimized or not specifically the best way of approaching 
a problem. In these circumstances the chapter denotes where things are being done 
inappropriately for a real-world app. The sample projects are not designed to be standalone 
or finished apps; they are designed to demonstrate the functionality being discussed in the 
chapter. The sample projects are generic with intention; the reader should be able to focus 
on the material in the chapter and not the unrelated sample code materials. A considerable  
amount of work has been put into removing unnecessary components from the sample code 
and condensing subjects into as few lines as possible.  

 Many readers will be surprised to see that the sample code in the projects is not built using 
Automatic Reference Counting (ARC); this is by design as well. It is easier to mentally remove 
the memory management than to add it. The downloadable sample code is made available to 
suit both tastes; copies of ARC and non-ARC sample code are bundled together. The sample 
code is prefixed with “ICF” and most, but not all, sample projects are named after the 
chapter title.  

 When working with the Game Center chapters, the bundle ID is linked to a real app, which is 
in our personal Apple account; this ensures that examples continue to work. Additionally, it 
has the small additional benefit of populating multiple users’ data as developers interact with 
the sample project. For chapters dealing with iCloud, Push Notifications, and Passbook, the 
setup required for the apps is thoroughly described in the chapter, and must be completed 
using a new App ID in the reader’s developer account in order to work.    



 Getting the Sample Code  

 You will be able to find the most up-to-date version of the source code at any moment 
at  https://github.com/dfsw/icf . The code is publicly available and open source. The code 
is separated into two folders, one for ARC and one running non-ARC. Each chapter is 
broken down into its own folder containing an Xcode project; there are no chapters with 
multiple projects. We encourage readers to provide feedback on the source code and make 
recommendations so that we can continue to refine and improve it long after this book has 
gone to print.    

https://github.com/dfsw/icf


 Installing Git and Working with GitHub  

 Git is a version control system that has been growing in popularity for several years. To clone 
and work with the code on GitHub, you will want to first install Git on your Mac. A current 
installer for Git can be found at  http://code.google.com/p/git-osx-installer . Additionally, there 
are several GUI front ends for Git, even one written by GitHub, which might be more appealing 
to developers who avoid command-line interfaces. If you do not want to install Git, GitHub 
also allows for downloading the source files as a Zip.  

 GitHub enables users to sign up for a free account at  https://github.com/signup/free . After Git 
has been installed, from the terminal’s command line  $git clone git@github.com:dfsw/icf.git  
will download a copy of the source code into the current working directory. You are welcome 
to fork and open pull requests with the sample code projects.    

http://code.google.com/p/git-osx-installer
https://github.com/signup/free
git@github.com:dfsw/icf.git


 Contacting the Authors  

 If you have any comments or questions about this book, please drop us an e-mail message at 
 icf@dragonforged.com , or on Twitter at @kylerichter and @jwkeeley.    
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  13 
 Getting Up and Running 

with Core Data  

     At first glance, Core Data can look difficult and overwhelming. There are several books devoted solely 
to Core Data, and the official Apple documentation is lengthy and challenging to get through since it 
covers the entire breadth and depth of the topic. Most apps do not require all the features that Core 
Data has to offer. The goal of this chapter is to get you up and running with the most common Core 
Data features that apps need.   

  This chapter describes how to set up a project to use Core Data, and illustrates how to implement 
several common use cases with the sample app. It covers how to set up your data model, how to popu-
late some starting data, and how to display data in a table using a fetched results controller. This 
chapter also demonstrates how to add, edit, and delete data, how to fetch data, and how to use predi-
cates to fetch specific data. With this knowledge, you will have a good foundation for implementing 
Core Data quickly in your apps.    

     Sample App  

 The sample app for this chapter is called MyMovies. It is a Core Data–based app that will keep 
track of all your physical media movies and, if you have loaned a movie to someone, who you 
loaned it to and when (as shown in  Figure   13.1   ).   

 The sample app has three tabs: Movies, Friends, and Shared Movies. The Movies tab shows the 
whole list of movies that the user has added and tracked in a table view. There are two sections 
in the table view demonstrating how data can be segregated with a fetched results controller. 
Users can add new movies from this tab, and can edit existing movies. The Friends tab lists the 
friends set up to share movies with, shows which friends have borrowed movies, and allows the 
user to add and edit friends. The Shared Movies tab displays which movies have currently been  
shared with friends.   
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  Starting a Core Data Project  

 To start a new Core Data project, open Xcode and select File from the menu, New, and then 
Project. Xcode will present some project template options to get you started (see  Figure   13.2   ).   

 The quickest method to start a Core Data project is to select the Master-Detail template. Click 
Next to specify options for your new project, and then make sure that Use Core Data is selected 
(see  Figure   13.3   ). This ensures that your project has the Core Data plumbing built in.   

 When Next is clicked, Xcode creates the project template. The project template 
includes a “master” view controller, which includes a table view populated by an 
 NSFetchedResultsController , a specialized controller that makes pairing Core Data with a 
table view a snap. The project template includes a “detail” view to display a single data record. 
In the sample app, the master and detail views have been renamed to fit the project.  

  Note 

 To add Core Data to an existing project quickly, create an empty template project with Core 
Data support as described, and then copy the elements described in the following section, 
“Core Data Environment,” into the existing project. Add a new managed object model file to the 
project, and be sure to add the Core Data framework to the existing project as well.   

 Figure 13.1   Sample App: Movies tab.        
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 Figure 13.2   Xcode new project template choices.        

 Figure 13.3   Xcode new project options.        
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  Core Data Environment  

 The project template sets up the Core Data environment for the project in the class that imple-
ments the  UIApplicationDelegate  protocol; in the sample app this is  ICFAppDelegate . The 
project template uses a lazy-loading pattern for each of the properties needed in the Core Data 
environment, so each is loaded when needed. For more information about the Core Data envi-
ronment, refer to  Chapter   12   , “Core Data Primer.”  

 The process of loading the Core Data environment is kicked off the first time the managed 
object context is referenced in the app. The managed object context accessor method will check 
to see whether the managed object context instance variable has a reference. If not, it will get 
the persistent store coordinator and instantiate a new managed object context with it, assign 
the new instance to the instance variable, and return the instance variable.  

  - ( NSManagedObjectContext  *)managedObjectContext
  {
     if  ( __managedObjectContext  !=  nil )
    {
       return   __managedObjectContext ;
    }
  
     NSPersistentStoreCoordinator  *coordinator =
     [ self   persistentStoreCoordinator ];
  
     if  (coordinator !=  nil )
    {
       __managedObjectContext  =
       [[ NSManagedObjectContext   alloc ]  init ];
  
      [ __managedObjectContext 
        setPersistentStoreCoordinator :coordinator];
    }
     return   __managedObjectContext ;
  }   

 The persistent store coordinator is the class that Core Data uses to manage the persis-
tent stores (or files) where the data for the app is stored. To instantiate it, an instance of 
 NSManagedObjectModel  is needed so that the persistent store coordinator knows what object 
model the persistent stores are implementing. The persistent store coordinator also needs a 
URL for each persistent store to be added; if the file does not exist, Core Data will create it. If 
the persistent store doesn’t match the managed object model (Core Data uses a hash of the 
managed object model to uniquely identify it, which  is kept for comparison in the persistent 
store), then the template logic will log an error and abort. In a shipping application, logic 
would be added to properly handle errors with a migration from the old data model to the new 
one; in development having the app abort can be a useful reminder when the model changes 
to retest with a clean installation of the app.  



255Starting a Core Data Project

  - ( NSPersistentStoreCoordinator  *)persistentStoreCoordinator
  {
     if  ( __persistentStoreCoordinator  !=  nil )
    {
       return   __persistentStoreCoordinator ;
    }
  
     NSURL  *storeURL =
    [[ self   applicationDocumentsDirectory ]
      URLByAppendingPathComponent : @"MyMovies.sqlite" ];
  
     NSError  *error =  nil ;
     __persistentStoreCoordinator  =
    [[ NSPersistentStoreCoordinator   alloc ]
      initWithManagedObjectModel :[ self   managedObjectModel ]];
  
     if  (![ __persistentStoreCoordinator 
        addPersistentStoreWithType : NSSQLiteStoreType 
        configuration : nil   URL :storeURL  options : nil 
        error :&error])
    {
       NSLog ( @"Unresolved error %@, %@" , error,
         [error  userInfo ]);
  
       abort ();
    }
  
     return   __persistentStoreCoordinator ;
  }   

 The managed object model is loaded from the app’s main bundle. Xcode will give the managed 
object model the same name as your project.  

  - ( NSManagedObjectModel  *)managedObjectModel
  {
     if  ( __managedObjectModel  !=  nil )
    {
       return   __managedObjectModel ;
    }
  
     NSURL  *modelURL =
    [[ NSBundle   mainBundle ]  URLForResource : @"MyMovies" 
                 withExtension : @"momd" ];
  
     __managedObjectModel  =
    [[ NSManagedObjectModel   alloc ]
      initWithContentsOfURL :modelURL];
  
     return   __managedObjectModel ;
  }     
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  Building Your Managed Object Model  

 With the project template, Xcode will create a data model file with the same name as your 
project. In the sample project this file is called  MyMovies.xdatamodeld . To edit your data 
model, click the data model file, and Xcode will present the data model editor (see  Figure   13.4   ).  

 

 Figure 13.4   Xcode data model editor, Table style.         

 Xcode has two styles for the data model editor: Table and Graph. The Table style presents the 
entities in your data model in a list on the left. Selecting an entity will display and allow you to 
edit the attributes, relationships, and fetched properties for that entity.  

 To change to Graph style, click the Editor Style Graph button in the lower-right corner of the 
data model editor (see  Figure   13.5   ). There will still be a list of entities on the left of the data 
model editor, but the main portion of the editor will present an entity relationship diagram of 
your data model. Each box presented in the diagram represents an entity, with the name of the 
entity at the top, the attributes listed in the middle, and any relationships listed in the bottom. 
The graph will have arrows connecting entities that have relationships established, with arrows  
indicating the cardinality of the relationship.   

 When working with your data model, it is often convenient to have more working space avail-
able and to have access to additional detail for selected items. Use Xcode’s View options in the 
upper-right corner of the window to hide the Navigator panel and display the Utilities panel 
(see  Figure   13.5   ).  
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  Creating an Entity  

 To create an entity, click the Add Entity button. A new entity will be added to the list of enti-
ties, and if the editor is in Graph style, a new entity box will be added to the view. Xcode will 
highlight the name of the entity and allow you to type in the desired name for the entity. The 
name of the entity can be changed at any time by just clicking twice on the entity name in 
the list of entities, or by selecting the desired entity and editing the entity name in the Utilities 
panel.  

 Core Data supports entity inheritance. For any entity, you can specify a parent entity from 
which your entity will inherit attributes, relationships, validations, and custom methods. To 
do that, ensure that the entity to be inherited from has been created, and then select the child 
entity and choose the desired parent entity in the Utilities panel.  

  Note 

 If you are using SQLite as your persistent store, Core Data implements entity inheritance by 
creating one table for the parent entity and all child entities, with a superset of all their attri-
butes. This can obviously have unintended performance consequences if you have a lot of data 
in the entities, so use this feature wisely.    

  Adding Attributes  

 To add attributes to an entity, first select the entity in either the graph or the list of entities. 
Then click the Add Attribute button in the lower part of the editor, just to the left of the Editor 
Style buttons. Xcode will add an attribute called  attribute  to the entity. Select a Type for the 

 Figure 13.5   Xcode data model editor, Graph style.        
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attribute. (See  Table   13.1    for supported data types.) Note that Core Data treats all attributes as 
Objective-C objects, so if Integer 32 is the selected data type, for example, Core Data will treat 
the attribute as an  NSNumber .  

 One thing to note is that Core Data will automatically give each instance a unique object ID, 
called  objectID , which it uses internally to manage storage and relationships. You can also 
add a unique ID or another candidate key to the entity and add an index to it for quick access, 
but note that Core Data will manage relationships with the generated object ID.  

  NSManagedObjects  also have a method called  description ; if you want to have a  
description  attribute, modify the name slightly to avoid conflicts. In the sample app, for 
example, the Movie entity has a  movieDescription  attribute.  

  Table 13.1   Core Data Supported Data Types  

  Data Types     Objective-C Storage   

 Integer 16    NSNumber   

 Integer 32    NSNumber   

 Integer 64    NSNumber   

 Decimal    NSNumber   

 Double    NSNumber   

 Float    NSNumber   

 String    NSString   

 Boolean    NSNumber   

 Date    NSDate   

 Binary Data    NSData   

 Transformable   Uses value transformer  

  Establishing Relationships  

 Having relationships between objects can be a very powerful technique to model the real world 
in an app. Core Data supports one-to-one and one-to-many relationships. In the sample app, 
a one-to-many relationship between friends and movies is established. Since a friend might 
borrow more than one movie at a time, that side of the relationship is “many,” but a movie 
can be lent to only one friend at a time, so that side of the relationship is “one.”  

 To add a relationship between entities, select one of the entities, and then Ctrl-click and drag 
to the destination entity. Alternatively, click and hold the Add Attribute button, and select Add 
Relationship from the menu that appears. Xcode will create a relationship to the destination 
entity and will call it “relationship.” In the Utilities panel, select the Data Model inspector, and 
change the name of the relationship. In the Data Model inspector, you can do the following:  
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    ■   Indicate whether the relationship is transient.   

   ■   Specify whether the relationship is optional or required with the Optional check box.   

   ■   Specify whether the relationship is ordered.   

   ■   Establish an inverse relationship. To do this, create and name the inverse relationship 
first, and then select it from the drop-down.   

   ■   Specify the cardinality of the relationship by checking or unchecking the Plural check 
box. If checked, it indicates a to-many relationship.   

   ■   Specify minimum and maximum counts for a relationship.   

   ■   Set up the rule for Core Data to follow for the relationship when the object is deleted. 
Choices are No Action (no additional action taken on delete), Nullify (relationship set to 
 nil ), Cascade (objects on the other side of the relationship are deleted too), and Deny 
(error issued if relationships exist).     

  Custom Managed Object Subclasses  

 A custom  NSManagedObject  subclass can be useful if you have custom logic for your model 
object, or if you would like to be able to use dot syntax for your model object properties and 
have the compiler validate them.  

 Xcode has a menu option to automatically create a subclass for you. To use it, ensure that you 
have completed setup of your entity in the data model editor. Select your entity (or multiple 
entities) in the data model editor, select Editor from the Xcode menu, and then select Create 
NSManagedObject Subclass. Xcode will ask where you want to save the generated class files. 
Specify a location and click Create, and Xcode will generate the header and implementation 
files for each entity you specified. Xcode will name each class with the class prefix specified for 
your project concatenated with the  name of the entity.  

 In the generated header file, Xcode will create a property for each attribute in the entity. Note 
that Xcode will also create a property for each relationship specified for the entity. If the rela-
tionship is to-one, Xcode will create an  NSManagedObject  property (or  NSManagedObject  
subclass if the destination entity is a custom subclass). If the relationship is to-many, Xcode 
will create an  NSSet  property.  

 In the generated implementation file, Xcode will create  @dynamic  instructions for each entity, 
rather than  @synthesize . This is because Core Data dynamically handles accessors for Core 
Data managed attributes, and does not need the compiler to build the accessor methods.  

  Note 

 There is a project called mogenerator that will generate two classes per entity: one for the 
attribute accessors and one for custom logic. That way, you can regenerate classes easily 
when making model changes without overwriting your custom logic. Mogenerator is available at 
 http://rentzsch.github.com/mogenerator/ .     

http://rentzsch.github.com/mogenerator/
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  Setting Up Default Data  

 When a Core Data project is first set up, there is no data in it. Although this might work for 
some use cases, frequently it is a requirement to have some data prepopulated in the app for 
the first run. In the sample app there is a custom data setup class called  ICFDataStarter , 
which illustrates how to populate Core Data with some initial data. A  #define  variable is set 
up in  MyMovies-Prefix.pch  called  FIRSTRUN , which can be uncommented to have the app 
run the logic in  ICFDataStarter .  

  Inserting New Managed Objects  

 To create a new instance of a managed object for data that does not yet exist in your model, a 
reference to the managed object context is needed. The sample app uses a constant to refer to 
the  ICFAppDelegate  instance, which has a property defined for the managed object context:  

  NSManagedObjectContext *moc =
   [kAppDelegate  managedObjectContext ];   

 To insert data, Core Data needs to know what entity the new data is for. Core Data has a class 
called  NSEntityDescription  that provides information about entities. Create a new instance 
using  NSEntityDescription ’s class method:  

  NSManagedObject *newMovie1 =
   [NSEntityDescription  insertNewObjectForEntityForName : @"Movie" 
                   inManagedObjectContext :moc];   

 After an instance is available, populate the attributes with data:  

  [newMovie1  setValue : @"The Matrix"   forKey : @"title" ];
  [newMovie1  setValue : @"1999"   forKey : @"year" ];
  
  [newMovie1  setValue : @"Take the blue pill." 
          forKey : @"movieDescription" ];
  
  [newMovie1  setValue : @NO   forKey : @"lent" ];
  [newMovie1  setValue : nil   forKey : @"lentOn" ];
  [newMovie1  setValue : @20   forKey : @"timesWatched" ];   

 Core Data uses key-value coding to handle setting attributes. If an attribute name is incorrect, 
it will fail at runtime. To get compile-time checking of attribute assignments, create a custom 
 NSManagedObject  subclass and use the property accessors for each attribute directly.  

 The managed object context acts as a working area for changes, so the sample app sets up more 
initial data:  

  NSManagedObject *newFriend1 =
   [NSEntityDescription  insertNewObjectForEntityForName : @"Friend" 
                   inManagedObjectContext :moc];
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  [newFriend1  setValue : @"Joe"   forKey : @"friendName" ];
  [newFriend1  setValue : @"  joe@dragonforged.com  "   forKey : @"email" ];   

 The last step after setting up all the initial data is to save the managed object context.  

  NSError *mocSaveError =  nil ;
  
   if  ([moc  save :&mocSaveError])
  {
     NSLog ( @"Save completed successfully." );
  }  else 
  {
     NSLog ( @"Save did not complete successfully. Error: %@" ,
       [mocSaveError  localizedDescription ]);
  }   

 After the managed object context is saved, Core Data will persist the data in the data store. For 
this instance of the app, the data will continue to be available through shutdowns and restarts. 
If the app is removed from the simulator or device, the data will no longer be available. One 
technique to populate data for first run is to copy the data store from the app’s storage direc-
tory back into the app bundle. This will ensure that the default set of data is copied into the 
app’s directory on first launch and is available to the app.   

  Other Default Data Setup Techniques  

 There are two other default data setup techniques that are commonly used: data model version 
migrations and loading data from a Web service or an API.  

 Core Data managed object models are versioned. Core Data understands the relationship 
between the managed object model and the current data store. If the managed object model 
changes and is no longer compatible with the data store (for example, if an attribute is added 
to an entity), Core Data will not be able to initiate the persistent store object using the exist-
ing data store and new managed object model. In that case, a migration is required to update 
the existing data store to match the updated managed object model. In many cases Core Data 
can perform the migration automatically by  passing a dictionary of options when instantiating 
the persistent store; in some cases, additional steps need to be taken to perform the migration. 
Migrations are beyond the scope of this chapter, but be aware that migrations can be used and 
are recommended by Apple to do data setup.  

 The other approach is to pull data from a Web service or an API. This approach is most applica-
ble when an app needs to maintain a local copy of a subset of data on a Web server, and Web 
calls need to be written for the app to pull data from the API in the course of normal operation. 
To set up the app’s initial data, the Web calls can be run in a special state to pull all needed 
initial data and save it in Core Data.    



262 Chapter 13 Getting Up and Running with Core Data

  Displaying Your Managed Objects  

 To display or use existing entity data in an app, managed objects need to be fetched from the 
managed object context. Fetching is analogous to running a query in a relational database, 
in that you can specify what entity you want to fetch, what criteria you want your results to 
match, and how you want your results sorted.  

  Creating Your Fetch Request  

 The object used to fetch managed objects in Core Data is called  NSFetchRequest . Refer to 
 ICFFriendChooserViewController  in the sample app. This view controller displays the 
friends set up in Core Data and allows the user to select a friend to lend a movie to (see 
 Figure   13.6   ).  

 

 Figure 13.6   Sample App: Friend Chooser.         

 To get the list of friends to display, the view controller performs a standard fetch request when 
the view controller has loaded. The first step is to create an instance of  NSFetchRequest  and 
associate the entity to be fetched with the fetch request:  

  NSManagedObjectContext *moc =  kAppDelegate . managedObjectContext ;
  
   NSFetchRequest  *fetchReq = [[ NSFetchRequest   alloc ]  init ];
  
   NSEntityDescription  *entity =
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   [ NSEntityDescription   entityForName : @"Friend" 
          inManagedObjectContext :moc];
  
  [fetchReq  setEntity :entity];   

 The next step is to tell the fetch request how to sort the resulting managed objects. To do this, 
we associate a sort descriptor with the fetch request, specifying the attribute name to sort by:  

   NSSortDescriptor  *sortDescriptor =
   [[NSSortDescriptor  alloc ]  initWithKey : @"friendName" 
                 ascending : YES ];
  
  NSArray *sortDescriptors =
   [NSArray  arrayWithObjects :sortDescriptor,  nil ];
  
  [fetchReq  setSortDescriptors :sortDescriptors];   

 Since the friend chooser should show all the available friends to choose from, it is not neces-
sary to specify any matching criteria. All that remains is to execute the fetch:  

   NSError  *error =  nil ;
  
   self . friendList  = [moc  executeFetchRequest :fetchReq
                                        error :&error];
  
   if (error)
  {
     NSString  *errorDesc =
     [error  localizedDescription ];
  
     UIAlertView  *alert =
     [[ UIAlertView   alloc ]  initWithTitle : @"Error fetching friends" 
                   message :errorDesc
                   delegate : nil 
              cancelButtonTitle : @"Dismiss" 
              otherButtonTitles : nil ];
    [alert  show ];
  }   

 To execute a fetch, create an instance of  NSError  and set it to  nil . Then have the managed 
object context execute the fetch request that has just been constructed. If an error is encoun-
tered, the managed object context will return the error to the instance you just created. The 
sample app will display the error in an instance of  UIAlertView . If no error is encountered, 
the results will be returned as an  NSArray  of  NSManagedObjects . The view controller will store 
those results in an instance variable to be displayed in a table view.   
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  Fetching by Object ID  

 When only one specific managed object needs to be fetched, Core Data provides a way to 
quickly retrieve that managed object without constructing a fetch request. To use this method, 
you must have the  NSManagedObjectID  for the managed object.  

 To get the  NSManagedObjectID  for a managed object, you must already have fetched or 
created the managed object. Refer to  ICFMovieListViewController  in the sample app, in the 
 prepareForSegue:sender:  method. In this case, the user has selected a movie from the list, 
and the view controller is about to segue from the list to the detail view for the selected movie. 
To inform the detail view controller which movie to display, the  objectID  for the selected 
movie is set as a property on the  ICFMovieDisplayViewController :  

   if  ([[segue  identifier ]  isEqualToString : @"showDetail" ])
  {
  
     NSIndexPath  *indexPath =
     [ self . tableView   indexPathForSelectedRow ];
  
     ICFMovie  *movie =
     [[ self   fetchedResultsController ]
       objectAtIndexPath :indexPath];
  
     ICFMovieDisplayViewController  *movieDispVC =
     ( ICFMovieDisplayViewController  *)
     [segue  destinationViewController ];
  
    [movieDispVC  setMovieDetailID :[movie  objectID ]];
  }   

 When the  ICFMovieDisplayViewController  is loaded, it uses a method on the managed 
object context to load a managed object using the  objectID :  

  ICFMovie *movie = (ICFMovie *)[ kAppDelegate .managedObjectContext
                objectWithID : self . movieDetailID ];
  
  [ self   configureViewForMovie :movie];   

 When this is loaded, the movie is available to the view controller to configure the view using 
the movie data (see  Figure   13.7   ).   

 It is certainly possible to just pass the managed object from one view controller to the next 
with no problems, instead of passing the  objectID  and loading the managed object in the 
destination view controller. However, there are cases when using the  objectID  is highly prefer-
able to using the managed object:  

    ■   If the managed object has been fetched or created on a different thread than the 
destination view controller will use to process and display the managed object—this 
approach must be used since managed objects are not thread safe!   
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   ■   If a background thread might update the managed object in another managed object 
context between fetching and displaying—this will avoid possible issues with displaying 
the most up-to-date changes.     

 Figure 13.7   Sample App: Movie Display view.        

  Displaying Your Object Data  

 After managed objects have been fetched, accessing and displaying data from them is 
straightforward. For any managed object, using the key-value approach will work to retrieve 
attribute values. As an example, refer to the  configureCell:atIndexPath  method in 
 ICFFriendsViewController  in the sample app. This code will populate the table cell’s text 
label and detail text label.  

  NSManagedObject *object =
   [ self . fetchedResultsController   objectAtIndexPath :indexPath];
  
  cell. textLabel . text  = [object  valueForKey : @"friendName" ];
  
   NSInteger  numShares = [[object  valueForKey : @"lentMovies" ]  count ];
  
   NSString  *subtitle =  @"" ;
  
   switch  (numShares)
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  {
     case   0 :
      subtitle =  @"Not borrowing any movies." ;
       break ;
  
     case   1 :
      subtitle =  @"Borrowing 1 movie." ;
       break ;
  
     default :
      subtitle =
       [ NSString   stringWithFormat : @"Borrowing %d movies." ,
       numShares];
  
       break ;
  }
  
  cell. detailTextLabel . text  = subtitle;   

 To get the attribute values from the managed object, call  valueForKey:  and specify the attri-
bute name. If the attribute name is specified incorrectly, the app will fail at runtime.  

 For managed object subclasses, the attribute values are also accessible by calling the property on 
the managed object subclass with the attribute name. Refer to the  configureViewForMovie:  
method in  ICFMovieDisplayViewController  in the sample app.  

  - ( void )configureViewForMovie:( ICFMovie  *)movie
  
  {
     NSString  *movieTitleYear = [movie  yearAndTitle ];
  
    [ self . movieTitleAndYearLabel 
      setText :movieTitleYear];
  
    [ self . movieDescription   setText :[movie  movieDescription ]];
  
     BOOL  movieLent = [[movie  lent ]  boolValue ];
  
     NSString  *movieShared =  @"Not Shared" ;
     if  (movieLent)
    {
       NSManagedObject  *friend =
      [movie  valueForKey : @"lentToFriend" ];
  
       NSDateFormatter  *dateFormatter =
       [[ NSDateFormatter   alloc ]  init ];
  
      [dateFormatter  setDateStyle : NSDateFormatterMediumStyle ];
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       NSString  *sharedDateTxt =
      [dateFormatter  stringFromDate :[movie  lentOn ]];
  
      movieShared =
       [ NSString   stringWithFormat : @"Shared with %@ on %@" ,
       [friend  valueForKey : @"friendName" ],sharedDateTxt];
    }
  
    [ self . movieSharedInfoLabel   setText :msh];
  }   

 If the property-based approach to get attribute values from managed object subclasses is used, 
errors will be caught at compile time.   

  Using Predicates  

 Predicates can be used to narrow down your fetch results to data that match your specific crite-
ria. They are analogous to a  where  clause in an SQL statement, but they can be used to filter 
elements from a collection (like an  NSArray ) as well as a fetch request from Core Data. 
To see how a predicate is applied to a fetch request, refer to method  fetchedResults
Controller  in  ICFSharedMoviesViewController . This method lazy loads and sets up an 
 NSFetchedResultsController , which helps a table view interact with the results of a fetch 
request (this is described in detail in the next section). Setting up a  predicate is simple, for 
example:  

   NSPredicate  *predicate =
   [ NSPredicate   predicateWithFormat : @"lent == %@" , @YES ];   

 In the format string, predicates can be constructed with attribute names, comparison operators, 
Boolean operators, aggregate operators, and substitution expressions. A comma-separated list of 
expressions will be substituted in the order of the substitution expressions in the format string. 
Dot notation can be used to specify relationships in the predicate format string. Predicates 
support a large variety of operators and arguments, as shown in  Table   13.2   .  

  Table 13.2   Core Data Predicate Supported Operators and Arguments  

  Type     Operators and Arguments   

 Basic Comparisons    = ,  == ,  >= ,  => ,  <= ,  =< ,  > ,  < ,  != ,  <> ,  BETWEEN {low,high}   

 Boolean    AND ,  &&    OR ,  ||    NOT ,  !   

 String    BEGINSWITH ,  CONTAINS ,  ENDSWITH ,  LIKE ,  MATCHES   

 Aggregate    ANY ,  SOME ,  ALL ,  NONE ,  IN   

 Literals    FALSE ,  NO ,  TRUE ,  YES ,  NULL ,  NIL ,  SELF . Core Data also supports 
string and numeric literals.  
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 Tell the fetch request to use the predicate:  

  [fetchRequest  setPredicate :predicate];   

 Now the fetch request will narrow the returned result set of managed objects to match the 
criteria specified in the predicate (see  Figure   13.8   ).  

 

 Figure 13.8   Sample App: Shared Movies tab.           

  Introducing the Fetched Results Controller  

 A fetched results controller ( NSFetchedResultsController ) is a very effective liaison between 
Core Data and a  UITableView . The fetched results controller provides a way to set up a fetch 
request so that the results are returned in sections and rows, accessible by index paths. In addi-
tion, the fetched results controller can listen to changes in Core Data and update the table 
accordingly using delegate methods.  

 In the sample app, refer to  ICFMovieListViewController  for a detailed example of a fetched 
results controller in action (see  Figure   13.9   ).   

  Preparing the Fetched Results Controller  

 When the “master” view controller is set up using Xcode’s Master Detail template, Xcode 
creates a property for the fetched results controller, and overrides the accessor method 
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( fetchedResultsController ) to lazy load or initialize the fetched results controller the first 
time it is requested. First the method checks to see whether the fetched results controller has 
already been initialized:  

   if  ( __fetchedResultsController  !=  nil )
  {
     return   __fetchedResultsController ;
  }   

 Figure 13.9   Sample App: Movie list view controller.        

 If the fetched results controller is already set up, it is returned. Otherwise, a new fetched results 
controller is set up, starting with a fetch request:  

  NSFetchRequest *fetchRequest = [[NSFetchRequest  alloc ]  init ];   

 The fetch request needs to be associated with an entity from the managed object model, and a 
managed object context:  

  NSManagedObjectContext *moc =  kAppDelegate . managedObjectContext ;
  
   NSEntityDescription  *entity =
   [ NSEntityDescription   entityForName : @"Movie" 
          inManagedObjectContext :moc];
  
  [fetchRequest  setEntity :entity];   
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 A batch size can be set up to prevent the fetch request from fetching too many records at once:  

  [fetchRequest  setFetchBatchSize : 20 ];   

 Next, the sort order is established for the fetch request using  NSSortDescriptor  instances. An 
important point to note is that the attribute used for sections needs to be the first in the sort 
order so that the records can be correctly divided into sections. The sort order is determined by 
the order of the sort descriptors in the array of sort descriptors attached to the fetch request.  

   NSSortDescriptor  *sortDescriptor =
   [[NSSortDescriptor  alloc ]  initWithKey : @"title" 
                  ascending : YES ];
  
  NSSortDescriptor *sharedSortDescriptor =
   [[NSSortDescriptor  alloc ]  initWithKey : @"lent"   ascending : NO ];
  
  NSArray *sortDescriptors = [NSArray  arrayWithObjects :
                sharedSortDescriptor,sortDescriptor,
                 nil ];
  
  [fetchRequest  setSortDescriptors :sortDescriptors];   

 After the fetch request is ready, the fetched results controller can be initialized. It requires a 
fetch request, a managed object context, a key path or an attribute name to be used for the 
table view sections, and a name for a cache (if  nil  is passed, no caching is done). The fetched 
results controller can specify a delegate that will respond to any Core Data changes. When this 
is complete, the fetched results controller is assigned to the view controller’s property:  

   NSFetchedResultsController  *aFetchedResultsController =
   [[NSFetchedResultsController  alloc ]
    initWithFetchRequest :fetchRequest
    managedObjectContext :moc
     sectionNameKeyPath : @"lent" 
          cacheName : nil ];
  
  aFetchedResultsController.delegate =  self ;
   self . fetchedResultsController  = aFetchedResultsController;   

 Now that the fetched results controller has been prepared, the fetch can be executed to obtain 
a result set the table view can display, and the fetched results controller can be returned to the 
caller:  

   NSError  *error =  nil ;
   if  (![ self . fetchedResultsController   performFetch :&error])
  {
     NSLog ( @"Unresolved error %@, %@" , error, [error  userInfo ]);
     abort ();
  }
  
  return  __fetchedResultsController ;    
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  Integrating Table View and Fetched Results Controller  

 Integrating the table view and fetched results controller is just a matter of updating the table 
view’s datasource and delegate methods to use information from the fetched results controller. 
In  ICFMovieListViewController , the fetched results controller tells the table view how many 
sections it has:  

  - ( NSInteger )numberOfSectionsInTableView:( UITableView  *)tableView
  {
     return  [[ self . fetchedResultsController   sections ]  count ];
  }   

 The fetched results controller tells the table view how many rows are in each section, using the 
 NSFetchedResultsSectionInfo  protocol:  

  - ( NSInteger )tableView:( UITableView  *)tableView
   numberOfRowsInSection:( NSInteger )section
  {
     id  < NSFetchedResultsSectionInfo > sectionInfo =
     [[ self . fetchedResultsController   sections ]
      objectAtIndex :section];
  
     return  [sectionInfo  numberOfObjects ];
  }   

 The fetched results controller provides section titles, which are the values of the attribute speci-
fied as the section name. Since the sample app is using a Boolean attribute for the sections, the 
values that the fetched results controller returns for section titles are not user-friendly titles:  0  
and  1 . The sample app looks at the titles from the fetched results controller and returns more 
helpful titles:  Shared  instead of  1  and  Not Shared  instead of  0 .  

  - ( NSString  *)tableView:( UITableView  *)tableView
   titleForHeaderInSection:( NSInteger )section
  {
     id  < NSFetchedResultsSectionInfo > sectionInfo =
     [[ self . fetchedResultsController   sections ]
      objectAtIndex :section];
  
     if  ([[sectionInfo  indexTitle ]  isEqualToString : @"1" ])
    {
       return   @"Shared" ;
    }
     else 
    {
       return   @"Not Shared" ;
    }
  }   
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 To populate the table cells, the sample app dequeues a reusable cell, and then calls the  
configureView:  method, passing the  indexPath  for the cell:  

  - ( UITableViewCell  *)tableView:( UITableView  *)tableView
       cellForRowAtIndexPath:( NSIndexPath  *)indexPath
  {
     UITableViewCell  *cell =
     [tableView  dequeueReusableCellWithIdentifier : @"Cell" ];
  
    [ self   configureCell :cell  atIndexPath :indexPath];
  
     return  cell;
  }   

 The fetched results controller knows which movie should be displayed at each index path, 
so the sample app can get the correct movie to display by calling the  objectAtIndexPath:  
method on the fetched results controller. Then, it is simple to update the cell with data from 
the movie instance.  

  - ( void )configureCell:( UITableViewCell  *)cell
       atIndexPath:( NSIndexPath  *)indexPath
  {
     ICFMovie  *movie =
     [ self . fetchedResultsController   objectAtIndexPath :indexPath];
  
    cell. textLabel . text  = [movie  cellTitle ];
  
    cell. detailTextLabel . text  = [movie  movieDescription ];
  }   

 The last table-view integration detail would typically be handling table cell selection in the 
 tableView:didSelectRowAtIndexPath:  method. In this case, no integration in that method 
is needed since selection is handled by storyboard segue. In the  prepareForSegue:sender:  
method, selection of a table cell is handled with an identifier called  showDetail :  

   if  ([[segue  identifier ]  isEqualToString : @"showDetail" ])
  {
   NSIndexPath  *indexPath =
       [ self . tableView   indexPathForSelectedRow ];
  
       ICFMovie  *movie =
       [[ self   fetchedResultsController ]
          objectAtIndexPath :indexPath];
  
       ICFMovieDisplayViewController  *movieDisplayVC =
       ( ICFMovieDisplayViewController  *)
        [segue  destinationViewController ];
  
      [movieDisplayVC  setMovieDetailID :[movie  objectID ]];
  }   



273Introducing the Fetched Results Controller

 This method gets the index path of the selected row from the table view, and then gets the 
movie instance from the fetched results controller using the index path. The method then 
sets the  movieDetailID  of the  ICFMovieDisplayViewController  instance with the movie 
instance’s  objectID .   

  Responding to Core Data Changes  

 For the fetched results controller to respond to Core Data changes and update the table view, 
methods from the  NSFetchedResultsControllerDelegate  protocol need to be implemented. 
First the view controller needs to declare that it will implement the delegate methods:  

   @interface  ICFMovieListViewController :  UITableViewController 
   <NSFetchedResultsControllerDelegate>   

 The fetched results controller delegate will be notified when content will be changed, giving 
the delegate the opportunity to animate the changes in the table view. Calling the  beginUp-
dates  method on the table view tells it that all updates until  endUpdates  is called should be 
animated simultaneously.  

  - ( void )controllerWillChangeContent:
    (NSFetchedResultsController *)controller
  {
    [ self .tableView  beginUpdates ];
  }   

 There are two delegate methods that might be called based on data changes. One method will 
tell the delegate that changes occurred that affect the table-view sections; the other will tell the 
delegate that the changes affect objects at specified index paths, so the table view will need to 
update the associated rows. Because the data changes are expressed by type, the delegate will be 
notified if the change is an insert, a delete, a move, or an update, so a typical pattern is to build 
a  switch  statement to perform the correct action by change type. For sections, the sample  app 
will only make changes that can insert or delete a section (if a section name is changed, that 
might trigger a case in which a section might move and be updated as well).  

  - ( void )controller:( NSFetchedResultsController  *)controller
   didChangeSection:( id  < NSFetchedResultsSectionInfo >)sectionInfo
        atIndex:( NSUInteger )sectionIndex
     forChangeType:( NSFetchedResultsChangeType )type
  {
     switch (type)
    {
       case   NSFetchedResultsChangeInsert :
        ...
         break ;
  
       case   NSFetchedResultsChangeDelete :
        ...
         break ;
    }
  }   
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 Table views have a convenient method to insert new sections, and the delegate method receives 
all the necessary information to insert new sections:  

  [self. tableView 
    insertSections:[ NSIndexSet  indexSetWithIndex:sectionIndex]
   withRowAnimation:UITableViewRowAnimationFade];   

 Removing sections is just as convenient:  

  [self. tableView 
    deleteSections:[ NSIndexSet  indexSetWithIndex:sectionIndex]
   withRowAnimation:UITableViewRowAnimationFade];   

 For object changes, the delegate will be informed of the change type, the object that changed, 
the current index path for the object, and a “new” index path if the object is being inserted or 
moved. Using  switch  logic to respond by change type works for this method as well.  

  - ( void )controller:( NSFetchedResultsController  *)controller
    didChangeObject:( id )anObject
      atIndexPath:( NSIndexPath  *)indexPath
     forChangeType:( NSFetchedResultsChangeType )type
     newIndexPath:( NSIndexPath  *)newIndexPath
  {
     UITableView  *tableView =  self . tableView ;
  
     switch (type)
    {
       case   NSFetchedResultsChangeInsert :
        ...
         break ;
  
       case   NSFetchedResultsChangeDelete :
        ...
         break ;
  
       case   NSFetchedResultsChangeUpdate :
        ...
         break ;
  
       case   NSFetchedResultsChangeMove :
        ...
         break ;
    }
  }   

 Table views have convenience methods to insert rows by index path. Note that the  newIndex-
Path  is the correct index path to use when inserting a row for an inserted object.  
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  [tableView
   insertRowsAtIndexPaths:[ NSArray  arrayWithObject:newIndexPath]
      withRowAnimation:UITableViewRowAnimationFade];   

 To delete a row, use the  indexPath  passed to the delegate method.  

  [tableView
   deleteRowsAtIndexPaths:[ NSArray  arrayWithObject:indexPath]
      withRowAnimation:UITableViewRowAnimationFade];   

 To update a row, call the  configureCell:atIndexPath:  method for the current  indexPath . 
This is the same configure method called from the table view delegate’s  tableView:cellFor
RowAtIndexPath:  method.  

  [ self   configureCell :[tableView  cellForRowAtIndexPath :indexPath]
       atIndexPath :indexPath];   

 To move a row, delete the row for the current  indexPath  and insert a row for the 
 newIndexPath .  

  [tableView
   deleteRowsAtIndexPaths:[ NSArray  arrayWithObject:indexPath]
      withRowAnimation:UITableViewRowAnimationFade];
  
  [tableView
   insertRowsAtIndexPaths:[ NSArray  arrayWithObject:newIndexPath]
      withRowAnimation:UITableViewRowAnimationFade];   

 The fetched results controller delegate will be notified when the content changes are complete, 
so the delegate can tell the table view there will be no more animated changes by calling the 
 endUpdates  method. After that method is called, the table view will animate the accumulated 
changes in the user interface.  

  - ( void )controllerDidChangeContent:
    (NSFetchedResultsController *)controller
  {
    [ self .tableView  endUpdates ];
  }     

  Adding, Editing, and Removing Managed Objects  

 Although it is useful to be able to fetch and display data, apps often need to add new data, edit 
existing data, and remove unneeded data at the user’s request.  

  Inserting a New Managed Object  

 In the sample app, view the Movies tab. To insert a new movie, the user can tap the 
Add button in the navigation bar. The Add button is wired to perform a segue to the 
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 ICFMovieEditViewController . In the segue logic, a new movie managed object is inserted 
into Core Data, and the new movie’s object ID is passed to the edit movie view controller. 
This approach is used in the sample app to prevent having logic in the edit view controller to 
handle both creating new managed objects and editing existing managed objects; however, it 
would be perfectly acceptable to  create the new movie managed object in the edit view control-
ler if that makes more sense in a different app.  

 To create a new instance of a movie managed object, a reference to the managed object context 
is needed.  

  NSManagedObjectContext *moc =
   [kAppDelegate  managedObjectContext ];   

 To insert data, Core Data needs to know what entity the new data is for. Core Data has a class 
called  NSEntityDescription  that provides information about entities. Create a new instance 
using  NSEntityDescription ’s class method:  

   ICFMovie  *newMovie = [ NSEntityDescription 
   insertNewObjectForEntityForName: @"Movie" 
       inManagedObjectContext:moc];   

 Populate the new movie managed object’s attributes with data:  

  [newMovie  setTitle : @"New Movie" ];
  [newMovie  setYear : @"2012" ];
  [newMovie  setMovieDescription : @"New movie description." ];
  [newMovie  setLent : @NO ];
  [newMovie  setLentOn : nil ];
  [newMovie setTimesWatched: @0 ];   

 Prepare an  NSError  variable to capture any potential errors, and save the managed object 
context.  

   NSError  *mocSaveError =  nil ;
  
   if  (![moc  save :&mocSaveError])
  {
     NSLog ( @"Save did not complete successfully. Error: %@" ,
       [mocSaveError  localizedDescription ]);
  }   

 After the managed object context has been successfully saved, the fetched results controller 
will be notified if the save affects the results of the controller’s fetch, and the delegate methods 
described earlier in the chapter will be called.   

  Removing a Managed Object  

 On the Movies tab in the sample app, the user can swipe on the right side of a table cell, or 
can tap the Edit button to reveal the delete controls for each table cell. When Delete is tapped 
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on a cell, the table view delegate method  tableView:commitEditingStyle:forRowAtIndex
Path:  is called. The method checks whether the editing style is delete. If so, the method gets a 
reference to the managed object context from the fetched results controller. The fetched results 
controller keeps a reference to the managed object context it was initialized with, which is 
needed to delete the object.  

  NSManagedObjectContext *context =
   [ self . fetchedResultsController   managedObjectContext ];   

 The method determines which managed object should be deleted, by asking the fetched results 
controller for the managed object at the specified index path.  

   NSManagedObject  *objectToBeDeleted =
   [ self . fetchedResultsController   objectAtIndexPath :indexPath];   

 To delete the managed object, the method tells the managed object context to delete it.  

  [context  deleteObject :objectToBeDeleted];   

 The deletion is not permanent until the managed object context is saved. After it is saved, the 
delegate methods described earlier in the chapter will be called and the table will be updated.  

   NSError  *error =  nil ;
   if  (![context  save :&error])
  {
     NSLog ( @"Error deleting movie, %@" , [error  userInfo ]);
  }    

  Editing an Existing Managed Object  

 On the Movies tab in the sample app, the user can tap a movie to see more detail about it. To 
change any of the information about the movie, tap the Edit button in the navigation bar, 
which will present an instance of  ICFMovieEditViewController . When the view is loaded, it 
will load an instance of  ICFMovie  using the  objectID  passed in from the display view or list 
view, will save that instance into the property  editMovie , and will configure the view using 
information from the movie managed object.  

 If the user decides to edit the year of the movie, for example, another view control-
ler will be presented with a  UIPickerView  for the user to select a new year. The 
 ICFMovieEditViewController  is set up as a delegate for the year chooser, so when the user 
has selected a new year and taps Save, the delegate method  chooserSelectedYear:  is called. 
In that method, the  editMovie  is updated with the new date and the display is updated.  

  - ( void )chooserSelectedYear:( NSString  *)year
  {
      [ self . editMovie   setYear :year];
      [ self . movieYearLabel   setText :year];
  }   
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 Note that the managed object context was not saved after  editMovie  was updated. The 
managed object  editMovie  can keep updates temporarily until the user makes a decision about 
whether to make the changes permanent, indicated by tapping the Save or Cancel button.   

  Saving and Rolling Back Your Changes  

 If the user taps the Save button, he has indicated his intention to keep the changes made to 
the  editMovie . In the  saveButtonTouched:  method, the fields not updated with delegate 
methods are saved to the  editMovie  property:  

   NSString  *movieTitle = [ self . movieTitle   text ];
  [ self . editMovie   setTitle :movieTitle];
  
   NSString  *movieDesc = [ self . movieDescription   text ];
  [ self . editMovie   setMovieDescription :movieDesc];
  
   BOOL  sharedBool = [ self . sharedSwitch   isOn ];
   NSNumber  *shared = [ NSNumber   numberWithBool :sharedBool];
  [ self . editMovie   setLent :shared];   

 Then the managed object context is saved, making the changes permanent.  

   NSError  *saveError =  nil ;
  [ kAppDelegate . managedObjectContext   save :&saveError];
   if  (saveError)
  {
  
     UIAlertView  *alert =
     [[ UIAlertView   alloc ]
       initWithTitle : @"Error saving movie" 
            message :[saveError  localizedDescription ]
           delegate : nil 
       cancelButtonTitle : @"Dismiss" 
       otherButtonTitles : nil ];
  
    [alert  show ];
  }
   else 
  {
     NSLog ( @"Changes to movie saved." );
  }   

 If the user decides that the changes should be thrown away and not be made permanent, 
the user will tap the Cancel button, which calls the  cancelButtonTouched:  method. That 
method will first check whether the managed object context has any unsaved changes. If so, 
the method will instruct the managed object context to roll back or throw away the unsaved 
changes. After that is completed, the managed object context will be back to the state it was in 
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before any of the changes were made. Rather than the user interface being updated to reflect 
throwing away the changes, the view is  dismissed.  

   if  ([ kAppDelegate . managedObjectContext   hasChanges ])
  {
    [ kAppDelegate . managedObjectContext   rollback ];
     NSLog ( @"Rolled back changes." );
  }
  
  [ self . navigationController . presentingViewController 
   dismissModalViewControllerAnimated: YES ];      

     Summary  

 This chapter described how to set up a new project to use Core Data and how to set up all 
the Core Data environment pieces. The chapter detailed how to create a managed object 
model, including how to add a new entity, add attributes to an entity, and set up relationships 
between entities. It also described why an  NSManagedObject  subclass is useful and how to 
create one.  

 This chapter explained how to set up some initial data for the project, and demonstrated how 
to insert new managed objects. Alternative techniques for initial data setup were discussed.  

 This chapter then detailed how to create a fetch request to get saved managed objects, and how 
to fetch individual managed objects using an  objectID . It described how to display data from 
managed objects in the user interface of an app. It explained how to use predicates to fetch 
managed objects that match specific criteria.  

 This chapter introduced the fetched results controller, a powerful tool for integrating Core Data 
with the  UITableView ; described how to set up a  UITableView  with a fetched results control-
ler; and explained how to set up a fetched results controller delegate to automatically update a 
table view from Core Data changes.  

 Lastly, this chapter explained how to add, edit, and delete managed objects, and how to save 
changes or roll back unwanted changes.  

 With all of these tools, you should now have a good foundation for using Core Data effectively 
in your apps.   

  Exercises  

    1.    For the  Friend  managed object, there is an attribute specified for  email , but the 
 ICFFriendEditViewController  does not support editing the email address. Update 
that view controller to display the friend’s email address when the view is displayed, 
allow the user to edit the email address, and ensure that the email address is saved 
when the Save button is tapped. Test tapping the Cancel button to make sure that 
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changes to the email address are thrown away. Then add a Remind Friend button to the 
 ICFMovieDisplayViewController  that will present an email message composer with 
the friend’s email address.    

   2.    Currently, the friends list is not very helpful, because the user can see which friends 
have borrowed movies but cannot see which movies the friends have borrowed. Change 
the accessory selection to edit the friend record instead of row selection, and add a new 
view controller to display all the movies a friend has borrowed when the row for a friend 
is selected. Hint: Use a table view controller backed with a fetched results controller to 
display the list of movies borrowed by a friend.    

   3.    Change the sort order in  ICFMovieListViewController  to sort by year instead of title, 
without messing up the Shared/Not Shared section headers. Hint: This is a very simple 
change.        
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  posting messages,   155 - 159  
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   serial operation queues, running, 

  349 - 350   

   servers  

  accessing,   150  

  obtaining JSON from,   151 - 155  

  requests, building,   151 - 152  



537UIKit Dynamics

  setting page range,   231  

  starting print jobs,   232 - 233   

   TextKit,   417 - 418 ,  431  

  Content Specific Highlighting, 
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