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Introduction
Blaise Pascal once wrote, “I didn’t have time
to write a short letter, so I wrote a long one
instead.” This phrasebook is the shortest book
I’ve written, and trying to fit everything that
I wanted to say into a volume this short was a
challenge.
When Mark Taber originally suggested that I
write an Objective-C Phrasebook, I was not
sure what it would look like. A phrasebook for
a natural language is a list of short idioms that
can be used by people who find themselves in
need of a quick sentence or two. A phrasebook
for a programming language should fulfil a
similar rôle.
This book is not a language reference. Apple
provides a competent reference for the Objective-
C language on the http://developer.apple.
com site. This is not a detailed tutorial; unlike
my other Objective-C book, Cocoa Programming
Developer’s Handbook, you won’t find complete
programs as code examples. Instead, you’ll find
very short examples of Objective-C idioms,
which hopefully you can employ in a wide range
of places.
One of the most frustrating things in life is
finding that code examples in a book don’t
actually work. There are two sorts of code
listings in this book. Code on a white background
is intended to illustrate a simple point. This
code may depend on some implied context and

http://developer.apple.com
http://developer.apple.com


should not be taken as working, usable examples.
The majority of the code you will find in this
book is on a gray background. At the bottom of
each of these examples, you will find the name
of the file that the listing was taken from. You
can download these from the book’s page on
InformIT’s website: http://www.informit.com/
title/0321743628

When I wrote the first edition of this book,
I wrote and tested all of the examples on OS
X. After sending the draft manuscript off for
editing, I tested them on GNUstep and was
pleasantly surprised that almost all of them
worked. By the time the book was published,
they all worked. The second edition covers a
number of features that are only supported by
Apple on Mac OS X 10.7 or iOS 5. All of these
examples also work with GNUstep. As before,
I have written all of the examples on OS X,
without making any concessions for GNUstep
other than testing the examples there.

A Note About Typesetting
This book was written in Vim, using semantic
markup. From here, three different versions
are generated. Two are created using pdflatex.
If you are reading either the printed or PDF
version, then you can see one of these. The only
difference between the two is that the print
version contains crop marks to allow the printer
to trim the pages.

http://www.informit.com/title/0321743628
http://www.informit.com/title/0321743628


The third version is XHTML, intended for
the ePub edition. This is created using the
EtoileText framework, which first parses the
LaTeX-style markup to a tree structure, then
performs some transformations for handling
cross-references and indexing, and finally
generates XHTML. The code for doing this is
all written in Objective-C.
If you have access to both, you may notice
that the code listings look slightly nicer in the
ePub edition. This is because EtoileText uses
SourceCodeKit, another Étoilé framework, for
syntax highlighting. This uses part of Clang, a
modern Objective-C compiler, to mark up the
code listings. This means that ranges of the code
are annotated with exactly the same semantic
types that the compiler sees. For example, it can
distinguish between a function call and a macro
instantiation.
You can find all of the code for doing this in the
Étoilé subversion repository: http://svn.gna.
org/viewcvs/etoile/trunk/Etoile/

http://svn.gna.org/viewcvs/etoile/trunk/Etoile/
http://svn.gna.org/viewcvs/etoile/trunk/Etoile/


3

Memory
Management

If you come from a C or C++ background,
you’re probably used to tracking ownership of
objects and manually allocating and destroying
them. If you’re coming from a language such as
Java, you’re probably accustomed to having the
garbage collector take care of all of this for you.
Objective-C does not, at the language level,
provide anything for allocating or deallocating
objects. This is left up to C code. You
commonly allocate objects by sending their class
a +alloc message. This then calls something like
malloc() to allocate the space for the object.
Sending a -dealloc message to the instance will
then clean up its instance variables and delete it.
The Foundation framework adds reference
counting to this simple manual memory
management. This makes life much easier, once
you understand how it works. Newer compilers
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provide some assistance for you, eliminating
the need to write the reference counting code
yourself.

Retaining and Releasing

6 NSArray *anArray = [NSArray array];
7 anArray = [[NSArray alloc] init];
8 [anArray release];

From: retainRelease.m

Every object that inherits from NSObject has
a reference count associated with it. When this
reference count reaches 0, it is destroyed. An
object created with +alloc or any of the related
methods, such as +new or +allocWithZone:,
begins life with a reference count of one.
To control the reference count of an object, you
send it -retain and -release messages. As
their names would imply, you should use these
messages when you want to retain a reference
to an object, or when you want to release
an existing reference. The -retain message
increments the object’s reference count, and the
-release message decrements it.
You can also send a -retainCount message
to an object to determine its current reference
count. It’s tempting to use this for optimization
and invoke some special cases when you are sure
there is only one reference to an object. This is a
very bad idea. As the name implies, this method
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tells you the number of retained references to
the object, not the number of references. It
is common not to bother sending a -retain
message to objects when you create a pointer
to them on the stack. This means that an object
may be referenced in two or more places, even
though its retain count is only one.
Pointers in Objective-C are divided into two
categories: owning references and non-owning
references. An owning reference is one that
contributes towards the retain count of an
object. When you call a method like +new or
-retain, you get an owning reference to a new
object. Most other methods return a non-owning
reference. Instance variables and global variables
are typically owning pointers, so you should
assign owning references to them. You also need
to ensure that you delete the existing owning
reference (by sending a -release message) when
performing an assignment.
Temporary variables are typically non-owning
references. Automatic reference counting and
garbage collection, which we’ll look at later in
this chapter, both introduce special kinds of non-
owning references.
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Assigning to Instance Variables

26 - (void)setStringValue: (NSString*)aString
27 {
28 id tmp = [aString retain];
29 [string release];
30 string = tmp;
31 }

From: ivar.m

There are a few things that you have to be
careful about when using reference counting
in this way. Consider the following simple set
method:

14 - (void)setStringValue: (NSString*)aString
15 {
16 [string release];
17 string = [aString retain];
18 }

From: ivar.m

This looks sensible. You release the reference
to the old value, then retain the new value and
assign it. Most of the time, this will work, but in
a few cases it won’t, and that can be confusing
to debug.
What happens if the value of aString and
string are the same? In this case, you are
sending the same object a -release message
then a -retain message. If some other code
holds references to this object, it will still work,
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but if not then the first message will cause the
object to be destroyed and the second will be
sent to a dangling pointer.
A more correct implementation of this method
would retain the new object first, as shown at
the start of this section. Note that you should
assign the result of the -retain message because
some objects will return another object when
you retain them. This is very rare, but it does
happen on occasion.
Finally, this method is not thread-safe. If
you want a thread-safe set method, you need
to retain the new value, perform an atomic
exchange operation on the result and the
instance variable, and then release the old value.
In general, however, it is almost impossible to
reason about code that supports this kind of
fine-grained concurrency, and the amount of
cache churn it causes will offset any performance
gains from parallelism, so it’s a terrible idea.
If you really need it, it’s better to use declared
properties to synthesize the accessor than try to
write it yourself.

Automatic Reference Counting
With the release of iOS 5 and Mac OS X 10.7,
Apple introduced Automatic Reference Counting
(ARC). Conceptually, you can think of this as
having the compiler automatically figure out
when -retain and -release should be called,
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and calling them for you. The implementation is
somewhat more complicated.

Note: Most of the examples in this book use
manual reference counting. This is intentional.
Even though ARC is recommended for new
development, there is a lot of legacy code around
that does not use it. Even if you are using ARC,
you should still understand the retain and release
semantics that are implicitly added for you. It’s
very easy for a programmer who is comfortable
with manual reference counting to switch to using
ARC, just as it’s useful to understand your CPU’s
instruction set even if you never write any assembly
code.

Rather than inserting message sends directly
into the code, the compiler front end inserts
calls to functions like objc_retain() and
objc_release(). The optimizer then tries to
combine or eliminate these calls. In the simple
case, these functions do the equivalent of a
message send. In some common cases, they are
significantly more efficient.
In simple use, you can forget about memory
management when using ARC. If you are using
a recent version of XCode, then ARC is the
default. If you are compiling on the command
line or with some other build system, add
-fobjc-arc. Now just forget about retaining and
releasing objects.
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It would be nice if life were that simple.
Unfortunately, ARC does have some limitations.
More specifically, it formalizes the fuzzy
boundary between C memory and Objective-
C objects. ARC divides pointers into three
categories. Strong pointers follow the same
retain/release semantics that we’ve looked at
already. Weak pointers, which we’ll look at later,
are non-owning references that are automatically
zeroed when the object is destroyed. Unsafe
unretained pointers are pointers that are ignored
by ARC: You are responsible for tracking the
lifetime of objects stored in them.
By default, all object pointers in instance
variables or on the stack are strong. Object
pointers in structures have no default.
They must be explicitly marked with the
__unsafe_unretained ownership qualifier. Even
though this is the only permitted ownership for
these pointers, it must be explicitly stated to
provide a reminder to people reading the code
that ARC will ignore it.
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Returning Objects via Pointer
Arguments

3 __weak id weak;
4 int writeBack(id *aValue)
5 {
6 *aValue = [NSObject new];
7 weak = *aValue;
8 return 0;
9 }

10

11 int main(void)
12 {
13 @autoreleasepool
14 {
15 id object;
16 writeBack(&object);
17 NSLog(@"Object: %@", object);
18 object = nil;
19 NSLog(@"Object: %@", weak);
20 }
21 NSLog(@"Object: %@", weak);
22 return 0;
23 }

From: writeback.m

In ARC mode, pointer-to-pointer arguments
are somewhat complicated. These are typically
used for two things, either passing arrays or
returning objects. If you are passing an array
down the stack, then you should make sure that
you declare it as const. This tells the compiler
that the callee will not perform any assignments
to it, so ARC can pass the array without any
complex interaction.
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If you are returning an object via this
mechanism, ARC produces some fairly complex
code. In the example at the start of this section,
the call to writeBack() generates code that is
roughly equivalent to this:

id tmp = [object retain];
writeBack(&tmp);
[tmp retain];
[object release];
object = tmp;

In writeBack(), the new object will be
autoreleased before storing it in the temporary
value. This means that, at the end of this,
object contains an owning reference to the new
object.
If you declared object as __autoreleasing id,
the generated code is a lot simpler. This will
simply autorelease the value initially stored in
object, which will have no effect because the
initial value for all object pointers—even with
automatic storage—is nil, and will pass the
pointer directly and expect the callee to store
a non-owning (autoreleased) pointer in it, if it
modifies it.
When you run this example, you’ll see that
the weak reference is only zeroed when the
autorelease pool is destroyed. The writeBack()
function stores an autoreleased object into the
passed pointer in all cases, and never releases the
passed value. The caller is always responsible
for ensuring that the value passed in is a
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non-owning reference, which it does either by
ensuring that it’s a pointer to an autoreleased
object or a copy of a pointer to a retained
object.
If you instead mark the parameter out (only
allowed on method parameters, not C function
parameters) then the callee guarantees that it
will not read the value, so the compiler will skip
the step where it makes a copy of the pointer in
object before the call.
If you need to pass multiple objects up the stack,
then you should probably return an NSArray
instance. There are some alternatives, but
they are sufficiently complex that it’s simply
not worth the effort: they’re easy to get subtly
wrong and spend ages debugging, and if you do
manage to get it right, you’ll probably find it’s
slower than using an NSArray.
If you are passing multiple values down the
stack, then you should declare an array type
with an explicit ownership qualifier for the
parameter, not a pointer type. For example,
__unsafe_unretained id[] instead of id*.
This ensures that the writeback mechanism is
not used.
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Avoiding Retain Cycles

19 - (void)setDelegate: (id)aDelegate
20 {
21 delegate = aDelegate;
22 }

From: ivar.m

The problem with pure reference counting is that
it doesn’t detect cycles. If you have two objects
that retain references to each other, then neither
will ever be freed.
In general, this is not a major problem.
Objective-C data structures tend to be acyclic,
but there are some common cases where
cycles are inevitable. The most common is the
delegation pattern. In this pattern, an object
typically implements some mechanisms and
delegates policy to another object. Most of
AppKit works in this way.
The delegate needs a reference to the object, and
the object needs a reference to its delegate. This
immediately creates a cycle. The common idiom
that addresses this problem is that objects do
not retain their delegates. If you pass an object
as an argument to a -setDelegate: method,
you need to make sure that some other object
holds a reference to it, or it will be deleted
prematurely.
With ARC, you have two choices: You can
either mark the instance variable as __weak
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or as __unsafe_unretained. The former is
safer, because it ensures that there is no chance
of a dangling pointer: When the delegate is
destroyed, the instance variable will be set to
nil.
There are two disadvantages of using a weak
pointer. The first is portability. Weak pointers
work on iOS 5, Mac OS X 10.7, and with
GNUstep, but they don’t work on older versions
of iOS or Mac OS X. The other disadvantage
is performance. Every access to a weak pointer
goes via a helper function. This checks that the
object was not in the process of deallocation and
retains it if it is still valid, or returns nil if it is
not.
In contrast, unsafe unretained pointers are
just plain pointers. They are cheap to access
and work on any deployment target. Their
disadvantage is that you are responsible for
ensuring that you don’t try to access them after
the pointee has been deallocated.
A good compromise is to use weak pointers
when debugging and unsafe unretained pointers
for deployment. Add debug assert statements
checking that the pointer is not nil before you
send it any messages, and you’ll end up with a
helpful error, rather than a crash, if you have
bugs.
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Migrating to ARC
If you are starting a new project in XCode, ARC
will be the default and there is little reason
not to use it. If you are working on an existing
code base, then you are probably using manual
reference counting. You can save some long-term
development effort by moving to ARC, but it is
a little bit more involved than simply flipping a
compiler switch.
Clang provides a migration tool that will
attempt to rewrite Objective-C code to use
ARC. This can be invoked from the command
line via the -ccc-arcmt-check and -ccc-arcmt-
modify arguments. The first reports any things
in the code that cannot be automatically
translated. The second actually performs the
rewriting—modifying the original file—if there
are no errors.
For simple Objective-C code, the migration tool
will just work. The most obvious thing that
it does is remove all -retain, -release, and
autorelease message sends. It will also remove
the explicit [super dealloc] from a -dealloc
method: That call is now inserted automatically
by the compiler. ARC automatically releases
all instance variables, so you will only need to
implement -dealloc at all if you are freeing
malloc()’d memory or similar.
If you implement custom reference counting
methods, then you will need to delete them. A
common reason for this is to prevent accidental
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Note: ARC actually creates a -.cxx_destruct
method to handle freeing instance variables. This
method was originally created for calling C++
destructors automatically when an object was
destroyed. The visible difference of this with ARC
is that Objective-C instance variables are now
deallocated after -dealloc in the root class has
finished, not before. In most cases, this should
make no difference.

deallocation of singletons. This is less important
with ARC, because programmer error is less
likely to cause an object to be prematurely
deleted.
The biggest problems come if you are trying
to store Objective-C pointers in C structures.
The simplest solution is just not to do that:
Use Objective-C objects with public instance
variables instead. This lets the compiler handle
memory management for the object, as well as
the fields.
The only time when using structures referring
to Objective-C objects is considered safe is when
you are passing them down the stack. The object
pointers can then be __unsafe_unretained
qualified without any problems, as long as they
remain valid in the caller.
You will notice that you no longer have any
assign properties after using the migration tool.
These will be rewritten as unsafe_unretained
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or weak, depending on whether the deployment
target that you’ve selected supports weak
references. You may want to explicitly change
some to unsafe_unretained if they are used
for breaking simple cycles and you find weak
references to be a performance problem.
The migration tool will try to insert __bridge
casts where required, but these are worth
checking. These casts are used to move objects
in and out of ARC-managed code. In non-
ARC Objective-C, you are free to do things like
(void*)someObject, because object pointers are
just C pointers that you can send messages to.
In ARC mode, this cast would be ambiguous
because the compiler doesn’t know what the
ownership semantics of void* are supposed to
be, so it is rejected.
The migration tool will rewrite this as
(__bridge void*)someObject, but that may
not be what you want. We’ll look at these casts
in more detail in the “Interoperating with C”
section.
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Autorelease Pools

3 id returnObject(void)
4 {
5 return [[NSObject new] autorelease];
6 }
7

8 int main(void)
9 {

10 @autorelease {
11 id object = returnObject();
12 [object retain];
13 }
14 // Object becomes invalid here.
15 [object release];
16 return 0;
17 }

From: autorelease.m

Aside from cycles, the biggest problem with
reference counting is that there are short
periods when no object really owns a particular
reference. In C, deciding whether the caller or
callee is responsible for allocating memory is a
problem.
In something like the sprintf() function, the
caller allocates the space. Unfortunately, the
caller doesn’t actually know how much space is
needed, so the snprintf() variant was added to
let the callee know how much space is available.
This can still cause problems, so the asprintf()
version was added to let the callee allocate the
space.
If the callee is allocating the space, who
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is responsible for freeing it? The caller,
presumably, but because the caller didn’t create
it, anything that checks for balanced malloc()
and free() calls will fail to spot the leak.
In Objective-C, this problem is even more
common. Lots of methods may return temporary
objects. If you’re returning a temporary object,
it needs to be freed, but if you’re returning a
pointer to an instance variable, it doesn’t. You
could retain such a pointer first, but then you
need to remember to release every single object
that is returned from a method. This quickly
gets tiresome.
The solution to this problem is the autorelease
pool. When you send an object an -autorelease
message, it is added to the currently active
NSAutoreleasePool instance. When this
instance is destroyed, every object added to it
is sent a -release message.
The -autorelease message is a deferred
-release message. You send it to an object
when you no longer need a reference to it but
something else might.
If you are using NSRunLoop, an autorelease pool
will be created at the start of every run loop
iteration and destroyed at the end. This means
that no temporary objects will be destroyed
until the end of the current iteration. If you
are doing something that creates a lot of
temporary objects, you may wish to create a new
autorelease pool, like so:
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id pool = [NSAutoreleasePool new];
[anObject doSomethingThatCreatesObjects];
[pool drain];

Note that you send an autorelease pool a -drain
message rather than a release message when
you destroy it. That is because the Objective-
C runtime will ignore -release messages when
you are in garbage collected mode. The -drain
message in this mode provides a hint to the
collector, but does not destroy the pool, when
you are in garbage collected mode.
In OS X 10.7, Apple made autorelease
pools part of the language. Programs that
explicitly reference the NSAutoreleasePool
class are considered invalid in ARC mode
and the compiler will reject them. The
replacement is the @autoreleasepool construct.
This defines a region where an autorelease
pool is valid. In non-ARC mode, this will
insert exactly the same code as the above
snippet. In ARC mode, it inserts calls to
the objc_autoreleasePoolPush() and
objc_autoreleasePoolPop() functions, which
do something similar.
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Using Autoreleased Constructors

4 + (id)object
5 {
6 return [[[self alloc] init] autorelease];
7 }

From: namedConstructor.m

I said in the last section that objects created
with +alloc have a retain count of one. In fact,
all objects are created with a retain count of one,
but objects created with a named constructor,
such as +stringWithFormat: or +array, are also
autoreleased.
If you create an object with one of these
mechanisms, you must send it a -retain
message if you want to keep it. If you don’t, it
will be collected later when the autorelease pool
is destroyed.
This is a convention that is important to observe
in your own classes. If someone creates an
instance of one of your classes with a named
constructor, he will expect not to have to
release it. A typical named constructor would
look something like the one at the start of this
section.
Note that, because this is a class method, the
self object will be the class. By sending the
+alloc message to self rather than to the class
name, this method can work with subclasses
automatically.
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With ARC, these conventions are formalized
in method families. Methods that begin alloc,
new, copy, or mutableCopy return an owning
reference, a reference that must be released if
not stored. Other methods return a non-owning
reference, one that has either been autoreleased
or is stored somewhere else with a guarantee
that it will not be released.

Autoreleasing Objects in
Accessors

34 - (NSString*)stringValue
35 {
36 return [[string retain] autorelease];
37 }

From: ivar.m

Another common issue with reference counting,
as implemented in Foundation, is that you
commonly don’t retain objects that you only
reference on the stack. Imagine that you have
some code like this:

NSString *oldString = [anObject stringValue];
[anObject setStringValue: newString];

If the -setStringValue: method is implemented
as I suggested earlier, this code will crash
because the object referenced by oldString
will be deleted when you set the new string
value. This is a problem. There are two possible
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solutions, both involving autorelease pools. One
is to autorelease the old value when you set
the new one. The other is the definition of the
-stringValue method from the start of this
section.
This ensures that the string will not be
accidentally destroyed as a result of anything
that the object does. Another common idiom
is to substitute a -copy message for -retain.
This is useful if the instance variable might
be mutable. If it’s immutable, -copy will be
equivalent to -retain. If it’s mutable, the caller
will get an object that won’t change as a result
of other messages sent to the object.

Supporting Automatic Garbage
Collection

0 $ gcc -c -framework Cocoa -fobjc-gc-only
collected.m

1 $ gcc -c -framework Cocoa -fobjc-gc collected.m

Starting with OS X 10.5, Apple introduced
automatic garbage collection to Objective-C.
This can make life easier for programmers,
but in most cases it comes with a performance
penalty. Apple’s collector uses a lot of memory
to track live references and therefore is not
available on the iPhone. It is also not supported
with older versions of OS X and has only limited
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support with GNUstep, so you should avoid
using garbage collection if you want to write
portable code.
If you compile your code in garbage collected
mode, all -retain, -release, and -autorelease
messages will be ignored. The compiler will
automatically insert calls to functions in the
runtime for every assign operation to memory
on the heap.
Code must be compiled with garbage collection
support to use the garbage collector. This will
insert calls to a set of functions that, on the
Mac runtime, are declared in objc-auto.h on any
assignment to memory on the heap.
These functions make sure that the garbage
collector is aware of the write. These are
required because the collector is concurrent. It
will run in a background thread and will delete
objects when it can no longer find references to
them. The collector must be notified of updated
pointers, or it might accidentally delete an object
that you have just created a reference to.
You have two options when compiling for
garbage collection. If you compile with the
-fobjc-gc-only flag your code will only support
garbage collection. If you compile with the
-fobjc-gc flag, the code will support both
reference counting and automatic garbage
collection. This is useful when you are compiling
a framework. You must still remember to add
-retain and -release calls in the correct
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110 OBJC_EXPORT BOOL objc_atomicCompareAndSwapGlobal(
id predicate, id replacement, volatile id *
objectLocation)

111 __OSX_AVAILABLE_STARTING(__MAC_10_6,
__IPHONE_NA) OBJC_ARC_UNAVAILABLE;

112 OBJC_EXPORT BOOL
objc_atomicCompareAndSwapGlobalBarrier(id
predicate, id replacement, volatile id *
objectLocation)

113 __OSX_AVAILABLE_STARTING(__MAC_10_6,
__IPHONE_NA) OBJC_ARC_UNAVAILABLE;

114 // atomic update of an instance variable
115 OBJC_EXPORT BOOL

objc_atomicCompareAndSwapInstanceVariable(id
predicate, id replacement, volatile id *
objectLocation)

116 __OSX_AVAILABLE_STARTING(__MAC_10_6,
__IPHONE_NA) OBJC_ARC_UNAVAILABLE;

117 OBJC_EXPORT BOOL
objc_atomicCompareAndSwapInstanceVariableBarrier
(id predicate, id replacement, volatile id *
objectLocation)

From: objc-auto.h

places, but users of your framework can then use
it with or without collection.

Interoperating with C
In garbage collected mode, not all memory is
scanned. Anything allocated by malloc() is
invisible to the garbage collector. If you pass
an object pointer as a void* parameter to a
C function, which then stores it in malloc()’d
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memory, it becomes invisible to the collector
and may be freed even though there are still
references to it.
In ARC mode, the compiler will handle pointers
that are on the stack or in instance variables for
you automatically, but it won’t track pointers in
structures or anything else explicitly declared as
__unsafe_unretained.
Normally, you would send a -retain message
to an object before storing it on the heap, but
that does nothing in garbage collected mode
and is forbidden in ARC mode. Instead, you
have to use the CFRetain() function. This
will increment the object’s reference count,
irrespective of whether the collector is running.
The collector will only free objects when their
retain count is zero and it cannot find any
references to them in traced memory.
When you have finished with a reference that is
outside of the collector’s scope, you need to call
CFRelease().
ARC provides a richer memory model for this
kind of operation. Explicit casts from object
to non-object pointer types are no longer
allowed. They must be replaced by bridged casts.
Consider the following bit of code in non-ARC
mode:

void *aPointer = (void*)someObject;

In ARC mode, this would create an untracked
pointer from a tracked pointer, which is not
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something that you want to do without thinking.
You have three basic options. The first is
most commonly used for on-stack variables, or
variables pointing to objects that are guaranteed
to be referenced elsewhere:

void *aPointer = (__bridge void*)someObject;

This performs the cast with no transfer of
ownership. If all other references to someObject
are dropped, then aPointer becomes a dangling
pointer. If the void* pointer is going on the
heap somewhere and should keep an owning
reference to the object, then you should use a
retained bridging cast:

void *aPointer = (__bridge_retained void*)
someObject;

This will move a single owning reference
out of ARC’s control. This is roughly
equivalent to sending a -retain message to
someObject before it is stored. If you write
(__bridge_retained void*)someObject with
no assignment, then this tells the compiler to
retain the object. Doing this is considered very
bad style. You should use the inverse operation
when casting back to an object pointer:

id anotherObjectPointer = (__bridge_transfer
id)aPointer;

aPointer = NULL;

This transfers an owning reference into ARC’s
control. ARC is now responsible for releasing the
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object, so it is important to remember to zero
the C pointer. If you are not taking ownership
of the pointer, then you should use a simple
__bridge cast.

Understanding Object
Destruction

3 @interface Example : NSObject
4 {
5 void *cPointer;
6 id objectPointer;
7 }
8 @end
9 @implementation Example

10 - (void)finalize
11 {
12 if (NULL != cPointer) { free(cPointer); }
13 [super finalize];
14 }
15 - (void)dealloc
16 {
17 if (NULL != cPointer) { free(cPointer); }
18 #if !__has_feature(objc_arc)
19 [objectPointer release];
20 [super dealloc];
21 #endif
22 }
23 @end

From: dealloc.m

There are three methods that are invoked during
the destruction of an object, depending on the
mode. One will run every time, but cannot be
written by you. The -.cxx_destruct method



Understanding Object Destruction 89

is always called by the Objective-C runtime and
handles the destruction of any fields that the
compiler is responsible for cleaning up. This
includes C++ objects in Objective-C++ mode
and Objective-C object pointers in ARC mode.
The other two methods are -finalize and
-dealloc. In garbage collected mode, you do
not need to do anything to relinquish references
to Objective-C objects, but you do still need to
clean up any resources that are not managed
by the garbage collector. This includes closing
file handles, freeing memory allocated with
malloc(), and so on. If your class has instance
variables that need this kind of manual cleanup,
then you should declare a -finalize method.

Note: The garbage collector will typically call
-finalize methods in a special cleanup thread.
This means that -finalize methods must be
thread safe. If they refer to global resources, then
they must ensure that doing so does not introduce
race conditions.

If you are not using garbage collection, then you
should do cleanup in a -dealloc method. The
contents of this method depend on whether or
not you are using ARC. Traditionally, -dealloc
methods were full of -release message sends to
every instance variable that the class declared.
With ARC, this is not required. ARC will
relinquish any owning references to objects in
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-.cxx_destruct, so you only need to clean up
non-object instance variables in -dealloc.
In both GC and manual retain/release
mode, you should forward the message to
the superclass, calling [super dealloc]
or [super finalize] as appropriate. In
ARC mode, explicitly calling -dealloc is
not permitted. Instead, ARC will insert a
[super dealloc] call at the end of your
-dealloc method in any non-root class.
Note that the example at the start of this
section is overly complicated. In real code,
you are unlikely to need to support both ARC
and manual retain/release modes. Both can
interoperate in the same program. The only
reason to support non-ARC mode is if you wish
to support legacy compilers.

Using Weak References

4 __weak id weak;
5

6 int main(void)
7 {
8 id obj = [NSObject new];
9 weak = obj;

10 obj = nil;
11 objc_collect(OBJC_FULL_COLLECTION);
12 fprintf(stderr, "Weak reference: %p\n", weak);
13 return 0;
14 }

From: weak.m
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One of the nicest things about Apple’s garbage
collection implementation is the existence of
zeroing weak references. Pointers that are not
retained are often referred to as “weak” in
Objective-C documentation that predates the
garbage collector. These are references that are
allowed to persist beyond the lifetime of the
object. Unfortunately, there is no automatic way
of telling whether they are still valid.
Weak references were found to be so useful
with the garbage collector that they are now
also supported by ARC, with slightly different
semantics. The ARC implementation provided
for backwards compatibility does not support
weak references, so they can only be used with
ARC on Apple platforms if you restrict yourself
to OS X 10.7 or iOS 5 and later.

Note: Weak references in a reference counted
environment, such as those referencing delegates,
are commonly used to eliminate retain cycles. This
is not needed in a tracing environment, so you can
use strong references for pointers to delegates and
anywhere else you might have a retain cycle.

If you declare an object pointer __weak, you get
a zeroing weak reference. This is not counted
by the garbage collector when determining if
an object is still live and does not increment
the object’s reference count when assigned to
in ARC mode. If all of the references to an
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object are weak, it can be destroyed. Afterwards,
reading the weak references will return nil.
Weak references are most commonly used in
connection with things such as notifications. You
will keep a weak reference to an object and keep
sending it messages as long as it is referenced
elsewhere, then you can have it cleaned up
automatically later.
Cocoa now comes with some collections that let
you store weak references. Older versions of the
Foundation framework provide NSMapTable and
NSHashTable as opaque C types, with a set of C
functions to use them. These interfaces are still
available, but with 10.5, Apple made these two C
types into classes.
The NSMapTable type is a general form of
NSDictionary that can be used to store any
pointer-sized types as both values and keys.
With garbage collection, you can use this class
to store mappings to and from strong or weak
object pointers as well. This is useful for things
such as NSNotificationCenter, so that objects
can be collected while they are still registered to
receive notifications and can be automatically
removed from the notification center when this
happens.
The example at the start of this section shows
an important difference between ARC and GC
modes. If you compile and run this example with
garbage collection enabled, you will probably see
it print an object address. This is because the
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garbage collector will still see stale temporaries
while scanning the stack.
In contrast, this will always print 0 in ARC
mode. ARC, unlike GC, is entirely deterministic.
Assigning nil to the strong pointer decrements
the object’s reference count and triggers
deallocation. The weak pointer is zeroed before
deallocation begins and so is guaranteed to be
zero by the time the fprintf() is reached.

Allocating Scanned Memory

15 id *buffer =
16 NSAllocateCollectable(
17 10 * sizeof(id),
18 NSScannedOption);

From: gc.m

If you allocate memory with malloc(), it is
invisible to the garbage collector. This is a
problem if you want, for example, something
like a C array containing objects. We’ve already
looked at one solution to this. You can call
CFRetain() on the object you are about to store
and CFRelease() on the old value, and then
swap them over.
This is not ideal, although it will work.
The other option is to allocate a region of
memory from the garbage collector. The
NSAllocateCollectable() function is similar
to malloc(), but with two important differences.
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The first is that the memory that it returns is
garbage collected. There is no corresponding
NSFreeCollectable() function. When the last
pointer to the buffer disappears, the buffer will
be collected.

Note: The Apple collector does not support
interior references, so you must make sure you
keep a pointer to the start of the region. Pointers
to somewhere in the middle of the buffer will not
prevent it from being freed.

The second difference is that the second
parameter to this function defines the kind of
memory that you want. If you are going to be
using the buffer for storing C types, you can just
pass zero here. If you pass NSScannedOption,
the returned buffer will be scanned as a
possible location of object pointers, as well as
pointers to other memory regions returned by
NSAllocateCollectable().
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