

iOS Programming
THE BIG NERD RANCH GUIDE

JOE CONWAY & AARON HILLEGASS

iOS Programming

iOS Programming: The Big Nerd Ranch Guide
by Joe Conway and Aaron Hillegass

Copyright © 2012 Big Nerd Ranch, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, contact

Big Nerd Ranch, Inc.
1989 College Ave.
Atlanta, GA 30317
(404) 478-9005
http://www.bignerdranch.com/
book-comments@bignerdranch.com

The 10-gallon hat with propeller logo is a trademark of Big Nerd Ranch, Inc.

Exclusive worldwide distribution of the English edition of this book by

Pearson Technology Group
800 East 96th Street
Indianapolis, IN 46240 USA
http://www.informit.com

The authors and publisher have taken care in writing and printing this book but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

App Store, Apple, Cocoa, Cocoa Touch, Finder, Instruments, iCloud, iPad, iPhone, iPod, iPod touch, iTunes,
Keychain, Mac, Mac OS, Multi-Touch, Objective-C, OS X, Quartz, Retina, Safari, and Xcode are trademarks of
Apple, Inc., registered in the U.S. and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

ISBN-10 0321821521
ISBN-13 978-0321821522

Third edition, second printing, August 2012

iii

Acknowledgments
While our names appear on the cover, many people helped make this book a reality. We would like to
take this chance to thank them.

• The other instructors who teach the iOS Bootcamp fed us with a never-ending stream of suggestions
and corrections. They are Scott Ritchie, Brian Hardy, Mikey Ward, Christian Keur, Alex Silverman,
Owen Matthews, Brian Turner, Juan Pablo Claude, and Bolot Kerimbaev.

• Our tireless editor, Susan Loper, took our distracted mumblings and made them into readable prose.

• Our technical reviewers, Bill Monk and Jawwad Ahmad, helped us find and fix flaws.

• Ellie Volckhausen designed the cover. (The photo is of the bottom bracket of a bicycle frame.)

• Chris Loper at IntelligentEnglish.com designed and produced the print book and the EPUB and
Kindle versions.

• The amazing team at Pearson Technology Group patiently guided us through the business end of
book publishing.

The final and most important thanks goes to our students whose questions inspired us to write this
book and whose frustrations inspired us to make it clear and comprehensible.

v

Table of Contents
Introduction .. xiii

Prerequisites .. xiii
What’s Changed in the Third Edition? ... xiii
Our Teaching Philosophy .. xiv
How To Use This Book .. xiv
How This Book Is Organized .. xv
Style Choices ... xvii
Typographical Conventions ... xvii
Necessary Hardware and Software .. xviii

1. A Simple iOS Application .. 1
Creating an Xcode Project ... 2
Building Interfaces .. 5
Model-View-Controller .. 9
Declarations ... 11

Declaring instance variables .. 12
Declaring methods .. 12

Making Connections .. 13
Setting pointers ... 14
Setting targets and actions .. 15
Summary of connections .. 17

Implementing Methods .. 17
Build and Run on the Simulator .. 20
Deploying an Application ... 22
Application Icons .. 24
Launch Images ... 25

2. Objective-C .. 29
Objects .. 29
Using Instances .. 30

Creating objects .. 30
Sending messages ... 31
Destroying objects ... 32

Beginning RandomPossessions .. 33
Creating strings .. 36
Format strings .. 37
NSArray and NSMutableArray .. 37

Subclassing an Objective-C Class .. 38
Creating an NSObject subclass .. 39
Instance variables .. 42
Accessor methods ... 43
Instance methods .. 46
Initializers .. 47
Other initializers and the initializer chain .. 51
Using Initializers .. 52
Class methods .. 53
Testing your subclass ... 55

iOS Programming

vi

Exceptions and Unrecognized Selectors .. 56
Fast Enumeration .. 57
Challenges ... 58
Bronze Challenge: Bug Finding ... 58
Silver Challenge: Another initializer ... 58
Gold Challenge: Another Class ... 58
Are You More Curious? ... 59
For the More Curious: Class Names ... 59

3. Managing Memory with ARC ... 61
The Heap .. 61
The Stack .. 62
Pointer Variables and Object Ownership ... 63
Memory Management .. 64

Using ARC for memory management ... 64
How objects lose owners .. 65

Strong and Weak References ... 67
Properties .. 72

Declaring properties .. 72
Synthesizing properties .. 74
Instance variables and properties .. 76

Copying .. 76
Dot Syntax .. 77
For the More Curious: Autorelease Pool and ARC History ... 78

4. Delegation and Core Location ... 81
Projects, Targets, and Frameworks ... 82
Core Location .. 83

Receiving updates from CLLocationManager ... 85
Delegation ... 87

Protocols ... 88
Delegation, controllers, and memory management ... 90

Using the Debugger .. 91
Using breakpoints ... 91
Diagnosing crashes and exceptions ... 95

Bronze Challenge: Distance Filter .. 97
Silver Challenge: Heading .. 97
For the More Curious: Build Phases, Compiler Errors, and Linker Errors 97

Preprocessing ... 98
Compiling .. 99
Linking .. 100

5. MapKit and Text Input ... 103
Object Diagrams ... 103
MapKit Framework ... 104
Interface Properties .. 105
Being a MapView Delegate ... 108

Using the documentation .. 110
Your own MKAnnotation .. 114
Tagging locations .. 118
Putting the pieces together .. 119

iOS Programming

vii

Bronze Challenge: Map Type .. 120
Silver Challenge: Changing the Map Type ... 120
Gold Challenge: Annotation Extras ... 120

6. Subclassing UIView and UIScrollView .. 121
Views and the View Hierarchy ... 123
Creating a Custom View ... 124
The drawRect: Method ... 128
Core Graphics .. 131
UIKit Drawing Additions .. 132
Redrawing Views .. 134
Motion Events .. 135
Using UIScrollView ... 137

Panning and paging ... 139
Zooming .. 139

Hiding the Status Bar ... 141
Bronze Challenge: Colors ... 142
Silver Challenge: Shapes .. 142
Gold Challenge: Another View and Curves .. 142

7. View Controllers ... 145
UIViewController .. 145

Creating HypnoTime .. 145
Subclassing UIViewController ... 146
Another UIViewController .. 150

UITabBarController ... 156
View Controller Lifecycle ... 161

Initializing view controllers ... 161
UIViewController and lazy loading ... 162

View Controller Subclasses and Templates ... 169
Bronze Challenge: Another Tab ... 169
Silver Challenge: Controller Logic ... 169
For the More Curious: The main Function and UIApplication .. 169
For the More Curious: Retina Display ... 170

8. Notification and Rotation .. 173
Notification Center .. 173
UIDevice Notifications ... 174
Autorotation ... 176

Setting autoresizing masks programmatically and bitwise operations 182
Forcing Landscape Mode .. 184
Bronze Challenge: Proximity Notifications ... 185
Silver Challenge: Programmatically Setting Autoresizing Masks 185
Gold Challenge: Overriding Autorotation ... 185
For the More Curious: Overriding Autorotation .. 185

9. UITableView and UITableViewController ... 187
Beginning the Homepwner Application ... 187
UITableViewController ... 189

Subclassing UITableViewController .. 189
UITableView’s Data Source ... 191

Creating BNRItemStore .. 192

iOS Programming

viii

Implementing data source methods ... 196
UITableViewCells .. 198

Creating and retrieving UITableViewCells .. 199
Reusing UITableViewCells .. 201

Code Snippet Library ... 202
Bronze Challenge: Sections ... 205
Silver Challenge: Constant Rows ... 205
Gold Challenge: Customizing the Table ... 205

10. Editing UITableView .. 207
Editing Mode ... 207
Adding Rows ... 213
Deleting Rows .. 214
Moving Rows ... 215
Bronze Challenge: Renaming the Delete Button .. 217
Silver Challenge: Preventing Reordering .. 217
Gold Challenge: Really Preventing Reordering ... 217

11. UINavigationController ... 219
UINavigationController .. 220
An Additional UIViewController .. 223
Navigating with UINavigationController .. 229

Pushing view controllers ... 229
Passing data between view controllers ... 231
Appearing and disappearing views .. 232

UINavigationBar ... 233
Bronze Challenge: Displaying a Number Pad ... 238
Silver Challenge: Dismissing a Number Pad ... 238
Gold Challenge: Pushing More View Controllers .. 238

12. Camera .. 239
Displaying Images and UIImageView ... 239

Taking pictures and UIImagePickerController ... 241
Creating BNRImageStore ... 248
NSDictionary .. 249
Creating and using keys ... 251
Core Foundation and toll-free bridging .. 253
Wrapping up BNRImageStore ... 254
Dismissing the keyboard ... 256

Bronze Challenge: Editing an Image ... 257
Silver Challenge: Removing an Image .. 257
Gold Challenge: Camera Overlay ... 257
For the More Curious: Recording Video .. 257

13. UIPopoverController and Modal View Controllers .. 261
Universalizing Homepwner ... 262

Determining device family .. 263
UIPopoverController .. 263
More Modal View Controllers ... 266

Dismissing modal view controllers ... 269
Modal view controller styles ... 270
Completion blocks ... 272

iOS Programming

ix

Modal view controller transitions ... 273
Bronze Challenge: Universalizing Whereami .. 274
Silver Challenge: Peeling Away the Layers .. 274
Gold Challenge: Popover Appearance ... 274
For the More Curious: View Controller Relationships .. 274

Parent-child relationships .. 274
Presenting-presenter relationships ... 275
Inter-family relationships .. 276

14. Saving, Loading, and Application States ... 279
Archiving ... 279
Application Sandbox .. 281

Constructing a file path .. 282
NSKeyedArchiver and NSKeyedUnarchiver ... 283
Application States and Transitions .. 286
Writing to the Filesystem with NSData ... 288
More on Low-Memory Warnings ... 291
Model-View-Controller-Store Design Pattern .. 292
Bronze Challenge: PNG ... 292
Silver Challenge: Archiving Whereami .. 292
For The More Curious: Application State Transitions ... 292
For the More Curious: Reading and Writing to the Filesystem 294
For the More Curious: The Application Bundle .. 296

15. Subclassing UITableViewCell ... 299
Creating HomepwnerItemCell .. 299

Configuring a UITableViewCell subclass’s interface ... 301
Exposing the properties of HomepwnerItemCell .. 302
Using HomepwnerItemCell ... 303

Image Manipulation ... 304
Relaying Actions from UITableViewCells .. 308

Adding pointers to cell subclass ... 309
Relaying the message to the controller .. 310
Objective-C selector magic ... 310
Presenting the image in a popover controller .. 312

Bronze Challenge: Color Coding .. 315
Silver Challenge: Cell Base Class .. 315
Gold Challenge: Zooming ... 315

16. Core Data ... 317
Object-Relational Mapping ... 317
Moving Homepwner to Core Data .. 317

The model file .. 318
NSManagedObject and subclasses .. 322
Updating BNRItemStore ... 325
Adding BNRAssetTypes to Homepwner .. 330

More About SQL .. 335
Faults .. 336
Trade-offs of Persistence Mechanisms ... 338
Bronze Challenge: Assets on the iPad ... 339
Silver Challenge: New Asset Types .. 339

iOS Programming

x

Gold Challenge: Showing Assets of a Type .. 339
17. Localization .. 341

Internationalization Using NSLocale ... 342
Localizing Resources ... 343
NSLocalizedString and Strings Tables ... 346
Bronze Challenge: Another Localization .. 348
For the More Curious: NSBundle’s Role in Internationalization 348

18. NSUserDefaults ... 351
Updating Whereami ... 351
Using NSUserDefaults ... 353
Silver Challenge: Initial Location ... 355
Gold Challenge: Concise Coordinates ... 355
For the More Curious: The Settings Application ... 355

19. Touch Events and UIResponder .. 357
Touch Events .. 358
Creating the TouchTracker Application ... 359
Drawing with TouchDrawView .. 360
Turning Touches Into Lines ... 362
The Responder Chain ... 364
Bronze Challenge: Saving and Loading ... 365
Silver Challenge: Colors ... 365
Gold Challenge: Circles ... 365
For the More Curious: UIControl ... 365

20. UIGestureRecognizer and UIMenuController .. 367
UIGestureRecognizer Subclasses .. 368
Detecting Taps with UITapGestureRecognizer .. 368
UIMenuController ... 371
UILongPressGestureRecognizer ... 373
UIPanGestureRecognizer and Simultaneous Recognizers .. 374
For the More Curious: UIMenuController and UIResponderStandardEditActions 376
For the More Curious: More on UIGestureRecognizer .. 377
Bronze Challenge: Clearing Lines .. 378
Silver Challenge: Mysterious Lines .. 378
Gold Challenge: Speed and Size .. 378
Mega-Gold Challenge: Colors ... 378

21. Instruments ... 379
Static Analyzer ... 379
Instruments .. 381

Allocations Instrument ... 381
Time Profiler Instrument ... 387
Leaks Instrument ... 390

Xcode Schemes .. 392
Creating a new scheme .. 393

Build Settings ... 395
22. Core Animation Layer .. 399

Layers and Views .. 399
Creating a CALayer ... 400
Layer Content ... 403

iOS Programming

xi

Implicitly Animatable Properties .. 405
Bronze Challenge: Another Layer .. 406
Silver Challenge: Corner Radius .. 407
Gold Challenge: Shadowing .. 407
For the More Curious: Programmatically Generating Content .. 407
For the More Curious: Layers, Bitmaps, and Contexts .. 408

23. Controlling Animation with CAAnimation .. 411
Animation Objects ... 411
Spinning with CABasicAnimation .. 414

Timing functions ... 417
Animation completion .. 418

Bouncing with a CAKeyframeAnimation ... 418
Bronze Challenge: More Animation .. 420
Silver Challenge: Even More Animation .. 420
Gold Challenge: Chaining Animations .. 420
For the More Curious: The Presentation Layer and the Model Layer 420

24. UIStoryboard ... 423
Creating a Storyboard .. 423
UITableViewControllers in Storyboards ... 427
Segues ... 430
More on Storyboards ... 434

25. Web Services and UIWebView ... 437
Web Services .. 438

Starting the Nerdfeed application ... 439
NSURL, NSURLRequest, and NSURLConnection .. 440
Formatting URLs and requests ... 441
Working with NSURLConnection .. 441
Collecting XML data ... 442
Parsing XML with NSXMLParser .. 445
Constructing the tree of model objects .. 446
A quick tip on logging ... 455

UIWebView .. 456
For the More Curious: NSXMLParser ... 458
For the More Curious: The Request Body .. 459
For the More Curious: Credentials ... 460
Bronze Challenge: More Data ... 461
Silver Challenge: More UIWebView ... 461

26. UISplitViewController and NSRegularExpression .. 463
Splitting Up Nerdfeed .. 464
Master-Detail Communication ... 468
Displaying the Master View Controller in Portrait Mode ... 474
Universalizing Nerdfeed ... 477
NSRegularExpression ... 478

Constructing a pattern string ... 480
Bronze Challenge: Finding the Subforum .. 482
Silver Challenge: Swapping the Master Button ... 483
Silver Challenge: Processing the Reply ... 483
Gold Challenge: Showing Threads ... 483

iOS Programming

xii

27. Blocks .. 485
Blocks and Block Syntax .. 485

Declaring block variables .. 486
Defining block literals .. 487
Executing blocks ... 488
More notes about blocks ... 488

Basics of Using Blocks .. 489
Variable Capturing ... 492
Typical Block Usage .. 495
For the More Curious: The __block Modifier, Abbreviated Syntax, and Memory 496
For the More Curious: Pros and Cons of Callback Options .. 499

28. Model-View-Controller-Store ... 503
The Need for Stores .. 503
Creating BNRFeedStore ... 506
Using the Store ... 508
Building BNRFeedStore ... 511

Initiating the connection ... 511
Another request .. 517

JSON Serialization .. 520
More on Store Objects ... 525
Bronze Challenge: UI for Song Count ... 526
Mega-Gold Challenge: Another Web Service .. 526
For the More Curious: JSON Data ... 526

29. Advanced MVCS ... 529
Caching the RSS Feed ... 529
Advanced Caching ... 535

NSCopying .. 541
Finishing the BNR feed .. 543

Read and Unread Items .. 545
Other Benefits of Store Objects ... 550
Bronze Challenge: Pruning the Cache ... 551
Silver Challenge: Favorites ... 551
Gold Challenge: JSON Caching ... 551
For the More Curious: Designing a Store Object ... 552

Determining external sources ... 552
Determining singleton status ... 552
Determining how to deliver results ... 553

For the More Curious: Automatic Caching and Cache.db .. 553
30. iCloud .. 555

iCloud Requirements .. 555
Ubiquity Containers ... 556
Provisioning a Ubiquity Container .. 558
Core Data and iCloud .. 561
For the More Curious: iCloud Backups ... 566

31. Afterword ... 569
What to do next .. 569
Shameless plugs .. 569

Index ... 571

xiii

Introduction
An aspiring iOS developer faces three basic hurdles:

• You must learn the Objective-C language. Objective-C is a small and simple extension to the
C language. After the first four chapters of this book, you will have a working knowledge of
Objective-C.

• You must master the big ideas. These include things like memory management techniques,
delegation, archiving, and the proper use of view controllers. The big ideas take a few days to
understand. When you reach the halfway point of this book, you will understand these big ideas.

• You must master the frameworks. The eventual goal is to know how to use every method of every
class in every framework in iOS. This is a project for a lifetime: there are over 3000 methods and
more than 200 classes available in iOS. To make things even worse, Apple adds new classes and new
methods with every release of iOS. In this book, you will be introduced to each of the subsystems
that make up the iOS SDK, but we will not study each one deeply. Instead, our goal is get you to the
point where you can search and understand Apple’s reference documentation.

We have used this material many times at our iOS Development Bootcamp at Big Nerd Ranch. It is
well-tested and has helped hundreds of people become iOS application developers. We sincerely hope
that it proves useful to you.

Prerequisites
This book assumes that you are already motivated to learn to write iOS apps. We won’t spend any time
convincing you that the iPhone, the iPad, and the iPod touch are compelling pieces of technology.

We also assume that you know the C programming language and something about object-oriented
programming. If this is not true, you should probably start with an introductory book on C and
Objective-C, such as Objective-C Programming: The Big Nerd Ranch Guide.

What’s Changed in the Third Edition?
This edition assumes that the reader is using Xcode�4.3 and running applications on an iOS 5 device or
simulator.

With iOS 5, automatic reference counting (ARC) is the default memory management for iOS. We’ve
redone the memory management chapter to address ARC, and we use ARC throughout the book.

You’ll find new chapters on using gesture recognizers, storyboards, NSRegularExpression, and
iCloud. We’ve also added two chapters dedicated to the the Model-View-Controller-Store design
pattern, which we use at Big Nerd Ranch and believe is well-suited for many iOS applications.

Besides these obvious changes, we made thousands of tiny improvements that were inspired by
questions from our readers and our students. Every page of this book is just a little better than the
corresponding page from the second edition.

Introduction

xiv

Our Teaching Philosophy
This book will teach you the essential concepts of iOS programming. At the same time, you’ll type
in a lot of code and build a bunch of applications. By the end of the book, you’ll have knowledge and
experience. However, all the knowledge shouldn’t (and, in this book, won’t) come first. That’s sort of
the traditional way we’ve all come to know and hate. Instead, we take a learn-while-doing approach.
Development concepts and actual coding go together.

Here’s what we’ve learned over the years of teaching iOS programming:

• We’ve learned what ideas people must have to get started programming, and we focus on that subset.

• We’ve learned that people learn best when these concepts are introduced as they are needed.

• We’ve learned that programming knowledge and experience grow best when they grow together.

• We’ve learned that “going through the motions” is much more important than it sounds. Many times
we’ll ask you to start typing in code before you understand it. We get that you may feel like a trained
monkey typing in a bunch of code that you don’t fully grasp. But the best way to learn coding is to
find and fix your typos. Far from being a drag, this basic debugging is where you really learn the
ins and outs of the code. That’s why we encourage you to type in the code yourself. You could just
download it, but copying and pasting is not programming. We want better for you and your skills.

What does this mean for you, the reader? To learn this way takes some trust. And we appreciate yours.
It also takes patience. As we lead you through these chapters, we will try to keep you comfortable
and tell you what’s happening. However, there will be times when you’ll have to take our word for
it. (If you think this will bug you, keep reading – we’ve got some ideas that might help.) Don’t get
discouraged if you run across a concept that you don’t understand right away. Remember that we’re
intentionally not providing all the knowledge you will ever need all at once. If a concept seems unclear,
we will likely discuss it in more detail later when it becomes necessary. And some things that aren’t
clear at the beginning will suddenly make sense when you implement them the first (or the twelfth)
time.

People learn differently. It’s possible that you will love how we hand out concepts on an as-needed
basis. It’s also possible that you’ll find it frustrating. In case of the latter, here are some options:

• Take a deep breath and wait it out. We’ll get there, and so will you.

• Check the index. We’ll let it slide if you look ahead and read through a more advanced discussion
that occurs later in the book.

• Check the online Apple documentation. This is an essential developer tool, and you’ll want plenty of
practice using it. Consult it early and often.

• If it’s Objective-C or object-oriented programming concepts that are giving you a hard time (or if
you think they will), you might consider backing up and reading our Objective-C Programming: The
Big Nerd Ranch Guide.

How To Use This Book
This book is based on the class we teach at Big Nerd Ranch. As such, it was designed to be consumed
in a certain manner.

Introduction

xv

Set yourself a reasonable goal, like “I will do one chapter every day.” When you sit down to attack a
chapter, find a quiet place where you won’t be interrupted for at least an hour. Shut down your email,
your Twitter client, and your chat program. This is not a time for multi-tasking; you will need to
concentrate.

Do the actual programming. You can read through a chapter first, if you’d like. But the real learning
comes when you sit down and code as you go. You will not really understand the idea until you have
written a program that uses it and, perhaps more importantly, debugged that program.

A couple of the exercises require supporting files. For example, in the first chapter you will need an
icon for your Quiz application, and we have one for you. You can download the resources and solutions
to the exercises from http://www.bignerdranch.com/solutions/iOSProgramming3ed.zip.

There are two types of learning. When you learn about the Civil War, you are simply adding details
to a scaffolding of ideas that you already understand. This is what we will call “Easy Learning”. Yes,
learning about the Civil War can take a long time, but you are seldom flummoxed by it. Learning iOS
programming, on the other hand, is “Hard Learning,” and you may find yourself quite baffled at times,
especially in the first few days. In writing this book, we have tried to create an experience that will ease
you over the bumps in the learning curve. Here are two things you can do to make the journey easier:

• Find someone who already knows how to write iOS applications and will answer your questions. In
particular, getting your application onto the device the first time is usually very frustrating if you are
doing it without the help of an experienced developer.

• Get enough sleep. Sleepy people don’t remember what they have learned.

How This Book Is Organized
In this book, each chapter addresses one or more ideas of iOS development followed by hands-on
practice. For more coding practice, we issue challenges towards the end of each chapter. We encourage
you to take on at least some of these. They are excellent for firming up the concepts introduced in the
chapter and making you a more confident iOS programmer. Finally, most chapters conclude with one
or two “For the More Curious” sections that explain certain consequences of the concepts that were
introduced earlier.

Chapter 1 introduces you to iOS programming as you build and deploy a tiny application. You’ll get
your feet wet with Xcode and the iOS simulator along with all the steps for creating projects and files.
The chapter includes a discussion of Model-View-Controller and how it relates to iOS development.

Chapters 2 and 3 provide an overview of Objective-C and memory management. Although you
won’t create an iOS application in these two chapters, you will build and debug a tool called
RandomPossessions to ground you in these concepts.

In Chapters 4 and 5, you will learn about the Core Location and MapKit frameworks and create a
mapping application called Whereami. You will also get plenty of experience with the important design
pattern of delegation as well as working with protocols, frameworks, object diagrams, the debugger,
and the Apple documentation.

Chapters 6 and 7 focus on the iOS user interface with the Hypnosister and HypnoTime applications.
You will get lots of practice working with views and view controllers as well as implementing panning,
zooming, and navigating between screens using a tab bar.

http://www.bignerdranch.com/solutions/iOSProgramming3ed.zip

Introduction

xvi

In Chapter 8, you will create a smaller application named HeavyRotation while learning about
notifications and how to implement autorotation in an application. You will also use autoresizing to
make HeavyRotation iPad-friendly.

Chapter 9 introduces the largest application in the book – Homepwner. (By the way, “Homepwner” is
not a typo; you can find the definition of “pwn” at www.urbandictionary.com.) This application keeps
a record of your possessions in case of fire or other catastrophe. Homepwner will take nine chapters
total to complete.

In Chapters 9, 10, and 15, you will build experience with tables. You will learn about table views, their
view controllers, and their data sources. You will learn how to display data in a table, how to allow the
user to edit the table, and how to improve the interface.

Chapter 11 builds on the navigation experience gained in Chapter 7. You will learn how to use
UINavigationController, and you will give Homepwner a drill-down interface and a navigation bar.

In Chapter 12, you’ll learn how to take pictures with the camera and how to display and store images in
Homepwner. You’ll use NSDictionary and UIImagePickerController.

In Chapter 13, you’ll learn about UIPopoverController for the iPad and modal view controllers. In
addition, you will make Homepwner a universal application – an application that runs natively on both
the iPhone and the iPad.

Chapter 14 delves into ways to save and load data. In particular, you will archive data in the
Homepwner application using the NSCoding protocol. The chapter also explains the transitions between
application states, such as active, background, and suspended.

Chapter 16 is an introduction to Core Data. You will change the Homepwner application to store and
load its data using an NSManagedObjectContext.

Chapter 17 introduces the concepts and techniques of internationalization and localization. You will
learn about NSLocale, strings tables, and NSBundle as you localize parts of Homepwner. This chapter
will complete the Homepwner application.

In Chapter 18, you will use NSUserDefaults to save user preferences in a persistent manner.

In Chapters 19 and 20, you’ll create a drawing application named TouchTracker to learn about touch
events. You’ll see how to add multi-touch capability and how to use UIGestureRecognizer to respond
to particular gestures. You’ll also get experience with the first responder and responder chain concepts
and more practice with NSDictionary.

In Chapter 21, you’ll learn how to use Instruments to optimize the performance of your applications.
This chapter also includes explanations of Xcode schemes and the static analyzer.

Chapters 22 and 23 introduce layers and the Core Animation framework with a brief return to the
HypnoTime application to implement animations. You will learn about implicit animations and
animation objects, like CABasicAnimation and CAKeyframeAnimation.

Chapter 24 covers a new feature of iOS for building applications called storyboards. You’ll piece
together an application using UIStoryboard and learn more about the pros and cons of using
storyboards to construct your applications.

Chapter 25 ventures into the wide world of web services as you create the Nerdfeed application. This
application fetches and parses an RSS feed from a server using NSURLConnection and NSXMLParser.
Nerdfeed will also display a web page in a UIWebView.

Introduction

xvii

In Chapter 26, you will learn about UISplitViewController and add a split view user interface to
Nerdfeed to take advantage of the iPad’s larger screen size.

Chapter 27 will teach you about the how and why of blocks – an increasingly important feature of
the iOS SDK. You’ll create a simple application to prepare for using blocks in Nerdfeed in the next
chapter.

In Chapters 28 and 29, you will change the architecture of the Nerdfeed application so that it uses the
Model-View-Controller-Store design pattern. You’ll learn about request logic and how to best design
an application that communicates with external sources of data.

In Chapter 30, you’ll learn how to enable an application to use iCloud to synchronize and back up data
across a user’s iOS devices.

Style Choices
This book contains a lot of code. We have attempted to make that code and the designs behind it
exemplary. We have done our best to follow the idioms of the community, but at times we have
wandered from what you might see in Apple’s sample code or code you might find in other books. You
may not understand these points now, but it is best that we spell them out before you commit to reading
this book:

• There is an alternative syntax for calling accessor methods known as dot-notation. In this book, we
will explain dot-notation, but we will not use it. For us and for most beginners, dot-notation tends to
obfuscate what is really happening.

• In our subclasses of UIViewController, we always change the designated initializer to init. It is
our opinion that the creator of the instance should not need to know the name of the XIB file that the
view controller uses, or even if it has a XIB file at all.

• We will always create view controllers programmatically. Some programmers will instantiate
view controllers inside XIB files. We’ve found this practice leads to projects that are difficult to
comprehend and debug.

• We will nearly always start a project with the simplest template project: the empty application. The
boilerplate code in the other template projects doesn’t follow the rules that precede this one, so we
think they make a poor basis upon which to build.

We believe that following these rules makes our code easier to understand and easier to maintain.
After you have worked through this book (where you will do it our way), you should try breaking the
rules to see if we’re wrong.

Typographical Conventions
To make this book easier to read, certain items appear in certain fonts. Class names, method names,
and function names appear in a bold, fixed-width font. Class names start with capital letters, and
method names start with lowercase letters. In this book, method and function names will be formatted
the same for simplicity’s sake. For example, “In the loadView method of the RexViewController class,
use the NSLog function to print the value to the console.”

Introduction

xviii

Variables, constants, and types appear in a fixed-width font but are not bold. So you’ll see, “The
variable fido will be of type float. Initialize it to M_PI.”

Applications and menu choices appear in the Mac system font. For example, “Open Xcode and select
New�Project... from the File menu.”

All code blocks will be in a fixed-width font. Code that you need to type in is always bold. For
example, in the following code, you would type in everything but the first and last lines. (Those lines
are already in the code and appear here to let you know where to add the new stuff.)

@interface QuizAppDelegate : NSObject <UIApplicationDelegate> {
 int currentQuestionIndex;

 // The model objects
 NSMutableArray *questions;
 NSMutableArray *answers;

 // The view objects
 IBOutlet UILabel *questionField;
 IBOutlet UILabel *answerField;
 UIWindow *window;
}

Necessary Hardware and Software
You can only develop iOS apps on an Intel Mac. You will need to download Apple’s iOS SDK,
which includes Xcode (Apple’s Integrated Development Environment), the iOS simulator, and other
development tools.

You should join Apple’s iOS Developer Program, which costs $99/year, for three reasons:

• Downloading the latest developer tools is free for members.

• Only signed apps will run on a device, and only members can sign apps. If you want to test your app
on your device, you will need to join.

• You can’t put an app in the store until you are a member.

If you are going to take the time to work through this entire book, membership in the iOS Developer
Program is, without question, worth the cost. Go to http://developer.apple.com/programs/ios/ to
join.

What about iOS devices? Most of the applications you will develop in the first half of the book are for
the iPhone, but you will be able to run them on an iPad. On the iPad screen, iPhone applications appear
in an iPhone-sized window. Not a compelling use of the iPad, but that’s okay when you’re starting with
iOS. In these first chapters, you’ll be focused on learning the fundamentals of the iOS SDK, and these
are the same across iOS devices. Later in the book, we’ll look at some iPad-only options and how to
make applications run natively on both iOS device families.

Excited yet? Good. Let’s get started.

http://developer.apple.com/programs/ios/

61

3
Managing Memory with ARC

In this chapter, you’ll learn how memory is managed in iOS and the concepts that underlie automatic
reference counting, or ARC. We’ll start with some basics of application memory.

The Heap
All Objective-C objects are stored in a part of memory called the heap. When we send an alloc
message to a class, a chunk of memory is allocated from the heap. This chunk includes space for the
object’s instance variables.

For example, consider an instance of NSDate, which represents a specific point in time. An NSDate has
two instance variables: a double that stores the number of seconds since a fixed reference point in time
and the isa pointer, which every object inherits from NSObject. A double is eight bytes, and a pointer
is 4 bytes, so each time alloc is sent to the NSDate class, 12 bytes is allocated from the heap for a new
NSDate object.

Consider another example: BNRItem. A BNRItem has five instance variables: four pointers (isa,
itemName, serialNumber, and dateCreated) and an int (valueInDollars). The amount of memory
needed for an int is four bytes, so the total size of a BNRItem is 20 bytes (Figure 3.1).

Figure 3.1 Byte count of BNRItem and NSDate instances

Chapter 3 Managing Memory with ARC

62

Notice in Figure 3.1 that the NSDate object does not live inside the BNRItem. Objects never live inside
one another; they exist separately on the heap. Instead, objects keep references to other objects as
needed. These references are the pointer instance variables of an object. Thus, when a BNRItem’s
dateCreated instance variable is set, the address of the NSDate instance is stored in the BNRItem, not
the NSDate itself. So, if the NSDate was 10, 20, or even 1000 bytes, it wouldn’t affect the size of the
BNRItem.)

The Stack
There is another part of memory called the stack that is separate from the heap. The reason for the
names heap and stack has to do with how we visualize them. The heap is a giant heaping mess of
objects, and we use pointers to remember where those objects are stored within the heap. The stack, on
the other hand, can be visualized as a physical stack of frames.

When a method (or function) is executed, it allocates a chunk of memory from the stack. This chunk of
memory is called a frame, and it stores the values for variables declared inside the method. A variable
declared inside a method is called a local variable.

When an application launches and runs the main function, the frame for main is put at the bottom of the
stack. When main calls another method (or function), the frame for that method is added to the top of
the stack. Of course, that method could call another method, and so on, until we have a towering stack
of frames. Then, as each method or function finishes, its frame is “popped off” the stack and destroyed.
If the method is called again, a brand new frame will be allocated and put on the stack.

For example, in your RandomPossessions application, the main function runs BNRItem’s randomItem
method, which in turn runs BNRItem’s alloc method. The stack would look like Figure 3.2. Notice
that main’s frame stays alive while the other methods are executing because it has not yet finished
executing.

Figure 3.2 Stack growing and shrinking

Recall that the randomItem method runs inside of a loop in the main function. So with every iteration,
the stack grows and shrinks as frames are pushed on and popped off the stack.

Pointer Variables and Object Ownership

63

Pointer Variables and Object Ownership
Pointer variables convey ownership of the objects that they point to.

• When a method (or function) has a local variable that points to an object, that method is said to own
the object being pointed to.

• When an object has an instance variable that points to another object, the object with the pointer is
said to own the object being pointed to.

Think back to your RandomPossessions application as a whole. Or, better yet, reopen
RandomPossessions.xcodeproj and have another look at the code in main.m. In this application, an
instance of NSMutableArray is created in the main function, and then 10 BNRItem instances are added
to the array.

Figure 3.3 shows the objects in RandomPossessions and the pointers that reference them.

Figure 3.3 Objects and pointers in RandomPossessions

The NSMutableArray is pointed to by the local variable items within the main function, so the main
function owns the NSMutableArray. Each BNRItem instance owns the objects pointed to by its instance
variables.

In addition, the NSMutableArray owns the BNRItems. Recall that a collection object, like an
NSMutableArray, holds pointers to objects instead of actually containing them. These pointers convey
ownership: an array owns the objects it points to.

The relationship between pointers and object ownership is important for understanding memory
management in iOS.

Chapter 3 Managing Memory with ARC

64

Memory Management
If heap memory were infinite, we could create all the objects we needed and have them exist for the
entire run of the application. But an application gets only so much heap memory, and memory on an
iOS device is especially limited. So it is important to destroy objects that are no longer needed to free
up and reuse heap memory. On the other hand, it is critical not to destroy objects that are still needed.

The idea of object ownership helps us determine whether an object should be destroyed.

• An object with no owners should be destroyed. An ownerless object cannot be sent messages and is
isolated and useless to the application. Keeping it around wastes precious memory. This is called a
memory leak.

• An object with at least one owner must not be destroyed. If an object is destroyed but another object
or method still has a pointer to it (or, more accurately, a pointer to where it used to live), then you
have a very dangerous situation: sending a message to an object that no longer exists will crash your
application. This is called premature deallocation.

Using ARC for memory management

The good news is that you don’t need to keep track of who owns whom and what pointers still exist.
Instead, your application’s memory management is handled for you by automatic reference counting,
or ARC.

In both projects you’ve built in Xcode so far, you’ve made sure to Use�Automatic�Reference�Counting
when creating the project (Figure 3.4). This won’t change; all of your projects in this book will use
ARC for managing your application’s memory.

Figure 3.4 Naming a new project

(If the Use�Automatic�Reference�Counting box in Figure 3.4 was unchecked, the application would use
manual reference counting instead, which was the only type of memory management available before

How objects lose owners

65

iOS 5. For more information about manual reference counting and retain and release messages, see
the For the More Curious section at the end of this chapter.)

ARC can be relied on to manage your application’s memory automatically for the most part, but it’s
important to understand the concepts behind it to know how to step in when you need to. So let’s return
to the idea of object ownership.

How objects lose owners

We know that an object is safe to destroy – and should be destroyed – when it no longer has any
owners. So how does an object lose an owner?

• A variable that points to the object is changed to point to another object.

• A variable that points to the object is set to nil.

• A variable that points to the object is itself destroyed.

Let’s take a look at each of these situations.

Why might a pointer change the object it points to? Imagine a BNRItem. The NSString that its
itemName instance variable points to reads “Rusty Spork.” If we polished the rust off of that spork, it
would become a shiny spork, and we’d want to change the itemName to point at a different NSString
(Figure 3.5).

Figure 3.5 Changing a pointer

When the value of itemName changes from the address of the “Rusty Spork” string to the address of the
“Shiny Spork” string, the “Rusty Spork” string loses an owner.

Why would you set a pointer to nil? Remember that setting a pointer to nil represents the absence of
an object. For example, say you have a BNRItem that represents a television. Then, someone scratches
off the television’s serial number. You would then set its serialNumber instance variable to nil. The
NSString that serialNumber used to point to loses an owner.

When a pointer variable itself is destroyed, the object that the variable was pointing at loses an owner.
At what point a pointer variable will get destroyed depends on whether it is a local variable or an
instance variable.

Chapter 3 Managing Memory with ARC

66

Recall that instance variables live in the heap as part of an object. When an object gets destroyed,
its instance variables are also destroyed, and any object that was pointed to by one of those instance
variables loses an owner.

Local variables live in the method’s frame. When a method finishes executing and its frame is popped
off the stack, any object that was pointed to by one of these local variables loses an owner.

There is one more important way an object can lose an owner. Recall that an object in a collection
object, like an array, is owned by the collection object. When you remove an object from a mutable
collection object, like an NSMutableArray, the removed object loses an owner.

[items removeObject:p]; // object pointed to by p loses an owner

Keep in mind that losing an owner doesn’t necessarily mean that the object gets destroyed; if there is
still another pointer to the object somewhere, then that object will continue to exist. However, when an
object loses its last owner, it means certain and appropriate death.

Because objects own other objects, which can own other objects, the destruction of a single object can
set off a chain reaction of loss of ownership, object destruction, and freeing up of memory.

We have an example of this in RandomPossessions. Take another look at the object diagram of this
application.

Figure 3.6 Objects and pointers in RandomPossessions

In main.m, after you finish printing out the array of BNRItems, you set the items variable to nil. Setting
items to nil causes the array to lose its only owner, so that array is destroyed.

But it doesn’t stop there. When the NSMutableArray is destroyed, all of its pointers to BNRItems are
destroyed. Once these variables are gone, no one owns any of the BNRItems, so they are all destroyed.

Strong and Weak References

67

Destroying a BNRItem destroys its instance variables, which leaves the objects pointed to by those
variables unowned. So they get destroyed, too.

Let’s add some code so that we can see this destruction as it happens. NSObject implements a
dealloc method, which is sent to an object when it is about to be destroyed. We can override
this method in BNRItem to print something to the console when a BNRItem is destroyed. In
RandomPossessions.xcodeproj, open BNRItem.m and override dealloc.

- (void)dealloc
{
 NSLog(@"Destroyed: %@", self);
}

In main.m, add the following line of code.

NSLog(@"Setting items to nil...");
items = nil;

Build and run the application. After the BNRItems print out, you will see the message announcing that
items is being set to nil. Then, you will see the destruction of each BNRItem logged to the console.

At the end, there are no more objects taking up memory, and only the main function remains. All this
automatic clean-up and memory recycling occurs simply by setting items to nil. That’s the power of
ARC.

Strong and Weak References
So far, we’ve said that anytime a pointer variable stores the address of an object, that object has an
owner and will stay alive. This is known as a strong reference. However, a variable can optionally not
take ownership of an object it points to. A variable that does not take ownership of an object is known
as a weak reference.

A weak reference is useful for an unusual situation called a retain cycle. A retain cycle occurs when
two or more objects have strong references to each other. This is bad news. When two objects own
each other, they will never be destroyed by ARC. Even if every other object in the application releases
ownership of these objects, these objects (and any objects that they own) will continue to exist by
virtue of those two strong references.

Thus, a retain cycle is a memory leak that ARC needs your help to fix. You fix it by making one of
the references weak. Let’s introduce a retain cycle in RandomPossessions to see how this works.
First, we’ll give BNRItem instances the ability to hold another BNRItem (so we can represent things like
backpacks and purses). In addition, a BNRItem will know which BNRItem holds it. In BNRItem.h, add
two instance variables and accessors

@interface BNRItem : NSObject
{
 NSString *itemName;
 NSString *serialNumber;
 int valueInDollars;
 NSDate *dateCreated;

Chapter 3 Managing Memory with ARC

68

 BNRItem *containedItem;
 BNRItem *container;
}

+ (id)randomItem;

- (id)initWithItemName:(NSString *)name
 valueInDollars:(int)value
 serialNumber:(NSString *)sNumber;

- (void)setContainedItem:(BNRItem *)i;
- (BNRItem *)containedItem;

- (void)setContainer:(BNRItem *)i;
- (BNRItem *)container;

Implement the accessors in BNRItem.m.

- (void)setContainedItem:(BNRItem *)i
{
 containedItem = i;

 // When given an item to contain, the contained
 // item will be given a pointer to its container
 [i setContainer:self];
}

- (BNRItem *)containedItem
{
 return containedItem;
}

- (void)setContainer:(BNRItem *)i
{
 container = i;
}

- (BNRItem *)container
{
 return container;
}

In main.m, remove the code that populated the array with random items. Then create two new items,
add them to the array, and make them point at each other.

#import <Foundation/Foundation.h>
#import "BNRItem.h"

int main (int argc, const char * argv[])
{
 @autoreleasepool {
 NSMutableArray *items = [[NSMutableArray alloc] init];

 for (int i = 0; i < 10; i++) {
 BNRItem *p = [BNRItem randomItem];
 [items addObject:p];
 }

 for (BNRItem *item in items)
 NSLog(@"%@", item);

Strong and Weak References

69

 BNRItem *backpack = [[BNRItem alloc] init];
 [backpack setItemName:@"Backpack"];
 [items addObject:backpack];

 BNRItem *calculator = [[BNRItem alloc] init];
 [calculator setItemName:@"Calculator"];
 [items addObject:calculator];

 [backpack setContainedItem:calculator];

 NSLog(@"Setting items to nil...");
 items = nil;
 }
 return 0;
}

Here’s what the application looks like now:

Figure 3.7 RandomPossessions with retain cycle

Per our understanding of memory management so far, both BNRItems should be destroyed along with
their instance variables when items is set to nil. Build and run the application. Notice that the console
does not report that these objects have been destroyed.

This is a retain cycle: the backpack and the calculator have strong references to one another, so there is
no way to destroy these objects. Figure 3.8 shows the objects in the application that are still taking up
memory once items has been set to nil.

Chapter 3 Managing Memory with ARC

70

Figure 3.8 A retain cycle!

The two BNRItems cannot be accessed by any other part of the application (in this case, the main
function), yet they still exist in their own little world doing nothing useful. Moreover, because they
cannot be destroyed, neither can the other objects that their instance variables point to.

To fix this problem, one of the pointers between the BNRItems needs to be a weak reference. To decide
which one should be weak, think of the objects in the cycle as being in a parent-child relationship. In
this relationship, the parent can own its child, but a child should never own its parent. In our retain
cycle, the backpack is the parent, and the calculator is the child. Thus, the backpack can keep its
strong reference to the calculator (containedItem), but the calculator’s reference to the backpack
(container) should be weak.

To declare a variable as a weak reference, we use the __weak attribute. In BNRItem.h, change the
container instance variable to be a weak reference.

__weak BNRItem *container;

Build and run the application again. This time, the objects are destroyed properly.

Every retain cycle can be broken down into a parent-child relationship. A parent typically keeps a
strong reference to its child, so if a child needs a pointer to its parent, that pointer must be a weak
reference to avoid a retain cycle.

A child holding a strong reference to its parent’s parent also causes a retain cycle. So the same rule
applies in this situation: if a child needs a pointer to its parent’s parent (or its parent’s parent’s parent,
etc.), then that pointer must be a weak reference.

It’s good to understand and look out for retain cycles, but keep in mind that they are quite rare. Also,
Xcode has a Leaks tool to help you find them. We’ll see how to use this tool in Chapter 21.

Strong and Weak References

71

An interesting property of weak references is that they know when the object they reference is
destroyed. Thus, if the backpack is destroyed, the calculator automatically sets its container instance
variable to nil. In main.m, make the following changes to see this happen.

NSMutableArray *items = [[NSMutableArray alloc] init];

BNRItem *backpack = [[BNRItem alloc] init];
[backpack setItemName:@"Backpack"];
[items addObject:backpack];

BNRItem *calculator = [[BNRItem alloc] init];
[calculator setItemName:@"Calculator"];
[items addObject:calculator];

[backpack setContainedItem:calculator];

NSLog(@"Setting items to nil...");
items = nil;

backpack = nil;

NSLog(@"Container: %@", [calculator container]);

calculator = nil;

Build and run the application. Notice that after the backpack is destroyed, the calculator reports that it
has no container without any additional work on our part.

A variable can also be declared using the __unsafe_unretained attribute. Like a weak reference, an
unsafe unretained reference does not take ownership of the object it points to. Unlike a weak reference,
an unsafe unretained reference is not automatically set to nil when the object it points to is destroyed.
This makes unsafe unretained variables, well, unsafe. To see an example, change container to be
unsafe unretained in BNRItem.h.

__unsafe_unretained BNRItem *container;

Build and run the application. It will most likely crash. The reason? When the calculator was asked for
its container within the NSLog function call, it obligingly returned its value – the address in memory
where the non-existent backpack used to live. Sending a message to a non-existent object resulted in a
crash. Oops.

As a novice iOS programmer, you won’t use __unsafe_unretained. As an experienced
programmer, you probably won’t use it, either. It exists primarily for backwards compatibility:
applications prior to iOS 5 could not use weak references, so to have similar behavior, they must use
__unsafe_unretained.

Be safe. Change this variable back to __weak.

__weak BNRItem *container;

Here’s the current diagram of RandomPossessions. Notice that the arrow representing the container
pointer variable is now a dotted line. A dotted line denotes a weak (or unsafe unretained reference).
Strong references are always solid lines.

Chapter 3 Managing Memory with ARC

72

Figure 3.9 RandomPossessions with retain cycle avoided

Properties
Each time we’ve added an instance variable to BNRItem, we’ve declared and implemented a pair of
accessor methods. Now we’re going to see how to use properties instead. Properties are a convenient
alternative to writing out accessors for instance variables – one that saves a lot of typing and makes
your class files much clearer to read.

Declaring properties

A property is declared in the interface of a class where methods are declared. A property declaration
has the following form:

@property NSString *itemName;

When you declare a property, you are implicitly declaring a setter and a getter for the instance variable
of the same name. So the above line of code is equivalent to the following:

- (void)setItemName:(NSString *)str;
- (NSString *)itemName;

Each property has a set of attributes that describe the behavior of the accessor methods. The attributes
are declared in parentheses after the @property directive. Here is an example:

@property (nonatomic, readwrite, strong) NSString *itemName;

There are three property attributes. Each attribute has two or three options, one of which is the default
and does not have to explicitly declared.

Declaring properties

73

The first attribute of a property has two options: nonatomic or atomic. This attribute has to do with
multi-threaded applications and is outside the scope of this book. Most Objective-C programmers
typically use nonatomic: we do at Big Nerd Ranch, and so does Apple. In this book, we’ll use
nonatomic for all properties.

Let’s change BNRItem to use properties instead of accessor methods. In BNRItem.h, replace all of your
accessor methods with properties that are nonatomic.

- (id)initWithItemName:(NSString *)name
 valueInDollars:(int)value
 serialNumber:(NSString *)sNumber;

- (void)setItemName:(NSString *)str;
- (NSString *)itemName;

- (void)setSerialNumber:(NSString *)str;
- (NSString *)serialNumber;

- (void)setValueInDollars:(int)i;
- (int)valueInDollars;

- (NSDate *)dateCreated;

- (void)setContainedItem:(BNRItem *)i;
- (BNRItem *)containedItem;

- (void)setContainer:(BNRItem *)i;
- (BNRItem *)container;

@property (nonatomic) BNRItem *containedItem;
@property (nonatomic) BNRItem *container;

@property (nonatomic) NSString *itemName;
@property (nonatomic) NSString *serialNumber;
@property (nonatomic) int valueInDollars;
@property (nonatomic) NSDate *dateCreated;

@end

Unfortunately, nonatomic is not the default option, so you will always need to explicitly declare your
properties to be nonatomic.

The second attribute of a property is either readwrite or readonly. A readwrite property declares
both a setter and getter, and a readonly property just declares a getter. The default option for this
attribute is readwrite. This is what we want for all of BNRItem’s properties with the exception of
dateCreated, which should be readonly. In BNRItem.h, declare dateCreated as a readonly property
so that no setter method is declared for this instance variable.

@property (nonatomic, readonly) NSDate *dateCreated;

The final attribute of a property describes its memory management. The default option depends on
the type of the property. A property whose type is not a pointer to an object, like int, does not need
memory management and thus defaults to assign. BNRItem only has one property that is not a pointer
to an object, valueInDollars. For pointers to objects, like NSString *, this attribute defaults to
strong. BNRItem has five object pointer properties: four of these will use strong, and the container
property will use weak to avoid a retain cycle. With pointers to objects, it is good to be explicit and use
the strong property to avoid confusion. In BNRItem.h, update the property declarations as shown.

Chapter 3 Managing Memory with ARC

74

@property (nonatomic, strong) BNRItem *containedItem;
@property (nonatomic, weak) BNRItem *container;

@property (nonatomic, strong) NSString *itemName;
@property (nonatomic, strong) NSString *serialNumber;
@property (nonatomic) int valueInDollars;
@property (nonatomic, readonly, strong) NSDate *dateCreated;

Build and run the application. You should see the exact same behavior as the last time you ran it. The
only difference is that BNRItem.h is much cleaner.

Synthesizing properties
In addition to using a property to declare accessor methods, you can synthesize a property to generate
the code for the accessor methods in the implementation file. Right now, BNRItem.m defines the
accessor methods declared by each property. For example, the property itemName declares two
accessor methods, itemName and setItemName:, and these are defined in BNRItem.m like so:

- (void)setItemName:(NSString *)str
{
 itemName = str;
}

- (NSString *)itemName
{
 return itemName;
}

When you synthesize a property, you don’t have to type out the accessor definitions. You can
synthesize a property by using the @synthesize directive in the implementation file. In BNRItem.m, add
a synthesize statement for itemName and delete the implementations of setItemName: and itemName.

@implementation BNRItem
@synthesize itemName;

- (void)setItemName:(NSString *)str
{
 itemName = str;
}
- (NSString *)itemName
{
 return itemName;
}

You can synthesize properties in the same synthesize statement or split them up into multiple
statements. In BNRItem.m, synthesize the rest of the instance variables and delete the rest of the
accessor implementations.

@implementation
@synthesize itemName;
@synthesize containedItem, container, serialNumber, valueInDollars,
 dateCreated;

- (void)setSerialNumber:(NSString *)str
{
 serialNumber = str;
}
- (NSString *)serialNumber

Synthesizing properties

75

{
 return serialNumber;
}

- (void)setValueInDollars:(int)i
{
 valueInDollars = i;
}
- (int)valueInDollars
{
 return valueInDollars;
}

- (NSDate *)dateCreated
{
 return dateCreated;
}

- (void)setContainedItem:(BNRItem *)i
{
 containedItem = i;

 // When given an item to contain, the contained
 // item will be given a pointer to its container
 [i setContainer:self];
}
- (BNRItem *)containedItem
{
 return containedItem;
}

- (void)setContainer:(BNRItem *)i
{
 container = i;
}
- (BNRItem *)container
{
 return container;
}

Usually, synthesized accessors work fine, but sometimes you need an accessor method to do some
additional work. This is the case for setContainedItem:. Here is our original implementation:

- (void)setContainedItem:(BNRItem *)i
{
 containedItem = i;
 [i setContainer:self];
}

The synthesized setter won’t include the second line establishing the reciprocal relationship between
the container and the containedItem. Its implementation just looks like this:

- (void)setContainedItem:(BNRItem *)i
{
 containedItem = i;
}

Because we need this setter to do additional work, we cannot rely on the synthesized method and must
write the implementation ourselves. Fortunately, writing our own implementation does not conflict

Chapter 3 Managing Memory with ARC

76

with synthesizing the property. Any implementation we add will override the synthesized version. In
BNRItem.m, add back the implementation of setContainedItem:.

- (void)setContainedItem:(BNRItem *)i
{
 containedItem = i;
 [i setContainer:self];
}

Build and run the application again. It should work the same as always, but your code is much cleaner.

Synthesizing a property that you declared in the header file is optional, but typical. The only reason not
to synthesize a property is if both the getter and the setter methods have additional behavior you need
to implement.

Instance variables and properties
With properties, we can go even one step further in code clarity. By default, a synthesized property
will access the instance variable of the same name. For example, the itemName property accesses the
itemName instance variable: the itemName method returns the value of the itemName instance variable,
and the setItemName: method changes the itemName instance variable.

If there is no instance variable that matches the name of a synthesized property, one is automatically
created. So declaring an instance variable and synthesizing a property is redundant. In BNRItem.h,
remove all of the instance variables as well as the curly brackets.

@interface BNRItem : NSObject
{
 NSString *itemName;
 NSString *serialNumber;
 int valueInDollars;
 NSDate *dateCreated;

 BNRItem *containedItem;
 __weak BNRItem *container;
}

Build and run the application. Notice there are no errors and everything works fine. All of the instance
variables (like itemName and dateCreated) still exist even though we no longer explicitly declare
them.

Copying
There is one more change we need to make to our properties – specifically, the two properties that
point to instances of NSString.

In general, when you have a property that points to an instance of a class that has a mutable subclass
(like NSString or NSArray), it is safer to make a copy of the object to point to rather than pointing to an
existing object that could have other owners.

For instance, imagine if a BNRItem was initialized so that its itemName pointed to an instance of
NSMutableString.

Dot Syntax

77

NSMutableString *mutableString = [[NSMutableString alloc] init];

BNRItem *item = [[BNRItem alloc] initWithItemName:mutableString
 valueInDollars:5
 serialNumber:@"4F2W7"]];

This code is valid because an NSMutableString is also an instance of its superclass, NSString. The
problem is that the string pointed to by mutableString can be changed without the knowledge of the
BNRItem that also points to it.

You may be wondering why this is a real problem. In your application, you’re not going to change this
string unless you mean to. However, when you write classes for others to use, you can’t be sure how
they will use your classes, and you have to program defensively.

In this case, the defense is to declare this property using the memory management attribute copy
instead of strong. In BNRItem.h, change the itemName and serialNumber properties to copy.

@property (nonatomic, copy) NSString *itemName;
@property (nonatomic, copy) NSString *serialNumber;

Now the generated setter method for the synthesized itemName property looks like this:

- (void)setItemName:(NSString *)str
{
 itemName = [str copy];
}

Instead of setting itemName to point to the NSString object pointed to by str, this setter sends
the message copy to that NSString. The copy method returns a new NSString object (not an
NSMutableString) that has the same values as the original string, and itemName is set to point at
the new string. In terms of ownership, copy gives you a strong reference to the object pointed to.
The original string is not modified in any way: it doesn’t gain or lose an owner, and none of its data
changes.

Dot Syntax
We should mention an alternative syntax for sending accessor messages to an object called dot syntax:

// Following two lines are exactly equivalent
int value = [item valueInDollars];
int value = item.valueInDollars;

// Following two lines are exactly equivalent
[item setValueInDollars:5];
item.valueInDollars = 5;

We have reservations about Objective-C newcomers using dot syntax. We think it hides the fact that
you are actually sending a message and can be confusing. Once you are comfortable with Objective-C,
it is totally okay to use dot syntax. But while you are learning, it’s better to use square brackets to make
sure you understand what is really going on.

This book will always use square brackets for sending accessor messages.

Chapter 3 Managing Memory with ARC

78

For the More Curious: Autorelease Pool
and ARC History
Before automatic reference counting (ARC) was added to Objective-C, we had manual reference
counting. With manual reference counting, ownership changes only happened when you sent an
explicit message to an object.

[anObject release]; // anObject loses an owner

[anObject retain]; // anObject gains an owner

This was a bummer: Forgetting to send release to an object before setting a pointer to point at
something else was a guaranteed memory leak. Sending release to an object if you had not previously
sent retain to the object was a premature deallocation. A lot of time was spent debugging these
problems, which could become very complex in large projects.

During the dark days of manual reference counting, Apple was contributing to an open source project
known as the Clang static analyzer and integrating it into Xcode. You’ll see more about the static
analyzer in Chapter 21, but the basic gist is that it could analyze code and tell you if you were doing
something silly. Two of the silly things it could detect were memory leaks and premature deallocations.
Smart programmers would run their code through the static analyzer to detect these problems and then
write the necessary code to fix them.

Eventually, the static analyzer got so good that Apple thought, “Why not just let the static analyzer
insert all of the retain and release messages?” Thus, ARC was born. People rejoiced in the streets, and
memory management problems became a thing of the past.

(Some people have an irrational fear of letting the compiler do their work for them and say they prefer
manual memory management for this reason. If someone says something like that to you, open up one
of their .m files, go to the Product menu, and select Generate�Assembly�File from the Generate�Output
menu item. Tell them if they don’t trust the compiler, then they should be writing the assembly code
they see in front of them.)

Another thing programmers had to understand in the days of manual reference counting was the
autorelease pool. When an object was sent the message autorelease, the autorelease pool would take
ownership of an object temporarily so that it could be returned from the method that created it without
burdening the creator or the receiver with ownership responsibilities. This was crucial for convenience
methods that created a new instance of some object and returned it:

- (BNRItem *)someItem
{
 BNRItem *item = [[[BNRItem alloc] init] autorelease];

 return item;
}

Because you had to send the release message to an object to relinquish ownership, the caller of this
method had to understand its its ownership responsibilities. But it was easy to get confused.

BNRItem *item = [BNRItem someItem]; // I guess I own this now?

NSString *string = [item itemName]; // Well if I own that, do I own this?

For the More Curious: Autorelease Pool and ARC History

79

Thus, objects created by methods other than alloc and copy would be sent autorelease before being
returned, and the receiver of the object would take ownership as needed or just let it be destroyed after
using it within the method in which it was returned.

With ARC, this is done automatically (and sometimes optimized out completely). An autorelease pool
is created by the @autoreleasepool directive followed by curly brackets. Inside those curly brackets,
any newly instantiated object returned from a method that doesn’t have alloc or copy in its name is
placed in that autorelease pool. When the curly bracket closes, any object in the pool loses an owner.

@autoreleasepool {
 // Get a BNRItem back from a method that created it, method doesn't say alloc/copy
 BNRItem *item = [BNRItem someItem];
} // item loses an owner and is destroyed because nothing else took ownership of it

iOS applications automatically create an autorelease pool for you, and you really don’t have to concern
yourself with it. But isn’t it nice to know what that @autoreleasepool is for?

571

Index
Symbols
#import, 55
%@ prefix, 37
.h files, 41
.m files, 41, 44
@ prefix

creating strings with, 36
and Objective-C keywords, 42

@autoreleasepool, 79
@class, 195
@end, 42
@implementation, 44
@interface, 42
@optional, 89
@private, 543
@property, 72
@protected, 543
@protocol, 88
@public, 543
@selector(), 235
@synthesize, 74
^, 486
_cmd, 292
__block, 497, 498
__bridge, 253, 254
__unsafe_unretained, 71
__weak, 70

A
accessor methods, 43-46, 72

(see also properties)
accessory indicator (UITableViewCell), 198
action methods, 15-17

connecting in XIB file, 242-244
and UIControl, 365-366

active state, 287
actor objects, 512, 513
addAnimation:forKey:, 417
addObject:, 35, 38
addSubview:, 125, 128
alloc, 30-31, 193
Allocations instrument, 381-387
allocWithZone:, 193
analyzing (code), 379-381

angled brackets, 120
animation transactions, 406
animationDidStop:finished:, 418
animations, 411

(see also CALayer, layers)
CABasicAnimation, 412-413, 415-417, 420
CAKeyframeAnimation, 413, 418-420
choosing, 415
classes of, 399, 411-414
and data types, 413
identity matrices in, 420
implicit, 405-406
key paths of, 411, 415
keyframes in, 414-416
keys for, 417
reusing, 417
timing functions of, 417-418

animationWithKeyPath:, 417
anonymous functions (see blocks)
anti-aliasing, 170
API Reference, 110-114
APIs, 399

(see also frameworks)
Core Animation, 399, 403, 412
Core Foundation, 252, 253-254

App ID, 23
Apple documentation, 110-114
application bundle, 282, 296-298, 348
application delegates, 11, 170
application dock, 287
application domain, 354
application sandbox, 281-283, 296
application states, 286-288, 292-293
application:didFinishLaunchingWithOptions:,
123, 170
applicationDidBecomeActive:, 293
applicationDidEnterBackground:, 284, 288,
293
applications, 20

(see also debugging, universal applications)
adding frameworks to, 82
allowing orientations, 184
build settings for, 395-397
building, 20, 45, 82, 97-101, 346
cleaning, 346
data storage, 281-282, 338
deploying, 22-23
directories in, 281-283

Index

572

entitlements of, 556
icons for, 24-25
launch images for, 25
optimizing CPU usage, 387-390
profiling, 381-383
running on iPad, 3
running on simulator, 20
templates for, 82
testing offline, 551
user preferences in, 351-356

applicationWillEnterForeground:, 293
applicationWillResignActive:, 293
ARC (Automatic Reference Counting), 64

(see also memory management)
and blocks, 498
and __bridge, 253, 254
and Core Foundation objects, 253, 254
history of, 78
vs. manual reference counting, 78
overview, 64
and retain cycles, 67

archiveRootObject:toFile:, 283
archiving

vs. Core Data, 317, 317
described, 279
implementing, 279-281
with NSKeyedArchiver, 283-286
thumbnail images, 307
when to use, 338
and XIB files, 281

arguments, 31-32
arrays

copying, 542
vs. dictionaries, 249
fast enumeration of, 57
and memory management, 66
and object ownership, 63, 66
overview, 37-38
writing to filesystem, 295

assistant editor, 224-229, 242-244
atomic, 73
attributes (Core Data), 318, 320-320, 324
attributes inspector, 8, 108-108
auto-completion (in Xcode), 18, 202-204, 511
automatic reference counting (see ARC)
autorelease, 78
autorelease pool, 78
autoresize masks, 179-180, 182-184

autorotation, 176-186, 466
availableMediaTypesForSourceType:, 258
awakeFromFetch, 324
awakeFromInsert, 325

B
background state, 287-288, 287, 292-293
backgroundColor, 130
becomeFirstResponder, 135
binary numbers, 183, 184
bitmap contexts, 408, 408
bitwise operators, 183, 184
__block, 497
blocks

as approach to callbacks, 495, 500
and code-completion, 511
capturing variables in, 492-495, 497
completion, 272-273, 495
copying, 498
creating, 487, 489
location in memory, 498
nesting, 532
in operation queue, 494, 534
as properties, 492
reasons to use, 492, 494, 495, 500
scope of, 492, 495
syntax, 485-489
timing of execution, 533
variables for, 486-489, 511

BNRConnection, 512-517
bounds, 129, 131
brackets, 31, 42, 120
breakpoint navigator, 94
breakpoints, 91-91, 94
__bridge, 253, 254
build configurations, 396
build phases, 97-101
build settings, 395-397
bundles

application, 282, 296-298, 348
identifier, 23
NSBundle, 348

C
CAAnimation, 399, 411

(see also animations)
CAAnimationGroup, 414

573

CABasicAnimation, 412-413, 415-417
Cache.db, 553
caching data, 529-545, 553
CAKeyframeAnimation, 413, 418-420
CALayer, 411

(see also animations, layers)
addAnimation:forKey:, 417
animatable properties of, 405-406
bitmap context for, 408
contents, 403
creating, 400-402
delegate, 407
described, 399
designated initializer, 401
drawInContext:, 407-408
presentationLayer, 420
properties, 402-406, 411-412, 415
setPosition:, 405
subclassing, 407
superlayer, 404
zPosition, 404-405

callbacks, 87, 87, 499, 499, 500
CAMediaTimingFunction, 417
camera, 259

(see also images)
recording video, 257-259
taking pictures, 241-248

cancelsTouchesInView, 376
canPerformAction:withSender:, 376
canvas area, 6
CAPropertyAnimation, 411
capture groups (regular expressions), 481-482
CATransaction, 406
CATransform3DIdentity, 420
CATransition, 414
cells (see UITableViewCell)
CFRelease, 253
CFStringRef, 253
CFUUIDRef, 251-254
CGBitmapContextCreate, 409
CGContext, 129
CGContextRef, 129-134, 131, 132

drawing to, 306
and layers, 408-409

CGImage, 403
CGPoint, 126, 412-413
CGRect, 126
CGSize, 126, 306

class methods, 53-54
classes, 29

(see also individual class names)
copying files, 191
creating, 39
declaring, 41-42
inheritance of, 38, 42
overview, 29-30
prefixes for, 59
reusing, 191
subclassing, 38-56
superclasses, 38, 42, 50

CLLocation, 85-86
CLLocationManager, 84-87
CLLocationManagerDelegate, 88
closures (see blocks)
_cmd, 292
Cocoa Touch, 82
code snippet library, 202-204
code-completion (in Xcode), 18, 202-204, 511
compile-time errors, 99-99
compiling, 98, 99
completion blocks, 272-273, 495
connection:didFailWithError:, 443
connection:didReceiveData:, 443-443
connectionDidFinishLoading:, 443-445
connections inspector, 17
console, 21, 36, 37
const, 563
containsObject:, 537
contentMode (UIImageView), 240-241
contentView (UITableViewCell), 199-199,
299-300
contentViewController

(UIPopoverController), 264
contexts, drawing, 128-134
controller objects, 103-104

(see also view controllers)
defined, 10
as delegates, 90
lifespan of, 90
and store objects, 292

convenience methods, 53-54
coordinate (MKAnnotation), 113, 116, 116
copy, 77, 498, 541
copying arrays, 542
copying blocks, 498
copying files, 191

Index

574

copying objects, 76-77, 541
copyWithZone:, 542
Core Animation, 399, 399, 403, 412

(see also animations, CALayer)
Core Data

vs. archiving, 317, 317
attributes, 318, 320-320
entities, 318-322, 330-335
faults, 336-337
fetch requests, 327-329, 338
fetched property, 338
and iCloud, 561-566
lazy fetching, 336
logging SQL commands, 335
model file, 318-322, 325
NSManagedObjectContext, 325-329
NSManagedObjectModel, 325-327
NSPersistentStoreCoordinator, 325-327
as ORM, 317-318
relationships, 320-322, 336-337
and SQLite, 317, 325-327, 335
subclassing NSManagedObject, 322-325
transient attributes, 324
versioning, 338, 338
when to use, 317, 338, 529

Core Foundation, 252, 253-254
Core Graphics (framework), 128, 131, 306-306,
403-403
Core Location (framework), 83-87
count (NSArray), 38
curly brackets, 42
currentDevice, 263
currentLocale, 342

D
data source methods, 196
data storage, 281

(see also archiving, Core Data)
for application data, 281-282
binary, 289, 294
caching, 529-545
choosing, 338
with I/O functions, 294
for images, 305-308
with NSData, 288, 305-305

dataSource (UITableView), 189, 191-198, 196
dealloc, 67, 90

debug area, 21
debug navigator, 91
debugger bar, 93
debugging, 91

(see also debugging tools, exceptions)
categorizing log statements, 455
compile-time errors, 99-99
creating schemes for, 393-395
exceptions, 56-57
linker errors, 100-101
NSError, 294-295
stack trace, 91, 95
stepping through methods, 93-94
testing offline behavior, 551

debugging tools
Allocations instrument, 381-387
breakpoints, 91-91, 94
debug navigator, 91
debugger, 91-97
heapshots, 387
Instruments, 381-391
issue navigator, 21
log navigator, 36
stack trace, 91, 92, 95
static analyzer, 379-381
Time Profiler, 387-390
variables view, 92, 93

declarations
class, 41-42
instance variable, 42
method, 44, 48-48, 53-54
protocol, 89

definesPresentationContext, 278
delegate (property), 85, 85, 90, 90, 474

(see also delegation)
delegation

as approach to callbacks, 499, 499, 500
and controller objects, 90
creating a delegate protocol, 469-474
delegate, 85, 90, 474
and layers, 407
and memory management, 90
overview, 87-88
protocols used for, 88-90
swapping delegates, 447
vs. target-action pairs, 87

deleteRowsAtIndexPaths:withRowAnimation:,
215

575

description (NSObject), 37, 39, 46
designated initializers, 48-52
detail view controllers, 464
developer certificates, 22
devices

checking for camera, 245-246
deploying to, 22, 23
determining type of, 263
orientation of, 174, 178
provisioning, 22-23, 23
Retina display, 24, 26, 170-171

dictionaries
described, 249-251
memory management of, 291
using, 251-254
writing to filesystem, 295

directories
application, 281-283
Documents, 282, 564, 567
Library/Caches, 282, 567
Library/Preferences, 282
lproj, 343, 348
temporary, 282

dismissPopoverAnimated:completion:, 266
dismissViewControllerAnimated:completion:,
271, 272
dock

for applications, 287
in XIB editor area, 5

documentation, using, 110-114
Documents directory, 282, 564, 567
domain, application, 354
domain, registration, 354
dot syntax, xvii, 77
dot-notation, xvii, 77
drawing contexts, 128-134
drawing operations, 131
drawInRect:withFont:, 133
drawLayer:inContext: (CALayer), 407-408
drawRect:, 128-131, 134

and Core Graphics, 131, 408
and run loop, 134
and UITableViewCell, 299

drill-down interface
with UINavigationController, 219
with UISplitViewController, 463

E
editButtonItem, 237
editing (UITableView,
UITableViewController), 207, 212
editor area, 5
encodeInt:forKey:, 280
encodeObject:forKey:, 280
encodeWithCoder:, 279, 279-280, 284
@end, 42
endEditing:, 233, 256
entities (Core Data), 318-322, 330-335
entitlements, 556
errors

compile-time, 99-99
connection, 443
linker, 100-101
and NSError, 294-295
run-time, 56-57

event loop, 134
exceptions

diagnosing in debugger, 95-97
explained, 56-57
internal inconsistency, 213
throwing, 267
unknown key, 229
unrecognized selector, 56, 57, 311
using NSException, 267

explicit layers, 400, 407
(see also CALayer)

extern, 563

F
fast enumeration, 57
faults, 336-337
fetch requests, 327-329, 338
fetched property, 338
file inspector, 343
file paths, retrieving, 282-283
File's Owner, 151-156, 152
files

header (.h), 41, 116
implementation (.m), 41, 44, 116
importing, 44, 83, 120
including, 44
intermediate, 98
library, 100
object, 99

Index

576

filteredArrayUsingPredicate:, 329
first responder

and motion events, 135
and nil-targeted actions, 366
overview, 118-119
resigning, 233, 256
and responder chain, 364-365
and UIMenuController, 372

format string, 37
forward declarations, 195
frame (in stack), 62
frame (UIView), 126, 129, 131
frameworks

adding, 82-83, 399
class name prefixes of, 59
Cocoa Touch, 82, 82
Core Data (see Core Data)
Core Foundation, 252, 253-254
Core Graphics, 128, 131, 306, 403-403
Core Location, 83
header files, 83
importing, 83, 120
and linker errors, 100
MapKit, 103, 104
MobileCoreServices, 259
QuartzCore, 399, 403
UIKit, 403

functions
callback, 87, 87
vs. methods, 30
timing (animation), 417-418

G
genstrings, 347
gestures, 367

(see also UIGestureRecognizer,
UIScrollView)
long press, 373-374
panning, 137, 373, 374-376
pinching, 141
taps, 368-372

getter methods, 43-45
graphic contexts, 408
GUIDs, 251

H
.h files (see header files)

header files
description, 41
for frameworks, 83
importing, 44, 55-56
order of declarations in, 53
shortcut to implementation files, 116

header view (UITableView), 207-211
heap memory, 61, 62, 64
heapshots, 387
HeavyRotation application

implementing autorotation, 177-181
making universal, 181-182
registering and receiving notifications,
175-175

hierarchies
class, 38
layer, 399, 400
view, 124-126, 145, 148

Homepwner application
adding an image store, 248
adding drill-down interface, 219-238, 221
adding item images, 239-257
adding item store, 192-195
adding modal presentation, 266-272
customizing cells, 299-315
enabling editing, 207-217
localizing, 342-348
moving to Core Data, 317
object diagrams, 192, 221
reusing BNRItem class, 191
storing images, 288-291
universalizing, 262-263

HTTP protocol, 459-460
Hypnosister application

creating HypnosisView, 124-126
detecting shakes, 135-137
hiding status bar, 141
object diagram, 137
scrolling and zooming, 137-141

HypnoTime application
adding animation, 400-406, 414-420
adding second view controller, 150-156
adding tab bar controller, 156-161
creating, 145-150

I
I/O functions, 294

577

IBAction, 13, 15-16, 242-244
IBOutlet, 13-15, 226-229
ibtool, 344-346
iCloud

backing up data with, 566
controlling synchronization, 564, 567
and Core Data, 561-566
document storage, 555
key-value storage, 555
managing stored data, 565
purpose, 555
requirements, 555
synchronizing with, 556
and ubiquity containers, 556-561, 562, 564
user accounts, 555, 555

icons
application, 24-25
camera, 241
tab bar, 160-161

id, 48
identity matrices, 420
image picker (see UIImagePickerController)
imageNamed:, 171
imagePickerController:

didFinishPickingMediaWithInfo:, 245
imagePickerControllerDidCancel:, 245
images, 259

(see also camera, UIImage, UIImageView)
archiving, 305-305, 307
caching, 288-291
creating thumbnail, 304-308
displaying in UIImageView, 239-241
manipulating in offscreen contexts, 304-308
for Retina display, 170
storing, 248-251
wrapping in NSData, 289

imageWithContentsOfFile:, 290
@implementation, 44
implementation files, 41, 44, 116
implicit animations, 405-406
implicit layers, 399, 403
#import, 55
importing files, 44, 55, 83, 120
inactive state, 287
including files, 44
incomplete implementation warnings, 96
Info.plist, 184
inheritance, single, 38, 42

init

and
alloc, 30-31
overview, 47-52
for view controllers, xvii

initialize, 354
initializers, 47-52

disallowing calls to, 267
and singletons, 192-195

initWithCGImage:, 403, 409
initWithCoder:, 279, 280-281
initWithContentsOfFile:, 294-295
initWithFrame:, 126, 401, 403
initWithNibName:bundle:, 161
insertObject:atIndex:, 35, 38
inspectors

attributes, 8, 108-108
connections, 17
file, 343
overview, 7
size, 179-180

instance variables, 72
(see also properties)
accessing with ->, 543
accessor methods for, 43
and weak references, 71
customizing in attributes inspector, 8
declaring, 42-42
description, 30
in memory, 61
memory management of, 66
datatypes of, 42-43
private, 543
and properties, 76
protected, 543
public, 543
visibility of, 543

instances, 30-31
instantiateWithOwner:options:, 304
Instruments, 381-391

and schemes, 393-395
@interface, 42
interface files (see header files)
intermediate files, 98
internal inconsistency exception, 213
internationalization, 341-343, 348

(see also localization)
iOS SDK documentation, 110-114

Index

578

iPad, 3
(see also devices)
application icons for, 24
launch images for, 26
orientations, 178
running iPhone applications on, 3
XIB files for, 262

isa pointer, 48
isEqual:, 214, 537
isSourceTypeAvailable:, 245
issue navigator, 21, 99

J
JSON, 520-524, 526-527

K
kCAMediaTimingFunctionEaseInEaseOut, 418
key paths (animation), 411-415
key-value pairs, 250-251

in Info.plist, 184
keyboard

dismissing, 256
number pad, 238
setting properties of, 108

keyframes (animation), 414-416
keys

for animations, 417
in dictionaries, 250-255

keywords, 42
kUTTypeImage, 258, 259
kUTTypeMovie, 258, 259

L
labels (in message names), 32
landscape mode

allowing rotation to, 177
forcing rotation to, 184
and split view controllers, 466

language settings, 341, 346
launch images, 25-27
layers, 399

(see also CALayer)
compositing, 400
and delegation, 407
drawing programmatically, 407-409
explicit, 400, 407
hierarchy of, 400, 404-405

implicit, 399, 403
model vs. presentation, 420
size and position of, 402-403
and views, 399-400

Leaks instrument, 390-391
leaks, memory, 64
libraries

code snippet, 202-204
object, 7
system, 100, 100, 120

(see also frameworks)
library files, 100
Library/Caches directory, 282, 567
Library/Preferences directory, 282
linker errors, 100-101
loadNibNamed:owner:options:, 304
loadView, 148, 150, 163, 211, 229
local variables, 62, 63, 66
Localizable.strings, 347
localization

adding, 343
and ibtool, 344-346
internationalization, 341-343, 348
lproj directories, 343, 348
NSBundle, 348
resources, 343-346
strings tables, 346-348
user settings for, 341, 346
XIB files, 343-346

localizedDescription, 294
location finding, 84-87
location services, 83, 83

(see also Core Location)
locationInView:, 370
locationManager:didFailWithError:, 86
locationManager:didUpdateToLocation:

fromLocation:, 85
log navigator, 36
low-memory warnings, 162, 248, 291
lproj directories, 343, 348

M
.m files, 41, 44
mach_msg_trap, 389
macros, preprocessor, 396-397
main, 34, 169
main bundle, 282, 296-298, 348

579

main operation queue, 494
mainBundle, 210, 297
makeKeyAndVisible, 123
manual reference counting, 78
map views, 109

(see also MKAnnotation, MKMapView)
changing type of, 351, 352
zooming, 109-114

MapKit (framework), 103, 104
mapType (MKMapView), 351, 352
mapView:didUpdateUserLocation:, 112, 112
masks, autoresize, 179-180, 182-184
master view controllers, 464, 474
matchesInString:options:range:, 479
mediaTypes, 257
memory, 61, 62, 62, 64
memory leaks, 64
memory management

with ARC, 64
arrays, 66
avoiding retain cycles, 70
and controller objects, 90
and copying, 77
and delegates, 90
dictionaries, 251, 291
leaks, 64, 67

(see also retain cycles)
and Leaks instrument, 390-391
need for, 64
notifications, 174
and object ownership, 65-67
optimizing with Allocations instrument,
381-387
pointers, 65-67
premature deallocation, 64
properties, 73
strong and weak references, 67-72
UITableViewCell, 201

memory warnings, 248, 291
menus (UIMenuController), 371-372, 376
messages, 31, 31-33

(see also methods)
metacharacters (regular expressions), 480
methods, 30

(see also individual method names)
accessor, 43-46
action, 15-17, 365-366
arguments of, 48

class, 53-54
data source, 196
declaring, 44, 47, 48-48, 53
defined, 30
designated initializer, 48-52
implementing, 44-45, 47, 49
initializer, 47-52
vs. messages, 32
names of, 32
overriding, 46-47, 50-52
parameters of, 48
protocol, 89
stepping through, 93-94

minimumPressDuration, 373
MKAnnotation protocol, 114-117
MKAnnotationView, 104, 114
MKCoordinateRegion, 113, 113, 114
MKMapView, 104-105, 108-114, 112, 351
MKMapViewDelegate, 109-112
MKUserLocation, 113
MobileCoreServices, 259
.mobileprovision files, 23-23
modal view controllers

defined, 246
dismissing, 269-270
and non-disappearing parent view, 271
relationships of, 275
in storyboards, 431-434
styles of, 270
transitions for, 273

modalPresentationStyle, 270, 278
modalTransitionStyle, 273
modalViewController, 269-270
model file (Core Data), 318-322, 325
model layer, 420
model objects, 9, 103-104, 524
Model-View-Controller (MVC), 9-11, 104-104,
292
Model-View-Controller-Store (MVCS)

benefits of, 550-551
vs. MVC, 292, 503-506
when to use, 503

motion events, 135-137
motionBegan:withEvent:, 136
motionCancelled:withEvent:, 136
motionEnded:withEvent:, 136
multi-touch, 361
MVC (Model-View-Controller), 9-11, 104, 292

Index

580

MVCS (see Model-View-Controller-Store)

N
namespaces, 59
naming conventions

accessor methods, 43
cell reuse identifiers, 201
class prefixes, 59
delegate protocols, 89
initializer methods, 47

navigation controllers (see
UINavigationController)
navigationController, 230, 275
navigationItem (UIViewController), 233
navigators

breakpoint, 94
debug, 91
issue, 21, 99
keyboard shortcuts for, 21
log, 36
project, 3-5

Nerdfeed application
adding delegate protocol, 469-474
adding iCloud support, 555-565
adding UIWebView, 456-458
caching RSS feeds, 529-545
categorizing log statements, 455
converting to MVCS, 506-525
fetching data, 440-442
indicating read items, 545-550
parsing data, 444-455
showing only post titles, 478-482
using UISplitViewController, 464-466

nested message sends, 31
nextResponder, 364
NIB files, 5, 5, 304

(see also XIB files)
nibWithNibName:bundle:, 303
nil

and arrays, 38
as notification wildcard, 174
returned from initializer, 50
sending messages to, 32
setting pointers to, 32
-targeted actions, 366
as zero pointer, 32

nonatomic, 73

.nosync, 564
notifications

as approach to callbacks, 499, 499, 500
described, 173-176
of low-memory warnings, 291
posting, 563-564

NSArray, 37, 37-38, 537
(see also arrays)

NSBundle, 210, 348
NSCocoaErrorDomain, 294
NSCoder, 279, 281
NSCoding protocol, 279-281, 305
NSComparisonResult, 538
NSCopying, 541
NSData, 288, 305-305, 307
NSDate, 155, 232, 295, 323
NSDateFormatter, 155, 232, 342
NSDictionary, 249-251, 249

(see also dictionaries)
NSError, 294-295
NSException, 267
NSExpression, 338
NSFetchRequest, 327-329, 338
NSFileCoordinator, 555
NSFileManager, 561
NSFilePresenter protocol, 555
NSIndexPath, 200, 215
NSJSONSerialization, 521-524, 526
NSKeyedArchiver, 283-286
NSKeyedUnarchiver, 285
NSLocale, 342
NSLocalizedString, 346, 348
NSLog, 37
NSManagedObject, 322-325, 338
NSManagedObjectContext, 325-329, 338
NSManagedObjectModel, 325-327
NSMetadataQuery, 555
NSMutableArray, 35, 37-38, 37

(see also arrays)
removeObject:, 214
removeObjectIdenticalTo:, 214
sortUsingComparator:, 538

NSMutableDictionary, 249-251, 249
(see also dictionaries)

NSNotification, 173-174
NSNotificationCenter, 173-176
NSNull, 38
NSNumber, 295, 413

581

NSObject, 38-42
NSOperationQueue, 494
NSPersistentStoreCoordinator, 325-327
NSPredicate, 328
NSRegularExpression, 479-482
NSSearchPathDirectory, 282
NSSearchPathForDirectoriesInDomains, 282
NSSortOrdering, 338
NSString

collecting from XIB , 344
creating, 54
creating with @, 36
description, 39
drawInRect:withFont:, 133
internationalizing, 346
as key path, 411
literal, 36
localizing, 344
printing to console, 37
property list serializable, 295
stringWithFormat:, 54
using tokens with, 37
writing to filesystem, 289-294

NSStringFromSelector, 292
NSTemporaryDirectory, 282
NSTextCheckingResult, 479
NSTimeInterval, 323
NSUbiquitousKeyValueStore, 555
NSURL, 440-442
NSURLAuthenticationChallenge, 460
NSURLAuthenticationChallengeSender, 460
NSURLCache, 554
NSURLConnection, 441, 441-444, 459
NSURLCredential, 460-461
NSURLIsExcludedFromBackupKey, 567
NSURLRequest, 440-442, 459-460
NSUserDefaults, 282, 353-356
NSUserDefaultsDidChangeNotification, 356
NSValue, 362-364, 413
NSXMLParser, 444-455, 458
NSXMLParserDelegate, 446, 447, 449, 450, 458
number pad, 238

O
objc_msgSend, 390
object diagrams, 103-104
object files, 99

object library, 7
Object-Relational Mapping (ORM), 317
objectAtIndex:, 38
objectForKey:, 250-251
Objective-C

basics, 29-57
keywords, 42
message names, 32, 32
method names, 32
naming conventions, 43, 47
single inheritance in, 42

objects, 29
(see also classes, memory management)
allocation, 61
copying, 76-77
independence of, 42
in memory, 61
overview, 29-31
ownership of, 63-63, 65-67
property list serializable, 295
size of, 61

offscreen contexts, 304-306
OmniGraffle, 103
operators (regular expressions), 480
optional methods (protocols), 89
Organizer window, 23
orientation

and autorotation, 176-185
on iPad, 178, 184, 263
landscape mode, 184
and split view controllers, 466
UIDevice constants for, 174

orientationChanged:, 175
ORM (Object-Relational Mapping), 317
outlets, 13-17, 224
overriding methods, 46-47, 50-52

P
parentViewController, 269-270
parsing XML, 444-455
pathForResource:ofType:, 349
paths (Core Graphics), 131
pattern strings (regular expressions), 479,
480-481
performSelector:withObject:, 310
placeholder objects, 152
placeholders (in code), 18, 19, 204

Index

582

pointers
in arrays, 37
and memory management, 65-67
overview, 30-31
setting in XIB files, 14-15
setting to nil, 32
as strong references, 67
syntax of, 42
as weak references, 67, 67

popover controllers, 264-265, 474
popoverControllerDidDismissPopover:, 265
predicates (fetch requests), 328
predicateWithFormat:, 328
preferences, 351-356
premature deallocation, 64
preprocessing, 98
preprocessor macros, 396-397
presentation layer, 420
presentedViewController, 275
presentingViewController, 269, 270, 275
presentViewController:animated:completion:,
246, 272
products, 82, 392
profiling (applications), 381-382
project navigator, 3-5
projects

adding frameworks to, 399
build settings for, 395-397
cleaning and building, 346
copying files to, 191
creating new, 2, 3
defined, 82
diagram of, 392
target settings in, 296

properties, 72-74
atomic, 73
attributes of, 72
block, 492
copy, 77
creating from XIB file, 302, 302, 302
declaring, 77
and instance variables, 76
memory management of, 73
nonatomic, 73
overriding accessors, 75
in protocols, 117
readonly, 73
readwrite, 73

strong, 73
synthesizing, 74-76
weak, 73

property list serializable objects, 295
protocols

CLLocationManagerDelegate, 88
creating new, 469-474
declaring, 89
delegate, 88-90, 109, 469-474
described, 88-89
implementation of, 117
MKAnnotation, 114-117
MKMapViewDelegate, 109-112
NSCoding, 279-281, 305
NSCopying, 541
NSURLAuthenticationChallengeSender, 460
NSXMLParserDelegate, 446, 447, 449, 450
optional methods in, 89
properties in, 117
required methods in, 89
structure of, 88
UIApplicationDelegate, 288
UIGestureRecognizerDelegate, 374
UIImagePickerControllerDelegate, 245,
247-248
UINavigationControllerDelegate, 247
UIPopoverControllerDelegate, 264
UIResponderStandardEditActions, 376
UIScrollViewDelegate, 139
UISplitViewControllerDelegate, 475-477
UITableViewDataSource, 189, 196-198, 199,
215, 215
UITableViewDelegate, 189, 211
UITextFieldDelegate, 256
UITextInputTraits, 108

provisioning profiles, 23-23
proximity monitoring, 185
pushViewController:animated:, 230-231

Q
Quartz (see Core Graphics)
QuartzCore, 399, 403
Quiz application, 2-27
quotation marks, 120

R
RandomPossessions application

583

creating, 33-37
creating BNRItem class, 39-56

readonly, 73
readwrite, 73
receiver, 31
registerDefaults:, 354
registration domain, 354
regular expressions, 478-482
relationships (Core Data), 320-322, 336-337
release, 78
removeObject:, 214
removeObjectIdenticalTo:, 214
removeObserver:, 174
reordering controls, 216
required methods (protocols), 89
requireGestureRecognizerToFail:, 377
resignFirstResponder, 118, 233
resizing views, 182-184
resources

defined, 24, 296
localizing, 343-346

responder chain, 364-365
responders (see first responder, UIResponder)
respondsToSelector:, 89, 311
retain, 78
retain cycles

explained, 67-70
finding with Leaks instrument, 390-391

Retina display, 24, 26, 170-171
reuseIdentifier (UITableViewCell), 201
reusing

animation objects, 417
classes, 191
table view cells, 201-202

rootViewController

(UINavigationController), 220-222
rootViewController (UIWindow), 149
rotation, 176-185, 466
rows (UITableView)

adding, 213-213
deleting, 214-215
moving, 215-217

run loop, 134, 134, 169, 494
run-time errors, 56-57

S
sandbox, application, 281-283, 296

scheme editor, 392
schemes, 23, 392-395
screenshots, taking, 26
scrolling, 137-139
sections (of UITableView), 198, 207-207
SEL, 235
selector, 31, 31, 235
self, 49-50, 54
sendAction:to:from:forEvent:, 366
sendActionsForControlEvents:, 366
setAutoresizingMask:, 182-184
setEditing:animated:, 212, 237
setMultipleTouchEnabled:, 361
setNeedsDisplay, 134, 408
setObject:forKey:, 250-251
setPagingEnabled:, 139
setPosition:, 405
setProximityMonitoringEnabled:, 185
setRegion:animated:, 114
setStatusBarHidden:withAnimation:, 141
setter methods, 43-45
setText:, 134
Settings application, 282, 355
settings, user, 351-356
shakes, detecting, 135-137
shouldAutorotateToInterfaceOrientation:,
177, 177, 184, 184, 466
showsUserLocation, 108
simulator

for Retina display, 171
running applications on, 20
sandbox location, 285
saving images to, 246
simulating low-memory warnings, 162
simulating shakes, 136
simulating two fingers, 141
viewing application bundle in, 296

single inheritance, 38, 42
singletons, implementing, 192-195
size inspector, 179-180
sort descriptors (NSFetchRequest), 327
sortedArrayUsingComparator:, 496
sortUsingComparator:, 538
sourceType (UIImagePickerController),
244-245
split view controllers (see
UISplitViewController)
splitViewController, 275, 467

Index

584

SQL, 335
SQLite, 317, 325-327, 335, 561
square brackets, 31
stack (memory), 62, 92
stack trace, 91, 92, 95
standardUserDefaults, 353, 354
states, application, 286-288
static analyzer, 379-381
static tables, 427-430
static variables, 193
status bar, hiding, 141
store objects

asynchronous, 525-525, 553
benefits of, 505, 550-551
and caching data, 530
creating, 506-517
described, 292
designing, 552-553
as singletons, 552
synchronous, 553

storeCachedResponse:forRequest:, 554
storyboards

creating, 423-427
pros and cons, 434-435
segues, 430-434
static tables in, 427-430
vs. XIB files, 423

strings (see NSString)
strings tables, 346-348
stringWithFormat:, 54
strong, 73
strong references, 67, 70, 73
structures, 29-30

-> operator, 543
subclassing, 38-56, 50

(see also overriding methods)
as approach to callbacks, 501
and method return type, 48
use of self, 54

super, 50-50
superclasses, 38, 42, 50
superlayer, 404
superview, 126
suspended state, 287, 288
syntax errors, 99-99
system libraries, 100, 120

T
tab bar controllers (see UITabBarController)
tab bar items, 158-161
tabBarController, 275
table view cells (see UITableViewCell)
table view controllers (see
UITableViewController)
table views (see UITableView)
tableView, 213
tableView:cellForRowAtIndexPath:, 197,
199-202
tableView:commitEditingStyle:

forRowAtIndexPath:, 215
tableView:didSelectRowAtIndexPath:, 232
tableView:heightForHeaderInSection:, 211
tableView:moveRowAtIndexPath:toIndexPath:,
215, 216
tableView:numberOfRowsInSection:, 197-198
tableView:viewForHeaderInSection:, 211
target-action pairs

as approach to callbacks, 499, 499, 500
defined, 15-17
vs. delegation, 87
setting programmatically, 235
and UIControl, 365-366
and UIGestureRecognizer, 368

targets
adding frameworks to, 82
build settings for, 395-397
building, 97-101
defined, 82
and schemes, 392-395
settings of, 296

templates
application, 82
class, 125, 169
reasons to avoid, xvii, 169
view controller, 169

textFieldShouldReturn:, 104, 118-119, 256
thumbnail images, creating, 304-308
Time Profiler instrument, 387-390
timing functions (animation), 417-418
tmp directory, 282
toggleEditingMode:, 212
tokens (in NSString), 37
toll-free bridging, 252-254

585

topViewController (UINavigationController),
220
touch events

and animation, 405-406
basics of, 358-359
enabling multi-touch, 361
handling interruptions, 363-364
keeping track of, 362-362
and responder chain, 364-365
and target-action pairs, 365-366
and UIControl, 365-366

touchesBegan:

withEvent:, 358, 358, 362, 405
touchesCancelled:

withEvent:, 358, 363
touchesEnded:

withEvent:, 358, 358, 363
touchesMoved:

withEvent:, 358, 358, 363, 405
TouchTracker application

drawing lines, 359-364
recognizing gestures, 367-377

transient attributes (Core Data), 324
translationInView:, 375
typecasting, 252

U
ubiquity containers, 556-561, 562, 564
UIActivityIndicatorView, 104, 108
UIAlertView, 295
UIApplication

and events, 358
and main, 169
and responder chain, 364, 366

UIApplicationDelegate, 288
UIApplicationDidReceiveMemoryWarning

Notification, 291
UIBarButtonItem, 235-237, 241-244, 256
UIButton, 308
UIColor, 132
UIControl, 256-257, 365-366
UIControlEventTouchUpInside, 365, 365
UIDevice

currentDevice, 263
determining device type, 263
notifications from, 174

UIDocument, 555

UIEventSubtypeMotionShake, 137
UIGestureRecognizer

action messages of, 368, 373
cancelsTouchesInView, 376
chaining recognizers, 377
delaying touches, 377
described, 367
detecting taps, 368-372
enabling simultaneous recognizers, 374, 374
intercepting touches from view, 368, 374, 376
locationInView:, 370
long press, 373-374
panning, 373, 374-376
states, 373, 375, 377
subclasses, 368, 378
subclassing, 378
translationInView:

(UIPanGestureRecognizer), 375
and UIResponder methods, 376

UIGestureRecognizerDelegate protocol, 374
UIGraphics functions, 306-306, 408-409
UIGraphicsBeginImageContextWithOptions,
306
UIGraphicsEndImageContext, 306
UIGraphicsGetImageFromCurrentImageContext,
306
UIImage

and CGContextRef, 408
and
CGImage, 403
wrapping in NSData, 289, 305-306

UIImageJPEGRepresentation, 289
UIImagePickerController

instantiating, 244-245
on iPad, 264
presenting, 246-248
recording video with, 257-259
in UIPopoverController, 264

UIImagePickerControllerDelegate, 245,
247-248
UIImageView

aspect fit, 178
described, 239-241

UIKeyboardDidShowNotification, 174
UIKit, 403
UILabel, 134
UILongPressGestureRecognizer, 373-374
UIMenuController, 371-372, 376

Index

586

UIModalPresentationCurrentContext, 278
UIModalPresentationFormSheet, 270
UIModalPresentationPageSheet, 270
UIModalTransitionStyleFlipHorizontal, 273
UINavigationBar, 220, 222-237
UINavigationController, 220

(see also view controllers)
adding view controllers to, 230-231, 232
described, 220-223
instantiating, 222
managing view controller stack, 220
navigationController, 275
pushViewController:animated:, 230-231
rootViewController, 220-221
in storyboards, 430, 431
topViewController, 220-221
and UINavigationBar, 233-237
view, 220
viewControllers, 220
viewWillAppear:, 232
viewWillDisappear:, 232

UINavigationControllerDelegate, 247
UINavigationItem, 233-237
UINib, 304
UIPanGestureRecognizer, 373, 374-376
UIPopoverController, 264-265, 474
UIPopoverControllerDelegate, 264
UIResponder

becomeFirstResponder, 135
described, 118
menu actions, 376
and motion events, 135-137
and responder chain, 364-365
and touch events, 358

UIResponderStandardEditActions protocol, 376
UIScrollView

scrolling, 137-139
zooming, 139-141

UIScrollViewDelegate, 139
UISegmentedControl, 351
UISplitViewController

autorotating, 466-467
illegal on iPhone, 464
master and detail view controllers, 464-469
overview, 464-466
in portrait mode, 474-477
splitViewController, 275

UISplitViewControllerDelegate, 475-477

UIStoryboard, 423-435
UIStoryboardSegue, 430
UITabBarController, 156-161, 219, 220

tabBarController, 275
view, 157

UITabBarItem, 158-161
UITableView, 187-189

(see also UITableViewCell,
UITableViewController)
adding rows to, 213-213
deleting rows from, 214-215
editing mode of, 207, 212-212, 237, 300
editing property, 207, 212-212
footer view, 207
header view, 207-211
moving rows in, 215-217
populating, 191-201
sections, 198, 207-207
view, 191

UITableViewCell

adding images to, 304-308
cell styles, 199-199
contentView, 199-199, 299-300
creating interface with XIB file, 301-303
editing styles, 215
relaying actions from, 308-315
retrieving instances of, 199-201
reusing instances of, 201-202, 303
subclassing, 299-304
subviews, 198-199

UITableViewCellEditingStyleDelete, 215
UITableViewController, 189

(see also UITableView)
adding rows, 213-213
creating in storyboard, 427-430
creating static tables, 427-430
data source methods, 196
dataSource, 191-198
deleting rows, 214-215
described, 189-190
editing property, 212
moving rows, 215-217
returning cells, 199-202
subclassing, 189-191
tableView, 213

UITableViewDataSource, 189, 196-198, 199,
215, 215
UITableViewDelegate, 189, 211

587

UITapGestureRecognizer, 368-372
UITextField

described, 104
as first responder, 118-119, 118, 256, 366
and keyboard, 118
setting attributes of, 108-108, 238

UITextFieldDelegate, 256
UITextInputTraits, 108
UITextView, 118
UIToolbar, 235, 241
UITouch, 358-362
UIUserInterfaceIdiomPad, 263
UIUserInterfaceIdiomPhone, 263
UIView, 121

(see also UIViewController, views)
autoresizingMask, 182
backgroundColor, 130
bounds, 129, 131
defined, 1, 121-123
drawRect:, 128-131, 134
endEditing:, 233
frame, 126, 129, 131
instantiating, 126
layer, 400
setNeedsDisplay, 134
size and position, 402
subclassing, 124-128
superview, 126

UIViewController, 145
(see also view controllers)
defined, 145
definesPresentationContext, 278
initWithNibName:bundle:, 161
instantiating, xvii
loadView, 148, 150, 163, 211, 229
modalTransitionStyle, 273
modalViewController, 269-270
navigationController, 230
navigationItem, 233
parentViewController, 269-270
presentingViewController, 269, 270
splitViewController, 467
subclassing, 146
template, 169
view, 145, 152, 364
viewControllers, 274
viewDidLoad, 162
viewDidUnload, 165

viewWillAppear:, 248
and XIB files, xvii

UIWebView, 456-458
UIWindow

described, 123-124
and responder chain, 364
rootViewController, 149

unarchiveObjectWithFile:, 285
universal applications

accommodating device differences, 263, 464,
473, 478, 478
setting device family, 477
user interfaces for, 181-182, 262-263
using iPad-only classes, 467
XIB files for, 262

unknown key exception, 229
unrecognized selector, 56, 311
unsafe unretained references, 71
URLForUbiquityContainerIdentifier:, 561
URLs, 441, 441

(see also NSURL)
user interface

drill-down, 219, 463
hiding status bar, 141
keyboard, 108, 256
making universal, 181-182, 262-263
scrolling, 137-139
zooming (views), 139-141

userInterfaceIdiom (UIDevice), 263
utilities area, 7, 202
UUIDs, 251

V
variables, 62

(see also instance variables, local variables,
pointers)
block, 486-489
static, 193

variables view, 92, 93
video recording, 257-259
view controllers, 103-104

(see also controller objects,
UIViewController)
adding to navigation controller, 230-231
adding to popover controller, 264
adding to split view controller, 464-466
creating, 150

Index

588

creating delegate protocol for, 469-474
creating in a storyboard, 423-435
detail, 464
families of, 274, 276
initializing, 161-162
lifecycle of, 161-168
loading views, 152, 156, 162-167
master, 464, 474
modal, 246
and number of views, 150
passing data between, 231-232, 468
presenting, 156
relationships between, 274-278
reloading subviews, 248
role in application, 145
templates for, 169
unloading views, 164
using XIB to create views, 150
and view hierarchy, 145, 148
and views, 145

view hierarchy, 124-126, 145, 148
viewControllers, 274
viewControllers (UINavigationController),
220
viewDidAppear:, 167
viewDidDisappear:, 167
viewDidLoad, 162, 229, 263
viewDidUnload, 165
viewForZoomingInScrollView:, 140
views, 1

(see also UIView)
adding to window, 124, 145, 148
autoresize masks for, 182-184
autoresizing, 179-180
autorotating, 176-185
creating, 124-128
defined, 1, 121-123
and drawing contexts, 128-134
and layers, 399-400
life cycle of, 162-168
loading, 150, 152, 156, 162-167
modal presentation of, 246
in Model-View-Controller, 9, 103-104
redrawing, 134
resizing, 179-180, 240-241
and run loop, 134
scrolling, 137-139
setting attributes of, 108

size and position of, 126, 129, 131
and subviews, 124-126, 145
unloading, 164
and view controllers, 145
zooming, 139-141

viewWillAppear:, 167-168, 232-233, 232, 248
viewWillDisappear:, 167, 232

W
weak, 73
weak references

and instance variables, 71
declaring, 73
defined, 67
and outlets, 166
vs. unsafe unretained, 71

web services
caching data, 529-545
credentials, 460-461
for data storage, 338
described, 438-439
and HTTP protocol, 459-460
parsing retrieved XML, 444-455
requesting data from, 440-444
security, 460-461

Whereami application
adding a user preference, 351-356
changing map type, 351-352
configuring user interface, 105-108
finding and annotating locations, 108
object diagram, 103-104

willAnimateRotationToInterface..., 185
workspaces (Xcode), 3
writeToFile:atomically:, 289
writeToFile:atomically:encoding:error:,
294

X
Xcode, 3

(see also debugging tools, inspectors,
Instruments, libraries, navigators, projects,
simulator)
assistant editor, 224-229, 242-244
build settings, 395-397
building applications, 45
building interfaces, 5-17
canvas, 5

589

canvas area, 6
code-completion, 18, 202-204, 511
console, 21
containers, 392
creating a class in, 39-41
debug area, 21
debugger, 91-97
editor area, 5
keyboard shortcuts, 229
navigators, 3
Organizer window, 23
placeholders in, 18, 19, 204
products, 82
profiling applications in, 381-383
projects, 82
regular expression search, 482
schemes, 23, 392-395
size inspector, 179-180
static analyzer, 379-381
tabs, 229
targets, 82
templates, 2, 125, 169
utilities area, 7, 202
workspaces, 3

XIB files
and archiving, 281
bad connections in, 228
connecting objects in, 13-17
connecting with source files, 224-229,
242-244, 302, 302, 302
creating, 150, 151-156
creating properties from, 302, 302
defined, 5
editing in Xcode, 5-9
File's Owner, 151-156
and
initWithNibName:bundle:, 161
for iPad, 262
loading manually, 210, 303
localizing, 343-346
making connections in, 224-229, 242-244
naming, 162
vs. NIB files, 5
objects in, 151
placeholders in, 152
and properties, 302
setting pointers in, 14-15
vs. storyboards, 423

top-level objects in, 166
and UINib, 304
in universal applications, 262
and view hierarchy, 126
when to use, 150, 156

XML
collecting from web service, 442-444
constructing tree, 446-454
parsing, 444-455
property lists, 295

Z
zooming (maps), 109-114
zooming (views), 139-141
zPosition, 404-405

The Story Behind the Hat
Back in 2001, Big Nerd Ranch founder, Aaron
Hillegass, showed up at WWDC (World Wide
Developers Conference) to promote the Big Nerd
Ranch brand. Without the money to buy an expensive
booth, Aaron donned a ten-gallon cowboy hat to
draw attention while passing out Big Nerd literature
to prospective students and clients. A week later, we
landed our fi rst big client and the cowboy hat has
been synonymous with the Big Nerd brand ever
since. Already easily recognizable at 6’5, Aaron
can be spotted wearing his cowboy hat at speaking
engagements and conferences all over the world.

The New Ranch – Opening 2012
In the continuing effort to perfect the student experience,
Big Nerd Ranch is building its own facility. Located just
20 minutes from the Atlanta airport, the new Ranch
will be a monastic learning center that encompasses
Aaron Hillegass’ vision for technical education
featuring a state-of-the-art classroom,
fi ne dining and exercise facilities.

ABOUT US

www.bignerdranch.com

THE BIG NERD STORY
Big Nerd Ranch exists to broaden the minds of
our students and the businesses of our clients.
Whether we are training talented individuals
or developing a company’s mobile strategy,
our core philosophy is integral to everything
we do.

The brainchild of CEO Aaron Hillegass,
Big Nerd Ranch has hosted more than 2,000
students at the Ranch since its inception in
2001. Over the past ten years, we have
had the opportunity to work with some of the
biggest companies in the world such as Apple,
Samsung, Nokia, Google, AOL, Los Alamos
National Laboratory and Adobe, helping them
realize their programming goals. Our team of
software engineers are among the brightest in
the business and it shows in our work. We have
developed dozens of innovative and fl exible
solutions for our clients.

	iOS Programming
	iOS Programming
	Table of Contents
	Introduction
	Prerequisites
	What’s Changed in the Third Edition?
	Our Teaching Philosophy
	How To Use This Book
	How This Book Is Organized
	Style Choices
	Typographical Conventions
	Necessary Hardware and Software

	Chapter 3 Managing Memory with ARC
	The Heap
	The Stack
	Pointer Variables and Object Ownership
	Memory Management
	Using ARC for memory management
	How objects lose owners

	Strong and Weak References
	Properties
	Declaring properties
	Synthesizing properties
	Instance variables and properties

	Copying
	Dot Syntax
	For the More Curious: Autorelease Pool and ARC History

	Index

