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Preface

I should have no objection to go over the same 
life from its beginning to the end: requesting only 

the advantage authors have, of correcting in a 
[third] edition the faults of the first [two].

— Benjamin Franklin

It has been a decade since the publication of the second edition of this book. 
During that time, the field of software architecture has broadened its focus 
from being primarily internally oriented—How does one design, evaluate, 
and document software?—to including external impacts as well—a deeper 
understanding of the influences on architectures and a deeper understanding of 
the impact architectures have on the life cycle, organizations, and management.

The past ten years have also seen dramatic changes in the types of systems 
being constructed. Large data, social media, and the cloud are all areas that, at 
most, were embryonic ten years ago and now are not only mature but extremely 
influential.

We listened to some of the criticisms of the previous editions and have 
included much more material on patterns, reorganized the material on quality 
attributes, and made interoperability a quality attribute worthy of its own chapter. 
We also provide guidance about how you can generate scenarios and tactics for 
your own favorite quality attributes.

To accommodate this plethora of new material, we had to make difficult 
choices. In particular, this edition of the book does not include extended 
case studies as the prior editions did. This decision also reflects the maturing 
of the field, in the sense that case studies about the choices made in software 
architectures are more prevalent than they were ten years ago, and they are less 
necessary to convince readers of the importance of software architecture. The 
case studies from the first two editions are available, however, on the book’s 
website, at www.informit.com/title/9780321815736. In addition, on the same 
website, we have slides that will assist instructors in presenting this material.

We have thoroughly reworked many of the topics covered in this edition. 
In particular, we realize that the methods we present—for architecture design, 
analysis, and documentation—are one version of how to achieve a particular 
goal, but there are others. This led us to separate the methods that we present 

http://www.informit.com/title/9780321815736
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in detail from their underlying theory. We now present the theory first with 
specific methods given as illustrations of possible realizations of the theories. 
The new topics in this edition include architecture-centric project management; 
architecture competence; requirements modeling and analysis; Agile methods; 
implementation and testing; the cloud; and the edge.

As with the prior editions, we firmly believe that the topics are best discussed 
in either reading groups or in classroom settings, and to that end we have included 
a collection of discussion questions at the end of each chapter. Most of these 
questions are open-ended, with no absolute right or wrong answers, so you, as a 
reader, should emphasize how you justify your answer rather than just answer the 
question itself.



xvii

Reader’s Guide

We have structured this book into five distinct portions. Part One introduces 
architecture and the various contextual lenses through which it could be viewed. 
These are the following:

 ■ Technical. What technical role does the software architecture play in the 
system or systems of which it’s a part? 

 ■ Project. How does a software architecture relate to the other phases of a 
software development life cycle?

 ■ Business. How does the presence of a software architecture affect an 
organization’s business environment?

 ■ Professional. What is the role of a software architect in an organization or a 
development project?

Part Two is focused on technical background. Part Two describes how 
decisions are made. Decisions are based on the desired quality attributes for a 
system, and Chapters 5–11 describe seven different quality attributes and the 
techniques used to achieve them. The seven are availability, interoperability, 
maintainability, performance, security, testability, and usability. Chapter 12 
tells you how to add other quality attributes to our seven, Chapter 13 discusses 
patterns and tactics, and Chapter 14 discusses the various types of modeling and 
analysis that are possible.

Part Three is devoted to how a software architecture is related to the other 
portions of the life cycle. Of special note is how architecture can be used in Agile 
projects. We discuss individually other aspects of the life cycle: requirements, 
design, implementation and testing, recovery and conformance, and evaluation.

Part Four deals with the business of architecting from an economic 
perspective, from an organizational perspective, and from the perspective of 
constructing a series of similar systems.

Part Five discusses several important emerging technologies and how 
architecture relates to these technologies.



This page intentionally left blank 



xix

Acknowledgments

We had a fantastic collection of reviewers for this edition, and their assistance 
helped make this a better book. Our reviewers were Muhammad Ali Babar, Felix 
Bachmann, Joe Batman, Phil Bianco, Jeromy Carriere, Roger Champagne, Steve 
Chenoweth, Viktor Clerc, Andres Diaz Pace, George Fairbanks, Rik Farenhorst, 
Ian Gorton, Greg Hartman, Rich Hilliard, James Ivers, John Klein, Philippe 
Kruchten, Phil Laplante, George Leih, Grace Lewis, John McGregor, Tommi 
Mikkonen, Linda Northrop, Ipek Ozkaya, Eltjo Poort, Eelco Rommes, Nick 
Rozanski, Jungwoo Ryoo, James Scott, Antony Tang, Arjen Uittenbogaard, Hans 
van Vliet, Hiroshi Wada, Rob Wojcik, Eoin Woods, and Liming Zhu.

In addition, we had significant contributions from Liming Zhu, Hong-
Mei Chen, Jungwoo Ryoo, Phil Laplante, James Scott, Grace Lewis, and Nick 
Rozanski that helped give the book a richer flavor than one written by just the 
three of us.

The issue of build efficiency in Chapter 12 came from Rolf Siegers and John 
McDonald of Raytheon. John Klein and Eltjo Poort contributed the “abstract 
system clock” and “sandbox mode” tactics, respectively, for testability. The list 
of stakeholders in Chapter 3 is from Documenting Software Architectures: Views 
and Beyond, Second Edition. Some of the material in Chapter 28 was inspired by a 
talk given by Anthony Lattanze called “Organizational Design Thinking” in 2011.

Joe Batman was instrumental in the creation of the seven categories of design 
decisions we describe in Chapter 4. In addition, the descriptions of the security 
view, communications view, and exception view in Chapter 18 are based on material 
that Joe wrote while planning the documentation for a real system’s architecture. 
Much of the new material on modifiability tactics was based on the work of Felix 
Bachmann and Rod Nord. James Ivers helped us with the security tactics.

Both Paul Clements and Len Bass have taken new positions since the 
last edition was published, and we thank their new respective managements 
(BigLever Software for Paul and NICTA for Len) for their willingness to support 
our work on this edition. We would also like to thank our (former) colleagues at 
the Software Engineering Institute for multiple contributions to the evolution of 
the ideas expressed in this edition.

Finally, as always, we thank our editor at Addison-Wesley, Peter Gordon, 
for providing guidance and support during the writing and production processes.



This page intentionally left blank 



63

  

3

 

1

 

The Architecture 
Business Cycle

 

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

 

— C. Morris and C. Ferguson [Morris 93]

 

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period. 

 

Architecture

 

 has emerged as a crucial part of the design process and is the
subject of this book. 

 

Software architecture

 

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we  provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the
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4
Understanding Quality 
Attributes

Between stimulus and response, there is a space. In 
that space is our power to choose our response. In 

our response lies our growth and our freedom.
— Viktor E. Frankl, Man’s Search for Meaning

As we have seen in the Architecture Influence Cycle (in Chapter 3), many fac-
tors determine the qualities that must be provided for in a system’s architecture. 
These qualities go beyond functionality, which is the basic statement of the sys-
tem’s capabilities, services, and behavior. Although functionality and other qual-
ities are closely related, as you will see, functionality often takes the front seat in 
the development scheme. This preference is shortsighted, however. Systems are 
frequently redesigned not because they are functionally deficient—the replace-
ments are often functionally identical—but because they are difficult to maintain, 
port, or scale; or they are too slow; or they have been compromised by hackers. 
In Chapter 2, we said that architecture was the first place in software creation in 
which quality requirements could be addressed. It is the mapping of a system’s 
functionality onto software structures that determines the architecture’s support 
for qualities. In Chapters 5–11 we discuss how various qualities are supported by 
architectural design decisions. In Chapter 17 we show how to integrate all of the 
quality attribute decisions into a single design. 

We have been using the term “quality attribute” loosely, but now it is time to 
define it more carefully. A quality attribute (QA) is a measurable or testable prop-
erty of a system that is used to indicate how well the system satisfies the needs of 
its stakeholders. You can think of a quality attribute as measuring the “goodness” 
of a product along some dimension of interest to a stakeholder.

In this chapter our focus is on understanding the following:

 ■ How to express the qualities we want our architecture to provide to the sys-
tem or systems we are building from it 
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Business Cycle

 

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

 

— C. Morris and C. Ferguson [Morris 93]

 

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period. 

 

Architecture

 

 has emerged as a crucial part of the design process and is the
subject of this book. 

 

Software architecture

 

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we  provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the
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 ■ How to achieve those qualities 
 ■ How to determine the design decisions we might make with respect to those 

qualities 

This chapter provides the context for the discussion of specific quality attributes 
in Chapters 5–11.

4.1 architecture and requirements

Requirements for a system come in a variety of forms: textual requirements, 
mockups, existing systems, use cases, user stories, and more. Chapter 16 dis-
cusses the concept of an architecturally significant requirement, the role such re-
quirements play in architecture, and how to identify them. No matter the source, 
all requirements encompass the following categories: 

1. Functional requirements. These requirements state what the system must 
do, and how it must behave or react to runtime stimuli. 

2. Quality attribute requirements. These requirements are qualifications of 
the functional requirements or of the overall product. A qualification of a 
functional requirement is an item such as how fast the function must be 
performed, or how resilient it must be to erroneous input. A qualification 
of the overall product is an item such as the time to deploy the product or a 
limitation on operational costs.

3. Constraints. A constraint is a design decision with zero degrees of freedom. 
That is, it’s a design decision that’s already been made. Examples include 
the requirement to use a certain programming language or to reuse a certain 
existing module, or a management fiat to make your system service ori-
ented. These choices are arguably in the purview of the architect, but ex-
ternal factors (such as not being able to train the staff in a new language, or 
having a business agreement with a software supplier, or pushing business 
goals of service interoperability) have led those in power to dictate these 
design outcomes.

What is the “response” of architecture to each of these kinds of requirements?

1. Functional requirements are satisfied by assigning an appropriate sequence 
of responsibilities throughout the design. As we will see later in this chap-
ter, assigning responsibilities to architectural elements is a fundamental 
architectural design decision.

2. Quality attribute requirements are satisfied by the various structures de-
signed into the architecture, and the behaviors and interactions of the ele-
ments that populate those structures. Chapter 17 will show this approach in 
more detail. 
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3. Constraints are satisfied by accepting the design decision and reconciling it 
with other affected design decisions.

4.2 functionality

Functionality is the ability of the system to do the work for which it was in-
tended. Of all of the requirements, functionality has the strangest relationship to 
architecture.

First of all, functionality does not determine architecture. That is, given a 
set of required functionality, there is no end to the architectures you could create 
to satisfy that functionality. At the very least, you could divide up the function-
ality in any number of ways and assign the subpieces to different architectural 
elements. 

In fact, if functionality were the only thing that mattered, you wouldn’t have 
to divide the system into pieces at all; a single monolithic blob with no internal 
structure would do just fine. Instead, we design our systems as structured sets 
of cooperating architectural elements—modules, layers, classes, services, data-
bases, apps, threads, peers, tiers, and on and on—to make them understandable 
and to support a variety of other purposes. Those “other purposes” are the other 
quality attributes that we’ll turn our attention to in the remaining sections of this 
chapter, and the remaining chapters of Part II. 

But although functionality is independent of any particular structure, func-
tionality is achieved by assigning responsibilities to architectural elements, re-
sulting in one of the most basic of architectural structures.

Although responsibilities can be allocated arbitrarily to any modules, soft-
ware architecture constrains this allocation when other quality attributes are im-
portant. For example, systems are frequently divided so that several people can 
cooperatively build them. The architect’s interest in functionality is in how it in-
teracts with and constrains other qualities. 

4.3 Quality attribute considerations 

Just as a system’s functions do not stand on their own without due consideration of 
other quality attributes, neither do quality attributes stand on their own; they pertain 
to the functions of the system. If a functional requirement is “When the user presses 
the green button, the Options dialog appears,” a performance QA annotation might 
describe how quickly the dialog will appear; an availability QA annotation might 
describe how often this function will fail, and how quickly it will be repaired; a us-
ability QA annotation might describe how easy it is to learn this function.
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Functional Requirements

After more than 15 years of writing and discussing the distinction between 
functional requirements and quality requirements, the definition of func-
tional requirements still eludes me. Quality attribute requirements are well 
defined: performance has to do with the timing behavior of the system, 
modifiability has to do with the ability of the system to support changes in 
its behavior or other qualities after initial deployment, availability has to do 
with the ability of the system to survive failures, and so forth.

Function, however, is much more slippery. An international standard 
(ISO 25010) defines functional suitability as “the capability of the software 
product to provide functions which meet stated and implied needs when 
the software is used under specified conditions.” That is, functionality is the 
ability to provide functions. One interpretation of this definition is that func-
tionality describes what the system does and quality describes how well 
the system does its function. That is, qualities are attributes of the system 
and function is the purpose of the system.

This distinction breaks down, however, when you consider the nature 
of some of the “function.” If the function of the software is to control engine 
behavior, how can the function be correctly implemented without consid-
ering timing behavior? Is the ability to control access through requiring a 
user name/password combination not a function even though it is not the 
purpose of any system?

I like much better the use of the word “responsibility” to describe com-
putations that a system must perform. Questions such as “What are the 
timing constraints on that set of responsibilities?”, “What modifications are 
anticipated with respect to that set of responsibilities?”, and “What class of 
users is allowed to execute that set of responsibilities?” make sense and 
are actionable.

The achievement of qualities induces responsibility; think of the user 
name/password example just mentioned. Further, one can identify respon-
sibilities as being associated with a particular set of requirements.

So does this mean that the term “functional requirement” shouldn’t be 
used? People have an understanding of the term, but when precision is 
desired, we should talk about sets of specific responsibilities instead.

Paul Clements has long ranted against the careless use of the term 
“nonfunctional,” and now it’s my turn to rant against the careless use of the 
term “functional”—probably equally ineffectually.

—LB

Quality attributes have been of interest to the software community at least 
since the 1970s. There are a variety of published taxonomies and definitions, and 
many of them have their own research and practitioner communities. From an 
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architect’s perspective, there are three problems with previous discussions of sys-
tem quality attributes: 

1. The definitions provided for an attribute are not testable. It is meaningless 
to say that a system will be “modifiable.” Every system may be modifiable 
with respect to one set of changes and not modifiable with respect to an-
other. The other quality attributes are similar in this regard: a system may 
be robust with respect to some faults and brittle with respect to others. And 
so forth.

2. Discussion often focuses on which quality a particular concern belongs to. 
Is a system failure due to a denial-of-service attack an aspect of availability, 
an aspect of performance, an aspect of security, or an aspect of usability? 
All four attribute communities would claim ownership of a system failure 
due to a denial-of-service attack. All are, to some extent, correct. But this 
doesn’t help us, as architects, understand and create architectural solutions 
to manage the attributes of concern.

3. Each attribute community has developed its own vocabulary. The perfor-
mance community has “events” arriving at a system, the security com-
munity has “attacks” arriving at a system, the availability community has 
“failures” of a system, and the usability community has “user input.” All 
of these may actually refer to the same occurrence, but they are described 
using different terms.

A solution to the first two of these problems (untestable definitions and 
overlapping concerns) is to use quality attribute scenarios as a means of charac-
terizing quality attributes (see the next section). A solution to the third problem 
is to provide a discussion of each attribute—concentrating on its underlying con-
cerns—to illustrate the concepts that are fundamental to that attribute community.

There are two categories of quality attributes on which we focus. The first is 
those that describe some property of the system at runtime, such as availability, 
performance, or usability. The second is those that describe some property of the 
development of the system, such as modifiability or testability. 

Within complex systems, quality attributes can never be achieved in isola-
tion. The achievement of any one will have an effect, sometimes positive and 
sometimes negative, on the achievement of others. For example, almost every 
quality attribute negatively affects performance. Take portability. The main tech-
nique for achieving portable software is to isolate system dependencies, which 
introduces overhead into the system’s execution, typically as process or proce-
dure boundaries, and this hurts performance. Determining the design that sat-
isfies all of the quality attribute requirements is partially a matter of making the 
appropriate tradeoffs; we discuss design in Chapter 17. Our purpose here is to 
provide the context for discussing each quality attribute. In particular, we focus 
on how quality attributes can be specified, what architectural decisions will en-
able the achievement of particular quality attributes, and what questions about 
quality attributes will enable the architect to make the correct design decisions.
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4.4 Specifying Quality attribute requirements

A quality attribute requirement should be unambiguous and testable. We use a 
common form to specify all quality attribute requirements. This has the advantage 
of emphasizing the commonalities among all quality attributes. It has the disad-
vantage of occasionally being a force-fit for some aspects of quality attributes.

Our common form for quality attribute expression has these parts:

 ■ Stimulus. We use the term “stimulus” to describe an event arriving at the 
system. The stimulus can be an event to the performance community, a 
user operation to the usability community, or an attack to the security 
community. We use the same term to describe a motivating action for de-
velopmental qualities. Thus, a stimulus for modifiability is a request for 
a modification; a stimulus for testability is the completion of a phase of 
development.

 ■ Stimulus source. A stimulus must have a source—it must come from some-
where. The source of the stimulus may affect how it is treated by the sys-
tem. A request from a trusted user will not undergo the same scrutiny as a 
request by an untrusted user.

 ■ Response. How the system should respond to the stimulus must also be 
specified. The response consists of the responsibilities that the system 
(for runtime qualities) or the developers (for development-time qualities) 
should perform in response to the stimulus. For example, in a performance 
scenario, an event arrives (the stimulus) and the system should process 
that event and generate a response. In a modifiability scenario, a request 
for a modification arrives (the stimulus) and the developers should imple-
ment the modification—without side effects—and then test and deploy the 
modification.

 ■ Response measure. Determining whether a response is satisfactory—
whether the requirement is satisfied—is enabled by providing a response 
measure. For performance this could be a measure of latency or throughput; 
for modifiability it could be the labor or wall clock time required to make, 
test, and deploy the modification.

These four characteristics of a scenario are the heart of our quality attribute 
specifications. But there are two more characteristics that are important: environ-
ment and artifact.

 ■ Environment. The environment of a requirement is the set of circumstances 
in which the scenario takes place. The environment acts as a qualifier on 
the stimulus. For example, a request for a modification that arrives after 
the code has been frozen for a release may be treated differently than one 
that arrives before the freeze. A failure that is the fifth successive failure 
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of a component may be treated differently than the first failure of that 
component.

 ■ Artifact. Finally, the artifact is the portion of the system to which the 
requirement applies. Frequently this is the entire system, but occasion-
ally specific portions of the system may be called out. A failure in a 
data store may be treated differently than a failure in the metadata store. 
Modifications to the user interface may have faster response times than 
modifications to the middleware. 

To summarize how we specify quality attribute requirements, we capture 
them formally as six-part scenarios. While it is common to omit one or more of 
these six parts, particularly in the early stages of thinking about quality attributes, 
knowing that all parts are there forces the architect to consider whether each part 
is relevant. 

In summary, here are the six parts:

1. Source of stimulus. This is some entity (a human, a computer system, or 
any other actuator) that generated the stimulus.

2. Stimulus. The stimulus is a condition that requires a response when it ar-
rives at a system.

3. Environment. The stimulus occurs under certain conditions. The system 
may be in an overload condition or in normal operation, or some other rele-
vant state. For many systems, “normal” operation can refer to one of a num-
ber of modes. For these kinds of systems, the environment should specify in 
which mode the system is executing.

4. Artifact. Some artifact is stimulated. This may be a collection of systems, 
the whole system, or some piece or pieces of it.

5. Response. The response is the activity undertaken as the result of the arrival 
of the stimulus. 

6. Response measure. When the response occurs, it should be measurable in 
some fashion so that the requirement can be tested. 

We distinguish general quality attribute scenarios (which we call “general 
scenarios” for short)—those that are system independent and can, potentially, 
pertain to any system—from concrete quality attribute scenarios (concrete sce-
narios)—those that are specific to the particular system under consideration. 

We can characterize quality attributes as a collection of general scenarios. 
Of course, to translate these generic attribute characterizations into requirements 
for a particular system, the general scenarios need to be made system specific. 
Detailed examples of these scenarios will be given in Chapters 5–11. Figure 4.1 
shows the parts of a quality attribute scenario that we have just discussed. Fig-
ure 4.2 shows an example of a general scenario, in this case for availability.
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4.5 achieving Quality attributes through tactics

The quality attribute requirements specify the responses of the system that, with a 
bit of luck and a dose of good planning, realize the goals of the business. We now 
turn to the techniques an architect can use to achieve the required quality attri-
butes. We call these techniques architectural tactics. A tactic is a design decision 
that influences the achievement of a quality attribute response—tactics directly 
affect the system’s response to some stimulus. Tactics impart portability to one 
design, high performance to another, and integrability to a third.

Stimulus Response

Response
Measure

Source
of Stimulus

Artifact

Environment

3
2

1

4

fIGurE 4.1 The parts of a quality attribute scenario

fIGurE 4.2 A general scenario for availability
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Internal/External: 
people, hardware, 
software, physical 
infrastructure, 
physical 
environment

Fault: 
omission, 
crash, 
incorrect 
timing, 
incorrect 
response

Prevent fault from 
becoming failure
Detect fault: log, notify 
Recover from fault:
disable event source, 
be unavailable, 
fix/mask, degraded 
mode

Time or time interval 
system must be available
Availability percentage 
Time in degraded mode
Time to detect fault 
Repair time
Proportion of faults 
system handles

Artifact
Processors, 

communication 
channels, persistent 
storage, processes

Environment
Normal operation, 
startup, shutdown, 
repair mode, 
degraded 
operation, 
overloaded 
operation
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Not My Problem

One time I was doing an architecture analysis on a complex system cre-
ated by and for Lawrence Livermore National Laboratory. If you visit their 
website (www.llnl.gov) and try to figure out what Livermore Labs does, you 
will see the word “security” mentioned over and over. The lab focuses on 
nuclear security, international and domestic security, and environmental 
and energy security. Serious stuff . . .

Keeping this emphasis in mind, I asked them to describe the quality 
attributes of concern for the system that I was analyzing. I’m sure you can 
imagine my surprise when security wasn’t mentioned once! The system 
stakeholders mentioned performance, modifiability, evolvability, interoper-
ability, configurability, and portability, and one or two more, but the word 
security never passed their lips. 

Being a good analyst, I questioned this seemingly shocking and obvious 
omission. Their answer was simple and, in retrospect, straightforward: “We 
don’t care about it. Our systems are not connected to any external net-
work and we have barbed-wire fences and guards with machine guns.” Of 
course, someone at Livermore Labs was very interested in security. But it 
was clearly not the software architects.

—RK

The focus of a tactic is on a single quality attribute response. Within a tactic, 
there is no consideration of tradeoffs. Tradeoffs must be explicitly considered 
and controlled by the designer. In this respect, tactics differ from architectural 
patterns, where tradeoffs are built into the pattern. (We visit the relation between 
tactics and patterns in Chapter 14. Chapter 13 explains how sets of tactics for a 
quality attribute can be constructed, which are the steps we used to produce the 
set in this book.)

A system design consists of a collection of decisions. Some of these deci-
sions help control the quality attribute responses; others ensure achievement of 
system functionality. We represent the relationship between stimulus, tactics, and 
response in Figure 4.3. The tactics, like design patterns, are design techniques 
that architects have been using for years. Our contribution is to isolate, catalog, 
and describe them. We are not inventing tactics here, we are just capturing what 
architects do in practice. 

Why do we do this? There are three reasons: 

1. Design patterns are complex; they typically consist of a bundle of design 
decisions. But patterns are often difficult to apply as is; architects need to 
modify and adapt them. By understanding the role of tactics, an architect 
can more easily assess the options for augmenting an existing pattern to 
achieve a quality attribute goal. 

http://www.llnl.gov
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2. If no pattern exists to realize the architect’s design goal, tactics allow the 
architect to construct a design fragment from “first principles.” Tactics give 
the architect insight into the properties of the resulting design fragment. 

3. By cataloging tactics, we provide a way of making design more systematic 
within some limitations. Our list of tactics does not provide a taxonomy. We 
only provide a categorization. The tactics will overlap, and you frequently 
will have a choice among multiple tactics to improve a particular quality at-
tribute. The choice of which tactic to use depends on factors such as tradeoffs 
among other quality attributes and the cost to implement. These consider-
ations transcend the discussion of tactics for particular quality attributes. 
Chapter 17 provides some techniques for choosing among competing tactics.

The tactics that we present can and should be refined. Consider perfor-
mance: Schedule resources is a common performance tactic. But this tactic needs 
to be refined into a specific scheduling strategy, such as shortest-job-first, round-
robin, and so forth, for specific purposes. Use an intermediary is a modifiability 
tactic. But there are multiple types of intermediaries (layers, brokers, and prox-
ies, to name just a few). Thus there are refinements that a designer will employ to 
make each tactic concrete. 

In addition, the application of a tactic depends on the context. Again consid-
ering performance: Manage sampling rate is relevant in some real-time systems 
but not in all real-time systems and certainly not in database systems.

4.6 Guiding Quality design decisions

Recall that one can view an architecture as the result of applying a collection of 
design decisions. What we present here is a systematic categorization of these 

fIGurE 4.3 Tactics are intended to control responses to stimuli.

Stimulus Response

Tactics
to Control
Response
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decisions so that an architect can focus attention on those design dimensions 
likely to be most troublesome. 

The seven categories of design decisions are

1. Allocation of responsibilities
2. Coordination model
3. Data model
4. Management of resources
5. Mapping among architectural elements
6. Binding time decisions
7. Choice of technology

These categories are not the only way to classify architectural design deci-
sions, but they do provide a rational division of concerns. These categories might 
overlap, but it’s all right if a particular decision exists in two different categories, 
because the concern of the architect is to ensure that every important decision is 
considered. Our categorization of decisions is partially based on our definition 
of software architecture in that many of our categories relate to the definition of 
structures and the relations among them.

allocation of responsibilities

Decisions involving allocation of responsibilities include the following:

 ■ Identifying the important responsibilities, including basic system functions, 
architectural infrastructure, and satisfaction of quality attributes. 

 ■ Determining how these responsibilities are allocated to non-runtime and 
runtime elements (namely, modules, components, and connectors). 

Strategies for making these decisions include functional decomposition, 
modeling real-world objects, grouping based on the major modes of system oper-
ation, or grouping based on similar quality requirements: processing frame rate, 
security level, or expected changes.

In Chapters 5–11, where we apply these design decision categories to a 
number of important quality attributes, the checklists we provide for the alloca-
tion of responsibilities category is derived systematically from understanding the 
stimuli and responses listed in the general scenario for that QA.

coordination Model

Software works by having elements interact with each other through designed 
mechanisms. These mechanisms are collectively referred to as a coordination 
model. Decisions about the coordination model include these:
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 ■ Identifying the elements of the system that must coordinate, or are prohib-
ited from coordinating.

 ■ Determining the properties of the coordination, such as timeliness, cur-
rency, completeness, correctness, and consistency.

 ■ Choosing the communication mechanisms (between systems, between our 
system and external entities, between elements of our system) that realize 
those properties. Important properties of the communication mechanisms 
include stateful versus stateless, synchronous versus asynchronous, guar-
anteed versus nonguaranteed delivery, and performance-related properties 
such as throughput and latency.

data Model

Every system must represent artifacts of system-wide interest—data—in some 
internal fashion. The collection of those representations and how to interpret 
them is referred to as the data model. Decisions about the data model include the 
following:

 ■ Choosing the major data abstractions, their operations, and their properties. 
This includes determining how the data items are created, initialized, ac-
cessed, persisted, manipulated, translated, and destroyed.

 ■ Compiling metadata needed for consistent interpretation of the data.
 ■ Organizing the data. This includes determining whether the data is going 

to be kept in a relational database, a collection of objects, or both. If both, 
then the mapping between the two different locations of the data must be 
determined.

Management of resources

An architect may need to arbitrate the use of shared resources in the architec-
ture. These include hard resources (e.g., CPU, memory, battery, hardware buffers, 
system clock, I/O ports) and soft resources (e.g., system locks, software buffers, 
thread pools, and non-thread-safe code). 

Decisions for management of resources include the following:

 ■ Identifying the resources that must be managed and determining the limits 
for each.

 ■ Determining which system element(s) manage each resource. 
 ■ Determining how resources are shared and the arbitration strategies em-

ployed when there is contention.
 ■ Determining the impact of saturation on different resources. For example, 

as a CPU becomes more heavily loaded, performance usually just degrades 
fairly steadily. On the other hand, when you start to run out of memory, at 
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some point you start paging/swapping intensively and your performance 
suddenly crashes to a halt.

Mapping among architectural Elements 

An architecture must provide two types of mappings. First, there is mapping 
between elements in different types of architecture structures—for example, 
mapping from units of development (modules) to units of execution (threads or 
processes). Next, there is mapping between software elements and environment 
elements—for example, mapping from processes to the specific CPUs where 
these processes will execute.

Useful mappings include these:

 ■ The mapping of modules and runtime elements to each other—that is, the 
runtime elements that are created from each module; the modules that con-
tain the code for each runtime element.

 ■ The assignment of runtime elements to processors.
 ■ The assignment of items in the data model to data stores.
 ■ The mapping of modules and runtime elements to units of delivery.

binding time decisions

Binding time decisions introduce allowable ranges of variation. This variation 
can be bound at different times in the software life cycle by different entities—
from design time by a developer to runtime by an end user. A binding time de-
cision establishes the scope, the point in the life cycle, and the mechanism for 
achieving the variation. 

The decisions in the other six categories have an associated binding time 
decision. Examples of such binding time decisions include the following:

 ■ For allocation of responsibilities, you can have build-time selection of mod-
ules via a parameterized makefile. 

 ■ For choice of coordination model, you can design runtime negotiation of 
protocols.

 ■ For resource management, you can design a system to accept new periph-
eral devices plugged in at runtime, after which the system recognizes them 
and downloads and installs the right drivers automatically.

 ■ For choice of technology, you can build an app store for a smartphone that 
automatically downloads the version of the app appropriate for the phone of 
the customer buying the app.

When making binding time decisions, you should consider the costs to im-
plement the decision and the costs to make a modification after you have im-
plemented the decision. For example, if you are considering changing platforms 
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at some time after code time, you can insulate yourself from the effects caused 
by porting your system to another platform at some cost. Making this decision 
depends on the costs incurred by having to modify an early binding compared to 
the costs incurred by implementing the mechanisms involved in the late binding. 

choice of technology

Every architecture decision must eventually be realized using a specific tech-
nology. Sometimes the technology selection is made by others, before the in-
tentional architecture design process begins. In this case, the chosen technology 
becomes a constraint on decisions in each of our seven categories. In other cases, 
the architect must choose a suitable technology to realize a decision in every one 
of the categories.

Choice of technology decisions involve the following:

 ■ Deciding which technologies are available to realize the decisions made in 
the other categories.

 ■ Determining whether the available tools to support this technology choice 
(IDEs, simulators, testing tools, etc.) are adequate for development to 
proceed.

 ■ Determining the extent of internal familiarity as well as the degree of exter-
nal support available for the technology (such as courses, tutorials, exam-
ples, and availability of contractors who can provide expertise in a crunch) 
and deciding whether this is adequate to proceed.

 ■ Determining the side effects of choosing a technology, such as a required 
coordination model or constrained resource management opportunities.

 ■ Determining whether a new technology is compatible with the existing 
technology stack. For example, can the new technology run on top of or 
alongside the existing technology stack? Can it communicate with the exist-
ing technology stack? Can the new technology be monitored and managed?

4.7 Summary

Requirements for a system come in three categories:

1. Functional. These requirements are satisfied by including an appropriate set 
of responsibilities within the design.

2. Quality attribute. These requirements are satisfied by the structures and 
behaviors of the architecture.

3. Constraints. A constraint is a design decision that’s already been made.
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To express a quality attribute requirement, we use a quality attribute sce-
nario. The parts of the scenario are these:

1. Source of stimulus
2. Stimulus
3. Environment
4. Artifact
5. Response 
6. Response measure

An architectural tactic is a design decision that affects a quality attribute 
response. The focus of a tactic is on a single quality attribute response. Architec-
tural patterns can be seen as “packages” of tactics.

The seven categories of architectural design decisions are these:

1. Allocation of responsibilities
2. Coordination model
3. Data model
4. Management of resources
5. Mapping among architectural elements
6. Binding time decisions
7. Choice of technology

4.8 for further reading

Philippe Kruchten [Kruchten 04] provides another categorization of design 
decisions.

Pena [Pena 87] uses categories of Function/Form/Economy/Time as a way 
of categorizing design decisions. 

Binding time and mechanisms to achieve different types of binding times 
are discussed in [Bachmann 05].

Taxonomies of quality attributes can be found in [Boehm 78], [McCall 77], 
and [ISO 11].

Arguments for viewing architecture as essentially independent from func-
tion can be found in [Shaw 95].

4.9 discussion Questions

1. What is the relationship between a use case and a quality attribute scenario? 
If you wanted to add quality attribute information to a use case, how would 
you do it?
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2. Do you suppose that the set of tactics for a quality attribute is finite or in-
finite? Why?

3. Discuss the choice of programming language (an example of choice of 
technology) and its relation to architecture in general, and the design 
decisions in the other six categories? For instance, how can certain pro-
gramming languages enable or inhibit the choice of particular coordination 
models?

4. We will be using the automatic teller machine as an example throughout 
the chapters on quality attributes. Enumerate the set of responsibilities that 
an automatic teller machine should support and propose an initial design to 
accommodate that set of responsibilities. Justify your proposal.

5. Think about the screens that your favorite automatic teller machine uses. 
What do those screens tell you about binding time decisions reflected in the 
architecture?

6. Consider the choice between synchronous and asynchronous communica-
tion (a choice in the coordination mechanism category). What quality attri-
bute requirements might lead you to choose one over the other?

7. Consider the choice between stateful and stateless communication (a choice 
in the coordination mechanism category). What quality attribute require-
ments might lead you to choose one over the other?

8. Most peer-to-peer architecture employs late binding of the topology. What 
quality attributes does this promote or inhibit?



563

Index
AADL (Architecture Analysis and Design 

Language), 354
Abstract common services tactic, 124
Abstract data sources for testability, 165
Abstract Syntax Tree (AST) analyzers, 386
Abstraction, architecture as, 5–6
Acceptance testing, 372
Access

basis sets, 261
network, 504

access_read relationship, 384
access_write relationship, 384
ACID (atomic, consistent, isolated, and 

durable) properties, 95
Acknowledged system of systems, 106
Active redundancy, 91, 256–259
ActiveMQ product, 224
Activities

competence, 468
test, 374–375

Activity diagrams for traces, 353
Actors tactic, 152–153
Adams, Douglas, 437
ADD method. See Attribute-Driven Design 

(ADD) method
Add-ons, 491–492
ADLs (architecture description languages), 330
Adolphus, Gustavus, 42
Adoption strategies, 494–496
Adventure Builder system, 224, 226, 237
Aggregation for usability, 180
Agile projects, 533

architecture example, 283–285
architecture methods, 281–283
architecture overview, 277–281
description, 44–45
documenting, 356–357
guidelines, 286–287
introduction, 275–277
patterns, 238
requirements, 56
summary, 287–288

AIC (Architecture Influence Cycle)
description, 58
Vasa ship, 43

Air France flight 447, 192
Air traffic control systems, 366–367

Allen, Woody, 79
Allocated to relation

allocation views, 339–340
deployment structure, 14
multi-tier pattern, 237

Allocation of responsibilities category
ASRs, 293
availability, 96
interoperability, 114
modifiability, 126
performance, 143
quality design decisions, 73
security, 154
testability, 169
usability, 181

Allocation patterns
map-reduce, 232–235
miscellaneous, 238
multi-tier, 235–237

Allocation structures, 5, 11, 14
Allocation views, 339–340
Allowed-to-use relationship, 206–207
Alpha testing, 372
Alternatives, evaluating, 398
Amazon service-level agreements, 81, 522
Analysis

architecture, 47–48
ATAM, 408–409, 411
availability, 255–259
back-of-the-envelope, 262–264
conformance by, 389–392
economic. See Economic analysis
outsider, 399
performance, 252–255

Analysts, 54
Analytic model space, 259–260
Analytic perspective on up-front work vs. 

agility, 279–281
Analytic redundancy tactic, 90
AND gate symbol, 84
Anonymizing test data, 171
Antimissile system, 104
Apache web server, 528, 531
Approaches

ATAM, 407–409, 411
CIA, 147–148
Lightweight Architecture Evaluation, 416



564 Index 

Architects
background and experience, 51–52
cloud environments, 520–523
communication with, 29
competence, 459–467
description and interests, 54
duties, 460–464
knowledge, 466–467
responsibilities, 422–423
skills, 463, 465
test role, 375–376

Architectural structures
allocation, 14
component-and-connector, 13–14
documentation, 17–18
insight from, 11–12
kinds, 10–11
limiting, 17
module, 12–13
relating to each other, 14, 16–17
selecting, 17
table of, 15
views, 9–10

Architecturally significant requirements 
(ASRs), 46–47, 291–292

ADD method, 320–321
from business goals, 296–304
designing to, 311–312
interviewing stakeholders, 294–296
from requirements documents, 292–293
utility trees for, 304–307

Architecture
Agile projects. See Agile projects
analyzing, 47–48
availability. See Availability
business context, 49–51
changes, 27–28
cloud. See Cloud environments
competence. See Competence
conceptual integrity of, 189
design. See Design and design strategy
documenting. See Documentation
drivers in PALM, 305
economics. See Economic analysis
evaluation. See Evaluation
implementation. See Implementation
influences, 56–58
in life cycle, 271–274
management. See Management and 

governance
modifiability. See Modifiability
patterns. See Patterns
performance. See Performance

product lines. See Software product lines
product reuse, 483–484
QAW drivers, 295
QAW plan presentation, 295
quality attributes. See Quality attributes
reconstruction and conformance. See 

Reconstruction and conformance
requirements. See Architecturally 

significant requirements (ASRs); 
Requirements

security. See Security
structures. See Architectural structures
tactics. See Tactics
testability. See Testability
usability. See Usability

Architecture Analysis and Design Language 
(AADL), 354

Architecture-centric projects, 279
Architecture description languages (ADLs), 

330
Architecture Influence Cycle (AIC)

description, 58
Vasa ship, 43

Architecture Tradeoff Analysis Method 
(ATAM), 48, 283, 400

approaches, 407–409, 411
business drivers, 404–405
example exercise, 411–414
outputs, 402–403
participants, 400–401
phases, 403–404
presentation, 403–406
results, 411
scenarios, 408, 410
steps, 404–411

Ariane 5 explosion, 192
Aristotle, 185
Arrival pattern for events, 133
Artifacts

availability, 85–86
in evaluation, 399
interoperability, 107–108
modifiability, 119–120
performance, 134
product reuse, 484
quality attributes expressions, 69–70
security, 148, 150
testability, 162–163
usability, 176
variability, 489

ASP.NET framework, 215
Aspects

for testability, 167



Index 565

variation mechanism, 492
ASRs. See Architecturally significant 

requirements (ASRs)
Assembly connectors in UML, 369
Assertions for system state, 166
Assessment goals, 469
Assessment of competence, 469–472, 

474–475
Assign utility

CBAM, 446
NASA ECS project, 452

AST (Abstract Syntax Tree) analyzers, 386
Asymmetric flow in client-server pattern, 218
Asynchronous messaging, 223, 225
ATAM. See Architecture Tradeoff Analysis 

Method (ATAM)
ATM (automatic teller machine) banking 

system, 219
Atomic, consistent, isolated, and durable 

(ACID) properties, 95
Attachment relation

broker pattern, 211
client-server pattern, 218
component-and-connector structures, 13
pipe-and-filter pattern, 216
publish-subscribe pattern, 227
shared-data pattern, 231

Attachments in component-and-connector 
views, 336–337

Attribute-Driven Design (ADD) method, 316
ASRs, 320–321
element choice, 318–319
element design solution, 321
inputs, 316
output, 317–318
repeating steps, 324
verify and refine requirements step, 

321–323
Attributes. See Quality attributes
Audiences for documentation, 328–329
Auditor checklists, 260
Audits, 153
Authenticate actors tactic, 152
Authentication in CIA approach, 148
Authorization in CIA approach, 148
Authorize actors tactic, 152
Automated delivery in Metropolis model, 535
Automatic reallocation of IP addresses, 516
Automatic scaling, 516
Automatic teller machine (ATM) banking 

system, 219
Automation for testability, 171–172
AUTOSAR framework, 364

Availability
analytic model space, 259
analyzing, 255–259
broker pattern, 240
calculations, 259
CAP theorem, 523
CIA approach, 147
cloud, 521
design checklist, 96–98
detect faults tactic, 87–91
general scenario, 85–86
introduction, 79–81
planning for failure, 82–85
prevent faults tactic, 94–95
recover-from-faults tactics, 91–94
summary, 98–99
tactics overview, 87

Availability of resources tactic, 136
Availability quality attribute, 307
Availability zones, 522
Avižienis, Algirdas, 79

Back door reviews, 544–545
Back-of-the-envelope analysis, 262–264
Background of architects, 51–52
Bank application, 391–392
Base mechanisms in cloud, 509–514
Basis sets for quality attributes, 261
BDUF (Big Design Up Front) process, 278
Behavior

documenting, 351–354
element, 347
in software architecture, 6–7

Benefit in economic analysis, 441–442
Benkler, Yochai, 528
Beta testing, 372
Big bang integration, 371
Big bang models, 495–496
Big Design Up Front (BDUF) process, 278
BigTable database system, 518
Binder, Robert, 167
Binding

late, 385, 388
modifiability, 124–125
user interface, 178

Binding time category
ASRs, 293
availability, 98
interoperability, 115
modifiability, 122, 127
performance, 144
quality design, 75–76
security, 156



566 Index 

Binding time category, continued
testability, 170
usability, 182

BitTorrent networks, 221
Black-box testing, 372–373
“Blind Men and the Elephant” (Saxe), 379
Blocked time in performance, 136
Blogger website, 528
Boehm, Barry, 279, 281, 286, 288
Booch, Grady, 286
Boolean logic diagrams, 83
Bottom-up adoption, 495
Bottom-up analysis mode, 284
Bottom-up schedules, 420–421
Bound execution times tactic, 138
Bound queue sizes tactic, 139
Boundaries in ADD method, 317
Box-and-line drawings

as architectures, 6
component-and-connector views, 338

BPEL (Business Process Execution 
Language), 108

Brainstorming
ATAM, 410
Lightweight Architecture Evaluation, 416
QAW, 295

Branson, Richard, 443
Breadth first ADD strategy, 319
Brewer, Eric, 522
Broadcast-based publish-subscribe pattern, 

229
Broker pattern

availability, 255–259
description, 210–212
weaknesses, 240–242

Brooks, Fred, 47, 419
Buley, Taylor, 147
Bureaucracy in implementation, 427
Bush, Vannevar, 397
Business cases in project life-cycle context, 

46
Business context

architecture influence on, 58
architectures and business goals, 49–50

Business drivers
ATAM, 404–405
Lightweight Architecture Evaluation, 416
PALM method, 305

Business goals
ASRs from, 296–304
assessment, 469
ATAM, 402
business context, 49–50

capturing, 304
categorization, 297–299
evaluation process, 400
expressing, 299–301
general scenario, 301–303
PALM method, 305
views for, 332

Business managers, 54
Business/mission presentation in QAW, 295
Business Process Execution Language 

(BPEL), 108
Business process improvements as business 

goal, 299
Business-related architect skills, 465

C&C structures. See Component-and-connector 
(C&C) patterns and structures

Caching tactic, 139
Callbacks in Model-View-Controller pattern, 

214
Calls relationship in view extraction, 384
Cancel command, 179
CAP theorem, 518, 522–523
Capture scenarios for quality attributes, 

196–197
Capturing

ASRs in utility trees, 304–307
business goals, 304–307

Catastrophic failures, 82
Categorization of business goals, 297–299
CBAM. See Cost Benefit Analysis Method 

(CBAM)
Change

documenting, 355–356
modifiability. See Modifiability
reasoning and managing, 27–28

Change control boards, 427
Change default settings tactic, 153
Chaos Monkey, 160–161
Chaucer, Geoffrey, 459
Check-in, syncing at, 368
Choice of technology category

ASRs, 293
availability, 98
interoperability, 115
modifiability, 127
performance, 144
security, 156
testability, 170
usability, 182

CIA (confidentiality, integrity, and availabil-
ity) approach, 147–148

City analogy in Metropolis model, 536



Index 567

class_contains_method relationship, 384
class_is_subclass_of_class relationship, 384
Class structure, 13
Classes in testability, 167
Clements, Paul, 66
Client-server patterns, 19, 217–219
Client-side proxies, 211
Clients

broker pattern, 211
simulators, 265

Clone-and-own practice, 482–483
Cloud environments

architecting in, 520–523
availability, 521
base mechanisms, 509–514
database systems, 517–520
definitions, 504–505
deployment models, 506
economic justification, 506–509
equipment utilization, 508–509
IaaS model, 515–517
introduction, 503–504
multi-tenancy applications, 509
PaaS model, 517
performance, 521
security, 520–521
service models, 505–506
summary, 524

Cluster managers, 515
CMG (Computer Measurement Group), 524
Co-located teams

Agile, 277
coordination, 427

Cockburn, Alistair, 287
COCOMO II (COnstructive COst MOdel II) 

scale factor, 279
Code

architecture consistency, 366–368
design in, 364
KSLOC, 279–281
mapping to, 334
security, 157
templates, 365–367

Cohesion
in modifiability, 121–123
in testability, 167

Cold spares, 92, 256–259
Collaborative system of systems, 106
Collating scenarios

CBAM, 445
NASA ECS project, 451

COMBINATION gate symbol, 84
Combining views, 343–345

Commercial implementations of map-reduce 
patterns, 234

Common Object Request Broker Architecture 
(CORBA), 212

Communicates with relation, 237
Communication

Agile software development, 277
architect skills, 465
architecture, 47
documentation for, 329
global development, 425
stakeholder, 29–31

Communication diagrams for traces, 353
Communications views, 341
Community clouds, 506
Compatibility in component-and-connector 

views, 336
Compatibility quality attribute, 193
Competence

activities, 468
architects, 459–467
assessment, 469–472, 474–475
assessment goals, 469
introduction, 459–460
models, 476
questions, 470, 472–474
software architecture organizations, 

467–475
summary, 475

Competence center patterns, 19, 238
Competence set tactic, 95
Complexity

broker pattern, 211
quality attributes, 71
in testability, 167–168

Component-and-connector (C&C) patterns 
and structures, 5, 10–11

broker, 210–212
client-server, 217–219
Model-View-Controller, 212–215
peer-to-peer, 220–222
pipe-and-filter, 215–217
publish-subscribe, 226–229
service-oriented architecture, 222–226
shared-data, 230–231
types, 13–14
views, 335–339, 344, 406

Components, 5
independently developed, 35–36
replacing for testability, 167
substituting in variation mechanism, 492

Comprehensive models for behavior docu-
mentation, 351, 353–354



568 Index 

Computer Measurement Group (CMG), 524
Computer science knowledge of architects, 

466
Concepts and terms, 368–369
Conceptual integrity of architecture, 189
Concrete quality attribute scenarios, 69
Concurrency

component-and-connector views, 13–14, 
337

handling, 132–133
Condition monitoring tactic, 89
Confidence in usability, 175
Confidentiality, integrity, and availability 

(CIA) approach, 147–148
Configurability quality attribute, 307
Configuration manager roles, 422
Configurators, 492
Conformance, 380–381

by analysis, 389–392
architectural, 48
by construction, 389

Conformance checkers, 54
Conformity Monkey, 161
Connectors

component-and-connector views, 
335–339

multi-tier pattern, 236
peer-to-peer systems, 220
REST, 225
UML, 369

Consistency
CAP theorem, 523
code and architecture, 366–368
databases, 520

Consolidation in QAW, 295
Constraints

ADD method, 322–323
allocation views, 339
broker pattern, 211
client-server pattern, 218
component-and-connector views, 337
conformance, 390
defining, 32–33
layered pattern, 207
map-reduce patterns, 235
Model-View-Controller pattern, 213
modular views, 333
multi-tier pattern, 236–237
peer-to-peer pattern, 222
pipe-and-filter pattern, 216
publish-subscribe pattern, 227
requirements, 64–65
service-oriented architecture pattern, 225

shared-data pattern, 231
Construction, conformance by, 389
COnstructive COst MOdel II (COCOMO II) 

scale factor, 279
Content-based publish-subscribe pattern, 229
Contention for resources tactic, 136
Context diagrams

ATAM presentations, 406
in documentation, 347

Contexts
architecture influence, 56–58
business, 49–51, 58
decision-making, 438–439
professional, 51–52
project life-cycle, 44–48
in relationships, 204–205
stakeholders, 52–55
summary, 59
technical, 40–43
thought experiments, 263
types, 39–40

Contextual factors in evaluation, 399–400
Continuity as business goal, 298
Control relation in map-reduce patterns, 235
Control resource demand tactic, 137–138
Control tactics for testability, 164–167
Controllers in Model-View-Controller 

pattern, 213–214
Conway’s law, 38
Coordination model category

ASRs, 293
availability, 96
global development, 426
interoperability, 114
modifiability, 126
performance, 143
quality design decisions, 73–74
security, 155
testability, 169
usability, 181

CORBA (Common Object Request Broker 
Architecture), 212

Core asset units, 497
Core requirements, 531–532
Core vs. periphery in Metropolis model, 534
Correlation logic for faults, 81
Cost Benefit Analysis Method (CBAM), 442

cost determination, 444
results, 456–457
steps, 445–447
utility curve determination, 442–443
variation points, 448–450
weighting determination, 444



Index 569

Costs
CBAM, 444
of change, 118
estimates, 34
global development, 423–424
independently developed components 

for, 36
power, 507
resources, 244
thought experiments, 263
value for, 442

Costs to complete measure, 430
Coupling

in modifiability, 121–124
in testability, 167

Crashes and availability, 85
Credit cards, 147, 157, 260, 268
Crisis, syncing at, 368
Criteria for ASRs, 306
Crowd management in Metropolis model, 

534
Crowdsourcing, 528
CRUD operations, 109
CruiseControl tool, 172
Crystal Clear method, 44, 287
Cummins, Inc., 480, 490
Cunningham, Ward, 286
Customers

communication with, 29
edge-dominant systems, 529

Customization of user interface, 180

Darwin, Charles, 275
Data Access Working Group (DAWG), 451
Data accessors in shared-data pattern, 

230–231
Data latency, utility trees for, 306
Data model category, 13

ASRs, 293
availability, 96
interoperability, 114
modifiability, 126
performance, 143
quality design decisions, 74
security, 155
testability, 169
usability, 182

Data reading and writing in shared-data 
pattern, 230–231

Data replication, 139
Data sets

map-reduce pattern, 232–233
for testability, 170–171

Data stores in shared-data pattern, 230–231
Data transformation systems, 215
Database administrators, 54
Database systems

cloud, 517–520
in reconstruction, 386–387

DataNodes, 512–514
DAWG (Data Access Working Group), 451
Deadline monotonic prioritization strategy, 

140
Deadlines in processing, 134
Debugging brokers, 211
Decision makers on ATAM teams, 401
Decision-making context, 438–439
Decisions

evaluating, 398
mapping to quality requirements, 402–403
quality design, 72–76

Decomposition
description, 311–312
module, 5, 12, 16
views, 16, 343, 345

Dedicated finite resources, 530
Defects

analysis, 374
eliminating, 486
tracking, 430

Defer binding
modifiability, 124–125
user interface, 178

Degradation tactic, 93
Delegation connectors, 369
Demilitarized zones (DMZs), 152
Denial-of-service attacks, 79, 521, 533
Dependencies

basis set elements, 261
on computations, 136
intermediary tactic for, 123–124
user interface, 178

Dependent events in probability, 257
Depends-on relation

layered pattern, 207
modules, 332–333

Deploy on relation, 235
Deployability attribute, 129, 187
Deployers, 54
Deployment models for cloud, 506
Deployment structure, 14
Deployment views

ATAM presentations, 406
combining, 345
purpose, 332

Depth first ADD strategy, 319



570 Index 

Design and design strategy, 311
ADD. See Attribute-Driven Design 

(ADD) method
architecturally significant requirements, 

311–312
in code, 364
decomposition, 311–312
early decisions, 31–32
generate and test process, 313–316
initial hypotheses, 314–315
next hypotheses, 315
quality attributes, 197
summary, 325
test choices, 315

Design checklists
availability, 96–98
design strategy hypotheses, 315
interoperability, 114–115
modifiability, 125–127
performance, 142–144
quality attributes, 199
security, 154–156
summary, 183
testability, 169–170
usability, 181–182

Designers
description and interests, 54
evaluation by, 397–398

Detect attacks tactics, 151
Detect faults tactic, 87–91
Detect intrusion tactic, 151
Detect message delay tactic, 151
Detect service denial tactic, 151
Deutsche Bank, 480
Developers

edge-dominant systems, 529
roles, 422

Development
business context, 50–51
global, 423–426
incremental, 428
project life-cycle context, 44–45
tests, 374

Development distributability attribute, 186
Deviation

failure from, 80
measuring, 429

Devices in ADD method, 317
DiNucci, Darcy, 527
dir_contains_dir relationship, 384
dir_contains_file relationship, 384
Directed system of systems, 106
Directories in documentation, 349

DiscoTect system, 391
Discover service tactic, 111
Discovery in interoperability, 105
Discovery services, 533
Distributed computing, 221
Distributed development, 427
Distributed testing in Metropolis model, 535
DMZs (demilitarized zones), 152
DNS (domain name server), 514
Doctor Monkey, 161
Documentation

Agile development projects, 356–357
architect duties, 462
architectural structures, 17–18
architecture, 47, 347–349
behavior, 351–354
changing architectures, 355–356
distributed development, 427
global development, 426
introduction, 327–328
notations, 329–331
online, 350
packages, 345–351
patterns, 350–351
and quality attributes, 354–355
services, 533
summary, 359
uses and audiences for, 328–329
views. See Views
YAGNI, 282

Documentation maps, 347–349
Documents, control information, 347
Domain decomposition, 315
Domain knowledge of architects, 467
Domain name server (DNS), 514
Drivers

ATAM, 404–405
Lightweight Architecture Evaluation, 416
PALM method, 305
QAW, 295

DSK (Duties, Skills, and Knowledge) model 
of competence, 476

Duke’s Bank application, 391–392
Duties

architects, 460–464
competence, 472
professional context, 51

Duties, Skills, and Knowledge (DSK) model 
of competence, 476

Dynamic allocation views, 340
Dynamic analysis with fault trees, 83
Dynamic priority scheduling strategies, 

140–141



Index 571

Dynamic structures, 5
Dynamic system information, 385–386

Earliest-deadline-first scheduling strategy, 141
Early design decisions, 31–32
Earth Observing System Data Information 

System (EOSDIS) Core System 
(ECS). See NASA ECS project

eBay, 234
EC2 cloud service, 81, 160, 522, 532
Eclipse platform, 228
Economic analysis

basis, 439–442
benefit and normalization, 441–442
case study, 451–457
CBAM. See Cost Benefit Analysis 

Method (CBAM)
cost value, 442
decision-making context, 438–439
introduction, 437
scenario weighting, 441
side effects, 441
summary, 457
utility-response curves, 439–441

Economics
cloud, 506–509
issues, 543

Economies of scale in cloud, 507–508
Ecosystems, 528–530
ECS system. See NASA ECS project
Edge-dominant systems, 528–530
Edison, Thomas, 203
eDonkey networks, 221
Education, documentation as, 328–329
Effective resource utilization, 187
Effectiveness category for quality, 189
Efficiency category for quality, 189–190
Einstein, Albert, 175
EJB (Enterprise Java Beans), 212
Elasticity, rapid, 504–505
Elasticity property, 187
Electric grids, 106
Electricity, 191, 570
Electronic communication in global 

development, 426
Elements

ADD method, 318–319
allocation views, 339–340
broker pattern, 211
catalogs, 346–347
client-server pattern, 218
component-and-connector views, 337
defined, 5

layered pattern, 207
map-reduce patterns, 235
mapping, 75
Model-View-Controller pattern, 213
modular views, 333
multi-tier pattern, 237
peer-to-peer pattern, 222
pipe-and-filter pattern, 216
product reuse, 484
publish-subscribe pattern, 227
service-oriented architecture pattern, 225
shared-data pattern, 231

Employees
as goal-object, 302
responsibilities to, 299

Enabling quality attributes, 26–27
Encapsulation tactic, 123
Encrypt data tactic, 152
End users in edge-dominant systems, 529
Enterprise architecture vs. system 

architecture, 7–8
Enterprise Java Beans (EJB), 212
Enterprise resource planning (ERP) systems, 

228
Enterprise service bus (ESB), 223, 225, 369
Environment

ADD method, 317
allocation views, 339–340
availability, 85–86
business goals, 300
interoperability, 107–108
modifiability, 119–120
performance, 134
quality attributes expressions, 68–70
security, 149–150
technical context, 41–42
testability, 162–163
usability, 176
variability, 489

Environmental change as business goal, 299
ERP (enterprise resource planning) systems, 

228
Errors, 80

core handling of, 532
detection by services, 533
error-handling views, 341
in usability, 175

ESB (enterprise service bus), 223, 225, 369
Escalating restart tactic, 94
Estimates, cost and schedule, 34
Evaluation

architect duties, 462–463
architecture, 47–48



572 Index 

Evaluation, continued
ATAM. See Architecture Tradeoff 

Analysis Method (ATAM)
contextual factors, 399–400
by designer, 397–398
Lightweight Architecture Evaluation, 

415–417
outsider analysis, 399
peer review, 398–399
questions, 472
software product lines, 493–494
summary, 417

Evaluators, 54
Event bus in publish-subscribe pattern, 227
Events

Model-View-Controller pattern, 214
performance, 131, 133
probability, 257

Eventual consistency model, 168, 523
Evolutionary prototyping, 33–34
Evolving software product lines, 496–497
Exception detection tactic, 90
Exception handling tactic, 92
Exception prevention tactic, 95
Exception views, 341
Exchanging information via interfaces, 

104–105
EXCLUSIVE OR gate symbol, 84
Executable assertions for system state, 166
Execution of tests, 374
Exemplar systems, 485
Exercise conclusion in PALM method, 305
Existing systems in design, 314
Expected quality attribute response levels, 453
Experience of architects, 51–52
Experiments in quality attribute modeling, 

264–265
Expressing business goals, 299–301
Extensibility quality attribute, 307
Extensible programming environments, 228
Extension points for variation, 491
External sources for product lines, 496
External system representatives, 55
External systems in ADD method, 317
Externalizing change, 125
Extract-transform-load functions, 235
Extraction, raw view, 382–386
Extreme Programming development 

methodology, 44

Facebook, 527–528
map-reduce patterns, 234
users, 518

Fail fast principle, 522
Failure Mode, Effects, and Criticality 

Analysis (FMECA), 83–84
Failures, 80

availability. See Availability
planning for, 82–85
probabilities and effects, 84–85

Fairbanks, George, 279, 364
Fallbacks principle, 522
Fault tree analysis, 82–84
Faults, 80

correlation logic, 81
detection, 87–91
prevention, 94–95
recovery from, 91–94

Feature removal principle, 522
FIFO (first-in/first-out) queues, 140
File system managers, 516
Filters in pipe-and-filter pattern, 215–217
Financial objectives as business goal, 298
Finding violations, 389–392
Fire-and-forget information exchange, 223
Firefox, 531
First-in/first-out (FIFO) queues, 140
First principles from tactics, 72
Fixed-priority scheduling, 140
Flex software development kit, 215
Flexibility

defer binding tactic, 124
independently developed components 

for, 36
Flickr service, 527, 536
Flight control software, 192–193
FMECA (Failure Mode, Effects, and 

Criticality Analysis), 83–84
Focus on architecture in Metropolis model, 

534–535
Follow-up phase in ATAM, 403–404
Folsonomy, 528
Ford, Henry, 479
Formal documentation notations, 330
Frameworks

design strategy hypotheses, 314–315
implementation, 364–365

Frankl, Viktor E., 63
Freedom from risk category for quality, 189
Functional redundancy tactic, 90
Functional requirements, 64, 66
Functional responsibility in ADD method, 

322–323
Functional suitability quality attribute, 193
Functionality

component-and-connector views, 336



Index 573

description, 65
Fused views, 388–389

Gamma, E., 212
Gate symbols, 83–84
General Motors product line, 487
Generalization structure, 13
Generate and test process, 313–316
Generators of variation, 492
Get method for system state, 165
Global development, 423–426
Global metrics, 429–430
Gnutella networks, 221
Goal components in business goals, 300
Goals. See Business goals
Goldberg, Rube, 102
Good architecture, 19–21
Good enough vs. perfect, 398
Google

database system, 518
Google App Engine, 517
Google Maps, 105–107
greenhouse gas from, 190–191
map-reduce patterns, 234
power sources, 507

Governance, 430–431
Government, responsibilities to, 299
Graceful degradation, 522
Graphical user interfaces in publish-subscribe 

pattern, 228
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code templates, 365–367
design in code, 364
frameworks, 364–365
incremental development, 428
modules, 333–334
structure, 14
summary, 376
testing, 370–376
tracking progress, 428–429
tradeoffs, 427

Implementors, 55
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Instantiate relation, 235
Integration management in global 

development, 424
Integration testing, 371–372
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service-oriented architecture pattern, 224
and standards, 112–113
summary, 115
tactics, 110–113

Interpersonal skills, 465
Interpolation in CBAM, 446
Interviewing stakeholders, 294–296
Introduce concurrency tactic, 139
Invokes-services role, 335
Involvement, 542–543

Iowability, 195–196
IP (Internet Protocol) addresses

automatic reallocation, 516
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overview, 212–215
performance analysis, 252–254
user interface, 178

Models
product reuse, 484
quality attributes, 197–198
transferable and reusable, 35
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On-demand self-service, 504
1+1 redundancy tactic, 91
Online documentation, 350
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Component-and-connector (C&C) 
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PIM (platform-independent model), 45
Ping/echo tactic, 87–88, 243
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252–255
Quick Test Pro tool, 172



580 Index 

Race conditions, 133
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Resource management category
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component-and-connector views, 336
design checklist, 154–156
general scenario, 148–150
introduction, 147–148
ping/echo, 243
quality attributes checklists, 260
summary, 156
tactics, 150–154
views, 341

Security Monkey, 161
Security quality attribute, 195, 307
SEI (Software Engineering Institute), 59
Selecting

architecture, 47

tools and technology, 463
Selenium tool, 172
Self-organization in Agile, 277
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Software Engineering Body of Knowledge 

(SWEBOK), 292
Software Engineering Institute (SEI), 59, 479
Software Product Line Conference (SPLC), 
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interoperability, 107–108
modifiability, 119–120
performance, 134
quality attributes expressions, 68–70
security, 148
testability, 162–163
usability, 176
variability, 489

Spare tactics, 91–92, 256–259
Specialized interfaces tactic, 165
Specification and Description Language 

(SDL), 354
Spikes in Agile, 284–285
SPLC (Software Product Line Conference), 498
Split module tactic, 123
Sporadic events, 133
Spring framework, 166
Staging views, 343
Stakeholders

on ATAM teams, 401
communication among, 29–31, 329
documentation for, 348–349
evaluation process, 400
interests, 52–55
interviewing, 294–296
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for methods, 272
utility tree reviews, 306
views, 342

Standard lists for quality attributes, 193–196
Standards and interoperability, 112–113
State, system, 164–167
State machine diagrams, 353
State resynchronization tactic, 93
Stateless services in cloud, 522
States, responsibilities to, 299
Static allocation views, 340
Static scheduling, 141
Status meetings, 428
Stein, Gertrude, 142
Steinberg, Saul, 39
Stimulus

availability, 85–86
interoperability, 107–108
modifiability, 119–120
performance, 134
quality attributes expressions, 68–70
security, 148, 150
source. See Source of stimulus
testability, 162–163
usability, 176
variability, 489

Stochastic events, 133
Stonebraker, Michael, 518
Storage

for testability, 165
virtualization, 512–513

Strategies in NASA ECS project, 452–456
Strictly layered patterns, 19
Structural complexity in testability, 167–168
Structure101 tool, 387
Stuxnet virus, 80
Subarchitecture in component-and-connector 

views, 335
Submodules, 333
Subscriber role, 336
Subsystems, 9
Supernodes in peer-to-peer pattern, 220
Support and development software, 358–359
Support system initiative tactic, 180–181
Support user initiative tactic, 179–180
SWEBOK (Software Engineering Body of 

Knowledge), 292
Swing classes, 215
Syncing code and architecture, 368
System analysis and construction, 

documentation for, 329

System architecture vs. enterprise 
architecture, 7–8

System as goal-object, 302
System availability requirements, 81
System efficiency in usability, 175
System engineers, 55
System exceptions tactic, 90
System Generation Module, 358
System initiative in usability, 177
System of systems (SoS), 106
System overview in documentation, 349
System qualities, predicting, 28
System quality attributes, 190–193
System test manager roles, 422
System testing, 371

Tactics
availability, 87–96
interactions, 242–247
interoperability, 110–113
modifiability, 121–125
patterns relationships with, 238–242
performance, 135–142
quality attributes, 70–72, 198–199
security, 150–154
testability, 164–168
usability, 177–181

Tailor interface tactic, 111
Team building skills, 463, 465
Team leader roles, 422
TeamCity tool, 172
Teams

ATAM, 400–401
organizing, 422

Technical contexts
architecture influence, 57
environment, 41–42
quality attributes, 40–41
Vasa ship, 42–43

Technical debt, 286
Technical processes in security, 157
Technology choices, 76
Technology knowledge of architects, 467
Templates

ATAM, 406
code, 365–367
scenarios. See Scenarios
variation mechanism, 492

10-18 Monkey, 161
Terminating generate and test process, 316
Terms and concepts, 368–369
Test harnesses, 160
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analytic model space, 259
automation, 171–172
broker pattern, 241
design checklist, 169–170
general scenario, 162–163
introduction, 159–162
summary, 172
tactics, 164–168
test data, 170–171

Testable requirements, 292
TestComplete tool, 172
Testers, 55
Tests and testing

activities, 374–375
architect role, 375–376, 463
black-box and white-box, 372–373
choices, 315
in incremental development, 428
levels, 370–372
modules, 334
product reuse, 484
risk-based, 373–374
summary, 376

Therac-25 fatal overdose, 192
Thought experiments, 262–264
Thousands of source lines of code (KSLOC), 

279–281
Threads in concurrency, 132–133
Throughput of systems, 134
Tiers

component-and-connector views, 337
multi-tier pattern, 235–237

Time and time management
basis sets, 261
global development, 424
performance, 131

Time boxing, 264
Time of day factor in equipment utilization, 508
Time of year factor in equipment utilization, 

508
Time-sharing, 503
Time stamp tactic, 89
Time to market

independently developed components 
for, 36

and modifiability, 284
Timeout tactic, 91
Timing in availability, 85
TMR (triple modular redundancy), 89
Tools

for product reuse, 484
selecting, 463

Top-down adoption, 495
Top-down analysis mode, 284
Top-down schedules, 420–421
Topic-based publish-subscribe patterns, 229
Topological constraints, 236
Torvalds, Linus, 530, 535, 538
Total benefit in CBAM, 446
Traces for behavior documentation, 351–353
Tracking progress, 428–429
Tradeoffs

ATAM, 403
implementation, 427

Traffic systems, 142
Training, architecture for, 37
Transactions

availability, 95
databases, 519–520
SOAP, 108

Transferable models, 35
Transformation systems, 215
Transforming existing systems, 462
Transitions in state machine diagrams, 354
Triple modular redundancy (TMR), 89
Troeh, Eve, 190
Turner, R., 279, 281, 288
Twitter, 528
Two-phase commits, 95

Ubiquitous network access, 504
UDDI (Universal Description, Discovery and 

Integration) language, 108
UML

activity diagrams, 353
communication diagrams, 353
component-and-connector views, 

338–339
connectors, 369
sequence diagrams, 351–352
state machine diagrams, 353

Unambiguous requirements, 292
Uncertainty in equipment utilization, 

508–509
Undo command, 179
Unified Process, 44
Unit testing, 370–371
Unity of purpose in modules, 121
Universal Description, Discovery and 

Integration (UDDI) language, 108
Up-front planning vs. agility, 278–281
Usability

analytic model space, 259
design checklist, 181–182
general scenario, 176
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introduction, 175
quality attributes checklists, 260
tactics, 177–181

Usability quality attribute, 193, 307
Usage

allocation views, 339
component-and-connector views, 337
modular views, 333

Use an intermediary tactic, 245
modifiability, 123
quality attributes, 72

Use cases
ATAM presentations, 406
thought experiments, 263
for traces, 351

“User beware” proviso, 372
User initiative in usability, 177
User interface

exchanging information via, 104–105
separating, 178

User needs in usability, 175
User stories in Agile, 278
Users

communication with, 29
description and interests, 55

Uses
for documentation, 328–329
views for, 332

Uses relation in layered patterns, 19
Uses structure in decomposition, 12
Utility

assigning, 452
CBAM, 448

Utility-response curves, 439–443
Utility trees

ASRs, 304–307
ATAM, 407, 410
Lightweight Architecture Evaluation, 416

Utilization of equipment in cloud, 508–509

Value component
business goals, 301
utility trees, 306

Value for cost (VFC), 438, 442
Variability

product line, 482–483
quality attributes, 488–489

Variability attribute, 186
Variability guides, 347, 493
Variation

binding time, 75
software product lines, 490–493

Variation points
CBAM, 448–450
identifying, 490

Vasa ship, 42–43
Vascular view of human body, 9
Vehicle cruise control systems, 353
Verify and refine requirements in ADD, 

321–323
Verify message integrity tactic, 151
Vertical scalability, 187
VFC (value for cost), 438, 442
Views, 331–332

allocation, 339–340
architectural structures, 9–10
choosing, 341–343
combining, 343–345
component-and-connector, 335–339, 344, 

406
documenting, 345–347
fused, 388–389
Model-View-Controller pattern, 213–214
module, 332–335, 406
quality, 340–341

Views and Beyond approach, 282, 356–357
Villa, Pancho, 541
Violations, finding, 389–392
Virtual resource managers, 515
Virtual system of systems, 106
Virtualization and virtual machines

cloud, 509–514, 520–521
layers as, 13
in sandboxing, 166

Visibility of interfaces, 333
Vitruvius, 459
Vlissides, J., 212
Vocabulary

quality attributes, 67
restrictions, 36

Voting tactic, 89
Vulnerabilities in security views, 341

Walking skeleton method, 287
War ship example, 42–43
Warm spare tactic, 91–92
Watchdogs, 89
Waterfall model

description, 44
requirements documents, 56

Weaknesses
broker pattern, 211, 240–242
client-server pattern, 218
layered pattern, 207
map-reduce patterns, 235
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Model-View-Controller pattern, 213
multi-tier pattern, 237
peer-to-peer pattern, 222
pipe-and-filter pattern, 216
publish-subscribe pattern, 227
service-oriented architecture pattern, 225
shared-data pattern, 231

Wealth of Networks (Benkler), 528
Web 2.0 movement, 527
Web-based system events, 131
Web-conferencing systems

Agile example, 283–285
considerations, 265

Web Services Description Language 
(WSDL), 110

WebArrow web-conferencing system, 
284–285

WebSphere MQ product, 224
Weighting scenarios, 441, 444
Wells, H. G., 117
West, Mae, 131
“What if” questions in performance 

analysis, 255
White-box testing, 372–373
Whitney, Eli, 35–36, 480

Wikipedia, 528
Wikis for documentation, 350
Wisdom of crowds, 537
Woods, Eoin, 25, 170
Work assignment structures, 14
Work-breakdown structures, 33
Work skills of architect, 465
World Wide Web as client-server pattern, 219
Wrappers, 129
Writer role in component-and-connector 

views, 335
WS*, 108–110
WSDL (Web Services Description 

Language), 110

X-ability, 196–199
X-ray view of human body, 9

YAGNI principle, 282
Yahoo! map-reduce patterns, 234
Young, Toby, 39
YouTube, 528

Zoning policies analogy in Metropolis 
model, 536
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