the functional art

an introduction to information graphics and visualization

alberto cairo

"Welcome to Alberto's world. Cairo has done it all in The Functional Art: theory, practice, examples. And he's done it brilliantly. It is the most comprehensive and sensible book yet on real-world information graphics; we won't need another one for a long time."

Nigel Holmes, former graphics director for Time magazine and founder of Explanation Graphics

DVD Includes a complete introductory information graphics video course
Praise for The Functional Art

“Welcome to Alberto’s world. Cairo has done it all in The Functional Art: Theory, Practice, Examples. And he’s done it brilliantly. It is the most comprehensive and sensible book yet on real-world information graphics. We won’t need another one for a long time.”

—Nigel Holmes

“If graphic designer Nigel Holmes and data visualizer Edward Tufte had a child, his name would be Alberto Cairo. In The Functional Art, accomplished graphics journalist Cairo injects the chaotic world of infographics with a mature, thoughtful, and scientifically grounded perspective that it sorely needs. With extraordinary grace and clarity, Cairo seamlessly unites infographic form and function in a design philosophy that should endure for generations.”

—Stephen Few, Author of Show Me the Numbers

“This book is long overdue. Whether you’re just getting started visualizing information or have been doing it all your life, whether your topic is business, science, politics, sports or even your personal finances, and whether you’re looking for a basic understanding of visualization or a detailed how-to reference, this is the book you were looking for. Alberto Cairo, a professional journalist, information designer and artist, shows how to visualize anything in a simple, straightforward, and intelligent way.”

—Karl Gude, former infographics director at Newsweek and graphics editor in residence at the School of Journalism, Michigan State University

“The Functional Art is brilliant, didactic, and entertaining. I own dozens of books on visual information, but Cairo’s is already on the shortlist of five that I recommend to anybody that wishes to have a career in information graphics, along with those by Edward Tufte, Nigel Holmes, and Richard Saul Wurman. Cairo is one of those rare professionals who have been able to combine real-world experience with the academia.”

—Mario Tascón, director of the Spanish consulting firm Prodigioso Volcán

“Using his enormous professional and academic experience, Alberto Cairo offers a first-hand look at the revolution in visual communication. This book is key to understanding the current situation of print and online information design.”

—Javier Zarracina, graphics director at The Boston Globe

“The Functional Art is the perfect starting point for a career in information graphics and visualization, and also an excellent guide for those who already have some experience in the area. This is the first real textbook on infographics.”

—Chiqui Esteban, director of new media narratives at lainformacion.com, and blogger at InfographicsNews
This page intentionally left blank
the functional art

an introduction to information graphics and visualization

alberto cairo
This book is for Alice, Elena, and Julio.
And for Erica, of course.
Experience teaches you that the archetype of the self-made man is a myth with roots in humankind’s relish for delusion. Life’s meanderings are determined by chance and luck, and the only thing we can do to funnel those factors is to ready ourselves to identify and seize opportunities when they pass by. We are the product of effort as much as we are shaped by the people who surround us. In this sense, I feel I am one of the luckiest individuals on Earth: I will start this book saying that curiosity is the most important trait any communicator should have. Therefore, I have to thank those who have ignited my curiosity throughout the years and have helped me focus it.

This book is, first, for my parents. When I was a kid, my dad prompted me to love books and good stories, both fictional and real, and to develop an insatiable hunger for new knowledge. Inadvertently, he also revealed to me how to summarize and convey information with images and how to be precise, concise, clear, and fun (or so I hope) when teaching others. In addition to being a medical doctor, my father is also an artist. He used to lecture on anatomy at a local university in Spain, and one of his former students once told me that, many years after graduating, the only classes he remembered from college were my father’s. He told me it was because of the beautiful diagrams and cutaways Professor Cairo used to sketch out on the blackboard while he talked.

From my mother, I treasure a most relevant lesson: Don’t give up pursuing and defending what you have been able to prove to be true, no matter what.

Thanks to my editors, Nikki McDonald and Cathy Lane, at Peachpit Press. They believed in this project from the very first day, and they encouraged me to keep writing in times of fatigue.

To Luis G. Prado, my editor and publisher in Spain, Óscar Fernández, from El País, and Ferrán Giménez and Laia Blasco, two colleagues at the Universitat Oberta de Catalunya: Years ago, they prompted me to put what I knew about information graphics and visualization into writing, and they aided me in making sense of it.

I wish to thank several students of mine. First, Patricia Borns, who read almost the entirety of The Functional Art and gave me valuable advice on how to improve its style. This book is much more readable because of her. Eileen Mignoni and Sophia Dengo read and edited very preliminary chapters, years ago. I also got suggestions from Lex Alexander, Mel Umbarger, and Lauren Flowers, and from many other of my undergraduate and graduate students at the University of North Carolina-Chapel Hill and at the University of Miami.
To Nigel Holmes, Stephen Few, and Karl Gude for their kind comments about the content of *The Functional Art*: Coming from them, their words mean a lot to me. They were three of my main sources when I was learning how to visually display information. They are giants with broad shoulders; I’ve taken advantage of that. Thanks also to Chiqui Esteban and Javier Zarracina, Spanish infographics masterminds.

Many of the examples in *The Functional Art* come from my two years as director of infographics and multimedia at Época magazine, in São Paulo, Brazil. I wish to thank the wonderful people I had the honor to work with. First, the infographics department: Marco Vergotti, David Michelsohn, Rodrigo Cunha, Rodrigo Fortes, Gerson Mora, Luiz Salomão, Gerardo Rodríguez, Erik Scaranello, and Pedro Schimidt. Also, Época’s art director, Marcos Marques, author of some of the most impressive covers I’ve ever seen in a news magazine. Thanks also to Helio Gurovitz and his deputy, David Cohen, two managers with a background in computer science and engineering who understand what visualization and data journalism are about.

To my colleagues at the University of Miami and at UNC-Chapel Hill: Rich Beckman, Laura Ruel, Don Wittekind, Pat Davison, Charles Floyd, Kim Grinfeder, Michelle Seelig, and Jim Virga. Also, to the deans who, since 2005, have supported me in the teaching of graphics and visualization: Richard Cole, Tom Bowers, Jean Folkerts, and Gregory Shepherd.

To the people who, every year, organize and participate in the Malofiej International Infographics Summit (www.malofiej20.com): Javier Errea, Álvaro Gil, John Grimwade, Geoff McGhee, Juan Velasco, and so many others.

To Mario Tascón and Gumersindo Lafuente, makers of www.elmundo.es, where I was graphics director between 2000 and 2005. They both trusted a certain rookie more than a decade ago.

To all my colleagues at La Voz de Galicia, Diario 16, El Mundo, DPI Comunicación, and all the other newspapers and magazines I have worked for, both as a full-time employee and as a consultant. I wish to also thank all the organizations, companies, and friends who graciously gave me permission to use their infographics and visualizations in this book.

Finally, *The Functional Art* is, above all, for my wife and kids. In the past several months, they had to endure long hours of silence and deep concentration on my part. Patience has never failed them. Writing is the most solitary activity I know. I could not have survived without their support. I love you.
About the author

Alberto Cairo teaches information graphics and visualization at the University of Miami’s School of Communication and serves as an advisor for the Master of Arts in Technology and Communication program at the University of North Carolina (UNC)-Chapel Hill.

In 2000, Cairo led the creation of the Interactive Infographics Department at El Mundo, the second largest printed and the largest digital daily newspaper in Spain. Between 2001 and 2005, Cairo’s team won more Malofiej and Society for News Design (SND) infographics international awards than any other news organization worldwide.

Cairo was a professor at UNC-Chapel Hill between 2005 and 2009, and has been an invited lecturer and keynote speaker at all of the most influential international conferences on visual journalism and design. He has taught in the U.S., Mexico, El Salvador, Costa Rica, Venezuela, Ecuador, Peru, Brazil, Chile, Argentina, Spain, Portugal, France, Switzerland, Ukraine, Singapore, and South Korea. He has also been a consultant with many top news publications in those countries. Since 2006, he has been a lecturer at the Universitat Oberta de Catalunya, the first public university in Spain to offer online accredited degrees.
About the DVD

The video course in the DVD that accompanies The Functional Art expands on the contents of this book. The course is similar to the materials I’ve used in the past in my classes at UNC-Chapel Hill and at the University of Miami so, in case you are an instructor, they may be a good starting point to develop your own presentation slides. If you are a professional or a student, please be aware that many of the examples showcased in the video course are different than the ones included in the book.

The DVD is divided into three video lessons: First, there is an introduction to basic visualization concepts, followed by a discussion on the principles of graphic design, and finally, a section on how to plan for infographics projects.

In the first video lesson, I delve into the ideas outlined in the first section of The Functional Art. You will learn, for instance, why infographics should be “functional as hammers, multilayered as onions, and beautiful as equations.” I also discuss what strategies you can follow to choose the most appropriate graphic forms to display your information.

In the second lesson, I explain the main principles of graphic design, such as unity, variety, and hierarchy, and how to apply them to create better layouts. I also give you some basic tips on how to better use type and color.

In the third lesson, I discuss an impressive visualization made by the British newspaper The Guardian. I also explain how I developed the chart on the front cover of The Functional Art. You will see how I use Microsoft Excel and Adobe Illustrator, and why I call my approach “low-tech visualization.” This lesson is not a tutorial on software tools, but it may give you a clue or two about how to start a career in information graphics. If you work in this field already, this video may reveal a few tricks that you can apply in your own projects.
Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>xiv</td>
</tr>
<tr>
<td>PART I foundations</td>
<td></td>
</tr>
<tr>
<td>1 Why Visualize: From Information to Wisdom</td>
<td>5</td>
</tr>
<tr>
<td>Rational Optimism</td>
<td>6</td>
</tr>
<tr>
<td>Low-Tech Visualization to the Rescue</td>
<td>8</td>
</tr>
<tr>
<td>Drowning in Data? Only If You Don’t Know How to Swim</td>
<td>14</td>
</tr>
<tr>
<td>From Information to Wisdom</td>
<td>15</td>
</tr>
<tr>
<td>Making Reality Visible</td>
<td>17</td>
</tr>
<tr>
<td>Visualization as a Technology</td>
<td>19</td>
</tr>
<tr>
<td>2 Forms and Functions: Visualization as a Technology</td>
<td>25</td>
</tr>
<tr>
<td>An Information Graphic on Defense</td>
<td>26</td>
</tr>
<tr>
<td>What Shape Should My Data Have?</td>
<td>28</td>
</tr>
<tr>
<td>The Origins of “Form Follows Function”</td>
<td>32</td>
</tr>
<tr>
<td>More about Functions in Nature</td>
<td>33</td>
</tr>
<tr>
<td>Functions Constrain Forms</td>
<td>36</td>
</tr>
<tr>
<td>The Bubble Plague</td>
<td>39</td>
</tr>
<tr>
<td>More Flexible Than It Seems</td>
<td>43</td>
</tr>
<tr>
<td>3 The Beauty Paradox: Art and Communication</td>
<td>45</td>
</tr>
<tr>
<td>Building a Narrative Structure</td>
<td>46</td>
</tr>
<tr>
<td>An Unexpectedly Controversial Chart</td>
<td>47</td>
</tr>
<tr>
<td>The Visualization Wheel</td>
<td>50</td>
</tr>
<tr>
<td>Abstraction-Figuration</td>
<td>52</td>
</tr>
<tr>
<td>Functionality-Decoration</td>
<td>53</td>
</tr>
<tr>
<td>Density-Lightness</td>
<td>54</td>
</tr>
<tr>
<td>Multidimensionality-Unidimensionality</td>
<td>54</td>
</tr>
<tr>
<td>Originality-Familiarity</td>
<td>54</td>
</tr>
<tr>
<td>Novelty-Redundancy</td>
<td>57</td>
</tr>
<tr>
<td>Identifying your audience</td>
<td>59</td>
</tr>
<tr>
<td>Engineers vs. Designers: Edward Tufte and Nigel Holmes</td>
<td>61</td>
</tr>
<tr>
<td>Minimalism and Efficiency</td>
<td>63</td>
</tr>
</tbody>
</table>
Is All “Chartjunk” Junk? 64
Fun and Functionality 68
Otto Neurath and the Visual Education of the Masses 70

4 The Complexity Challenge:
Presentation and Exploration 73
It’s Not the Style, It’s the Content 74
Seek Depth 76
Graphics Don’t “Simplify” Information 78
Finding Balance: Density and Multidimensionality 80
Functionality and Abstraction 81
Fun-tionality 85
The “Boom” Effect 86

PART II cognition

5 The Eye and the Visual Brain 97
The Unexplained Eye 98
Let There Be Light 99
 Light and Photoreceptors 100
Foveal, Peripheral Vision, and Animated Infographics 102
The Lying Brain 105
 The Efficient Brain 108
 A New Diagram For Vision 110

6 Visualizing for the Mind 111
The Brain Loves a Difference 111
 The Gestalt School of Thought and Pattern Recognition 114
 Choosing Graphic Forms Based on How Vision Works 118
 The Perceptual Tasks Scale as a Guide for Graphics 123
 Other Preattentive Features: Seeing in Depth 128

7 Images in the Head 133
How to Open an Airplane Door 134
Recognizing by Remembering 136
 The Comparing Brain 139
 The Mental Imagery Debate 141
How Do We Really Know that a Face is a Face? 142
Applying Object Recognition to Information Graphics 144
Looking Ahead 146
PART III practice

8 Creating Information Graphics 153
 Brazilian Saints 154
 The Changing Face of Brazil’s Population 160
 Inequality and the Economy 167
 A Word on Structure, Color, and Type 171

9 The Rise of Interactive Graphics 185
 Early Lessons on Interaction Design 188
 Visibility 189
 Feedback 190
 Constraints 192
 Consistency 192
 Structuring Interactive and Animated Infographics 195
 Different Kinds of Interaction 200
 Instruction 200
 Conversation 200
 Manipulation 203
 Exploration 204
 How to Plan For Interactive Infographics 204

PART IV profiles

1 The Infographics Gentleman 212
 John Grimwade (Condé Nast Traveler magazine)

2 Information Art 231
 Juan Velasco and Fernando Baptista
 (National Geographic magazine)

3 All the Infographics That Are Fit to Print 250

4 Capital Infographics 264
 Hannah Fairfield (The Washington Post)

5 Germanic Precision 279
 Jan Schwochow (Golden Section Graphics)
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Visualization in Academia</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>Geoff McGhee (Stanford University)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Quantitative Humanism</td>
<td>306</td>
</tr>
<tr>
<td></td>
<td>Hans Rosling (Gapminder Foundation)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Truth and Beauty Operator</td>
<td>314</td>
</tr>
<tr>
<td></td>
<td>Moritz Stefaner (http://moritz.stefaner.eu)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>The Rising Stars</td>
<td>326</td>
</tr>
<tr>
<td></td>
<td>Gregor Aisch (driven-by-data.net) and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jan Willem Tulp (TULP interactive)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Visualizing Literature</td>
<td>342</td>
</tr>
<tr>
<td></td>
<td>Stefanie Posavec (itsbeenreal.co.uk)</td>
<td></td>
</tr>
</tbody>
</table>

Bibliography

Index
Introduction

Infographics and Visualization

The remarkable mechanisms by which the senses understand the environment are all but identical with the operations described by the psychology of thinking.

—Rudolf Arnheim, from *Visual Thinking*
The partnership of presentation and exploration

If you asked me to choose one mystery that has fascinated me through the years, it would be our brain’s ability to create and understand visual representations with different degrees of abstraction: graphics that encode data, concepts, connections, and geographical locations. How is it possible that the brain, a wrinkled chunk of meat and fat squeezed into a cavity too small for its size, can accomplish such challenging tasks? This book is my personal attempt to answer that question.

The human brain has dozens of regions related to visual perception: densely interconnected groups of neurons devoted to the processing and filtering of information that we collect through our eyes. Evolution designed us such that no other activity demands more mental resources than visual perception and cognition. This fact permeates everything we do, and impacts the way we express ourselves. Go ahead and explain a difficult concept to a friend. In the moment she gets what you mean, she will exclaim, with a sparkle of relief and happiness in her eyes:

“I see!”

Her expression makes complete sense, because deep inside our minds, to see and to understand are intertwined processes. We understand because we see. This causal relationship is also true the other way around. As I will explain later, we see because we have previous understanding of certain things. Seeing precedes understanding, and this understanding precedes a better, deeper seeing down the road.

We are a visual species. We are also a symbolic species, if we follow Terrence W. Deacon’s famous definition. Everything our senses gather is transformed, deep inside our minds, into simple, manageable representations, or symbols. Some of those symbols are verbal or textual, encoded with one of the thousands of languages and dialects humanity has devised. They can also be expressed through what Harvard psychologist Steven Pinker called mentalese, the inner language the mind uses to talk to itself.

But not all symbols are verbal. The brain doesn’t just process information that comes though the eyes. It also creates mental visual images that allow us to reason and plan actions that facilitate survival. Imagine a bus. Picture it in your head. Now, examine it: Is it yellow, or blue, or red? Does it have a license plate? Is it a plate of the state you live in? That’s it. That’s a mental image. Understanding the mechanisms involved in these brain processes can help you become a better communicator, visual or otherwise.

This is the first theme of the book you have in your hands.

The second theme is the common nature of infographics and information visualization. Some professionals and academics have erected a sharp distinction between the two disciplines. According to them, infographics present information by means of statistical charts, maps, and diagrams, while information visualization offers visual tools that an audience can use to explore and analyze data sets. That is, where infographics tell stories designed by communicators, information visualization helps readers discover stories by themselves.

In the following pages, I take an unorthodox approach. Infographics and visualization exist on a continuum. Let me explain.

Imagine two straight, black parallel lines. On the top line, put the word “Infographics” on the left tip and “Visualization” on the right. On the line at the bottom, write “presentation” on the left, and “exploration” on the right. All graphics present data and allow a certain degree of exploration of those same data. Some graphics are almost all presentation, so they allow just a limited amount of exploration; hence we can say they are more infographics than visualization (Figure 1), whereas others are mostly about letting readers play with what is being shown (Figure 2), tilting more to the visualization side of our linear scale. But every infographic and every visualization has a presentation and an exploration component: they present, but they also facilitate the analysis of what they show, to different degrees.

An excellent example: The beauty of Stefanie Posavec’s Literary Organism is based on its organic appearance and careful selection of typefaces and colors, and also
on the multiple readings you can extract from it. Each subdivision of this tree-like graphic represents a deeper, more granular level of organization in the book: chapters, paragraphs, sentences, and words. Colors correspond to the most common themes of the novel: travel, music, parties, sex, and so on.

After spending some time fathoming it, patterns emerge and convey a different message to each viewer. While the uninitiated in Kerouac’s oeuvre will identify a big picture of the main topics the book discusses, the specialist or literary critic will be able to use this work of art as a tool to test hypotheses and intuitions. Is sex a prevalent theme in *On the Road*, for instance? What about the chapters that combine paragraphs about sex with paragraphs about work and survival?

A chart of mine in Figure 3 also illustrates the complementarity between presenting and exploring. Each point of the color line represents a year between 1981 and 2010 in the history of Brazil. The position of a point on the horizontal axis is equivalent to the Gross Domestic Product, measured in billions of dollars. The position on the vertical axis is equivalent to the inequality level measured with the GINI index, developed by the UN. The farther to the right a point is, the bigger the GDP (adjusted for inflation and for purchase power parity); the higher the point is on the vertical scale, the higher the inequality in that particular year.

In other words, the graphic represents the covariation of economic development and social justice. The headline summarizes its central message: When the GDP...
Figure 2 Stefanie Posavec Literary Organism: a Visualization of Part I of “On the Road,” by Jack Kerouac (www.itsbeenreal.co.uk). Reproduced with permission.
When the Brazilian Economy Improves, Inequality Doesn't Drop

The graphic below shows the correlation between Brazilian GDP (horizontal axis) and inequality (vertical axis) between 1981 and 2010. The position of the points, each representing a year, depends on how high GDP and inequality were. You can notice, for instance, that the economy grew between 1986 and 1989 because the line tends to move to the right, but inequality also grew, as the point representing 1989 is much higher than the ones before. You can also see that, during Lula da Silva’s government, the economy expanded almost as much as during the terms of the other presidents who preceded him combined.

The 1980s are known as the “Lost Decade” in Brazil for a reason: the GDP was stagnant and inequality reached its highest point in 1989, under José Sarney’s presidency. It was a time of hyperinflation that affected mostly the poorest, who didn’t have access to investments and bank accounts. Fernando Collor’s and Itamar Franco’s presidencies registered modest GDP improvements, but inequality varied widely: sometimes it dropped and the next year, for no apparent reason, it increased again. Only during Fernando Henrique Cardoso’s (FHC) and Lula da Silva’s governments does the curve tend to stabilize: the economy starts growing at a steady pace and inequality decreases with no interruption.

Figure 3 Época magazine. The co-variation of inequality and economic growth (Translated from Portuguese.) Reproduced with permission.

grows, inequality does not necessarily drop. It’s one of the disgraces of recent Brazilian history that improvements in the economy don’t always lead to a better living standard for everybody. In some years, particularly on the first half of the line, the opposite is true.

When I finished designing this project, I showed it to some middle-aged colleagues at Época, a weekly news magazine I worked for between 2010 and 2011. Their response was unanimous and encouraging. Although they were writers rather than designers or artists, all of them understood the graphic with a minimum of
effort. It confirmed for them facts that every Brazilian older than 40 remembers: the constant and stable economic growth the country went through during Lula’s administration (2003–2011), when the government promoted several income distribution programs; the instability of José Sarney’s and Fernando Collor’s years, when the GDP barely improved but inequality varied erratically; the stabilization forced by Fernando Henrique Cardoso (FHC), who took Brazil out of the black hole of inflation; and so on.

Some of them even told me that the multicolored line was history-making, because it revealed the correlation between the two variables, which had never been shown before. The line looks wildly erratic between 1981 and 1992 (the chaos years); it smooths between 1993 and 2002 (the stabilization period); and it becomes perfectly straight after 2003, revealing an almost perfect relationship between better economic output and more equality in Brazil. To see self-proclaimed non-visual people in the process of unraveling such an uncommon graphic form, and getting satisfactory messages from it, was eye-opening for me.

The surprise reaction of my “text” colleagues as they read the graphic, rather than merely looked at it, has deep roots. This is the third theme of The Functional Art: Graphics, charts, and maps aren’t just tools to be seen, but to be read and scrutinized. The first goal of an infographic is not to be beautiful just for the sake of eye appeal, but, above all, to be understandable first, and beautiful after that; or to be beautiful thanks to its exquisite functionality.

If you are among those journalists, designers, and artists who think that infographics and visualization consist of a bunch of data shaped into a spectacular and innovative form, keep reading. I hope I will be able to make you forget that simplistic idea. As Ben Shneiderman wrote once, “The purpose of visualization is insight, not pictures.” Images are the vocabulary of a language. They are means, not ends. You will never hear a writing journalist say that her goal is to strive for a good literary style by using elegant sentences and sophisticated structures. Her style is just a tool to facilitate comprehension and to wake up emotions in readers’ minds so they’ll absorb difficult ideas with ease. Aesthetics do matter, but aesthetics without a solid backbone made of good content is just artifice.

In this book, you will see that I write quite a bit about visual journalism. That’s because I am a journalist, and I am convinced that many of the challenges news media face in using graphics are common to other professions that also use them on a regular basis, such as marketing, advertising, business intelligence, data analysis, and so on.

In newspapers and magazines, infographics have traditionally been created within art departments. In all of those I’m familiar with, the infographics director is subordinate to the art director, who is usually a graphic designer. This is not a mistake per se, but it can lead to damaging misunderstandings. In Brazil, the country where I lived while writing part of this book, journalists and designers call graphics “art.” They would say, with that charming musicality of South American Portuguese, “Vamos fazer uma arte!” (“Let’s make a piece of art!”) Thinking of graphics as art leads many to put bells and whistles over substance and to confound infographics with mere illustrations.

This error is at least in part the result of a centuries-long tradition in which visual communication has not been as intellectually elevated as writing. For too many traditional journalists, infographics are mere ornaments to make the page look lighter and more attractive for audiences who grow more impatient with long-form stories every day. Infographics are treated not as devices that expand the scope of our perception and cognition, but as decoration. As Rudolf Arnheim wrote, this tradition goes back to ancient Western philosophy, whose Greek thinkers such as Parmenides and Plato mistrusted the senses deeply. Unfortunately today, 40 years after Arnheim’s masterful Visual Thinking was published, the philosophy is still in very good health.

The fourth theme of the book, therefore, is the relationship between visualization and art, which is similar to the linkage of journalism and literature. A journalist can borrow tools and techniques from literature, and be inspired by great fiction writing, but she will never allow her stories to become literature. That notion applies to visualization, which is, above all, a functional art.

Let’s get started.

Miami, Florida. June 2012

———

This page intentionally left blank
Why Visualize: From Information to Wisdom

My expertise has always been my ignorance, my admission and acceptance of not knowing....When you can admit that you don’t know, you are more likely to ask the questions that will enable you to learn.

—Richard Saul Wurman, from Information Anxiety 2

Recently someone asked me what personality trait best characterizes those interested in a career in visualization and infographics. My answer: “An insatiable, childish curiosity.”

Curiosity, combined with a tendency to try to explain everything using reason, led me to a career in journalism and, later, to specialize in information graphics. It is not possible to be a good communicator if you have not developed a keen interest in almost everything as well as an urge to learn as much as you can about the strangest, most varied, unrelated topics. The life of a visual communicator should be one of systematic and exciting intellectual chaos. In my case, it consists of regular shifts between journalism, cognitive psychology, international
politics, and history. In your case, it might be sports, music, architecture, or just about anything else.

Let me give you an example of how far healthy curiosity can take you.

Rational Optimism

My original plan for this chapter was to open it with a few formal definitions for information visualization, information design, and infographics. But something changed my mind. While randomly navigating The New York Times website, I stumbled on a review of a book called The Rational Optimist: How Prosperity Evolves, by British science essayist Matt Ridley (2010).

The review was mostly critical, but the hypotheses Ridley proposed sounded intriguing. The book honored its title, making a case for optimism about our future as a species. I had read other Ridley books in the past and had loved his Genome: The Autobiography of a Species in 23 Chapters (2006), so I was positively biased.

My curiosity ignited, I grabbed my Kindle and purchased the book. One minute later, it had finished downloading. For the rest of the day, I traded book writing for reading. (Note to my editor: I did it to make this chapter better, I promise!) The book is so well written that it was difficult to put down before the end.

One chapter about the fertility rate, or the average number of children born to women in each country, caught my eye. You may have heard or read the stories of Malthusian doomsayers who claim that rising fertility in poor regions is the reason the Earth has to support 7 billion people, with a forecast of 9 billion two decades from now, and even more in the far future.

Other doomsayers focus on the aging populations of developed countries where fertility rates are below 2.1 children per woman, a number that is known as the “replacement rate.” If the replacement rate in a country is significantly below 2.1, the population will shrink over time. If it’s much higher than 2.1, you’ll have a much younger population down the road, which can cause problems. Younger populations, for example, show greater rates of violence and crime.

Ridley contradicts both kinds of apocalyptic thinking by discussing two interesting trends. On average, fertility in rich countries is very low, but in the past few years it has trended slightly upward. On the other hand, poor countries show a decrease in average fertility. Contrary to conventional wisdom, in many countries

that verge on becoming first-world economies, such as Brazil, the drop is dramatic: the fertility rate has trended from more than six children per woman in 1950 to less than two in 2010.

Ridley suggests that, due to these two complementary trends, fertility rates everywhere will converge around 2.1 in a few decades, and the world population will stabilize at 9 billion people. It’s counterintuitive, isn’t it?

Ridley’s case is compelling and supported by prospective data from reliable sources, such as the United Nations (UN) and The World Bank.² But something made me uncomfortable as I read his arguments. It took me a while to figure out what it was. Ridley writes about curves and lines and trends, but the chapter on fertility and population includes just one graphic, similar to the one in Figure 1.1.

![Percentage increase in world population](image)

Figure 1.1 How much world population increases compared with the previous year.

The graphic is simple and clear, but also insufficient to support the claims Ridley makes. All it shows is that when you plot population change as a time-series chart, the trend is negative. The closer we get to the present, the lower the worldwide population growth. **The fact that the graphic is an aggregate of the data of all countries in the world impedes our ability to see the multiple patterns**

Ridley discusses. Where are those rich countries whose fertility rate is slowly recovering? Where is the evidence for the assertion that developing countries such as Brazil, China, and India are stabilizing their populations?

I told you before that I am curious. I didn’t just take a day off to read The Rational Optimist. I also looked for the data Ridley used for the chapter on population. With that data, would I be able to prove his hypotheses?

Low-Tech Visualization to the Rescue

The first thing I did was go to the United Nations website. If you search for “UN data,” you will quickly find http://data.un.org/, which is a kind of paradise if you like to dig into huge databases on population, education, economics, and social development. Within the UN site, I searched for the fertility rate data. The UN’s figures begin in 1950; the projections extend as far as 2100.

I decided to exclude the years after 2010, playing with actual data (at that time) rather than forecasts. Using the filters the site offers, I asked for a table that included the more than 150 countries on which the UN has complete research. Figure 1.2 shows a screenshot of what I obtained.

![UN data table](image)

Figure 1.2 UN data table.

I downloaded the table and decided to try a low-tech visualization exercise to show my students—mostly journalists with no technology background—that learning to create information graphics is not all that difficult.
Using OpenOffice (an open source software suite that includes a spreadsheet program), I reorganized the data and cleaned up the table a little. Some cells were missing, so the process involved a bit of manual tweaking—no big deal. Figure 1.3 shows an excerpt of the result.

![Figure 1.3 My UN data table after tweaking.](image)

Still with me? Now the fun begins. We have the table in the computer. Is it possible to make sense of it? Hardly. Extracting meaning from a table is tough. Can you see any interesting trends just by reading the figures? If you can, congratulations. You have an extraordinary memory. Most of us mortals have brains that didn't evolve to deal with large amounts of data. Let me prove it to you: Look at Figure 1.3 again and tell me in what years between 1950 and 1975 did the difference between the fertility rates of Spain and Sweden grow, and in what years did it drop?

This apparently simple task forces you to do something extremely difficult: look up a number, memorize it, read another one, memorize it and compare it with the previous one, and so forth until you get to the end of the series. I wouldn't bother.

But what if I designed a simple chart with the data in the spreadsheet? The result (Figure 1.4) is a visual tool that helps answer my question. The message in that graphic is clear: Spain started 1950 with an average number of children per woman higher than Sweden’s. But then fertility in Spain fell drastically after 1970 and only recovered partially in the last five years of the series. On the other hand, Sweden’s fertility rate has remained pretty stable over the last 60 years, although it is well below the replacement level of 2.1 children per woman.

By giving numbers a proper shape, by visually encoding them, the graphic has saved you time and energy that you would otherwise waste if you had to use a table that was not designed to aid your mind. The first and main goal of any
A Comparison of Spain’s and Sweden’s Fertility Rates

Average number of children per woman over her lifetime

Source: UN

Figure 1.4 So much for Spanish pride.

graphic and visualization is to be a tool for your eyes and brain to perceive what lies beyond their natural reach.³

However, presenting data for two countries is far simpler than presenting data for one hundred of them, which is what we may need to do in order to put some of Matt Ridley’s ideas to the test. Once we represent the lines for all countries in our data set, we get something similar to Figure 1.5. This colorful spaghetti dish may look interesting, but it’s totally useless for our purposes. This is what you get when you let a software program do the hard work for you.

Remember, what we want to reveal is the projected confluence of the lines of rich countries (trending slightly up in recent years) and those of poor countries (trending down) around the 2.1 children per woman line. If you look at Figure 1.5 long enough, you may be able to tell the lines apart, but it’s more likely you will just give up.

The way to solve this problem is to add some visual hierarchy to the mix. Obviously it makes no sense for all lines to be equally visible. In information graphics, what you show can be as important as what you hide. I put the chart generated in OpenOffice into Adobe Illustrator, where I highlighted a few rich countries and a few developing and poor countries.

I made other countries’ lines light gray, so they remain on the scene but don’t obscure the message. Why not get rid of them? Because they provide context to

³ This idea has inspired some of the best books out there, including those of Edward Tufte, William Cleveland, Stephen Few, and Stephen Kosslyn, among others. See the Bibliography for references.
the cases that I highlight. While changing all the background lines to one color makes it impossible to see them as independent entities, collectively they show an overall downward trend in the data—you can see that many lines begin between the 6.0 and 8.0 children per woman point in 1950, but just a handful of them remain at that height in the vertical axis when they reach 2010. The final sketch in Figure 1.6 looks much more user-friendly than the previous one.

Excited by what I was revealing, I explored other assertions made in The Rational Optimist. Ridley argues that a sudden drop in a country’s fertility rate is usually precipitated by several factors: an increase in average per capita income, women getting better access to education, and the shrinking of infant mortality figures. The facts that more children survive their first years of life and that women are spending more time in school are positively correlated to better family planning.

On the economic side, Ridley explains that in rich countries, leisure options are everywhere, and they are cheap and accessible; the distractions of the modern world free us, albeit partially, of our primary impulse to reproduce with no control. We can explain this phenomenon in bogus academic jargon: the average number
Figure 1.6 Highlighting the relevant, keeping the secondary in the background.
of children per couple is inversely proportional to the average amount of hours each member of that couple spends in front of any kind of screen. No kidding.

To prove the correlation between fertility, income, and women’s schooling, I designed two small scatter-plots in the same spreadsheet software I used before. In Figure 1.7, each little circle represents a country. The position of each country on the horizontal axis is proportional to its fertility rate. The position on the vertical axis equals average income per person (first chart) and the percentage of students in middle school who are female (second chart).

![Per capita income and fertility rate](image1)

![Percentage of middle school students who are women and fertility rate](image2)

Figure 1.7 The more educated and rich you are, the fewer children you’ll have.

The black line running between the dots is called a *trend line* or *regression line*: the closer the dots are to this line, the stronger the correlation between the two variables represented. You can see that the dots are pretty close to the line, so the variables are related. On average, the richer people are, the fewer children they tend to have; and the fewer girls who attend middle school, the more children on average they have in that particular country.

Here’s the lesson I learned from this exercise: In just three or four hours of work, I completed a personal project that allowed me to see the evidence supporting Matt Ridley’s discussion on the evolution of fertility. His hypotheses seem to have some basis after all. **But if you don’t present your data to readers so they can see it, read it, explore it, and analyze it, why would they trust you?** This is a question many journalists, particularly those who write opinion columns, should ask themselves more often.
Drowning in Data? Only If You Don’t Know How to Swim

The example I just gave you was not chosen randomly. It helps us delve into topics that are essential to understanding the present state of graphics as a form of communication. Isn’t it amazing that we can read graphics at all, and use them to discover realities otherwise invisible to the bare eye? In the past two or three decades, psychology has unveiled many of the brain mechanisms involved in this kind of understanding. Another thought: Did you notice that the data I manipulated is available on the Internet for free? And isn’t it wonderful that the tools I used to prove Matt Ridley’s assertions are also broadly available to anyone and can be learned in a matter of hours?

Those three trends have converged to put visualization in the mainstream. The design of graphics is not just more democratic than it was a decade ago, when data was sparse and software expensive and difficult to use. We also have the potential to use graphics more intelligently because the principles informing their design have never been clearer.

Embracing graphics and visualization is no trivial endeavor. Citing research by International Data Corp (IDC), The Economist reported that the information generated in 2010 alone reached 1,200 exabytes,4 an amount equivalent to thousands of billions of issues of the venerable British magazine. The story added that the total amount of extant digital information totals several zettabytes. Here’s a simple explanation to help you grasp the challenge we’re dealing with:

1 bit, or binary digit, is the basic unit of information in computing. It represents either 0 or 1.

1 byte (the amount of information necessary to encode a letter or a number) = 8 bits

1 kilobyte = 1,000 bytes

1 megabyte = 1,000 kilobytes or 1,000,000 bytes (10^6)

1 gigabyte = 1,000 megabytes or 1,000,000,000 bytes (10^9)

1 terabyte = 1,000 gigabytes or 1,000,000,000,000 bytes (10^12)

1 petabyte = 1,000 terabytes or 1,000,000,000,000,000 bytes (10^15)

1 exabyte = 1,000 petabytes or 1,000,000,000,000,000,000 bytes (10^18)

1 zettabyte = 1,000 exabytes or 1,000,000,000,000,000,000,000 bytes (10^21)

1 yottabyte = 1,000 zettabytes or 1,000,000,000,000,000,000,000,000 bytes (10^24)

Confused? Don’t worry. You’re not alone. A yottabyte of information is such a huge number that it is impossible to imagine. In August 2010, Erich Schmidt, former CEO of Google, announced in a conference that between the beginning of time and 2003, humanity generated roughly five exabytes of data, whereas we now produce the same volume of bits every two days.

“The information explosion is so profoundly larger than anyone ever thought,” said Schmidt. Five exabytes is more than 200,000 years of DVD-quality video.\(^5\)

To be fair, not all that “information” is what you would call information in a colloquial conversation. Most of it is the product of automated processes and communications between computers, mobile phones, and other devices—nothing that a human brain can understand. But still.

Let’s catch our breath here and move on.

From Information to Wisdom

In the 1970s, years before access to the Internet was universal, Richard Saul Wurman, then a professor of architecture in North Carolina, predicted that the oncoming information explosion would require the intervention of a new breed of professionals trained in organizing data and making sense of it. According to Wurman, the biggest challenge our species was about to face was to learn how to navigate the upcoming tsunami of bits that was cresting the horizon.

Wurman called these people *information architects*. Their discipline, *information architecture*, has been defined by others as:

- The structural design of shared information environments;
- The combination of organization, labeling, search, and navigation systems within websites and intranets;
- The art and science of shaping information products and experiences to support usability and findability;
- An emerging discipline and community of practice focused on bringing principles of design and architecture to the digital landscape.

Wurman suggests that one of the main goals of information architecture is to help users avoid *information anxiety*, the “black hole between data and knowledge.”

People still have anxiety about how to assimilate a body of knowledge that is expanding by the nanosecond.... Information anxiety is produced by the

5 Google Atmosphere 2010 conference.
ever-widening gap between what we understand and what we think we should understand.6

The gap is better represented through the diagram in Figure 1.8, which shows the steps separating the two extremes of Wurman’s maxim. It is based on several models known as DIKW Hierarchies (Data, Information, Knowledge, Wisdom). Although the models have been criticized as simplistic and vague,7 they are useful for explaining what visualizations and graphics are about.

Figure 1.8 From reality to people’s brains.

In the diagram, **unstructured information** means **reality**, the world out there in all its glorious complexity. Every phenomenon that can be perceived or measured can be described as information.

Data are records of observations. Data can be encoded as symbols (numbers and words) that describe and represent reality. In between unstructured information and data, you can see a **first level of encoding**. Imagine a researcher studying the fertility rate. The data would be the records the researcher makes in a spreadsheet, for instance: 2, 5, 6, 2, 2, 2, 1, 1, 4, 3, 3 (and so on) children per woman.

The **second level of encoding** takes us from data to **structured information**. This happens when a communicator (a researcher, a journalist, or whomever) represents data in a meaningful way, using text, visuals, or other means. We can also say that this communicator has given shape to data, so that relevant patterns become visible.

Information consumption can lead to higher knowledge on the part of the audience, if its members are able to perceive the patterns or meaning of data. It is not a passive process; our brains are not hard drives that store stuff uncritically. When people see, read, or listen, they assimilate content by relating it to their memories and experiences.

We reach wisdom when we achieve a deep understanding of acquired knowledge, when we not only “get it,” but when new information blends with prior experience so completely that it makes us better at knowing what to do in other situations, even if they are only loosely related to the information from which our original knowledge came. Just as not all the information we absorb leads to knowledge, not all of the knowledge we acquire leads to wisdom.

Every step in our diagram implies higher order. When we see the world, we unconsciously impose organization on the unstructured information that our eyes gather and transmit to the brain. We create hierarchies. We don’t perceive everything in front of us at once, as we’ll see later in this book. A moving entity, for instance, attracts our attention more than a static one, because movement may suggest an approaching threat. We therefore process the position and identity of the moving object before paying attention to anything else. Our brain gives meaning to the object, even if we are not aware of the reason why.

In the words of Kevin Kelly, a famous philosopher of technology, in his book What Technology Wants (2010):

Minds are highly evolved ways of structuring the bits of information that form reality. That is what we mean when we say a mind understands; it generates order.

So, without conscious effort, the brain always tries to close the distance between observed phenomena and knowledge or wisdom that can help us survive. This is what cognition means. The role of an information architect is to anticipate this process and generate order before people’s brains try to do it on their own.

Making Reality Visible

Today, information architect refers broadly to professions with very different sets of tools and theoretical traditions. Outside academic circles, an information architect can be someone who writes technical handbooks, a software engineer, a web developer, a wayfinding designer (yes, that’s a profession; who do you think creates public spaces that can be navigated with ease?), and that nerdy guy who makes charts on fertility just for the fun of it.
All of those professions share the goal of making the world easier for audiences and users, but that’s too broad a goal to put them all in the same bag. For my purposes in this book, information graphics and visualization is a form of information architecture. But how can we be more precise in describing the relationship between the branch and the trunk?

Look at Figure 1.9 and imagine information architecture as a big circle. Inside is the set of disciplines devoted to dealing with information. Among the most relevant disciplines is information design, defined by Stanford University’s Robert E. Horn as “the art and science of preparing information so that it can be used by human beings with efficiency and effectiveness.” The goal of the information designer is to prepare documents (both analog and digital) and spaces so they can be navigated effortlessly.

A significant part of information design is information graphics and visualization. Academic literature sometimes separates infographics from visualization and defines the latter as “the use of computer-supported, interactive, visual representations of data to amplify cognition,” but I prefer the more straightforward take of Joan Costa, a famous Spanish professor of design: To visualize is “to make certain phenomena and portions of reality visible and understandable; many of these phenomena are not naturally accessible to the bare eye, and many of them are not even of visual nature.”

Why does Costa add that second part about not being necessarily of visual nature? Because graphical displays can be either figurative or non-figurative. To understand figurative displays, think of a map as a scaled portrait of a geographical area, or a manual that explains through illustrations how to use your new washing machine, or a news infographic on a catastrophic plane crash, like the one in Figure 1.10 (pages 20 and 21), a superb project by Público, a medium-sized Spanish newspaper with a small but extremely talented graphics desk.

Other graphics that display abstract phenomena are non-figurative. In these, there is no mimetic correspondence between what is being represented and its representation. The relationship between those two entities is conventional, not natural (see Figure 1.11). The unemployment rate doesn’t really resemble a grid of multicolored rectangles, does it?

![U.S. Unemployment: A Historical View](image)

Figure 1.11 The Wall Street Journal. Web chart U.S. Unemployment: A Historical View. (Reprinted with permission of The Wall Street Journal, Copyright © 2010 Dow Jones & Company, Inc. All Rights Reserved Worldwide.)

Visualization as a Technology

Let me introduce an idea crucial to the premise of this book: **Visualization should be seen as a technology.** That may sound odd. When someone mentions technology in a routine conversation, we usually think of machines: MP3 players, cars, refrigerators, electric toothbrushes, lawn mowers, computers. But what do all those devices have in common? I don’t mean physically, but in their very essence:
Radiografía de la catástrofe

El vuelo 5022 JK de Spanair se salió de la pista de despegue a las 14:45 con 172 personas a bordo. El accidente activó todos los servicios de emergencias de Madrid. 153 ocupantes han perdido la vida.

Localización

Dónde se trasladó a los heridos

1. **El accidente**
 - El siniestro se produjo en el segundo intento de despegue. El piloto informó de que un problema técnico impidió la primera intención, en la que el avión llegó hasta el final de la pista sin alzar el vuelo. Un indicador de temperatura no funcionaba y tuvo que ser reemplazado.

2. **Despegue**
 - El avión comenzó a elevarse. Para producirse este despegue la aeronave debe alcanzar de 100 a 150 km/h.

3. **Inicio de la maniobra**
 - El MD-82 de Spanair comenzó la maniobra de despegue sobre las 14:45 h de la tarde del día.

VÍAS DE SERVICIO

Accidentes de aviación civil en España

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>112</td>
<td>27</td>
<td>104</td>
<td>84</td>
<td>146</td>
<td>181</td>
<td>148</td>
<td>153</td>
<td>154</td>
<td>155</td>
<td>146</td>
<td>138</td>
<td>120</td>
<td>98</td>
<td>86</td>
<td>82</td>
<td>34</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: ASFAER, SEDE, CONSTRUCCIÓN DE INTERIOR DE LA COMUNIDAD DE MADRID, TABLA. DÍAZ Y ELABORACIÓN PROPIA

Incidencia

- En los primeros momentos en el aire surge un problema en el motor izquierdo. Algunos testigos afirman que se produjo una explosión y que el avión comenzó a caer como una bola de fuego. Si bien el problema no estaba confirmado al cierre de esta edición.

Figure 1.10 Público (Spain). Plane crash in Barajas airport, Madrid, August 21, 2008. Infographic by Chiqui Esteban, Mónica Serrano, Álvaro Valiño.
1. **They are extensions of ourselves.** Canadian media thinker Marshall McLuhan was the first to advance this notion half a century ago. A lawn mower helps us keep our garden neat without having to use our bare hands. An electric toothbrush reaches small spaces in between our teeth that would be impossible to reach with a toothpick—which is also a technology, by the way. An MP3 player is not just a player, but also a device that helps us remember the songs that define the best and worst moments of our lives.

2. **They are means to reach goals.** Sometimes it’s just one goal—a freezer keeps food fresh—but it can be several. Think of a computer, whose functionality depends on other technologies such as software that we install. Technologies can harbor other technologies.

Visualization as technology has these same traits. Also, the word *technology* has various meanings and is potentially open to interpretation. I use it here with the sense given by W. Brian Arthur in his foundational *The Nature of Technology* (2009). According to Arthur, we can use the word *technology* in three different senses, illustrated in Figure 1.12: Technologies-singular, technologies-plural, and technology-general.

![Figure 1.12](image-url) The three kinds of technology: general, plural, and singular.

What Arthur means is that technology can be, first, any object, process, or method devised to aid in a task, “a means to fulfill a human purpose.” This can be called *technology-singular*. The refrigerator and other devices described above are examples. The algorithms that run a software program as well as the letters, sentences, and
paragraphs that help me communicate with you are also technologies-singular. Even a humble nail is a technology.

Technologies-plural describe “assemblages of practices and components.” In other words, they are groups of technology-singular items that, when put together, make something new emerge. Electronics, biochemistry, and the varieties of engineering are all technologies-plural. Arthur also refers to technology-plural groups as “bodies of technology.”

The third meaning of technology is “the entire collection of devices and engineering practices available to a culture,” or technology-general.

How is this relevant for information graphics and visualization? First, as emerging disciplines, they are still a formative hodge-podges of concepts, methods, and procedures borrowed from many areas: the principles of map design (from cartography); guidelines on how to better display data on a chart (from statistics); rules on best practices for the use of type, layout, and color palettes (from graphic design); principles of writing style (from journalism); and more, including a wide array of software tools.

Second, and more important, individual information graphics are also technologies, means to fulfill purposes, devices whose aim is to help an audience complete certain tasks. This apparent no-brainer will have consequences later on. If you accept that a visualization is, above all, a tool, you are implicitly accepting that the discipline it belongs to is not just art, but functional art, something that achieves beauty not through the subjective, freely wandering self-expression of the painter or sculptor, but through the careful and restrained tinkering of the engineer.
John Grimwade is graphics director of Condé Nast Traveler magazine (based in New York) and has his own information graphics business (www.johngrimwade.com). He has produced infographics for more than 30 major magazines and several books. Before moving to the United States, he worked for 14 years in newspapers in London (including six years as head of graphics at The Times). He co-hosts the annual Malofiej “Show Don’t Tell” infographics workshop in Pamplona, Spain, and teaches information graphics at the School of Visual Arts in Manhattan.

The first time I crossed paths with John Grimwade’s work was when I was about to finish my B.A. in Journalism, in the summer of 1997. I had been offered an internship in the information graphics desk of La Voz de Galicia, the biggest regional newspaper in northwestern Spain. As my knowledge of the discipline was minimal, Manuela Mariño and Xoan González (father of Xaquín G.V. [González Veira], who you will meet in Profile 3), who led the department at the time, recommended that I take a look at some Malofiej publications. Malofiej is the International

Infographics Summit, organized every year by the Spanish chapter of the Society for News Design. The event includes the most important competition in this field, which receives submissions from newspapers and magazines from all over the world. The winners are showcased in a series of large-format books.

While browsing several of these books, one graphic caught my eye. It was titled “The Transatlantic Superhighway,” and it explained the busy flow of flights over the Northern Atlantic (Figure 10.1). I was enthralled by its elegance and deceptive simplicity. My colleagues told me that the piece—which had won a Silver Medal at Malofiej—had been designed by a certain British maestro named John Grimwade. “Along with Nigel Holmes, Grimwade is the best in this business,” they added with a tone of reverence.

Years later, John and I became friends. He is a true gentleman, one of those professionals who are always willing to help rookies (as I was when I met him) with inexhaustible patience. He has also been a constant source of inspiration for me and for many others in this industry. In the current era of big data, complex programming, and information overload, his visual style—stripped down, precise, and graceful—is a reminder that good design is not about mastering technology, but about facilitating clear communication and the understanding of relevant issues.

Q Is it true that the way you produce graphics has not changed much in the 40 years that you have worked as an information graphics designer?

John Grimwade It is. I started doing information graphics many years before computers entered newsrooms. When they did, many colleagues said it was a huge change, but not for me. Maybe our methods of work have shifted a bit but the core principles are exactly the same.

Q What are those core principles?

JG Our main goal should be to tell a story clearly by achieving order and having some sort of narrative through each graphic. Any project should start by analyzing what your story is about and then finding the best way to tell it by splitting it up into easily digestible chunks, without losing depth.

When I design a graphic, I try to establish a hierarchy, too. In the planning stage, one of the first things I do is to identify the main components of the story and define how they are going to be sequenced on the page or on screen.
Figure 10.1 "The Transatlantic Superhighway." Condé Nast Traveler, 1996, by John Grimwade, who explains the graphics: "This is an explanation of the system that controls flights over the Northern Atlantic. A reporter had a map of air-traffic control [see Figure 10.2], but it was difficult to read. I wanted to understand the system more thoroughly, so I made contact with the head of Oceanic Control in Gander, Newfoundland. Amazingly, there were no visualizations available of the system as a dimensional diagram. So I thought, why not make one? Rough versions went back and forth until we were both happy with the graphic."
EVERY DAY, ABOUT 900 AIRCRAFT FLY INSIDE THE NORTH ATLANTIC ORGANIZED TRACK SYSTEM EAST INTO THE NIGHT

As a result of passenger demand, time zone differences, and airport noise restrictions, North Atlantic air traffic has two peak flows: eastbound, leaving North America in the evening, and westbound, leaving Europe in the morning. Every 12 hours a new track system is prepared, to allow as many aircraft as possible to follow the most economical flight paths. Because of changing weather conditions, the track positions are rarely identical.

Aircraft crossing the main traffic flow (for example, Madrid to Los Angeles) are routed above or below the track system.

Some flight levels are reserved for aircraft flying in the direction opposite the peak flow.

The Concorde flies between 50,000 and 60,000 feet, far above the main traffic flow.

3 POSITION CHECK
Aircraft in oceanic airspace are out of radar contact for about four hours. Position reports are made by radio at every 10 degrees of longitude, and the information is used to update displays at the oceanic control centers.

2 SAFETY ENVELOPE
Aircraft must keep minimum distances from one another in the track system, while maintaining constant altitude and speed.

1 GETTING IN LINE
Taking into account airlines’ preferred routes, oceanic controllers at Gander, Newfoundland, organize aircraft approaching from different directions into position for the Atlantic crossing. This flight is entering the system on track V at 35,000 feet.

HALFWAY POINT
At 30°W, responsibility for the flight is transferred from Gander to Prestwick Oceanic Air Traffic Control in Scotland.

At 30°W, responsibility for the flight is transferred from Gander to Prestwick Oceanic Air Traffic Control in Scotland.

EAST INTO THE NIGHT
As a result of passenger demand, time zone differences, and airport noise restrictions, North Atlantic air traffic has two peak flows: eastbound, leaving North America in the evening, and westbound, leaving Europe in the morning. Every 12 hours a new track system is prepared, to allow as many aircraft as possible to follow the most economical flight paths. Because of changing weather conditions, the track positions are rarely identical.
That sounds like Journalism 101 to me. When you write a story, the best thing to start with is a structure for your writing.

JG That’s because it is! The only difference between a traditional journalist and us is the language. Journalists use words; we use pictures, charts, graphs, maps, diagrams, and illustrations.

I think one of the reasons why some people of my generation were very successful is because we were designers, but we got embedded in journalistic environments. We worked with reporters and editors. That taught us that we should strive for clarity because we are an interface between a chaotic world of information and the user who wants to understand something. If we can’t bring users clarity, I think we have kind of failed, actually.

When I see a graphic I am interested in, I try to read it critically, and one question I ask over and over again is “What’s the point? What’s the story?” That’s what you have to do when you work on a project. It’s not enough to do good research.
Figure 10.3 One of the sketches for “The Transatlantic Superhighway” infographic, shown in Figure 10.1.

and then present your information to your readers. You have to edit that information. We, infographics designers, must work as reporters but, above all, as editors.

Q Is that why you have expressed reservations about the emerging field of data visualization? Many infographics designers in newspapers and magazines seem to be embracing it with enthusiasm, but you have said that sometimes it feels that visualization designers seem to just throw data at their users, without worrying about presenting coherent stories.

JG Embracing a new technique or a new technology is great. Data visualization can be really powerful and useful. I can see a lot of potential in it. Nonetheless, I also feel that many visualization designers try to transform the user into an editor. They create these amazing interactive tools with tons of bubbles, lines, bars, filters, and scrubber bars, and expect readers to figure the story out by themselves, and draw conclusions from the data. That’s not an approach to information graphics I like. Not all readers are data analysts!
Maybe I am old-school, but I don’t believe I am alone in that concern. Think of Hans Rosling and the way he interacts with his wonderful bubble visualizations. He doesn’t just show stuff; he explains the main points, focusing the reader’s attention on the most interesting parts of the information. After that, if readers want to navigate deeper into other possible stories, they can do it. But first, they are exposed to a traditional, linear narrative that lays out the basic facts.

Q Is it possible to find a synthesis between what information graphics designers have been doing for the past 30 or 40 years and what data visualizers are trying to achieve nowadays?

JG I am convinced that we will see that in the future. *The New York Times* is exploring that path at this point. For instance, in many of their interactive graphics, they present complex sets of data, and they let you go really deep into the figures and their connections. But beforehand, they give you some context, some pointers as to what you can do with those data. If you don’t do this, if you don’t include this layer of information, which the designers call the “annotation layer,” you will end up with a visualization that may look really beautiful and intricate, but that will leave readers wondering, “What has this thing really told me? What is this useful for?”

It’s like a visualization I saw the other day that plotted the flow of taxis in New York City, as well as their positions at every time of the day and night. It looked really cool but, after a minute, I asked myself: What is this about? What am I supposed to see here? Is it really that surprising that the flow of taxis is really heavy between La Guardia and JFK, or that there are fewer taxis during the night than during the day? That’s not a very revealing insight, is it?

Or take some gorgeous recent maps that show people tweeting all over Europe in the languages of the countries they live in. All right, that’s really interesting *[said tongue-in-cheek]*: The Germans are tweeting in German! The map certainly looks beautiful with all those little color dots shining here and there, but it’s not that enlightening. It doesn’t convey much, and that’s a problem. You need to orient readers into the story before they can navigate your graphics on their own.

Q Let’s talk a bit about your own design process. How do you get started?

JG When we do a story for *Condé Nast Traveler* magazine, I try to be involved in it as early as possible. Sometimes it happens that reporters don’t realize they

2 See Profile 8: Hans Rosling.
3 See Profile 3: Steve Duenes and Xaquín G.V.
will need infographics in their pieces until they get back from trips, so I prefer to meet with them before they depart. It helps me get a clear idea of what shape the story is going to take, of its focus, and it helps reporters understand how the copy and the visual elements on the pages are going to complement each other.

I bring paper and pencils to those meetings. While we talk, I keep scribbling. I do very rough sketches and take notes about the key elements. It’s in these meetings when I decide what we need to show with the graphic so its content doesn’t overlap too much with what the copy will tell or the photographs will show.

Q It seems that you put a lot of work in the planning stage of your projects, judging by the detailed sketches and roughs you produce. (See Figure 10.3 and Figure 10.5.)

JG They are part of my thinking process. After the preliminary meetings are over, I go to my studio and work out the structure of the graphic in a rough form. I find that in pencil I can just do a rough version, arrange the elements as I wish, and throw away whatever I feel is not related to the points I want to get across. There’s virtually nothing invested in those sketches.

If you try to do something like that in a computer, you will somehow feel committed to your first ideas. Sketching out using design software requires a lot of effort. Later, when you go over your plans with editors, everything may need to change for some reason, maybe because the focus of the story has switched. If you are enamored with your own computer graphics, those that took so much time to develop, you may feel resistant to change them down the road.

In other words: at first, don’t just draw a box in Adobe Illustrator and start working inside it. That’s a very bad way to start: You make a lot of art decisions and then trap yourself into them. I constantly see graphics that have been done like that. A big image or illustration was put in the middle first and then the designer tried to make all the other elements in the composition work around it, instead of coming up with a solid structure that would help tell the story you need to tell. This doesn’t happen when you work with pen and paper before you proceed to the artwork phase.

I try to encourage my students at the School of Visual Arts to draw as many sketches as possible, due to this attachment factor that everybody experiences every now and then. Sometimes they feel intimidated by hand drawing, but I tell them that they don’t need to be Leonardo da Vinci. What they need to come up with is not art; they don’t need to worry about aesthetics at this point, but about the structure. In many cases, just a bunch of very simple, rough, and badly drawn sketches made with cheap pencils or crayons will suffice to help you understand
More than just a gateway to a great city, Grand Central Terminal has been reborn as a destination in its own right, replete with upscale shopping, restaurants, and, soon, even a green market. Don't let the commuter crush deter you: Begin your tour at the entrance on 42nd Street at Park Avenue, checking your train time on the 13-foot-tall, gilt-edged clock beneath Coutan's sculpture group Transportation. Proceed down the entrance ramp, whose tilt is designed to propel you, heart pounding, to the Main Waiting Room, temporarily home to vendors of every stripe but soon to host functions and public exhibitions. Directly ahead, over a short bridge with freshly quarried balustrades, lies the terminal's pièce de résistance, the Main Concourse—dubbed "the best big room in America" by the architectural press. Its ceiling, at 122 feet, is higher than the nave of Notre-Dame Cathedral in Paris. At the center of the concourse sits the information booth with its four-sided brass clock, kept perpetually in sync with the atomic clock at the U.S. Naval Observatory in Washington, D.C. Overhead is the 2,500-star Sky Ceiling, whose autumn-night constellations were originally painted backward and never corrected. Daylight brightens the concourse from four-story windows at either end. Concealed between the windows' inner and outer panes is a series of skywalks, or glass-floored corridors, designed to access a skyscraper that was never built; tours sponsored by the Grand Central Partnership permit access (212-818-1777). Head for the Lower Concourse via the newly excavated Oyster Bar ramps, open for the first time since 1927 and illuminated by five gold-and-nickel-plated chandeliers, with 144 lightbulbs each (an identical set graces the terminal's north balcony). Pause here for a new view of the Sky Ceiling through the concourse's massive piers. At the base of the ramps, the vaulted tile ceiling allows you to face the wall in any corner and whisper to someone standing in the opposite corner. Reward your exertions at the Oyster Bar restaurant, whose classic oyster stews and pan roasts are themselves deserving of landmark status—or at one of some 20 new restaurants on the Lower Concourse. Return to the Main Concourse level via the West Staircase.

Figure 10.4 "Grand Central Terminal," 1998. *Condé Nast Traveler*, by John Grimwade. "This infographic is part of a feature that reported the completion of the Grand Central Terminal restoration. At the time, I was walking through the building every day on my way to work, so the reference was right in front of me. I used the simple approach of taking a cross-section and manually projecting it backward. John Tomanio, who worked with me at *Condé Nast Traveler*, solved my problems in getting the ceiling exactly right. He photographed it looking straight up, and then projected the image onto the inside of a cylinder using a 3-D program."
Figure 10.5 Sketches for the "Grand Central Terminal" infographic.
how to organize a story, how to create a good sequence of steps, and a good hierarchy in your layout.

Q Speaking of students, you are well known for your openness to give advice to beginners and help them develop their own styles. What would you recommend to someone who is planning to pursue a career in information graphics and visualization? What should that person study?

JG That’s very difficult question. I guess the challenge is that you are asking me to think backward. I learned to design infographics by working in a newsroom. Decades ago, I landed in a news publication and learned the craft on the job.

I would say, however, that the first skill you need to master is to look at graphics with a critical eye. Read newspapers, magazines, and textbooks; visit websites that showcase infographics and visualizations; and analyze if they help you understand important matters. If they don’t, they are not good. The next thing would be to reflect on the changes that would make those presentations tell clearer messages. And, if you have the time, you can maybe even make those changes.

You also have to ponder if you have the passion to enter this field. Infographics is not the easiest task. It might look like it is but it sure as hell isn’t. You need years of self-teaching and trial-and-error to master the techniques and tools. If you don’t feel the drive to be absolutely meticulous about research and coming to grips with the story, you just can’t produce a good information graphic. If you think you are going to skim across the top and treat it like some kind of art job, it’s very unlikely that you are going to be much of a success. I don’t know how to find or fuel that kind of passion, though.
Q I would say this passion you talk about reminds me of the passion good educators nourish. It’s the need to be curious, to learn, and to tell others about what you have learned. Journalists feel that kind of passion as well.

JG It’s really a journalistic passion, yes. In fact, some of the best people I have worked with used to be traditional journalists until they realized the power of visual storytelling. When you think about it, infographics and visualization are really amazing tools for telling stories when used correctly, aren’t they?
"Five Ages of the 747" Since it began flying passengers in 1970, the Boeing 747 has stayed on top of its game.

Projects often take big shifts along the way. I was originally thinking of a fly-past of 747s to show the history, but every angle we tried did not clearly show the key features of the new 747 aircraft that had been announced. The new model is much longer than the previous ones, and it has dramatically upswept wings. So I moved to a more conventional plan-like display.

Figure 10.8 "Five Ages of the 747." Condé Nast Traveler, 2011, by John Grimwade. "Projects often take big shifts along the way. I was originally thinking of a fly-past of 747s to show the history, but every angle we tried did not clearly show the key features of the new 747 aircraft that had been announced. The new model is much longer than the previous ones, and it has dramatically upswept wings. So I moved to a more conventional plan-like display."
by adopting new technologies. The latest is the most radical step in its decades-long evolution.

** profiles · the infographics gentleman

GIANTS COMPARED: The new 747 is 12 feet longer than the A380.

CLEAN POWER Jet engine design used to be all about brute power—fuel consumption and emissions were lesser priorities. The goal now is to guzzle less and reduce exhaust gases. The 747-8's General Electric engines achieve both.

RUSHING IT UP AT THE AIRPORT Scalped cladding around the jet engine exhaust has a magical effect on noise—the 747-8 will be 30 percent quieter on takeoff than its forerunner, the 747-400.

THE STORY BEHIND THE BULGE When the 747 was conceived, the cockpit was put above the main deck because it was believed that the airplane would end its days carrying only cargo, while passengers flew in supersonic jets. The cargo would be loaded through a door in the nose. Supersonic flight proved unreliable, and the 747's hump was able to stretch into a top deck.

GOING THE DISTANCE—AND THEN SOME Since 1970, the world's 747s have traveled the equivalent of 230 trips to the sun and back.
Do wealthier countries take home more Olympic medals? Conventional wisdom suggests that they would. It’s no secret that having the financial resources to invest in human potential leads to success: The U.S. is the richest country in the world and has won more Olympic medals than any other nation. But if you introduce some elementary math and divide a country’s medal tally by its gross domestic product, the numbers rearrange themselves dramatically. Ethiopia’s track-and-field victories lift the poverty-stricken state to the top of the pile, while economic powerhouses like Japan, France, and the U.S. finish near the bottom. Here’s a look at our surprising results, based on medal counts from the 2004 Summer Games in Athens and G.D.P. data from the same year.

Figure 10.9 "Medal Exchange." Condé Nast Portfolio, 2008, by John Grimwade: "This is an interesting approach to covering the Olympics in a business magazine just before the Beijing games. We’re all used to the conventional medals table, but what happens if the Athens medals total is divided by the GDP of the country? Then we see who did the most with the least resources. Ethiopia is the winner. The U.S. and Japan are way down the list."
Do wealthier countries take home more Olympic medals? Conventional wisdom suggests that they would. It’s no secret that having the financial resources to invest in human potential leads to success: The U.S. is the richest country in the world and has won more Olympic medals than any other nation. But if you introduce some elementary math and divide a country’s medal tally by its gross domestic product, the numbers rearrange themselves dramatically. Ethiopia’s track-and-field victories lift the poverty-stricken state to the top of the pile, while economic powerhouses like Japan, France, and the U.S. finish near the bottom. Here’s a look at our surprising results, based on medal counts from the 2004 Summer Games in Athens and G.D.P. data from the same year.

Medal Exchange

Sure, the world’s economic powerhouses dominate the Olympics. Or do they?

by Jessica Liebman
Rebuilding Ground Zero

The six preliminary plans submitted in July share six common elements, illustrated above. The final design will likely include them, along with a cultural venue.
The Manhattan Project

All eyes are trained, these days, on New York’s downtown—and there’s no better time to be there. From TriBeCa to Battery Park, from the Hudson River to the East River, here are the don’t-miss classics—plus everything new and coming.

Places & Prices

In the past year, Lower Manhattan has given new meaning to the phrase “tough neighborhood.” The vibrancy and diversity of its attractions are a testament to grit of the truest kind. Stroll around downtown and you’ll come across some of New York’s finest historic buildings, quirkiest museums, grandest hotels, and loveliest parks. The dining’s divine, the shops one-of-a-kind, and the best part? It’s all in a day’s walk. Turn to page 232 for details.

Figure 10.10 "The Manhattan Project," Condé Nast Traveler, 2002, by John Grimwade. "One year after the September 11 attacks, we ran a feature reminding our readers that the downtown area of Manhattan still had a lot to offer. It has stylized buildings, where I tried to capture the essence of the building rather than aerial-photograph accuracy, and a clear street grid. This is very much my graphic approach to making maps: Remove the unnecessary detail, and focus on the story. In 2003, I reworked the map into a different format for a handout at the Society of Publication Designers conference." (See Figure 10.11 to see the second map.)
Index

3D animation, 187, 257, 259
3D design tool, 207
3D effects, 79
3D figures, 241, 242
3D software, 236
3D video games, 204
3D vision, 128
“2012 Money Race” infographic, 252

A
ABC News, 293, 294
Abril Group, 86
absolute variables, 30
abstraction
 functionality and, 81–84
 object recognition and, 145–146
Abstraction-Figuration axis, visualization wheel, 52–53
academia
 boring presentations in, 311
 plagiarism in, 335–341
 visualization in, 293–305, 329
Adobe
 Director, 186
 Flash, 186, 319, 327
 Illustrator (See Illustrator)
 Photoshop, 237, 244, 310
aesthetics, 61, 314
affordances, perceived, 189
agnosia, 109
aircraft safety cards, 134–135
Aisch, Gregor, 326–341
Alameda, David, 204
algorithmic data visualization, 304
“Altered Landscape” infographic, 197
American West, Bill Lane Center for, 299, 302
analogies, 311–312
analytical design, 38
“Ancient Way” infographic, 201
Andrews, Wilson, 265, 271
animated infographics, 104–105, 106, 195–199
annotation layer, 218
Apple, 287
Arntz, Gerd, 71, 329, 334
Arthur, Brian W., 22
AT&T Bell Labs, 118
audience
 adapting graphics for, 59–61, 68
 communicating with, 73
 expressing distrust for, 76
 respecting intelligence of, 61, 76, 84
 stimulating emotions of, 87
Autodesk Maya, 190, 207
awards, infographics, 50, 212–213, 257, 314

B
background boxes, 118
background-foreground differentiation, 111–112, 130, 131
banks infographics, 39–42, 44
Baptista, Fernando, 231–249
“Barcelona’s Natural Wonder” infographic, 245
bar charts
 boxing bars in, 117
 and data-ink ratio, 64, 65, 66
 distorting proportions in, 79
 introduction of, 54
 for rankings/comparisons, 40, 43, 126
 traditional vs. minimalist, 64, 65, 66
 using 3-D effects in, 79
 using relative vs. absolute variables in, 30
 vs. other chart types, 40, 43
Barreira Júnior, Eliseu, 155
“Basilica of the Holy Family” project, 244–249
Bauhaus school of design, 287
Beautiful Evidence (Tufte), 61
beauty, 68, 73, 79–80, 87–92, 315
Bell Labs, 118
Berke, Rick, 255
“Berlin Wall” project, 281–286
bibliography, 351–354
bicycle infographic, 282–283
bidirectional relationships, 35–36
“Biggest Igloo” infographic, 148–149
Biles, Leavett, 185
Bill Lane Center for American West, 299, 302
“Bin Laden Compound” infographic, 191
bits, 14
blindsight, 109
blind spot, 108
Blow, Charles, 253
“Body Mass Index” infographic, 187
Böhr, Niels, 71
book cover design, 342
“boom” effect, 86–92
boredom, 69
bottom-up processing, 137–138
boundaries, object, 111–112
brain
 as cartographer, 97, 98
 detection of object boundaries by, 111–112
 distinctive feature of, 97
 efficiency of, 108–110
 and Gestalt theory, 114
 how light is processed by, 98–99, 110
 how objects are recognized by, 142–144
 and moving vs. static objects, 105
 and pattern recognition, 114–118
 preattentive features of, 111, 128–132
 tricks/shortcuts used by, 111
 and visual illusions, 105–109, 130

...
Internet as source of free, 14
knowing what questions to ask about, 308
learning to work directly with, 325
presenting too much, 10, 14–15
as records of observations, 16
visualizing, 73, 195, 217, 238–239, 314, 319.
See also data visualization
data-ink ratio, 64, 65, 66
data visualization
in academia, 293, 301
beauty in, 73, 79–80
of large-scale human activity, 314
National Geographic quality standards for,
238–239
at New York Times graphics department,
255–257
presenting stories with, 217–218
two major categories of, 304
vs. traditional information graphics, 255–257,
325
da Vinci, Leonardo, 232
“Deadly Rampage at Virginia Tech” infographic, 256
decoration, design as, 317
Decoration-Functionality axis, visualization wheel, 53–54, 81–83
decorative ideology, 62–63
“Deep Impact Mission” infographic, 188
“Defense in South America” infographic, 26–31
Dennet, Daniel, 141
Density-Lightness axis, visualization wheel, 54, 80–81
depth, 52, 54, 76–78, 128–132
depth perception, 128–132
derived variables, 30
design
analytical, 38
Bauhaus school of, 287
book cover, 342
button, 189, 190
characteristics of good, 317
graphics, 61
information, 18, 38, 61
interaction, 188–195, 327
interface, 190–195, 314
tools, 155, 190, 207
Designer’s Guide to Creating Charts and Diagrams (Holmes), 68, 70
“Designer Side, User Side” infographic, 60
designers vs. engineers, 61–62, 76
Design for Impact (Ericson/Phil), 134
Design of Everyday Things (Norman), 87, 188–189
developing countries, 310–311
DeVigal, Andrew, 186
“Diagram” project, 45–46
diamond prices infographic, 63, 67
digital information, 14–15. See also data
DIKW Hierarchies, 16
“Discovery’s Last Trek” infographic, 267, 268–270
Donis, Donis A., 69
Doom, 204
dot charts, 126, 127
DPA, 314
driven-by-data.net, 326
“Driving Is Why You’re Fat” infographic, 84
“Driving Shifts Into Reverse” scatter-plot, 167–168
“Dubrovka Theatre Hostage Crisis” infographic, 288, 289–290
Duenes, Steve, 186, 205, 250–263
Economist, 14
efficiency principle, 63–64, 65
Einstein, Albert, 141
election maps, 41, 43, 56, 76–78
“Electoral Compass” infographic, 85–86
electromagnetic spectrum, 99–100
Elements of Graphing Data (Cleveland), 123
Elements of Style (White), 61
El Mundo, 186–187, 203
Emotional Design (Norman), 68, 87
effects, stimulating viewer’s, 87
encoding data, 16, 31
“Energy Mix in Germany” infographic, 330–331
equations, 133
engineers vs. designers, 61–62, 76
“(En)tangled Word Bank” infographic, 348–350
Envisioning Information (Tufte), 61, 62
Época magazine, 45, 85, 154
Ericson, Eric, 134
Ericson, Matt, 251, 253
Esquemática, La (Costa), 51
Estado de São Paulo, 46
Estatcart, 162–163
evolution, 34, 111–112, 133, 348
“Evolution of the Bicycle” infographic, 282–283
exabytes, 14, 15
exaptations, 35
Excel, 124, 162, 169–170, 299, 318, 332
exploration interactions, 204
eye candy, 74, 75, 81–83
eyes. See also vision
and depth perception, 128–132
detection of object boundaries by, 111–112
how they work, 98–99, 108, 110
mapping of environment by, 103
and moving objects, 105
structure of, 100–101
and vanishing-circle illusion, 107–108
and visual acuity illusion, 102–103
eye-tracking devices, 66
F
fabric production infographic, 72
“Face of Seven Billion” project, 240–243
faces, 103, 136
facial recognition, 143
Fairfield, Hannah, 167–168, 251, 255, 264–278
Familiarity-Originality axis, visualization wheel, 54–57
Fathom, 304
“Federer’s Footwork” infographic, 258
feedback, 190
fertility rates, 6–13, 161, 165, 310
Few, Stephen, 68, 73, 79
FIFA, 314
Figuration-Abstraction axis, visualization wheel, 52–53
figurative information graphics, 19, 52
Firth, Christ, 111
fixations, 103, 104
Flash, 186, 319, 327
Folha de São Paulo, 26
fonts, 53, 167, 175
foreground-background differentiation, 111–112, 130, 131
“form follows function” maxim, 25, 32–36
fovea, 101, 102
foveal vision, 102, 104
freelancing, 262, 315, 326, 327, 329, 342
frequency, light wave, 99, 100
Freud, Sigmund, 109
From Hieroglyphics to Isotype (Neurath), 71
Fry, Ben, 304
Fuller, Buckminster, 315
functional art, 23
functionality
and abstraction, 81–84
beauty and, 87–92
and fun, 68–70, 85–86
Functionality-Decoration axis, visualization wheel, 53–54, 81–83
function(s)
constraining of forms by, 25–26, 36–39
form following, 25, 32–36
in nature, 33–36
relationship between form and, 38

G
Galton, Sir Francis, 141
Games&Toys Company, 74
Gapminder Foundation, 306–313
genetic mutations, 34–35
Genome (Ridley), 6
Geographic Information System, 162
“German Energy Landscape” infographic, 330–331
“German Modernism” infographic, 287, 288–289
German Press Agency, 314
Gestalt theory, 114
“Ghost Counties” infographics, 335–337
“Giant Waves” infographic, 178–179, 182–183
gigabytes, 14
Gini, Corrado, 169
giraffe story, 34–35
GIS tools, 162
“Global look at cardiac risk factors” infographic, 277
“Göbekli Tepe” infographic, 234–235, 237, 238
Gödel, Kurt, 71
Golden Section Graphics, 76, 279, 281
González Viera, Xaquín, 204, 250–263
Good magazine, 83
Grady, John, 64
“Grand Central Terminal” infographic, 220–221
graphical excellence, 63–64
graphical perception, 118–119. See also vision
graphic artists, 255
graphics. See also information graphics
building narrative structure for, 46–50, 174
complexity of, 52
depth of, 52, 54, 76–78
as form of communication, 14
goals of good, 9–10, 73
guidelines for choosing best form for, 118–123
identifying audience for, 59–61
interactive, 76, 185–209. See also interactive
graphics
as means to simplify information, 78–80
print vs. Web, 294
graphics design, 61
“Graphics in the Newsroom” course, 265
graphs, 25, 123. See also charts
“Great Whales of the Atlantic” infographic, 193
gridlines, 64, 66
Grimwade, John, 212–229, 319
Gröndahl, Mika, 251
groups, 114–115, 116
“Growth of Newspapers Across U.S.” infographic, 302–303, 305
Gurovitz, Helio, 162

H
Hadamard, Jacques, 141
headlines, 79, 81
Heer, Jeffrey, 301, 304
highlighting, 10–12, 113
“HIV rate of infection” chart, 312
Höhr, Rafael, 187
Holmes, Nigel
Designer’s Guide to Creating Charts and Diagrams, 68, 70
diamonds infographic, 62–63, 64, 66–67
evolving style of, 70
“Medical Care Expenditures” infographic, 69
as form of information design, 18
goals of good, 9–10, 73
highlighting relevant information in, 10–12
humanizing, 68
identifying audience for, 59–61
interactivity in (See interactive graphics)
knowledge/skills required for, 5–6, 222,
255–256, 287, 325
learning to create, 8
limiting colors/fonts in, 175
linear vs. non-linear, 195–197
as means to simplify information, 78–80
methodology for creating, 154, 173
multimedia, 185–187
overuse of bubble charts in, 39–41
purpose of, 23
role of curiosity in, 5–6
scientific vs. aesthetic approach to, 61–63
structuring, 195–199
tasks to be accomplished by, 26–28
techniques for navigating/browsing, 195–199
as a tool, 26–28
“ugliness” of, 50
using templates for, 36–37
vs. fine art, 25
vs. visualization, 18
IN GRAPHICS magazine, 279
inheritance of acquired characteristics, 34
instruction interactions, 200
interaction design, 188–195, 327
interaction styles, 200–204
interactive graphics, 185–209
consistency in, 192–195
designing, 188–195
imposing constraints in, 192
planning for, 204–209
providing feedback in, 190–192
seeking depth in, 76
structuring, 195–199
styles of interaction in, 200–204
and visibility principle, 189–190
interface design, 190–195, 314
International Data Corp, 14
International Federation of Soccer, 314
International Infographics Summit, 212–213
International System of Typographic Picture
Education, 71
Internet
as exaptation, 35
news websites, 187
as source of free data, 14
interposition, 130
Iria, Luiz, 86–87
iris, 101
Irwin, Neil, 274
"Is It Better to Buy or Rent?" infographic, 202

T-shirt infographic, 70
use of humor by, 68–70
vs. Tufte’s approach, 72
Wordless Diagrams, 70
“Holy Family” project, 244–249
Horn, Robert E., 18
“How Mariano Rivera Dominates Hitters”
infographic, 260
“How Much Water Do We Consume” infographic, 284
HTML 5, 319
human eyes. See eyes
human visual perception, 98–99
humor, 68, 69–70
IBGE, 160
“Ice Hotels” infographic, 146, 148–149
iconic memory, 137–138, 139
icons, 335
illusions, 102, 105–109, 130
Illustrator
creating storyboards in, 207
designing layouts in, 155
highlighting important data in, 10
making literary visualization graphics in, 343
making weather maps in, 310
refining Excel charts in, 170
sketching ideas prior to using, 219
imagery theorists, 142
income inequality infographics, 75, 171
inequality index, 169
Infografia 2.0 (Cairo), 51
infographics. See information graphics
information
imposing organization on, 17
simplifying, 78–80
structured vs. unstructured, 16
information aesthetics, 314
information anxiety, 15–16
information architects, 15, 17
information architecture, 15, 18
information design, 18, 38, 61
information explosion, 15
information graphics
applying object recognition to, 144–146
awards, 50, 212–213, 257
and brain’s preattentive features, 111, 128–132
critiquing, 47–50
defining goals for, 173
designers (See profiles)
developing narrative for, 46–50, 162, 174
as emerging discipline, 23
emotional power of good, 86–87
figurative vs. abstract, 52, 146
and “form follows function” maxim, 25–26,
32–33
Isotype infographics, 71, 334
itsbeenreal.co.uk, 342
Ive, Jonathan, 287

J
Java, 319
journalism, 46, 61, 76, 92, 255, 265
Journalism in the Age of Data documentary, 293, 301–304
Joy of Stats documentary, 307–308

K
Karolinska Institute, 306
Keating, Dan, 267
Kelly, Kevin, 17
Kerouac, Jack, 343
kilobytes, 14
Kleon, Austin, 167
knowledge
and DIKW Hierarchies, 16, 17
humanization of, 71
Kosara, Robert, 295
Kosslyn, Stephen M., 25, 141, 143

L
Lamarck, Jean-Baptiste, 33–34
Lamarckian Fallacy, 33–34
language, visual representation of, 342–343
Larsen, Reif, 153
Le Monde, 299
lenses, 101
Leonardo da Vinci, 232
“Life Expectancy and GDP” scatter-plot, 309
light, 99–101, 110
Lightness-Density axis, visualization wheel, 54, 80–81
Lima, Francine, 167
Lindeman, Todd, 267, 274
linear infographics, 195, 197
line art, 145–146, 249
line charts, 54
lines, 116, 117, 130–131
“Literary Organism” infographic, 344
literature, visualizing, 342–350
long-term memory, 138–139, 140
low-level visual perception, 131

M
“Macaque Hunts Termites” infographic, 55
Macromedia Flash, 186. See also Flash
Maeda, John, 346
Maeda Media (Maeda), 346
Maia, Humberto, 46
“Making of a Video Game” infographic, 292
“Maligned Explorer and Artist” infographic, 296–298
Malofiej
infographics competition, 50, 212–213, 257
infographics summit, 213, 280
“Manhattan Project” infographic, 228–230
manipulation interactions, 203–204
Man Who Was Thursday (Chesterton), 348
“Mapping America” infographic, 254
maps
ability of brain to create, 97, 147
choropleth, 54, 126
election, 41, 43, 56, 76–78
proportional symbol, 41, 43, 85, 125–126
questioning necessity of, 28, 38
using pictograms in, 113
“Mariano Rivera” infographic, 260
“Market Capitalization” infographics, 39–42, 44
Marr, Bill, 239
Martinez, Ricardo, 144
mass media, 333
“Master of Clay” infographic, 206
Max Planck
Research Networks, 320–321
Research Society, 314
Science Gallery, 321
Maya, 190, 207
McCandless, David, 335
McClain, Dylan, 257
McGhee, Geoff, 293–305
McGill, Robert, 118–119
McInerney, Greg, 348
McLuhan, Marshall, 22
McManus, Jim, 265
“Medal Exchange” infographic, 223, 226–227
media organizations, 301, 333, 334
“Medical Care Expenditures” infographic, 69
medical visualization, 327
megabytes, 14
“Megaramp: Skate Boarding Competition” infographic, 55
Mellnik, Ted, 267
memorability, 68
memory, 110, 134, 137–139
mental imagery debate, 141–142
metaphors, 311, 334
“Metrics” column, New York Times, 264
Miller, George A., 138
mimetic relationships, 52
minimalism
as aesthetic choice, 65
efficiency and, 63–64
radical, 73, 76
research on, 66–67
mobile devices, 278, 287
Modernism, German, 287, 288–289
“Money Race” infographic, 252
Mora, Gerson, 172
"More Than a Wall" infographic, 285
Morozov, Evgeny, 92
motion graphics, 185–187
moving objects, 105, 106
Multidimensionality-Unidimensionality axis, visualization wheel, 54, 80–81
multimedia information graphics, 185–187
mutations, genetic, 34–35
N
Nadal project, 205–209
narrative structure, 46–50, 162, 174
NASA
"Cassini-Huygens Mission" infographic, 53
"Deep Impact Mission" infographic, 188
National Geographic magazine
"Barcelona’s Natural Wonder" infographic, 245
profile of art director/graphics editor, 231–249
quality standards, 238–239
time spent on infographics at, 232–233
world population series, 239–243
natural mappings, 189
natural selection, 34
Nature of Technology (Arthur), 22
"Network of Media Corporations" infographic, 334
Neurath, Marie, 334
Neurath, Otto, 70–72, 329, 334
neuropsychiatric disorders infographic, 60
News Design, Society for, 213
news graphics desks, 257, 262
news websites, 187
New York Times
"2012 Money Race" infographic, 252
"Buy or Rent" infographic, 202
"Deadly Rampage at Virginia Tech" infographic, 256
election maps, 56, 76–78
"Federer’s Footwork" infographic, 258
getting graphics desk job at, 262
"How Mariano Rivera Dominates Hitters" infographic, 260
interactive graphics, 218
"Mapping America" infographic, 254
"Metrics" column, 264
online news graphics, 186, 294
popularity of infographics created by, 265
print graphics desk, 294
profile of graphics director/editor, 250–263
"Rafael Nadal" project, 204–209
Research & Development Lab, 295
"Whose Size 8 Are You Wearing" infographic, 261
"World Cup Live" infographic, 263
Nguyen, Vu, 204
nonaccidental properties, 143
non-figurative displays, 19
non-linear infographics, 195, 197
Norman, Donald A., 68, 87, 185, 188, 189
Notabilia.net, 322, 323
Novelty-Redundancy axis, visualization wheel, 57, 85
O
object boundaries, 111–112
object recognition theory, 143–146
OECD, 314, 317
On the Origin of Species (Darwin), 34, 348–350
On The Road (Kerouac), 343–347
open and close technique, 198–199
OpenOffice, 9, 10
optic nerve, 101, 108
organizational principle, rectangles as, 171, 176–177
Organization for Economic Cooperation and Development, 314, 317
Originality-Familiarity axis, visualization wheel, 54–57
"Ozone Hole" infographic, 194
P
parafoveal vision, 102
"Party Donations in Germany" infographic, 328
pattern recognition, 114–118
Pearson product-moment correlation coefficient, 123–125
pencil illustrations, 248, 319. See also sketching ideas
perceived affordances, 189
perception, 98–99, 109, 110, 118–119, 133. See also vision
perceptual organization, principles of, 114–118
peripheral vision, 102, 104
perspective, 130–131, 247
petabytes, 14
Phil, Johan, 134
photoreceptors, 100–101
Photoshop, 237, 244, 310
Pickett, Kate, 75, 169
pictograms, 30, 62, 71, 83, 113, 335
pie charts, 54
Pinker, Steven, 279
plagiarism, 167
"Plagiarism in PhD Thesis" infographic, 335, 340, 341
"Plane Crash" infographic, 19, 20–21
plane tracking infographic, 280
Playfair, William, 54
PlosOne magazine, 60
Popova, Maria, 343
Popper, Karl, 71
population data, 6–13, 160–167, 239–243
Posavec, Stefanie, 342–350
Powell-Smith, Anna, 262
preattentive features, brain’s, 111, 114, 128–132
Preece, Jennifer, 200
Primer of Visual Literacy (Dondis), 69
prison population infographic, 48–49, 58
Processing visualization programming
language, 304, 319, 343
professional information architects, 15, 17
profiles
Aisch, Gregor, 326–341
Baptista, Fernando, 231–249
Dueñas, Steve, 250–263
Fairfield, Hannah, 264–278
González Viera, Xaquín, 250–263
Grimwade, John, 212–229
McGhee, Geoff, 293–305
Posavec, Stefanie, 342–350
Rosling, Hans, 306–313
Schwochow, Jan, 279–292
Stefaner, Moritz, 314–325
Tulp, Jan Willem, 326–341
Velasco, Juan, 231–249
project workflow, 317–318
proportional symbol maps, 41, 43, 85, 125–126
prototyping, 329
proximity principle, 114–115
Público, 19
pupils, 101
Pylyshyn, Zenon W., 141

Q–R
Quake, 204
racism, 311
radar charts, 86
radial convergence interactive graphic, 328
“Rafael Nadal” project, 205–209
Ramachandran, V.S., 109, 133, 146
RAM memory, 139
Rams, Dieter, 287
rankings, 126. See also comparisons
Raphaël framework, 319
Rational Optimist (Ridley), 6, 7, 8, 11, 160
readability, 52
real estate data, 308
realistic illustrations, 52, 58, 135, 146
“Rebuilding Ground Zero” infographic, 228–229
“Recession and Rebound” infographic, 199
rectangles, as organizing principle, 171, 176–177
reductionism, 153
Redundancy–Novelty axis, visualization wheel, 57, 85
regression lines, 13
Reidemeister, Marie, 71
replacement rate, population, 6
Research & Development Lab, New York Times, 295
retina, 101, 108, 109
Ridley, Matt
analysis of fertility rates, 6–13
Genome, 6
Rational Optimist, 6, 7, 8, 11, 160
Roberts, Graham, 205
rodeos infographic, 88–89
rods, 101, 102
Rogers, Yvonne, 200
rollover buttons, 190
Rönnlund, Anna Rosling, 310
Rosling, Hans, 218, 306–313
Rosling, Ola, 310
Rural West Initiative, 299–301
Russian Constructivism, 287
Ryan, T.A., 144
S
saccades, 103, 104, 128
Sacks, Oliver, 132
safety cards, aircraft, 134–135
“Saturn Mission” infographic, 53
scatter-plots
correlating
education and obesity, 128
fertility rate and income, 13
fertility rate and schooling, 13
inequality and socioeconomic indicators, 75
life expectancy and GDP, 309
miles driven and gasoline prices, 167–168
uncommon example of, 167–168
using absolute variables, 30
vs. other chart types, 43, 83
Schmidt, Erich, 15
Schwartz, C.B., 144
Schwochow, Jan, 279–292
scientific publications, 61
scientific visualization, 61–63, 327
sclera, 101
scroll and pan technique, 197–198
scroll bars, 192
search technique, 198
Segel, Edward, 304
sentence diagrams, 348
“Sentence Drawings” infographic, 345
“Seven Ages of 747” infographic, 222, 224–225
“Sex Change Surgeries” infographic, 90–91
shade variations, 113
“Shape of Song” project, 346–347
shapes, 113, 114, 116
Sharp, Helen, 200
Shneiderman, Ben, 195
“Short Guys Can Dunk” infographic, 272–273
sight, 109. See also eyes
similarity principle, 115–116
simplifying data, 61
“Skate Boarding Competition” infographic, 55
Skype, 314
slopegraphs, 85, 126, 129
Society for News Design, 213
software engineers, 17, 76
Sorg, Leticia, 169
sort and arrange technique, 198
South Florida Sun-Sentinel, 185–186
special effects, 74, 75. See also eye candy
specialization, 271, 293
Spence, Robert, 147
Spirit Level (Wilkinson/Pickett), 75, 169
spreadsheet program, 9, 13, 123. See also Excel
Stanford University, 293, 299
Stanton, Laura, 267
statistical charts, 68, 83
statistics. See also data
documentary about, 307–308
and efficiency principle, 63
how charts should display, 68
popularizing, 307
Steal Like an Artist (Kleon), 167
Stefaner, Moritz, 314–325, 326–327, 335
stereoscopic depth perception, 128
“Stomach-Reduction Surgery” infographic, 187
storyboards, 207–209
storytelling tools/techniques, 274, 304, 319–325
stream graphs, 57
structured information, 16
style vs. content, 74–75
Sullivan, Louis, 32–33, 35, 36
Sun-Sentinel, 185–186
T
Tableau, 318, 319, 332
tables, 9, 28, 68, 113, 125, 198
“Tall Office Building Artistically Considered”
(Sullivan), 32
Tascón, Mario, 187
teamwork, 271
Technical Communication Quarterly, 38
technology
different meanings of, 22–23
visualization as a, 19–23, 25
TED conference, 306
telephone expenses infographic, 82
telescopes infographic, 180–183
Tell-Tale Brain (Ramachandran), 109, 146
templates, information graphic, 36–37
tension wheel, 51
terabytes, 14
theme rivers, 57
Thorp, Jer, 335
three-D effects. See 3D
Tidwell, Jennifer, 195
Time magazine, 62–63
Times. See New York Times
time-series charts, 43, 66
Tomanio, John, 239, 242
top-down processing, 137–138
“Trade Balance” infographic, 122
“Transatlantic Superhighway” infographic, 213, 214–217
trend lines, 13
trust, 271
truth and beauty operator, 315
Tse, Archie, 255
T-shirt infographic, 70
Tuft, Edward R.
Beautiful Evidence, 61
and chartjunk, 62–63, 72
criticisms of, 64–67, 68, 72, 347
and data-ink ratio, 64
and efficiency principle, 63–64, 65
Envisioning Information, 61, 62
and form vs. function, 38, 41
on good content reasoners/presenters, 153
on priorities of visual communicators, 92
Visual Display of Quantitative Information, 61, 68
Visual Explanations, 61
and war between engineers vs. designers, 61–62, 72
Tulp, Jan Willem, 326–341
TULP interactive, 326
Twitter, 324
U
unemployment rates, 19, 37, 38
Unidimensionality-Multidimensionality axis, 54, 80–81
United Nations population data, 8–9
unstructured information, 16
user interface design, 314. See also interface design
“User Side, Designer Side” infographic, 60
V
vanishing-circle illusion, 107–108
vanishing point, 131
variables, 30, 125
variation, 34, 113
Velasco, Juan, 231–249, 251
Vergotti, Marco, 167
“Veterans of Iraq and Afghanistan” infographic, 198
video games, 75, 204, 292
Vienna, Circle of, 71
“Virginia Tech Rampage” infographic, 256
visibility principle, 189–190
vision. See also eyes
as active process, 147
peripheral, 102–105
three-dimensional, 128
visual brain, 98, 114. See also brain
visual communicators, 5–6
visual cues, 190
Visual Display of Quantitative Information (Tuftе), 61, 68
Visual Explanations (Tuftе), 61
visual hierarchy, 10–11
visual illusions, 102, 105–109, 130
Visual Information-Seeking Mantra, 195
visualistics, computational, 327
visualization
 in academia, 293–305, 329
 and brain’s preattentive features, 111
data (See data visualization)
as emerging discipline, 23
 and “form follows function” maxim, 25–26, 32–33
freelancing, 262, 315, 326, 327, 329, 342
interactive, 185–187 (See also interactive
graphics)
of large-scale human activity, 314
literary, 342–350
low-tech, 8–13
main goal of, 9–10
as means to simplify information, 78–80
most influential theoretician in, 38, 61
personality traits required for career in, 5–6
planning, 51 (See also visualization wheel)
role of curiosity in, 5–6
scientific vs. aesthetic approach to, 61–63
as a technology, 19–23, 25
as a tool, 23
vs. information graphics, 18
“Visualization of Tax-Free Sales” infographic, 332–333
visualization wheel, 50–59
applying to prisons infographic, 58–59
axes
 Abstraction-Figuration, 52–53
 Density-Lightness, 54, 80–81
 Functionality-Decoration, 53–54, 81–83
 Multidimensionality-Unidimensionality, 54, 80–81
 Novelty-Redundancy, 57, 85
 Originality-Familiarity, 54–57
how it works, 52
illustrated, 51
inspiration for, 51
purpose of, 50–52
for scientists vs. artists, 61–62
Visualizing.org, 327, 335
“Visualizing Plagiarism” infographic, 340, 341
visual metaphors, 311, 334
visual object recognition theory, 143–146
visual perception, 98–99, 131. See also eyes; vision
visual reductionism, 153

W
Wall Street Journal, 197, 198, 199
Ward, Joe, 205
Warnow, Christopher, 329
Washington Post
 getting graphics job with, 278
 “Global look at cardiac risk factors” infographic, 277
 organization of graphics department for, 265–267
 profile of graphics director for, 264–278
 “Short Guys Can Dunk” infographic, 272–273
 specialization vs. teamwork at, 271–274
 “Why job hunt is so hard” infographic, 274–276
 water consumption infographic, 284
Wattenberg, Martin, 346–347
wavelength, 99, 100
wayfinding designers, 17
weather forecasts, 310
Web developers, 17
Web graphics, translating print graphics to, 294
Wei, Sisi, 265
whales infographic, 193
What Technology Wants (Kelly), 17
 “What You Can Do in 25 Square Meters” infographic, 203–204
 wheel, visualization. See visualization wheel
White, E. B., 45, 61
“White City Stories” project, 204, 205
“Whose Size 8 Are You Wearing” infographic, 261
“Why job hunt is so hard” infographic, 274–276
“Why We Get Old” infographic, 175
Wikipedia, 322, 323
Wilkinson, Richard, 75, 169
wisdom, 16, 17
Wittekind, Don, 185–187
Wolfenstein 3D, 204
Wordless Diagrams (Holmes), 70
workflow, project, 317–318
working memory, 139, 140
“World Cup Live” infographic, 263
World Economic Forum, 314
world population data, 6–13
World Trade Center plane tracking infographic, 280
“Writing Without Words” graphics, 343, 344–345
Wurman, Richard Saul, 5, 15–16

Y-Z
Yarbus, Alfred L., 103
Yarnall, Kaitlin, 244
yottabytes, 14–15
zanfona infographic, 201, 202
zettabytes, 14
zoom technique, 198