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A Go Primer

One of the goals of Go was a consistent and
unambiguous syntax. This makes it easy for
tools to examine Go programs, and also makes
it easy to learn. Unhelpful compiler errors make
it difficult to learn a language, as anyone who
has made a typo in C++ code using templates
will know.

In C, for example, function and global variable
declarations have almost the same syntax. This
means that the compiler can’t easily tell which
one you meant if you make an error. It gives you
helpful error messages like “expected ;” on a line
where you don’t think a semicolon is expected at
all.

The Go grammar was designed to make it
possible for the compiler to tell you more
accurately what you did wrong. It was also
designed to avoid the need to state something
that can be easily inferred. For example, if you
create a variable and set its value to 42, the
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compiler could probably guess that this variable
should be an integer, without it being explicitly
stated. If you initialize it with a function call,
then the compiler can definitely tell that the
type should be whatever the function returned.
This was the same problem that C+-+ 2011
solves with the auto type.

Go adopts JavaScript’s idea of semicolon
insertion, and takes it a step further. Any line
that can be interpreted as a complete statement
has a semicolon implicitly inserted at the end by
the parser.! This means that Go programs can
freely omit semicolons as statement terminators.
This adds some constraints, for example
enforcing a brace style where open braces are at
the end of the line at the start of flow-control
statements, rather than on their own. If you
happen to be a human, this is unfortunate,
because it means that you can’t use the highly
optimized symmetry recognition paths, which
evolution has spent the last million or so years
optimizing in your visual cortex, for recognizing
code blocks.

This chapter contains an overview of Go syntax.
This is not a complete reference. Some aspects
are covered in later chapters. In particular, all
of the concurrency-related aspects of Go are
covered in Chapter 9, Goroutines.

IThis is an oversimplification. The exact rules for
semicolon insertion are more complicated, but this rule of
thumb works in most cases.



o ok W N R

The Structure of a Go Source File

The Structure of a Go Source
File

package main
import "fmt"

func main() {
fmt.Printf("Hello World!\n")
}

From: hello.go

A Go source file consists of three parts. The first
is a package statement. Go code is arranged in
packages, which fill the roles of both libraries
and header files in C. The package in this
example is called main, which is special. Every
program must contain a main package, which
contains a main() function, which is the program
entry point.

The next section specifies the packages that this
file uses and how they should be imported. In
this example, we’re importing the fmt package.

Once the fmt package has been imported, any
of its exported types, variables, constants, and
functions can be used, prefixed by the name

of the package. In this simple example, we're
calling Printf (), a function similar to C’s
printf, to print “Hello World!” in the terminal.

Although Go uses static compilation, it’s
important to realize that import statements
are much closer to Java or Python import

23
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directives than to C inclusions. They do not
include source code in the current compilation
unit. Unlike Java and Python packages, Go
packages are imported when the code is linked,
rather than when it is run. This ensures that a
Go application will not fail because of a missing
package on the deployment system, at the cost
of increasing the size of the executable. Packages
in Go are more important than in languages like
Java, because Go only provides access control at
the package level, while Java provides it at the
class level.

When you compile a package (from one or
more .go files) with the Gc compiler, you get an
object code file for the package. This includes

a metadata section that describes the types
and functions that the package exports. It also
contains a list of the packages that this package
imports.

The input to the 6l linker is always a .6 file for
the main package. This file contains references
to every package that the main package imports,
which may in turn reference further packages.
The linker then combines them all.

This eliminates one of the most irritating
problems with building complex C programs:
you include a header, and then have to work out
which library provided it and add the relevant
linker flags. With Go, if a package compiles, it
will link. You don’t have to provide any extra
flags to the linker to tell it to link things that
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you’ve referenced via import directives.

The remainder of a Go file contains declarations
of types, variables, and functions. We’ll explore
that for the rest of this chapter.

You may find that you have two packages

that you want to import that have the same
name. This would cause problems in Go. The
badStylelmport.go example is functionally
equivalent to the example at the start of this
section but renames the fmt package, calling it
format. Renaming a package when you import it
is usually a bad idea, because it makes your code
harder for people to read. You should only ever
use it when you explicitly need to disambiguate
two packages with the same name.

package main
import format "fmt"

func main() {
format.Printf("Hello World!\n")
}

From: badStyleImport.go

25
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CHAPTER 2: A Go Primer

Declaring Variables

var i int
var © float32
var explicitly, typed, pointers *complex128

int_pointer := &i
another_int_pointer := new(int)
generic_channel := make(chan interface{})

From: variables.go

Variables are declared with the var keyword,
followed by the variable name, and finally

by the type. The existence of a specific
keyword for variable declarations makes it
easy to differentiate them from other types of
statements.

Writing the type at the end looks weird to
people familiar with C-family languages, but it
makes sense when you read the code. A (typed)
variable declaration is an instruction saying, for
example, “declare the variable foo to have the
type int.”

One of the variables declared at the start of this
section uses 0 (theta) as a variable name. Go
permits identifiers to start with any symbols that
Unicode classes as letters. This can sometimes
be very useful, such as if variable names are
mathematical quantities. Don’t abuse it, though:
the person maintaining your code will not thank
you if you use characters that he can’t type on
his keyboard for frequently used variables.

A declaration statement may declare multiple
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variables, but they all have the same type. In C,
some may have the type that is written at the
start of the declaration, some may be pointers to
that type, some may be pointers to pointers to
that type, and so on. The form used by Go is far
less prone to ambiguity.

You will rarely use the long form of declarations.
One of the key ideas in writing good code is the
principle of minimum scope. This means that
the scope of a variable—the lexical region where
it is valid—should be as small as possible for
the variable’s lifetime. One corollary of this is
that variables should be declared immediately
before their first use and initialized as part of
their declaration.

Go provides a shorthand syntax, the :=
initialization operator, which does this. Using
this notation, you can declare and initialize a
variable in a single statement. More importantly,
you avoid the need to declare a type for the
variable: the type of the variable is the type of
the expression used to initialize it.

The example at the start of this section shows
both kinds of declaration. It also introduces Go’s
syntax for pointers. The variable int_pointer

is initialized using the address-of operator (&).
This should be familiar to C programmers: it
returns the address in memory of an object.

The returned value, however, is more similar

to a Java reference than a C pointer. You

can’t perform arithmetic using Go pointers,

27
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nor use them interchangeably with arrays. As
with Java references, you can pass Go pointers
around without having to worry about when

the underlying object will be deallocated. It will
automatically be freed when the last reference is
destroyed. Unlike Java references, you can make
pointers to primitive types, not just to structures
(Go’s equivalent of objects).

In this example, you could return int_pointer
from this function without any problems. This
may seem strange to C programmers, because
it points to a variable declared locally. The Go
compiler will try to allocate i on the stack,
but that’s just an implementation detail. If its
address is taken and it is returned from the
function then it will be allocated on the heap
instead.

This example creates another integer pointer,
in a different way. The new() built-in function
creates a new integer and returns a pointer to
it. This is semantically equivalent to declaring
an integer variable and then taking its address.
Neither guarantees how the underlying storage
will be allocated. You can pass any type

to new(), but it is not the standard way of
allocating everything.

Go includes three special types, which we’ll

look at in a lot more detail later in this book:
slices, maps, and channels. These are reference
types, meaning that you always access them via
a reference. If you assign one map-typed variable
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to another, then you will have two variables
referring to the same map. In contrast, if you
assign one integer-typed variable to another,
then you will have two variables with the same
value, but modifying one will not affect the
other.

Instances of reference types in Go are created
with the make() built-in function. This is similar
to new(), but also performs initialization of the
built-in types. Values returned by new() are
simply zeroed. They are not guaranteed to be
immediately useful, although good style suggests
that they should be.

Declaring Functions

func printf(str string, args ...interface{}) (int
, error) {
_, err := fmt.Printf(str, args...)
return len(args), err

}

func main() {

count := 1

closure := func(msg string) {
printf("%d %s\n", count, msg)
count++

}

closure("A Message")

closure("Another Message")

}

From: functions.go

29
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Functions in Go are declared using the func
keyword. As with variable declarations, the
return type goes at the end. This can be a single
value, or a list of values. The printf() function
in the example shows several important features
of Go. This is a variadic function, which returns
multiple values: an integer and an error. The
integer is the number of variadic arguments
passed to it, and the error code is one of the
values returned from the Printf() function from
the fmt package.

Note the syntax for calling functions that return
multiple values. The return values must either
all be ignored, or all assigned to variables. The
blank identifier, _, can be used for values that
you wish to discard.

Variadic functions in Go are particularly
interesting. In C, a variadic function call just
pushes extra parameters onto the stack, and
the callee has to know how to pop them off. In
Go, all variadic parameters are delivered as a
slice (see Chapter 5, Arrays and Slices; for now
you can think of a slice as being like an array).
The variadic parameters must all be of the same
type, although you can use the empty interface
type (interface{}) to allow variables of any
type and then use type introspection to find out
what they really are.

The main() function in the example is the
program entry point. Unlike many other
languages, this takes no arguments. Command-
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line arguments and environment variables are

stored globally in Go, making it easy to access
them from any function, not just one near the
program entry point.

Inside this function, you’ll see a closure defined.
Closures in Go are declared as anonymous
functions, inside other functions. The closure
can refer to any variables in the scope where

it is declared. In this example, it refers to the
count variable from the outer function’s scope.
It would continue to do so even after the outer
function returned. In Go, there is no distinction
between heap and stack allocated variables,
except at the implementation level. If a local
variable is referenced after the function that
contains it, then it is not freed when the function
returns. If closure were stored in a global
variable, for example, then count would not be
deallocated, even after the function returned.

31
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CHAPTER 2: A Go Primer
Looping in Go

package main
import "fmt"

func main() {
loops :=1
// while loop:
for loops > 0 {
fmt.Printf("\nNumber of loops?\n")
fmt.Scanf("%d", &loops)
// for loop
for i := 0 ; i < loops ; i++ {
fmt.Printf("%d ", i)
}
}
// Infinite loop
for {
// Explicitly terminated
break
}
}

From: loop.go

In C, you have three kinds of loops, all with
different syntax and overlapping semantics. Go
manages to have more expressive loop semantics,
but simple and uniform syntax.

Every loop in Go is a for statement. We’ll only
look at the forms that mirror C loop constructs
here. The form that iterates over a collection is
explained in Chapter 5, Arrays and Slices.

The loop.go example shows the three types
of general for loops in Go. The last one is
the simplest. This is an infinite loop, with an
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explicit break statement to terminate it. You’d
most commonly use this form for an event loop
that would not terminate in normal use. Like
C, Go also has a continue statement that
immediately jumps to the start of the next loop
iteration, or exits the loop if the loop condition
no longer holds.

Both the break and continue statements
support an optional label for jumping out of
nested loops. Note that the label is not a jump
target; it is just used to identify the loop.

for i := 0 ; i<10 ; i++ {
L:
for {
for {
break L
}
}
fmt.Printf("%d\n", i)
}

From: break.go

You can see this in the break.go example. The
break statement jumps out of the two inner
loops, but does not prevent the Printf call
from running. It jumps to the end of the loop
immediately after L:, not to the start.

Most of the time, you won’t use infinite loops
and explicit escapes. The other two types of
for loops in Go are analogous to while and for
loops in C and the older form of for loops in

33
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Java. The outer loop in the example at the start
of this section will test its condition and loop as
long as it is true. The inner loop first performs
the initialization (i := 0) then tests the loop
condition (1 < loops), and runs the loop clause
as long as it’s true. Between each loop iteration,
it runs the increment clause (i++). If you’ve used
any vaguely C-like language, then this will be
very familiar to you. The only difference between
a Go for loop and a C for loop is that the Go
version does not require brackets.

There are a couple of interesting things in

this loop. The first is the creation of the loop
variable (i) at the loop scope. This is similar to
C99 or C++. The variable that is declared in
the loop initialization clause is only in scope for
the duration of the loop.

The second is the increment statement. Note
that I did not call it a postincrement expression.
The designers of Go decided to eliminate

the confusion between preincrement and
postincrement expressions in C. In Go, the
increment statement is not an expression, and
only the suffix syntax is allowed. This line
increments the variable, but it does not evaluate
to anything. Writing something like a := b++
is not valid Go. Writing ++b is invalid in all
contexts in Go: there is no prefix form of the
operator.



Creating Enumerations 35

Creating Enumerations

const (
Red
Green

(1<<iota)
(1<<iota)
(1<<iota), (1<<(dota+l))-1

Blue, ColorMask
)

S B S

From: enum.go

There are several places in Go where it is
obvious that someone has spent a lot of thought
designing exactly the right syntax for most
common uses of a language feature. Enumeration
constants are the most obvious example of this
attention to detail.

There is no divide between constants and
enumerations in Go. This mirrors their
implementation in C, where enumerated types
can be used interchangeably with integers.
Groups of constants within the same declaration
in Go are used for enumerations.

There are two common uses for enumerated
types. The first is defining a set of mutually-
exclusive options. The second is defining a set
of overlapping flags. Typically, you’ll use a
sequence of numbers for the first and a sequence
of powers of 2 for the second. You can then
create a bitfield by bitwise-oring a combination
of enumeration values together.

In C, and most other languages with enumerated
types, you need to explicitly provide the
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numerical values for the second type of
enumeration. The first will be automatically
numbered by the compiler.

Go provides a much more flexible mechanism
for defining enumerations. The iota predeclared
identifier is similar to the GNU C _COUNTER__
preprocessor macro, but it’s more powerful. It

is an integer constant expression. In a normal
program scope, it evaluates to zero, but in the
scope of a constant declaration it is initially zero
but then incremented on each line where it is
used.

Unlike __COUNTER__, iota is scoped. It is zero
on the first line of the group in this example, and
will always be zero in the first line of this group,
irrespective of how it is used elsewhere. If you
have multiple const groups in a single source
file, then iota will be zero at the start of each of
them.

The example at the start of this section shows
how to declare a group of constants for use as
an enumerated type. This simple example shows
the low 3 bits of a bitfield being used to store
three flags indicating the presence of three color
values. The ColorMask constant is defined to
provide the value that must be bitwise-and’d
with an integer to give the three color flags.

It’s possible to reference constants from other
constant declarations, so you can combine this
kind of declaration easily. For example, you
could provide another constant declaration
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Declaring Structures

describing another group of flags within a set,
and then extend this declaration to use them in
the next few bits of the bitfield.

Similarly, you can extend existing constant
declarations by inserting another iota expression
earlier. This will then renumber all subsequent
values, so it’s important to be careful when the
constants are part of a binary interface.

Constants—and therefore enumerations—in

Go are not limited to integers. Other types

can be specified in the same way. The enum.go
example also shows the declaration of the
complex constant i, with the same definition as
in mathematics.

const (
i complex128 = complex(0, 1)
)

From: enum.go

Declaring Structures

type Example struct {
Val string

count int

}

From: struct.go

Structures in Go are somewhat richer than

37
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C structures. One of the most important
differences is that Go structures automatically
support data hiding.

Any top-level type, method, or variable name
that starts with a capital letter is visible outside
of the package in which it is declared. This
extends to structure fields. In C, if you only put
some fields from a structure in a header, then
you will encounter problems when someone tries
to allocate an instance of it on the stack: his
compiler won’t allocate enough space for it. Go
packages export the offsets of the public fields.
This allows them to be created and their public
fields accessed from other compilation units.

The example at the start of this section defines
a structure with two fields. The first, a string, is
public and can be accessed from anywhere. The
second, an integer, is private and is only visible
to code in the same package as this definition.
A structure doesn’t have to declare any public
fields. You can create opaque types by defining a
structure where all of the fields are private.

If you're coming from a class-based language
like C++ or Java, then you may be wondering
why there are public and private fields, but

not protected ones. The answer is quite simple:
there is no inheritance in Go, so protected would
have no meaning. Public and private also have
slightly different meanings in Go and a language
like Java. A private field in a Go structure can
be accessed by any code in the same package,
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not just by methods of that structure. If you
come from Objective-C, then you can think of
private fields in Go structures like @package
instance variables in Objective-C. If you come
from C++, then think of all Go functions in
a package as implicitly being friends of all
structures declared in the same package.

Defining Methods

type integer int

func (i integer) log() {
fmt.Printf("%d\n", i);

}

func (e *Example) Log() {

e.count++

fmt.Printf("%d %s\n", e.count, e.Val)
}

From: methods.go

If you’ve used a class-based language, then you
are probably wondering why the last example
didn’t define any methods defined on the
structure. In Go, you may define methods on
any concrete type that you define, not just on
structures. The example at the start of this
section defines two Log() methods—recall that
the uppercase start letter makes them public—
one on the structure defined in the last section
and one on a named integer type.

The Go type system lets you assign any int to
this named type without an explicit cast, but not
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vice versa. It also prevents you from assigning
between two named types. This can be very
useful for variables representing quantities. You
could, for example, define kilometer and mile
types and have the compiler reject any code
where you attempted to assign one to the other.

You cannot add methods to existing types—

Go does not have an equivalent of Objective-C
categories—but you can define new named types
and add methods to them.

Methods are declared just like functions,
except that there is one extra parameter—the
recetver—declared before the function name.
One of the interesting syntactic quirks of Go
is that there is no this or self keyword. You
can give the receiver any name that you want,
and this name does not have to be consistent
between methods. This idea comes from Oberon-
2 and should be popular with people who like
the “no magic” philosophy of languages like
Objective-C: the receiver is not an implicit
hidden parameter that the compiler inserts; it
is an explicit parameter just like any other.

The method on the structure in the example

at the start of this section takes a pointer as
the receiver. This means that it can modify
fields of the receiver and these changes will be
shared. Methods do not have to take pointers:
the other method in the example takes a value.
If a method takes a value type, then it can still
be called with either a value or a pointer, but it
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will receive a copy of the structure, so changes
that it makes will not be visible from the caller.

When talking about expressions with an explicit
type, methods are just functions. You call a
method on a structure by using the dot notation,
and you declare the parameter that declares

how the structure is passed to the method in a
special way, but this is just some syntactic sugar.
Methods called in this way are semantically
equivalent to functions that just take the receiver
as an argument: they are statically resolved and
are just function calls.

That’s not the real power of methods, though.
When you call a method via an interface
(described in the next section), you get late-
bound dynamic lookup. This dual nature of

Go methods means that you have a single
abstraction that can be used in the same way
as either C types or Smalltalk objects. If you
require performance, then you can use statically
typed definitions and avoid the dynamic lookup.
If you require flexibility, then you can use the
late binding mechanism of interfaces.
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type cartesianPoint struct {
x, y float64

}

type polarPoint struct {
r, 6 float64

}

func (p cartesianPoint) X() float64 {return p.x }
func (p cartesianPoint) Y() float64 {return p.y }
func (p polarPoint) X() float64 {
return p.r*math.Cos(p.0)
}
func (p polarPoint) Y() float64 {
return p.r*math.Sin(p.0)
}
func (self cartesianPoint) Print() {
fmt.Printf (" (%f, %f)\n", self.x, self.y)
b
func (self polarPoint) Print() {
fmt.Printf (" (%f, %f°)\n", self.r, self.0)
}
type Point interface {
Printer
X() float64
Y() float64
}
type Printer interface {
Print()
}

From: interface.go

The dynamic dispatch mechanism in Go is
reminiscent of StrongTalk, a strongly typed
Smalltalk dialect. Interfaces describe a set of
methods that a type understands. Unlike Java



Implementing Interfaces

interfaces or Objective-C protocols, they do not
need to be explicitly adopted.

Any type can be assigned to a variable with

an interface type, as long as it implements all

of the required methods. In some cases, this

can be checked at compile time. For example,

if one interface is a superset of another, then
casting from the superset to the subset is always
valid, as is casting from a structure type to

an interface when the compiler sees that the
structure implements the interface.

In other cases, it is not. These cases require

a type assertion, detailed in the next section,
which will generate a runtime panic if they fail.
This means that any variable with an interface
type is guaranteed to either be nil, or hold a
valid value of a concrete type that implements
the interface.

The example from the start of this section
shows the creation of new structure types,

and interfaces that they implement. Note

that the structure can be defined before the
interface. In fact, structures can be defined in
entirely different packages to interfaces. This is
especially useful if various third-party structures
all implement the same method or group of
methods: you can define a new interface that
can be any one of them.

There are two interfaces declared in this
example, both following Go naming conventions.
The Printer interface defines a single method,
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Note: If you're coming from C++, then you
should use interfaces in most of the places where
you'd use templates in C++. Rather than defining
template functions or classes (which Go doesn't
support), define an interface that specifies the set
of methods that you need, and use it where you
would use the template parameter in C+—+.

so it follows the convention of appending the -er
suffix to the method name to give the interface
name.

The other interface uses interface composition

to extend the Printer interface. This one
defines an abstract data type. It provides
methods for accessing the horizontal and vertical
coordinates of a two-dimensional point. Interface
composition is effectively equivalent to interface
inheritance in Java. You can use it in some
places where you would consider using single or
multiple inheritance in other languages.

This example provides two structures that
implement this interface, one using Cartesian
and the other using polar coordinates. This is a
simple example of how an interface can be used
to hide the implementation. The two structures
both start with lowercase letters, so they will

not be exported from this package, while the
interfaces will. You could extend this example
by providing functions to construct a Point from
polar and Cartesian coordinates, each returning
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one of a different kind of structure.

When you are dealing with interfaces, the
distinction between methods that take pointers
and ones that take values becomes more
important. If you tried to assign an instance

of this example structure to an interface that
required the Log() method, then the assignment
would be rejected. Assigning a pointer to an
instance of this structure would work.

This seems counterintuitive. If you have a
value, then you can always take its address to
get a pointer, so why are the two method sets
distinct? The answer is very simple: it helps
avoid bugs. When you pass a value, you create
a copy of a structure. When you pass a pointer,
you alias the structure. If you pass a value
and then implicitly, via method invocation on
an interface, pass a pointer, then any changes
that the method made would be made to the
temporary copy, not to the original structure.
This is probably not what you want, and if it
is then you can just pass the pointer originally,
rather than the copy.

The Go FAQ gives an example of a case where
this could be problematic:

var buf bytes.Buffer
io.Copy(buf, o0s.Stdin)

The io0.Copy() function copies data from
something that implements the io.Reader
interface to something that implements the
io.Writer interface. When you call this
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function, it will pass a copy of buf as the first
argument, because Go always passes by value,
not by reference. It will then try to copy data
from the standard input into the new copy of
buf. When the function returns, the copy of
buf will no longer be referenced, so the garbage
collector will free it.

What the person writing this code probably
wanted to do was copy data from the standard
input into buf. The Go type system will

reject this, because buf does not implement
the io.Writer interface: the method for
writing bytes to a buffer modifies the buffer
and therefore requires a pointer receiver. By
disallowing this, Go lets you get an error at
compile time and trivially fix it by writing this
instead:

var buf bytes.Buffer
io.Copy(&buf, os.Stdin)

If Go allowed values to use methods that are
declared as requiring a pointer, then you would
instead spend ages wondering why this line
appeared to be reading the correct amount

of data, but wasn’t storing any of it in the
buffer that you declared. This is part of the

Go philosophy of avoiding ambiguity. It just
takes one extra character to make a pointer
when you need one. That small amount of extra
effort is a lot less than the time you’d spend
debugging code where you meant one thing and
Go assumed that you meant something else.
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type empty interface {}

type example interface {
notImplemented()

}

func main() {
=1
var i empty = one
var float float32
float = float32(one)

switch i.(type) {
default:
fmt.Printf("Type error!\n")
case int:
fmt.Printf("%d\n", i)

}

fmt.Printf("%f\n", float)

// This will panic at run time
var e example = i.(example)
fmt.Printf("%d\n", e.(empty).(int))

From: cast.go

Unlike C, Go does not allow implicit casting.
This is not laziness on the part of the
implementors: implicit casting makes it easy
for very subtle bugs to slip into code. I recently
had to find a bug in some code that had

gone undetected for several years, where an
implicit cast meant that a value was incorrectly
initialized. The code looked correct, until you
checked the type declarations of everything
involved, which were spread over multiple files.
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This is another example of the Go philosophy.
You should never need to state the obvious

to the compiler, but you should always have
to explicitly specify things that are otherwise
ambiguous.

The example at the start of this section shows
several casts. The concept of casting in other
languages is embodied by two concepts in Go.
The first is type conversion; the second is type
assertion.

A type conversion is similar to a cast in C.

It reinterprets the value as a new type. The
conversion from int to float32 is an example of
this. The resulting value is a new floating-point
value with the same value as the integer. In
some cases, the conversion is only approximate.
For example, a conversion in the other direction
will result in truncation. A type conversion from
an integer to a string type will return a single-
character string interpreting the integer as a
unicode value.

Type assertions are more interesting. They do
not convert between types; they simply state to
the compiler that the underlying value has the
specified type. This assertion is checked at run
time. If you try running this example, you will
see that it aborts with a runtime panic.

This is because of the type assertion telling
the compiler that the type of i is something
that implements the example interface. In

fact, the underlying type is int, which does
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1.000000

panic: interface conversion: int is not main.
example: missing method notImplemented

goroutine 1 [running]:
main.main()
/Users/theraven/Documents/Books/GoPhrasebook/
startsnippets/cast.go:22 +0x20d

goroutine 2 [syscall]:

created by runtime.main
/Users/theraven/go/src/pkg/runtime/proc.c:219

exit status 2

Output from: cast.go

not implement the notImplemented() method
that this interface specifies. The type check fails
on the type assertion. If you come from C++,
you can think of type assertions as roughly
equivalent to a dynamic_cast that throws an
exception? on failure.

The final cast-like construct in Go is the type
switch statement. This is written like a normal
switch statement, but the switch expression is
a type assertion to type and the cases have type
names, rather than values.

The type switch in the example is used as a
simple type check, like a C++ dynamic_cast.

2Runtime panics are not quite analogous to C++
exceptions. The differences are covered in Chapter 8,
Handling Errors.
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It is more common to use type switches when
defining generic data structures (see Chapter 4,
Common Go Patterns) to allow special cases for
various types.
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