
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321856715
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321856715
https://plusone.google.com/share?url=http://www.informit.com/title/9780321856715
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321856715
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321856715/Free-Sample-Chapter

 iOS Components
and Frameworks

This page intentionally left blank

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

 iOS Components
and Frameworks

Understanding the Advanced
Features of the iOS SDK

 Kyle Richter
 Joe Keeley

 Editor-in-Chief

Mark Taub

 Senior Acquisitions
Editor

Trina MacDonald

 Development
Editor

Thomas Cirtin

 Managing Editor

Kristy Hart

 Project Editor

Elaine Wiley

 Copy Editor

Cheri Clark

 Indexer

Brad Herriman

 Proofreader

Debbie Williams

 Technical
Reviewers

Collin Ruffenach
 Dave Wood

 Editorial Assistant

Olivia Basegio

 Cover Designer

Chuti Prasertsith

 Compositor

Nonie Ratcliff

 Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

 The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

 The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

 U.S. Corporate and Government Sales

(800) 382-3419

 corpsales@pearsontechgroup.com

 For sales outside the United States, please contact:

 International Sales

 international@pearsoned.com

 Visit us on the Web: informit.com/aw

 Library of Congress Control Number: 2013944841

 Copyright © 2014 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to
use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey, 07458, or
you may fax your request to (201) 236-3290.

 AirPlay, AirPort, AirPrint, AirTunes, App Store, Apple, the Apple logo, Apple TV, Aqua,
Bonjour, the Bonjour logo, Cocoa, Cocoa Touch, Cover Flow, Finder, FireWire, Game
Center, iMac, Instruments, Interface Builder, iCloud, iOS, iPad, iPhone, iPod, iPod
touch, iTunes, the iTunes logo, Mac, Mac logo, Macintosh, Mountain Lion, Multi-Touch,
Objective-C, Passbook, Quartz, QuickTime, QuickTime logo, Safari, Spotlight, and Xcode
are trademarks of Apple, Inc., registered in the United States and other countries.
Facebook and the Facebook logo are trademarks of Facebook, Inc., registered in the
United States and other countries. Twitter and the Twitter logo are trademarks of Twitter,
Inc., registered in the United States and other countries.

 ISBN-13: 978-0-321-85671-5
 ISBN-10: 0-321-85671-6

 Text printed in the United States on recycled paper at Edwards Brothers Malloy in
Ann Arbor, Michigan.

 First printing: October 2013

❖

 I would like to dedicate this book to my co-workers who
continually drive me to never accept the first solution.

 —Kyle Richter

 I dedicate this book to my wife, Irene, and two daughters,
Audrey and Scarlett. Your boundless energy and love

inspire me daily.

— Joe Keeley

❖

vi Contentsvi Contents

 Contents

 1 UIKit Dynamics 1

Sample App 1

Introduction to UIKit Dynamics 2

Implementing UIKit Dynamics 3

Gravity 3

Collisions 4

Attachments 6

Springs 8

Snap 9

Push Forces 9

Item Properties 11

In-Depth UIDynamicAnimator and
UIDynamicAnimatorDelegate 13

Summary 13

Exercises 14

 2 Core Location, MapKit, and Geofencing 15

The Sample App 15

Obtaining User Location 15

Requirements and Permissions 16

Checking for Services 19

Starting Location Request 20

Parsing and Understanding Location Data 22

Significant Change Notifications 23

Using GPX Files to Test Specific Locations 24

Displaying Maps 26

Understanding the Coordinate Systems 26

MKMapKit Configuration and Customization 26

Responding to User Interactions 28

Map Annotations and Overlays 29

Adding Annotations 29

Displaying Standard and Custom Annotation Views 32

Draggable Annotation Views 35

Working with Map Overlays 36

viiContents vii

Geocoding and Reverse-Geocoding 37

Geocoding an Address 37

Reverse-Geocoding a Location 41

Geofencing 44

Checking for Regional Monitoring Capability 44

Defining Boundaries 45

Monitoring Changes 46

Getting Directions 48

Summary 52

Exercises 53

 3 Leaderboards 55

Whack-a-Cac 55

Spawning a Cactus 57

Cactus Interaction 60

Displaying Life and Score 62

Pausing and Resuming 63

Final Thoughts on Whack-a-Cac 64

iTunes Connect 65

Game Center Manager 68

Authenticating 70

Common Authentication Errors 71

iOS 6 Authentication 73

Submitting Scores 75

Adding Scores to Whack-a-Cac 78

Presenting Leaderboards 80

Score Challenges 82

Going Further with Leaderboards 84

Summary 86

Exercises 86

 4 Achievements 87

iTunes Connect 87

Displaying Achievement Progress 89

Game Center Manager and Authentication 91

The Achievement Cache 91

Reporting Achievements 93

Contents

viii Contentsviii Contents

Adding Achievement Hooks 95

Completion Banners 96

Achievement Challenges 97

Adding Achievements into Whack-a-Cac 100

Earned or Unearned Achievements 101

Partially Earned Achievements 102

Multiple Session Achievements 104

Piggybacked Achievements and Storing Achievement
Precision 105

Timer-Based Achievements 106

Resetting Achievements 107

Going Further with Achievements 108

Summary 110

Exercises 110

 5 Getting Started with Address Book 111

Why Address Book Support Is Important 111

Limitations of Address Book Programming 112

Introduction to the Sample App 112

Getting Address Book Up and Running 112

Reading Data from the Address Book 115

Reading Multivalues from the Address Book 116

Understanding Address Book Labels 117

Working with Addresses 118

Address Book Graphical User Interface 120

People Picker 120

Programmatically Creating Contacts 125

Summary 128

Exercises 128

 6 Working with Music Libraries 129

Introduction to the Sample App 129

Building a Playback Engine 131

Registering for Playback Notifications 131

User Controls 133

Handling State Changes 135

ixContents ixContents ix

Duration and Timers 139

Shuffle and Repeat 140

Media Picker 141

Programmatic Picker 143

Playing a Random Song 144

Predicate Song Matching 145

Summary 147

Exercises 148

 7 Working with and Parsing JSON 149

JSON 149

Benefits of Using JSON 149

JSON Resources 150

Sample App Overview 150

Accessing the Server 150

Getting JSON from the Server 151

Building the Request 151

Inspecting the Response 152

Parsing JSON 153

Displaying the Data 154

Posting a Message 155

Encoding JSON 156

Sending JSON to the Server 158

Summary 159

Exercise 159

 8 Getting Started with iCloud 161

The Sample App 161

Setting Up the App for iCloud Support 162

Account Setup 162

Enabling iCloud Capabilities 163

Initializing iCloud 164

Introducing UIDocument 165

Subclassing UIDocument 165

Interacting with UIDocument 167

Interacting with iCloud 168

Listing Documents in iCloud 168

Detecting Conflicts in iCloud 172

x Contentsx Contents

Conflict Resolution 173

Key-Value Store Syncing 178

Summary 180

Exercises 180

 9 Notifications 181

Differences Between Local and Push Notifications 181

Sample App 182

App Setup 182

Create Development Push SSL Certificate 184

Development Provisioning Profile 188

Custom Sound Preparation 194

Registering for Remote Notifications 194

Scheduling Local Notifications 196

Receiving Notifications 196

Push Notification Server 198

Basic Rails Setup 198

Add Support for Devices and Shouts 199

Device Controller 202

Shout Controller 202

Tying It All Together 204

Sending the Push Notifications 207

Handling APNs Feedback 207

Summary 208

Exercise 208

 10 Bluetooth Networking with Game Kit 209

Limitations of Game Kit’s Bluetooth Networking 209

Benefits of Game Kit’s Bluetooth Networking 210

Sample App 210

The Peer Picker 215

Sending Data 218

Data Modes 219

Sending Data in the Sample App 219

Receiving Data 221

Receiving Data in the Sample App 221

State Changes 222

xiContents xiContents

Advanced Features 223

Peer Display Name 223

Connecting Without the Peer Picker 223

Session Modes 225

Summary 225

Exercises 225

 11 AirPrint 227

AirPrint Printers 227

Testing for AirPrint 229

Printing Text 229

Print Info 230

Setting Page Range 231

Error Handling 232

Starting the Print Job 232

Print Simulator Feedback 233

Print Center 234

UIPrintInteractionControllerDelegate 234

Printing Rendered HTML 236

Printing PDFs 237

Summary 239

Exercises 239

 12 Core Data Primer 241

Deciding on Core Data 242

Core Data Managed Objects 243

Managed Objects 243

Managed Object Model 244

Managed Object Model Migrations 246

Creating Managed Objects 246

Fetching and Sorting Objects 247

Fetched Results Controller 248

The Core Data Environment 248

Persistent Store Coordinator 249

Persistent Store 249

Managed Object Context 249

Summary 250

xii Contentsxii Contents

 13 Getting Up and Running with Core Data 251

Sample App 251

Starting a Core Data Project 252

Core Data Environment 254

Building Your Managed Object Model 256

Creating an Entity 257

Adding Attributes 257

Establishing Relationships 258

Custom Managed Object Subclasses 259

Setting Up Default Data 260

Inserting New Managed Objects 260

Other Default Data Setup Techniques 261

Displaying Your Managed Objects 262

Creating Your Fetch Request 262

Fetching by Object ID 264

Displaying Your Object Data 265

Using Predicates 267

Introducing the Fetched Results Controller 268

Preparing the Fetched Results Controller 268

Integrating Table View and Fetched Results
Controller 271

Responding to Core Data Changes 273

Adding, Editing, and Removing Managed Objects 275

Inserting a New Managed Object 275

Removing a Managed Object 276

Editing an Existing Managed Object 277

Saving and Rolling Back Your Changes 278

Summary 279

Exercises 279

 14 Language Features 281

Literals 282

Boxed Expressions 284

Automatic Reference Counting 285

Using ARC in a New Project 285

Converting an Existing Project to ARC 286

Basic ARC Usage 288

ARC Qualifiers 289

xiiiContents xiiiContents

Blocks 290

Declaring and Using Blocks 290

Capturing State with Blocks 291

Using Blocks as Method Parameters 293

Memory, Threads, and Blocks 294

Properties 295

Declaring Properties 295

Synthesizing Properties 297

Accessing Properties 297

Dot Notation 298

Fast Enumeration 298

Method Swizzling 299

Summary 302

Exercises 302

 15 Integrating Twitter and Facebook Using Social

Framework 303

Social Integration 303

The Sample App 303

Logging In 304

Using SLComposeViewController 306

Posting with a Custom Interface 308

Posting to Twitter 308

Posting to Facebook 312

Creating a Facebook App 312

Accessing User Timelines 318

Twitter 318

Facebook 324

Summary 328

Exercises 328

 16 Working with Background Tasks 329

The Sample App 330

Checking for Background Availability 330

Finishing a Task in the Background 331

Background Task Identifier 332

Expiration Handler 333

Completing the Background Task 333

xiv Contentsxiv Contentsxiv

Implementing Background Activities 335

Types of Background Activities 335

Playing Music in the Background 336

Summary 340

Exercises 340

 17 Grand Central Dispatch for Performance 341

The Sample App 341

Introduction to Queues 343

Running on the Main Thread 343

Running in the Background 345

Running in an Operation Queue 347

Concurrent Operations 347

Serial Operations 349

Canceling Operations 350

Custom Operations 351

Running in a Dispatch Queue 353

Concurrent Dispatch Queues 353

Serial Dispatch Queues 355

Summary 357

Exercises 358

 18 Using Keychain to Secure Data 359

Introduction to the Sample App 360

Setting Up and Using Keychain 360

Setting Up a New KeychainItemWrapper 361

Storing and Retrieving the PIN 362

Keychain Attribute Keys 363

Securing a Dictionary 364

Resetting a Keychain Item 366

Sharing a Keychain Between Apps 367

Keychain Error Codes 368

Summary 368

Exercises 369

xvContents xvContents xv

 19 Working with Images and Filters 371

The Sample App 371

Basic Image Data and Display 371

Instantiating an Image 372

Displaying an Image 373

Using the Image Picker 375

Resizing an Image 378

Core Image Filters 379

Filter Categories and Filters 379

Filter Attributes 382

Initializing an Image 384

Rendering a Filtered Image 385

Chaining Filters 386

Face Detection 387

Setting Up a Face Detector 388

Processing Face Features 388

Summary 390

Exercises 391

 20 Collection Views 393

The Sample App 393

Introducing Collection Views 394

Setting Up a Collection View 395

Implementing the Collection View Data Source
Methods 396

Implementing the Collection View Delegate
Methods 399

Customizing Collection View and Flow Layout 401

Basic Customizations 401

Decoration Views 402

Creating Custom Layouts 406

Collection View Animations 411

Collection View Layout Changes 411

Collection View Layout Animations 412

Collection View Change Animations 414

Summary 415

Exercises 415

xvi Contentsxvi Contentsxvi

 21 Introduction to TextKit 417

Sample App 417

Introducing NSLayoutManager 418

NSTextStore 418

Detecting Links Dynamically 421

Detecting Hits 422

Exclusion Paths 423

Content Specific Highlighting 425

Changing Font Settings with Dynamic Type 429

Summary 431

Exercises 431

 22 Gesture Recognizers 433

Types of Gesture Recognizers 433

Basic Gesture Recognizer Usage 434

Introduction to the Sample App 434

Tap Recognizer in Action 435

Pinch Recognizer in Action 436

Multiple Recognizers for a View 438

Gesture Recognizers: Under the Hood 440

Multiple Recognizers for a View: Redux 441

Requiring Gesture Recognizer Failures 443

Custom UIGestureRecognizer Subclasses 444

Summary 445

Exercise 445

 23 Accessing Photo Libraries 447

Sample App 447

The Assets Library 448

Enumerating Asset Groups and Assets 448

Permissions 449

Groups 451

Assets 455

Displaying Assets 458

Saving to the Camera Roll 462

Dealing with Photo Stream 465

Summary 467

Exercises 467

xviiContents xviiContents

 24 Passbook and PassKit 469

The Sample App 470

Designing the Pass 470

Pass Types 471

Pass Layout—Boarding Pass 471

Pass Layout—Coupon 471

Pass Layout—Event 472

Pass Layout—Generic 473

Pass Layout—Store Card 474

Pass Presentation 474

Building the Pass 476

Basic Pass Identification 477

Pass Relevance Information 478

Barcode Identification 478

Pass Visual Appearance Information 479

Pass Fields 479

Signing and Packaging the Pass 482

Creating the Pass Type ID 482

Creating the Pass Signing Certificate 484

Creating the Manifest 489

Signing and Packaging the Pass 489

Testing the Pass 490

Interacting with Passes in an App 490

Updating Passes Automatically 501

Summary 502

Exercises 502

 25 Debugging and Instruments 503

Introduction to Debugging 503

The First Computer Bug 504

Debugging Basics with Xcode 504

Breakpoints 506

Customizing Breakpoints 507

Symbolic and Exception Breakpoints 508

Breakpoint Scope 508

Working with the Debugger 509

xviii Contentsxviii Contents

Instruments 511

The Instruments Interface 512

Exploring Instruments: The Time Profiler 514

Exploring Instruments: Leaks 516

Going Further with Instruments 519

Summary 519

Exercises 520

 Index 521

 Foreword

 I have been working with the iPhone SDK (now iOS SDK) since the first beta released in 2008.
At the time, I was focused on writing desktop apps for the Mac and hadn’t thought much
about mobile app development.

 If you chose to be an early adopter, you were on your own. In typical Apple fashion, the
documentation was sparse, and since access to the SDK required an NDA—and apparently,
a secret decoder ring—you were on your own. You couldn’t search Google or turn to
StackOverflow for help, and there sure as hell weren’t any books out yet on the SDK.

 In the six years (yes, it really has only been six years) since Apple unleashed the original iPhone
on the world, we’ve come a long way. The iPhone SDK is now the iOS SDK. There are dozens
of books and blogs and podcasts and conferences on iOS development. And ever since 2009,
WWDC has been practically impossible to get into, making it even harder for developers—old
and new—to learn about the latest features coming to the platform. For iOS developers, there is
so much more to learn.

 One of the biggest challenges I have as an iOS developer is keeping on top of all the
components and frameworks available in the kit. The iOS HIG should help us with that, but it
doesn’t go far enough—deep enough. Sure, now I can find some answers by searching Google
or combing through StackOverflow but, more often than not, those answers only explain the
how and rarely the why, and they never provide the details you really need.

 And this is what Kyle and Joe have done with this book—they’re providing the detail needed so
you can fully understand the key frameworks that make up the iOS SDK.

 I’ve had the pleasure of knowing Kyle and Joe for a number of years. They are two of the
brightest developers I have ever met. They have each written some amazing apps over the
years, and they continuously contribute to the iOS development community by sharing their
knowledge—speaking at conferences and writing other books on iOS development. If you have
a question about how to do something in iOS, chances are good that Kyle and Joe have the
answer for you.

 But what makes these guys so awesome is not just their encyclopedic knowledge of iOS, it’s
their willingness to share what they know with everyone they meet. Kyle and Joe don’t have
competitors, they have friends.

 Kyle and Joe’s in-depth knowledge of the iOS SDK comes through in this book. It’s one of the
things I like about this book. It dives into the details for each component covered at a level
that you won’t always find when searching online.

 I also like the way the book is structured. This is not something that you’ll read cover to cover.
Instead, you’ll pick up the book because you need to learn how to implement a collection
view or sort out some aspect of running a task in a background thread that you can’t quite
wrangle. You’ll pick up the book when you need it, find the solution, implement it in your
own code, and then toss the book back on the floor until you need it again. This is what makes

xx Foreword

 iOS Components and Frameworks an essential resource for any iOS developer—regardless of your
experience level. You might think you’re a master with Core Location and MapKit, but I reckon
you’ll find something here that you never knew before.

 Kyle and Joe don’t come with egos. They don’t brag. And they sure don’t act like they are
better than any other developer in the room. They instill the very spirit that has made the Mac
and iOS developer community one of the friendliest, most helpful in our industry, and this
book is another example of their eagerness to share their knowledge.

 This book, just like the seminal works from Marks and LaMarche or Sadun, will always be
within arm’s reach of my desk. This is the book I wish I had when I first started developing iOS
apps in 2008. Lucky you, it’s here now.

 —Kirby Turner,

 Chief Code Monkey at White Peak Software, author of Learning iPad Programming, A Hands on
Guide to Building Apps for the iPad, Second Edition (Addison-Wesley Professional), and Cocoa
developer community organizer and conference junkie

 August 28, 2013

 Preface

 Welcome to iOS Components and Frameworks: Understanding the Advanced Features of the iOS SDK !

 There are hundreds of “getting started with iOS” books available to choose from, and there are
dozens of advanced books in specific topics, such as Core Data or Security. There was, however,
a disturbing lack of books that would bridge the gap between beginner and advanced niche
topics.

 This publication aims to provide development information on the intermediate-to-advanced
topics that are otherwise not worthy of standalone books. It’s not that the topics are
uninteresting or lackluster, it’s that they are not large enough topics. From topics such as
working with JSON to accessing photo libraries, these are frameworks that professional iOS
developers use every day but are not typically covered elsewhere.

 Additionally, several advanced topics are covered to the level that many developers need
in order to just get started. Picking up a 500-page Core Data book is intimidating, whereas
 Chapter 13 of this book provides a very quick and easy way to get started with Core Data.
Additional introductory chapters are provided for debugging and instruments, TextKit,
language features, and iCloud.

 Topics such as Game Center leaderboards and achievements, AirPrint, music libraries, Address
Book, and Passbook are covered in their entirety. Whether you just finished your first iOS
project or you are an experienced developer, this book will have something for you.

 The chapters have all been updated to work with iOS 7 Beta 4. As such, there were several iOS 7
features that were still in active development that might not work the same as illustrated in the
book after the final version of iOS 7 is released. Please let us know if you encounter issues and
we will release updates and corrections.

 If you have suggestions, bug fixes, corrections, or anything else you’d like to contribute to a
future edition, please contact us at icf@dragonforged.com . We are always interested in hearing
what would make this book better and are very excited to continue refining it.

 —Kyle Richter and Joe Keeley

 Prerequisites

 Every effort has been made to keep the examples and explanations simple and easy to digest;
however, this is to be considered an intermediate to advanced book. To be successful with it,
you should have a basic understanding of iOS development, Objective-C, and C. Familiarity of
the tools such as Xcode, Developer Portal, iTunes Connect, and Instruments is also assumed.
Refer to Programming in Objective-C, by Stephen G. Kochan, and Learning iOS Development, by
Maurice Sharp, Rod Strougo, and Erica Sadun, for basic Objective-C and iOS skills.

 What You’ll Need

 Although you can develop iOS apps in the iOS simulator, it is recommended that you have at
least one iOS device available for testing:

 ■ Apple iOS Developer Account: The latest version of the iOS developer tools including
Xcode and the iOS SDKs can be downloaded from Apple’s Developer Portal (http://
developer.apple.com/ios). To ship an app to the App Store or to install and test on a
personal device, you will also need a paid developer account at $99 per year.

 ■ Macintosh Computer: To develop for iOS and run Xcode, you will need a modern Mac
computer capable of running the latest release of OS X.

 ■ Internet Connection: Many features of iOS development require a constant Internet
connection for your Mac as well as for the device you are building against.

http://developer.apple.com/ios
http://developer.apple.com/ios

 How This Book Is Organized

 With few exceptions (Game Center and Core Data), each chapter stands on its own. The
book can be read cover to cover but any topic can be skipped to when you find a need for
that technology; we wrote it with the goal of being a quick reference for many common iOS
development tasks.

 Here is a brief overview of the chapters you will encounter:

 ■ Chapter 1 , “UIKit Dynamics”: iOS 7 introduced UI Kit Dynamics to add physics-like
animation and behaviors to UIViews. You will learn how to add dynamic animations,
physical properties, and behaviors to standard objects. Seven types of behaviors are
demonstrated in increasing difficulty from gravity to item properties.

 ■ Chapter 2 , “Core Location, MapKit, and Geofencing”: iOS 6 introduced new, Apple-
provided maps and map data. This chapter covers how to interact with Core Location to
determine the device’s location, how to display maps in an app, and how to customize
the map display with annotations, overlays, and callouts. It also covers how to set up
regional monitoring (or geofencing) to notify the app when the device has entered or
exited a region.

 ■ Chapter 3 , “Leaderboards”: Game Center leaderboards provide an easy way to add
social aspects to your iOS game or app. This chapter introduces a fully featured iPad game
called Whack-a-Cac, which walks the reader through adding leaderboard support. Users
will learn all the required steps necessary for implementing Game Center leaderboards, as
well as get a head start on implementing leaderboards with a custom interface.

 ■ Chapter 4 , “Achievements”: This chapter continues on the Whack-a-Cac game
introduced in Chapter 3 . You will learn how to implement Game Center achievements
in a fully featured iPad game. From working with iTunes Connect to displaying
achievement progress, this chapter provides all the information you need to quickly get
up and running with achievements.

 ■ Chapter 5 , “Getting Started with Address Book”: Integrating a user’s contact
information is a critical step for many modern projects. Address Book framework is one
of the oldest available on iOS; in this chapter you’ll learn how to interact with that
framework. You will learn how to use the people picker, how to access the raw address
book data, and how to modify and save that data.

 ■ Chapter 6 , “Working with Music Libraries”: This chapter covers how to access the
user’s music collection from a custom app, including how to see informational data
about the music in the collection, and how to select and play music from the collection.

 ■ Chapter 7 , “Working with and Parsing JSON”: JSON, or JavaScript Object Notation,
is a lightweight way to pass data back and forth between different computing platforms
and architectures. As such, it has become the preferred way for iOS client apps to
communicate complex sets of data with servers. This chapter describes how to create
JSON from existing objects, and how to parse JSON into iOS objects.

xxvHow This Book Is Organized

 ■ Chapter 8 , “Getting Started with iCloud”: This chapter explains how to get started
using iCloud, for syncing key-value stores and documents between devices. It walks
though setting up an app for iCloud, how to implement the key-value store and
document approaches, and how to recognize and resolve conflicts.

 ■ Chapter 9 , “Notifications”: Two types of notifications are supported by iOS: local
notifications, which function on the device with no network required, and remote
notifications, which require a server to send a push notification through Apple’s Push
Notification Service to the device over the network. This chapter explains the differences
between the two types of notifications, and demonstrates how to set them up and get
notifications working in an app.

 ■ Chapter 10 , “Bluetooth Networking with Game Kit”: This chapter will walk you
through creating a real-time Bluetooth-based chat client, enabling you to connect with
a friend within Bluetooth range and send text messages back and forth. You will learn
how to interact with the Bluetooth functionality of Game Kit, from finding peers to
connecting and transferring data.

 ■ Chapter 11 , “AirPrint”: An often underappreciated feature of the iOS, AirPrint enables
the user to print documents and media to any wireless-enabled AirPrint-compatible
printer. Learn how to quickly and effortlessly add AirPrint support to your apps. By the
end of this chapter you will be fully equipped to enable users to print views, images,
PDFs, and even rendered HTML.

 ■ Chapter 12 , “Core Data Primer”: Core Data can be a vast and overwhelming topic. This
chapter tries to put Core Data in context for the uninitiated, and explains when Core
Data might be a good solution for an app and when it might be overkill. It also explains
some of the basic concepts of Core Data in simple terminology.

 ■ Chapter 13 , “Getting Up and Running with Core Data”: This chapter demon-strates
how to set up an app to use Core Data, how to set up a Core Data data model, and how
to implement many of the most commonly used Core Data tools in an app. If you
want to start using Core Data without digging through a 500-page book, this chapter
is for you.

 ■ Chapter 14 , “Language Features”: Objective-C has been evolving since iOS was
introduced. This chapter covers some of the language and compiler-level changes that
have occurred, and explains how and why a developer would want to use them. It covers
the new literal syntaxes for things like numbers, array, and dictionaries; it also covers
blocks, ARC, property declarations, and some oldies but goodies including dot notation,
fast enumeration, and method swizzling.

 ■ Chapter 15 , “Integrating Twitter and Facebook Using Social Framework”: Social
integration is the future of computing and it is accepted that all apps have social features
built in. This chapter will walk you through adding support for Facebook and Twitter to
your app using the Social Framework. You will learn how to use the built-in composer
to create new Twitter and Facebook posts. You will also learn how to pull down feed
information from both services and how to parse and interact with that data. Finally,
using the frameworks to send messages from custom user interfaces is covered. By the

xxvi How This Book Is Organized

end of this chapter, you will have a strong background in Social Framework as well as
working with Twitter and Facebook to add social aspects to your apps.

 ■ Chapter 16 , “Working with Background Tasks”: Being able to perform tasks when
the app is not the foreground app was a big new feature introduced in iOS 4, and more
capabilities have been added since. This chapter explains how to perform tasks in the
background after an app has moved from the foreground, and how to perform specific
background activities allowed by iOS.

 ■ Chapter 17 , “Grand Central Dispatch for Performance”: Performing resource-intensive
activities on the main thread can make an app’s performance suffer with stutters and
lags. This chapter explains several techniques provided by Grand Central Dispatch for
doing the heavy lifting concurrently without affecting the performance of the main
thread.

 ■ Chapter 18 , “Using Keychain to Secure Data”: Securing user data is important and
an often-overlooked stage of app development. Even large public companies have been
called out in the news over the past few years for storing user credit card info and
passwords in plain text. This chapter provides an introduction to not only using the
Keychain to secure user data but developmental security as a whole. By the end of the
chapter, you will be able to use Keychain to secure any type of small data on users’
devices and provide them with peace of mind.

 ■ Chapter 19 , “Working with Images and Filters”: This chapter covers some basic image-
handling techniques, and then dives into some advanced Core Image techniques to
apply filters to images. The sample app provides a way to explore all the options that
Core Image provides and build filter chains interactively in real time.

 ■ Chapter 20 , “Collection Views”: Collection views, a powerful new API introduced
in iOS6, give the developer flexible tools for laying out scrollable, cell-based content.
In addition to new content layout options, collection views provide exciting new
animation capabilities, both for animating content in and out of a collection view, and
for switching between collection view layouts. The sample app demonstrates setting up
a basic collection view, a customized flow layout collection view, and a highly custom,
nonlinear collection view layout.

 ■ Chapter 21 , “Introduction to TextKit”: iOS 7 introduced TextKit as an easier-to-use
and greatly expanded update to Core Text. TextKit enables developers to provide rich
and interactive text formatting to their apps. Although TextKit is a very large subject,
this chapter provides the basic groundwork to accomplish several common tasks, from
adding text wrapping around an image to inline custom font attributes. By the end of
this chapter, you will have a strong background in TextKit and have the groundwork laid
to explore it more in depth.

 ■ Chapter 22 , “Gesture Recognizers”: This chapter explains how to make use of gesture
recognizers in an app. Rather than dealing with and interpreting touch data directly,
gesture recognizers provide a simple and clean way to recognize common gestures and
respond to them. In addition, custom gestures can be defined and recognized using
gesture recognizers.

xxviiHow This Book Is Organized

 ■ Chapter 23 , “Accessing Photo Libraries”: The iPhone has actually become a very
popular camera, as evidenced by the number of photos that people upload to sites such
as Flickr. This chapter explains how to access the user’s photo library, and handle photos
and videos in a custom app. The sample app demonstrates rebuilding the iOS 6 version
of Photos.app.

 ■ Chapter 24 , “Passbook and PassKit”: With iOS6, Apple introduced Passbook, a
standalone app that can store “passes,” or things like plane tickets, coupons, loyalty
cards, or concert tickets. This chapter explains how to set up passes, how to create and
distribute them, and how to interact with them in an app.

 ■ Chapter 25 , “Debugging and Instruments”: One of the most important aspects of
development is to be able to debug and profile your software. Rarely is this topic covered
even in a cursory fashion. This chapter will introduce you to debugging in Xcode and
performance analysis using Instruments. Starting with a brief history of computer bugs,
the chapter walks you through common debugging tips and tricks. Topics of breakpoints
and debugger commands are briefly covered, and the chapter concludes with a look into
profiling apps using the Time Profiler and memory analysis using Leaks. By the end of
this chapter, you will have a clear foundation on how to troubleshoot and debug iOS
apps on both the simulator and the device.

 About the Sample Code

 Each chapter of this book is designed to stand by itself; therefore, each chapter with the
exception of Chapter 25 , “Debugging and Instruments,” Chapter 12 , “Core Data Primer,” and
 Chapter 14 , “Language Features,” has its own sample project. Chapter 3 , “Leaderboards,” and
 Chapter 4 , “Achievements,” share a base sample project, but each expands on that base project
in unique ways. Each chapter provides a brief introduction to the sample project and walks the
reader through any complex sections of the sample project not relating directly to the material
in the chapter.

 Every effort has been made to create simple-to-understand sample code, which often results
in code that is otherwise not well optimized or not specifically the best way of approaching
a problem. In these circumstances the chapter denotes where things are being done
inappropriately for a real-world app. The sample projects are not designed to be standalone
or finished apps; they are designed to demonstrate the functionality being discussed in the
chapter. The sample projects are generic with intention; the reader should be able to focus
on the material in the chapter and not the unrelated sample code materials. A considerable
amount of work has been put into removing unnecessary components from the sample code
and condensing subjects into as few lines as possible.

 Many readers will be surprised to see that the sample code in the projects is not built using
Automatic Reference Counting (ARC); this is by design as well. It is easier to mentally remove
the memory management than to add it. The downloadable sample code is made available to
suit both tastes; copies of ARC and non-ARC sample code are bundled together. The sample
code is prefixed with “ICF” and most, but not all, sample projects are named after the
chapter title.

 When working with the Game Center chapters, the bundle ID is linked to a real app, which is
in our personal Apple account; this ensures that examples continue to work. Additionally, it
has the small additional benefit of populating multiple users’ data as developers interact with
the sample project. For chapters dealing with iCloud, Push Notifications, and Passbook, the
setup required for the apps is thoroughly described in the chapter, and must be completed
using a new App ID in the reader’s developer account in order to work.

 Getting the Sample Code

 You will be able to find the most up-to-date version of the source code at any moment
at https://github.com/dfsw/icf . The code is publicly available and open source. The code
is separated into two folders, one for ARC and one running non-ARC. Each chapter is
broken down into its own folder containing an Xcode project; there are no chapters with
multiple projects. We encourage readers to provide feedback on the source code and make
recommendations so that we can continue to refine and improve it long after this book has
gone to print.

https://github.com/dfsw/icf

 Installing Git and Working with GitHub

 Git is a version control system that has been growing in popularity for several years. To clone
and work with the code on GitHub, you will want to first install Git on your Mac. A current
installer for Git can be found at http://code.google.com/p/git-osx-installer . Additionally, there
are several GUI front ends for Git, even one written by GitHub, which might be more appealing
to developers who avoid command-line interfaces. If you do not want to install Git, GitHub
also allows for downloading the source files as a Zip.

 GitHub enables users to sign up for a free account at https://github.com/signup/free . After Git
has been installed, from the terminal’s command line $git clone git@github.com:dfsw/icf.git
will download a copy of the source code into the current working directory. You are welcome
to fork and open pull requests with the sample code projects.

http://code.google.com/p/git-osx-installer
https://github.com/signup/free
git@github.com:dfsw/icf.git

 Contacting the Authors

 If you have any comments or questions about this book, please drop us an e-mail message at
 icf@dragonforged.com , or on Twitter at @kylerichter and @jwkeeley.

 Acknowledgments

 This book could not have existed without a great deal of effort from far too many behind-
the-scenes people; although there are only two authors on the cover, dozens of people were
responsible for bringing this book to completion. We would like to thank Trina MacDonald
first and foremost; without her leadership and her driving us to meet deadlines, we would
never have been able to finish. The editors at Pearson have been exceptionally helpful; their
continual efforts show on every page, from catching our typos to pointing out technical
concerns. The dedicated work of Dave Wood, Olivia Basegio, Collin Ruffenach, Sheri Cain, Tom
Cirtin, Elaine Wiley, and Cheri Clark made the following pages possible.

 We would also like to thank Jordan Langille of Langille Design (http://jordanlangille.com) for
providing the designs for the Whack-a-Cac game featured in Chapters 3 and 4 . His efforts have
made the Game Center sample projects much more compelling.

 The considerable amount of time spent working on this book was shouldered not only by
us but also by our families and co-workers. We would like to thank everyone who surrounds
us in our daily lives for taking a considerable amount of work off of our plates, as well as
understanding the demands that a project like this brings.

 Finally, we would like to thank the community at large. All too often we consulted developer
forums, blog posts, and associates to ask questions or provide feedback. Without the hard
efforts of everyone involved in the iOS community, this book would not be nearly as complete.

http://jordanlangille.com

 About the Authors

 Kyle Richter is the founder of Dragon Forged Software, an award-winning iOS and Mac
Development Company, and co-founder of Empirical Development, a for-hire iOS shop. Kyle
began writing code in the early 1990s and has always been dedicated to the Mac platform. He
has written several books on iOS development, as well as articles on many popular developer
blogs and websites. He manages a team of more than 20 full-time iOS developers and runs
day-to-day operations at three development companies. Kyle travels the world speaking on
development and entrepreneurship; currently he calls Key West his home, where he spends his
time with his border collie Landis. He can be found on Twitter at @kylerichter.

 Joe Keeley is the CTO of Dragon Forged Software, and Project Lead at Empirical Development.
Joe works on Resolve and Slender, and has led a number of successful client projects to
completion. He has liked writing code since first keying on an Apple II, and has worked on a
wide variety of technology and systems projects in his career. Joe has presented several different
technical topics at iOS and Mac conferences around the U.S. Joe lives in Denver, Colorado,
with his wife and two daughters, and hopes to get back into competitive fencing again in his
spare time. He can be reached on Twitter at @jwkeeley.

This page intentionally left blank

 13
 Getting Up and Running

with Core Data

 At first glance, Core Data can look difficult and overwhelming. There are several books devoted solely
to Core Data, and the official Apple documentation is lengthy and challenging to get through since it
covers the entire breadth and depth of the topic. Most apps do not require all the features that Core
Data has to offer. The goal of this chapter is to get you up and running with the most common Core
Data features that apps need.

 This chapter describes how to set up a project to use Core Data, and illustrates how to implement
several common use cases with the sample app. It covers how to set up your data model, how to popu-
late some starting data, and how to display data in a table using a fetched results controller. This
chapter also demonstrates how to add, edit, and delete data, how to fetch data, and how to use predi-
cates to fetch specific data. With this knowledge, you will have a good foundation for implementing
Core Data quickly in your apps.

 Sample App

 The sample app for this chapter is called MyMovies. It is a Core Data–based app that will keep
track of all your physical media movies and, if you have loaned a movie to someone, who you
loaned it to and when (as shown in Figure 13.1).

 The sample app has three tabs: Movies, Friends, and Shared Movies. The Movies tab shows the
whole list of movies that the user has added and tracked in a table view. There are two sections
in the table view demonstrating how data can be segregated with a fetched results controller.
Users can add new movies from this tab, and can edit existing movies. The Friends tab lists the
friends set up to share movies with, shows which friends have borrowed movies, and allows the
user to add and edit friends. The Shared Movies tab displays which movies have currently been
shared with friends.

252 Chapter 13 Getting Up and Running with Core Data

 Starting a Core Data Project

 To start a new Core Data project, open Xcode and select File from the menu, New, and then
Project. Xcode will present some project template options to get you started (see Figure 13.2).

 The quickest method to start a Core Data project is to select the Master-Detail template. Click
Next to specify options for your new project, and then make sure that Use Core Data is selected
(see Figure 13.3). This ensures that your project has the Core Data plumbing built in.

 When Next is clicked, Xcode creates the project template. The project template
includes a “master” view controller, which includes a table view populated by an
 NSFetchedResultsController , a specialized controller that makes pairing Core Data with a
table view a snap. The project template includes a “detail” view to display a single data record.
In the sample app, the master and detail views have been renamed to fit the project.

 Note

 To add Core Data to an existing project quickly, create an empty template project with Core
Data support as described, and then copy the elements described in the following section,
“Core Data Environment,” into the existing project. Add a new managed object model file to the
project, and be sure to add the Core Data framework to the existing project as well.

 Figure 13.1 Sample App: Movies tab.

253Starting a Core Data Project

 Figure 13.2 Xcode new project template choices.

 Figure 13.3 Xcode new project options.

254 Chapter 13 Getting Up and Running with Core Data

 Core Data Environment

 The project template sets up the Core Data environment for the project in the class that imple-
ments the UIApplicationDelegate protocol; in the sample app this is ICFAppDelegate . The
project template uses a lazy-loading pattern for each of the properties needed in the Core Data
environment, so each is loaded when needed. For more information about the Core Data envi-
ronment, refer to Chapter 12 , “Core Data Primer.”

 The process of loading the Core Data environment is kicked off the first time the managed
object context is referenced in the app. The managed object context accessor method will check
to see whether the managed object context instance variable has a reference. If not, it will get
the persistent store coordinator and instantiate a new managed object context with it, assign
the new instance to the instance variable, and return the instance variable.

 - (NSManagedObjectContext *)managedObjectContext
 {
 if (__managedObjectContext != nil)
 {
 return __managedObjectContext ;
 }

 NSPersistentStoreCoordinator *coordinator =
 [self persistentStoreCoordinator];

 if (coordinator != nil)
 {
 __managedObjectContext =
 [[NSManagedObjectContext alloc] init];

 [__managedObjectContext
 setPersistentStoreCoordinator :coordinator];
 }
 return __managedObjectContext ;
 }

 The persistent store coordinator is the class that Core Data uses to manage the persis-
tent stores (or files) where the data for the app is stored. To instantiate it, an instance of
 NSManagedObjectModel is needed so that the persistent store coordinator knows what object
model the persistent stores are implementing. The persistent store coordinator also needs a
URL for each persistent store to be added; if the file does not exist, Core Data will create it. If
the persistent store doesn’t match the managed object model (Core Data uses a hash of the
managed object model to uniquely identify it, which is kept for comparison in the persistent
store), then the template logic will log an error and abort. In a shipping application, logic
would be added to properly handle errors with a migration from the old data model to the new
one; in development having the app abort can be a useful reminder when the model changes
to retest with a clean installation of the app.

255Starting a Core Data Project

 - (NSPersistentStoreCoordinator *)persistentStoreCoordinator
 {
 if (__persistentStoreCoordinator != nil)
 {
 return __persistentStoreCoordinator ;
 }

 NSURL *storeURL =
 [[self applicationDocumentsDirectory]
 URLByAppendingPathComponent : @"MyMovies.sqlite"];

 NSError *error = nil ;
 __persistentStoreCoordinator =
 [[NSPersistentStoreCoordinator alloc]
 initWithManagedObjectModel :[self managedObjectModel]];

 if (![__persistentStoreCoordinator
 addPersistentStoreWithType : NSSQLiteStoreType
 configuration : nil URL :storeURL options : nil
 error :&error])
 {
 NSLog (@"Unresolved error %@, %@" , error,
 [error userInfo]);

 abort ();
 }

 return __persistentStoreCoordinator ;
 }

 The managed object model is loaded from the app’s main bundle. Xcode will give the managed
object model the same name as your project.

 - (NSManagedObjectModel *)managedObjectModel
 {
 if (__managedObjectModel != nil)
 {
 return __managedObjectModel ;
 }

 NSURL *modelURL =
 [[NSBundle mainBundle] URLForResource : @"MyMovies"
 withExtension : @"momd"];

 __managedObjectModel =
 [[NSManagedObjectModel alloc]
 initWithContentsOfURL :modelURL];

 return __managedObjectModel ;
 }

256 Chapter 13 Getting Up and Running with Core Data

 Building Your Managed Object Model

 With the project template, Xcode will create a data model file with the same name as your
project. In the sample project this file is called MyMovies.xdatamodeld . To edit your data
model, click the data model file, and Xcode will present the data model editor (see Figure 13.4).

 Figure 13.4 Xcode data model editor, Table style.

 Xcode has two styles for the data model editor: Table and Graph. The Table style presents the
entities in your data model in a list on the left. Selecting an entity will display and allow you to
edit the attributes, relationships, and fetched properties for that entity.

 To change to Graph style, click the Editor Style Graph button in the lower-right corner of the
data model editor (see Figure 13.5). There will still be a list of entities on the left of the data
model editor, but the main portion of the editor will present an entity relationship diagram of
your data model. Each box presented in the diagram represents an entity, with the name of the
entity at the top, the attributes listed in the middle, and any relationships listed in the bottom.
The graph will have arrows connecting entities that have relationships established, with arrows
indicating the cardinality of the relationship.

 When working with your data model, it is often convenient to have more working space avail-
able and to have access to additional detail for selected items. Use Xcode’s View options in the
upper-right corner of the window to hide the Navigator panel and display the Utilities panel
(see Figure 13.5).

257Building Your Managed Object Model

 Creating an Entity

 To create an entity, click the Add Entity button. A new entity will be added to the list of enti-
ties, and if the editor is in Graph style, a new entity box will be added to the view. Xcode will
highlight the name of the entity and allow you to type in the desired name for the entity. The
name of the entity can be changed at any time by just clicking twice on the entity name in
the list of entities, or by selecting the desired entity and editing the entity name in the Utilities
panel.

 Core Data supports entity inheritance. For any entity, you can specify a parent entity from
which your entity will inherit attributes, relationships, validations, and custom methods. To
do that, ensure that the entity to be inherited from has been created, and then select the child
entity and choose the desired parent entity in the Utilities panel.

 Note

 If you are using SQLite as your persistent store, Core Data implements entity inheritance by
creating one table for the parent entity and all child entities, with a superset of all their attri-
butes. This can obviously have unintended performance consequences if you have a lot of data
in the entities, so use this feature wisely.

 Adding Attributes

 To add attributes to an entity, first select the entity in either the graph or the list of entities.
Then click the Add Attribute button in the lower part of the editor, just to the left of the Editor
Style buttons. Xcode will add an attribute called attribute to the entity. Select a Type for the

 Figure 13.5 Xcode data model editor, Graph style.

258 Chapter 13 Getting Up and Running with Core Data

attribute. (See Table 13.1 for supported data types.) Note that Core Data treats all attributes as
Objective-C objects, so if Integer 32 is the selected data type, for example, Core Data will treat
the attribute as an NSNumber .

 One thing to note is that Core Data will automatically give each instance a unique object ID,
called objectID , which it uses internally to manage storage and relationships. You can also
add a unique ID or another candidate key to the entity and add an index to it for quick access,
but note that Core Data will manage relationships with the generated object ID.

 NSManagedObjects also have a method called description ; if you want to have a
description attribute, modify the name slightly to avoid conflicts. In the sample app, for
example, the Movie entity has a movieDescription attribute.

 Table 13.1 Core Data Supported Data Types

 Data Types Objective-C Storage

 Integer 16 NSNumber

 Integer 32 NSNumber

 Integer 64 NSNumber

 Decimal NSNumber

 Double NSNumber

 Float NSNumber

 String NSString

 Boolean NSNumber

 Date NSDate

 Binary Data NSData

 Transformable Uses value transformer

 Establishing Relationships

 Having relationships between objects can be a very powerful technique to model the real world
in an app. Core Data supports one-to-one and one-to-many relationships. In the sample app,
a one-to-many relationship between friends and movies is established. Since a friend might
borrow more than one movie at a time, that side of the relationship is “many,” but a movie
can be lent to only one friend at a time, so that side of the relationship is “one.”

 To add a relationship between entities, select one of the entities, and then Ctrl-click and drag
to the destination entity. Alternatively, click and hold the Add Attribute button, and select Add
Relationship from the menu that appears. Xcode will create a relationship to the destination
entity and will call it “relationship.” In the Utilities panel, select the Data Model inspector, and
change the name of the relationship. In the Data Model inspector, you can do the following:

259Building Your Managed Object Model

 ■ Indicate whether the relationship is transient.

 ■ Specify whether the relationship is optional or required with the Optional check box.

 ■ Specify whether the relationship is ordered.

 ■ Establish an inverse relationship. To do this, create and name the inverse relationship
first, and then select it from the drop-down.

 ■ Specify the cardinality of the relationship by checking or unchecking the Plural check
box. If checked, it indicates a to-many relationship.

 ■ Specify minimum and maximum counts for a relationship.

 ■ Set up the rule for Core Data to follow for the relationship when the object is deleted.
Choices are No Action (no additional action taken on delete), Nullify (relationship set to
 nil), Cascade (objects on the other side of the relationship are deleted too), and Deny
(error issued if relationships exist).

 Custom Managed Object Subclasses

 A custom NSManagedObject subclass can be useful if you have custom logic for your model
object, or if you would like to be able to use dot syntax for your model object properties and
have the compiler validate them.

 Xcode has a menu option to automatically create a subclass for you. To use it, ensure that you
have completed setup of your entity in the data model editor. Select your entity (or multiple
entities) in the data model editor, select Editor from the Xcode menu, and then select Create
NSManagedObject Subclass. Xcode will ask where you want to save the generated class files.
Specify a location and click Create, and Xcode will generate the header and implementation
files for each entity you specified. Xcode will name each class with the class prefix specified for
your project concatenated with the name of the entity.

 In the generated header file, Xcode will create a property for each attribute in the entity. Note
that Xcode will also create a property for each relationship specified for the entity. If the rela-
tionship is to-one, Xcode will create an NSManagedObject property (or NSManagedObject
subclass if the destination entity is a custom subclass). If the relationship is to-many, Xcode
will create an NSSet property.

 In the generated implementation file, Xcode will create @dynamic instructions for each entity,
rather than @synthesize . This is because Core Data dynamically handles accessors for Core
Data managed attributes, and does not need the compiler to build the accessor methods.

 Note

 There is a project called mogenerator that will generate two classes per entity: one for the
attribute accessors and one for custom logic. That way, you can regenerate classes easily
when making model changes without overwriting your custom logic. Mogenerator is available at
 http://rentzsch.github.com/mogenerator/ .

http://rentzsch.github.com/mogenerator/

260 Chapter 13 Getting Up and Running with Core Data

 Setting Up Default Data

 When a Core Data project is first set up, there is no data in it. Although this might work for
some use cases, frequently it is a requirement to have some data prepopulated in the app for
the first run. In the sample app there is a custom data setup class called ICFDataStarter ,
which illustrates how to populate Core Data with some initial data. A #define variable is set
up in MyMovies-Prefix.pch called FIRSTRUN , which can be uncommented to have the app
run the logic in ICFDataStarter .

 Inserting New Managed Objects

 To create a new instance of a managed object for data that does not yet exist in your model, a
reference to the managed object context is needed. The sample app uses a constant to refer to
the ICFAppDelegate instance, which has a property defined for the managed object context:

 NSManagedObjectContext *moc =
 [kAppDelegate managedObjectContext];

 To insert data, Core Data needs to know what entity the new data is for. Core Data has a class
called NSEntityDescription that provides information about entities. Create a new instance
using NSEntityDescription ’s class method:

 NSManagedObject *newMovie1 =
 [NSEntityDescription insertNewObjectForEntityForName : @"Movie"
 inManagedObjectContext :moc];

 After an instance is available, populate the attributes with data:

 [newMovie1 setValue : @"The Matrix" forKey : @"title"];
 [newMovie1 setValue : @"1999" forKey : @"year"];

 [newMovie1 setValue : @"Take the blue pill."
 forKey : @"movieDescription"];

 [newMovie1 setValue : @NO forKey : @"lent"];
 [newMovie1 setValue : nil forKey : @"lentOn"];
 [newMovie1 setValue : @20 forKey : @"timesWatched"];

 Core Data uses key-value coding to handle setting attributes. If an attribute name is incorrect,
it will fail at runtime. To get compile-time checking of attribute assignments, create a custom
 NSManagedObject subclass and use the property accessors for each attribute directly.

 The managed object context acts as a working area for changes, so the sample app sets up more
initial data:

 NSManagedObject *newFriend1 =
 [NSEntityDescription insertNewObjectForEntityForName : @"Friend"
 inManagedObjectContext :moc];

261Setting Up Default Data

 [newFriend1 setValue : @"Joe" forKey : @"friendName"];
 [newFriend1 setValue : @" joe@dragonforged.com " forKey : @"email"];

 The last step after setting up all the initial data is to save the managed object context.

 NSError *mocSaveError = nil ;

 if ([moc save :&mocSaveError])
 {
 NSLog (@"Save completed successfully.");
 } else
 {
 NSLog (@"Save did not complete successfully. Error: %@" ,
 [mocSaveError localizedDescription]);
 }

 After the managed object context is saved, Core Data will persist the data in the data store. For
this instance of the app, the data will continue to be available through shutdowns and restarts.
If the app is removed from the simulator or device, the data will no longer be available. One
technique to populate data for first run is to copy the data store from the app’s storage direc-
tory back into the app bundle. This will ensure that the default set of data is copied into the
app’s directory on first launch and is available to the app.

 Other Default Data Setup Techniques

 There are two other default data setup techniques that are commonly used: data model version
migrations and loading data from a Web service or an API.

 Core Data managed object models are versioned. Core Data understands the relationship
between the managed object model and the current data store. If the managed object model
changes and is no longer compatible with the data store (for example, if an attribute is added
to an entity), Core Data will not be able to initiate the persistent store object using the exist-
ing data store and new managed object model. In that case, a migration is required to update
the existing data store to match the updated managed object model. In many cases Core Data
can perform the migration automatically by passing a dictionary of options when instantiating
the persistent store; in some cases, additional steps need to be taken to perform the migration.
Migrations are beyond the scope of this chapter, but be aware that migrations can be used and
are recommended by Apple to do data setup.

 The other approach is to pull data from a Web service or an API. This approach is most applica-
ble when an app needs to maintain a local copy of a subset of data on a Web server, and Web
calls need to be written for the app to pull data from the API in the course of normal operation.
To set up the app’s initial data, the Web calls can be run in a special state to pull all needed
initial data and save it in Core Data.

262 Chapter 13 Getting Up and Running with Core Data

 Displaying Your Managed Objects

 To display or use existing entity data in an app, managed objects need to be fetched from the
managed object context. Fetching is analogous to running a query in a relational database,
in that you can specify what entity you want to fetch, what criteria you want your results to
match, and how you want your results sorted.

 Creating Your Fetch Request

 The object used to fetch managed objects in Core Data is called NSFetchRequest . Refer to
 ICFFriendChooserViewController in the sample app. This view controller displays the
friends set up in Core Data and allows the user to select a friend to lend a movie to (see
 Figure 13.6).

 Figure 13.6 Sample App: Friend Chooser.

 To get the list of friends to display, the view controller performs a standard fetch request when
the view controller has loaded. The first step is to create an instance of NSFetchRequest and
associate the entity to be fetched with the fetch request:

 NSManagedObjectContext *moc = kAppDelegate . managedObjectContext ;

 NSFetchRequest *fetchReq = [[NSFetchRequest alloc] init];

 NSEntityDescription *entity =

263Displaying Your Managed Objects

 [NSEntityDescription entityForName : @"Friend"
 inManagedObjectContext :moc];

 [fetchReq setEntity :entity];

 The next step is to tell the fetch request how to sort the resulting managed objects. To do this,
we associate a sort descriptor with the fetch request, specifying the attribute name to sort by:

 NSSortDescriptor *sortDescriptor =
 [[NSSortDescriptor alloc] initWithKey : @"friendName"
 ascending : YES];

 NSArray *sortDescriptors =
 [NSArray arrayWithObjects :sortDescriptor, nil];

 [fetchReq setSortDescriptors :sortDescriptors];

 Since the friend chooser should show all the available friends to choose from, it is not neces-
sary to specify any matching criteria. All that remains is to execute the fetch:

 NSError *error = nil ;

 self . friendList = [moc executeFetchRequest :fetchReq
 error :&error];

 if (error)
 {
 NSString *errorDesc =
 [error localizedDescription];

 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle : @"Error fetching friends"
 message :errorDesc
 delegate : nil
 cancelButtonTitle : @"Dismiss"
 otherButtonTitles : nil];
 [alert show];
 }

 To execute a fetch, create an instance of NSError and set it to nil . Then have the managed
object context execute the fetch request that has just been constructed. If an error is encoun-
tered, the managed object context will return the error to the instance you just created. The
sample app will display the error in an instance of UIAlertView . If no error is encountered,
the results will be returned as an NSArray of NSManagedObjects . The view controller will store
those results in an instance variable to be displayed in a table view.

264 Chapter 13 Getting Up and Running with Core Data

 Fetching by Object ID

 When only one specific managed object needs to be fetched, Core Data provides a way to
quickly retrieve that managed object without constructing a fetch request. To use this method,
you must have the NSManagedObjectID for the managed object.

 To get the NSManagedObjectID for a managed object, you must already have fetched or
created the managed object. Refer to ICFMovieListViewController in the sample app, in the
 prepareForSegue:sender: method. In this case, the user has selected a movie from the list,
and the view controller is about to segue from the list to the detail view for the selected movie.
To inform the detail view controller which movie to display, the objectID for the selected
movie is set as a property on the ICFMovieDisplayViewController :

 if ([[segue identifier] isEqualToString : @"showDetail"])
 {

 NSIndexPath *indexPath =
 [self . tableView indexPathForSelectedRow];

 ICFMovie *movie =
 [[self fetchedResultsController]
 objectAtIndexPath :indexPath];

 ICFMovieDisplayViewController *movieDispVC =
 (ICFMovieDisplayViewController *)
 [segue destinationViewController];

 [movieDispVC setMovieDetailID :[movie objectID]];
 }

 When the ICFMovieDisplayViewController is loaded, it uses a method on the managed
object context to load a managed object using the objectID :

 ICFMovie *movie = (ICFMovie *)[kAppDelegate .managedObjectContext
 objectWithID : self . movieDetailID];

 [self configureViewForMovie :movie];

 When this is loaded, the movie is available to the view controller to configure the view using
the movie data (see Figure 13.7).

 It is certainly possible to just pass the managed object from one view controller to the next
with no problems, instead of passing the objectID and loading the managed object in the
destination view controller. However, there are cases when using the objectID is highly prefer-
able to using the managed object:

 ■ If the managed object has been fetched or created on a different thread than the
destination view controller will use to process and display the managed object—this
approach must be used since managed objects are not thread safe!

265Displaying Your Managed Objects

 ■ If a background thread might update the managed object in another managed object
context between fetching and displaying—this will avoid possible issues with displaying
the most up-to-date changes.

 Figure 13.7 Sample App: Movie Display view.

 Displaying Your Object Data

 After managed objects have been fetched, accessing and displaying data from them is
straightforward. For any managed object, using the key-value approach will work to retrieve
attribute values. As an example, refer to the configureCell:atIndexPath method in
 ICFFriendsViewController in the sample app. This code will populate the table cell’s text
label and detail text label.

 NSManagedObject *object =
 [self . fetchedResultsController objectAtIndexPath :indexPath];

 cell. textLabel . text = [object valueForKey : @"friendName"];

 NSInteger numShares = [[object valueForKey : @"lentMovies"] count];

 NSString *subtitle = @"" ;

 switch (numShares)

266 Chapter 13 Getting Up and Running with Core Data

 {
 case 0 :
 subtitle = @"Not borrowing any movies." ;
 break ;

 case 1 :
 subtitle = @"Borrowing 1 movie." ;
 break ;

 default :
 subtitle =
 [NSString stringWithFormat : @"Borrowing %d movies." ,
 numShares];

 break ;
 }

 cell. detailTextLabel . text = subtitle;

 To get the attribute values from the managed object, call valueForKey: and specify the attri-
bute name. If the attribute name is specified incorrectly, the app will fail at runtime.

 For managed object subclasses, the attribute values are also accessible by calling the property on
the managed object subclass with the attribute name. Refer to the configureViewForMovie:
method in ICFMovieDisplayViewController in the sample app.

 - (void)configureViewForMovie:(ICFMovie *)movie

 {
 NSString *movieTitleYear = [movie yearAndTitle];

 [self . movieTitleAndYearLabel
 setText :movieTitleYear];

 [self . movieDescription setText :[movie movieDescription]];

 BOOL movieLent = [[movie lent] boolValue];

 NSString *movieShared = @"Not Shared" ;
 if (movieLent)
 {
 NSManagedObject *friend =
 [movie valueForKey : @"lentToFriend"];

 NSDateFormatter *dateFormatter =
 [[NSDateFormatter alloc] init];

 [dateFormatter setDateStyle : NSDateFormatterMediumStyle];

267Displaying Your Managed Objects

 NSString *sharedDateTxt =
 [dateFormatter stringFromDate :[movie lentOn]];

 movieShared =
 [NSString stringWithFormat : @"Shared with %@ on %@" ,
 [friend valueForKey : @"friendName"],sharedDateTxt];
 }

 [self . movieSharedInfoLabel setText :msh];
 }

 If the property-based approach to get attribute values from managed object subclasses is used,
errors will be caught at compile time.

 Using Predicates

 Predicates can be used to narrow down your fetch results to data that match your specific crite-
ria. They are analogous to a where clause in an SQL statement, but they can be used to filter
elements from a collection (like an NSArray) as well as a fetch request from Core Data.
To see how a predicate is applied to a fetch request, refer to method fetchedResults
Controller in ICFSharedMoviesViewController . This method lazy loads and sets up an
 NSFetchedResultsController , which helps a table view interact with the results of a fetch
request (this is described in detail in the next section). Setting up a predicate is simple, for
example:

 NSPredicate *predicate =
 [NSPredicate predicateWithFormat : @"lent == %@" , @YES];

 In the format string, predicates can be constructed with attribute names, comparison operators,
Boolean operators, aggregate operators, and substitution expressions. A comma-separated list of
expressions will be substituted in the order of the substitution expressions in the format string.
Dot notation can be used to specify relationships in the predicate format string. Predicates
support a large variety of operators and arguments, as shown in Table 13.2 .

 Table 13.2 Core Data Predicate Supported Operators and Arguments

 Type Operators and Arguments

 Basic Comparisons = , == , >= , => , <= , =< , > , < , != , <> , BETWEEN {low,high}

 Boolean AND , && OR , || NOT , !

 String BEGINSWITH , CONTAINS , ENDSWITH , LIKE , MATCHES

 Aggregate ANY , SOME , ALL , NONE , IN

 Literals FALSE , NO , TRUE , YES , NULL , NIL , SELF . Core Data also supports
string and numeric literals.

268 Chapter 13 Getting Up and Running with Core Data

 Tell the fetch request to use the predicate:

 [fetchRequest setPredicate :predicate];

 Now the fetch request will narrow the returned result set of managed objects to match the
criteria specified in the predicate (see Figure 13.8).

 Figure 13.8 Sample App: Shared Movies tab.

 Introducing the Fetched Results Controller

 A fetched results controller (NSFetchedResultsController) is a very effective liaison between
Core Data and a UITableView . The fetched results controller provides a way to set up a fetch
request so that the results are returned in sections and rows, accessible by index paths. In addi-
tion, the fetched results controller can listen to changes in Core Data and update the table
accordingly using delegate methods.

 In the sample app, refer to ICFMovieListViewController for a detailed example of a fetched
results controller in action (see Figure 13.9).

 Preparing the Fetched Results Controller

 When the “master” view controller is set up using Xcode’s Master Detail template, Xcode
creates a property for the fetched results controller, and overrides the accessor method

269Introducing the Fetched Results Controller

(fetchedResultsController) to lazy load or initialize the fetched results controller the first
time it is requested. First the method checks to see whether the fetched results controller has
already been initialized:

 if (__fetchedResultsController != nil)
 {
 return __fetchedResultsController ;
 }

 Figure 13.9 Sample App: Movie list view controller.

 If the fetched results controller is already set up, it is returned. Otherwise, a new fetched results
controller is set up, starting with a fetch request:

 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

 The fetch request needs to be associated with an entity from the managed object model, and a
managed object context:

 NSManagedObjectContext *moc = kAppDelegate . managedObjectContext ;

 NSEntityDescription *entity =
 [NSEntityDescription entityForName : @"Movie"
 inManagedObjectContext :moc];

 [fetchRequest setEntity :entity];

270 Chapter 13 Getting Up and Running with Core Data

 A batch size can be set up to prevent the fetch request from fetching too many records at once:

 [fetchRequest setFetchBatchSize : 20];

 Next, the sort order is established for the fetch request using NSSortDescriptor instances. An
important point to note is that the attribute used for sections needs to be the first in the sort
order so that the records can be correctly divided into sections. The sort order is determined by
the order of the sort descriptors in the array of sort descriptors attached to the fetch request.

 NSSortDescriptor *sortDescriptor =
 [[NSSortDescriptor alloc] initWithKey : @"title"
 ascending : YES];

 NSSortDescriptor *sharedSortDescriptor =
 [[NSSortDescriptor alloc] initWithKey : @"lent" ascending : NO];

 NSArray *sortDescriptors = [NSArray arrayWithObjects :
 sharedSortDescriptor,sortDescriptor,
 nil];

 [fetchRequest setSortDescriptors :sortDescriptors];

 After the fetch request is ready, the fetched results controller can be initialized. It requires a
fetch request, a managed object context, a key path or an attribute name to be used for the
table view sections, and a name for a cache (if nil is passed, no caching is done). The fetched
results controller can specify a delegate that will respond to any Core Data changes. When this
is complete, the fetched results controller is assigned to the view controller’s property:

 NSFetchedResultsController *aFetchedResultsController =
 [[NSFetchedResultsController alloc]
 initWithFetchRequest :fetchRequest
 managedObjectContext :moc
 sectionNameKeyPath : @"lent"
 cacheName : nil];

 aFetchedResultsController.delegate = self ;
 self . fetchedResultsController = aFetchedResultsController;

 Now that the fetched results controller has been prepared, the fetch can be executed to obtain
a result set the table view can display, and the fetched results controller can be returned to the
caller:

 NSError *error = nil ;
 if (![self . fetchedResultsController performFetch :&error])
 {
 NSLog (@"Unresolved error %@, %@" , error, [error userInfo]);
 abort ();
 }

 return __fetchedResultsController ;

271Introducing the Fetched Results Controller

 Integrating Table View and Fetched Results Controller

 Integrating the table view and fetched results controller is just a matter of updating the table
view’s datasource and delegate methods to use information from the fetched results controller.
In ICFMovieListViewController , the fetched results controller tells the table view how many
sections it has:

 - (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
 {
 return [[self . fetchedResultsController sections] count];
 }

 The fetched results controller tells the table view how many rows are in each section, using the
 NSFetchedResultsSectionInfo protocol:

 - (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
 {
 id < NSFetchedResultsSectionInfo > sectionInfo =
 [[self . fetchedResultsController sections]
 objectAtIndex :section];

 return [sectionInfo numberOfObjects];
 }

 The fetched results controller provides section titles, which are the values of the attribute speci-
fied as the section name. Since the sample app is using a Boolean attribute for the sections, the
values that the fetched results controller returns for section titles are not user-friendly titles: 0
and 1 . The sample app looks at the titles from the fetched results controller and returns more
helpful titles: Shared instead of 1 and Not Shared instead of 0 .

 - (NSString *)tableView:(UITableView *)tableView
 titleForHeaderInSection:(NSInteger)section
 {
 id < NSFetchedResultsSectionInfo > sectionInfo =
 [[self . fetchedResultsController sections]
 objectAtIndex :section];

 if ([[sectionInfo indexTitle] isEqualToString : @"1"])
 {
 return @"Shared" ;
 }
 else
 {
 return @"Not Shared" ;
 }
 }

272 Chapter 13 Getting Up and Running with Core Data

 To populate the table cells, the sample app dequeues a reusable cell, and then calls the
configureView: method, passing the indexPath for the cell:

 - (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
 {
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier : @"Cell"];

 [self configureCell :cell atIndexPath :indexPath];

 return cell;
 }

 The fetched results controller knows which movie should be displayed at each index path,
so the sample app can get the correct movie to display by calling the objectAtIndexPath:
method on the fetched results controller. Then, it is simple to update the cell with data from
the movie instance.

 - (void)configureCell:(UITableViewCell *)cell
 atIndexPath:(NSIndexPath *)indexPath
 {
 ICFMovie *movie =
 [self . fetchedResultsController objectAtIndexPath :indexPath];

 cell. textLabel . text = [movie cellTitle];

 cell. detailTextLabel . text = [movie movieDescription];
 }

 The last table-view integration detail would typically be handling table cell selection in the
 tableView:didSelectRowAtIndexPath: method. In this case, no integration in that method
is needed since selection is handled by storyboard segue. In the prepareForSegue:sender:
method, selection of a table cell is handled with an identifier called showDetail :

 if ([[segue identifier] isEqualToString : @"showDetail"])
 {
 NSIndexPath *indexPath =
 [self . tableView indexPathForSelectedRow];

 ICFMovie *movie =
 [[self fetchedResultsController]
 objectAtIndexPath :indexPath];

 ICFMovieDisplayViewController *movieDisplayVC =
 (ICFMovieDisplayViewController *)
 [segue destinationViewController];

 [movieDisplayVC setMovieDetailID :[movie objectID]];
 }

273Introducing the Fetched Results Controller

 This method gets the index path of the selected row from the table view, and then gets the
movie instance from the fetched results controller using the index path. The method then
sets the movieDetailID of the ICFMovieDisplayViewController instance with the movie
instance’s objectID .

 Responding to Core Data Changes

 For the fetched results controller to respond to Core Data changes and update the table view,
methods from the NSFetchedResultsControllerDelegate protocol need to be implemented.
First the view controller needs to declare that it will implement the delegate methods:

 @interface ICFMovieListViewController : UITableViewController
 <NSFetchedResultsControllerDelegate>

 The fetched results controller delegate will be notified when content will be changed, giving
the delegate the opportunity to animate the changes in the table view. Calling the beginUp-
dates method on the table view tells it that all updates until endUpdates is called should be
animated simultaneously.

 - (void)controllerWillChangeContent:
 (NSFetchedResultsController *)controller
 {
 [self .tableView beginUpdates];
 }

 There are two delegate methods that might be called based on data changes. One method will
tell the delegate that changes occurred that affect the table-view sections; the other will tell the
delegate that the changes affect objects at specified index paths, so the table view will need to
update the associated rows. Because the data changes are expressed by type, the delegate will be
notified if the change is an insert, a delete, a move, or an update, so a typical pattern is to build
a switch statement to perform the correct action by change type. For sections, the sample app
will only make changes that can insert or delete a section (if a section name is changed, that
might trigger a case in which a section might move and be updated as well).

 - (void)controller:(NSFetchedResultsController *)controller
 didChangeSection:(id < NSFetchedResultsSectionInfo >)sectionInfo
 atIndex:(NSUInteger)sectionIndex
 forChangeType:(NSFetchedResultsChangeType)type
 {
 switch (type)
 {
 case NSFetchedResultsChangeInsert :
 ...
 break ;

 case NSFetchedResultsChangeDelete :
 ...
 break ;
 }
 }

274 Chapter 13 Getting Up and Running with Core Data

 Table views have a convenient method to insert new sections, and the delegate method receives
all the necessary information to insert new sections:

 [self. tableView
 insertSections:[NSIndexSet indexSetWithIndex:sectionIndex]
 withRowAnimation:UITableViewRowAnimationFade];

 Removing sections is just as convenient:

 [self. tableView
 deleteSections:[NSIndexSet indexSetWithIndex:sectionIndex]
 withRowAnimation:UITableViewRowAnimationFade];

 For object changes, the delegate will be informed of the change type, the object that changed,
the current index path for the object, and a “new” index path if the object is being inserted or
moved. Using switch logic to respond by change type works for this method as well.

 - (void)controller:(NSFetchedResultsController *)controller
 didChangeObject:(id)anObject
 atIndexPath:(NSIndexPath *)indexPath
 forChangeType:(NSFetchedResultsChangeType)type
 newIndexPath:(NSIndexPath *)newIndexPath
 {
 UITableView *tableView = self . tableView ;

 switch (type)
 {
 case NSFetchedResultsChangeInsert :
 ...
 break ;

 case NSFetchedResultsChangeDelete :
 ...
 break ;

 case NSFetchedResultsChangeUpdate :
 ...
 break ;

 case NSFetchedResultsChangeMove :
 ...
 break ;
 }
 }

 Table views have convenience methods to insert rows by index path. Note that the newIndex-
Path is the correct index path to use when inserting a row for an inserted object.

275Adding, Editing, and Removing Managed Objects

 [tableView
 insertRowsAtIndexPaths:[NSArray arrayWithObject:newIndexPath]
 withRowAnimation:UITableViewRowAnimationFade];

 To delete a row, use the indexPath passed to the delegate method.

 [tableView
 deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];

 To update a row, call the configureCell:atIndexPath: method for the current indexPath .
This is the same configure method called from the table view delegate’s tableView:cellFor
RowAtIndexPath: method.

 [self configureCell :[tableView cellForRowAtIndexPath :indexPath]
 atIndexPath :indexPath];

 To move a row, delete the row for the current indexPath and insert a row for the
 newIndexPath .

 [tableView
 deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];

 [tableView
 insertRowsAtIndexPaths:[NSArray arrayWithObject:newIndexPath]
 withRowAnimation:UITableViewRowAnimationFade];

 The fetched results controller delegate will be notified when the content changes are complete,
so the delegate can tell the table view there will be no more animated changes by calling the
 endUpdates method. After that method is called, the table view will animate the accumulated
changes in the user interface.

 - (void)controllerDidChangeContent:
 (NSFetchedResultsController *)controller
 {
 [self .tableView endUpdates];
 }

 Adding, Editing, and Removing Managed Objects

 Although it is useful to be able to fetch and display data, apps often need to add new data, edit
existing data, and remove unneeded data at the user’s request.

 Inserting a New Managed Object

 In the sample app, view the Movies tab. To insert a new movie, the user can tap the
Add button in the navigation bar. The Add button is wired to perform a segue to the

276 Chapter 13 Getting Up and Running with Core Data

 ICFMovieEditViewController . In the segue logic, a new movie managed object is inserted
into Core Data, and the new movie’s object ID is passed to the edit movie view controller.
This approach is used in the sample app to prevent having logic in the edit view controller to
handle both creating new managed objects and editing existing managed objects; however, it
would be perfectly acceptable to create the new movie managed object in the edit view control-
ler if that makes more sense in a different app.

 To create a new instance of a movie managed object, a reference to the managed object context
is needed.

 NSManagedObjectContext *moc =
 [kAppDelegate managedObjectContext];

 To insert data, Core Data needs to know what entity the new data is for. Core Data has a class
called NSEntityDescription that provides information about entities. Create a new instance
using NSEntityDescription ’s class method:

 ICFMovie *newMovie = [NSEntityDescription
 insertNewObjectForEntityForName: @"Movie"
 inManagedObjectContext:moc];

 Populate the new movie managed object’s attributes with data:

 [newMovie setTitle : @"New Movie"];
 [newMovie setYear : @"2012"];
 [newMovie setMovieDescription : @"New movie description."];
 [newMovie setLent : @NO];
 [newMovie setLentOn : nil];
 [newMovie setTimesWatched: @0];

 Prepare an NSError variable to capture any potential errors, and save the managed object
context.

 NSError *mocSaveError = nil ;

 if (![moc save :&mocSaveError])
 {
 NSLog (@"Save did not complete successfully. Error: %@" ,
 [mocSaveError localizedDescription]);
 }

 After the managed object context has been successfully saved, the fetched results controller
will be notified if the save affects the results of the controller’s fetch, and the delegate methods
described earlier in the chapter will be called.

 Removing a Managed Object

 On the Movies tab in the sample app, the user can swipe on the right side of a table cell, or
can tap the Edit button to reveal the delete controls for each table cell. When Delete is tapped

277Adding, Editing, and Removing Managed Objects

on a cell, the table view delegate method tableView:commitEditingStyle:forRowAtIndex
Path: is called. The method checks whether the editing style is delete. If so, the method gets a
reference to the managed object context from the fetched results controller. The fetched results
controller keeps a reference to the managed object context it was initialized with, which is
needed to delete the object.

 NSManagedObjectContext *context =
 [self . fetchedResultsController managedObjectContext];

 The method determines which managed object should be deleted, by asking the fetched results
controller for the managed object at the specified index path.

 NSManagedObject *objectToBeDeleted =
 [self . fetchedResultsController objectAtIndexPath :indexPath];

 To delete the managed object, the method tells the managed object context to delete it.

 [context deleteObject :objectToBeDeleted];

 The deletion is not permanent until the managed object context is saved. After it is saved, the
delegate methods described earlier in the chapter will be called and the table will be updated.

 NSError *error = nil ;
 if (![context save :&error])
 {
 NSLog (@"Error deleting movie, %@" , [error userInfo]);
 }

 Editing an Existing Managed Object

 On the Movies tab in the sample app, the user can tap a movie to see more detail about it. To
change any of the information about the movie, tap the Edit button in the navigation bar,
which will present an instance of ICFMovieEditViewController . When the view is loaded, it
will load an instance of ICFMovie using the objectID passed in from the display view or list
view, will save that instance into the property editMovie , and will configure the view using
information from the movie managed object.

 If the user decides to edit the year of the movie, for example, another view control-
ler will be presented with a UIPickerView for the user to select a new year. The
 ICFMovieEditViewController is set up as a delegate for the year chooser, so when the user
has selected a new year and taps Save, the delegate method chooserSelectedYear: is called.
In that method, the editMovie is updated with the new date and the display is updated.

 - (void)chooserSelectedYear:(NSString *)year
 {
 [self . editMovie setYear :year];
 [self . movieYearLabel setText :year];
 }

278 Chapter 13 Getting Up and Running with Core Data

 Note that the managed object context was not saved after editMovie was updated. The
managed object editMovie can keep updates temporarily until the user makes a decision about
whether to make the changes permanent, indicated by tapping the Save or Cancel button.

 Saving and Rolling Back Your Changes

 If the user taps the Save button, he has indicated his intention to keep the changes made to
the editMovie . In the saveButtonTouched: method, the fields not updated with delegate
methods are saved to the editMovie property:

 NSString *movieTitle = [self . movieTitle text];
 [self . editMovie setTitle :movieTitle];

 NSString *movieDesc = [self . movieDescription text];
 [self . editMovie setMovieDescription :movieDesc];

 BOOL sharedBool = [self . sharedSwitch isOn];
 NSNumber *shared = [NSNumber numberWithBool :sharedBool];
 [self . editMovie setLent :shared];

 Then the managed object context is saved, making the changes permanent.

 NSError *saveError = nil ;
 [kAppDelegate . managedObjectContext save :&saveError];
 if (saveError)
 {

 UIAlertView *alert =
 [[UIAlertView alloc]
 initWithTitle : @"Error saving movie"
 message :[saveError localizedDescription]
 delegate : nil
 cancelButtonTitle : @"Dismiss"
 otherButtonTitles : nil];

 [alert show];
 }
 else
 {
 NSLog (@"Changes to movie saved.");
 }

 If the user decides that the changes should be thrown away and not be made permanent,
the user will tap the Cancel button, which calls the cancelButtonTouched: method. That
method will first check whether the managed object context has any unsaved changes. If so,
the method will instruct the managed object context to roll back or throw away the unsaved
changes. After that is completed, the managed object context will be back to the state it was in

279Exercises

before any of the changes were made. Rather than the user interface being updated to reflect
throwing away the changes, the view is dismissed.

 if ([kAppDelegate . managedObjectContext hasChanges])
 {
 [kAppDelegate . managedObjectContext rollback];
 NSLog (@"Rolled back changes.");
 }

 [self . navigationController . presentingViewController
 dismissModalViewControllerAnimated: YES];

 Summary

 This chapter described how to set up a new project to use Core Data and how to set up all
the Core Data environment pieces. The chapter detailed how to create a managed object
model, including how to add a new entity, add attributes to an entity, and set up relationships
between entities. It also described why an NSManagedObject subclass is useful and how to
create one.

 This chapter explained how to set up some initial data for the project, and demonstrated how
to insert new managed objects. Alternative techniques for initial data setup were discussed.

 This chapter then detailed how to create a fetch request to get saved managed objects, and how
to fetch individual managed objects using an objectID . It described how to display data from
managed objects in the user interface of an app. It explained how to use predicates to fetch
managed objects that match specific criteria.

 This chapter introduced the fetched results controller, a powerful tool for integrating Core Data
with the UITableView ; described how to set up a UITableView with a fetched results control-
ler; and explained how to set up a fetched results controller delegate to automatically update a
table view from Core Data changes.

 Lastly, this chapter explained how to add, edit, and delete managed objects, and how to save
changes or roll back unwanted changes.

 With all of these tools, you should now have a good foundation for using Core Data effectively
in your apps.

 Exercises

 1. For the Friend managed object, there is an attribute specified for email , but the
 ICFFriendEditViewController does not support editing the email address. Update
that view controller to display the friend’s email address when the view is displayed,
allow the user to edit the email address, and ensure that the email address is saved
when the Save button is tapped. Test tapping the Cancel button to make sure that

280 Chapter 13 Getting Up and Running with Core Data

changes to the email address are thrown away. Then add a Remind Friend button to the
 ICFMovieDisplayViewController that will present an email message composer with
the friend’s email address.

 2. Currently, the friends list is not very helpful, because the user can see which friends
have borrowed movies but cannot see which movies the friends have borrowed. Change
the accessory selection to edit the friend record instead of row selection, and add a new
view controller to display all the movies a friend has borrowed when the row for a friend
is selected. Hint: Use a table view controller backed with a fetched results controller to
display the list of movies borrowed by a friend.

 3. Change the sort order in ICFMovieListViewController to sort by year instead of title,
without messing up the Shared/Not Shared section headers. Hint: This is a very simple
change.

Index

 A
 ABPersonViewController, editing and

viewing existing contacts, 122 - 124

 ABRecordRef, single-value constants,

 112 - 114

 accessing properties, 297 - 298

 achievements (gaming), 87 , 108 - 110

 displaying, 89 - 91

 earned, 101 - 102

 Game Center

 adding hooks, 95 - 96

 cache, 91 - 93

 Challenges, 97 - 100

 completion banners, 96

 reporting, 93 - 95

 resetting, 107 - 108

 iTunes Connect, 87 - 89

 multiple session, 104 - 105

 partially earned, 102 - 103

 piggybacked, 105 - 106

 stored precision, 105 - 106

 timer-based, 106 - 107

 unearned, 101 - 102

 Whack-a-Cac, adding, 100 - 107

 Activity Monitor (Xcode), 512

522 Address Book

 Address Book, 128

 addresses, 118 - 119

 contacts

 creating, 124 - 125

 programatically creating, 125 - 127

 frameworks, 112 - 114

 graphical user interface (GUI), 120

 editing and viewing existing
contacts, 122 - 124

 people picker, 120 - 122

 importance of support, 111

 labels, 117 - 118

 programming limitations, 112

 reading data from, 115

 reading multivalues, 115 - 117

 addresses

 geocoding, 37 - 41

 reverse-geocoding, 41 - 44

 AirPrint, 227 , 239

 print simulator feedback, 233 - 234

 printers, 227

 printing PDF files, 237 - 238

 printing rendered HTML, 236 - 237

 printing text, 229 - 234

 error handling, 232

 print information, 229 - 234

 setting page range, 231

 starting print jobs, 232 - 233

 testing for, 229

 ALAsset class, 448

 ALAssetRepresentation class, 448

 ALAssetsGroup class, 448

 ALAssetsLibrary class, 448

 Allocations instrument (Xcode), 512

 animations, collection views, 411 - 415

 change, 414 - 415

 layout, 412 - 414

 annotations, map view, 29 - 35

 APNs, handling feedback, 207

 apps . See also sample apps

 Address Book, 112 - 114

 GUI (graphical user interface),
 120 - 125

 labels, 117 - 118

 people picker, 120 - 122

 programatically creating
contacts, 125 - 127

 reading data from, 115

 reading multivalues from,
 115 - 117

 working with addresses, 118 - 119

 Message Board, 150

 accessing server, 150

 encoding JSON, 156 - 158

 posting messages, 155 - 159

 sending JSON to server, 158 - 159

 Photos, 447

 Player, 129 - 130

 building playback engine, 131

 duration and timers, 139 - 140

 handling state changes, 135 - 139

 registering for playback
notifications, 131 - 133

 shuffle and repeat, 140 - 141

 user controls, 133 - 134

 sharing keychains between, 367 - 368

523Bluetooth networking, Game Kit

 ARC (Automatic Reference Counting),

 281 , 285 - 290 , 302

 basic usage, 288 - 289

 projects, converting to, 286 - 288

 qualifiers, 289 - 290

 using in new projects, 285

 Asset Navigator, 447

 displaying assets, 458 - 463

 assets

 displaying, 458 - 463

 enumerating, 455 - 458

 Assets Library, 467

 assets

 displaying, 458 - 463

 enumerating, 455 - 458

 classes, 448

 groups, enumerating, 451 - 455

 permissions, 449 - 451

 attachments

 objects, 6 - 7

 UIAttachmentBehaviors, 6 - 7

 attribute keys, Keychain, 363 - 364

 attributes

 Core Data entities, adding to,
 257 - 258

 Core Image filters, 382 - 384

 authentication

 common errors, 70 - 75

 Game Center, 70-75

 iOS 6, 73 - 75

 Automatic Reference Counting (ARC).

 See ARC (Automatic Reference

Counting)

 automatically updating passes, 501

 Automation instrument (Xcode), 512

 availability, background tasks, checking

for, 330 - 331

 B
 background tasks, 329 , 340

 checking for availability, 330 - 331

 expiration handler, 333

 finishing, 331 - 335

 identifier, 332

 implementing, 335 - 338

 playing music in background,
 336 - 338

 processing, 329

 types, 335 - 336

 BackgroundTasks, 330

 barcode identification, 478 - 479

 blocks, 281 , 290 - 295

 capturing state, 291 - 292

 declaring and using, 290 - 291

 memory, 294 - 295

 threads, 294 - 295

 using as method parameters,
 293 - 294

 Bluetooth networking, Game Kit,

209 , 225

 benefits, 209 - 210

 connecting without Peer Picker,
 223 - 224

 limitations, 209 - 210

 Peer Picker, 215 - 217

 receiving data, 221 - 222

524 Bluetooth networking, Game Kit

 sending data, 218 - 220

 session modes, 225

 state changes, 222

 boarding passes, 471

 boxed expressions, 284 - 285

 breakpoints

 customizing, 507 - 508

 debugging code, 506 - 509

 exception, 508

 symbolic, 508

 building passes, 476 - 482

 C
 Camera Roll, saving to, 462 - 465

 canceling operation queues, 350 - 351

 capturing state, blocks, 291 - 292

 Carmageddon, 3

 challenges, Game Center, 82 - 84

 achievements, 97 - 100

 code, 302

 Automatic Reference Counting
(ARC), 281 , 285 - 290

 blocks, 281 , 290 - 295

 capturing state, 291 - 292

 declaring and using, 290 - 291

 memory, 294 - 295

 threads, 294 - 295

 using as method parameters,
 293 - 294

 breakpoints

 customizing, 507 - 508

 symbolic and exception, 508

 debugging, 503 - 505 , 519 - 520

 breakpoints, 506 - 509

 LLDB debugger, 509 - 511

 Xcode, 504 - 505

 enumeration, fast, 298 - 299

 first computer bug, 504

 literals, 281 - 285

 methods, swizzling, 299 - 302

 properties, 281 , 295 - 299

 accessing, 297 - 298

 declaring, 295 - 297

 dot notation, 298

 synthesizing, 297

 coders, 242

 collection views, 393 - 394 , 415

 animations, 411 - 415

 change, 414 - 415

 layout, 412 - 414

 creating custom layouts, 406 - 411

 customization, 401 - 402

 decoration views, 402 - 406

 implementing data source methods,
 396 - 399

 implementing delegate methods,
 399 - 400

 layout changes, 411 - 412

 setting up, 395 - 396

 collisions, UICollisionBehavior, 4 - 6

 completion banners, achievements, 96

 concurrent dispatch queues, 353 - 355

 concurrent operation queues, running,

 347 - 349

525custom collection views

 fetching, 247 - 248 , 262 - 265 ,
 267 - 268

 inserting, 260 - 261

 inserting new, 275 - 276

 model, 244 - 246

 removing, 276 - 277

 saving and rolling back changes,
 278 - 279

 table view, 271 - 273

 MyMovies app, 251

 NSUserDefaults method, 242

 persistent store, 249

 persistent store coordinator, 249

 projects

 environment, 254 - 255

 setting up default data, 260 - 261

 sorting, 247 - 248

 starting projects, 252 - 255

 supported data types, 244 , 258

 Core Image, 387 - 390

 face detection, 387 - 390

 filters, 379 - 387

 attributes, 382 - 384

 Core Location, 15 , 52 - 53

 checking for services, 19 - 20

 location manager, 44 - 47

 obtaining user location, 15 - 24

 parsing location data, 22 - 23

 requirements and permissions,
 16 - 19

 starting location request, 20 - 22

 coupon passes, 471 - 472

 custom collection views, 401 - 402

 configuration

 Keychain, 360 - 361

 Ruby on Rails servers, 198 - 199

 ShoutOut, 182 - 184

 conflicts, iCloud

 detecting in, 172 - 173

 resolving, 173 - 178

 constants, kSecAttrAccessible, 362

 contacts (Address Book)

 creating, 124 - 125

 editing and viewing, 122 - 124

 programatically creating, 125 - 127

 Content Specific Highlighting (TextKit),

 425 - 429

 continuous gesture recognizers, 433

 coordinate systems, MapKit, 26

 Core Animation (Xcode), 512

 Core Data, 241, 248-251, 279 , 512

 benefits, 242

 entities

 adding attributes, 257 - 258

 creating, 257

 establishing relationships,
 258 - 259

 managed objects, 243 - 248

 building model, 256 - 259

 context, 249 - 250

 creating, 246 - 247

 custom subclasses, 259

 displaying, 262 - 268

 editing, 277 - 278

 fetched results controller, 248 ,
 268 - 275

526 custom layouts, collection views, creating

 displaying

 achievements, 89 - 91

 assets, Asset Navigator, 458 - 463

 Core Data managed objects,
 262 - 268

 images, 373 - 375

 displaying maps, 26 - 28

 documents, iCloud, listing in, 168 - 172

 dot notation, 298

 draggable annotation views, maps, 35

 Dynamic Link Detection, 421 - 422

 Dynamic Type, font settings, 429 - 430

 E
 earned achievements, 101 - 102

 editing managed objects, 277 - 278

 encoding, JSON (JavaScript Object

Notation), 156 - 158

 Energy Diagnostics (Xcode), 512

 entities (Core Data)

 adding attributes, 257 - 258

 creating, 257

 establishing relationships, 258 - 259

 enumeration

 asset groups, 451 - 455

 assets, 455 - 458

 fast, 298 - 299

 Xcode 4, 281

 error codes, Keychain, 368

 event passes, 471 - 473

 exception breakpoints, 508

 exclusion paths, TextKit, 423 - 424

 custom layouts, collection views,

creating, 406 - 411

 custom operation queues, 351 - 353

 custom subclasses

 Core Data managed objects, 259

 UIGestureRecognizer, 444 - 445

 D
 data, Address Book, reading from, 115

 data modes, Game Kit, 219

 data source methods, collection views,

implementing, 399 - 400

 data types, Core Data, 244

 debugging code, 503 - 505 , 519 - 520

 breakpoints, 506 - 509

 LLDB debugger, 509 - 511

 Xcode, 504 - 505

 declaring properties, 295 - 297

 decoration views, 402 - 406

 default data, Core Data projects, setting

up, 260 - 261

 delegate methods, collection views,

implementing, 399 - 400

 designing, passes, 470 - 476

 detecting hits, TextKit, 422 - 423

 Development Push SSL Certificates,

creating, 184 - 188

 dictionaries, securing, Keychain, 363 - 366

 Dijkstra, Edsger W., 503

 directions, getting, Maps.app, 48 - 52

 discrete gesture recognizers, 433

 dispatch queues, 353 , 357

 concurrent, 353 - 355

 serial, 355 - 357

527Game Kit

 filters, images, 379 - 387

 attributes, 382 - 384

 finishing background tasks, 331 - 335

 font settings, Dynamic Type, changing,

 429 - 430

 formats, images, 372

 frameworks, Address Book, 112 - 114

 G
 Game Center

 achievements, 87 , 108 - 110

 adding, 100 - 107

 adding hooks, 95 - 96

 cache, 91 - 93

 Challenges, 97 - 100

 completion banners, 96

 displaying progress, 89 - 91

 iTunes Connect, 87 - 89

 reporting, 93 - 95

 resetting, 107 - 108

 authentication, 70 - 75

 leaderboards, 55 , 82 - 84 , 86

 iTunes Connect, 65 - 67

 submitting scores, 75 - 85

 Manager, authentication, 91

 manager, 67 - 70

 score challenges, 82 - 84

 Game Kit

 Bluetooth networking, 209 , 225

 benefits, 209 - 210

 connecting without Peer Picker,
 223 - 224

 expiration handler, background

tasks, 333

 expressions, boxed, 284 - 285

 F
 face detection (Core Image), 387 - 390

 Facebook, 303 , 328

 basic permissions, 314

 creating app, 312 - 318

 logging in, 304 - 306

 posting messages to, 306 - 308 ,
 312 - 318

 publishing stream permissions,
 315 - 316

 user timelines, accessing, 324 - 328

 failures, gesture recognizers, requiring,

 443 - 444

 fast enumeration, 298 - 299 , 302

 FavoritePlaces

 displaying maps, 26 - 28

 geocoding addresses, 37 - 41

 geofencing, 44 - 47

 obtaining user location, 15 - 24

 reverse-geocoding locations, 41 - 44

 feedback, APNs, handling, 207

 fetched results controller (Core Data),

 248 , 268 - 275

 preparing, 268 - 270

 fetching managed objects, Core Data,

 247 - 248 , 262 - 265

 fields, passes, 479 - 482

 File Activity instrument (Xcode), 512

 filtered images, rendering, 385 - 387

528 Game Kit

 Grand Central Dispatch (GCD). See GCD

(Grand Central Dispatch)

 graphical user interface (GUI). See GUI

(graphical user interface)

 graphics. See images

 gravity, UIGravityBehavior, 3 - 5

 groups, Assets Library, enumerating,

 451 - 455

 GUI (graphical user interface), Address

Book, 120

 editing and viewing existing
contacts, 122 - 124

 people picker, 120 - 122

 H
 handling images, 371

 handling state changes, Player, 135 - 139

 Harrington, Tom, 246

 hooks, achievements, adding, 95 - 96

 Hopper, Grace Murray, 504

 HTML, rendered HTML, printing, 236 - 237

 I
 iCloud, 161 , 168 - 173 , 180

 detecting conflicts in, 172 - 173

 initializing, 164 - 165

 interacting with, 168 - 173

 key-value store syncing, 178 - 179

 listing documents in, 168 - 172

 MyNotes, setting up for support,
 162 - 165

 Photo Stream, 465

 resolving conflicts, 173 - 178

 UIDocument subclass, 165 - 168

 limitations, 209 - 210

 Peer Picker, 215 - 217

 receiving data, 221 - 222

 sending data, 218 - 220

 session modes, 225

 state changes, 222

 data modes, 219

 state changes, 223

 games, Whack-a-Cac, 55 - 64

 GarageBand, exporting song

settings, 194

 GCD (Grand Central Dispatch), 341 , 357

 main thread, running in
background, 345 - 347

 queues, 342 - 343

 running dispatch queues,
 353 - 357

 running operation queues,
 347 - 353

 gdb debugger, 509

 generic passes, 471 , 473 - 474

 geocoding addresses, 37 - 41

 geofencing, 15 , 44 - 47 , 52 - 53

 Gesture Playground, 434 - 438 , 445

 multiple recognizers, views, 438 - 444

 gesture recognizers, 433 , 445

 basic usage, 434

 continuous, 433

 discrete, 433

 Gesture Playground, 434 - 438

 pinch, 436 - 438

 requiring failures, 443 - 444

 tap, 435 - 436

 views, multiple recognizers for,
 438 - 444

529Keychain

 Leaks, 516 - 518

 Time Profiler, 514 - 516

 Interfaces . See also GUI (graphical user

interface)

 Address Book, 120

 editing and viewing existing
contacts, 122 - 124

 people picker, 120 - 122

 Xcode instruments, 511 - 514

 iOS 6 authentication, 73 - 75

 Isted, Tim, 246

 item properties, UIKit Dynamics, 11

 iTunes Connect, 65 - 67

 achievements, 87 - 89

 J
 JavaScript Object Notation (JSON). See

JSON (JavaScript Object Notation)

 Jobs, Steve, 129

 JSON (JavaScript Object Notation),

 149 - 150 , 159

 benefits, 149 - 150

 encoding, 156 - 158

 parsing, 153 - 154

 resources, 150

 sending to server, 158 - 159

 servers, obtaining JSON from,
 151 - 155

 K
 Keychain, 359 - 360 , 368 - 369

 attribute keys, 363 - 364

 configuring, 360 - 361

 identifier, background tasks, 332

 identifying passes, 477

 Image Picker, 375 - 378

 ImagePlayground, 371

 images, 387 - 390

 collection views, 393 , 394 , 415

 animations, 411 - 415

 creating custom layouts, 406 - 411

 data source methods, 396 - 399

 decoration views, 402 - 406

 delegate methods, 399 - 400

 implementing, 401 - 402

 layout changes, 411 - 412

 setting up, 395 - 396

 Core Image

 attributes, 382 - 384

 face detection, 387 - 390

 filters, 379 - 387

 displaying, 373 - 375

 handling, 371

 Image Picker, 375 - 378

 initializing, 384 - 385

 instantiating, 372 - 373

 rendering filtered, 385 - 387

 resizing, 378 - 379

 supported formats, 372

 initializing

 iCloud, 164 - 165

 images, 384 - 385

 inserting new managed objects, 275 - 276

 instantiating images, 372 - 373

 instruments (Xcode), 511 - 520

 interface, 511 - 514

530 Keychain

 location requests, Core Location,

starting, 20 - 22

 locations

 geocoding, 37 - 41

 obtaining user location, 15 - 24

 parsing data, 22 - 23

 reverse-geocoding, 41 - 44

 testing with GPX files , 24

 logging in, social networking platforms,

 304 - 306

 LongRunningTasks, 341 - 342

 dispatch queues, running, 353 - 357

 main thread

 running, 343 - 345

 running in background, 345 - 347

 operation queues, running, 347 - 353

 M
 main thread

 running, 343 - 345

 running in background, 345 - 347

 managed objects (Core Data), 243 - 248

 building model, 256 - 259

 context, 249 - 250

 creating, 246 - 247

 custom subclasses, 259

 displaying, 262 - 268

 editing, 277 - 278

 fetched results controller, 248 ,
 268 - 275

 fetching, 262 - 265 , 267 - 268

 fetching and sorting, 247 - 248

 inserting, 260 - 261 , 275 - 276

 model, 244 - 246

 error codes, 368

 securing dictionaries, 363 - 366

 sharing keychains between apps,
 367 - 368

 storing and retrieving PIN, 361 - 363

 keyed archives, 242

 keys, MPMediaItem, 135

 key-value store syncing, iCloud, 178 - 179

 kSecAttrAccessible, constants, 362

 L
 labels, Address Book, 117 - 118

 layouts, creating custom, collection

views, 406 - 411

 leaderboards, 55 , 86

 Game Center, 82 - 84

 authentication, 70 - 75

 manager, 67 - 70

 presenting, 80 - 82

 submitting scores, 75 - 85

 iTunes Connect, 65 - 67

 Leaks instrument (Xcode), 512 , 516 - 518

 listing documents, iCloud, 168 - 172

 literals, 281 - 285 , 302

 NSArray, 283

 NSDictionary, 284

 NSNumber, 282 - 283

 LLDB debugger, 509 - 511

 local notifications

 versus push notifications, 181 - 182

 receiving, 196 - 198

 scheduling, 196

 location manager (Core Location), 44 - 47

531MyNotes

 methods

 parameters, blocks, 293 - 294

 swizzling, 281 , 299 - 302

 UIPrintInteractionController
Delegate, 234

 MPMediaItem, available keys, 135

 multiple session achievements, 104 - 105

 multivalues, Address Book, reading,

 115 - 117

 music, playing in background, 336 - 338

 music libraries, 129

 Media Picker, 141 - 144

 playing a random song, 144 - 145

 predicate song matching, 145

 Player, 129 - 130

 building playback engine,
 131 - 141

 duration and timers, 139 - 140

 handling state changes, 135 - 139

 registering for playback
notifications, 131 - 133

 shuffle and repeat, 140 - 141

 user controls, 133 - 134

 MyMovies, 251 , 279

 inserting new managed objects,
 275 - 276

 managed objects

 editing, 277 - 278

 removing, 276 - 277

 saving and rolling back changes,
 278 - 279

 MyNotes, 161 - 162

 configuring for iCloud support,
 162 - 165

 iCloud, key-value store syncing,
 178 - 179

 removing, 276 - 277

 saving and rolling back changes,
 278 - 279

 table view, 271 - 273

 manifest, passes, creating, 484 - 488

 map view (MKMapView), 29

 annotations, 29 - 35

 overlays, 36 - 37

 MapKit, 15 , 52 - 53

 configuring MKMapKit, 26 - 28

 coordinate systems, 26

 displaying maps, 26 - 28

 map view, 29

 annotations, 29 - 35

 overlays, 36 - 37

 requirements and permissions,
 16 - 17

 responding to user interactions, 28

 maps, displaying, 26 - 28

 Maps.app, getting directions, 48 - 52

 Media Picker, 129 , 141 - 144 , 147

 playing a random song, 144 - 145

 predicate song matching, 145

 memory, blocks, 294 - 295

 memory-related qualifiers, properties,

 296

 Message App, 210 - 215

 Message Board, 150

 accessing server, 150

 JSON (JavaScript Object Notation)

 encoding, 156 - 158

 sending to server, 158 - 159

 posting messages, 155 - 159

 receiving data, 221 - 222

 sending data, 219 - 220

532 MyNotes

 Open GL ES driver (Xcode), 512

 operation queues, 357

 canceling, 350 - 351

 concurrent, 347 - 349

 custom, 351 - 353

 running, 347 - 353

 serial, 349 - 350

 overlays, map view, 36 - 37

 P
 packaging passes, 489 - 490

 page range, setting, printing, 231

 parsing JSON (JavaScript Object

Notation), 153 - 154

 partially earned achievements, 102 - 103

 Pass Type IDs, creating, 482 - 484

 Passbook, 469

 passes, 501

 barcode identification, 478 - 479

 boarding, 471

 building, 476 - 482

 coupon, 471 - 472

 creating manifest, 484 - 488

 designing, 470 - 476

 event, 471 - 473

 fields, 479 - 482

 generic, 471 , 473 - 474

 identifying, 477

 interaction, 490 - 501

 Pass Type IDs, creating, 482 - 484

 presentation, 474 - 476

 relevance information, 478

 removing, 500 - 501

 interacting with iCloud, 168 - 173

 resolving conflicts in iCloud,
 173 - 178

 UIDocument, 165 - 168

 N
 NARC (New, Alloc, Retain, Copy), 115

 Network instrument (Xcode), 512

 New, Alloc, Retain, Copy (NARC), 115

 notifications, 181 - 182 , 208

 Development Push SSL Certificate,
creating, 184 - 188

 local, 181 - 182

 scheduling, 196

 push, 181 - 182

 custom sound preparation, 194

 sending, 207

 sending via server, 198

 receiving, 196 - 198

 remote, registering for, 194 - 195

 NSArray class, 283

 NSDictionary class, 284

 NSLayoutManger class, 418 - 421

 NSNumber class, 282 - 283

 NSOperationQueue class, 342

 NSUserDefaults method, 242

 O
 Objective-C 2.0. See code

 objects, managed, Core Data, 243 - 250 ,

 256 - 259

 Open GL ES analysis (Xcode), 512

533printing

 playback engine

 building, 131

 Player, building, 131

 playback notifications, registering for,

 131 - 133

 Player, 129 - 130

 building playback engine, 131

 duration and timers, 139 - 140

 handling state changes, 135 - 139

 playback engine, building, 131

 playback notifications, registering
for, 131 - 133

 shuffle and repeat, 140 - 141

 user controls, 133 - 134

 posting messages, Message Board,

 155 - 159

 predicates

 Core Data managed objects,
fetching, 267 - 268

 song matching, Media Picker, 145

 Print Center, 234 - 235

 print jobs, starting, 232 - 233

 print simulator feedback, AirPrint,

 233 - 234

 printers, AirPrint-enabled, 227

 printing, 239

 PDF files, 237 - 238

 Print Center, 234 - 235

 rendered HTML, 236 - 237

 text

 AirPrint, 229 - 234

 error handling, 232

 print information, 230 - 231

 setting page range, 231

 starting print jobs, 232 - 233

 showing, 499 - 500

 signing and packaging, 489 - 490

 signing certificates, creating,
 484 - 488

 store card, 471 , 474

 testing, 490

 updating automatically, 501

 visual appearance information, 479

 PassKit, 469

 PDF files, printing, 237 - 238

 peer display name, Game Kit, 223

 people picker (Address Book), 120 - 122

 performSelectorInBackground:with

Object, 342

 permissions

 Assets Library, 449 - 451

 Core Location, 16 - 19

 Facebook, 314

 persistent store, Core Data, 249

 Photo Stream, 465

 PhotoGallery, 393

 Photos app, 447

 Camera Roll, saving to, 462 - 465

 physics simulations, 3

 attachments, 6 - 7

 collisions, 4 - 6

 gravity, 3 - 5

 push forces, 9 - 11

 springs, 8 - 9

 piggybacked achievements, 105 - 106

 pinch gesture recognizers, 436 - 438

 PINs, Keychain, storing and retrieving,

 361 - 363

534 Printopia

 GCD (Grand Central Dispatch),
 342 - 343 , 357

 operation, 357

 canceling, 350 - 351

 concurrent operations, 347 - 349

 custom, 351 - 353

 serial operations, 349 - 350

 R
 random songs, playing, 144 - 145

 reading multivalues, Address Book,

 115 - 117

 receiving data, Game Kit, 221 - 222

 registrations, remote notifications,

 194 - 195

 relationships, Core Data entities,

establishing, 258 - 259

 relevance information, passes, 478

 remote notifications

 receiving, 196 - 198

 registering for, 194 - 195

 removing, passes, 500 - 501

 rendered HTML, printing, 236 - 237

 rendering filtered images, 385 - 387

 repeat, Player, 140 - 141

 reporting achievements, Game Center,

 93 - 95

 requests, servers, building, 151 - 152

 requirements, Core Location, 16 - 19

 resizing images, 378 - 379

 reverse-geocoding locations, 41 - 44

 Ruby on Rails servers, 208

 adding support for devices and
shouts, 199 - 202

 Printopia, 227

 processing, background tasks, 329

 programatically creating contacts,

Address Book, 125 - 127

 projects

 ARC (Automatic Reference
Counting), 285

 converting to, 286 - 288

 Core Data

 environment, 254 - 255

 setting up default data, 260 - 261

 starting, 252 - 255

 properties, 281 , 295 - 299 , 302

 accessing, 297 - 298

 declaring, 295 - 297

 dot notation, 298

 memory-related qualifiers, 296

 synthesizing, 297

 property list (plist), 242

 push forces, UIPushBehavior, 9 - 11

 push notifications

 custom sound preparation, 194

 versus local notifications, 181 - 182

 sending, 207

 via server, 198

 Q
 qualifiers, ARC (Automatic Reference

Counting), 289 - 290

 queues

 dispatch, 353 , 357

 concurrent, 353 - 355

 serial, 355 - 357

535sample apps

 Message App, 210 - 215

 receiving data, 221 - 222

 sending data, 219 - 220

 Message Board, 150

 accessing server, 150

 encoding JSON, 156 - 158

 posting messages, 155 - 159

 sending JSON to server, 158 - 159

 MyMovies, 251 , 279

 editing managed objects, 277 - 278

 inserting new managed objects,
 275 - 276

 removing managed objects,
 276 - 277

 saving and rolling back changes,
 278 - 279

 MyNotes, 161 - 162

 configuring for iCloud support,
 162 - 165

 interacting with iCloud, 168 - 173

 key-value store syncing, 178 - 179

 resolving conflicts in iCloud,
 173 - 178

 UIDocument, 165 - 168

 Pass Test, 470

 PhotoGallery, 393

 Player, 129 - 130

 building playback engine, 131

 duration and timers, 139 - 140

 handling state changes, 135 - 139

 registering for playback
notifications, 131 - 133

 shuffle and repeat, 140 - 141

 user controls, 133 - 134

 configuring, 198 - 199

 device controller, 202

 sending push notifications, 198

 S
 sample apps

 Address Book, 112 - 114

 GUI (graphical user interface),
 120 - 125

 labels, 117 - 118

 people picker, 120 - 122

 programatically creating
contacts, 125 - 127

 reading data from, 115

 reading multivalues from,
 115 - 117

 working with addresses, 118 - 119

 Asset Navigator, 447

 BackgroundTasks, 330

 FavoritePlaces, 15

 displaying maps, 26 - 28

 obtaining user location, 15 - 24

 Gesture Playground, 434 - 438 , 445

 multiple recognizers for a view,
 438 - 444

 ImagePlayground, 371

 Keychain, 360

 LongRunningTasks, 341 - 342

 running dispatch queues,
 353 - 357

 running main thread, 343 - 345

 running main thread in
background, 345 - 347

 running operation queues,
 347 - 353

536 Sample apps

 Ruby on Rails

 adding support for devices and
shouts, 199 - 202

 configuring, 198 - 199

 device controller, 202

 sending push notifications, 198

 session modes, Game Kit, 225

 ShoutOut, 182 , 204 - 207

 configuring, 182 - 184

 development provisioning profile,
 188 - 192

 Development Push SSL Certificate,
creating, 184 - 188

 local notifications, scheduling, 196

 notifications, receiving, 196 - 198

 push notifications

 sending, 207

 sending via server, 198

 registering for remote notifications,
 194 - 195

 shout controller, 202 - 203

 shuffle, Player, 140 - 141

 signing passes, 489 - 490

 single-value constants, ABRecordRef,

 112 - 114

 snaps, UISnapBehavior, 9

 SocialNetworking, 303 - 304 , 328

 accessing user timelines, 318 - 328

 logging in to social networking
platforms, 304 - 306

 posting messages, 306 - 318

 sorting managed objects, Core Data,

 247 - 248

 springs, UIAttachmentBehaviors, 8 - 9

 SQLite, direct, 242

 ShoutOut, 182 , 204 - 207

 configuring, 182 - 184

 creating Development Push SSL
Certificate, 184 - 188

 registering for remote
notifications, 194 - 195

 scheduling local notifications,
 196

 sending push notifications, 207

 shout controller, 202 - 203

 SocialNetworking, 303 - 304 , 328

 posting messages, 306 - 318

 table demo of UIKit Dynamics, 1

 TextKit, 417 - 418

 Whack-a-Cac, 55 - 64

 scheduling local notifications, 196

 score challenges, Game Center, 82 - 84

 scores, Game Center, submitting, 75 - 85

 security, Keychain, 359 - 360 , 368 - 369

 attribute keys, 363 - 364

 configuring, 360 - 361

 error codes, 368

 securing dictionaries, 363 - 366

 sharing keychains between apps,
 367 - 368

 storing and retrieving PIN, 361 - 363

 sending push notifications, 207

 sending data, Game Kit, 218 - 220

 serial dispatch queues, 355 - 357

 serial operation queues, running,

 349 - 350

 servers

 accessing, 150

 obtaining JSON from, 151 - 155

 requests, building, 151 - 152

537UIKit Dynamics

 setting page range, 231

 starting print jobs, 232 - 233

 TextKit, 417 - 418 , 431

 Content Specific Highlighting,
 425 - 429

 detecting hits, 422 - 423

 Dynamic Link Detection, 421 - 422

 Dynamic Type, changing font
settings, 429 - 430

 exclusion paths, 423 - 424

 NSLayoutManger, 418 - 421

 threads

 blocks, 294 - 295

 main, running, 343 - 345

 Time Profiler (Xcode), 512 , 514 - 516

 timer-based achievement, 106 - 107

 timers, Player, 139 - 140

 Twitter, 303 , 328

 accessing user timelines, 318 - 324

 logging in, 304 - 306

 posting messages to, 306 - 312

 U
 UIDocument subclass, 165 - 168

 UIDynamicAnimator class, 2 , 13

 UIDynamicAnimatorDelegate class, 13

 UIGestureRecognizer class, 433

 custom subclasses, 444 - 445

 types, 434

 UIImagePickerControllerDelegate class,

media info dictionary, 376 - 378

 UIKit Dynamics, 1 - 2 , 13

 Implementing, 3 - 11

 item properties, 11

 state changes

 Game Kit, 222

 Player, handling, 135 - 139

 store card passes, 471 , 474

 stored achievement precision, 105 - 106

 stream permissions, Facebook,

publishing, 314

 subclasses, Core Data managed objects,

custom, 259

 swizzling methods, 281 , 299 - 302

 symbolic breakpoints, 508

 synthesizing properties, 297

 System Trace instrument (Xcode), 512

 System Usage instrument (Xcode), 512

 T
 table view, Core Data managed objects,

 271 - 273

 tap gesture recognizers, 435 - 436

 tasks, background, 329 , 340

 checking for availability, 330 - 331

 expiration handler, 333

 finishing, 331 - 335

 identifier, 332

 implementing, 335 - 338

 playing music in background,
 336 - 338

 types, 335 - 336

 testing passes, 490

 text, printing

 AirPrint, 229 - 234

 error handling, 232

 print information, 229 - 234

 Challenges, 97 - 100

 completion banners, 96

 reporting, 93 - 95

 resetting, 107 - 108

 adding scores to, 78 - 80

 displaying life and score, 62 - 63

 pausing and resuming, 63 - 64

 spawning a cactus, 57 - 60

 X-Z
 Xcode . See also code

 debugging code, 504 - 505

 breakpoints, 506 - 509

 LLDB debugger, 509 - 511

 instruments, 511 - 520

 interface, 511 - 514

 Leaks, 516 - 518

 Time Profiler, 514 - 516

 Xcode 4

 Automatic Reference Counting
(ARC), 281 , 285 - 290

 blocks, 281

 enumeration, 281

 literals, 281 - 285

 methods, swizzling, 281

 properties, 281

 Xcode 5

 account setup, 162 - 163

 setting up app for iCloud support,
 162 - 165

 Zarra, Marcus, 161

 Zombies instrument (Xcode), 512

538 UIKit Dynamics

 physics simulations

 attachments, 6 - 7

 collisions, 4 - 6

 gravity, 3 - 5

 push forces, 9 - 11

 snaps, 9

 springs, 8 - 9

 UIDynamicAnimator, 2 , 13

 UIDynamicAnimatorDelegate, 13

 UIPrintInteractionControllerDelegate

object, 234

 UISimpleTextPrintFormatter object,

 231 - 232

 unearned achievements, 101 - 102

 updating passes, automatically, 501

 usage, ARC (Automatic Reference

Counting), 288 - 289

 user controls, Player, 133 - 134

 user locations

 obtaining, 15 - 24

 parsing data, 22 - 23

 testing with GPX files, 24

 user timelines

 Facebook, accessing, 324 - 328

 Twitter, accessing, 318 - 324

 V-W
 views, gesture recognizers, multiple

recognizers for, 438 - 444

 Whack-a-Cac, 55 - 64 , 108 - 110

 achievements

 adding, 100 - 107

 adding hooks, 95 - 96

 cache, 91 - 93

	Contents
	13 Getting Up and Running with Core Data
	Sample App
	Starting a Core Data Project
	Core Data Environment

	Building Your Managed Object Model
	Creating an Entity
	Adding Attributes
	Establishing Relationships
	Custom Managed Object Subclasses

	Setting Up Default Data
	Inserting New Managed Objects
	Other Default Data Setup Techniques

	Displaying Your Managed Objects
	Creating Your Fetch Request
	Fetching by Object ID
	Displaying Your Object Data
	Using Predicates

	Introducing the Fetched Results Controller
	Preparing the Fetched Results Controller
	Integrating Table View and Fetched Results Controller
	Responding to Core Data Changes

	Adding, Editing, and Removing Managed Objects
	Inserting a New Managed Object
	Removing a Managed Object
	Editing an Existing Managed Object
	Saving and Rolling Back Your Changes

	Summary
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V-W
	X-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [756.000 756.000]
>> setpagedevice

