
http://www.facebook.com/share.php?u=http://www.quepublishing.com/title/9780321815736
http://twitter.com/?status=RT: download a free sample chapter http://www.quepublishing.com/title/9780321815736
https://plusone.google.com/share?url=http://www.quepublishing.com/title/9780321815736
http://www.linkedin.com/shareArticle?mini=true&url=http://www.quepublishing.com/title/9780321815736
http://www.stumbleupon.com/submit?url=http://www.quepublishing.com/title/9780321815736/Free-Sample-Chapter


 

i

 

Software
Architecture
in Practice

 

Second Edition

 

Bass.book  Page i  Thursday, March 20, 2003  7:21 PM

Third Edition 



The SEI Series in Software Engineering represents is a collaborative 
undertaking of the Carnegie Mellon Software Engineering Institute (SEI) and 

Addison-Wesley to develop and publish books on software engineering and 
related topics. The common goal of the SEI and Addison-Wesley is to provide 
the most current information on these topics in a form that is easily usable by 
practitioners and students.

Books in the series describe frameworks, tools, methods, and technologies 
designed to help organizations, teams, and individuals improve their technical 
or management capabilities. Some books describe processes and practices for 
developing higher-quality software, acquiring programs for complex systems, or 
delivering services more effectively. Other books focus on software and system 
architecture and product-line development. Still others, from the SEI’s CERT 
Program, describe technologies and practices needed to manage software 
and network security risk. These and all books in the series address critical 
problems in software engineering for which practical solutions are available. 

Visit informit.com/sei for a complete list of available products.

The SEI Series in 
Software Engineering



Software
Architecture
in Practice
Third Edition 

Len Bass
Paul Clements
Rick Kazman

▼
▲
▼ Addison-Wesley

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City



The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are claimed 
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT, 
and CERT Coordination Center are registered in the U.S. Patent and Trademark Office by Carnegie 
Mellon University. 

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation; 
CURE; EPIC; Evolutionary Process for Integrating COTS Based Systems; Framework for Software 
Product Line Practice; IDEAL; Interim Profile; OAR; OCTAVE; Operationally Critical Threat, Asset, 
and Vulnerability Evaluation; Options Analysis for Reengineering; Personal Software Process; PLTP; 
Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead Appraiser; SCAMPI Lead Assessor; 
SCE; SEI; SEPG; Team Software Process; and TSP are service marks of Carnegie Mellon University. 

Special permission to reproduce portions of works copyright by Carnegie Mellon University, as listed 
on page 588, is granted by the Software Engineering Institute.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed 
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or 
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is 
assumed for incidental or consequential damages in connection with or arising out of the use of the 
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or 
special sales, which may include electronic versions and/or custom covers and content particular to your 
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales 
(800) 382-3419 
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales 
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Bass, Len.
  Software architecture in practice / Len Bass, Paul Clements, Rick Kazman.—3rd ed.
  p. cm.—(SEI series in software engineering)
  Includes bibliographical references and index.
  ISBN 978-0-321-81573-6 (hardcover : alk. paper) 1. Software architecture. 2. System  
design. I. Clements, Paul, 1955– II. Kazman, Rick. III. Title.
  QA76.754.B37 2012
  005.1—dc23
 2012023744

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction, stor-
age in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photo-
copying, recording, or likewise. To obtain permission to use material from this work, please submit a 
written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle 
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-81573-6 
ISBN-10: 0-321-81573-4

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts. 
First printing, September 2012

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with ini-
tial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT, and CERT Coordination Center
are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. 

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation; CURE; EPIC; Evolutionary
Process for Integrating COTS Based Systems; Framework for Software Product Line Practice; IDEAL; Interim Profile; OAR;
OCTAVE; Operationally Critical Threat, Asset, and Vulnerability Evaluation; Options Analysis for Reengineering; Personal Soft-
ware Process; PLTP; Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead Appraiser; SCAMPI Lead Assessor; SCE; SEI;
SEPG; Team Software Process; and TSP are service marks of Carnegie Mellon University.  

Special permission to reproduce portions of CMMI for Development (CMU/SEI-2010-TR-035), © 2010 by Carnegie Mellon
 University, has been granted by the Software Engineering Institute.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
 connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may
include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Chrissis, Mary Beth.
CMMI for development : guidelines for process integration and product

improvement / Mary Beth Chrissis, Mike Konrad, Sandy Shrum.—3rd ed.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-71150-2 (hardcover : alk. paper)

1.  Capability maturity model (Computer software) 2.  Software
engineering. 3.  Production engineering. 4.  Manufacturing processes.
I. Konrad, Mike. II. Shrum, Sandy. III. Title. 

QA76.758.C518 2011
005.1—dc22

2010049515

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-71150-2
ISBN-10: 0-321-71150-5

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, March 2011

Chrissis_Title  2/3/11  12:32 PM  Page iv



v

Contents

Preface  xv

Reader’s Guide  xvii

Acknowledgments  xix

 Part ONE INtrOductION  1
cHaPtEr 1 What Is Software architecture?  3

1.1 What Software Architecture Is and What It 
Isn’t    4

1.2 Architectural Structures and Views    9

1.3 Architectural Patterns    18

1.4 What Makes a “Good” Architecture?    19

1.5 Summary    21

1.6 For Further Reading    22

1.7 Discussion Questions    23

cHaPtEr 2 Why Is Software architecture Important?  25

2.1 Inhibiting or Enabling a System’s Quality 
Attributes    26

2.2  Reasoning About and Managing 
Change    27

2.3 Predicting System Qualities     28

2.4  Enhancing Communication among 
Stakeholders    29

2.5 Carrying Early Design Decisions    31

2.6  Defining Constraints on an 
Implementation    32

2.7 Influencing the Organizational Structure     33

2.8 Enabling Evolutionary Prototyping    33



vi Contents 

2.9 Improving Cost and Schedule Estimates    34

2.10 Supplying a Transferable, Reusable 
Model    35

2.11  Allowing Incorporation of Independently 
Developed Components    35

2.12 Restricting the Vocabulary of Design 
Alternatives    36

2.13 Providing a Basis for Training    37

2.14 Summary    37

2.15 For Further Reading    38

2.16 Discussion Questions    38

cHaPtEr 3 the Many contexts of Software 
architecture  39

3.1 Architecture in a Technical Context    40

3.2 Architecture in a Project Life-Cycle 
Context    44

3.3 Architecture in a Business Context    49

3.4 Architecture in a Professional Context    51

3.5 Stakeholders    52

3.6 How Is Architecture Influenced?    56

3.7 What Do Architectures Influence?     57

3.8 Summary     59

3.9 For Further Reading    59

3.10 Discussion Questions    60

 Part tWO QualIty attrIbutES  61
cHaPtEr 4 understanding Quality attributes  63

4.1 Architecture and Requirements    64

4.2 Functionality    65

4.3 Quality Attribute Considerations     65

4.4  Specifying Quality Attribute 
Requirements    68

4.5  Achieving Quality Attributes through 
Tactics    70

4.6 Guiding Quality Design Decisions    72

4.7 Summary    76



Contents vii

4.8 For Further Reading    77

4.9 Discussion Questions    77

cHaPtEr 5 availability  79

5.1 Availability General Scenario    85

5.2 Tactics for Availability    87

5.3 A Design Checklist for Availability    96

5.4 Summary    98

5.5 For Further Reading    99

5.6 Discussion Questions    100

cHaPtEr 6 Interoperability  103

6.1 Interoperability General Scenario    107

6.2 Tactics for Interoperability    110

6.3 A Design Checklist for Interoperability    114

6.4 Summary    115

6.5 For Further Reading    116

6.6 Discussion Questions    116

cHaPtEr 7 Modifiability  117

7.1 Modifiability General Scenario    119

7.2 Tactics for Modifiability    121

7.3 A Design Checklist for Modifiability    125

7.4 Summary    128

7.5 For Further Reading    128

7.6 Discussion Questions    128

cHaPtEr 8 Performance  131

8.1 Performance General Scenario    132

8.2 Tactics for Performance    135

8.3 A Design Checklist for Performance    142

8.4 Summary    145

8.5 For Further Reading    145

8.6 Discussion Questions    145

cHaPtEr 9 Security  147

9.1 Security General Scenario    148

9.2 Tactics for Security    150



viii Contents 

9.3 A Design Checklist for Security    154

9.4 Summary    156

9.5 For Further Reading    157

9.6 Discussion Questions    158

cHaPtEr 10 testability  159

10.1 Testability General Scenario    162

10.2 Tactics for Testability    164

10.3 A Design Checklist for Testability    169

10.4 Summary    172

10.5 For Further Reading    172

10.6 Discussion Questions    173

cHaPtEr 11 usability  175

11.1 Usability General Scenario    176

11.2 Tactics for Usability    177

11.3 A Design Checklist for Usability    181

11.4 Summary    183

11.5 For Further Reading    183

11.6 Discussion Questions    183

cHaPtEr 12 Other Quality attributes  185

12.1 Other Important Quality Attributes    185

12.2 Other Categories of Quality Attributes    189

12.3  Software Quality Attributes and System 
Quality Attributes    190

12.4  Using Standard Lists of Quality Attributes— 
or Not     193

12.5  Dealing with “X-ability”: Bringing a New 
Quality Attribute into the Fold    196

12.6 For Further Reading    200

12.7 Discussion Questions    201

cHaPtEr 13 architectural tactics and Patterns  203

13.1 Architectural Patterns    204

13.2 Overview of the Patterns Catalog    205

13.3  Relationships between Tactics and 
Patterns     238



Contents ix

13.4 Using Tactics Together     242

13.5 Summary    247

13.6 For Further Reading    248

13.7 Discussion Questions    249

cHaPtEr 14 Quality attribute Modeling and analysis  251

14.1 Modeling Architectures to Enable Quality 
Attribute Analysis    252

14.2 Quality Attribute Checklists    260

14.3  Thought Experiments and  
Back-of-the-Envelope Analysis    262

14.4 Experiments, Simulations, and 
Prototypes    264

14.5 Analysis at Different Stages of the Life 
Cycle    265

14.6 Summary    266

14.7 For Further Reading    267

14.8 Discussion Questions    269

 Part tHrEE arcHItEcturE IN tHE lIfE 
cyclE  271

cHaPtEr 15 architecture in agile Projects  275

15.1 How Much Architecture?    277

15.2 Agility and Architecture Methods    281

15.3 A Brief Example of Agile Architecting    283

15.4 Guidelines for the Agile Architect    286

15.5 Summary    287

15.6 For Further Reading    288

15.7 Discussion Questions    289

cHaPtEr 16 architecture and requirements  291

16.1 Gathering ASRs from Requirements 
Documents    292

16.2 Gathering ASRs by Interviewing 
Stakeholders    294

16.3  Gathering ASRs by Understanding the 
Business Goals    296



x Contents 

16.4 Capturing ASRs in a Utility Tree    304

16.5 Tying the Methods Together    308

16.6 Summary    308

16.7 For Further Reading    309

16.8 Discussion Questions    309

cHaPtEr 17 designing an architecture  311

17.1 Design Strategy    311

17.2 The Attribute-Driven Design Method    316

17.3 The Steps of ADD    318

17.4 Summary    325

17.5 For Further Reading    325

17.6 Discussion Questions    326

cHaPtEr 18 documenting Software architectures  327

18.1  Uses and Audiences for Architecture 
Documentation    328

18.2 Notations for Architecture 
Documentation    329

18.3 Views    331

18.4 Choosing the Views    341

18.5 Combining Views     343

18.6 Building the Documentation Package    345

18.7 Documenting Behavior    351

18.8 Architecture Documentation and Quality 
Attributes     354

18.9  Documenting Architectures That Change 
Faster Than You Can Document Them    355

18.10  Documenting Architecture in an Agile 
Development Project    356

18.11 Summary    359

18.12 For Further Reading    360

18.13 Discussion Questions    360

cHaPtEr 19 architecture, Implementation, and 
testing  363

19.1 Architecture and Implementation    363

19.2 Architecture and Testing    370



Contents xi

19.3 Summary    376

19.4 For Further Reading    376

19.5 Discussion Questions    377

cHaPtEr 20 architecture reconstruction and 
conformance  379

20.1 Architecture Reconstruction Process     381

20.2 Raw View Extraction    382

20.3 Database Construction    386

20.4 View Fusion    388

20.5 Architecture Analysis: Finding 
Violations    389

20.6 Guidelines    392

20.7 Summary    393

20.8 For Further Reading    394

20.9 Discussion Questions     395

cHaPtEr 21 architecture Evaluation  397

21.1 Evaluation Factors    397

21.2 The Architecture Tradeoff Analysis 
Method    400

21.3 Lightweight Architecture Evaluation    415

21.4 Summary    417

21.5 For Further Reading    417

21.6 Discussion Questions     418

cHaPtEr 22 Management and Governance  419

22.1 Planning    420

22.2 Organizing    422

22.3 Implementing    427

22.4 Measuring    429

22.5 Governance    430

22.6 Summary    432

22.7 For Further Reading    432

22.8 Discussion Questions    433



xii Contents 

 Part fOur arcHItEcturE aNd 
buSINESS  435

cHaPtEr 23 Economic analysis of architectures  437

23.1 Decision-Making Context    438

23.2 The Basis for the Economic Analyses    439

23.3 Putting Theory into Practice:  
The CBAM    442

23.4 Case Study: The NASA ECS Project    450

23.5 Summary    457

23.6 For Further Reading    458

23.7 Discussion Questions    458

cHaPtEr 24 architecture competence  459

24.1  Competence of Individuals: Duties, Skills, and 
Knowledge of Architects    460

24.2 Competence of a Software Architecture 
Organization    467

24.3 Summary    475

24.4 For Further Reading    475

24.5 Discussion Questions    477

cHaPtEr 25 architecture and Software Product lines  479

25.1 An Example of Product Line 
Variability    482

25.2 What Makes a Software Product Line 
Work?    483

25.3 Product Line Scope    486

25.4 The Quality Attribute of Variability    488

25.5 The Role of a Product Line 
Architecture    488

25.6 Variation Mechanisms    490

25.7 Evaluating a Product Line 
Architecture    493

25.8 Key Software Product Line Issues    494

25.9 Summary    497

25.10 For Further Reading    498

25.11 Discussion Questions    498



Contents xiii

 Part fIVE tHE braVE NEW WOrld  501
cHaPtEr 26 architecture in the cloud  503

26.1 Basic Cloud Definitions    504

26.2 Service Models and Deployment 
Options    505

26.3 Economic Justification    506

26.4 Base Mechanisms    509

26.5 Sample Technologies    514

26.6 Architecting in a Cloud Environment    520

26.7 Summary    524

26.8 For Further Reading    524

26.9 Discussion Questions    525

cHaPtEr 27 architectures for the Edge  527

27.1 The Ecosystem of Edge-Dominant 
Systems    528

27.2 Changes to the Software Development Life 
Cycle    530

27.3 Implications for Architecture    531

27.4 Implications of the Metropolis Model    533

27.5 Summary    537

27.6 For Further Reading    538

27.7 Discussion Questions    538

cHaPtEr 28 Epilogue  541

References  547

About the Authors  561

Index  563



This page intentionally left blank 



xv

Preface

I should have no objection to go over the same 
life from its beginning to the end: requesting only 

the advantage authors have, of correcting in a 
[third] edition the faults of the first [two].

— Benjamin Franklin

It has been a decade since the publication of the second edition of this book. 
During that time, the field of software architecture has broadened its focus 
from being primarily internally oriented—How does one design, evaluate, 
and document software?—to including external impacts as well—a deeper 
understanding of the influences on architectures and a deeper understanding of 
the impact architectures have on the life cycle, organizations, and management.

The past ten years have also seen dramatic changes in the types of systems 
being constructed. Large data, social media, and the cloud are all areas that, at 
most, were embryonic ten years ago and now are not only mature but extremely 
influential.

We listened to some of the criticisms of the previous editions and have 
included much more material on patterns, reorganized the material on quality 
attributes, and made interoperability a quality attribute worthy of its own chapter. 
We also provide guidance about how you can generate scenarios and tactics for 
your own favorite quality attributes.

To accommodate this plethora of new material, we had to make difficult 
choices. In particular, this edition of the book does not include extended 
case studies as the prior editions did. This decision also reflects the maturing 
of the field, in the sense that case studies about the choices made in software 
architectures are more prevalent than they were ten years ago, and they are less 
necessary to convince readers of the importance of software architecture. The 
case studies from the first two editions are available, however, on the book’s 
website, at www.informit.com/title/9780321815736. In addition, on the same 
website, we have slides that will assist instructors in presenting this material.

We have thoroughly reworked many of the topics covered in this edition. 
In particular, we realize that the methods we present—for architecture design, 
analysis, and documentation—are one version of how to achieve a particular 
goal, but there are others. This led us to separate the methods that we present 

http://www.informit.com/title/9780321815736


xvi Preface 

in detail from their underlying theory. We now present the theory first with 
specific methods given as illustrations of possible realizations of the theories. 
The new topics in this edition include architecture-centric project management; 
architecture competence; requirements modeling and analysis; Agile methods; 
implementation and testing; the cloud; and the edge.

As with the prior editions, we firmly believe that the topics are best discussed 
in either reading groups or in classroom settings, and to that end we have included 
a collection of discussion questions at the end of each chapter. Most of these 
questions are open-ended, with no absolute right or wrong answers, so you, as a 
reader, should emphasize how you justify your answer rather than just answer the 
question itself.



xvii

Reader’s Guide

We have structured this book into five distinct portions. Part One introduces 
architecture and the various contextual lenses through which it could be viewed. 
These are the following:

 ■ Technical. What technical role does the software architecture play in the 
system or systems of which it’s a part? 

 ■ Project. How does a software architecture relate to the other phases of a 
software development life cycle?

 ■ Business. How does the presence of a software architecture affect an 
organization’s business environment?

 ■ Professional. What is the role of a software architect in an organization or a 
development project?

Part Two is focused on technical background. Part Two describes how 
decisions are made. Decisions are based on the desired quality attributes for a 
system, and Chapters 5–11 describe seven different quality attributes and the 
techniques used to achieve them. The seven are availability, interoperability, 
maintainability, performance, security, testability, and usability. Chapter 12 
tells you how to add other quality attributes to our seven, Chapter 13 discusses 
patterns and tactics, and Chapter 14 discusses the various types of modeling and 
analysis that are possible.

Part Three is devoted to how a software architecture is related to the other 
portions of the life cycle. Of special note is how architecture can be used in Agile 
projects. We discuss individually other aspects of the life cycle: requirements, 
design, implementation and testing, recovery and conformance, and evaluation.

Part Four deals with the business of architecting from an economic 
perspective, from an organizational perspective, and from the perspective of 
constructing a series of similar systems.

Part Five discusses several important emerging technologies and how 
architecture relates to these technologies.



This page intentionally left blank 



xix

Acknowledgments

We had a fantastic collection of reviewers for this edition, and their assistance 
helped make this a better book. Our reviewers were Muhammad Ali Babar, Felix 
Bachmann, Joe Batman, Phil Bianco, Jeromy Carriere, Roger Champagne, Steve 
Chenoweth, Viktor Clerc, Andres Diaz Pace, George Fairbanks, Rik Farenhorst, 
Ian Gorton, Greg Hartman, Rich Hilliard, James Ivers, John Klein, Philippe 
Kruchten, Phil Laplante, George Leih, Grace Lewis, John McGregor, Tommi 
Mikkonen, Linda Northrop, Ipek Ozkaya, Eltjo Poort, Eelco Rommes, Nick 
Rozanski, Jungwoo Ryoo, James Scott, Antony Tang, Arjen Uittenbogaard, Hans 
van Vliet, Hiroshi Wada, Rob Wojcik, Eoin Woods, and Liming Zhu.

In addition, we had significant contributions from Liming Zhu, Hong-
Mei Chen, Jungwoo Ryoo, Phil Laplante, James Scott, Grace Lewis, and Nick 
Rozanski that helped give the book a richer flavor than one written by just the 
three of us.

The issue of build efficiency in Chapter 12 came from Rolf Siegers and John 
McDonald of Raytheon. John Klein and Eltjo Poort contributed the “abstract 
system clock” and “sandbox mode” tactics, respectively, for testability. The list 
of stakeholders in Chapter 3 is from Documenting Software Architectures: Views 
and Beyond, Second Edition. Some of the material in Chapter 28 was inspired by a 
talk given by Anthony Lattanze called “Organizational Design Thinking” in 2011.

Joe Batman was instrumental in the creation of the seven categories of design 
decisions we describe in Chapter 4. In addition, the descriptions of the security 
view, communications view, and exception view in Chapter 18 are based on material 
that Joe wrote while planning the documentation for a real system’s architecture. 
Much of the new material on modifiability tactics was based on the work of Felix 
Bachmann and Rod Nord. James Ivers helped us with the security tactics.

Both Paul Clements and Len Bass have taken new positions since the 
last edition was published, and we thank their new respective managements 
(BigLever Software for Paul and NICTA for Len) for their willingness to support 
our work on this edition. We would also like to thank our (former) colleagues at 
the Software Engineering Institute for multiple contributions to the evolution of 
the ideas expressed in this edition.

Finally, as always, we thank our editor at Addison-Wesley, Peter Gordon, 
for providing guidance and support during the writing and production processes.



This page intentionally left blank 



63

  

3

 

1

 

The Architecture 
Business Cycle

 

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

 

— C. Morris and C. Ferguson [Morris 93]

 

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period. 

 

Architecture

 

 has emerged as a crucial part of the design process and is the
subject of this book. 

 

Software architecture

 

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we  provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

 

Bass.book  Page 3  Thursday, March 20, 2003  7:21 PM

4
Understanding Quality 
Attributes

Between stimulus and response, there is a space. In 
that space is our power to choose our response. In 

our response lies our growth and our freedom.
— Viktor E. Frankl, Man’s Search for Meaning

As we have seen in the Architecture Influence Cycle (in Chapter 3), many fac-
tors determine the qualities that must be provided for in a system’s architecture. 
These qualities go beyond functionality, which is the basic statement of the sys-
tem’s capabilities, services, and behavior. Although functionality and other qual-
ities are closely related, as you will see, functionality often takes the front seat in 
the development scheme. This preference is shortsighted, however. Systems are 
frequently redesigned not because they are functionally deficient—the replace-
ments are often functionally identical—but because they are difficult to maintain, 
port, or scale; or they are too slow; or they have been compromised by hackers. 
In Chapter 2, we said that architecture was the first place in software creation in 
which quality requirements could be addressed. It is the mapping of a system’s 
functionality onto software structures that determines the architecture’s support 
for qualities. In Chapters 5–11 we discuss how various qualities are supported by 
architectural design decisions. In Chapter 17 we show how to integrate all of the 
quality attribute decisions into a single design. 

We have been using the term “quality attribute” loosely, but now it is time to 
define it more carefully. A quality attribute (QA) is a measurable or testable prop-
erty of a system that is used to indicate how well the system satisfies the needs of 
its stakeholders. You can think of a quality attribute as measuring the “goodness” 
of a product along some dimension of interest to a stakeholder.

In this chapter our focus is on understanding the following:

 ■ How to express the qualities we want our architecture to provide to the sys-
tem or systems we are building from it 

  

3

 

1

 

The Architecture 
Business Cycle

 

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

 

— C. Morris and C. Ferguson [Morris 93]

 

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period. 

 

Architecture

 

 has emerged as a crucial part of the design process and is the
subject of this book. 

 

Software architecture

 

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we  provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

 

Bass.book  Page 3  Thursday, March 20, 2003  7:21 PM



64 Part two Quality attributes 4—Understanding Quality Attributes

 ■ How to achieve those qualities 
 ■ How to determine the design decisions we might make with respect to those 

qualities 

This chapter provides the context for the discussion of specific quality attributes 
in Chapters 5–11.

4.1 architecture and requirements

Requirements for a system come in a variety of forms: textual requirements, 
mockups, existing systems, use cases, user stories, and more. Chapter 16 dis-
cusses the concept of an architecturally significant requirement, the role such re-
quirements play in architecture, and how to identify them. No matter the source, 
all requirements encompass the following categories: 

1. Functional requirements. These requirements state what the system must 
do, and how it must behave or react to runtime stimuli. 

2. Quality attribute requirements. These requirements are qualifications of 
the functional requirements or of the overall product. A qualification of a 
functional requirement is an item such as how fast the function must be 
performed, or how resilient it must be to erroneous input. A qualification 
of the overall product is an item such as the time to deploy the product or a 
limitation on operational costs.

3. Constraints. A constraint is a design decision with zero degrees of freedom. 
That is, it’s a design decision that’s already been made. Examples include 
the requirement to use a certain programming language or to reuse a certain 
existing module, or a management fiat to make your system service ori-
ented. These choices are arguably in the purview of the architect, but ex-
ternal factors (such as not being able to train the staff in a new language, or 
having a business agreement with a software supplier, or pushing business 
goals of service interoperability) have led those in power to dictate these 
design outcomes.

What is the “response” of architecture to each of these kinds of requirements?

1. Functional requirements are satisfied by assigning an appropriate sequence 
of responsibilities throughout the design. As we will see later in this chap-
ter, assigning responsibilities to architectural elements is a fundamental 
architectural design decision.

2. Quality attribute requirements are satisfied by the various structures de-
signed into the architecture, and the behaviors and interactions of the ele-
ments that populate those structures. Chapter 17 will show this approach in 
more detail. 



4.3 Quality Attribute Considerations 65

3. Constraints are satisfied by accepting the design decision and reconciling it 
with other affected design decisions.

4.2 functionality

Functionality is the ability of the system to do the work for which it was in-
tended. Of all of the requirements, functionality has the strangest relationship to 
architecture.

First of all, functionality does not determine architecture. That is, given a 
set of required functionality, there is no end to the architectures you could create 
to satisfy that functionality. At the very least, you could divide up the function-
ality in any number of ways and assign the subpieces to different architectural 
elements. 

In fact, if functionality were the only thing that mattered, you wouldn’t have 
to divide the system into pieces at all; a single monolithic blob with no internal 
structure would do just fine. Instead, we design our systems as structured sets 
of cooperating architectural elements—modules, layers, classes, services, data-
bases, apps, threads, peers, tiers, and on and on—to make them understandable 
and to support a variety of other purposes. Those “other purposes” are the other 
quality attributes that we’ll turn our attention to in the remaining sections of this 
chapter, and the remaining chapters of Part II. 

But although functionality is independent of any particular structure, func-
tionality is achieved by assigning responsibilities to architectural elements, re-
sulting in one of the most basic of architectural structures.

Although responsibilities can be allocated arbitrarily to any modules, soft-
ware architecture constrains this allocation when other quality attributes are im-
portant. For example, systems are frequently divided so that several people can 
cooperatively build them. The architect’s interest in functionality is in how it in-
teracts with and constrains other qualities. 

4.3 Quality attribute considerations 

Just as a system’s functions do not stand on their own without due consideration of 
other quality attributes, neither do quality attributes stand on their own; they pertain 
to the functions of the system. If a functional requirement is “When the user presses 
the green button, the Options dialog appears,” a performance QA annotation might 
describe how quickly the dialog will appear; an availability QA annotation might 
describe how often this function will fail, and how quickly it will be repaired; a us-
ability QA annotation might describe how easy it is to learn this function.



66 Part two Quality attributes 4—Understanding Quality Attributes

Functional Requirements

After more than 15 years of writing and discussing the distinction between 
functional requirements and quality requirements, the definition of func-
tional requirements still eludes me. Quality attribute requirements are well 
defined: performance has to do with the timing behavior of the system, 
modifiability has to do with the ability of the system to support changes in 
its behavior or other qualities after initial deployment, availability has to do 
with the ability of the system to survive failures, and so forth.

Function, however, is much more slippery. An international standard 
(ISO 25010) defines functional suitability as “the capability of the software 
product to provide functions which meet stated and implied needs when 
the software is used under specified conditions.” That is, functionality is the 
ability to provide functions. One interpretation of this definition is that func-
tionality describes what the system does and quality describes how well 
the system does its function. That is, qualities are attributes of the system 
and function is the purpose of the system.

This distinction breaks down, however, when you consider the nature 
of some of the “function.” If the function of the software is to control engine 
behavior, how can the function be correctly implemented without consid-
ering timing behavior? Is the ability to control access through requiring a 
user name/password combination not a function even though it is not the 
purpose of any system?

I like much better the use of the word “responsibility” to describe com-
putations that a system must perform. Questions such as “What are the 
timing constraints on that set of responsibilities?”, “What modifications are 
anticipated with respect to that set of responsibilities?”, and “What class of 
users is allowed to execute that set of responsibilities?” make sense and 
are actionable.

The achievement of qualities induces responsibility; think of the user 
name/password example just mentioned. Further, one can identify respon-
sibilities as being associated with a particular set of requirements.

So does this mean that the term “functional requirement” shouldn’t be 
used? People have an understanding of the term, but when precision is 
desired, we should talk about sets of specific responsibilities instead.

Paul Clements has long ranted against the careless use of the term 
“nonfunctional,” and now it’s my turn to rant against the careless use of the 
term “functional”—probably equally ineffectually.

—LB

Quality attributes have been of interest to the software community at least 
since the 1970s. There are a variety of published taxonomies and definitions, and 
many of them have their own research and practitioner communities. From an 



4.3 Quality Attribute Considerations 67

architect’s perspective, there are three problems with previous discussions of sys-
tem quality attributes: 

1. The definitions provided for an attribute are not testable. It is meaningless 
to say that a system will be “modifiable.” Every system may be modifiable 
with respect to one set of changes and not modifiable with respect to an-
other. The other quality attributes are similar in this regard: a system may 
be robust with respect to some faults and brittle with respect to others. And 
so forth.

2. Discussion often focuses on which quality a particular concern belongs to. 
Is a system failure due to a denial-of-service attack an aspect of availability, 
an aspect of performance, an aspect of security, or an aspect of usability? 
All four attribute communities would claim ownership of a system failure 
due to a denial-of-service attack. All are, to some extent, correct. But this 
doesn’t help us, as architects, understand and create architectural solutions 
to manage the attributes of concern.

3. Each attribute community has developed its own vocabulary. The perfor-
mance community has “events” arriving at a system, the security com-
munity has “attacks” arriving at a system, the availability community has 
“failures” of a system, and the usability community has “user input.” All 
of these may actually refer to the same occurrence, but they are described 
using different terms.

A solution to the first two of these problems (untestable definitions and 
overlapping concerns) is to use quality attribute scenarios as a means of charac-
terizing quality attributes (see the next section). A solution to the third problem 
is to provide a discussion of each attribute—concentrating on its underlying con-
cerns—to illustrate the concepts that are fundamental to that attribute community.

There are two categories of quality attributes on which we focus. The first is 
those that describe some property of the system at runtime, such as availability, 
performance, or usability. The second is those that describe some property of the 
development of the system, such as modifiability or testability. 

Within complex systems, quality attributes can never be achieved in isola-
tion. The achievement of any one will have an effect, sometimes positive and 
sometimes negative, on the achievement of others. For example, almost every 
quality attribute negatively affects performance. Take portability. The main tech-
nique for achieving portable software is to isolate system dependencies, which 
introduces overhead into the system’s execution, typically as process or proce-
dure boundaries, and this hurts performance. Determining the design that sat-
isfies all of the quality attribute requirements is partially a matter of making the 
appropriate tradeoffs; we discuss design in Chapter 17. Our purpose here is to 
provide the context for discussing each quality attribute. In particular, we focus 
on how quality attributes can be specified, what architectural decisions will en-
able the achievement of particular quality attributes, and what questions about 
quality attributes will enable the architect to make the correct design decisions.



68 Part two Quality attributes 4—Understanding Quality Attributes

4.4 Specifying Quality attribute requirements

A quality attribute requirement should be unambiguous and testable. We use a 
common form to specify all quality attribute requirements. This has the advantage 
of emphasizing the commonalities among all quality attributes. It has the disad-
vantage of occasionally being a force-fit for some aspects of quality attributes.

Our common form for quality attribute expression has these parts:

 ■ Stimulus. We use the term “stimulus” to describe an event arriving at the 
system. The stimulus can be an event to the performance community, a 
user operation to the usability community, or an attack to the security 
community. We use the same term to describe a motivating action for de-
velopmental qualities. Thus, a stimulus for modifiability is a request for 
a modification; a stimulus for testability is the completion of a phase of 
development.

 ■ Stimulus source. A stimulus must have a source—it must come from some-
where. The source of the stimulus may affect how it is treated by the sys-
tem. A request from a trusted user will not undergo the same scrutiny as a 
request by an untrusted user.

 ■ Response. How the system should respond to the stimulus must also be 
specified. The response consists of the responsibilities that the system 
(for runtime qualities) or the developers (for development-time qualities) 
should perform in response to the stimulus. For example, in a performance 
scenario, an event arrives (the stimulus) and the system should process 
that event and generate a response. In a modifiability scenario, a request 
for a modification arrives (the stimulus) and the developers should imple-
ment the modification—without side effects—and then test and deploy the 
modification.

 ■ Response measure. Determining whether a response is satisfactory—
whether the requirement is satisfied—is enabled by providing a response 
measure. For performance this could be a measure of latency or throughput; 
for modifiability it could be the labor or wall clock time required to make, 
test, and deploy the modification.

These four characteristics of a scenario are the heart of our quality attribute 
specifications. But there are two more characteristics that are important: environ-
ment and artifact.

 ■ Environment. The environment of a requirement is the set of circumstances 
in which the scenario takes place. The environment acts as a qualifier on 
the stimulus. For example, a request for a modification that arrives after 
the code has been frozen for a release may be treated differently than one 
that arrives before the freeze. A failure that is the fifth successive failure 



4.4 Specifying Quality Attribute Requirements 69

of a component may be treated differently than the first failure of that 
component.

 ■ Artifact. Finally, the artifact is the portion of the system to which the 
requirement applies. Frequently this is the entire system, but occasion-
ally specific portions of the system may be called out. A failure in a 
data store may be treated differently than a failure in the metadata store. 
Modifications to the user interface may have faster response times than 
modifications to the middleware. 

To summarize how we specify quality attribute requirements, we capture 
them formally as six-part scenarios. While it is common to omit one or more of 
these six parts, particularly in the early stages of thinking about quality attributes, 
knowing that all parts are there forces the architect to consider whether each part 
is relevant. 

In summary, here are the six parts:

1. Source of stimulus. This is some entity (a human, a computer system, or 
any other actuator) that generated the stimulus.

2. Stimulus. The stimulus is a condition that requires a response when it ar-
rives at a system.

3. Environment. The stimulus occurs under certain conditions. The system 
may be in an overload condition or in normal operation, or some other rele-
vant state. For many systems, “normal” operation can refer to one of a num-
ber of modes. For these kinds of systems, the environment should specify in 
which mode the system is executing.

4. Artifact. Some artifact is stimulated. This may be a collection of systems, 
the whole system, or some piece or pieces of it.

5. Response. The response is the activity undertaken as the result of the arrival 
of the stimulus. 

6. Response measure. When the response occurs, it should be measurable in 
some fashion so that the requirement can be tested. 

We distinguish general quality attribute scenarios (which we call “general 
scenarios” for short)—those that are system independent and can, potentially, 
pertain to any system—from concrete quality attribute scenarios (concrete sce-
narios)—those that are specific to the particular system under consideration. 

We can characterize quality attributes as a collection of general scenarios. 
Of course, to translate these generic attribute characterizations into requirements 
for a particular system, the general scenarios need to be made system specific. 
Detailed examples of these scenarios will be given in Chapters 5–11. Figure 4.1 
shows the parts of a quality attribute scenario that we have just discussed. Fig-
ure 4.2 shows an example of a general scenario, in this case for availability.



70 Part two Quality attributes 4—Understanding Quality Attributes

4.5 achieving Quality attributes through tactics

The quality attribute requirements specify the responses of the system that, with a 
bit of luck and a dose of good planning, realize the goals of the business. We now 
turn to the techniques an architect can use to achieve the required quality attri-
butes. We call these techniques architectural tactics. A tactic is a design decision 
that influences the achievement of a quality attribute response—tactics directly 
affect the system’s response to some stimulus. Tactics impart portability to one 
design, high performance to another, and integrability to a third.

Stimulus Response

Response
Measure

Source
of Stimulus

Artifact

Environment

3
2

1

4

fIGurE 4.1 The parts of a quality attribute scenario

fIGurE 4.2 A general scenario for availability

Stimulus Response

Response
Measure

Source
of Stimulus

3
2

1

4

Internal/External: 
people, hardware, 
software, physical 
infrastructure, 
physical 
environment

Fault: 
omission, 
crash, 
incorrect 
timing, 
incorrect 
response

Prevent fault from 
becoming failure
Detect fault: log, notify 
Recover from fault:
disable event source, 
be unavailable, 
fix/mask, degraded 
mode

Time or time interval 
system must be available
Availability percentage 
Time in degraded mode
Time to detect fault 
Repair time
Proportion of faults 
system handles

Artifact
Processors, 

communication 
channels, persistent 
storage, processes

Environment
Normal operation, 
startup, shutdown, 
repair mode, 
degraded 
operation, 
overloaded 
operation



4.5 Achieving Quality Attributes through Tactics 71

Not My Problem

One time I was doing an architecture analysis on a complex system cre-
ated by and for Lawrence Livermore National Laboratory. If you visit their 
website (www.llnl.gov) and try to figure out what Livermore Labs does, you 
will see the word “security” mentioned over and over. The lab focuses on 
nuclear security, international and domestic security, and environmental 
and energy security. Serious stuff . . .

Keeping this emphasis in mind, I asked them to describe the quality 
attributes of concern for the system that I was analyzing. I’m sure you can 
imagine my surprise when security wasn’t mentioned once! The system 
stakeholders mentioned performance, modifiability, evolvability, interoper-
ability, configurability, and portability, and one or two more, but the word 
security never passed their lips. 

Being a good analyst, I questioned this seemingly shocking and obvious 
omission. Their answer was simple and, in retrospect, straightforward: “We 
don’t care about it. Our systems are not connected to any external net-
work and we have barbed-wire fences and guards with machine guns.” Of 
course, someone at Livermore Labs was very interested in security. But it 
was clearly not the software architects.

—RK

The focus of a tactic is on a single quality attribute response. Within a tactic, 
there is no consideration of tradeoffs. Tradeoffs must be explicitly considered 
and controlled by the designer. In this respect, tactics differ from architectural 
patterns, where tradeoffs are built into the pattern. (We visit the relation between 
tactics and patterns in Chapter 14. Chapter 13 explains how sets of tactics for a 
quality attribute can be constructed, which are the steps we used to produce the 
set in this book.)

A system design consists of a collection of decisions. Some of these deci-
sions help control the quality attribute responses; others ensure achievement of 
system functionality. We represent the relationship between stimulus, tactics, and 
response in Figure 4.3. The tactics, like design patterns, are design techniques 
that architects have been using for years. Our contribution is to isolate, catalog, 
and describe them. We are not inventing tactics here, we are just capturing what 
architects do in practice. 

Why do we do this? There are three reasons: 

1. Design patterns are complex; they typically consist of a bundle of design 
decisions. But patterns are often difficult to apply as is; architects need to 
modify and adapt them. By understanding the role of tactics, an architect 
can more easily assess the options for augmenting an existing pattern to 
achieve a quality attribute goal. 

http://www.llnl.gov


72 Part two Quality attributes 4—Understanding Quality Attributes

2. If no pattern exists to realize the architect’s design goal, tactics allow the 
architect to construct a design fragment from “first principles.” Tactics give 
the architect insight into the properties of the resulting design fragment. 

3. By cataloging tactics, we provide a way of making design more systematic 
within some limitations. Our list of tactics does not provide a taxonomy. We 
only provide a categorization. The tactics will overlap, and you frequently 
will have a choice among multiple tactics to improve a particular quality at-
tribute. The choice of which tactic to use depends on factors such as tradeoffs 
among other quality attributes and the cost to implement. These consider-
ations transcend the discussion of tactics for particular quality attributes. 
Chapter 17 provides some techniques for choosing among competing tactics.

The tactics that we present can and should be refined. Consider perfor-
mance: Schedule resources is a common performance tactic. But this tactic needs 
to be refined into a specific scheduling strategy, such as shortest-job-first, round-
robin, and so forth, for specific purposes. Use an intermediary is a modifiability 
tactic. But there are multiple types of intermediaries (layers, brokers, and prox-
ies, to name just a few). Thus there are refinements that a designer will employ to 
make each tactic concrete. 

In addition, the application of a tactic depends on the context. Again consid-
ering performance: Manage sampling rate is relevant in some real-time systems 
but not in all real-time systems and certainly not in database systems.

4.6 Guiding Quality design decisions

Recall that one can view an architecture as the result of applying a collection of 
design decisions. What we present here is a systematic categorization of these 

fIGurE 4.3 Tactics are intended to control responses to stimuli.

Stimulus Response

Tactics
to Control
Response



4.6 Guiding Quality Design Decisions 73

decisions so that an architect can focus attention on those design dimensions 
likely to be most troublesome. 

The seven categories of design decisions are

1. Allocation of responsibilities
2. Coordination model
3. Data model
4. Management of resources
5. Mapping among architectural elements
6. Binding time decisions
7. Choice of technology

These categories are not the only way to classify architectural design deci-
sions, but they do provide a rational division of concerns. These categories might 
overlap, but it’s all right if a particular decision exists in two different categories, 
because the concern of the architect is to ensure that every important decision is 
considered. Our categorization of decisions is partially based on our definition 
of software architecture in that many of our categories relate to the definition of 
structures and the relations among them.

allocation of responsibilities

Decisions involving allocation of responsibilities include the following:

 ■ Identifying the important responsibilities, including basic system functions, 
architectural infrastructure, and satisfaction of quality attributes. 

 ■ Determining how these responsibilities are allocated to non-runtime and 
runtime elements (namely, modules, components, and connectors). 

Strategies for making these decisions include functional decomposition, 
modeling real-world objects, grouping based on the major modes of system oper-
ation, or grouping based on similar quality requirements: processing frame rate, 
security level, or expected changes.

In Chapters 5–11, where we apply these design decision categories to a 
number of important quality attributes, the checklists we provide for the alloca-
tion of responsibilities category is derived systematically from understanding the 
stimuli and responses listed in the general scenario for that QA.

coordination Model

Software works by having elements interact with each other through designed 
mechanisms. These mechanisms are collectively referred to as a coordination 
model. Decisions about the coordination model include these:



74 Part two Quality attributes 4—Understanding Quality Attributes

 ■ Identifying the elements of the system that must coordinate, or are prohib-
ited from coordinating.

 ■ Determining the properties of the coordination, such as timeliness, cur-
rency, completeness, correctness, and consistency.

 ■ Choosing the communication mechanisms (between systems, between our 
system and external entities, between elements of our system) that realize 
those properties. Important properties of the communication mechanisms 
include stateful versus stateless, synchronous versus asynchronous, guar-
anteed versus nonguaranteed delivery, and performance-related properties 
such as throughput and latency.

data Model

Every system must represent artifacts of system-wide interest—data—in some 
internal fashion. The collection of those representations and how to interpret 
them is referred to as the data model. Decisions about the data model include the 
following:

 ■ Choosing the major data abstractions, their operations, and their properties. 
This includes determining how the data items are created, initialized, ac-
cessed, persisted, manipulated, translated, and destroyed.

 ■ Compiling metadata needed for consistent interpretation of the data.
 ■ Organizing the data. This includes determining whether the data is going 

to be kept in a relational database, a collection of objects, or both. If both, 
then the mapping between the two different locations of the data must be 
determined.

Management of resources

An architect may need to arbitrate the use of shared resources in the architec-
ture. These include hard resources (e.g., CPU, memory, battery, hardware buffers, 
system clock, I/O ports) and soft resources (e.g., system locks, software buffers, 
thread pools, and non-thread-safe code). 

Decisions for management of resources include the following:

 ■ Identifying the resources that must be managed and determining the limits 
for each.

 ■ Determining which system element(s) manage each resource. 
 ■ Determining how resources are shared and the arbitration strategies em-

ployed when there is contention.
 ■ Determining the impact of saturation on different resources. For example, 

as a CPU becomes more heavily loaded, performance usually just degrades 
fairly steadily. On the other hand, when you start to run out of memory, at 



4.6 Guiding Quality Design Decisions 75

some point you start paging/swapping intensively and your performance 
suddenly crashes to a halt.

Mapping among architectural Elements 

An architecture must provide two types of mappings. First, there is mapping 
between elements in different types of architecture structures—for example, 
mapping from units of development (modules) to units of execution (threads or 
processes). Next, there is mapping between software elements and environment 
elements—for example, mapping from processes to the specific CPUs where 
these processes will execute.

Useful mappings include these:

 ■ The mapping of modules and runtime elements to each other—that is, the 
runtime elements that are created from each module; the modules that con-
tain the code for each runtime element.

 ■ The assignment of runtime elements to processors.
 ■ The assignment of items in the data model to data stores.
 ■ The mapping of modules and runtime elements to units of delivery.

binding time decisions

Binding time decisions introduce allowable ranges of variation. This variation 
can be bound at different times in the software life cycle by different entities—
from design time by a developer to runtime by an end user. A binding time de-
cision establishes the scope, the point in the life cycle, and the mechanism for 
achieving the variation. 

The decisions in the other six categories have an associated binding time 
decision. Examples of such binding time decisions include the following:

 ■ For allocation of responsibilities, you can have build-time selection of mod-
ules via a parameterized makefile. 

 ■ For choice of coordination model, you can design runtime negotiation of 
protocols.

 ■ For resource management, you can design a system to accept new periph-
eral devices plugged in at runtime, after which the system recognizes them 
and downloads and installs the right drivers automatically.

 ■ For choice of technology, you can build an app store for a smartphone that 
automatically downloads the version of the app appropriate for the phone of 
the customer buying the app.

When making binding time decisions, you should consider the costs to im-
plement the decision and the costs to make a modification after you have im-
plemented the decision. For example, if you are considering changing platforms 



76 Part two Quality attributes 4—Understanding Quality Attributes

at some time after code time, you can insulate yourself from the effects caused 
by porting your system to another platform at some cost. Making this decision 
depends on the costs incurred by having to modify an early binding compared to 
the costs incurred by implementing the mechanisms involved in the late binding. 

choice of technology

Every architecture decision must eventually be realized using a specific tech-
nology. Sometimes the technology selection is made by others, before the in-
tentional architecture design process begins. In this case, the chosen technology 
becomes a constraint on decisions in each of our seven categories. In other cases, 
the architect must choose a suitable technology to realize a decision in every one 
of the categories.

Choice of technology decisions involve the following:

 ■ Deciding which technologies are available to realize the decisions made in 
the other categories.

 ■ Determining whether the available tools to support this technology choice 
(IDEs, simulators, testing tools, etc.) are adequate for development to 
proceed.

 ■ Determining the extent of internal familiarity as well as the degree of exter-
nal support available for the technology (such as courses, tutorials, exam-
ples, and availability of contractors who can provide expertise in a crunch) 
and deciding whether this is adequate to proceed.

 ■ Determining the side effects of choosing a technology, such as a required 
coordination model or constrained resource management opportunities.

 ■ Determining whether a new technology is compatible with the existing 
technology stack. For example, can the new technology run on top of or 
alongside the existing technology stack? Can it communicate with the exist-
ing technology stack? Can the new technology be monitored and managed?

4.7 Summary

Requirements for a system come in three categories:

1. Functional. These requirements are satisfied by including an appropriate set 
of responsibilities within the design.

2. Quality attribute. These requirements are satisfied by the structures and 
behaviors of the architecture.

3. Constraints. A constraint is a design decision that’s already been made.



4.9 Discussion Questions 77

To express a quality attribute requirement, we use a quality attribute sce-
nario. The parts of the scenario are these:

1. Source of stimulus
2. Stimulus
3. Environment
4. Artifact
5. Response 
6. Response measure

An architectural tactic is a design decision that affects a quality attribute 
response. The focus of a tactic is on a single quality attribute response. Architec-
tural patterns can be seen as “packages” of tactics.

The seven categories of architectural design decisions are these:

1. Allocation of responsibilities
2. Coordination model
3. Data model
4. Management of resources
5. Mapping among architectural elements
6. Binding time decisions
7. Choice of technology

4.8 for further reading

Philippe Kruchten [Kruchten 04] provides another categorization of design 
decisions.

Pena [Pena 87] uses categories of Function/Form/Economy/Time as a way 
of categorizing design decisions. 

Binding time and mechanisms to achieve different types of binding times 
are discussed in [Bachmann 05].

Taxonomies of quality attributes can be found in [Boehm 78], [McCall 77], 
and [ISO 11].

Arguments for viewing architecture as essentially independent from func-
tion can be found in [Shaw 95].

4.9 discussion Questions

1. What is the relationship between a use case and a quality attribute scenario? 
If you wanted to add quality attribute information to a use case, how would 
you do it?



78 Part two Quality attributes 4—Understanding Quality Attributes

2. Do you suppose that the set of tactics for a quality attribute is finite or in-
finite? Why?

3. Discuss the choice of programming language (an example of choice of 
technology) and its relation to architecture in general, and the design 
decisions in the other six categories? For instance, how can certain pro-
gramming languages enable or inhibit the choice of particular coordination 
models?

4. We will be using the automatic teller machine as an example throughout 
the chapters on quality attributes. Enumerate the set of responsibilities that 
an automatic teller machine should support and propose an initial design to 
accommodate that set of responsibilities. Justify your proposal.

5. Think about the screens that your favorite automatic teller machine uses. 
What do those screens tell you about binding time decisions reflected in the 
architecture?

6. Consider the choice between synchronous and asynchronous communica-
tion (a choice in the coordination mechanism category). What quality attri-
bute requirements might lead you to choose one over the other?

7. Consider the choice between stateful and stateless communication (a choice 
in the coordination mechanism category). What quality attribute require-
ments might lead you to choose one over the other?

8. Most peer-to-peer architecture employs late binding of the topology. What 
quality attributes does this promote or inhibit?



563

Index
AADL (Architecture Analysis and Design 

Language), 354
Abstract common services tactic, 124
Abstract data sources for testability, 165
Abstract Syntax Tree (AST) analyzers, 386
Abstraction, architecture as, 5–6
Acceptance testing, 372
Access

basis sets, 261
network, 504

access_read relationship, 384
access_write relationship, 384
ACID (atomic, consistent, isolated, and 

durable) properties, 95
Acknowledged system of systems, 106
Active redundancy, 91, 256–259
ActiveMQ product, 224
Activities

competence, 468
test, 374–375

Activity diagrams for traces, 353
Actors tactic, 152–153
Adams, Douglas, 437
ADD method. See Attribute-Driven Design 

(ADD) method
Add-ons, 491–492
ADLs (architecture description languages), 330
Adolphus, Gustavus, 42
Adoption strategies, 494–496
Adventure Builder system, 224, 226, 237
Aggregation for usability, 180
Agile projects, 533

architecture example, 283–285
architecture methods, 281–283
architecture overview, 277–281
description, 44–45
documenting, 356–357
guidelines, 286–287
introduction, 275–277
patterns, 238
requirements, 56
summary, 287–288

AIC (Architecture Influence Cycle)
description, 58
Vasa ship, 43

Air France flight 447, 192
Air traffic control systems, 366–367

Allen, Woody, 79
Allocated to relation

allocation views, 339–340
deployment structure, 14
multi-tier pattern, 237

Allocation of responsibilities category
ASRs, 293
availability, 96
interoperability, 114
modifiability, 126
performance, 143
quality design decisions, 73
security, 154
testability, 169
usability, 181

Allocation patterns
map-reduce, 232–235
miscellaneous, 238
multi-tier, 235–237

Allocation structures, 5, 11, 14
Allocation views, 339–340
Allowed-to-use relationship, 206–207
Alpha testing, 372
Alternatives, evaluating, 398
Amazon service-level agreements, 81, 522
Analysis

architecture, 47–48
ATAM, 408–409, 411
availability, 255–259
back-of-the-envelope, 262–264
conformance by, 389–392
economic. See Economic analysis
outsider, 399
performance, 252–255

Analysts, 54
Analytic model space, 259–260
Analytic perspective on up-front work vs. 

agility, 279–281
Analytic redundancy tactic, 90
AND gate symbol, 84
Anonymizing test data, 171
Antimissile system, 104
Apache web server, 528, 531
Approaches

ATAM, 407–409, 411
CIA, 147–148
Lightweight Architecture Evaluation, 416



564 Index 

Architects
background and experience, 51–52
cloud environments, 520–523
communication with, 29
competence, 459–467
description and interests, 54
duties, 460–464
knowledge, 466–467
responsibilities, 422–423
skills, 463, 465
test role, 375–376

Architectural structures
allocation, 14
component-and-connector, 13–14
documentation, 17–18
insight from, 11–12
kinds, 10–11
limiting, 17
module, 12–13
relating to each other, 14, 16–17
selecting, 17
table of, 15
views, 9–10

Architecturally significant requirements 
(ASRs), 46–47, 291–292

ADD method, 320–321
from business goals, 296–304
designing to, 311–312
interviewing stakeholders, 294–296
from requirements documents, 292–293
utility trees for, 304–307

Architecture
Agile projects. See Agile projects
analyzing, 47–48
availability. See Availability
business context, 49–51
changes, 27–28
cloud. See Cloud environments
competence. See Competence
conceptual integrity of, 189
design. See Design and design strategy
documenting. See Documentation
drivers in PALM, 305
economics. See Economic analysis
evaluation. See Evaluation
implementation. See Implementation
influences, 56–58
in life cycle, 271–274
management. See Management and 

governance
modifiability. See Modifiability
patterns. See Patterns
performance. See Performance

product lines. See Software product lines
product reuse, 483–484
QAW drivers, 295
QAW plan presentation, 295
quality attributes. See Quality attributes
reconstruction and conformance. See 

Reconstruction and conformance
requirements. See Architecturally 

significant requirements (ASRs); 
Requirements

security. See Security
structures. See Architectural structures
tactics. See Tactics
testability. See Testability
usability. See Usability

Architecture Analysis and Design Language 
(AADL), 354

Architecture-centric projects, 279
Architecture description languages (ADLs), 

330
Architecture Influence Cycle (AIC)

description, 58
Vasa ship, 43

Architecture Tradeoff Analysis Method 
(ATAM), 48, 283, 400

approaches, 407–409, 411
business drivers, 404–405
example exercise, 411–414
outputs, 402–403
participants, 400–401
phases, 403–404
presentation, 403–406
results, 411
scenarios, 408, 410
steps, 404–411

Ariane 5 explosion, 192
Aristotle, 185
Arrival pattern for events, 133
Artifacts

availability, 85–86
in evaluation, 399
interoperability, 107–108
modifiability, 119–120
performance, 134
product reuse, 484
quality attributes expressions, 69–70
security, 148, 150
testability, 162–163
usability, 176
variability, 489

ASP.NET framework, 215
Aspects

for testability, 167



Index 565

variation mechanism, 492
ASRs. See Architecturally significant 

requirements (ASRs)
Assembly connectors in UML, 369
Assertions for system state, 166
Assessment goals, 469
Assessment of competence, 469–472, 

474–475
Assign utility

CBAM, 446
NASA ECS project, 452

AST (Abstract Syntax Tree) analyzers, 386
Asymmetric flow in client-server pattern, 218
Asynchronous messaging, 223, 225
ATAM. See Architecture Tradeoff Analysis 

Method (ATAM)
ATM (automatic teller machine) banking 

system, 219
Atomic, consistent, isolated, and durable 

(ACID) properties, 95
Attachment relation

broker pattern, 211
client-server pattern, 218
component-and-connector structures, 13
pipe-and-filter pattern, 216
publish-subscribe pattern, 227
shared-data pattern, 231

Attachments in component-and-connector 
views, 336–337

Attribute-Driven Design (ADD) method, 316
ASRs, 320–321
element choice, 318–319
element design solution, 321
inputs, 316
output, 317–318
repeating steps, 324
verify and refine requirements step, 

321–323
Attributes. See Quality attributes
Audiences for documentation, 328–329
Auditor checklists, 260
Audits, 153
Authenticate actors tactic, 152
Authentication in CIA approach, 148
Authorization in CIA approach, 148
Authorize actors tactic, 152
Automated delivery in Metropolis model, 535
Automatic reallocation of IP addresses, 516
Automatic scaling, 516
Automatic teller machine (ATM) banking 

system, 219
Automation for testability, 171–172
AUTOSAR framework, 364

Availability
analytic model space, 259
analyzing, 255–259
broker pattern, 240
calculations, 259
CAP theorem, 523
CIA approach, 147
cloud, 521
design checklist, 96–98
detect faults tactic, 87–91
general scenario, 85–86
introduction, 79–81
planning for failure, 82–85
prevent faults tactic, 94–95
recover-from-faults tactics, 91–94
summary, 98–99
tactics overview, 87

Availability of resources tactic, 136
Availability quality attribute, 307
Availability zones, 522
Avižienis, Algirdas, 79

Back door reviews, 544–545
Back-of-the-envelope analysis, 262–264
Background of architects, 51–52
Bank application, 391–392
Base mechanisms in cloud, 509–514
Basis sets for quality attributes, 261
BDUF (Big Design Up Front) process, 278
Behavior

documenting, 351–354
element, 347
in software architecture, 6–7

Benefit in economic analysis, 441–442
Benkler, Yochai, 528
Beta testing, 372
Big bang integration, 371
Big bang models, 495–496
Big Design Up Front (BDUF) process, 278
BigTable database system, 518
Binder, Robert, 167
Binding

late, 385, 388
modifiability, 124–125
user interface, 178

Binding time category
ASRs, 293
availability, 98
interoperability, 115
modifiability, 122, 127
performance, 144
quality design, 75–76
security, 156



566 Index 

Binding time category, continued
testability, 170
usability, 182

BitTorrent networks, 221
Black-box testing, 372–373
“Blind Men and the Elephant” (Saxe), 379
Blocked time in performance, 136
Blogger website, 528
Boehm, Barry, 279, 281, 286, 288
Booch, Grady, 286
Boolean logic diagrams, 83
Bottom-up adoption, 495
Bottom-up analysis mode, 284
Bottom-up schedules, 420–421
Bound execution times tactic, 138
Bound queue sizes tactic, 139
Boundaries in ADD method, 317
Box-and-line drawings

as architectures, 6
component-and-connector views, 338

BPEL (Business Process Execution 
Language), 108

Brainstorming
ATAM, 410
Lightweight Architecture Evaluation, 416
QAW, 295

Branson, Richard, 443
Breadth first ADD strategy, 319
Brewer, Eric, 522
Broadcast-based publish-subscribe pattern, 

229
Broker pattern

availability, 255–259
description, 210–212
weaknesses, 240–242

Brooks, Fred, 47, 419
Buley, Taylor, 147
Bureaucracy in implementation, 427
Bush, Vannevar, 397
Business cases in project life-cycle context, 

46
Business context

architecture influence on, 58
architectures and business goals, 49–50

Business drivers
ATAM, 404–405
Lightweight Architecture Evaluation, 416
PALM method, 305

Business goals
ASRs from, 296–304
assessment, 469
ATAM, 402
business context, 49–50

capturing, 304
categorization, 297–299
evaluation process, 400
expressing, 299–301
general scenario, 301–303
PALM method, 305
views for, 332

Business managers, 54
Business/mission presentation in QAW, 295
Business Process Execution Language 

(BPEL), 108
Business process improvements as business 

goal, 299
Business-related architect skills, 465

C&C structures. See Component-and-connector 
(C&C) patterns and structures

Caching tactic, 139
Callbacks in Model-View-Controller pattern, 

214
Calls relationship in view extraction, 384
Cancel command, 179
CAP theorem, 518, 522–523
Capture scenarios for quality attributes, 

196–197
Capturing

ASRs in utility trees, 304–307
business goals, 304–307

Catastrophic failures, 82
Categorization of business goals, 297–299
CBAM. See Cost Benefit Analysis Method 

(CBAM)
Change

documenting, 355–356
modifiability. See Modifiability
reasoning and managing, 27–28

Change control boards, 427
Change default settings tactic, 153
Chaos Monkey, 160–161
Chaucer, Geoffrey, 459
Check-in, syncing at, 368
Choice of technology category

ASRs, 293
availability, 98
interoperability, 115
modifiability, 127
performance, 144
security, 156
testability, 170
usability, 182

CIA (confidentiality, integrity, and availabil-
ity) approach, 147–148

City analogy in Metropolis model, 536



Index 567

class_contains_method relationship, 384
class_is_subclass_of_class relationship, 384
Class structure, 13
Classes in testability, 167
Clements, Paul, 66
Client-server patterns, 19, 217–219
Client-side proxies, 211
Clients

broker pattern, 211
simulators, 265

Clone-and-own practice, 482–483
Cloud environments

architecting in, 520–523
availability, 521
base mechanisms, 509–514
database systems, 517–520
definitions, 504–505
deployment models, 506
economic justification, 506–509
equipment utilization, 508–509
IaaS model, 515–517
introduction, 503–504
multi-tenancy applications, 509
PaaS model, 517
performance, 521
security, 520–521
service models, 505–506
summary, 524

Cluster managers, 515
CMG (Computer Measurement Group), 524
Co-located teams

Agile, 277
coordination, 427

Cockburn, Alistair, 287
COCOMO II (COnstructive COst MOdel II) 

scale factor, 279
Code

architecture consistency, 366–368
design in, 364
KSLOC, 279–281
mapping to, 334
security, 157
templates, 365–367

Cohesion
in modifiability, 121–123
in testability, 167

Cold spares, 92, 256–259
Collaborative system of systems, 106
Collating scenarios

CBAM, 445
NASA ECS project, 451

COMBINATION gate symbol, 84
Combining views, 343–345

Commercial implementations of map-reduce 
patterns, 234

Common Object Request Broker Architecture 
(CORBA), 212

Communicates with relation, 237
Communication

Agile software development, 277
architect skills, 465
architecture, 47
documentation for, 329
global development, 425
stakeholder, 29–31

Communication diagrams for traces, 353
Communications views, 341
Community clouds, 506
Compatibility in component-and-connector 

views, 336
Compatibility quality attribute, 193
Competence

activities, 468
architects, 459–467
assessment, 469–472, 474–475
assessment goals, 469
introduction, 459–460
models, 476
questions, 470, 472–474
software architecture organizations, 

467–475
summary, 475

Competence center patterns, 19, 238
Competence set tactic, 95
Complexity

broker pattern, 211
quality attributes, 71
in testability, 167–168

Component-and-connector (C&C) patterns 
and structures, 5, 10–11

broker, 210–212
client-server, 217–219
Model-View-Controller, 212–215
peer-to-peer, 220–222
pipe-and-filter, 215–217
publish-subscribe, 226–229
service-oriented architecture, 222–226
shared-data, 230–231
types, 13–14
views, 335–339, 344, 406

Components, 5
independently developed, 35–36
replacing for testability, 167
substituting in variation mechanism, 492

Comprehensive models for behavior docu-
mentation, 351, 353–354



568 Index 

Computer Measurement Group (CMG), 524
Computer science knowledge of architects, 

466
Concepts and terms, 368–369
Conceptual integrity of architecture, 189
Concrete quality attribute scenarios, 69
Concurrency

component-and-connector views, 13–14, 
337

handling, 132–133
Condition monitoring tactic, 89
Confidence in usability, 175
Confidentiality, integrity, and availability 

(CIA) approach, 147–148
Configurability quality attribute, 307
Configuration manager roles, 422
Configurators, 492
Conformance, 380–381

by analysis, 389–392
architectural, 48
by construction, 389

Conformance checkers, 54
Conformity Monkey, 161
Connectors

component-and-connector views, 
335–339

multi-tier pattern, 236
peer-to-peer systems, 220
REST, 225
UML, 369

Consistency
CAP theorem, 523
code and architecture, 366–368
databases, 520

Consolidation in QAW, 295
Constraints

ADD method, 322–323
allocation views, 339
broker pattern, 211
client-server pattern, 218
component-and-connector views, 337
conformance, 390
defining, 32–33
layered pattern, 207
map-reduce patterns, 235
Model-View-Controller pattern, 213
modular views, 333
multi-tier pattern, 236–237
peer-to-peer pattern, 222
pipe-and-filter pattern, 216
publish-subscribe pattern, 227
requirements, 64–65
service-oriented architecture pattern, 225

shared-data pattern, 231
Construction, conformance by, 389
COnstructive COst MOdel II (COCOMO II) 

scale factor, 279
Content-based publish-subscribe pattern, 229
Contention for resources tactic, 136
Context diagrams

ATAM presentations, 406
in documentation, 347

Contexts
architecture influence, 56–58
business, 49–51, 58
decision-making, 438–439
professional, 51–52
project life-cycle, 44–48
in relationships, 204–205
stakeholders, 52–55
summary, 59
technical, 40–43
thought experiments, 263
types, 39–40

Contextual factors in evaluation, 399–400
Continuity as business goal, 298
Control relation in map-reduce patterns, 235
Control resource demand tactic, 137–138
Control tactics for testability, 164–167
Controllers in Model-View-Controller 

pattern, 213–214
Conway’s law, 38
Coordination model category

ASRs, 293
availability, 96
global development, 426
interoperability, 114
modifiability, 126
performance, 143
quality design decisions, 73–74
security, 155
testability, 169
usability, 181

CORBA (Common Object Request Broker 
Architecture), 212

Core asset units, 497
Core requirements, 531–532
Core vs. periphery in Metropolis model, 534
Correlation logic for faults, 81
Cost Benefit Analysis Method (CBAM), 442

cost determination, 444
results, 456–457
steps, 445–447
utility curve determination, 442–443
variation points, 448–450
weighting determination, 444



Index 569

Costs
CBAM, 444
of change, 118
estimates, 34
global development, 423–424
independently developed components 

for, 36
power, 507
resources, 244
thought experiments, 263
value for, 442

Costs to complete measure, 430
Coupling

in modifiability, 121–124
in testability, 167

Crashes and availability, 85
Credit cards, 147, 157, 260, 268
Crisis, syncing at, 368
Criteria for ASRs, 306
Crowd management in Metropolis model, 

534
Crowdsourcing, 528
CRUD operations, 109
CruiseControl tool, 172
Crystal Clear method, 44, 287
Cummins, Inc., 480, 490
Cunningham, Ward, 286
Customers

communication with, 29
edge-dominant systems, 529

Customization of user interface, 180

Darwin, Charles, 275
Data Access Working Group (DAWG), 451
Data accessors in shared-data pattern, 

230–231
Data latency, utility trees for, 306
Data model category, 13

ASRs, 293
availability, 96
interoperability, 114
modifiability, 126
performance, 143
quality design decisions, 74
security, 155
testability, 169
usability, 182

Data reading and writing in shared-data 
pattern, 230–231

Data replication, 139
Data sets

map-reduce pattern, 232–233
for testability, 170–171

Data stores in shared-data pattern, 230–231
Data transformation systems, 215
Database administrators, 54
Database systems

cloud, 517–520
in reconstruction, 386–387

DataNodes, 512–514
DAWG (Data Access Working Group), 451
Deadline monotonic prioritization strategy, 

140
Deadlines in processing, 134
Debugging brokers, 211
Decision makers on ATAM teams, 401
Decision-making context, 438–439
Decisions

evaluating, 398
mapping to quality requirements, 402–403
quality design, 72–76

Decomposition
description, 311–312
module, 5, 12, 16
views, 16, 343, 345

Dedicated finite resources, 530
Defects

analysis, 374
eliminating, 486
tracking, 430

Defer binding
modifiability, 124–125
user interface, 178

Degradation tactic, 93
Delegation connectors, 369
Demilitarized zones (DMZs), 152
Denial-of-service attacks, 79, 521, 533
Dependencies

basis set elements, 261
on computations, 136
intermediary tactic for, 123–124
user interface, 178

Dependent events in probability, 257
Depends-on relation

layered pattern, 207
modules, 332–333

Deploy on relation, 235
Deployability attribute, 129, 187
Deployers, 54
Deployment models for cloud, 506
Deployment structure, 14
Deployment views

ATAM presentations, 406
combining, 345
purpose, 332

Depth first ADD strategy, 319



570 Index 

Design and design strategy, 311
ADD. See Attribute-Driven Design 

(ADD) method
architecturally significant requirements, 

311–312
in code, 364
decomposition, 311–312
early decisions, 31–32
generate and test process, 313–316
initial hypotheses, 314–315
next hypotheses, 315
quality attributes, 197
summary, 325
test choices, 315

Design checklists
availability, 96–98
design strategy hypotheses, 315
interoperability, 114–115
modifiability, 125–127
performance, 142–144
quality attributes, 199
security, 154–156
summary, 183
testability, 169–170
usability, 181–182

Designers
description and interests, 54
evaluation by, 397–398

Detect attacks tactics, 151
Detect faults tactic, 87–91
Detect intrusion tactic, 151
Detect message delay tactic, 151
Detect service denial tactic, 151
Deutsche Bank, 480
Developers

edge-dominant systems, 529
roles, 422

Development
business context, 50–51
global, 423–426
incremental, 428
project life-cycle context, 44–45
tests, 374

Development distributability attribute, 186
Deviation

failure from, 80
measuring, 429

Devices in ADD method, 317
DiNucci, Darcy, 527
dir_contains_dir relationship, 384
dir_contains_file relationship, 384
Directed system of systems, 106
Directories in documentation, 349

DiscoTect system, 391
Discover service tactic, 111
Discovery in interoperability, 105
Discovery services, 533
Distributed computing, 221
Distributed development, 427
Distributed testing in Metropolis model, 535
DMZs (demilitarized zones), 152
DNS (domain name server), 514
Doctor Monkey, 161
Documentation

Agile development projects, 356–357
architect duties, 462
architectural structures, 17–18
architecture, 47, 347–349
behavior, 351–354
changing architectures, 355–356
distributed development, 427
global development, 426
introduction, 327–328
notations, 329–331
online, 350
packages, 345–351
patterns, 350–351
and quality attributes, 354–355
services, 533
summary, 359
uses and audiences for, 328–329
views. See Views
YAGNI, 282

Documentation maps, 347–349
Documents, control information, 347
Domain decomposition, 315
Domain knowledge of architects, 467
Domain name server (DNS), 514
Drivers

ATAM, 404–405
Lightweight Architecture Evaluation, 416
PALM method, 305
QAW, 295

DSK (Duties, Skills, and Knowledge) model 
of competence, 476

Duke’s Bank application, 391–392
Duties

architects, 460–464
competence, 472
professional context, 51

Duties, Skills, and Knowledge (DSK) model 
of competence, 476

Dynamic allocation views, 340
Dynamic analysis with fault trees, 83
Dynamic priority scheduling strategies, 

140–141



Index 571

Dynamic structures, 5
Dynamic system information, 385–386

Earliest-deadline-first scheduling strategy, 141
Early design decisions, 31–32
Earth Observing System Data Information 

System (EOSDIS) Core System 
(ECS). See NASA ECS project

eBay, 234
EC2 cloud service, 81, 160, 522, 532
Eclipse platform, 228
Economic analysis

basis, 439–442
benefit and normalization, 441–442
case study, 451–457
CBAM. See Cost Benefit Analysis 

Method (CBAM)
cost value, 442
decision-making context, 438–439
introduction, 437
scenario weighting, 441
side effects, 441
summary, 457
utility-response curves, 439–441

Economics
cloud, 506–509
issues, 543

Economies of scale in cloud, 507–508
Ecosystems, 528–530
ECS system. See NASA ECS project
Edge-dominant systems, 528–530
Edison, Thomas, 203
eDonkey networks, 221
Education, documentation as, 328–329
Effective resource utilization, 187
Effectiveness category for quality, 189
Efficiency category for quality, 189–190
Einstein, Albert, 175
EJB (Enterprise Java Beans), 212
Elasticity, rapid, 504–505
Elasticity property, 187
Electric grids, 106
Electricity, 191, 570
Electronic communication in global 

development, 426
Elements

ADD method, 318–319
allocation views, 339–340
broker pattern, 211
catalogs, 346–347
client-server pattern, 218
component-and-connector views, 337
defined, 5

layered pattern, 207
map-reduce patterns, 235
mapping, 75
Model-View-Controller pattern, 213
modular views, 333
multi-tier pattern, 237
peer-to-peer pattern, 222
pipe-and-filter pattern, 216
product reuse, 484
publish-subscribe pattern, 227
service-oriented architecture pattern, 225
shared-data pattern, 231

Employees
as goal-object, 302
responsibilities to, 299

Enabling quality attributes, 26–27
Encapsulation tactic, 123
Encrypt data tactic, 152
End users in edge-dominant systems, 529
Enterprise architecture vs. system 

architecture, 7–8
Enterprise Java Beans (EJB), 212
Enterprise resource planning (ERP) systems, 

228
Enterprise service bus (ESB), 223, 225, 369
Environment

ADD method, 317
allocation views, 339–340
availability, 85–86
business goals, 300
interoperability, 107–108
modifiability, 119–120
performance, 134
quality attributes expressions, 68–70
security, 149–150
technical context, 41–42
testability, 162–163
usability, 176
variability, 489

Environmental change as business goal, 299
ERP (enterprise resource planning) systems, 

228
Errors, 80

core handling of, 532
detection by services, 533
error-handling views, 341
in usability, 175

ESB (enterprise service bus), 223, 225, 369
Escalating restart tactic, 94
Estimates, cost and schedule, 34
Evaluation

architect duties, 462–463
architecture, 47–48



572 Index 

Evaluation, continued
ATAM. See Architecture Tradeoff 

Analysis Method (ATAM)
contextual factors, 399–400
by designer, 397–398
Lightweight Architecture Evaluation, 

415–417
outsider analysis, 399
peer review, 398–399
questions, 472
software product lines, 493–494
summary, 417

Evaluators, 54
Event bus in publish-subscribe pattern, 227
Events

Model-View-Controller pattern, 214
performance, 131, 133
probability, 257

Eventual consistency model, 168, 523
Evolutionary prototyping, 33–34
Evolving software product lines, 496–497
Exception detection tactic, 90
Exception handling tactic, 92
Exception prevention tactic, 95
Exception views, 341
Exchanging information via interfaces, 

104–105
EXCLUSIVE OR gate symbol, 84
Executable assertions for system state, 166
Execution of tests, 374
Exemplar systems, 485
Exercise conclusion in PALM method, 305
Existing systems in design, 314
Expected quality attribute response levels, 453
Experience of architects, 51–52
Experiments in quality attribute modeling, 

264–265
Expressing business goals, 299–301
Extensibility quality attribute, 307
Extensible programming environments, 228
Extension points for variation, 491
External sources for product lines, 496
External system representatives, 55
External systems in ADD method, 317
Externalizing change, 125
Extract-transform-load functions, 235
Extraction, raw view, 382–386
Extreme Programming development 

methodology, 44

Facebook, 527–528
map-reduce patterns, 234
users, 518

Fail fast principle, 522
Failure Mode, Effects, and Criticality 

Analysis (FMECA), 83–84
Failures, 80

availability. See Availability
planning for, 82–85
probabilities and effects, 84–85

Fairbanks, George, 279, 364
Fallbacks principle, 522
Fault tree analysis, 82–84
Faults, 80

correlation logic, 81
detection, 87–91
prevention, 94–95
recovery from, 91–94

Feature removal principle, 522
FIFO (first-in/first-out) queues, 140
File system managers, 516
Filters in pipe-and-filter pattern, 215–217
Financial objectives as business goal, 298
Finding violations, 389–392
Fire-and-forget information exchange, 223
Firefox, 531
First-in/first-out (FIFO) queues, 140
First principles from tactics, 72
Fixed-priority scheduling, 140
Flex software development kit, 215
Flexibility

defer binding tactic, 124
independently developed components 

for, 36
Flickr service, 527, 536
Flight control software, 192–193
FMECA (Failure Mode, Effects, and 

Criticality Analysis), 83–84
Focus on architecture in Metropolis model, 

534–535
Follow-up phase in ATAM, 403–404
Folsonomy, 528
Ford, Henry, 479
Formal documentation notations, 330
Frameworks

design strategy hypotheses, 314–315
implementation, 364–365

Frankl, Viktor E., 63
Freedom from risk category for quality, 189
Functional redundancy tactic, 90
Functional requirements, 64, 66
Functional responsibility in ADD method, 

322–323
Functional suitability quality attribute, 193
Functionality

component-and-connector views, 336



Index 573

description, 65
Fused views, 388–389

Gamma, E., 212
Gate symbols, 83–84
General Motors product line, 487
Generalization structure, 13
Generate and test process, 313–316
Generators of variation, 492
Get method for system state, 165
Global development, 423–426
Global metrics, 429–430
Gnutella networks, 221
Goal components in business goals, 300
Goals. See Business goals
Goldberg, Rube, 102
Good architecture, 19–21
Good enough vs. perfect, 398
Google

database system, 518
Google App Engine, 517
Google Maps, 105–107
greenhouse gas from, 190–191
map-reduce patterns, 234
power sources, 507

Governance, 430–431
Government, responsibilities to, 299
Graceful degradation, 522
Graphical user interfaces in publish-subscribe 

pattern, 228
Gray-box testing, 373
Green computing, 190–191
Greenspan, Alan, 443
Growth and continuity as business goal, 298
Guerrilla movements, 543–544

Hadoop Distributed File System (HDFS), 512
Hardware costs for cloud, 507
Harel, David, 353
Harnesses for tests, 374
Hazard analysis, 82
Hazardous failures, 82
HBase database system, 518–519
HDFS (Hadoop Distributed File System), 

512
Heartbeat tactic, 89, 256, 408
Helm, R., 212
Hewlett-Packard, 480
Hiatus stage in ATAM, 409
High availability. See Availability
Highway systems, 142
Horizontal scalability, 187
Hot spare tactic, 91

HTTP (HyperText Transfer Protocol),  
219

Hudson tool, 172
Hufstedler, Shirley, 363
Human body structure, 9
Human Performance model of competence, 

476
Human Performance Technology model, 

469–473
Human resource management in global 

development, 425
Hybertsson, Henrik, 42–43
Hybrid clouds, 506
Hydroelectric power station catastrophe, 188, 

192
Hypertext for documentation, 350
HyperText Transfer Protocol (HTTP), 219
Hypervisors, 510–512
Hypotheses

conformance, 390
design strategy, 314–315
fused views, 388

IaaS (Infrastructure as a Service) model, 
505–506, 515–517

Identify actors tactic, 152
Ignore faulty behavior tactic, 93
Implementation, 363–364, 427

architect duties, 463
code and architecture consistency, 366–368
code templates, 365–367
design in code, 364
frameworks, 364–365
incremental development, 428
modules, 333–334
structure, 14
summary, 376
testing, 370–376
tracking progress, 428–429
tradeoffs, 427

Implementors, 55
In-service software upgrade (ISSU), 92
Includes relationship, 384
Inclusion of elements for variation, 491
Increase cohesion tactic, 123
Increase competence set tactic, 95
Increase efficiency tactic, 142
Increase resource efficiency tactic, 138
Increase resources tactic, 138–139, 142
Increase semantic coherence tactic, 123, 239
Incremental Commitment Model, 286
Incremental development, 428
Incremental integration, 371



574 Index 

Incremental models in adoption strategies, 
495–496

Independent events in probability, 257
Independently developed components, 35–36
Inflexibility of methods, 277
Inform actors tactic, 153
Informal contacts in global development, 426
Informal notations for documentation, 330
Information handling skills, 465
Information sharing in cloud, 520
Infrastructure as a Service (IaaS) model, 

505–506, 515–517
Infrastructure in map-reduce patterns, 235
Infrastructure labor costs in cloud, 507
Inheritance variation mechanism, 492
Inherits from relation, 13
INHIBIT gate symbol, 84
Inhibiting quality attributes, 26–27
Initial hypotheses in design strategy, 314–315
Inputs in ADD method, 316, 321–323
Instantiate relation, 235
Integration management in global 

development, 424
Integration testing, 371–372
Integrators, 55
Integrity

architecture, 189
CIA approach, 147

Interchangeable parts, 35–36, 480
Interfaces

exchanging information via, 104–105
separating, 178

Intermediary tactic, 123
Intermediate states in failures, 80
Internal sources of product lines, 496–497
Internet Protocol (IP) addresses

automatic reallocation, 516
overview, 514

Interoperability
analytic model space, 259
design checklist, 114–115
general scenario, 107–110
introduction, 103–106
service-oriented architecture pattern, 224
and standards, 112–113
summary, 115
tactics, 110–113

Interpersonal skills, 465
Interpolation in CBAM, 446
Interviewing stakeholders, 294–296
Introduce concurrency tactic, 139
Invokes-services role, 335
Involvement, 542–543

Iowability, 195–196
IP (Internet Protocol) addresses

automatic reallocation, 516
overview, 514

Is a relation, 332–333
Is-a-submodule-of relation, 12
Is an instance of relation, 13
Is part of relation

modules, 332–333
multi-tier pattern, 237

ISO 25010 standard, 66, 193–195
ISSU (in-service software upgrade), 92
Iterative approach

description, 44
reconstruction, 382
requirements, 56

Janitor Monkey, 161
JavaScript Object Notation (JSON) form, 519
Jitter, 134
Jobs, Steve, 311
Johnson, R., 212
JSON (JavaScript Object Notation) form, 519
Just Enough Architecture (Fairbanks), 279, 

364

Keys in map-reduce pattern, 232
Knowledge

architects, 460, 466–467
competence, 472–473
professional context, 51

Kroc, Ray, 291
Kruchten, Philippe, 327
KSLOC (thousands of source lines of code), 

279–281
Kundra, Vivek, 503

Labor availability in global development, 423
Labor costs

cloud, 507
global development, 423

Language, 542
Larger data sets in map-reduce patterns, 234
Late binding, 385, 388
Latency

CAP theorem, 523
performance, 133, 255
queuing models for, 198–199
utility trees for, 306

Latency Monkey, 161
Lattix tool, 387
Lawrence Livermore National Laboratory, 71
Layer bridging, 206



Index 575

Layer structures, 13
Layer views in ATAM presentations, 406
Layered patterns, 19, 205–210
Layered views, 331–332
Leaders on ATAM teams, 401
Leadership skills, 464–465
Learning issues in usability, 175
Least-slack-first scheduling strategy, 141
LePatner, Barry, 3
Letterman, David, 443
Levels

failure, 258
restart, 94
testing, 370–372

Leveson, Nancy, 200
Lexical analyzers, 386
Life cycle

architecture in, 271–274
changes, 530–531
Metropolis model, 537
project. See Project life-cycle context
quality attribute analysis, 265–266

Life-cycle milestones, syncing at, 368
Lightweight Architecture Evaluation method, 

415–417
Likelihood of change, 117
Limit access tactic, 152
Limit complexity tactic, 167
Limit event response tactic, 137
Limit exposure tactic, 152
Limit structural complexity tactic, 167–168
Linux, 531
List-based publish-subscribe pattern, 229
Load balancers, 139
Local changes, 27–28
Local knowledge of markets in global devel-

opment, 423
Localize state storage for testability, 165
Locate tactic, 111
Location independence, 504
Lock computer tactic, 153
Logical threads in concurrency, 13–14

Macros for testability, 167
Mailing lists in publish-subscribe pattern, 

228
Maintain multiple copies tactic, 142
Maintain multiple copies of computations 

tactic, 139
Maintain multiple copies of data tactic, 139
Maintain system model tactic, 180
Maintain task model tactic, 180
Maintain user model tactic, 180

Maintainability quality attribute, 195, 307
Maintainers, 55
Major failures, 82
Manage event rate tactic, 142
Manage resources tactic, 137–139
Manage sampling rate tactic

performance, 137
quality attributes, 72

Management and governance
architect skills, 464
governance, 430–431
implementing, 427–429
introduction, 419
measuring, 429–430
organizing, 422–426
planning, 420–421
summary, 432

Management information in modules, 334
Managers, communication with, 29
Managing interfaces tactic, 111
Manifesto for Agile software development, 

276
Map architectural strategies in CBAM, 446
Map-reduce pattern, 232–235
Mapping

to requirements, 355, 402–403
to source code units, 334

Mapping among architectural elements 
category

ASRs, 293
availability, 97
interoperability, 114
modifiability, 127
performance, 144
quality design decisions, 75
security, 155
testability, 169
usability, 182

Maps, documentation, 347–349
Market position as business goal, 299
Marketability category for quality, 190
Markov analysis, 83
Matrixed team members, 422
McGregor, John, 448
Mean time between failures (MTBF), 80, 

255–259
Mean time to repair (MTTR), 80, 255–259
Measured services, 505
Measuring, 429–430
Meetings

global development, 426
progress tracking, 428

Methods in product reuse, 484



576 Index 

Metrics, 429–430
Metropolis structure

edge-dominant systems, 528–530
implications, 533–537

Microsoft Azure, 517
Microsoft Office 365, 509
Migrates-to relation, 14
Mill, John Stuart, 527
Minimal cut sets, 83
Minor failures, 82
Missile defense system, 104
Missile warning system, 192
Mixed initiative in usability, 177
Mobility attribute, 187
Model driven development, 45
Model-View-Controller (MVC) pattern

overview, 212–215
performance analysis, 252–254
user interface, 178

Models
product reuse, 484
quality attributes, 197–198
transferable and reusable, 35

Modifiability
analytic model space, 259
component-and-connector views, 337
design checklist, 125–127
general scenario, 119–120
introduction, 117–119
managing, 27
ping/echo, 243
restrict dependencies tactic, 246
scheduling policy tactic, 244–245
summary, 128
tactics, 121–125
and time-to-market, 284
unit testing, 371
in usability, 179

Modularity of core, 532
Modules and module patterns, 10, 205–210

coupling, 121
decomposition structures, 5
description, 4–5
types, 12–13
views, 332–335, 406

MongoDB database, 519
Monitor relation in map-reduce patterns, 235
Monitor tactic, 88–89
Monitorability attribute, 188
MoSCoW style, 292
MSMQ product, 224
MTBF (mean time between failures), 80, 

255–259

MTTR (mean time to repair), 80, 255–259
Multi-tenancy

cloud, 509, 520
description, 505

Multi-tier patterns, 19, 235–237
Multitasking, 132–133
Musket production, 35–36
MVC (Model-View-Controller) pattern

overview, 212–215
performance analysis, 252–254
user interface, 178

Mythical Man-Month (Brooks), 47

NameNode process, 512–513
Names for modules, 333
NASA ECS project, 451

architectural strategies, 452–456
assign utility, 452
collate scenarios, 451
expected quality attribute response level, 

453
prioritizing scenarios, 452
refining scenarios, 451–452

Nation as goal-object, 302
National Reconnaissance Office, 481
.NET platform, 212
Netflix

cloud, 522
Simian Army, 160–161

Network administrators, 55
Networked services, 36
Networks, cloud, 514
Nightingale application, 306–307
No effect failures, 82
Node managers, 516
Nokia, 480
non-ASR requirements, 312–313
Non-stop forwarding (NSF) tactic, 94
Nondeterminism in testability, 168
Nonlocal changes, 27
Nonrepudiation in CIA approach, 148
Nonrisks in ATAM, 402
Normalization

databases, 520
economic analysis, 441–442

NoSQL database systems, 518–520, 523
NoSQL movement, 248
Notations

component-and-connector views, 338–339
documentation, 329–331

Notifications
failures, 80
Model-View-Controller pattern, 214



Index 577

NSF (non-stop forwarding) tactic, 94
Number of events not processed measure-

ment, 134

Object-oriented systems
in testability, 167
use cases, 46

Objects in sequence diagrams, 352
Observability of failures, 80
Observe system state tactics, 164–167
Off-the-shelf components, 36
Omissions

availability faults from, 85
for variation, 491

On-demand self-service, 504
1+1 redundancy tactic, 91
Online documentation, 350
Ontologies, 368–369
OPC (Order Processing Center) component, 

224, 226
Open content systems, 529
Open Group

certification program, 477
governance responsibilities, 430–431

Open source software, 36, 238
Operation Desert Storm, 104
OR gate symbol, 84
Orchestrate tactic, 111
Orchestration servers, 223, 225
Order Processing Center (OPC) component, 

224, 226
Organization

global development, 423–426
project manager and software architect 

responsibilities, 422–423
software development teams, 422

Organizational Coordination model, 470, 
473, 476

Organizational Learning model, 470, 474, 476
Organizations

activities for success, 468
architect skills, 464
architecture influence on, 33
as goal-object, 302
security processes, 157
structural strategies for products, 497

Outages. See Availability
Outputs

ADD method, 317–318
ATAM, 402–403

Outsider analysis, 399
Overlay views, 343
Overloading for variation, 491

Overview presentations in PALM method, 
305

P2P (peer-to-peer) pattern, 220–222
PaaS (Platform as a Service) model, 505, 517
Page mappers, 510–512
PALM (Pedigreed Attribute eLicitation 

Method), 304–305
Parameter fence tactic, 90
Parameter typing tactic, 90
Parameters for variation mechanism, 492
Parser tool, 386
Partitioning CAP theorem, 523
Partnership and preparation phase in ATAM, 

403–404
Passive redundancy, 91–92, 256–259
Patterns, 18–19

allocation, 232–237
component-and-connector. See 

Component-and-connector (C&C) 
patterns and structures

documenting, 350–351
introduction, 203–204
module, 205–210
relationships, 204–205
summary, 247–248
and tactics, 238–247, 315

Paulish, Dan, 420
Pause/resume command, 179
Payment Card Industry (PCI), 260
PDF (probability density function), 255
PDM (platform-definition model), 45
Pedigree and value component of business 

goals, 301
Pedigreed Attribute eLicitation Method 

(PALM), 304–305
Peer nodes, 220
Peer review, 398–399
Peer-to-peer (P2P) pattern, 220–222
Penalties in Incremental Commitment Model, 

286
People

managing, 464
in product reuse, 485

Perfect vs. good enough, 398
Performance

analytic model space, 259
analyzing, 252–255
broker pattern, 241
cloud, 521
component-and-connector views, 336
control resource demand tactics, 137–138
design checklist, 142–144



578 Index 

Performance, continued
general scenario, 132–134
introduction, 131–132
manage resources tactics, 138–139
map-reduce pattern, 232
ping/echo, 243
and quality, 191
quality attributes tactics, 72
queuing models for, 198–199
resource effects, 244, 246
summary, 145
tactics overview, 135–137
views, 341

Performance quality attribute, 307
Performance efficiency quality attribute, 193
Periodic events, 133
Periphery

Metropolis model, 535
requirements, 532

Persistent object managers, 515–516
Personal objectives as business goal, 298
Personnel availability in ADD method, 320
Petrov, Stanislav Yevgrafovich, 192
Phases

ATAM, 403–404
metrics, 430
Metropolis model, 534

Philips product lines, 480–481, 487
Physical security, 191
PIM (platform-independent model), 45
Ping/echo tactic, 87–88, 243
Pipe-and-filter pattern, 215–217
Planned increments, 530
Planning

for failure, 82–85
incremental development, 428
overview, 420–421
tests, 374

Platform as a Service (PaaS) model, 505, 517
Platform-definition model (PDM), 45
Platform-independent model (PIM), 45
Platforms

architect knowledge about, 467
frameworks in, 365
patterns, 19, 238
services for, 532–533

Plug-in architectures, 34
PMBOK (Project Management Body of 

Knowledge), 423–425
Pointers, smart, 95
Policies, scheduling, 140
Pooling resources, 504
Portability quality attributes, 67, 186, 195

Portfolio as goal-object, 302
Ports in component-and-connector views, 

335, 337–338
Potential alternatives, 398
Potential problems, peer review for, 399
Potential quality attributes, 305
Power station catastrophe, 188, 192
Predicting system qualities, 28
Predictive model tactic, 95
Preemptible processes, 141
Preparation-and-repair tactic, 91–93
Preprocessor macros, 167
Presentation

ATAM, 402–406
documentation, 346
Lightweight Architecture Evaluation, 416
PALM method, 305
QAW, 295

Prevent faults tactics, 94–95
Primary presentations in documentation, 346
Principles

Agile, 276–277
cloud failures, 522
design fragments from, 72
Incremental Commitment Model, 286

Prioritize events tactic, 137–138, 142
Prioritizing

ATAM scenarios, 410
CBAM scenarios, 445–446
CBAM weighting, 444
Lightweight Architecture Evaluation 

scenarios, 416
NASA ECS project scenarios, 452
QAW, 295–296
risk, 429
schedules, 140–141
views, 343

PRIORITY AND gate symbol, 84
Private clouds, 506
Private IP addresses, 514
Proactive enforcement in Metropolis model, 

535
Proactive product line models, 495
Probability density function (PDF), 255
Probability for availability, 256–259
Problem relationships in patterns, 204–205
Proceedings scribes, 401
Processes

development, 44–45
product reuse, 484
recommendations, 20
security, 157

Processing time in performance, 136



Index 579

Procurement management, 425
Product-line managers, 55
Product lines. See Software product lines
Product manager roles, 422
Productivity metrics, 429–430
Professional context, 51–52, 58
Profiler tools, 386
Programming knowledge of architects, 466
Project context, 57
Project life-cycle context

architecturally significant requirements, 
46–47

architecture analysis and evaluation, 47–48
architecture documentation and 

communication, 47
architecture selection, 47
business cases, 46
development processes, 44–45
implementation conformance, 48

Project Management Body of Knowledge 
(PMBOK), 423–425

Project managers
description and interests, 55
responsibilities, 422–423

Project planning artifacts in product reuse, 484
Propagation costs of change, 288
Prosumers in edge-dominant systems, 529
Protection groups, 91
Prototypes

evolutionary, 33–34
quality attribute modeling and analysis, 

264–265
for requirements, 47

Provides-services role, 335
Proxy servers, 146, 211
Public clouds, 506
Public IP addresses, 514
Publicly available apps, 36
Publish-subscribe connector, 336
Publish-subscribe pattern, 226–229
Publisher role, 336

QAW (Quality Attribute Workshop), 294–296
Qt framework, 215
Quality attribute modeling and analysis, 

251–252
analytic model space, 259–260
availability analysis, 255–259
checklists, 260–262
experiments, simulations, and prototypes, 

264–265
life cycle stages, 265–266
performance analysis, 252–255

summary, 266–267
thought experiments and back-of-the-

envelope analysis, 262–264
Quality Attribute Workshop (QAW), 294–296
Quality attributes, 185

ADD method, 322–323
ASRs, 294–296
ATAM, 407
capture scenarios, 196–197
categories, 189–190
checklists, 199, 260–262
considerations, 65–67
design approaches, 197
and documentation, 354–355
grand unified theory, 261
important, 185–188
inhibiting and enabling, 26–27
introduction, 63–64
Lightweight Architecture Evaluation, 416
models, 197–198
NASA ECS project, 453
peer review, 398
quality design decisions, 72–76
requirements, 64, 68–70
software and system, 190–193
standard lists, 193–196
summary, 76–77
tactics, 70–72, 198–199
technical context, 40–41
variability, 488–489
X-ability, 196–199

Quality design decisions, 72–73
allocation of responsibilities, 73
binding time, 75–76
coordination models, 73–74
data models, 74
element mapping, 75
resource management, 74–75
technology choices, 76

Quality management in global development, 
424

Quality of products as business goal, 299
Quality requirements, mapping decisions to, 

402–403
Quality views, 340–341
Questioners on ATAM teams, 401
Questions for organizational competence, 

470, 472–474
Queue sizes tactic, 139
Queuing models for performance, 198–199, 

252–255
Quick Test Pro tool, 172



580 Index 

Race conditions, 133
Random access in equipment utilization, 508
Rapid elasticity, 504–505
Rate monotonic prioritization strategy, 140
Rational Unified Process, 44
Rationale in documentation, 347, 349
Raw view extraction in reconstruction, 

382–386
RDBMSs (relational database management 

systems), 518
React to attacks tactics, 153
Reactive enforcement in Metropolis model, 

536
Reactive product line models, 495
Reader role in component-and-connector 

views, 335
Reconfiguration tactic, 93
Reconstruction and conformance, 380–381

database construction, 386–387
finding violations, 389–392
guidelines, 392–393
process, 381–382
raw view extraction, 382–386
summary, 393–394
view fusion, 388–389

Record/playback method for system state, 
165

Recover from attacks tactics, 153–154
Recover-from-faults tactics, 91–94
Reduce computational overhead tactic, 142
Reduce function in map-reduce pattern, 

232–235
Reduce overhead tactic, 138
Redundancy tactics, 90, 256–259
Refactor tactic, 124
Refined scenarios

NASA ECS project, 451–452
QAW, 296

Reflection for variation, 491
Reflection pattern, 262
Registry of services, 225
Regression testing, 372
Reintroduction tactics, 91, 93–94
Rejuvenation tactic, 95
Relational database management systems 

(RDBMSs), 518
Relations

allocation views, 339–340
architectural structures, 14, 16–17
broker pattern, 211
client-server pattern, 218
component-and-connector views, 337
conformance, 390

in documentation, 346
layered pattern, 207
map-reduce patterns, 235
Model-View-Controller pattern, 213
modular views, 333
multi-tier pattern, 237
peer-to-peer pattern, 222
pipe-and-filter pattern, 216
publish-subscribe pattern, 227
service-oriented architecture pattern, 225
shared-data pattern, 231
view extraction, 384

Release strategy for documentation, 350
Reliability

cloud, 507
component-and-connector views, 336
core, 532
independently developed components 

for, 36
vs. safety, 188
SOAP, 109
views, 341

Reliability quality attribute, 195
Remote procedure call (RPC) model, 109
Removal from service tactic, 94–95
Replicated elements in variation, 491
Replication tactic, 90
Report method for system state, 165
Reporting tests, 374
Repository patterns, 19
Representation of architecture, 6
Representational State Transfer (REST), 

108–110, 223–225
Reputation of products as business goal, 299
Request/reply connectors

client-server pattern, 218
peer-to-peer pattern, 222

Requirements
ASRs. See Architecturally significant 

requirements (ASRs)
categories, 64–65
from goals, 49
mapping to, 355, 402–403
Metropolis model, 534
product reuse, 483
prototypes for, 47
quality attributes, 68–70
software development life cycle changes, 

530
summary, 308–310
tying methods together, 308

Requirements documents
ASRs from, 292–293



Index 581

Waterfall model, 56
Reset method for system state, 165
Resisting attacks tactics, 152–153
RESL scale factor, 279
Resource management category

ASRs, 293
availability, 97
interoperability, 115
modifiability, 127
performance, 144
quality design decisions, 74–75
security, 155
software development life cycle changes, 

530
testability, 170
usability, 182

Resources
component-and-connector views, 336
equipment utilization, 508
pooling, 504
sandboxing, 166
software development life cycle changes, 

530
Response

availability, 85–86
interoperability, 105, 107–108
modifiability, 119–120
performance, 134
quality attributes expressions, 68–70
security, 149–150
testability, 162–163
usability, 176
variability, 489

Response measure
availability, 85–86
interoperability, 107–108
modifiability, 119–120
performance, 134
quality attributes expressions, 68–70
security, 149–150
testability, 162–163
usability, 176
variability, 489

Responsibilities
as business goal, 299
modules, 333
quality design decisions, 73

REST (Representational State Transfer), 
108–110, 223–225

Restart tactic, 94
Restrict dependencies tactic, 124, 239, 

246–247
Restrictions on vocabulary, 36

Results
ATAM, 411
CBAM, 447, 456–457
evaluation, 400
Lightweight Architecture Evaluation, 416

Retry tactic, 93
Reusable models, 35
Reuse of software architecture, 479, 483–486
Reviews

back door, 544–545
peer, 398–399

Revision history of modules, 334
Revoke access tactic, 153
Rework in agility, 279
Risk

ADD method, 320
ATAM, 402
global development, 425
progress tracking, 429

Risk-based testing, 373–374
Robustness of core, 532
Roles

component-and-connector views, 335
product line architecture, 488–490
software development teams, 422
testing, 375–376

Rollback tactic, 92
Round-robin scheduling strategy, 140–141
Rozanski, Nick, 170
RPC (remote procedure call) model, 109
Runtime conditionals, 492
Rutan, Burt, 159

SaaS (Software as a Service) model, 505
Safety

checklists, 260, 268
use cases, 46

Safety attribute, 188
Safety Integrity Level, 268
Salesforce.com, 509
Sample technologies in cloud, 514–520
Sampling rate tactic, 137
Sandbox tactic, 165–166
Sanity checking tactic, 89
Satisfaction in usability, 175
Saxe, John Godfrey, 379
Scalability

kinds, 187
peer-to-peer systems, 220
WebArrow web-conferencing system, 285

Scalability attribute, 187
Scaling, automatic, 516
Scenario scribes, 401



582 Index 

Scenarios
ATAM, 408, 410
availability, 85–86
business goals, 301–303
CBAM, 445–446
interoperability, 107–110
Lightweight Architecture Evaluation, 416
modifiability, 119–120
NASA ECS project, 451–452
performance, 132–134
QAW, 295–296
quality attributes, 67–70, 196–197
security, 148–150
for structures, 12
testability, 162–163
usability, 176
weighting, 441, 444

Schedule resources tactic
performance, 139
quality attributes, 72

Scheduled downtimes, 81
Schedulers, hypervisor, 512
Schedules

deviation measurements, 429
estimates, 34
policies, 140–141
policy tactic, 244–245
top-down and bottom-up, 420–421

Schemas, database, 519
Scope, product line, 486–488
Scope and summary section in 

documentation maps, 347
Scrum development methodology, 44
SDL (Specification and Description 

Language), 354
Security

analytic model space, 259
broker pattern, 242
cloud, 507, 520–521
component-and-connector views, 336
design checklist, 154–156
general scenario, 148–150
introduction, 147–148
ping/echo, 243
quality attributes checklists, 260
summary, 156
tactics, 150–154
views, 341

Security Monkey, 161
Security quality attribute, 195, 307
SEI (Software Engineering Institute), 59
Selecting

architecture, 47

tools and technology, 463
Selenium tool, 172
Self-organization in Agile, 277
Self-test tactic, 91
Semantic coherence, 178
Semantic importance, 140
Semiformal documentation notations, 330
Sensitivity points in ATAM, 403
Separate entities tactic, 153
Separation of concerns in testability, 167
Sequence diagrams

thought experiments, 263
for traces, 351–352

Servers
client-server pattern, 217–219
proxy, 146, 211
SAO pattern, 223, 225

Service consumer components, 222, 225
Service discovery in SOAP, 108
Service impact of faults, 81
Service-level agreements (SLAs)

Amazon, 81, 522
availability in, 81
IaaS, 506
PaaS, 505
SOA, 222

Service-oriented architecture (SOA) pattern, 
222–226

Service providers, 222–225
Service registry, 223
Service structure, 13
Services for platforms, 532–533
Set method for system state, 165
Shadow tactic, 93
Shared-data patterns, 19, 230–231
Shared documents in documentation, 350
Shareholders, responsibilities to, 299
Siberian hydroelectric plant catastrophe, 188, 

192
Siddhartha, Gautama, 251
Side-channel attacks, 521
Side effects in economic analysis, 439, 441
Simian Army, 160–161
Simulations, 264–265
Size

modules, 121
queue, 139

Skeletal systems, 34
Skeletal view of human body, 9
Skills

architects, 460, 463, 465
global development, 423
professional context, 51



Index 583

SLAs. See Service-level agreements (SLAs)
Small victories, 544
Smart pointers, 95
SOA (service-oriented architecture) pattern, 

222–226
SOAP

vs. REST, 108–110
SOA pattern, 223–225

Social networks in publish-subscribe pattern, 
229

Socializing in Incremental Commitment 
Model, 286

Society
as goal-object, 302
service to, 299

Software architecture importance, 25–26
change management, 27–28
constraints, 32–33
cost and schedule estimates, 34
design decisions, 31–32
evolutionary prototyping, 33–34
independently developed components, 

35–36
organizational structure, 33
quality attributes, 26–27
stakeholder communication, 29–31
summary, 37
system qualities prediction, 28
training basis, 37
transferable, reusable models, 35
vocabulary restrictions, 36

Software architecture overview, 3–4. See also 
Architecture

as abstraction, 5–6
behavior in, 6–7
competence, 467–475
contexts. See Contexts
definitions, 4
good and bad, 19–21
patterns, 18–19
selecting, 7
as set of software structures, 4–5
structures and views, 9–18
summary, 21–22
system architecture vs. enterprise, 7–8

Software as a Service (SaaS) model, 505
Software Engineering Body of Knowledge 

(SWEBOK), 292
Software Engineering Institute (SEI), 59, 479
Software Product Line Conference (SPLC), 

498
Software Product Line Hall of Fame, 498
Software product lines

adoption strategies, 494–496
evaluating, 493–494
evolving, 496–497
failures, 481–482
introduction, 479–481
key issues, 494–497
organizational structure, 497
quality attribute of variability, 488
reuse potential, 483–486
role of, 488–490
scope, 486–488
successful, 483–486
summary, 497–498
variability, 482–483
variation mechanisms, 490–493

Software quality attributes, 190–193
Software rejuvenation tactic, 95
Software upgrade tactic, 92–93
Solutions in relationships, 204–205
SonarJ tool, 387–391
Sorting in map-reduce pattern, 232
SoS (system of systems), 106
Source code

KSLOC, 279–281
mapping to, 334

Source in security scenario, 150
Source of stimulus

availability, 85–86
interoperability, 107–108
modifiability, 119–120
performance, 134
quality attributes expressions, 68–70
security, 148
testability, 162–163
usability, 176
variability, 489

Spare tactics, 91–92, 256–259
Specialized interfaces tactic, 165
Specification and Description Language 

(SDL), 354
Spikes in Agile, 284–285
SPLC (Software Product Line Conference), 498
Split module tactic, 123
Sporadic events, 133
Spring framework, 166
Staging views, 343
Stakeholders

on ATAM teams, 401
communication among, 29–31, 329
documentation for, 348–349
evaluation process, 400
interests, 52–55
interviewing, 294–296



584 Index 

Stakeholders, continued
for methods, 272
utility tree reviews, 306
views, 342

Standard lists for quality attributes, 193–196
Standards and interoperability, 112–113
State, system, 164–167
State machine diagrams, 353
State resynchronization tactic, 93
Stateless services in cloud, 522
States, responsibilities to, 299
Static allocation views, 340
Static scheduling, 141
Status meetings, 428
Stein, Gertrude, 142
Steinberg, Saul, 39
Stimulus

availability, 85–86
interoperability, 107–108
modifiability, 119–120
performance, 134
quality attributes expressions, 68–70
security, 148, 150
source. See Source of stimulus
testability, 162–163
usability, 176
variability, 489

Stochastic events, 133
Stonebraker, Michael, 518
Storage

for testability, 165
virtualization, 512–513

Strategies in NASA ECS project, 452–456
Strictly layered patterns, 19
Structural complexity in testability, 167–168
Structure101 tool, 387
Stuxnet virus, 80
Subarchitecture in component-and-connector 

views, 335
Submodules, 333
Subscriber role, 336
Subsystems, 9
Supernodes in peer-to-peer pattern, 220
Support and development software, 358–359
Support system initiative tactic, 180–181
Support user initiative tactic, 179–180
SWEBOK (Software Engineering Body of 

Knowledge), 292
Swing classes, 215
Syncing code and architecture, 368
System analysis and construction, 

documentation for, 329

System architecture vs. enterprise 
architecture, 7–8

System as goal-object, 302
System availability requirements, 81
System efficiency in usability, 175
System engineers, 55
System exceptions tactic, 90
System Generation Module, 358
System initiative in usability, 177
System of systems (SoS), 106
System overview in documentation, 349
System qualities, predicting, 28
System quality attributes, 190–193
System test manager roles, 422
System testing, 371

Tactics
availability, 87–96
interactions, 242–247
interoperability, 110–113
modifiability, 121–125
patterns relationships with, 238–242
performance, 135–142
quality attributes, 70–72, 198–199
security, 150–154
testability, 164–168
usability, 177–181

Tailor interface tactic, 111
Team building skills, 463, 465
Team leader roles, 422
TeamCity tool, 172
Teams

ATAM, 400–401
organizing, 422

Technical contexts
architecture influence, 57
environment, 41–42
quality attributes, 40–41
Vasa ship, 42–43

Technical debt, 286
Technical processes in security, 157
Technology choices, 76
Technology knowledge of architects, 467
Templates

ATAM, 406
code, 365–367
scenarios. See Scenarios
variation mechanism, 492

10-18 Monkey, 161
Terminating generate and test process, 316
Terms and concepts, 368–369
Test harnesses, 160



Index 585

Testability
analytic model space, 259
automation, 171–172
broker pattern, 241
design checklist, 169–170
general scenario, 162–163
introduction, 159–162
summary, 172
tactics, 164–168
test data, 170–171

Testable requirements, 292
TestComplete tool, 172
Testers, 55
Tests and testing

activities, 374–375
architect role, 375–376, 463
black-box and white-box, 372–373
choices, 315
in incremental development, 428
levels, 370–372
modules, 334
product reuse, 484
risk-based, 373–374
summary, 376

Therac-25 fatal overdose, 192
Thought experiments, 262–264
Thousands of source lines of code (KSLOC), 

279–281
Threads in concurrency, 132–133
Throughput of systems, 134
Tiers

component-and-connector views, 337
multi-tier pattern, 235–237

Time and time management
basis sets, 261
global development, 424
performance, 131

Time boxing, 264
Time of day factor in equipment utilization, 508
Time of year factor in equipment utilization, 

508
Time-sharing, 503
Time stamp tactic, 89
Time to market

independently developed components 
for, 36

and modifiability, 284
Timeout tactic, 91
Timing in availability, 85
TMR (triple modular redundancy), 89
Tools

for product reuse, 484
selecting, 463

Top-down adoption, 495
Top-down analysis mode, 284
Top-down schedules, 420–421
Topic-based publish-subscribe patterns, 229
Topological constraints, 236
Torvalds, Linus, 530, 535, 538
Total benefit in CBAM, 446
Traces for behavior documentation, 351–353
Tracking progress, 428–429
Tradeoffs

ATAM, 403
implementation, 427

Traffic systems, 142
Training, architecture for, 37
Transactions

availability, 95
databases, 519–520
SOAP, 108

Transferable models, 35
Transformation systems, 215
Transforming existing systems, 462
Transitions in state machine diagrams, 354
Triple modular redundancy (TMR), 89
Troeh, Eve, 190
Turner, R., 279, 281, 288
Twitter, 528
Two-phase commits, 95

Ubiquitous network access, 504
UDDI (Universal Description, Discovery and 

Integration) language, 108
UML

activity diagrams, 353
communication diagrams, 353
component-and-connector views, 

338–339
connectors, 369
sequence diagrams, 351–352
state machine diagrams, 353

Unambiguous requirements, 292
Uncertainty in equipment utilization, 

508–509
Undo command, 179
Unified Process, 44
Unit testing, 370–371
Unity of purpose in modules, 121
Universal Description, Discovery and 

Integration (UDDI) language, 108
Up-front planning vs. agility, 278–281
Usability

analytic model space, 259
design checklist, 181–182
general scenario, 176



586 Index 

Usability, continued
introduction, 175
quality attributes checklists, 260
tactics, 177–181

Usability quality attribute, 193, 307
Usage

allocation views, 339
component-and-connector views, 337
modular views, 333

Use an intermediary tactic, 245
modifiability, 123
quality attributes, 72

Use cases
ATAM presentations, 406
thought experiments, 263
for traces, 351

“User beware” proviso, 372
User initiative in usability, 177
User interface

exchanging information via, 104–105
separating, 178

User needs in usability, 175
User stories in Agile, 278
Users

communication with, 29
description and interests, 55

Uses
for documentation, 328–329
views for, 332

Uses relation in layered patterns, 19
Uses structure in decomposition, 12
Utility

assigning, 452
CBAM, 448

Utility-response curves, 439–443
Utility trees

ASRs, 304–307
ATAM, 407, 410
Lightweight Architecture Evaluation, 416

Utilization of equipment in cloud, 508–509

Value component
business goals, 301
utility trees, 306

Value for cost (VFC), 438, 442
Variability

product line, 482–483
quality attributes, 488–489

Variability attribute, 186
Variability guides, 347, 493
Variation

binding time, 75
software product lines, 490–493

Variation points
CBAM, 448–450
identifying, 490

Vasa ship, 42–43
Vascular view of human body, 9
Vehicle cruise control systems, 353
Verify and refine requirements in ADD, 

321–323
Verify message integrity tactic, 151
Vertical scalability, 187
VFC (value for cost), 438, 442
Views, 331–332

allocation, 339–340
architectural structures, 9–10
choosing, 341–343
combining, 343–345
component-and-connector, 335–339, 344, 

406
documenting, 345–347
fused, 388–389
Model-View-Controller pattern, 213–214
module, 332–335, 406
quality, 340–341

Views and Beyond approach, 282, 356–357
Villa, Pancho, 541
Violations, finding, 389–392
Virtual resource managers, 515
Virtual system of systems, 106
Virtualization and virtual machines

cloud, 509–514, 520–521
layers as, 13
in sandboxing, 166

Visibility of interfaces, 333
Vitruvius, 459
Vlissides, J., 212
Vocabulary

quality attributes, 67
restrictions, 36

Voting tactic, 89
Vulnerabilities in security views, 341

Walking skeleton method, 287
War ship example, 42–43
Warm spare tactic, 91–92
Watchdogs, 89
Waterfall model

description, 44
requirements documents, 56

Weaknesses
broker pattern, 211, 240–242
client-server pattern, 218
layered pattern, 207
map-reduce patterns, 235



Index 587

Model-View-Controller pattern, 213
multi-tier pattern, 237
peer-to-peer pattern, 222
pipe-and-filter pattern, 216
publish-subscribe pattern, 227
service-oriented architecture pattern, 225
shared-data pattern, 231

Wealth of Networks (Benkler), 528
Web 2.0 movement, 527
Web-based system events, 131
Web-conferencing systems

Agile example, 283–285
considerations, 265

Web Services Description Language 
(WSDL), 110

WebArrow web-conferencing system, 
284–285

WebSphere MQ product, 224
Weighting scenarios, 441, 444
Wells, H. G., 117
West, Mae, 131
“What if” questions in performance 

analysis, 255
White-box testing, 372–373
Whitney, Eli, 35–36, 480

Wikipedia, 528
Wikis for documentation, 350
Wisdom of crowds, 537
Woods, Eoin, 25, 170
Work assignment structures, 14
Work-breakdown structures, 33
Work skills of architect, 465
World Wide Web as client-server pattern, 219
Wrappers, 129
Writer role in component-and-connector 

views, 335
WS*, 108–110
WSDL (Web Services Description 

Language), 110

X-ability, 196–199
X-ray view of human body, 9

YAGNI principle, 282
Yahoo! map-reduce patterns, 234
Young, Toby, 39
YouTube, 528

Zoning policies analogy in Metropolis 
model, 536


	Contents
	Preface
	Reader’s Guide
	Acknowledgments
	CHAPTER 4 Understanding Quality Attributes
	4.1 Architecture and Requirements
	4.2 Functionality
	4.3 Quality Attribute Considerations
	4.4 Specifying Quality Attribute Requirements
	4.5 Achieving Quality Attributes through Tactics
	4.6 Guiding Quality Design Decisions
	4.7 Summary
	4.8 For Further Reading
	4.9 Discussion Questions

	Index



