

David Chisnall

Objective-C
P H R A S E B O O K

SECOND EDITION

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

DEVELOPER’S
LIBRARY

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been print-
ed with initial capital letters or in all capitals.
The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.
The publisher offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales, which may include electronic versions and/or cus-
tom covers and content particular to your business, training goals, marketing focus,
and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:
International Sales
international@pearson.com

Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data is on file.

Copyright © 2012 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is pro-
tected by copyright, and permission must be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For infor-
mation regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-81375-6
ISBN-10: 0-321-81375-8
Text printed in the United States on recycled paper at RR Donnelly in Crawfordsville,
Indiana.
First printing October 2011

Editor-in-Chief
Mark Taub
Acquisitions Editor
Mark Taber
Development
Editor
Michael Thurston

Managing Editor
Kristy Hart
Project Editor
Anne Goebel
Copy Editor
Bart Reed

Proofreader
Charlotte Kughen
Publishing
Coordinator
Vanessa Evans

Cover Designer
Gary Adair
Senior Compositor
Gloria Schurick

Table of Contents
Introduction xiv

1 The Objective-C Philosophy 1
Understanding the Object Model 2
A Tale of Two Type Systems 4
C Is Objective-C 5
The Language and the Library 7
The History of Objective-C 9
Cross-Platform Support 13
Compiling Objective-C Programs 15

2 An Objective-C Primer 19
Declaring Objective-C Types 20
Sending Messages 24
Understanding Selectors 28
Declaring Classes 31
Using Protocols 36
Adding Methods to a Class 38
Using Informal Protocols 42
Synthesizing Methods with

Declared Properties 43
Understanding self, _cmd, super 49
Understanding the isa Pointer 52
Initializing Classes 55
Reading Type Encodings 58
Using Blocks 60

iv Contents

3 Memory Management 63
Retaining and Releasing 64
Assigning to Instance Variables 66
Automatic Reference Counting 67
Returning Objects via

Pointer Arguments 70
Avoiding Retain Cycles 73
Migrating to ARC 75
Autorelease Pools 78
Using Autoreleased Constructors 81
Autoreleasing Objects in Accessors 82
Supporting Automatic

Garbage Collection 83
Interoperating with C 85
Understanding Object Destruction 88
Using Weak References 90
Allocating Scanned Memory 93

4 Common Objective-C Patterns 95
Supporting Two-Stage Creation 96
Copying Objects 98
Archiving Objects 100
Creating Designated Initalizers 104
Enforcing the Singleton Pattern 107
Delegation 109
Providing Façades 111
Creating Class Clusters 113

Contents v

Using Run Loops 116

5 Numbers 119
Storing Numbers in Collections 121
Performing Decimal Arithmetic 125
Converting Between Strings

and Numbers 128
Reading Numbers from Strings 130

6 Manipulating Strings 133
Creating Constant Strings 134
Comparing Strings 135
Processing a String One

Character at a Time 139
Converting String Encodings 142
Trimming Strings 145
Splitting Strings 146
Copying Strings 148
Creating Strings from Templates 150
Matching Patterns in Strings 154
Storing Rich Text 156

7 Working with Collections 159
Using Arrays 161
Manipulating Indexes 163
Storing Unordered Groups

of Objects 165
Creating a Dictionary 167
Iterating Over a Collection 169

vi Contents

Finding an Object in a Collection 173
Subclassing Collections 176
Storing Objects in C++ Collections 179

8 Dates and Times 183
Finding the Current Date 184
Converting Dates for Display 186
Calculating Elapsed Time 189
Parsing Dates from Strings 191
Receiving Timer Events 192

9 Working with Property Lists 195
Storing Collections in

Property Lists 196
Reading Data from

Property Lists 199
Converting Property List Formats 202
Using JSON 204
Storing User Defaults 206
Storing Arbitrary Objects in

User Defaults 210

10 Interacting with the Environment 213
Getting Environment Variables 214
Parsing Command-Line Arguments 216
Accessing the User’s Locale 218
Supporting Sudden Termination 219

11 Key-Value Coding 223

Contents vii

Accessing Values by Key 224
Ensuring KVC Compliance 225
Understanding Key Paths 229
Observing Keys 231
Ensuring KVO Compliance 233

12 Handling Errors 237
Runtime Differences for Exceptions 238
Throwing and Catching Exceptions 242
Using Exception Objects 244
Using the Unified

Exception Model 246
Managing Memory with Exceptions 247
Passing Error Delegates 250
Returning Error Values 252
Using NSError 253

13 Accessing Directories
and Files 255
Reading a File 256
Moving and Copying Files 258
Getting File Attributes 260
Manipulating Paths 262
Determining if a File or

Directory Exists 264
Working with Bundles 266
Finding Files in System Locations 269

14 Threads 273

viii Contents

Creating Threads 274
Controlling Thread Priority 275
Synchronizing Threads 278
Storing Thread-Specific Data 280
Waiting for a Condition 283

15 Blocks and Grand Central 287
Binding Variables to Blocks 288
Managing Memory with Blocks 293
Performing Actions in the Background 296
Creating Custom Work Queues 298

16 Notifications 301
Requesting Notifications 302
Sending Notifications 304
Enqueuing Notifications 305
Sending Notifications

Between Applications 307

17 Network Access 311
Wrapping C Sockets 312
Connecting to Servers 314
Sharing Objects Over a Network 317
Finding Network Peers 320
Loading Data from URLs 323

18 Debugging Objective-C 327
Inspecting Objects 328
Recognizing Memory Problems 330

Contents ix

Watching Exceptions 333
Asserting Expectations 335
Logging Debug Messages 337

19 The Objective-C Runtime 339
Sending Messages by Name 340
Finding Classes by Name 342
Testing If an Object

Understands a Method 343
Forwarding Messages 346
Finding Classes 349
Inspecting Classes 351
Creating New Classes 353
Adding New Instance Variables 356

Index 359

This page intentionally left blank

About the Author
David Chisnall is a freelance writer and consultant.
While studying for his PhD, he co-founded the
Étoilé project, which aims to produce an open-
source desktop environment on top of GNUstep,
an open-source implementation of the OpenStep
and Cocoa APIs. He is an active contributor
to GNUstep and is the original author and
maintainer of the GNUstep Objective-C 2
runtime library and the associated compiler
support in the Clang compiler.
After completing his PhD, David hid in academia
for a while, studying the history of programming
languages. He finally escaped when he realized
that there were places off campus with an
equally good view of the sea and without
the requirement to complete quite so much
paperwork. He occasionally returns to collaborate
on projects involving modeling the semantics of
dynamic languages.
David has a great deal of familiarity with
Objective-C, having worked both on projects
using the language and on implementing the
language itself. He has also worked on implementing
other languages, including dialects of Smalltalk
and JavaScript, on top of an Objective-C
runtime, allowing mixing code between all of
these languages without bridging.
When not writing or programming, David enjoys
dancing Argentine Tango and Cuban Salsa,
playing badminton and ultimate frisbee, and
cooking.

Acknowledgments
When writing a book about Objective-C, the
first person I should thank is Nicolas Roard.
I got my first Mac at around the same time I
started my PhD and planned to use it to write
Java code, not wanting to learn a proprietary
language. When I started my PhD, I found
myself working with Nicolas, who was an
active GNUstep contributor. He convinced
me that Objective-C and Cocoa were not
just for Macs and that they were both worth
learning. He was completely right: Objective-
C is a wonderfully elegant language, and the
accompanying frameworks make development
incredibly easy.
The next person to thank is Fred Kiefer. Fred is
the maintainer of the GNUstep implementation
of the AppKit framework. He did an incredibly
thorough (read: pedantic) technical review of
this book, finding several places where things
were not explained as well as they could have
been. If you enjoy reading this book, then Fred
deserves a lot of the credit.
Finally, I need to thank everyone else who was
involved in bringing this book from my text
editor to your hands, especially Mark Taber who
originally proposed the idea to me.

We Want to Hear from You
As the reader of this book, you are our most
important critic and commentator. We value
your opinion and want to know what we’re doing
right, what we could do better, what areas you’d
like to see us publish in, and any other words of
wisdom you’re willing to pass our way.
You can email or write me directly to let me
know what you did or didn’t like about this
book—–as well as what we can do to make our
books stronger.
Please note that I cannot help you with technical
problems related to the topic of this book, and
that due to the high volume of mail I receive, I
might not be able to reply to every message.
When you write, please be sure to include this
book’s title and author as well as your name and
phone or email address. I will carefully review
your comments and share them with the author
and editors who worked on the book.

E-mail: mark.taber@pearson.com
Mail: Mark Taber

Associate Publisher
Addison Wesley Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at
informit.com/aw for convenient access to any
updates, downloads, or errata that might be
available for this book.

Introduction
Blaise Pascal once wrote, “I didn’t have time
to write a short letter, so I wrote a long one
instead.” This phrasebook is the shortest book
I’ve written, and trying to fit everything that
I wanted to say into a volume this short was a
challenge.
When Mark Taber originally suggested that I
write an Objective-C Phrasebook, I was not
sure what it would look like. A phrasebook for
a natural language is a list of short idioms that
can be used by people who find themselves in
need of a quick sentence or two. A phrasebook
for a programming language should fulfil a
similar rôle.
This book is not a language reference. Apple
provides a competent reference for the Objective-
C language on the http://developer.apple.
com site. This is not a detailed tutorial; unlike
my other Objective-C book, Cocoa Programming
Developer’s Handbook, you won’t find complete
programs as code examples. Instead, you’ll find
very short examples of Objective-C idioms,
which hopefully you can employ in a wide range
of places.
One of the most frustrating things in life is
finding that code examples in a book don’t
actually work. There are two sorts of code
listings in this book. Code on a white background
is intended to illustrate a simple point. This
code may depend on some implied context and

http://developer.apple.com
http://developer.apple.com

should not be taken as working, usable examples.
The majority of the code you will find in this
book is on a gray background. At the bottom of
each of these examples, you will find the name
of the file that the listing was taken from. You
can download these from the book’s page on
InformIT’s website: http://www.informit.com/
title/0321743628

When I wrote the first edition of this book,
I wrote and tested all of the examples on OS
X. After sending the draft manuscript off for
editing, I tested them on GNUstep and was
pleasantly surprised that almost all of them
worked. By the time the book was published,
they all worked. The second edition covers a
number of features that are only supported by
Apple on Mac OS X 10.7 or iOS 5. All of these
examples also work with GNUstep. As before,
I have written all of the examples on OS X,
without making any concessions for GNUstep
other than testing the examples there.

A Note About Typesetting
This book was written in Vim, using semantic
markup. From here, three different versions
are generated. Two are created using pdflatex.
If you are reading either the printed or PDF
version, then you can see one of these. The only
difference between the two is that the print
version contains crop marks to allow the printer
to trim the pages.

http://www.informit.com/title/0321743628
http://www.informit.com/title/0321743628

The third version is XHTML, intended for
the ePub edition. This is created using the
EtoileText framework, which first parses the
LaTeX-style markup to a tree structure, then
performs some transformations for handling
cross-references and indexing, and finally
generates XHTML. The code for doing this is
all written in Objective-C.
If you have access to both, you may notice
that the code listings look slightly nicer in the
ePub edition. This is because EtoileText uses
SourceCodeKit, another Étoilé framework, for
syntax highlighting. This uses part of Clang, a
modern Objective-C compiler, to mark up the
code listings. This means that ranges of the code
are annotated with exactly the same semantic
types that the compiler sees. For example, it can
distinguish between a function call and a macro
instantiation.
You can find all of the code for doing this in the
Étoilé subversion repository: http://svn.gna.
org/viewcvs/etoile/trunk/Etoile/

http://svn.gna.org/viewcvs/etoile/trunk/Etoile/
http://svn.gna.org/viewcvs/etoile/trunk/Etoile/

3

Memory
Management

If you come from a C or C++ background,
you’re probably used to tracking ownership of
objects and manually allocating and destroying
them. If you’re coming from a language such as
Java, you’re probably accustomed to having the
garbage collector take care of all of this for you.
Objective-C does not, at the language level,
provide anything for allocating or deallocating
objects. This is left up to C code. You
commonly allocate objects by sending their class
a +alloc message. This then calls something like
malloc() to allocate the space for the object.
Sending a -dealloc message to the instance will
then clean up its instance variables and delete it.
The Foundation framework adds reference
counting to this simple manual memory
management. This makes life much easier, once
you understand how it works. Newer compilers

64 CHAPTER 3: Memory Management

provide some assistance for you, eliminating
the need to write the reference counting code
yourself.

Retaining and Releasing

6 NSArray *anArray = [NSArray array];
7 anArray = [[NSArray alloc] init];
8 [anArray release];

From: retainRelease.m

Every object that inherits from NSObject has
a reference count associated with it. When this
reference count reaches 0, it is destroyed. An
object created with +alloc or any of the related
methods, such as +new or +allocWithZone:,
begins life with a reference count of one.
To control the reference count of an object, you
send it -retain and -release messages. As
their names would imply, you should use these
messages when you want to retain a reference
to an object, or when you want to release
an existing reference. The -retain message
increments the object’s reference count, and the
-release message decrements it.
You can also send a -retainCount message
to an object to determine its current reference
count. It’s tempting to use this for optimization
and invoke some special cases when you are sure
there is only one reference to an object. This is a
very bad idea. As the name implies, this method

Retaining and Releasing 65

tells you the number of retained references to
the object, not the number of references. It
is common not to bother sending a -retain
message to objects when you create a pointer
to them on the stack. This means that an object
may be referenced in two or more places, even
though its retain count is only one.
Pointers in Objective-C are divided into two
categories: owning references and non-owning
references. An owning reference is one that
contributes towards the retain count of an
object. When you call a method like +new or
-retain, you get an owning reference to a new
object. Most other methods return a non-owning
reference. Instance variables and global variables
are typically owning pointers, so you should
assign owning references to them. You also need
to ensure that you delete the existing owning
reference (by sending a -release message) when
performing an assignment.
Temporary variables are typically non-owning
references. Automatic reference counting and
garbage collection, which we’ll look at later in
this chapter, both introduce special kinds of non-
owning references.

66 CHAPTER 3: Memory Management

Assigning to Instance Variables

26 - (void)setStringValue: (NSString*)aString
27 {
28 id tmp = [aString retain];
29 [string release];
30 string = tmp;
31 }

From: ivar.m

There are a few things that you have to be
careful about when using reference counting
in this way. Consider the following simple set
method:

14 - (void)setStringValue: (NSString*)aString
15 {
16 [string release];
17 string = [aString retain];
18 }

From: ivar.m

This looks sensible. You release the reference
to the old value, then retain the new value and
assign it. Most of the time, this will work, but in
a few cases it won’t, and that can be confusing
to debug.
What happens if the value of aString and
string are the same? In this case, you are
sending the same object a -release message
then a -retain message. If some other code
holds references to this object, it will still work,

Automatic Reference Counting 67

but if not then the first message will cause the
object to be destroyed and the second will be
sent to a dangling pointer.
A more correct implementation of this method
would retain the new object first, as shown at
the start of this section. Note that you should
assign the result of the -retain message because
some objects will return another object when
you retain them. This is very rare, but it does
happen on occasion.
Finally, this method is not thread-safe. If
you want a thread-safe set method, you need
to retain the new value, perform an atomic
exchange operation on the result and the
instance variable, and then release the old value.
In general, however, it is almost impossible to
reason about code that supports this kind of
fine-grained concurrency, and the amount of
cache churn it causes will offset any performance
gains from parallelism, so it’s a terrible idea.
If you really need it, it’s better to use declared
properties to synthesize the accessor than try to
write it yourself.

Automatic Reference Counting
With the release of iOS 5 and Mac OS X 10.7,
Apple introduced Automatic Reference Counting
(ARC). Conceptually, you can think of this as
having the compiler automatically figure out
when -retain and -release should be called,

68 CHAPTER 3: Memory Management

and calling them for you. The implementation is
somewhat more complicated.

Note: Most of the examples in this book use
manual reference counting. This is intentional.
Even though ARC is recommended for new
development, there is a lot of legacy code around
that does not use it. Even if you are using ARC,
you should still understand the retain and release
semantics that are implicitly added for you. It’s
very easy for a programmer who is comfortable
with manual reference counting to switch to using
ARC, just as it’s useful to understand your CPU’s
instruction set even if you never write any assembly
code.

Rather than inserting message sends directly
into the code, the compiler front end inserts
calls to functions like objc_retain() and
objc_release(). The optimizer then tries to
combine or eliminate these calls. In the simple
case, these functions do the equivalent of a
message send. In some common cases, they are
significantly more efficient.
In simple use, you can forget about memory
management when using ARC. If you are using
a recent version of XCode, then ARC is the
default. If you are compiling on the command
line or with some other build system, add
-fobjc-arc. Now just forget about retaining and
releasing objects.

Automatic Reference Counting 69

It would be nice if life were that simple.
Unfortunately, ARC does have some limitations.
More specifically, it formalizes the fuzzy
boundary between C memory and Objective-
C objects. ARC divides pointers into three
categories. Strong pointers follow the same
retain/release semantics that we’ve looked at
already. Weak pointers, which we’ll look at later,
are non-owning references that are automatically
zeroed when the object is destroyed. Unsafe
unretained pointers are pointers that are ignored
by ARC: You are responsible for tracking the
lifetime of objects stored in them.
By default, all object pointers in instance
variables or on the stack are strong. Object
pointers in structures have no default.
They must be explicitly marked with the
__unsafe_unretained ownership qualifier. Even
though this is the only permitted ownership for
these pointers, it must be explicitly stated to
provide a reminder to people reading the code
that ARC will ignore it.

70 CHAPTER 3: Memory Management

Returning Objects via Pointer
Arguments

3 __weak id weak;
4 int writeBack(id *aValue)
5 {
6 *aValue = [NSObject new];
7 weak = *aValue;
8 return 0;
9 }

10

11 int main(void)
12 {
13 @autoreleasepool
14 {
15 id object;
16 writeBack(&object);
17 NSLog(@"Object: %@", object);
18 object = nil;
19 NSLog(@"Object: %@", weak);
20 }
21 NSLog(@"Object: %@", weak);
22 return 0;
23 }

From: writeback.m

In ARC mode, pointer-to-pointer arguments
are somewhat complicated. These are typically
used for two things, either passing arrays or
returning objects. If you are passing an array
down the stack, then you should make sure that
you declare it as const. This tells the compiler
that the callee will not perform any assignments
to it, so ARC can pass the array without any
complex interaction.

Returning Objects via Pointer Arguments 71

If you are returning an object via this
mechanism, ARC produces some fairly complex
code. In the example at the start of this section,
the call to writeBack() generates code that is
roughly equivalent to this:

id tmp = [object retain];
writeBack(&tmp);
[tmp retain];
[object release];
object = tmp;

In writeBack(), the new object will be
autoreleased before storing it in the temporary
value. This means that, at the end of this,
object contains an owning reference to the new
object.
If you declared object as __autoreleasing id,
the generated code is a lot simpler. This will
simply autorelease the value initially stored in
object, which will have no effect because the
initial value for all object pointers—even with
automatic storage—is nil, and will pass the
pointer directly and expect the callee to store
a non-owning (autoreleased) pointer in it, if it
modifies it.
When you run this example, you’ll see that
the weak reference is only zeroed when the
autorelease pool is destroyed. The writeBack()
function stores an autoreleased object into the
passed pointer in all cases, and never releases the
passed value. The caller is always responsible
for ensuring that the value passed in is a

72 CHAPTER 3: Memory Management

non-owning reference, which it does either by
ensuring that it’s a pointer to an autoreleased
object or a copy of a pointer to a retained
object.
If you instead mark the parameter out (only
allowed on method parameters, not C function
parameters) then the callee guarantees that it
will not read the value, so the compiler will skip
the step where it makes a copy of the pointer in
object before the call.
If you need to pass multiple objects up the stack,
then you should probably return an NSArray
instance. There are some alternatives, but
they are sufficiently complex that it’s simply
not worth the effort: they’re easy to get subtly
wrong and spend ages debugging, and if you do
manage to get it right, you’ll probably find it’s
slower than using an NSArray.
If you are passing multiple values down the
stack, then you should declare an array type
with an explicit ownership qualifier for the
parameter, not a pointer type. For example,
__unsafe_unretained id[] instead of id*.
This ensures that the writeback mechanism is
not used.

Avoiding Retain Cycles 73

Avoiding Retain Cycles

19 - (void)setDelegate: (id)aDelegate
20 {
21 delegate = aDelegate;
22 }

From: ivar.m

The problem with pure reference counting is that
it doesn’t detect cycles. If you have two objects
that retain references to each other, then neither
will ever be freed.
In general, this is not a major problem.
Objective-C data structures tend to be acyclic,
but there are some common cases where
cycles are inevitable. The most common is the
delegation pattern. In this pattern, an object
typically implements some mechanisms and
delegates policy to another object. Most of
AppKit works in this way.
The delegate needs a reference to the object, and
the object needs a reference to its delegate. This
immediately creates a cycle. The common idiom
that addresses this problem is that objects do
not retain their delegates. If you pass an object
as an argument to a -setDelegate: method,
you need to make sure that some other object
holds a reference to it, or it will be deleted
prematurely.
With ARC, you have two choices: You can
either mark the instance variable as __weak

74 CHAPTER 3: Memory Management

or as __unsafe_unretained. The former is
safer, because it ensures that there is no chance
of a dangling pointer: When the delegate is
destroyed, the instance variable will be set to
nil.
There are two disadvantages of using a weak
pointer. The first is portability. Weak pointers
work on iOS 5, Mac OS X 10.7, and with
GNUstep, but they don’t work on older versions
of iOS or Mac OS X. The other disadvantage
is performance. Every access to a weak pointer
goes via a helper function. This checks that the
object was not in the process of deallocation and
retains it if it is still valid, or returns nil if it is
not.
In contrast, unsafe unretained pointers are
just plain pointers. They are cheap to access
and work on any deployment target. Their
disadvantage is that you are responsible for
ensuring that you don’t try to access them after
the pointee has been deallocated.
A good compromise is to use weak pointers
when debugging and unsafe unretained pointers
for deployment. Add debug assert statements
checking that the pointer is not nil before you
send it any messages, and you’ll end up with a
helpful error, rather than a crash, if you have
bugs.

Migrating to ARC 75

Migrating to ARC
If you are starting a new project in XCode, ARC
will be the default and there is little reason
not to use it. If you are working on an existing
code base, then you are probably using manual
reference counting. You can save some long-term
development effort by moving to ARC, but it is
a little bit more involved than simply flipping a
compiler switch.
Clang provides a migration tool that will
attempt to rewrite Objective-C code to use
ARC. This can be invoked from the command
line via the -ccc-arcmt-check and -ccc-arcmt-
modify arguments. The first reports any things
in the code that cannot be automatically
translated. The second actually performs the
rewriting—modifying the original file—if there
are no errors.
For simple Objective-C code, the migration tool
will just work. The most obvious thing that
it does is remove all -retain, -release, and
autorelease message sends. It will also remove
the explicit [super dealloc] from a -dealloc
method: That call is now inserted automatically
by the compiler. ARC automatically releases
all instance variables, so you will only need to
implement -dealloc at all if you are freeing
malloc()’d memory or similar.
If you implement custom reference counting
methods, then you will need to delete them. A
common reason for this is to prevent accidental

76 CHAPTER 3: Memory Management

Note: ARC actually creates a -.cxx_destruct
method to handle freeing instance variables. This
method was originally created for calling C++
destructors automatically when an object was
destroyed. The visible difference of this with ARC
is that Objective-C instance variables are now
deallocated after -dealloc in the root class has
finished, not before. In most cases, this should
make no difference.

deallocation of singletons. This is less important
with ARC, because programmer error is less
likely to cause an object to be prematurely
deleted.
The biggest problems come if you are trying
to store Objective-C pointers in C structures.
The simplest solution is just not to do that:
Use Objective-C objects with public instance
variables instead. This lets the compiler handle
memory management for the object, as well as
the fields.
The only time when using structures referring
to Objective-C objects is considered safe is when
you are passing them down the stack. The object
pointers can then be __unsafe_unretained
qualified without any problems, as long as they
remain valid in the caller.
You will notice that you no longer have any
assign properties after using the migration tool.
These will be rewritten as unsafe_unretained

Migrating to ARC 77

or weak, depending on whether the deployment
target that you’ve selected supports weak
references. You may want to explicitly change
some to unsafe_unretained if they are used
for breaking simple cycles and you find weak
references to be a performance problem.
The migration tool will try to insert __bridge
casts where required, but these are worth
checking. These casts are used to move objects
in and out of ARC-managed code. In non-
ARC Objective-C, you are free to do things like
(void*)someObject, because object pointers are
just C pointers that you can send messages to.
In ARC mode, this cast would be ambiguous
because the compiler doesn’t know what the
ownership semantics of void* are supposed to
be, so it is rejected.
The migration tool will rewrite this as
(__bridge void*)someObject, but that may
not be what you want. We’ll look at these casts
in more detail in the “Interoperating with C”
section.

78 CHAPTER 3: Memory Management

Autorelease Pools

3 id returnObject(void)
4 {
5 return [[NSObject new] autorelease];
6 }
7

8 int main(void)
9 {

10 @autorelease {
11 id object = returnObject();
12 [object retain];
13 }
14 // Object becomes invalid here.
15 [object release];
16 return 0;
17 }

From: autorelease.m

Aside from cycles, the biggest problem with
reference counting is that there are short
periods when no object really owns a particular
reference. In C, deciding whether the caller or
callee is responsible for allocating memory is a
problem.
In something like the sprintf() function, the
caller allocates the space. Unfortunately, the
caller doesn’t actually know how much space is
needed, so the snprintf() variant was added to
let the callee know how much space is available.
This can still cause problems, so the asprintf()
version was added to let the callee allocate the
space.
If the callee is allocating the space, who

Autorelease Pools 79

is responsible for freeing it? The caller,
presumably, but because the caller didn’t create
it, anything that checks for balanced malloc()
and free() calls will fail to spot the leak.
In Objective-C, this problem is even more
common. Lots of methods may return temporary
objects. If you’re returning a temporary object,
it needs to be freed, but if you’re returning a
pointer to an instance variable, it doesn’t. You
could retain such a pointer first, but then you
need to remember to release every single object
that is returned from a method. This quickly
gets tiresome.
The solution to this problem is the autorelease
pool. When you send an object an -autorelease
message, it is added to the currently active
NSAutoreleasePool instance. When this
instance is destroyed, every object added to it
is sent a -release message.
The -autorelease message is a deferred
-release message. You send it to an object
when you no longer need a reference to it but
something else might.
If you are using NSRunLoop, an autorelease pool
will be created at the start of every run loop
iteration and destroyed at the end. This means
that no temporary objects will be destroyed
until the end of the current iteration. If you
are doing something that creates a lot of
temporary objects, you may wish to create a new
autorelease pool, like so:

80 CHAPTER 3: Memory Management

id pool = [NSAutoreleasePool new];
[anObject doSomethingThatCreatesObjects];
[pool drain];

Note that you send an autorelease pool a -drain
message rather than a release message when
you destroy it. That is because the Objective-
C runtime will ignore -release messages when
you are in garbage collected mode. The -drain
message in this mode provides a hint to the
collector, but does not destroy the pool, when
you are in garbage collected mode.
In OS X 10.7, Apple made autorelease
pools part of the language. Programs that
explicitly reference the NSAutoreleasePool
class are considered invalid in ARC mode
and the compiler will reject them. The
replacement is the @autoreleasepool construct.
This defines a region where an autorelease
pool is valid. In non-ARC mode, this will
insert exactly the same code as the above
snippet. In ARC mode, it inserts calls to
the objc_autoreleasePoolPush() and
objc_autoreleasePoolPop() functions, which
do something similar.

Using Autoreleased Constructors 81

Using Autoreleased Constructors

4 + (id)object
5 {
6 return [[[self alloc] init] autorelease];
7 }

From: namedConstructor.m

I said in the last section that objects created
with +alloc have a retain count of one. In fact,
all objects are created with a retain count of one,
but objects created with a named constructor,
such as +stringWithFormat: or +array, are also
autoreleased.
If you create an object with one of these
mechanisms, you must send it a -retain
message if you want to keep it. If you don’t, it
will be collected later when the autorelease pool
is destroyed.
This is a convention that is important to observe
in your own classes. If someone creates an
instance of one of your classes with a named
constructor, he will expect not to have to
release it. A typical named constructor would
look something like the one at the start of this
section.
Note that, because this is a class method, the
self object will be the class. By sending the
+alloc message to self rather than to the class
name, this method can work with subclasses
automatically.

82 CHAPTER 3: Memory Management

With ARC, these conventions are formalized
in method families. Methods that begin alloc,
new, copy, or mutableCopy return an owning
reference, a reference that must be released if
not stored. Other methods return a non-owning
reference, one that has either been autoreleased
or is stored somewhere else with a guarantee
that it will not be released.

Autoreleasing Objects in
Accessors

34 - (NSString*)stringValue
35 {
36 return [[string retain] autorelease];
37 }

From: ivar.m

Another common issue with reference counting,
as implemented in Foundation, is that you
commonly don’t retain objects that you only
reference on the stack. Imagine that you have
some code like this:

NSString *oldString = [anObject stringValue];
[anObject setStringValue: newString];

If the -setStringValue: method is implemented
as I suggested earlier, this code will crash
because the object referenced by oldString
will be deleted when you set the new string
value. This is a problem. There are two possible

Supporting Automatic Garbage Collection 83

solutions, both involving autorelease pools. One
is to autorelease the old value when you set
the new one. The other is the definition of the
-stringValue method from the start of this
section.
This ensures that the string will not be
accidentally destroyed as a result of anything
that the object does. Another common idiom
is to substitute a -copy message for -retain.
This is useful if the instance variable might
be mutable. If it’s immutable, -copy will be
equivalent to -retain. If it’s mutable, the caller
will get an object that won’t change as a result
of other messages sent to the object.

Supporting Automatic Garbage
Collection

0 $ gcc -c -framework Cocoa -fobjc-gc-only
collected.m

1 $ gcc -c -framework Cocoa -fobjc-gc collected.m

Starting with OS X 10.5, Apple introduced
automatic garbage collection to Objective-C.
This can make life easier for programmers,
but in most cases it comes with a performance
penalty. Apple’s collector uses a lot of memory
to track live references and therefore is not
available on the iPhone. It is also not supported
with older versions of OS X and has only limited

84 CHAPTER 3: Memory Management

support with GNUstep, so you should avoid
using garbage collection if you want to write
portable code.
If you compile your code in garbage collected
mode, all -retain, -release, and -autorelease
messages will be ignored. The compiler will
automatically insert calls to functions in the
runtime for every assign operation to memory
on the heap.
Code must be compiled with garbage collection
support to use the garbage collector. This will
insert calls to a set of functions that, on the
Mac runtime, are declared in objc-auto.h on any
assignment to memory on the heap.
These functions make sure that the garbage
collector is aware of the write. These are
required because the collector is concurrent. It
will run in a background thread and will delete
objects when it can no longer find references to
them. The collector must be notified of updated
pointers, or it might accidentally delete an object
that you have just created a reference to.
You have two options when compiling for
garbage collection. If you compile with the
-fobjc-gc-only flag your code will only support
garbage collection. If you compile with the
-fobjc-gc flag, the code will support both
reference counting and automatic garbage
collection. This is useful when you are compiling
a framework. You must still remember to add
-retain and -release calls in the correct

Interoperating with C 85

110 OBJC_EXPORT BOOL objc_atomicCompareAndSwapGlobal(
id predicate, id replacement, volatile id *
objectLocation)

111 __OSX_AVAILABLE_STARTING(__MAC_10_6,
__IPHONE_NA) OBJC_ARC_UNAVAILABLE;

112 OBJC_EXPORT BOOL
objc_atomicCompareAndSwapGlobalBarrier(id
predicate, id replacement, volatile id *
objectLocation)

113 __OSX_AVAILABLE_STARTING(__MAC_10_6,
__IPHONE_NA) OBJC_ARC_UNAVAILABLE;

114 // atomic update of an instance variable
115 OBJC_EXPORT BOOL

objc_atomicCompareAndSwapInstanceVariable(id
predicate, id replacement, volatile id *
objectLocation)

116 __OSX_AVAILABLE_STARTING(__MAC_10_6,
__IPHONE_NA) OBJC_ARC_UNAVAILABLE;

117 OBJC_EXPORT BOOL
objc_atomicCompareAndSwapInstanceVariableBarrier
(id predicate, id replacement, volatile id *
objectLocation)

From: objc-auto.h

places, but users of your framework can then use
it with or without collection.

Interoperating with C
In garbage collected mode, not all memory is
scanned. Anything allocated by malloc() is
invisible to the garbage collector. If you pass
an object pointer as a void* parameter to a
C function, which then stores it in malloc()’d

86 CHAPTER 3: Memory Management

memory, it becomes invisible to the collector
and may be freed even though there are still
references to it.
In ARC mode, the compiler will handle pointers
that are on the stack or in instance variables for
you automatically, but it won’t track pointers in
structures or anything else explicitly declared as
__unsafe_unretained.
Normally, you would send a -retain message
to an object before storing it on the heap, but
that does nothing in garbage collected mode
and is forbidden in ARC mode. Instead, you
have to use the CFRetain() function. This
will increment the object’s reference count,
irrespective of whether the collector is running.
The collector will only free objects when their
retain count is zero and it cannot find any
references to them in traced memory.
When you have finished with a reference that is
outside of the collector’s scope, you need to call
CFRelease().
ARC provides a richer memory model for this
kind of operation. Explicit casts from object
to non-object pointer types are no longer
allowed. They must be replaced by bridged casts.
Consider the following bit of code in non-ARC
mode:

void *aPointer = (void*)someObject;

In ARC mode, this would create an untracked
pointer from a tracked pointer, which is not

Interoperating with C 87

something that you want to do without thinking.
You have three basic options. The first is
most commonly used for on-stack variables, or
variables pointing to objects that are guaranteed
to be referenced elsewhere:

void *aPointer = (__bridge void*)someObject;

This performs the cast with no transfer of
ownership. If all other references to someObject
are dropped, then aPointer becomes a dangling
pointer. If the void* pointer is going on the
heap somewhere and should keep an owning
reference to the object, then you should use a
retained bridging cast:

void *aPointer = (__bridge_retained void*)
someObject;

This will move a single owning reference
out of ARC’s control. This is roughly
equivalent to sending a -retain message to
someObject before it is stored. If you write
(__bridge_retained void*)someObject with
no assignment, then this tells the compiler to
retain the object. Doing this is considered very
bad style. You should use the inverse operation
when casting back to an object pointer:

id anotherObjectPointer = (__bridge_transfer
id)aPointer;

aPointer = NULL;

This transfers an owning reference into ARC’s
control. ARC is now responsible for releasing the

88 CHAPTER 3: Memory Management

object, so it is important to remember to zero
the C pointer. If you are not taking ownership
of the pointer, then you should use a simple
__bridge cast.

Understanding Object
Destruction

3 @interface Example : NSObject
4 {
5 void *cPointer;
6 id objectPointer;
7 }
8 @end
9 @implementation Example

10 - (void)finalize
11 {
12 if (NULL != cPointer) { free(cPointer); }
13 [super finalize];
14 }
15 - (void)dealloc
16 {
17 if (NULL != cPointer) { free(cPointer); }
18 #if !__has_feature(objc_arc)
19 [objectPointer release];
20 [super dealloc];
21 #endif
22 }
23 @end

From: dealloc.m

There are three methods that are invoked during
the destruction of an object, depending on the
mode. One will run every time, but cannot be
written by you. The -.cxx_destruct method

Understanding Object Destruction 89

is always called by the Objective-C runtime and
handles the destruction of any fields that the
compiler is responsible for cleaning up. This
includes C++ objects in Objective-C++ mode
and Objective-C object pointers in ARC mode.
The other two methods are -finalize and
-dealloc. In garbage collected mode, you do
not need to do anything to relinquish references
to Objective-C objects, but you do still need to
clean up any resources that are not managed
by the garbage collector. This includes closing
file handles, freeing memory allocated with
malloc(), and so on. If your class has instance
variables that need this kind of manual cleanup,
then you should declare a -finalize method.

Note: The garbage collector will typically call
-finalize methods in a special cleanup thread.
This means that -finalize methods must be
thread safe. If they refer to global resources, then
they must ensure that doing so does not introduce
race conditions.

If you are not using garbage collection, then you
should do cleanup in a -dealloc method. The
contents of this method depend on whether or
not you are using ARC. Traditionally, -dealloc
methods were full of -release message sends to
every instance variable that the class declared.
With ARC, this is not required. ARC will
relinquish any owning references to objects in

90 CHAPTER 3: Memory Management

-.cxx_destruct, so you only need to clean up
non-object instance variables in -dealloc.
In both GC and manual retain/release
mode, you should forward the message to
the superclass, calling [super dealloc]
or [super finalize] as appropriate. In
ARC mode, explicitly calling -dealloc is
not permitted. Instead, ARC will insert a
[super dealloc] call at the end of your
-dealloc method in any non-root class.
Note that the example at the start of this
section is overly complicated. In real code,
you are unlikely to need to support both ARC
and manual retain/release modes. Both can
interoperate in the same program. The only
reason to support non-ARC mode is if you wish
to support legacy compilers.

Using Weak References

4 __weak id weak;
5

6 int main(void)
7 {
8 id obj = [NSObject new];
9 weak = obj;

10 obj = nil;
11 objc_collect(OBJC_FULL_COLLECTION);
12 fprintf(stderr, "Weak reference: %p\n", weak);
13 return 0;
14 }

From: weak.m

Using Weak References 91

One of the nicest things about Apple’s garbage
collection implementation is the existence of
zeroing weak references. Pointers that are not
retained are often referred to as “weak” in
Objective-C documentation that predates the
garbage collector. These are references that are
allowed to persist beyond the lifetime of the
object. Unfortunately, there is no automatic way
of telling whether they are still valid.
Weak references were found to be so useful
with the garbage collector that they are now
also supported by ARC, with slightly different
semantics. The ARC implementation provided
for backwards compatibility does not support
weak references, so they can only be used with
ARC on Apple platforms if you restrict yourself
to OS X 10.7 or iOS 5 and later.

Note: Weak references in a reference counted
environment, such as those referencing delegates,
are commonly used to eliminate retain cycles. This
is not needed in a tracing environment, so you can
use strong references for pointers to delegates and
anywhere else you might have a retain cycle.

If you declare an object pointer __weak, you get
a zeroing weak reference. This is not counted
by the garbage collector when determining if
an object is still live and does not increment
the object’s reference count when assigned to
in ARC mode. If all of the references to an

92 CHAPTER 3: Memory Management

object are weak, it can be destroyed. Afterwards,
reading the weak references will return nil.
Weak references are most commonly used in
connection with things such as notifications. You
will keep a weak reference to an object and keep
sending it messages as long as it is referenced
elsewhere, then you can have it cleaned up
automatically later.
Cocoa now comes with some collections that let
you store weak references. Older versions of the
Foundation framework provide NSMapTable and
NSHashTable as opaque C types, with a set of C
functions to use them. These interfaces are still
available, but with 10.5, Apple made these two C
types into classes.
The NSMapTable type is a general form of
NSDictionary that can be used to store any
pointer-sized types as both values and keys.
With garbage collection, you can use this class
to store mappings to and from strong or weak
object pointers as well. This is useful for things
such as NSNotificationCenter, so that objects
can be collected while they are still registered to
receive notifications and can be automatically
removed from the notification center when this
happens.
The example at the start of this section shows
an important difference between ARC and GC
modes. If you compile and run this example with
garbage collection enabled, you will probably see
it print an object address. This is because the

Allocating Scanned Memory 93

garbage collector will still see stale temporaries
while scanning the stack.
In contrast, this will always print 0 in ARC
mode. ARC, unlike GC, is entirely deterministic.
Assigning nil to the strong pointer decrements
the object’s reference count and triggers
deallocation. The weak pointer is zeroed before
deallocation begins and so is guaranteed to be
zero by the time the fprintf() is reached.

Allocating Scanned Memory

15 id *buffer =
16 NSAllocateCollectable(
17 10 * sizeof(id),
18 NSScannedOption);

From: gc.m

If you allocate memory with malloc(), it is
invisible to the garbage collector. This is a
problem if you want, for example, something
like a C array containing objects. We’ve already
looked at one solution to this. You can call
CFRetain() on the object you are about to store
and CFRelease() on the old value, and then
swap them over.
This is not ideal, although it will work.
The other option is to allocate a region of
memory from the garbage collector. The
NSAllocateCollectable() function is similar
to malloc(), but with two important differences.

94 CHAPTER 3: Memory Management

The first is that the memory that it returns is
garbage collected. There is no corresponding
NSFreeCollectable() function. When the last
pointer to the buffer disappears, the buffer will
be collected.

Note: The Apple collector does not support
interior references, so you must make sure you
keep a pointer to the start of the region. Pointers
to somewhere in the middle of the buffer will not
prevent it from being freed.

The second difference is that the second
parameter to this function defines the kind of
memory that you want. If you are going to be
using the buffer for storing C types, you can just
pass zero here. If you pass NSScannedOption,
the returned buffer will be scanned as a
possible location of object pointers, as well as
pointers to other memory regions returned by
NSAllocateCollectable().

Index

A

abstract superclass,
114

ARC, see
Automatic
Reference
Counting

ARC migration
tool, 75

associative array,
167

associative
references, 356

auto-boxing, 228
Automatic

Reference
Counting, 67,
171, 180

autorelease pool,
79

B

bag, 166

blocks, 60, 171,
287

Bonjour, 321
boxing, 121
bridged casts, 86
bundles, 267

C

C integers, 120
canonical locale,

129, 138
category, 38, 211
CF, see Core

Foundation
Clang, 13
class cluster, 113,

121, 139, 160,
162, 176

class extension, 41
class version, 103
closures, 60, 287

360 Index

Cocoa bindings,
231

condition variables,
283

contention scopes,
276

Core Foundation,
134

D

declared properties,
43

defaults domain,
206

delegation pattern,
73, 110

designated
initializer, 104

distributed objects,
317

DNS service
discovery, 321

DNS-SD, see DNS
service discovery

E

error delegate, 250

error domain, 253
error recovery

attempter, 254
event driven

programming,
117

exceptions, 238

F

fast enumeration,
140, 170

façade pattern, 111
filesystem domain,

270
format string, 150
forwarding, 346

G

garbage collection,
12

GCC, see GNU
Compiler
Collection

GDB, see GNU
debugger

gdb, see GNU
debugger

Index 361

GNU Compiler
Collection, 10

GNU debugger,
151, 328

GNUstep, 19
GNUstep runtime,

14, 109, 348
gnustep-config

tool, 16
Grand Central

Dispatch, 314

I

ICU, see
International
Components for
Unicode

ILP32, 120
IMP type, 24
informal protocols,

343
Instance Method

Pointer, 24
instance variables,

21
International

Components for
Unicode, 154

intrinsic types, 119
isa-swizzling, 234,

355
iterator, 170
ivars, see instance

variables

J

JavaScript Object
Notation, 204

JSON, see
JavaScript
Object Notation

K

key paths, 230
key-value coding,

168, 223
key-value

observing, 223
KVC, see key-value

coding
KVO, see key-value

observing

L

libdispatch, 296

362 Index

libobjc2, see
GNUstep
runtime

LLDB, see LLVM
Debugger

LLVM, see Low
Level Virtual
Machine

LLVM Debugger,
328

Low Level Virtual
Machine, 13

LP64, 120

M

map, 167
mDNS, see

multicast DNS
memory

management
unit, 256

message
forwarding, 346

metaclass, 354
method families,

28, 82
MMU, see memory

management
unit

multicast DNS, 321
mutable subclass

pattern, 23, 160
mutex, see mutual

exclusion lock
mutual exclusion

lock, 279

N

non-owning
references, 65

nonatomic, 45
notification, 301
NSApplication

class, 194
NSArchiver class,

101
NSArray class, 22,

161
NSAssert() macro,

335
NSAssertion-

Handler class,
336

Index 363

NSAttributedString
class, 156

NSAutoreleasePool
class, 79, 151

NSBundle class,
267, 271

NSCalendar class,
187, 192

NSCAssert()
macro, 335

NSCharacterSet
class, 131, 145

NSCoder class, 211
NSCoding protocol,

101, 211
NSComparisonRe-

sult type,
137

NSConditionLock
class, 284

NSControl class,
111

NSCopying
protocol, 99, 167

NSCountedSet
class, 166

NSData class, 144,
256

NSDate class, 184

NSDateCompo-
nents class, 188,
192

NSDateFormatter
class, 187, 191

NSDecimal type,
126

NSDecimalNumber
class, 126

NSDictionary class,
224, 245, 261

NSDistantObject
class, 318

NSDistributed-
Notification-
Center class,
307

NSDocument class,
221

NSEnumerator
class, 170

NSError class, 200,
253

NSException class,
242, 333

364 Index

NSFast-
Enumeration
protocol, 170

NSFileHandle class,
117, 250, 257,
312

NSFileManager
class, 255, 258,
260

NSFont class, 157
NSIndexSet class,

163
NSInteger type,

120
NSInvocation class,

50, 193, 319,
347

NSLocale class,
218

NSLog() function,
152, 337

NSMapTable class,
180

NSMutableArray
class, 21, 161

NSMutableCopying
protocol, 149,
160

NSMutableString
class, 148

NSNetService
class, 321

NSNetService-
Browser class,
322

NSNotification
class, 304

NSNotification-
Queue class,
305

NSNull class, 162
NSNumber class,

114, 122, 228
NSObject class, 22,

33, 38, 64, 104,
151, 225

NSObject
debugging
support, 329

NSObject protocol,
344

NSProcessInfo
class, 213

NSPropertyList-
Serialization
class, 198, 200,
203

Index 365

NSProxy class, 33,
38

NSRecursiveLock
class, 279

NSRegularExpres-
sion class,
154

NSRunLoop class,
79, 117, 193,
285, 308, 319

NSScanner class,
130, 192

NSSet class, 165
NSStream class,

252, 315
NSString class,

139, 166, 262
NSTask class, 215
NSThread class,

274
NSTimeInterval

type, 183
NSTimer class,

117, 192
NSURL class, 323
NSURLConnection

class, 324

NSURLDownload
class, 324

NSURLProtocol
class, 324

NSUserDefaults
class, 206, 217

NSValue class, 121
NSView class, 111
NSWorkspace

class, 255
NSZombie class,

332
NSZone type, 96

O

Objective-C
runtime library,
10, 339

Objective-C type
encoding, 122

owning reference,
28, 65, 82

P

plain old data, 181
plutil tool, 203

366 Index

POD, see plain old
data

premature
optimization, 136

primitive methods,
116

property lists, 100,
151, 307

pure virtual
methods, 178

R

reference date, 184
replace methods,

39
resumable

exceptions, 250
run loop, 117, 193,

208, 322

S

SEL type, 23, 29
selector, 29, 50,

341, 346
singleton pattern,

107, 114, 259
string objects, 133

sudden
termination, 220

T

thread dictionary,
260

toll-free bridging,
134

two-stage creation
pattern, 96

typed selectors, 30

U

UIApplication class,
194

unichar type, 134
uniform resource

locator, 323
URL, see uniform

resource locator

V

variadic function,
150

variadic method,
151, 162

Index 367

virtual function
tables, 3

vtables, see virtual
function tables

W

weak class
references, 342

workspace process,
255

X

XCode, 17, 328

Z

zero-cost exception
handling, 240

zeroing weak
references, 91

	Table of Contents
	Introduction
	3 Memory Management
	Retaining and Releasing
	Assigning to Instance Variables
	Automatic Reference Counting
	Returning Objects via Pointer Arguments
	Avoiding Retain Cycles
	Migrating to ARC
	Autorelease Pools
	Using Autoreleased Constructors
	Autoreleasing Objects in Accessors
	Supporting Automatic Garbage Collection
	Interoperating with C
	Understanding Object Destruction
	Using Weak References
	Allocating Scanned Memory

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

