
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321812704
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321812704
https://plusone.google.com/share?url=http://www.informit.com/title/9780321812704
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321812704
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321812704/Free-Sample-Chapter


Android Apps with 
App Inventor



This page intentionally left blank 



Android Apps with 
App Inventor

The Fast and Easy  
Way to Build  
Android Apps

Jörg H. Kloss

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City



Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and 
the publisher was aware of a trademark claim, the designations have been printed 
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no 
expressed or implied warranty of any kind and assume no responsibility for errors or 
omissions. No liability is assumed for incidental or consequential damages in connec-
tion with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk 
purchases or special sales, which may include electronic versions and/or custom cov-
ers and content particular to your business, training goals, marketing focus, and 
branding interests. For more information, please contact:

U.S. Corporate and Government Sales 
(800) 382-3419 
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales 
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Kloss, Jörg H.
  Android Apps with App inventor : the fast and easy way to build android apps / Jörg 
H. Kloss.
       p. cm.
  Includes bibliographical references and index.
  ISBN 978-0-321-81270-4 (pbk. : alk. paper)
 1.  Application software--Development. 2.  Android (Electronic resource) 3.  Open 
source software. 4.  Smartphones. 5.  Mobile computing.  I. Title. 
  QA76.76.A65K614 2012
  005.3—dc23
 2011047948

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protect-
ed by copyright, and permission must be obtained from the publisher prior to any pro-
hibited reproduction, storage in a retrieval system, or transmission in any form or by 
any means, electronic, mechanical, photocopying, recording, or likewise. To obtain per-
mission to use material from this work, please submit a written request to Pearson 
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New 
Jersey 07458, or you may fax your request to (201) 236-3290.

LEGO and MINDSTORMS are registered trademarks of the LEGO Group. 

ISBN-13: 978-0-321-81270-4 
ISBN-10:  0-321-81270-0 
Text printed in the United States on recycled paper at Edwards Brothers Malloy in  
Ann Arbor, Michigan. 
Second printing, September 2012

Editor-in-Chief
Mark Taub

Acquisitions Editor
Trina MacDonald

Development Editor
Songlin Qiu

Managing Editor
John Fuller

Project Editor
Anna Popick

Copy Editor
Jill Hobbs

Indexer
Jack Lewis

Proofreader
Lori Newhouse

Publishing 
Coordinator
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
Vicki Rowland

Translator
Almut Dworak

Kloss_FM.indd   4 9/20/12   1:07 PM



Contents at a Glance
Preface by Hal Abelson xv

Preface xvii

Acknowledgments xxi

About the Author xxiii

Introduction 1

I: Preparing Your First App 13

1 Preparation and Installation 15

2 The Development Environment 39

3 Developing Your First App 81

II: Easy Projects as a Warm-Up 131

4 Basic Terms and Central Concepts 133

5 The AI References 139

6 Graphical User Interface 147

7 Multimedia 175

8 Example Project: Creating a Media Center 211

III: On the Way to Becoming an App Developer 221

9 Program Development Basics 223

10 Storage and Databases 305

IV: Developing Attractive Apps 327

11 Graphics and Animation 329

12 Sensors 375

13 Communication 433



vi Contents at a Glance

V: Useful Things for the Developer 511

14 Special Functional Areas 513

15 Tips and Tools 527

A Additional Resources 541

Index 545



Contents
Preface by Hal Abelson xv

Preface xvii

Acknowledgments xxi

About the Author xxiii

Introduction 1
Structure and Overview 2

Part I: Preparing Your First App 2

Part II: Easy Projects as a Warm-Up 2

Part III: On the Way to Becoming an App 
Developer 3

Part IV: Developing Attractive Apps 3

Part V: Useful Things for the Developer 4

Companion Website 5

Requirements 5

History 6

App Inventor at Google 6

Open Source and App Inventor at MIT 9

I: Preparing Your First App 13

1 Preparation and Installation 15
System Requirements 17

Computer Platform 17

Android Platform 19

Java Configuration 23

Login Data for App Inventor 27

Installation of the App Inventor Setup Software 29

Android Device Settings 33

2 The Development Environment 39
Welcome to App Inventor! 40

App Inventor Designer 41

Creating a Project in the Design Area 42

Five Panels 44

Inventory of Palette Components 45

Kloss_FM.indd   7 9/24/12   9:48 AM



Contentsviii

Designing Apps with Component Objects in the 
Viewer 47

Structuring Objects Under Components and 
Media 49

Setting Component Properties 49

Managing and Saving App Projects 50

App Inventor Blocks Editor 53

Developing App Functions from Blocks 56

Generic Block Groups Under the Built-In Tab 56

Component-Specific Blocks Under My Blocks 57

Implementing and Editing Apps in the Editor 59

Integrate Android Phone 63

Connecting the Smart phone to Blocks Editor 63

Restart in Case of “Freezes” 67

Finishing a Session 67

Using the Emulator 69

Start-Up Problems 72

If the Blocks Editor Won’t Start 72

If the Connection to the Smart phone Freezes 74

Other Problems 76

The AI Forum 77

3 Developing Your First App 81
Creating the Project “LaughBag” 82

Designing the User Interface 84

Inserting the “Label” Component 85

Assigning Component Names 88

Setting Properties 88

Adding the Interactive Component “Button” 89

Uploading and Integrating Media Files 91

Optimizing the App Design 93

Non-Visible Component “Sound” 95

Developing App Functionality 97

Create Interactive App Logic 99

Implementing Functional Block Structure 101

Save Project Locally 103

If There Is No Laughter 106

Creating and Installing the App 107



Contents ix

Direct Installation on a Smart phone 108

A Matching Icon for Your App 110

Online Installation via a Barcode 117

Downloading an APK File 122

Google Play and Other Android Markets 127

II: Easy Projects as a Warm-Up 131

4 Basic Terms and Central Concepts 133
Properties and Property Blocks 133

Events and Event Handlers 135

Methods and Method Blocks 137

5 The AI References 139
Component Reference 139

Blocks Reference 143

Concepts Reference 145

6 Graphical User Interface 147
Displaying Text with the Label Component 147

Triggering Actions with the Button Component 150

Selecting Options with the CheckBox Component 153

Entering Text with the TextBox Component 158

Entering Confidential Text with the PasswordTextBox 
Component 161

Displaying Notices and Alerts with the Notifier 
Component 164

Tidying the Screen with the Screen Arrangement 
Components 167

Actions at App Start with the Screen Component 171

7 Multimedia 175
Media Access Options 175

The Basic Principle: Synergy 178

Displaying Local and Online Images with the Image 
Component 179

Taking Photos and Displaying Them with the Camera 
Component 183

Managing Images with the ImagePicker 
Component 188

Kloss_FM.indd   9 9/24/12   9:48 AM



Contentsx

Sound Effects and Vibration with the Sound 
Component 192

Playing Audio Files with the Player Component 195

Playing Movies with the VideoPlayer Component 199

Recording Audio with the SoundRecorder 
Component 203

8 Example Project: Creating a Media Center 211
Ergonomic Redesign of a Media Center 211

Multiple Screens for the Media Center 215

III: On the Way to Becoming an App Developer 221

9 Program Development Basics 223
Elements of Data Processing 224

Data Types 225

Data Structures 225

Control Structures 227

Using Colors with the Color Block Group 227

Predefined Colors 227

Defining Your Own Colors 227

Processing Numbers with the Math Block Group 229

Basic Arithmetic 229

Scientific Arithmetic 230

Generating Random Numbers 230

Sorting and Converting 231

Relational Operators 231

Checking Program States with the Logic Block 
Group 232

Boolean Values 232

Boolean Operators 233

Editing Text and Strings with the Text Block Group 234

Comparing and Sorting 235

Joining and Changing 236

Checking and Searching Content 237

Splitting Strings and Generating Lists 238

Defining Container Structures with the Definition Block 
Group 241

Variables 242



Contents xi

Procedures and Arguments 243

Procedures with Results 245

Managing Lists with the List Block Group 247

Checking the Content of and Converting Lists 248

Searching and Reading List Items 250

Adding, Replacing, and Deleting List Items 251

Controlling Program Flow with the Control Block 
Group 252

Conditional Statements and Branches (if-then-
else) 253

List-Specific and Numeric Loops (for) 256

Generic Loops (while) 260

Closing an App Properly 266

Tips for Program Development 267

Better Overview by Using Comments 270

Complaints and Error Messages During Live 
Development 271

Testing and Debugging 274

Developing More Quickly and Comfortably 277

Example Projects 278

Classic Calculator 278

Quiz Game with Numbers 286

Vocabulary Trainer: English–German 292

10 Storage and Databases 305
Saving Data Locally with the TinyDB Component 306

Saving Values of Variables as Persistent Data 307

Loading Local Data from a Dictionary 311

Deleting App Data from the Android System 313

Saving Data on the Web with the TinyWebDB 
Component 313

Storing the Dictionary in the Cloud 316

Shared Database for Master and Client Apps 323

IV: Developing Attractive Apps 327

11 Graphics and Animation 329
Painting as if on a Canvas with the Canvas 

Component 330



Contentsxii

Colored Dots with Different Brush Sizes 332

Drawing Lines by Dragging on the Screen 337

A Painting Program with an Undo Function 342

Animations with the Ball and ImageSprite 
Components 345

Moving Graphic Objects 349

Collision Detection 351

A 2D Squash Game with Dynamic Animation 355

Controlling Automatic Processes with the Clock 
Component 358

External Control of Animations  361

Keyframe Animations with Your Finger 366

An Alarm Clock with Timer Events 369

12 Sensors 375
Measuring Orientation with the OrientationSensor 

Component 376

Basics of Sensory Orientation Measurement 376

A Compass with a Graphical Direction Indicator 379

A Spirit Level with a Graphical Level Indicator 383

Measuring g-Force with the AccelerometerSensor 
Component 387

Basics of Sensory Acceleration Measurement 387

Use Your Phone as a Shaker Musical 
Instrument 389

Setting the Measurement Sensitivity via Slider 
Control 393

A Balance Game for the Whole Body 397

Determining Geoposition with the LocationSensor 
Component 403

Background of GPS and Location-Based 
Services 404

Geocoordinates and Decimal Separators 405

A Geotracker for Tracking Your Route Profile 409

Geocaching with Your Smart phone 421

13 Communication 433
Task: Developing a Driver Assistance System 434

Demand, Functions, and Requirements 435

Modular Design of the App Structure 436



Contents xiii

Switchboard with Multiple Screens 437

Making Telephone Calls via Speed Dial List 440

Picking Phone Numbers with the PhoneNumberPicker 
Component 442

Selecting Speed Dial Numbers with the ListPicker 
Component 445

Making a Call with the PhoneCall Component 448

Managing SMS Messages Fully Automatically 450

Generate a Reply with an Optional Geoposition 453

Letting Android Read Your SMS Aloud with the 
TextToSpeech Component 454

Dictation and Voice Recognition with the 
SpeechRecognizer Component 456

Receiving, Evaluating, and Sending SMS Messages 
with the Texting Component 458

Data Exchange via an Interface 462

Sharing Use of Apps and Web Services via the 
ActivityStarter Component 462

Pedestrian Navigation with Integrated Google 
Maps 467

Car Navigation with Integrated Google 
Navigation 473

Identifying and Using Activities with ADB 476

Selecting Contacts with the EmailPicker and 
ContactPicker Components 478

Sending E-Mails with Integrated Android Mailer 482

Mobile Mashups with Web Services 487

Using Web APIs with the Web Component 489

Stock Market Ticker with Data from Yahoo 492

News Ticker with Data from Feedzilla 496

Integrating Websites in Your App with the WebViewer 
Component 502

V: Useful Things for the Developer 511

14 Special Functional Areas 513
Application-Specific Components 513

Tweeting with the Twitter Component 513

Reading Barcodes with the BarcodeScanner 
Component 515



Contentsxiv

Online Elections with the Voting Component 515

Data Tables with the FusiontablesControl 
Component 516

Dedicated Component Groups 518

Online Multiplayer Games with the GameClient 
Component 518

Exchange of Data with the BluetoothClient and 
BluetoothServer Components 519

Controlling Robots with the Lego Mindstorms 
Group 521

Java Interface with the AI Java Bridge 523

15 Tips and Tools 527
Supported Media Formats 527

Audio Formats 527

Image Formats 528

Video Formats 529

News from the Developer Forum 529

Control with the Java Console 530

Enabling the Console 530

Monitoring Loading Processes in AI 532

Using Status Information 533

Setting Up the Speech Module 535

Installing Text-to-Speech 535

Speech Synthesis Settings 536

Troubleshooting Speech Output 538

 A Additional Resources 541
On the Companion Website 541

Online Sources and Interesting Links 542

Official Resources 542

Initiatives, Tutorials, and Collections of 
Examples 543

Background, History, and Outlook 544

Running Your Own Service with App Inventor Open 
Source 544

  Index 545



Preface by Hal Abelson

Following is the original preface to this book by Dr. Hal Abelson, Professor of Electrical Engineering 
and Computer Science at Massachusetts Institute of Technology (Cambridge, Massachusetts), leading 
member of the Google App Inventor Team, and director of the new MIT Center for Mobile Learn-
ing supported by Google.

People have been doing personal computing since the 1980s. But today’s mobile appli-
cations are making computing “personal” as never before. Today, we carry computers with 
us constantly, as smartphones and pads and the new devices that are regularly emerging. 
More significantly, today’s personal computing is increasingly “about” us: where we live, 
where we work, who our friends are, what we buy, what we like, whom we talk with, 
and what we talk about. This personal computing is linked to global data services and 
information sources in a way that fundamentally transforms our experience and our per-
ception of our world, just as television did for people beginning in the 1950s.

Television was a consumer technology. Anyone could enjoy television, but there was 
no way to adapt television to your personal needs, other than by selecting which program 
to watch from a variety of offerings from professional producers. Perhaps mobile comput-
ing will be similar, where we’re all limited to choosing from among predefined applica-
tions supplied by professional developers. 

When we created App Inventor at Google, we were motivated by the vision that 
mobile computing could be personal computing technology that you can actually per-
sonalize, by creating applications for yourself and your friends, without having to be an 
expert programmer. Perhaps you might create applications because you want to fulfill a 
special need, or learn about computing, or try your hand at distributing and selling appli-
cations, or just have fun.

App Inventor became available for general use in December 2010. It’s still a beta sys-
tem under development, and the Google team is working to make it more powerful and 
easier to use. But there is already a growing community of App Inventor users of all ages 
who are exploring and experiencing what it’s like to make applications for themselves. 
Some of the things they are creating are: 

nn An application for sending and redeeming gift cards
nn A guide to a major medical reference book
nn A controller for a Lego robot
nn An inventory tracker for a commercial vehicle manufacturer



nn Educational programs in reading and mathematics for their kids
nn Many kinds of games

You can make applications like these, too, and this book shows you how, starting 
with the basics of how to access the App Inventor system from the Google website and 
connect your mobile phone, through pointers on developing applications that use the 
phone’s built-in accelerometer, orientation, and location sensors. Along the way, you’ll 
get a solid introduction to creating applications with text and data and to working with 
images and animation. You’ll learn how to control the phone’s camera, how to manipu-
late databases on the phone and on the Web, and how to create games, send text mes-
sages and make phone calls, and manipulate maps. Each topic is accompanied by working 
applications and thorough explanations.

Could this be your first step toward a future in designing mobile applications? Perhaps. 
Even if it is not, you’ll find that you can be creative and empowered with a technology 
that’s playing an increasingly central role in your life, and the lives of us all.

—Hal Abelson 
MIT Center for Mobile Learning 

Google App Inventor Team 
March 2011

xvi Preface by Hal Abelson



Preface

There could not be a better time than today to start developing Android apps, for many 
reasons. Most importantly, developing your own apps has never before been easier than it 
is now with App Inventor. This development tool, which is offered by Google and Mas-
sachusetts Institute of Technology (MIT) and has been available since December 2010, 
is available free of charge for all to use. With App Inventor, you can develop your own 
apps, even if you have never programmed before, using a computer or even a smart-
phone. With App Inventor, you can build both small and really big apps with playful ease 
by assembling visual building blocks, without having to write a single line of Java code. 
Yet App Inventor is by no means just a toy: It is an alternative and innovative tool with 
which you can develop even complex and demanding apps quickly and easily, both for 
yourself and for other users. Take a look at the table of contents of this book, and you 
will be amazed to find that the early chapters of a book aimed at beginners contain 
instructions for developing apps in the areas of multimedia (photo, audio, video), graph-
ics and animation, various forms of communication (speech, SMS, e-mail, web services), 
and even sensors (orientation, acceleration, GPS geoposition). In Figure P.1, you can see a 
selection of the apps you will develop in this book.

Figure P.1 Android apps developed in this book



The quick and easy start and the equally quick and intuitive development of attractive 
and demanding apps are the declared aims of the visual development tool App Inventor. 
App Inventor is aimed at a far larger target group than ordinary development tools. With 
App Inventor, all users of Android smartphones now have the chance to peek behind the 
scenes at the colorful world of apps, then have a go themselves and express their creativ-
ity by designing their own apps. Where those apps go is entirely up to the developer’s 
individual preferences, topical emphasis, and personal motivation. You as a user can decide 
whether your own app is “just” a personal digital picture frame, a quiz game, a vocabu-
lary trainer with a potentially shareable online database, or a geotracker for automatically 
creating a route profile while the user is hiking. The future will show to what extent the 
“users” of such personal apps eventually turn into “developers”—that is, whether they 
evolve from “passive consumers” to “active producers,” thereby triggering a mini-revolu-
tion in dealing with the most modern forms of communication technology. Nevertheless, 
even experienced developers can profit from using App Inventor, as it enables them to 
produce professional prototypes and apps much more quickly and, therefore, more cost-
effectively. Come and take part in these “developments” and get to know App Inventor 
by reading this book. You will learn to use it for your own purposes and soon appreciate 
its value as an immensely powerful developer tool.

Owing to its rich set of properties and features, App Inventor is in the right place at 
exactly the right time. Now that many billions of dollars have been invested in licenses 
and establishing the mobile telecommunications network infrastructure, the mobile data 
networks of the third generation (3G: UMTS, HSDPA) and fourth generation (4G: LTE) 
are available almost anywhere and at any time, with a data flat-rate tariff often being used 
as the basis for fast data services, mobile Internet access, and web services. In turn, the new 
developments by manufacturers of mobile devices keep coming in a rush. Moreover, after 
a deluge of new smartphones with incredible technical specifications for domestic use, 
the next generation of tablet PCs is being embraced by a growing number of customers 
who are willing to pay for them. The providers of online services and web services are also 
eager to make use of the new mobile possibilities and to offer the increasingly commu-
nicative Web 2.0 users mobile extensions such as location-based services and proprietary 
apps on the growing app market. The competition between the mobile operating systems 
appears almost calm and seems to be more or less settled, the “top dogs” have long since 
been pushed out, and, after an initial neck-and-neck race, the triumph of Android as the 
operating system of choice for smartphones now seems certain. With its open approach, 
the resulting flexibility, its free availability, and its integrative access to the entire range 
of features of the manifold Google Services, Android has qualities that the other mobile 
operating systems lack.

Despite the impressive technological advancements, users nowadays are no longer 
only interested in pure technical features and details. Although the Internet first started 
to develop thanks to just a few technologically minded enthusiasts, it has long since been 
transformed from a mass medium for consuming news, information, and entertainment 
(Web 1.0) to an active, commonplace form of communication between people (Web 2.0). 
Today the focus is not so much on the technology, but rather on the communication, 

xviii Preface



 

creativity, and individuality that people can apply and express with it. This trend partly 
explains the increasing willingness of users to invest time and effort into creating their 
own profiles in social networks, to establish their own blogs, and participate in chats or 
online games, but also to invest money in the form of fixed and mobile telecommu-
nications charges and the newest and most fashionable hardware. Regardless of which 
forms of expression users’ individuality and creativity may take in the age of digital and 
networked communication, App Inventor offers entirely new possibilities for exercising 
them. Previously, users were able to move only within the predetermined limits set by the 
hardware manufacturer, the platform operator, and the app developer; now they can at 
least overcome the latter by using App Inventor, thereby gaining a piece of freedom and 
independence—a factor that should not be underestimated. Even if you do not have such 
ambitious aims, you can still have fun when developing your own apps with App Inventor. 
After reading this book and working your way through the many example apps, you will 
see the colorful app world with different eyes. And almost without noticing it, you will 
have become a developer of Android Apps. So, what are you waiting for?

 Preface xix



This page intentionally left blank 



Acknowledgments

I would like to thank everyone who has supported me during the creation of this book, 
directly or indirectly. This includes not least the members of the Google App Inventor 
Team, whose incredibly dedicated work has made such a fascinating developer tool as 
App Inventor and, therefore, many impressive apps—and this book—possible in the first 
place. I am especially grateful to Hal Abelson, Professor at the legendary MIT, central 
impulse giver within the Google App Inventor Team, and director of the MIT Center for 
Mobile Learning, for his inspiring and courageous work on this and the previous projects 
and for providing the preface to this book.

For the English-language revised and updated edition of this book, I would like to 
thank my colleagues in the German publishing house, Brigitte Bauer-Schiewek and 
Angelika Ritthaler, and in the United States, Jill Hobbs, Trina MacDonald, Anna Popick, 
and Songlin Qiu. I am particularly grateful to Almut Dworak for the excellent translation 
work and, beyond that, for the helpful comments and feedback on the book.

My thanks also to those who had so much patience with me while I was writing this 
book: my parents, my sister, Maximilian, Benedikt, and, above all, Alexandra.

—Jörg H. Kloss 
January 2012



This page intentionally left blank 



About the Author

Jörg H. Kloss has worked for many years with innovative information and communica-
tion technology, including its development, programming, and use in both private and 
professional areas. His private-sector beginnings with the Amstrad CPC and the program-
ming language Basic were followed by deeper explorations at university in the area of arti-
ficial intelligence and computer linguistics, working in Pascal, C, C++, and Java, but also 
in specialized languages such as Lisp and Prolog. Mr. Kloss was one of the early pioneers 
of virtual reality (VR), augmented reality (AR), and interactive 3D worlds on the Internet. 
He began development work on commercial VRML-based online information systems in 
the mid-1990s, has worked at the renowned German VR lab of the Fraunhofer Institute 
for Industrial Engineering (FhG-IAO) and the American VR-Entertainer StrayLight, and 
was president of the European division of the VR Alliance of Students and Professionals 
(VRASP). In addition to numerous presentations, contributions, and other publications, 
Mr. Kloss has written two books that were published (in German) by Addison-Wesley: 
VRML97: Der neue Standard für interaktive 3D-Welten im World Wide Web (VRML97: The 
New Standard for Interactive 3D Worlds in the World Wide Web; 1998) and X3D: Programmierung 
interaktiver 3D-Anwendungen für das Internet (X3D: Programming Interactive 3D Applications for 
the Internet; 2010). 

After developing early industrial projects based on 3D multiuser worlds for an inter-
national media house as well as for remote maintenance via the powerline of a large 
energy supplier, Mr. Kloss focused on telecommunications for many years, taking part in 
innovative projects involving multimedia data and voice technologies in the areas of fixed 
and mobile network communications (IP, TDM, VoIP, 3G, 4G). As these technologies have 
converged, Mr. Kloss has dealt increasingly with the potential of mobile data networks 
and services in the context of mobile augmented reality, ubiquitous computing, and con-
textual services. He has actively taken part in the development of Android apps with App 
Inventor since the early closed-beta phase.



This page intentionally left blank 



Introduction

This book is a compendium, a practical course book, and a comprehensive tutorial in 
one, offering a collection of example projects for smaller and larger applications (apps) for 
Android devices. As a compendium, it addresses, introduces, and demonstrates more or 
less comprehensively every single area and almost every component of the App Inventor 
development tool as it was available at the time when the book was written. Consequently, 
this book can be used as a reference work even by experienced developers who are look-
ing for specific instructions and information about a certain functional area. Presenting 
examples from a wide variety of topics, it also serves as a practical course book on the 
general development of apps for mobile devices with their specific multimedia, commu-
nication, and sensory properties as well as system elements that often remain uncharted 
territory even for the experienced PC programmer. Along with the basic aspects of appli-
cation development, program structures, and functional elements, the example projects 
demonstrate approaches and solution strategies for the typical problems that can arise in 
the context of mobile applications.

As a comprehensive tutorial, this text is aimed mainly at beginners and their needs. 
Both the structure of this book and the development tool App Inventor are written with 
beginners in mind, with a clear focus on practical application. If you are a newcomer to 
programming in general or to app development for mobile devices in particular, specifi-
cally for Android smartphones, or if you are simply adopting the development tool App 
Inventor, the introductory chapters of Parts I and II of this book will provide you with 
the level of knowledge you need and guide you step by step through the development 
of Android apps with App Inventor. The many accompanying example projects and apps 
illustrate and extend what you have learned, invite you to experiment and try things out 
for yourself, and provide a starting point inspiring you to creatively develop your own 
apps. You will learn progressively in line with the sequential structure of the book’s chap-
ters, the topics and functional areas addressed, and the example projects we develop, all of 
which usually build on the knowledge gained in the preceding chapters. Along with cov-
ering the many functional areas and elements, the book also discusses basic methods of 
program development and explains how to use App Inventor’s online resources, thereby 
preparing you to undertake your own development work in the future. In the process, 
the perspective gradually changes from the initial perspective of the beginner looking at 
individual components and their functions to the view of the developer focusing on the 
actual tasks the app performs and strategies to implement them with App Inventor.



2    Introduction

Structure and Overview
If you take a quick look at the table of contents, you will see that this book is divided 
into five parts. These parts are not so much devoted to different topics, but rather reflect 
the intended evolution of the reader from the beginner working with App Inventor for 
the first time to the developer of advanced and complex apps—which we certainly hope 
will occur while you are reading this book and working through the chapters. This struc-
ture emphasizes the tutorial nature of this text; thus we recommend reading and working 
through the chapters in order. Even if you have previous knowledge of and experience 
with App Inventor, you should at least skim through the first few chapters to make sure 
you have the knowledge base that is essential for understanding the topics covered in 
later chapters.

Part I: Preparing Your First App
There is no way around installing the software required for App Inventor. The first chap-
ter, “Preparation and Installation,” guides you through the sometimes bumpy and not 
always obvious procedure of checking and setting the required system parameters on your 
computer, the download and installation of the App Inventor Setup Software, the obliga-
tory registration for the online development platform, and the setup of the development 
parameters on your smartphone. After successful setup, you will explore the development 
environment of App Inventor in Chapter 2, “The Development Environment,” where you 
learn how to use the program, explore its areas of application, and encounter its develop-
ment elements in the two central AI interfaces, Designer and Editor. You will also discover 
how to integrate your smart phone into the development environment and what to do if 
you are having start-up problems. In Chapter 3, “Developing Your First App,” you at last 
begin developing an app—that is, you design the user interface and develop the functions 
of your first app, “LaughBag.” Once you have added a custom default icon to your app, 
you will discover different options for installing it on the smartphone or exporting it as 
APK file. This information lays the foundation for all further app projects.

Part II: Easy Projects as a Warm-Up
Before you develop your next app, Chapter 4, “Basic Terms and Central Concepts,” 
introduces key ideas such as properties, events, and methods. Chapter 5, “The AI Refer-
ences,” walks you through the current components, blocks, and concepts of App Inven-
tor and those expected to included in future versions of the software. Equipped with 
these fundamentals, in Chapter 6, “Graphical User Interface,” you use the Designer to 
create the UI of a demo app, becoming familiar with and actively using components 
such as buttons, text boxes, and check boxes. In Chapter 7, “Multimedia,” you explore 
the topic of multimedia and its components by taking photos and looking at them in 
a demo app, creating a voice recording, playing audio and video files, and making the 
smartphone vibrate. Next, in Chapter 8, “Example Project: Creating a Media Center,” 



3Structure and Overview

you expand this demo project in the form of a media center, an optically elaborate and 
ergonomically designed multimedia app with multiple screens.

Part III: On the Way to Becoming an App Developer
After your quick trip through the colorful world of graphical user interfaces and multi-
media functions and now that you have acquired a good sense of how easy it is to create 
apps with the components of App Inventor, Chapter 9, “Program Development Basics,” 
leads you more deeply into the development of apps with blocks and block structures. A 
comprehensive overview provides key details about data types, data structures, and con-
trol structures, with which you can implement every conceivable functionality using App 
Inventor. Quick demo apps show you how to create colors; process numbers; check logic 
states; edit texts and strings; use variables, procedures, and lists; and control the program 
flow with branches and loops. Next you will find tips on program development in the 
discussion of App Inventor’s Editor component, followed by sample projects in which 
you implement a traditional calculator, a number guessing game, and a vocabulary trainer 
as apps. Next, Chapter 10, “Storage and Databases,” explains how to save data locally on 
your smartphone or online on a web server and how to load them from there. To prac-
tice these skills, you expand the vocabulary trainer by developing a master and a client 
app with a common online database and vocabulary in the cloud.

Part IV: Developing Attractive Apps
Building on the foundations of your newly acquired developer knowhow, we then turn 
to the really interesting apps and more challenging areas of app development. Chapter 
11, “Graphics and Animation,” dives straight into the topic of graphics and animation—a 
rather advanced topic, but one that App Inventor makes it easy to cope with. After a brief 
introduction to the subject area, you develop a drawing program app, in which you can 
draw objects on the smart phone using your finger; the app even includes an undo func-
tion. Next you learn to animate graphic objects and use collision recognition to facilitate 
for realistic movement simulations. To turn your new knowledge into practice, you create 
a 2D squash game with a scoring function and dynamic difficulty level. You also learn to 
use timer events for any kind of animation, develop an app for drawing keyframe anima-
tion paths with your finger and an alarm clock app that will wake you from your dreams 
even when it is in standby mode. 

Chapter 12, “Sensors,” covers a topic that is considered exotic even by experienced 
developers. Here, you get to know the smartphone sensors and learn about their func-
tions and, above all, their integration into your apps. You use the orientation or position 
sensor and its measurements to implement a fully functioning compass app with graphi-
cal compass needle or even a graphical spirit level. You can get musical with the accelera-
tion sensor and develop a shaker, whose sensitivity you can regulate via a slider bar, plus 
a balance game similar to the classical “Labyrinth.” In keeping with the trend of provid-
ing location-based services, you discover ways to use the GPS sensor in your apps, by 



4    Introduction 

developing a geotracker for recording route profiles that you can automatically set online 
in real time, plus an app for geocaching complete with compass, direction, and distance 
indicator to the next cache.

Of course, we won’t forget the almost classical area of communication—the topic of 
Chapter 13, “Communication.” In this chapter, we work through this subject and the 
associated functional areas in our large and practice-oriented final project “Driver Assis-
tance System,” whose requirements and tasks we will analyze, structure, and then imple-
ment step by step in modules, following the same development path taken by professional 
developers. First, you are asked to integrate a module for telephone calls via speed dialing 
under an ergonomic interface with multiple screens. This is followed by development of 
a module for fully automatic receiving, processing, and answering of SMS messages; this 
module enables you to read incoming SMS messages aloud via a text-to-speech option 
and to dictate outgoing SMS messages via a voice recognition capability. Chapter 13 then 
introduces a central interface concept of App Inventor’s Activity Starter component for 
calling and integrating other apps and web services, with which you can both expand the 
functional range of the developer language and integrate any external services into your 
apps. Through various modules, you learn to integrate Google Maps with your app to 
find the way back to where you parked your car, or Google Navigation to navigate the 
car driver home or to his or her workplace with one press of a button. Using a module 
for sending e-mails, you can inform any passengers of your current location and the time 
you will pick them up. Last but not least, the other central interface based on App Inven-
tor’s Web component is introduced for exchanging data with web services via their APIs. 
By implementing a ticker module with the latest news and stocks data, you learn how to 
develop information mashups based on real-time data access to the web APIs from Yahoo 
and Feedzilla, whereas the websites with the original full-text news can be shown directly 
in your app by using AI’s WebViewer component. These capabilities turn your driver assis-
tant system into a full-fledged and powerful app for serious everyday usage.

Part V: Useful Things for the Developer
Even experienced developers—among whom you can definitely count yourself after 
working through Chapters 1 through 13—can always learn something new and use-
ful that they should know and keep informed about. Chapter 14, “Special Functional 
Areas,” reveals the application-specific components of App Inventor for communicating 
with Twitter, for scanning barcodes, for online voting, or for using the online database of 
Google’s Fusion Tables. This chapter also provides an overview of the dedicated compo-
nent groups for developing online multiplayer games, exchanging data via Bluetooth, con-
trolling robots from Lego Mindstorms construction sets, or even combining App Inventor 
with the app development in Java via the App Inventor Java Bridge. 

Chapter 15, “Tips and Tools,” offers helpful tips for working with the supported media 
formats, using the Java console, and setting up the speech module. The Appendix describes 
the many project, media, and APK files available on the companion website and lists fur-
ther sources of information and interesting links.



5History

Companion Website
On the companion website for this book, you can download (“Downloads”) all demo 
and example projects from the book, as well as all media files such as the pictures or 
sounds needed for the projects:

www.informit.com/title/9780321812704

Please read the chapter “On the Companion Website” in the Appendix “Additional 
Resources” of this book for further details about the contents of the companion website 
and how to use them for your work with this book. 

Requirements
One of the central characteristics of App Inventor is that you do not need to meet any 
special requirements to be able to develop small and large Android apps with this tool. 
Much like this book, App Inventor is aimed primarily at beginners in app development; no 
previous knowledge in programming Android smartphones, either general or specialized, 
is required to use this tool. If you are interested in smartphones, apps, and mobile data ser-
vices, and you use them regularly to check your e-mails and update your social networks, 
then you should already have the prerequisites and—above all—the motivation to take 
the next step, have a look behind the scenes of the colorful app world, and start develop-
ing your own apps. Whether these are small helper applications or gimmicks, your own 
SMS manager or location-based games, or useful apps for work, everyday life, leisure time, 
or your club or group, with App Inventor you can turn your own ideas into apps without 
having to program a single line in Java. This book will show you how to do all that.

Of course, it would be a good idea if you had an Android smartphone at your disposal. 
From Android version 1.6 onward, you will be able to try out and use practically all of 
the functions described and apps developed in this book directly on your smartphone. 
Even if you do not yet have an Android smartphone, or if you have a smartphone run-
ning an older version of Android (prior to 1.6), you can still use App Inventor and the 
Android Emulator included with it to develop nearly all of the apps described in this 
book, test their functions, and then install them on a friend’s Android smartphone. One 
part of the development environment for App Inventor runs on your local computer 
and another part on a web service, so that you need to have a PC or notebook and DSL 
access or a similar connection to the Internet available.

The software you need for App Inventor is available free of charge. To download and 
use the software, you simply need to register for the free service. This book shows you 
how quickly and easily all of this can be achieved and also guides you through the instal-
lation and the setup of the development environment.

Many apps—both in general and those described in this book—make intensive use of 
the Internet and online web services and will use your mobile data connection to do so. 
Do not forget that you are paying for this mobile data connection while you are testing 
and using your own apps. A flat-rate data plan with your cellphone provider can help you 
avoid unpleasant—and costly—surprises.

www.informit.com/title/9780321812704


6    Introduction 

History
When it comes to the developer tool App Inventor and even the mobile operating system 
Android, it is difficult to talk about “history,” given that this history is still rather young. 
In fact, you now stand at the forefront of this history and are driving this wave of inno-
vation by developing apps for Android smartphones with App Inventor! Since Android 
was first released in October 2008, the Linux-based (and, in many respects, open) oper-
ating system for different mobile devices that was initiated by the Open Handset Alli-
ance (OHA)—an alliance of producers, Net companies, and service providers within the 
telecommunications sector—and marketed by Google has developed from a niche product 
to a market leader. In the wake of the incredible increase in sales revenues, rapidly increas-
ing market share, displacement of former market leaders, and practically exploding Android 
market, more and more producers and providers are announcing devices and services for 
Android, as they do not want to miss the boat.

App Inventor at Google
Good job—we now have App Inventor! With it, you may be able to actively participate 
in this growth process, if you have the ambition to do so. Nevertheless, it seems to be 
pure coincidence that free access to App Inventor was provided at the same time as the 
hype surrounding Android and mobile data services ramped up. When App Inventor was 
announced in July 2009 as an experimental teaching and learning tool for a select circle 
of American institutes of higher education (MIT, Harvard, and so on), the developer tool 
was mainly aimed at giving pupils and students easy access to programming in general 
and mobile devices in particular, while taking into consideration the most modern forms 
of information and communication technology such as social networking, location-based 
services, and web services within a cloud. Almost exactly one year later, App Inventor at 
Google was announced to the public in July 2010 and made available to interested devel-
opers as a closed beta version, albeit after they submitted an application and access was 
approved by the Google App Inventor Team. The period during which these would-be 
developers had to wait for their access being granted was marked by impatient debates in 
which some applicants compared the process to having to wait for Santa Claus and the 
long-awaited Christmas present (see Figure I.1)—an attitude that reflects the strong inter-
est in a developer tool such as App Inventor.



7History

 

Figure I.1 Impatiently waiting to be granted access to the former closed beta version

Once access was finally granted (see Figure I.2), a new phase of intensive testing of 
the development environment, functions, and capacity of App Inventor began. This phase, 
under real conditions of use and load, was marked by adaptations, optimizations, and a 
vivid exchange between the Google App Inventor Team and the App Inventor closed 
beta users.



8    Introduction 

 

Figure I.2 Admission to former closed beta version

Over time, the development platform was tested extensively under realistic conditions, 
subjected to certain optimizations, and finally moved on to a stable basis version. On 
December 15, 2010, the Google App Inventor Team announced entry into the open beta 
phase and decided to open the development platform to any interested user without any 
access restriction (see Figure I.3).

 

Figure I.3 Start of the open beta phase with access to anyone

Since that day, there has been even more buzz in the already turbulent Android mar-
ket, and developers and users alike are feverishly working on new Android apps with 
App Inventor all over the world. The Google App Inventor team has been continuously 
expanding the developer platform and adding more and more powerful and extensive 
functions to App Inventor. During the year 2011, App Inventor became established as a 
real alternative to the Java-based Android Software Development Kit (SDK), and on the 
various Android markets you will find more and more apps that have been developed 
with App Inventor.



9History

Open Source and App Inventor at MIT
With the year 2012, Google heralds a new era for the popular developer tool App Inven-
tor. As with the open operating system Android itself, Google is now offering the platform 
for visual app development for Android as an open-source version, free of charge (see the 
first clause in Figure I.4). Similar to the successful concept whereby manufacturers can 
adapt the mobile operating system to their Android hardware, the development environ-
ment App Inventor can now also be run on different platforms by independent providers 
and can be adapted and developed further depending on the desired focus. For the users 
of App Inventor, this results in the availability of alternative platforms on which they can 
develop their apps depending on their personal preferences. This move will increase the 
multitude of options even further and ensure the development of more new features of 
App Inventor in the future.

 

Figure I.4 App Inventor with Google and MIT (http://googleresearch.blogspot.
com/2011/08/new-mit-center-for-mobile-learning-with.html, as of August 17, 2011)

http://googleresearch.blogspot.com/2011/08/new-mit-center-for-mobile-learning-with.html
http://googleresearch.blogspot.com/2011/08/new-mit-center-for-mobile-learning-with.html


10     Introduction 

As one of the first providers, the Massachusetts Institute of Technology (MIT) is 
now making the new App Inventor available online to the public on its systems, thereby 
consistently continuing the tasks of the previous Google App Inventor Group (see the 
announcement in Figure I.4). The release process followed the original by having started 
with an experimental version followed by the stable public version. The cooperation 
between Google and MIT, which has existed since the earliest days of App Inventor, will 
continue in the future as well, in form of the jointly founded and financed Center for 
Mobile Learning (CML) at the MIT Media Lab (Figure I.5). 

 

Figure I.5 App Inventor at the Center for 
Mobile Learning at the MIT Media Lab

This venture also provides for continuity in terms of personnel, notably Dr. Hal  
Abelson, who as initiator of the former Google App Inventor Group is now running the 
new CML, which is responsible for operating and further developing App Inventor.  
Figure I.6 shows the new central website for App Inventor at MIT, from where you can 
start to explore documentation and tutorials (Explore), special information for educa-
tors, and even curriculum materials (Teach), and—of course—also launch App Inventor 
(Invent).



11History

 

Figure I.6 Central information website for App Inventor at MIT 
(http://appinventor.mit.edu/)

The success story of App Inventor for visually developing Android apps continues and 
is expected to gain further momentum. You can become a part of this story by starting to 
develop apps for Android, the most widely used mobile operating system. Read this book 
to find out how you can use the new App Inventor to turn your ideas into reality and 
create your own exciting, impressive, and unique apps!

Kloss_01.indd   11 9/24/12   9:41 AM

http://appinventor.mit.edu/


This page intentionally left blank 



Chapter 3
Developing Your First App

Finally! In this chapter you will have a chance to develop your first very own Android 
app with App Inventor. Now that you have fulfilled all the preparation and installa-
tion requirements mentioned in the previous chapters and created your first Project 
“HelloAndroidWorld,” all that effort is ready to pay off. And as you know, you learn 
best while having fun. For that reason, our first app will be all about laughter. You may 
remember the “laugh bag”—a popular gag toy of the 1970s that is still around today. This 
canvas bag contained a little plastic box inside it that would laugh like mad when you 
pressed on it. The kids in the 1970s had great fun with it, so why should it be any differ-
ent in our age of the smart phone?

Developing the laugh bag app will introduce you to all the basic elements of app 
development with AI. In AI Designer, you will put together the app’s graphical user 
interface from various components, integrate different media types, connect the compo-
nents together in the AI Blocks Editor, and develop the app functions by combining the 
blocks to create block structures. In addition to testing the app within the AI develop-
ment environment, we will prepare it as independent app so we can upload it to any 
Android device using a variety of export options. We will also address any problems that 
might crop up during app development with AI and present solutions or workarounds. 
By the end of the chapter, you will have taken a great step toward becoming an app 
developer with AI and will have acquired sufficient knowledge to be able to develop 
simple apps independently.

The step-by-step guide to the development process provided in this chapter reflects 
the most basic approach to creating an app. With simple apps, it is indeed possible to 
create the complete app interface in a single step and then to complete all of the block 
structures in a second step. For more complicated app projects, however, you will likely 
need to jump back and forth between the Designer and Blocks Editor and, therefore, 
between the individual working steps, or to run through the development cycle repeat-
edly for the various functional components and block structures. In the course of the 
book, you will become familiar with both approaches and learn to make seamless transi-
tions between them.



82 Chapter 3 Developing Your First App

Creating the Project “LaughBag”
In Chapter 2, we created our first project titled “HelloAndroidWorld.” This project was 
automatically saved on the provider servers when you left the AI development environ-
ment. If you now reopen App Inventor with your user data, the status of your latest 
project is loaded and displayed automatically. Start AI by going to the start page in your 
web browser and sign in. It makes sense to save the web address as a bookmark in your 
browser to speed things up if you will be frequently developing apps with AI.

Sign In and Start AI Designer
Start the AI Designer by logging in to the website of your AI provider.

The links to the experimental and public versions of MIT AI are: 

http://experimental.appinventor.mit.edu

http://beta.appinventor.mit.edu

Click on the button labeled “Sign in” so the web browser begins loading AI Designer. 
On loading, you may briefly see the project overview before the view changes to 
the central interface with its five panels, into which the most recently edited project 
(“HelloAndroidWorld”) is loaded. We recommend that you now also start the AI Blocks 
Editor by clicking the button labeled “Open the Blocks Editor” and connect it to your 
Android smart phone via the USB cable by clicking the button “Connect to phone” (see 
the description of this process in Chapter 2).

Start AI Designer, Blocks Editor, and Phone Connect Immediately
If you always start the AI Blocks Designer in addition to the AI Designer when developing 
apps, and you integrate your smart phone as well, you can follow all visible development 
steps you carry out in the Designer on the smart phone screen.

If your smart phone is connected straight away to the AI development environment, 
you can always see the following development steps on your smart phone screen and try 
them out. Alternatively, you can start the Blocks Editor and smart phone at a later stage; 
we will remind you of this possibility at a later point.

To create a new project in AI Designer, go to the project overview by clicking on 
“My Projects,” where you will see the project “HelloAndroidWorld” listed. Create a 
new project titled “LaughBag” by clicking on the New button. Enter the project name 
“LaughBag” in the pop-up window and confirm by clicking OK, as shown in Figure 3.1.

http://experimental.appinventor.mit.edu
http://beta.appinventor.mit.edu


83Creating the Project “LaughBag”

 

Figure 3.1 Create the new app project “LaughBag” in AI Designer

The AI Designer now creates the new project, saves the default configuration on 
the remote provider servers, and loads it together with the component groups into the 
now opening interface. The status bar at the top informs you of this process with short 
status messages such as “Save...” and “Load....” As our first project, LaughBag appears in 
the familiar default configuration. Apart from the component groups in the Palette, the 
Viewer shows only the starting component “Screen1,” which appears as the empty screen 
area and is selected by default in the Properties panel. 

As you can see in Figure 3.2, you can now change the app title from “Screen1” to 
“LaughBag” by editing the Title option accordingly. The app title will also appear on 
your smart phone when you use the app later. Press your computer’s Enter key, and the 
title displayed in the Viewer also changes.

 

Figure 3.2 Default configuration for the project LaughBag



84 Chapter 3 Developing Your First App

Checking Your Smart phone
Have you already connected your smart phone via the AI Blocks Editor? If so, you can check 
whether the app title has changed.

We will leave the other settings of the Screen component unchanged. The default set-
ting “Unspecified” in the ScreenOrientation box will later automatically adapt the screen 
orientation horizontally or vertically depending on how the user is holding the smart-
phone. Setting the screen to vertical (Portrait) or horizontal orientation (Landscape) is rec-
ommended only in special situations. To make sure all user elements of the app are visible 
even on small screens, you should normally also leave the screen area set to “Scrollable.”

Designing the User Interface
Once the project has been created and the app title changed to LaughBag, the creative 
part of the app development can begin. It is not a coincidence that the AI interface 
responsible for this task has the name Designer, because it is where you design the user 
interface for the future users of your app. As mentioned in Chapter 2, “The Development 
Environ ment,” the user interface not only enables the user to enter input, but also provides 
interactive output of the relevant results to the user. The elements of the user interface are 
visual (e.g., text, buttons, images), of course, but also they allow for multimodal input (e.g., 
microphone, camera, accelerator, location sensor, GPS) and output (e.g., sound, vibrations, 
movies), sometimes by accessing remote sources (e.g., web services, SMS, Bluetooth). The 
multitude of components AI provides for this purpose has now become so great that it 
is difficult to categorize them comprehensively, and the Google developers are fervently 
doing their best to further expand the functionality of AI.

Consider Ergonomics
The significance of the design task for an app’s success cannot be emphasized enough, 
as the user friendliness or ergonomics is a decisive factor in determining the ultimate suc-
cess of an app—which, after all, is nothing more than a small mobile software program. 
The more intuitive, effective, and useful an app is for an intended task in the special situa-
tion of mobile use, the more the users will use the app, recommend it to other users, and 
download it. Try to consider this point while you are designing your apps, and imagine the 
situation and requirements of your target group. For example, if your app is aimed at driv-
ers, the buttons and text labels should be big enough to read and use comfortably and—
above all—safely during a car ride. 

If you are interested in finding out more about app ergonomics, you can research this topic 
further on the Web. A whole range of recommendations and suggestions can be found 
online for the design of Android apps icons alone.

In this book, we will focus less on the creative or ergonomic aspects and more on the 
functional variety of the AI components. In turn, you should not have too high aesthetic 
expectations regarding our laugh bag—even the original devices from the 1970s were not 
very impressive in that respect.



85Designing the User Interface

Inserting the “Label” Component
The user interface of the LaughBag app will be fairly simple and consist of only two 
components, aside from the screen component. First, we want a brief text to describe 
how to use the app (“Please press the bag!”). Second, we want the bag itself to have sev-
eral properties: It should look like a bag, and you should be able to press it to make it 
laugh. These properties may sound rather complicated, but they are actually just the same 
as for any button you know so well from a Windows or app environment. Thus the user 
has to be able to press or tap the button, and this button gets its individual look because 
you attach a text label to or image positioned on the button like a sticker.

“There Is More Than One Way to Skin a Cat”
Don’t worry—no cats are harmed in this book. We just want you to be aware of this fact, 
especially as a beginner in app development. There are always multiple ways of realizing 
an app. Most apps fulfill a more or less useful purpose. How you achieve that goal largely 
depends on your creativity as a developer. AI offers a huge collection of tools that you 
can use to build your app. Whether you realize the laugh bag as an elaborately animated 
3D graphic with haptic feedback or much more simply as a button with a picture on it is 
entirely up to you and your level of motivation. Both variations fulfill their primary purpose: 
The laugh bag laughs if you press it. If you want to demonstrate the particular capacity of 
your high-end smart phone with Android 2.3 or even 4.0, a 3D laugh bag will certainly more 
impressive than a 2D button, but the button will run without limitations even on simple 
smart phones with Android 1.5. You have to weigh the resources and effort involved against 
the desired effect.

Our modest intent is to create a manageable app for beginners that can run on as 
many Android devices as possible, so we use only two components in designing the visual 
appearance of our LaughBag app:

nn Label: A text field that can receive any text and be placed onto the screen like a 
label.

nn Button: A button that can also have a text and/or an image in addition to its 
switching function.

Further Information in the Component Reference
Further information on functions and properties of all components can be found online in 
the Component Reference:

http://experimental.appinventor.mit.edu/learn/reference/
components/

http://experimental.appinventor.mit.edu/learn/reference/components/
http://experimental.appinventor.mit.edu/learn/reference/components/


86 Chapter 3 Developing Your First App

Together with all the other components, you will find the Label and Button in the AI 
toolbox—that is, in the Palette panel on the left in AI Designer. The two components are 
part of the “Basic” group. If it is not yet open, please click on the group name to display 
the components contained within it. Button is in the first position, Label in the sixth 
position.

We want the message “Please press the bag!” to appear in our LaughBag app, just 
below the title bar. We will first place the label in the Viewer, though we can move the 
components at a later stage if required. Grab a label in the Palette by clicking on the 
name or the icon of the component “Label,” then hold the mouse button and drag the 
label into the Viewer. While you are dragging the mouse, the pointer changes from the 
usual mouse pointer icon to a text field—the label—containing the default text “Text for 
Label1,” as shown in Figure 3.3. 

 

Figure 3.3 Drag a new label from the Palette to the Viewer

If you drop the label in the Viewer by releasing the mouse button, the label slots in 
automatically just below the title bar. Now you have created your first additional compo-
nent in the LaughBag app: You have created an object of the component type “Label.”

An Aside: The Distinction Between Component and Component Type
Let’s remind ourselves once more of the distinction between the abstract component in the 
Palette and the specific object in the Viewer. If you drag a component from the Palette to 
the Viewer, you do not actually move this component, but rather create a specific object of 
the type of this component, the so-called component object. In theory, you can create an 
unlimited number of objects of the same component type and use them in your app. The 
distinction is similar to that between a class and an object in object-oriented programming.



87Designing the User Interface

Checking on Your Smart phone
If you have connected your smart phone, the new label with the default text “Text for 
Label1” will be visible on the screen as well. The same is true for all other visible 
expansions or changes you make in AI Designer, which will also become visible on the 
connected smart phone in debugging mode.

That is not the only reaction in the AI Designer interface, however. Once you create 
the label, it appears not only in the Viewer (and the connected smart phone), but also in 
the panels Components and Properties. As you can see in Figure 3.4, the new label appears 
as a component object in the Components panel, it has the name “Label1,” and it is hier-
archically subordinate to the central starting component “Screen1.” The name and index 
number of “Label1” are assigned automatically by AI when a new component object is 
created. If you were to drag another label component into the Viewer, the newly created 
second label object would get the name “Label2,” and so on. Feel free to try it. The second 
label will be positioned below the first in the Viewer, just as in the Components panel. 

 

Figure 3.4 The label in the panels Viewer, Components, and Properties

At this point, you should delete all surplus labels, except for the first label. To do so, 
highlight them one by one by clicking on them in the Viewer or under Components and 
then clicking the Delete button in Components. Confirm that you really want to delete 
them by clicking OK. Before you continue, your workspace should once more look like 
that shown in Figure 3.4.



88 Chapter 3 Developing Your First App

Assigning Component Names
Before we turn to the label’s properties, we want to give this object a memorable name. 
If you assign memorable names, it becomes much easier to keep track of things when 
you work with the AI Blocks Editor later. If you are designing complex apps and are 
using many labels or other objects of the same component type that have names dif-
fering only by their index number (“Label1,” “Label2,” “Label3,” and so on), it will be 
really hard to tell them all apart. It helps if the object has a name that reflects its function 
within the app.

An Aside: Assigning Names in Programming
In programming, it is common practice to assign descriptive names to objects, constants, 
functions, and variables, so as to make the rather abstract and cryptic program code 
clearer and easier to understand in case later editing becomes necessary. A good naming 
convention can also be an essential aspect of good and effective app development.

We want to change the name of the label from “Label1” to “Message.” Click on 
“Label1” with the mouse to select it under Components, and then click on the Rename 
button. This opens a pop-up window where you can enter the “New name” and con-
firm it by clicking OK (see Figure 3.5). In the Components panel, the label is now listed 
under its new name “Message.”

 

Figure 3.5 Assigning a memorable name to the new label

Setting Properties
To view and change the properties of a component, you first need to select the com-
ponent by clicking on it in the Viewer or the Components panel. The selected object 
appears bordered in green in the Viewer and with a green background in Components. 
The properties of the selected component are shown in the Properties panel. Even a 
simple component such as the label has an impressive list of properties. For the text field, 
for example, you can specify or choose its Alignment, BackgroundColor, FontBold, Font-
Italic, FontSize, FontTypeface, and TextColor. 

In addition, you can specify other properties, such as the label size, separately for 
the width and height of the text field. You can choose whether the label size should 



89Designing the User Interface

automatically adapt to the text dimensions (Automatic) or the dimension of the parent 
object “Screen1” (Fill parent) or whether the label size will be specified explicitly in pixels 
(Pixel). You can also choose whether the label or the text it contains should be “Visible” 
(or not). You might wonder what would be the point of defining a text that is then not 
visible. As we have already mentioned, the component properties can be changed not just 
during development in AI Designer, but also later during the app’s execution (runtime) on 
a smart phone, dynamically within the program logic defined by the block structures. It is 
possible to not show a message in a label when the app is first run, and then display it only 
when a certain event occurs—for example, tapping a button.

Finally, the label also has a text field (“Text”), where you can enter the actual label 
text. Here you should replace the default text “Text for Label1” with our message “Please 
press the bag!” If you check the new message in the Viewer or on the smart phone, it will 
not yet look very spectacular. Feel free to set a snazzy background color, change the font 
color, and perhaps increase the font size. The other settings can be left with their default 
values. In the Viewer, your app should now resemble the one shown in Figure 3.6.

 

Figure 3.6 Changed properties and new design for the label “Message”

Adding the Interactive Component “Button”
Let’s move on to our second component, with which we want to complete the user 
interface of our LaughBag app. As mentioned earlier, we want a button with a picture on 
it to represent the interactive laugh bag.



90 Chapter 3 Developing Your First App

Interactive Components
The “Button” component is an interactive element of the user interface, unlike the label. 
The button receives a user action (an event), such as tapping the button, and the app pro-
cesses the event and reacts with a result (laughter). In addition to the button, AI provides 
many other interactive components—for example, selection elements such as check boxes 
and lists, and sensors that react to movements by the user.

The “Button” component can also be found in the component group “Basic” in the 
AI Designer Palette. Grab the “Button” component and drag it to the Viewer. Again, you 
can see the default setting for the “Button” component while you are dragging—namely, 
a button with the text “Text for Button1.” While you are dragging the button to the 
Viewer, the screen area also shows a narrow horizontal blue bar (see Figure 3.7, below 
the label). This bar indicates where the selected component will be placed once you drop 
it in the Viewer. For example, if you were to drag the component “Button” above the 
label, the position bar would jump above the label. If you then drop the component, it 
would be placed between the title bar and the label. For our app, you should drag the 
component below the label to place the button below it. You can grab the objects in the 
Viewer below the title bar later and rearrange them at will.

 

Figure 3.7 Dragging the “Button” component 
from the Palette to the Viewer

Just as before with the label, you now have created a second component object of the 
type “Button” in the Viewer. After you drop it, the button is automatically selected. The 
Viewer shows the graphic representation of the button with a green border, and you can 
also see the new button on your smart phone. Now we want to customize the button for 
use in our LaughBag app. First we will give it a memorable name. As shown in Figure 3.8, 
the button is also a child of the parent object “Screen1” in the Components panel, and 
again the button has a default name with an index number, “Button1.” Just as before, you 
can click the Rename button and change the default name “Button1” to “LaughButton.”



91Designing the User Interface

 

Figure 3.8 Button displayed in Viewer, Components, and Properties

In the next step, we again examine the properties of the LaughButton. They are 
mostly the same as those of the label. Once more, we have options for setting the text 
alignment, background color, bold and italic font, font size, type, and color. We can again 
set the button size (i.e., width and height) and decide whether to make it visible. In the 
text field “Text,” you can change the text; let’s replace the default text “Text for Button1” 
with “Press me!” Perhaps you would also like to edit the font and set it to bold and ital-
ics. If you wanted the button to have no text on it at all, you would need to leave the 
text field empty.

In addition to the familiar properties, this button has two new qualities. First, it 
contains an additional check box with the label “Enabled.” Similar to the case with 
“Visible,” you can use this check box to decide whether the button should be enabled 
when the app is run—that is, whether it should respond to being pressed. Of course, 
we do want the button representing the laugh bag to respond if the user taps it, so we 
leave the “Enabled” check box checked. The second new property is the “Image” field, 
whose name reminds us of our initial intention of adding an image to the button. At the 
moment, the field shows “None,” indicating that the button does not yet have an image. 
Let’s change that now.

Uploading and Integrating Media Files
As mentioned previously, we will design our interactive laugh bag as a button with an 
image of a bag on it. As the LaughButton is already positioned in the Viewer and, there-
fore, in the app, we now need simply choose an image for it. We need a suitable image file 
with the picture of a bag. If you happen to have a great photo of a pretty bag in electronic 
form, feel free to use it. But make sure you meet the file format requirements, so as to 
ensure the image file will be supported by AI and the Android devices running the app.



92 Chapter 3 Developing Your First App

Image Formats
For more information on image file formats supported by Android, refer to the “Image 
Formats” section in Chapter 15, “Tips and Tools.”

In the more likely case that you do not have a suitable image file available, you can use 
the image file laughbag.jpg located in the /MEDIA directory on the companion web-
site for this book. Feel free to use it as part of this example app.

On the Companion Website: Media Files for All Example Apps in the /MEDIA 
directory
All audio, image, and video files used in our examples can be found on the companion 
website in the /MEDIA directory.

To place the image from the file laughbag.jpg onto the LaughButton, you first have 
to make it accessible for your development work by uploading it into the AI IDE (develop-
ment environment) and the remote provider servers (Upload). Click in the Laugh Button 
Properties on the “Image” field to open the selection list shown in Figure 3.9. As you have 
not yet uploaded any image files in your current app project, the list is still empty and 
“None” is available for selection. You need to find the desired image file on your local hard 
disk (previously downloaded from the companion website) by clicking the Add button. This 
opens the Upload File pop-up window (shown in Figure 3.9). Click the Search button, to 
access your local file directory—for example, via Windows Explorer. Go to the image file 
laughbag.jpg and select it by clicking the Open button. The file name and path then 
appear in the Upload File window, and you can confirm your choice with OK.

 

Figure 3.9 Uploading the image file laughbag.jpg to AI IDE

This starts the image file upload, indicated by the AI status message “Uploading laugh-
bag.jpg to the App Inventor server.” Once the upload has been completed, our laugh bag 



93Designing the User Interface

in all its beauty appears in the Viewer (and on the connected smart phone), as shown in 
Figure 3.10. The name of the image file now assigned to the button is displayed in the 
LaughButton Properties in the “Image” field. The image file laughbag.jpg is still avail-
able for general use in the current LaughBag project, as indicated by the corresponding 
list item in the Media panel. If you decide, for example, that you want to assign the same 
image file to another button, the image file will appear in the selection list of the “Image” 
field concerned, so you do not need to upload the file again, but instead can reference it 
within the project to reuse it again and again. If you wanted to delete the image file from 
the AI IDE or the provider servers, you would have to click on it in the Media panel 
and select “Delete” in the pop-up menu. The file would be deleted and the LaughButton 
would be displayed without an image on it.

 

Figure 3.10 The LaughButton button with the image laughbag.jpg

Optimizing the App Design
This step basically concludes the optic design of our LaughBag app. We say “basically” 
because we still want to do a bit of fine-tuning. Take a look at the user interface in the 
Viewer and on the smart phone: The Message is all the way over on the left side of the 
screen, as is the LaughButton. It would look better and more professional if both ele-
ments were centered in the middle of the screen, not only in the static Viewer, but above 
all on the differently sized screens of the various Android smart phones. You can guess 
how we can optimize the optic design. Click on the label in AI and go to its Properties 



94 Chapter 3 Developing Your First App

to change the setting for the horizontal Width property to “Fill parent.” Now the label 
width automatically matches the width of the parent object “Screen1” and consequently 
fits the screen width of the relevant smart phone. You can check this immediately in the 
Viewer and on your smart phone. The text is still in the left corner of the label, however. 
Center it by changing the Alignment property to “center.”

Texturing
In computer graphics, an image that is applied to a 2D or 3D object is sometimes referred 
to as a texture and the process of doing so as texturing.

We now want to optimize the button in the same way. Select it and change the Width 
property to “Fill parent.” As the underlying image has a smaller width than the now 
enlarged screen-wide button in the Viewer and on the smart phone, the image plus label is 
automatically centered on the screen, thanks to the default setting “center” for Alignment. 
The optically optimized user interface of our LaughBag app now looks neat and tidy on 
the smart phone, as you can see in Figure 3.11. 

 

Figure 3.11 Optimized user interface on smart phone LG P500



95Designing the User Interface

If You Cannot See the Image
If the bag image should not be visible on your systems, there is no need to panic. Unfortu-
nately, with the many different computer systems and Android smart phones around, it some-
times happens that the image is either displayed in the Viewer only or the smart phone only, 
or on neither. For example, the image is displayed on the smart phone LG P500 with Android 
2.2 or the default emulator of AI with Android 2.1, but does not display on the HTC Tattoo 
with Android 1.6. The Google developers are aware of this problem and working to fix it; 
temporary solutions are available on the AI “Troubleshooting” website (see “I set the image 
property of a button to an image file, but nothing shows on the phone”):

http://experimental.appinventor.mit.edu/learn/troubleshooting.
html

Even if an image still fails to display on your development systems at this stage, chances 
are that it will display correctly on your smart phone in the finished app later. Just be patient, 
and wait until we reach the later section where you learn how to load and run the app on 
your smart phone. At that point, you should have the pleasure of seeing your image. Until 
then, you can simply imagine the image in your development environment. As mentioned 
previously, improvisation and patience are virtues that are most appropriate during app 
development in general and in the AI beta phase on the highly dynamic Android operating 
system in particular.

Non-Visible Component “Sound”
Even if the optic design of our LaughBag app already looks rather convincing with just 
two components and one media file, we are still missing something important. Right—
what good is having a laugh bag without laughter? We need to add another media 
file to our app, an audio file with some nice loud laughter. Once more you will find a 
sample file laughter.wav on the companion website in the directory /MEDIA. As with 
all media files, you have to make sure that the audio file’s format is supported by AI or 
Android.

Audio Formats
For more information on the audio file formats supported by Android, please go to the 
section “Audio Formats” in Chapter 15, “Tips and Tools.”

To insert the audio file into your app, you need to drag another component into the 
Viewer. The “Sound” component for playing audio files can be found in the “Media” 
component group. Open it by clicking on the group name in the Palette. Grab the 
“Sound” component and drag it into the Viewer as before. If you drop the component 
with the default name “Sound1” in the Viewer, it does not appear within the represented 
screen area, but rather below it. As a non-visible component, the sound object is not dis-
played in the visible area of the Viewer, but simply listed in the special area “Non-visible 
components”; see Figure 3.12 (the bottom edge of the Viewer).

http://experimental.appinventor.mit.edu/learn/troubleshooting.html
http://experimental.appinventor.mit.edu/learn/troubleshooting.html


96 Chapter 3 Developing Your First App

 

Figure 3.12 Listing the non-visible component “Sound” in the Viewer

Even though the component “Sound1” is naturally not displayed in the visible area of 
the Viewer (and not on the smart phone either), it does appear in the other panels just like 
any of the visible components. Under Components, it is subordinate to “Screen1”; under 
Properties, its specific properties are listed as usual, if the component object “Sound1” was 
selected and highlighted with a green border (see Figure 3.12). You can change the settings 
accordingly, just as described earlier in this chapter. Right now, you should change the 
name from “Sound1” to “Laughter” in Components.

The number of properties of the sound object “Laughter” in Properties is manageably 
small. You can use the MinimumInterval property to set the playback time of the audio 
file in milliseconds. If the length of the audio file is shorter than the interval, the file is 
played repeatedly. As a general rule, the playback time and interval time should match 
each other as closely as possible, unless you want to achieve a corresponding acoustic 
effect. We can fine-tune this feature later if necessary.

More interesting for our purpose is the second property of “Laughter” for upload-
ing and integrating the audio file into the app by specifying the audio source in the field 
“Source,” which currently—similar to the case for the image file—contains the value 
“None.” In fact, you use exactly the same process for integrating any media file, whether 
it is an image or audio file. So, click on “Source” and you will see the list of available 
media files. This time you can readily see the file laughbag.jpg, as the selection list 
does not distinguish between the media types. Use the Add button to choose a file on 
your local hard disk and upload it into the AI IDE. Proceed in exactly the same way as 
when you uploaded the image file, but this time choose the audio file laughter.wav 



97Developing App Functionality

in the directory /MEDIA of this book’s companion website. If all went well and no errors 
occurred during the upload, you should now see the file laughter.wav in the Media 
panel and the “Source” field in Properties, as shown in Figure 3.13.

 

Figure 3.13 Successfully integrated audio file laughter.wav

Now the design of the user interface of our LaughBag app with components is com-
plete. Of course, if you now try to press the LaughButton in the Viewer or even on your 
smart phone, nothing happens. The reason is that the objects of your app user interface are 
still unconnected and without functionality. To change this situation, we need to go to 
the second AI interface, the Blocks Editor.

Developing App Functionality
In this step, we will determine the tasks we want the component objects we placed in 
the AI Designer to have within our app. To do so, we will connect the active components 
(button and sound) with each other in the AI Blocks Editor and combine them into an 
interactive functionality (laughter when the button is pressed). This description of the 
development work we are about to undertake may sound a little pompous, but is the basic 
element of each and every app development process with AI, regardless of how complex 
and complicated, or simple and basic, the resulting app may be. If you fully understand this 
step, you will have mastered the basic principle of app development with AI and be ready 
to tackle bigger projects in the future.

This step takes us into a development area that comes close to classic app development 
with a programming language such as Java. Up to now, you have created the objects of 
the user interface in AI Designer and optically arranged the visible objects accordingly. 
Now you will access the functions of these objects (component-specific blocks) in the AI 
Blocks Editor and use them to design part or all of the app’s functionality (block struc-
ture). In addition to the object functions, you can use general functions (generic blocks) 
for completing and developing the application logic and app functionality. Essentially you 
will start “programming” an app straight away, without using a programming language in 
the narrower sense. Do not feel put off by this process as a beginner; on the contrary, you 
should enjoy learning the principles of object-oriented programming as if in passing. Per-
haps you would like to be able to develop apps in a programming language such as Java 
one day—in that case, your experience with AI will prove very useful.



98 Chapter 3 Developing Your First App

The development process here will not get especially complicated. If you have not 
yet started the Blocks Editor, please do so now by clicking the button labeled “Open 
Blocks Editor” in the AI Designer. In the block selection area on the left, select the My 
Blocks tab. Now you can see the components with their component names that you 
dragged into the Viewer and renamed with a memorable name in the AI Designer (see 
Figure 3.14). For example, you can see the label “Message,” the sound “Laughter,” and the 
button “LaughButton.” You can also see the screen component with its still unchanged 
default name “Screen1,” plus a “My Definitions” area where you can enter your own 
definitions.

 

Figure 3.14 The component objects in the 
AI Blocks Editor under My Blocks

Just as described in Chapter 2 using the example of the “Screen1” component, you can 
now display the available function blocks for each of the custom component objects you 
created by clicking on the object name. Remember the “Visible” property in the Mes-
sage label? In the preceding section on setting the properties of objects in AI Designer, we 
pointed out that the default settings there for app runtime can be dynamically changed 
with function blocks of the same name. In Figure 3.15, you can see the corresponding 
blocks Message.Visible for these dynamic changes.



99Developing App Functionality

 

Figure 3.15 Properties of component object label “Message” 

Create Interactive App Logic
For now, we want to leave the label text of Message in our LaughBag app unchanged 
and will not yet use any of these function blocks. Instead, we want to add an interactive 
function to the button LaughButton. We want to receive user input (i.e., tapping the 
LaughButton) and respond with a reaction by the app (i.e., playing the sound Laughter). 
We can express this function of the LaughButton in words as follows:

When user presses LaughButton, play the sound Laughter!

As a beginner without programming knowledge, you may find it hard to believe, but this 
is already an instruction similar to programming, in the form of an informal pseudocode.

We will now implement this function in our LaughBag app to instruct the app to 
play the Laughter if the user presses the LaughBag. In programming, you generally talk 
about an event handler—a routine that is carried out only if a certain event occurs. In our 
example, pressing the button is the event, the instruction “If click, then [action]” is the event 
handler, and playing the sound is the action.

Events and Event-Driven Programs
The term event is an important keyword for a basic principle of object-oriented program-
ming, event control. In contrast to the classic sequential program flow, an event-driven pro-
gram waits for input or events of various kinds and reacts with an appropriate function. A 
program or an app can react to different kinds of events, such as haptic, text, acoustic, or 
other sensory input, as well as to input from other applications, such as phone calls, SMS 
messages, e-mails, or news from web services such as Twitter.

To express the function instruction described earlier in the visual developer language 
AI, we need just two component-specific blocks (see Figure 3.16). The first block forms 



100 Chapter 3 Developing Your First App

the frame of the event routine and contains the instruction: When the LaughButton 
receives a click-event, then do something. The second block forms the action and per-
forms the task: Open the audio player and play back the audio file Laughter.

 

Figure 3.16 The two components LaughButton.Click and Laughter.Play

To create a continuous instruction sequence, the two individual blocks now 
have to be connected with each other; that is, the action has to become part of the 
event routine. That can happen only if the syntactic rules of our visual develop-
ment language allow it. In our case, you can see this result immediately. The execut-
ing component Laughter.Play fits like a puzzle piece into the calling component 
LaughButton.Click. This results in the instruction sequence or the block structure 
shown in Figure 3.17.

 

Figure 3.17 The block structure for the instruction sequence of the pseudocode

That’s it! By connecting these two blocks, you have sufficiently described the func-
tionality of the LaughBag app. That step may seem trivial at first, but only because the 
visual development language AI hides the complexity behind the block functions. As an 
app developer using AI, you do not need to worry about the complicated process with 
which your Android app loads an audio file, plays it, and outputs it via the system loud-
speakers. You do not need to write a program routine in which you supervise the touch 
screen area of the graphically represented button for touches and then combine this event 
with the audio player. Thanks to the high level of abstraction of the visual description 
language, you can fully concentrate on describing the functionality of your app and leave 
the program- and system-technical implementation almost entirely to AI and Android. 
Even this basic step can become quite challenging, however, as you will notice later dur-
ing the other projects described in this book. 

An Aside: The Power and Abstraction of the Visual Development Language AI
Of course, this convenience comes at a price in terms of the flexibility afforded for function 
design. The Java programmers among the Android developer population, for example, might 
argue that they would like to decide themselves which audio player they access and in which 



101Developing App Functionality

way. It is important to recognize that all development languages, with their different levels of 
abstraction, have specific advantages and disadvantages. AI has a very clear advantage: You 
can very quickly and simply develop appealing apps on your own. Despite their occasional 
complaints about AI’s limitations on design, the Java developers resort to using class librar-
ies that offer prefabricated objects and functions for use in their program code. 

App development is also usually subject to a cost–benefit relation. If you can develop the 
“same” app more quickly and easily with AI, then you should make use of this advantage. 
Conversely, if you have a specific requirement that cannot be implemented with even a cre-
ative use of the AI components, then you will have to accept the need to put in more effort 
and become familiar with Java programming. Before doing so, however, you should think 
twice and remember the saying “There are many ways to skin a cat”: Perhaps there is a way 
in AI after all to implement the desired app functionality. AI is much more powerful and more 
flexible than this first example might suggest, and its functionality is constantly being 
expanded. Don’t forget that AI is only in its infancy (i.e., in the beta phase), yet already 
offers an impressive range of functions that continues to grow exponentially. You will see for 
yourself later on what is already possible with AI, even if it is just the “tip of the iceberg.”

Implementing Functional Block Structure
Now that we have developed the program logic of our app with the block structure 
described previously, we can specifically implement it within our LaughBag app. You first 
need to drag the blocks mentioned earlier, one after the other, into the AI Blocks Edi-
tor. Let’s start with the interactive component object “LaughButton.” Open the available 
blocks by clicking on the corresponding object name in the block selection on the left. 
This opens the selection menu shown in Figure 3.18, in which you can see the suitable 
instruction block LaughButton.Click at the top. 

 

Figure 3.18 Selecting the function block LaughButton.Click in the AI Blocks Editor



102 Chapter 3 Developing Your First App

If you touch this block with the mouse pointer, a brief description of its functions 
pops up. As soon as you grab the block with the mouse pointer, the selection menu 
becomes hidden and you can now drag the selected block into the Editor and drop 
it in the place you want. Then select the function block Laughter.Play in the same 
way. Open the block selection of “Laughter” and search for the right block—to facili-
tate the search, you can use the scroll bar on the right-hand side of the selection menu 
to scroll the selection up and down. In third position, you can see the function block 
Laughter.Play (see Figure 3.19); grab it and drag it into the Editor.

 

Figure 3.19 Adding the function block Laughter.Play to the LaughBag app

You can “temporarily” drop the function block Laughter.Play anywhere in the 
Editor and then drag it somewhere else later or directly connect it to the instruction 
block LaughButton.Click to form the desired block structure.

Color Coding of the Different Block Types
You have probably noticed that the blocks in the block selections have different colors. The 
color coding indicates the type of the relevant block. For example, all instruction blocks are 
green and the function blocks are purple. The different colors make it easier to keep track 
of things when you are developing apps with complex block structures.

To connect the two selected blocks, drag the block Laughter.Play to the correct 
“docking place” of the block LaughButton.Click, then drop it. If the two “puzzle 
pieces” were sufficiently close together (and provided the syntax is right), Laughter.Play 
will audibly click together with the instruction block LaughButton.Click, as shown in 
Figure 3.20.



103Developing App Functionality

 

Figure 3.20 Finished implementation of the block structure in Editor

This completes the implementation of the functionality of our LaughBag app. Now 
you can check that it really does work, provided your smart phone (or even the emula-
tor) is connected. Go to your smart phone and press the laugh bag; you should hear loud 
laughter every time you press this button.

Save Project Locally
As soon as you have finished developing your AI project, you should immediately save 
it. As described earlier in the context of the AI IDE, AI saves your project automatically 
on the provider’s servers each time you close the AI IDE. This ensures that you always 
see the most recent version of your project when opening the AI IDE. You also have 
the option of saving the current project stage in AI Designer via three buttons—Save, 
Save As, and Checkpoint—on the provider’s servers in the previously described varia-
tions. These saved versions of your project are available only online within your personal 
account in the AI IDE, however, and using them requires that the provider’s servers be 
functioning without errors. If you want to use your AI projects under other accounts or 
make them available to third parties—for example, as a didactic model, for discussing pos-
sible solutions or as a basis for their own projects—then it makes sense to save the project 
on your local hard disk. You also reduce the risk of losing your projects when you main-
tain a backup copy in your own sphere of influence.

To save one or more projects together with all components and block structures in the 
AI Designer and Blocks Editor, you need to go to the project view of AI Designer by 
clicking the My Projects button. There you can mark the projects to be saved locally with a 
green check mark. For now, check the LaughBag project, as shown in Figure 3.21, and then 
click the More Actions button and select the menu item “Download Source” below it.



104 Chapter 3 Developing Your First App

 

Figure 3.21 Downloading the marked project to hard disk

This series of steps opens the download window shown in Figure 3.21, which asks 
what you would like to do with the generated project file LaughBag.zip. Choose the 
option “Save File,” click OK, and enter the desired location on your hard disk where you 
want to save the project. Now the project file is safe and sound on your local hard disk.

Downloading All of Your Projects at Once
At the end of 2011, an additional button labeled “Download All Projects” was added to the 
Google AI’s My Projects overview menu. With it, all projects created by a user can be down-
loaded at once and saved locally as one large ZIP file. The resulting file, all-projects.
zip, contains all projects in turn as individual ZIP files. After downloading and unzipping 
the collective file all-projects.zip to the local hard disk, you can then upload the 
individual project ZIP files one by one to the development environment of another AI pro-
vider (for example, MIT AI) and process them further as part of your project.

Project Files from This Book on the Companion Website in the  
/PROJECT Directory 
You can find all project files from this book on the companion website in the /PROJECT 
directory (see the link in the Introduction). The website also includes the current file 
LaughBag.zip. You can upload all of the AI projects described in this book directly into 
the AI IDE after downloading them from the companion website, without having to input the 
interface components and block structures yourself. Nevertheless, you should not underes-
timate the benefit of the learning experience you achieve when you recreate the app step 
by step. 

In case the block structures we develop later in this book become so big that they cannot 
be adequately printed in this book, be aware that you can access the companion website 
and upload the block structures from the project files into your own AI Blocks Editor. You can 
then study them in their entirety and develop them further for your own purposes if you wish.

If you should wish to edit the project later under a different account, you can upload 
it to the corresponding provider’s server. Once more, uploading projects in AI happens 



105Developing App Functionality

via the More Options button in AI Designer. Click on the option “Upload Source,” and 
then click on “Choose File” and select the desired local project file with the extension 
.zip in the file manager. Click OK, as shown in Figure 3.22, to upload the project from 
your hard disk to the provider’s servers and open it as the current project.

Figure 3.22 Uploading a locally saved project in AI

In this way, you can make your project files available to other AI developers as well, so 
that they can upload your project to their AI IDE for their own use. It is common prac-
tice for AI developers to share their projects and swap opinions on block structures, dif-
ficult problems, and common solutions. This cooperative attitude makes it also possible to 
offer tried and tested block structure functions to other users, which other developers can 
then use in their own projects as ready-made building blocks.

The file extension .zip indicates that the project file is not a single file, but rather 
a file archive. Surely you have a program installed on your computer that can extract 
zip files, such as WinRAR (www.win-rar.com). Double-click on the project file 
LaughBag.zip in your File Manager and take a look at the contents of the project 
archive.

 

Figure 3.23 Directory and files in project archive LaughBag.zip

www.win-rar.com


106 Chapter 3 Developing Your First App

In Figure 3.23, you can see the directories and projects of the project archive 
LaughBag.zip. The actual source code with the system-specific description of the 
interface design and functionality of your app is hidden away in three files in the sub-
directory /src/appinventor/ai_YourAccount/LaughBag, although on your com-
puter the name of your actual Google account will appear instead of the placeholder 
ai_YourAccount. The directory /assets contains all of the media files used in your 
project and shown in Figure 3.23. You can’t really do much with these individual files 
outside of the AI IDE, but the directory structure gives you an additional impression of 
how AI internally manages your app projects.

If There Is No Laughter
If the final function test of your app was unsuccessful, first check the obvious sources 
for the absence of sound. Have you set the volume on your connected smart phone high 
enough (or the volume of the computer, if you are using the emulator)? If yes, check 
the setting from the previous section on correctly integrating an audio file into the AI 
Blocks Editor or the app. Can you see the file name Laughter.wav in the button Source 
property, and is the file still located in the directory specified? Or are you using another 
sound file that may not fulfill the format requirements of AI or Android and, therefore, 
cannot be played because it is not supported? Even if you can’t see an image yet (see the 
problem description in the “Optimizing the App Design” section), the sound should be 
audible if you press the button.

It may be small consolation in this situation, but you are not alone with your problem. 
We based our first app deliberately on the official beginner’s project “HelloPurr” described 
on the AI online pages. This project uses the same components and blocks for its app in 
which you can press the image of a cat to hear a meow sound. If you are trying this app, 
you can assume that you would encounter the same problems as with our LaughBag app.

Analogous Beginners App on AI Website
If you want to compare projects, the analogous beginners project “HelloPurr” can be found at:  
http://experimental.appinventor.mit.edu/learn/setup/hellopurr/
hellopurrphonepart1.html

Even if you do not want to test the project “HelloPurr” yourself right now, you can 
still use the troubleshooting tips if you are having any problems with our LaughBag app. 
Check the AI Forum or the “Troubleshooting” page if there is no sound.

AI Troubleshooting
This page contains “Working with Sounds and Images,” which includes the entry “I set the 
source property of a Sound or Player component, but there’s no sound when I tell the phone 
to play.” This entry, which is found at the following address, provides even more help:

http://experimental.appinventor.mit.edu/learn/troubleshooting.
html#ImagesSounds

http://experimental.appinventor.mit.edu/learn/setup/hellopurr/hellopurrphonepart1.html
http://experimental.appinventor.mit.edu/learn/setup/hellopurr/hellopurrphonepart1.html
http://experimental.appinventor.mit.edu/learn/troubleshooting.html#ImagesSounds
http://experimental.appinventor.mit.edu/learn/troubleshooting.html#ImagesSounds


107Creating and Installing the App

In the document “No Meow for Hello Purr” the Google AI Team also described 
some steps for problem solving. If you are still having problems, try going through the 
following steps in order and see if one of them helps:

1. Click the button “Connect to device” in the AI Blocks Editor with your smart-
phone connected and test the app again.

2. Unplug the USB cable from your smart phone and then plug it back in. Now click 
the button “Connect to device” and try the app again.

3. Close the AI Blocks Editor, and then start it again from AI Designer. Now click the 
button “Connect to device” and try the app again.

4. Delete the audio file laughter.wav from the AI Blocks Editor, by clicking on the 
file name in the Media panel and then selecting the “Delete” option. Now load the 
audio file into the project again as described earlier. Disconnect the smart phone, 
and then reconnect it to the computer and the AI Blocks Editor.

5. Reboot your smart phone by switching it off completely (not just changing to 
standby mode) and then restarting it. Now reconnect it to the AI Blocks Editor.

6. Try a different USB connection mode. For information on how to do this, refer to 
the section on setting up the Android device in Chapter 1. Connect your smart-
phone to the AI Blocks Editor in the different modes.

Even if none of these steps solves your problem, there is still a chance that you will 
both see the LaughBag image and hear the laughter sound when you later download the 
app to your smart phone and run it as an independent app. This advice applies, for exam-
ple, to the smart phone HTC Tattoo, which we also used for testing the apps in this book. 
Just be patient and don’t give up! The next few sections will show you how to download 
the LaughBag project as an independent app to your smart phone.

Creating and Installing the App
If you have taken a break at some point during the previous development steps of the 
LaughBag project and shut down your computer or disconnected your smart phone from 
the PC and the AI IDE, you may have noticed something. First, there is the reassur-
ing fact that the most recent version of the app project is displayed when you restart AI 
Designer and Blocks Editor and reconnect your smart phone, even if you did not save it 
explicitly—you can thank the automatic saving function of AI for that benefit. Second, 
you may have noticed that the LaughBag app was nowhere to be found among the other 
apps on your smart phone. That is because our LaughBag app up to now has existed only 
within the corresponding project on the AI IDE or the provider’s servers. Now we need 
to create it explicitly as an independent app and download it to the smart phone to make 
it a “proper” app. AI offers three alternative methods for doing this, which we describe in 
the following sections:



108 Chapter 3 Developing Your First App

nn Direct installation on a smart phone
nn Online installation via a barcode
nn Downloading of the APK file to the computer

All three approaches can be accessed in AI Designer by clicking the button labeled 
“Package for Phone” and selecting the relevant option from the pop-up menu.

Direct Installation on a Smart phone
Let’s start with the most direct option of creating and downloading the LaughBag app to 
your smart phone. The key requirement is that your smart phone be correctly connected 
to the AI IDE via the Blocks Editor. Of course, the app project you want to turn into an 
app also has to be selected for editing or active in the AI Designer. To create the app and 
at the same time download it to your smart phone, click the Package for Phone button 
in AI Designer. In the pop-up menu, choose “Download to Connected Phone” (see Fig-
ure 3.24) to start the download process.

 

Figure 3.24 Selection of an app for direct installation on a connected smart phone

Now AI starts creating the app and downloads it to your connected smart phone. The 
progress of this process is indicated with the status messages “Packaging” and “Download-
ing to phone.” After a certain processing time and many messages on data transmission in 
the browser’s status line, the extra window shown in Figure 3.25, together with an acous-
tic signal, announces that the download and installation of the app on your smart phone 
were successful and are complete.

 

Figure 3.25 Message on successful app installation in AI Designer



109Creating and Installing the App

Before you can now go looking for the app on your smart phone, you first need to 
close the still active AI development environment or display of the app project on your 
smart phone. You can do so with the options described earlier. Press the menu button on 
your smart phone; select the only menu item that appears, “Stop this application” (see Fig-
ure 3.26); and confirm your choice by selecting “Stop and exit” or, alternatively, by just 
unplugging the USB cable.

 

Figure 3.26 Closing the connection between the AI 
development environment and the smart phone

Now you can go to the app overview of your smart phone and search for the app with 
the title “LaughBag.” Figure 3.27 shows an example of the app on the LG P500 smart-
phone, where we used the manufacturer-specific option of putting our LaughBag app 
into a separate category “AI Apps” (which will hold our future AI projects), just to make 
things clearer. If you now select the “LaughBag” app, it will start just like any other app 
on your smart phone. You can confirm that the app really does run independently of the 
AI IDE by noting that the USB connection symbol is absent in Figure 3.27 on the left-
hand side of the top status line, whereas the connection icon is present in Figure 3.26.



110 Chapter 3 Developing Your First App

 

Figure 3.27 The independent LaughBag app on the smart phone

The icon for the LaughBag app shown in Figure 3.27 is the default icon for all apps 
created with AI. If you would like to replace the small default icon depicting two little 
androids with your own custom app that matches the theme of your app, we will show 
you how in the next section.

A Matching Icon for Your App
Normally it would be sufficient to mention this subject in one or two sentences in the 
context of interface design with AI Designer—from today’s point of view. Until the AI 
update of November 10, 2010, it was not officially possible to replace the default AI app 
icon with a custom icon. Many heated debates focused on the possibilities of retrospec-
tively unpacking the project files, editing them, and adding another icon in the most 
adventurous ways. After all, how could people create more or less professional apps, and 
in some cases market them, if the app could not even have a suitable and appealing icon, 
just like every other app?

Against this backdrop, one of the early AI beta users had requested the inclusion of 
this feature by the Google developers. Feature requests are generally submitted via the 
“Issues List” introduced by the Google developers to enable them to more quickly and 
clearly structure and edit the numerous requests for improvement and bug reports sub-
mitted by AI users in the beta phase. The desire for the option of assigning custom app 
icons, for example, is listed as Issue 43 under the title “Add the ability to change the icon 



111Creating and Installing the App

of apps.” The numbers under which the issues are listed (IDs) do not indicate their order 
of priority, but simply the order in which they are addressed.

Bug Reports and Feature Requests in the “Issues List”
The Google developer team provides the “Issues List” as a collection point for all open 
technical matters regarding the AI beta software:

http://code.google.com/p/app-inventor-for-android/wiki/
ReportingBugs

Beta users are encouraged to report any AI bugs in a standardized form and to submit 
feature requests for AI using this list. Before starting a new issue, the AI beta user should 
check that the topic has not already been raised by another user and perhaps been dis-
cussed and resolved in the Google Group. The topics raised here should be of general 
interest and not concern individual problems, such as questions on the setup of your own 
smart phone—that is what the AI Online Documentation and the Google Group are for. The 
more focused the “Issues List” requests, the more readily the Google developers can con-
centrate on the important topics and continue developing AI, without getting sidetracked 
with minor issues. For that reason, each issue is evaluated by the Google developers, 
processed in various stages, and its status documented as follows:

Open issues

New Issue has not yet been reviewed or queued

Investigating Further information is required

Noted Issue has been noted but not yet been accepted for work queue

Accepted Issue has been accepted and will be worked on soon

Started Work on this issue has begun

Testing Issue is resolved and being tested to be published in the next new 
AI release

Closed issues

Fixed Issue has been resolved

Invalid This was not a valid issue report

Duplicate This report duplicates another issue report

Won’t fix The Google team is not working on this issue

Forum Refer this issue to the Google Group

Issue 43 now has the status “fixed.” If you are curious and want to read up on the 
suggestions other AI beta users came up with in the past in connection with this fea-
ture, however, you could set the filter to “All issues” and search for “43” or “icon” on the 
“Issues Search” page.

http://code.google.com/p/app-inventor-for-android/wiki/ReportingBugs
http://code.google.com/p/app-inventor-for-android/wiki/ReportingBugs


112 Chapter 3 Developing Your First App

Searching Issues and Checking Status
You can search open issues with various filter options and submit new issues via the 
“Advanced Search” page:

http://code.google.com/p/app-inventor-for-android/issues/
advsearch

You can find Issue 43 directly at this page:

http://code.google.com/p/app-inventor-for-android/issues/
detail?id = 43

Since November 10, 2010, Issue 43 has had the status “Fixed” (see Figure 3.28). As a 
general rule, fixed issues are announced as new features in the next official update of App 
Inventor in the AI Forum. Given this fact, you do not need to search the “Issues List” 
regularly to find out about new features.

 

Figure 3.28 Status of Issue 43, “Change the icon of apps”

Now that Issue 43 is fixed, you can add a custom icon to your app really easily. Of 
course, you still have to keep your masterpiece within the specified format. Apart from 
guidelines on file formats, a detailed set of instructions in the form of “Icon Design 
Guidelines” applies to all developers of Android apps.

“Icon Design Guidelines”
A very detailed description of the requirements for format and design of icons for Android 
apps can be found in the Android Developers Forum:

http://developer.android.com/guide/practices/ui_guidelines/
icon_design.html

http://code.google.com/p/app-inventor-for-android/issues/advsearch
http://code.google.com/p/app-inventor-for-android/issues/advsearch
http://code.google.com/p/app-inventor-for-android/issues/detail?id=43
http://code.google.com/p/app-inventor-for-android/issues/detail?id=43
http://developer.android.com/guide/practices/ui_guidelines/icon_design.html
http://developer.android.com/guide/practices/ui_guidelines/icon_design.html


113Creating and Installing the App

The “Icon Design Guidelines” contain not only templates and examples, but also rec-
ommendations for resolutions (in pixels) for different icon types such as a launcher icon, 
menu icon, and so on. Try to follow these guidelines when designing your app icons to 
give them a professional look. You can even use the templates provided in professional 
graphic programs such as Adobe Photoshop and Adobe Illustrator. Even if you are not a 
graphic designer, it can make sense to provide your images in the correct format so as to 
optimize their representation on the smart phone. Almost every graphics program offers 
the option of cropping your images and reducing them to a specified pixel size. Thus, if 
you immediately reduce the image you want to use as icon to the recommended size of 
48 × 48 pixels, you reduce both the memory requirements and the risk of distorting the 
icon on the smart phone through automatic display adjustment in Android. For the file 
formats, the same requirements as specified in Chapter 15, “Tips and Tools,” also apply.

Designing a Custom Icon with a Graphics Program 
For our LaughBag app, it makes sense to use the existing laugh bag image for the icon as 
well. We want the icon to stand out a bit from the mass of other icons, however, and the 
bag should have a greater contrast to the white background. 

Using the graphics program Corel Paint Shop Pro, shown in Figure 3.29, we edited the 
image from left (the original image) to right (the edited result). In the first step, we selected 
the outline of the bag with the “Magic Wand” and colored the background green using a 
“Gradient.” To the resulting image we then added the optical appearance of a button with 
the menu sequence Effects > 3D Effects > Button. We then made the button round with 
Effects > Geometric Effects > Circle, and selected the background again with the “Magic 
Wand” to color it red.

 

Figure 3.29 Designing the default icon using the laugh bag image

We chose to use the graphics file format PNG (Portable Network Graphics), which allows us to 
define transparent areas, enabling us to achieve smoothly rounded transitions between the 
originally rectangular or square icon and the screen background. In Corel Paint Shop Pro, we 
used the menu sequence File > Export > PNG Optimizer to select the Red color values (RGB 
255/0/0) as the transparent image area, so that only the round button shown in Figure 3.29 
on the right remains visible. We then reduced the image from the original 288 × 288 pixels 
to the recommended default icon size of 48 × 48 pixels via the menu items Image > Resize, 
and saved it as laughbag_icon.png.



114 Chapter 3 Developing Your First App

If you do not want to design your own icons in a graphics program, you can use 
special programs or web services for creating buttons. The website “Glassy Buttons,” for 
example, offers many options for creating and downloading custom buttons or icons in 
any sizes. 

Website “Glassy Buttons” for Creating Custom Icons
The free button generator on the “Glassy Buttons” website (http://www.netdenizen.
com/buttonmill/glassy.php) lets you create attractive buttons and icons with gloss 
effects. You can choose from many settings to customize the size, gradients, text labels, 
and many other characteristics of images, and upload images as textures. The finished 
button can then be downloaded in the file format PNG and JPG (packaged as a ZIP file) and 
used directly as icon subject to the conditions of use.

Assigning an icon to your app is just as simple as integrating the LaughBag image into 
our project and follows the same process. We could have done this in step 2 of designing 
the user interface described earlier, but then you would not have seen the default icon. 
With app development, it is quite common to skip back and forth between development 
steps and to correct, adapt, or expand work done in previous steps. To change the icon, 
please reconnect your smart phone to your computer and the AI IDE by plugging in the 
USB cable and clicking the button labeled “Connect to phone.” Then go to AI Designer, 
and select the component object “Screen1.” In its properties, you can see the property 
Icon in last place. As seen earlier with the two media files, its (default) value is “None.” 
Now load a suitable image file for the default icon into your LaughBag project by click-
ing on “None” and choosing the image file on your computer via the Add button in 
the pop-up menu. Of course, you can once again find an example file on the com-
panion website for the book in the directory /MEDIA—namely, the just-created image 
laughbag_icon.png (shown in Figure 3.29). When you select it, the image name once 
again appears in the Media and Properties panel, but the image itself is not displayed (see 
Figure 3.30).

 

Figure 3.30 Adding an image file for the default icon of the LaughBag app

http://www.netdenizen.com/buttonmill/glassy.php
http://www.netdenizen.com/buttonmill/glassy.php


115Creating and Installing the App

At this point, you have added your own default icon for the LaughBag project. 
Now you just have to download the app once again to your smart phone and install it. 
Remember to delete or deinstall the old LaughBag app from your smart phone before 
you install the new version with the default icon. 

Deleting/Uninstalling AI Apps on Your Smart phone
Proceed in the same way as when deleting or uninstalling other apps. Drag the default icon 
of the app you created with AI into the waste basket, or select Settings > Applications > 
Manage > LaughBag > Uninstall, as shown in Figure 3.31. 

 

Figure 3.31 Uninstalling the LaughBag app with the default icon

In the uninstall dialog shown in Figure 3.31, the file size shown for our LaughBag 
app is an impressive 4.10MB. This is the file size of the installed app on the smart phone, 
which is usually much larger than the app installation file you downloaded earlier.

Once the old app with the default icon is deleted, you can install the edited LaughBag 
app. Proceed as described earlier in the section on direct installation on the smart phone. 
After you have successfully completed the installation, the LaughBag app appears in your 
smart phone’s app overview with the custom default icon shown in Figure 3.32.



116 Chapter 3 Developing Your First App

 

Figure 3.32 The LaughBag app with custom 
default icon on the smart phone

You can now use your LaughBag app just like any other app on your smart phone. In 
addition to the app icon in the app overview (Application menu), you can create a wid-
get (link icon) for it directly on the home screen or the other panels.

Correct Reproduction of Image and Sound in the Independent App
If reproducing the laugh bag image or playing back the sound has been causing problems 
up to now, you may now both see the image and hear the laughter sound in the indepen-
dent app. This is the case, for example, with the HTC Tattoo with Android 1.6: Whereas nei-
ther the image nor the sound works during the app development process, the independent 
app works perfectly on the smart phone. If you experience the same issue with your devel-
opment environment and smart phone, then you can assume that in your future develop-
ment work you will not be able to check and use certain components directly in the AI IDE, 
but that they will work correctly on the smart phone later as independent apps. This makes 
developing a bit more awkward, but at least not impossible.



117Creating and Installing the App

Assigning custom icons for apps developed with AI is, of course, possible at stages 
other than during the direct installation. Assignment of the default icon occurs inde-
pendently of the installation process. By assigning an image in the default component 
“Screen1,” the app automatically gets the corresponding default icon.

Online Installation via a Barcode
For the second method for downloading and installing our LaughBag app, you do not 
need a USB cable connection between your computer or the AI IDE and your smart-
phone. To demonstrate this the approach, please unplug your smart phone’s USB cable 
from the computer now. If you have already installed the LaughBag app on your smart-
phone in the step described in the previous section, please delete it so we can be sure that 
you download the app without the USB cable this time. Keep the AI Blocks Editor and 
AI Designer open, as you will need the block structures to generate your LaughBag app.

To use the barcode approach, you need an Internet data connection on your smart-
phone (and on your computer, of course), either via WLAN and your WLAN router or 
directly via the mobile data net of your cellphone provider in form of GPRS (General 
Packet Radio Service, which offers up to a 172 Kb/s download rate with GSM channel 
bundling), EDGE (Enhanced Data Rates for GSM Evolution, which offers up to a 473 Kb/s 
download rate with GSM channel bundling), UMTS (Universal Mobile Telecommunications 
System, which offers a 384 Kb/s download rate in the 3G net), or the speedy HSDPA 
(High-Speed Downlink Packet Access, which offers up to a 7.2 Mb/s download rate in the 
3.5G net). You also need to have an app for reading barcodes on your smart phone.

Barcodes, QR Codes, and Barcode Scanners
A barcode is generally a method of encoding data using bars (lines) that can be read and 
processed by optic reading devices. You are certainly familiar with the 1D codes used on 
almost all product packaging, such as in the supermarket. 2D codes are becoming increas-
ingly more common on the Internet in form of QR codes (quick response codes), which 
are used to encode web addresses and the like with a barcode generator. The encoded 
information can then be read and decoded by a smart phone, allowing direct access to the 
website. To use QR codes, you first need to install a barcode scanner as an app on your 
smart phone; such an app can check the filmed or photographed camera image on the 
smart phone for a QR code and then process the code.

To use the AI option for installing your app online, you need to have a barcode or QR code 
scanner installed on your smart phone. If you do not yet have one, go to the Android Market 
and search for “barcode”; then choose one of the many free scanners to install on your 
device. We used the barcode scanner ixMAT by ZXing, but Google Goggles also works well 
for QR codes.

(Continues)



118 Chapter 3 Developing Your First App

 

Figure 3.33 QR codes for downloading ixMAT (on 
the left) and Google Goggles (on the right)

Of course, you cannot do anything with the two QR codes shown in Figure 3.33 unless you 
already have a barcode scanner installed on your smart phone. If you do have one, these 
two QR codes will give you direct access to the appropriate app from the Android Market. 
We provide a quick description of how to use the barcode scanner for downloading AI apps 
using the ixMAT app as an example.

If you have fulfilled the requirements for a mobile Internet connection and a barcode 
scanner installed on your smart phone, you can start with the online installation of the 
LaughBag app. Open the menu in AI Designer by clicking the Package for Phone button 
and this time choose the option “Show Barcode,” as shown in Figure 3.34.

 

Figure 3.34 Selection for online installation of 
the LaughBag app on the smart phone

After displaying the usual status messages “Saving” and “Packaging,” AI opens the win-
dow titled “Barcode link for LaughBag” and shows a QR code (see Figure 3.35). This QR 
code encodes the download link under which AI offers the generated LaughBag app for 
download. Unlike the case with the direct download described in the previous section, AI 
has now saved your app on a Google server from which you can download the app.



119Creating and Installing the App

 

Figure 3.35 QR code or barcode containing a 
download link for the LaughBag app

Note that the QR code shown in Figure 3.35 was deliberately distorted before being 
printed in this book, so that your barcode scanner can no longer read it. Instead, you 
must scan your own barcode generated under your personal account and now displayed 
by AI. You can also take a “photo” of your QR code (under Windows with the keyboard 
shortcut Alt + Print) or save it for later downloads. You could also pass the QR code on 
to third parties, who could use it to download your LaughBag app to their own smart-
phone and install it; however, the requirement in this case would be that you make the 
login data for your own Google account (i.e., the account in which you are working 
with AI) available to others. For security reasons, this practice is not recommended, so 
this download option is not a suitable choice for making your future apps available to the 
public. We will discuss possible alternatives in the next few sections.

To get the app onto your smart phone via the QR code shown in AI, you need to 
scan the barcode with the barcode scanner installed on your smart phone. Start the scan-
ner app and hold your smart phone’s camera at an appropriate distance in front of your 
computer screen (or a printout). If you can see the barcode clearly and in its entirety in 
the view finder, follow the instructions of the scanner app. In case of Google Goggles, 
for example, you need to take a photo of the QR code by pressing the appropriate keys 



120 Chapter 3 Developing Your First App

before the image analysis is started. In contrast, ixMAT processes the running camera 
view automatically and quickly indicates the recognition and decoding of the QR code 
with a signal tone (see Figure 3.36). If your smart phone has a low camera resolution 
without autofocus, try enlarging the QR code a little to make it scan correctly.

 

Figure 3.36 Decoding the QR code with the barcode scanner ixMAT

If the QR code was successfully recognized, the decoded download link is displayed 
in the scanner; Figure 3.36 shows the display in ixMAT. Depending on the feature range 
of the barcode scanner used, it will offer different options on how to proceed with the 
link. With ixMAT, you can choose to click “Share via email” or “Share via SMS” to send 
the link to other e-mail addresses or phone numbers, if appropriate (see the earlier cau-
tionary comments). For our purpose, we want to use the decoded web link to “Open 
browser” so as to display the download page for the LaughBag app. Your smart phone then 
opens the web browser and takes you to the HTTPS-secured login page for your Google 
account, as shown in Figure 3.37 on the left. Enter the same login data as for your login 
to the AI development environment, and then press the Sign In button.



121Creating and Installing the App

 

Figure 3.37 Log in to the Google account and download the LaughBag app

Once you have successfully logged in, the download of the LaughBag app to your 
smart phone commences. The progress of the download is indicated by the correspond-
ing download icon in the smart phone’s status line. If you drag down the status line, 
you can see a confirmation after successful download telling you that the application 
file LaughBag.apk has finished loading, as shown in Figure 3.37 on the right under 
“Notifications.”

APK Files
An Android file has an extension of .apk. The file extension APK stands for Android Pack-
age. As the term “package” indicates, the app not only comprises a single file, but also 
forms an archive of several files. This organization explains why the AI status message says 
“packaging” during the download process: The generated app files are combined together 
into a “package” before being downloaded. The archive format resembles the Java archive 
format JAR (Java Archive) and is also used for app development in Java. We will briefly 
discuss the contents of the APK archive in the following section on downloading the APK file.

Now click on the file LaughBag.apk in the “Notifications” section, or follow the 
other necessary steps for installing the downloaded application file LaughBag.apk on 
your smart phone.

Allow “Unknown Sources”
One requirement for the installation of the downloaded APK file is that you have checked 
“Unknown sources” in Settings > Applications with a green check mark, to allow app 
installation of sources from outside of the Android Market. As you have downloaded your 
LaughBag app from your Google account on a Google server, this setting must be enabled. 



122 Chapter 3 Developing Your First App

Installation takes place via the steps shown in Figure 3.38, just as with other apps. Once 
you have selected the file LaughBag.apk, you are notified of the app’s access rights before 
you start the actual installation by clicking on the Install button. After a brief installation 
period, you can “Open” the LaughBag app directly from the installation confirmation by 
clicking on the corresponding button, or go to the application overview of your smart-
phone to start it.

 

Figure 3.38 Installation of the downloaded 
LaughBag app on the smart phone

This completes the online installation of the LaughBag app using the second approach 
(barcode). But wait, there’s more: AI offers a third alternative of downloading and install-
ing your app.

Downloading an APK File
As third alternative, you can download your LaughBag app as the file LaughBag.apk to 
your computer and get it to your smart phone via this “detour” to install it. Considering 
the ease of the other two options, this approach seems rather awkward, but it is the easi-
est option for passing your app on to third parties without having to go via the Android 
Market or giving others access to your Google account for the barcode installation. It 
enables you to offer the file LaughBag.apk online on your web server for downloading 
or to send the file to others via e-mail so that they can also download your LaughBag 
app to their smart phones.

To try out this method, you again need to uninstall the LaughBag app from your 
smart phone as described earlier. At first you will not need to connect the smart phone to 
your computer for downloading the app, but later it will need to be connected when you 
copy the APK file from the computer to your smart phone. You do not need a mobile 



123Creating and Installing the App

Internet connection for this installation method, as all data required for the app are avail-
able locally on your computer and are copied over to your smart phone via USB. Start 
the download of the file LaughBag.apk to your computer by clicking the Package for 
Phone button in AI Designer, but this time choose the option “Download to this Com-
puter” (see Figure 3.39).

 

Figure 3.39 Option to download the file LaughBag.apk to the computer

After displaying the usual status messages “Saving” and “Packaging,” the system win-
dow shown in Figure 3.40 pops up to ask if you want to open or save the file. Choose 
the option “Save file,” click OK, and then select the target directory on your local hard 
drive to save the file LaughBag.apk.

 

Figure 3.40 Pop-up window for downloading the file LaughBag.apk

After the download is complete, you will find the file LaughBag.apk in your speci-
fied target directory. The companion website also contains this file, in the directory /APK. 
In contrast to the app’s installation size of 4.10MB as shown in Figure 3.31, the down-
loaded APK file is only about 1.15MB in size. 

We now want to copy this APK file from the computer to the smart phone. First you 
need to ensure the smart phone is connected to the computer via USB. Enable USB 



124 Chapter 3 Developing Your First App

debugging and turn on USB storage. To check this status, you can open the file manager on 
your computer and determine whether your smart phone (or, more specifically, its SD card) 
is registered or listed as an additional hard drive in addition to the other drives (e.g., C:/). 

An SD Card Is Obligatory
Having an SD card on your smart phone is a requirement for working with AI—although, of 
course, it is valuable for many other reasons. The other installation methods also download 
the apps created with AI to the SD card of your smart phone. The relevant APK files are then 
usually placed in the SD card’s /downloads directory. The media files of the installed AI 
app, referred to as assets, can be found in the directory /AppInventor/assets. Take a 
look at your own directories: You may even still see the files laughter.wav, laughbag.
jpg, and laughbag_icon.png used in the previous installations. Not all traces vanish 
after you uninstall a program.

If you cannot see your smart phone in the file manager, you can enable USB storage 
explicitly on your smart phone by pulling down the status bar, clicking on “USB connec-
tion,” clicking the button “Turn on USB storage,” and confirming your choice by click-
ing OK (see Figure 3.41 using the example of LG P500 from left to right). Now your 
smart phone—or, more correctly, its SD card—should appear as a separate drive in the file 
manager.

 

Figure 3.41 Enable the USB connection to copy the APK file

Once your smart phone is connected to the computer as a USB storage device, you 
can easily copy the downloaded file LaughBag.apk to the SD card of your smart-
phone (see Figure 3.42). Go to the download directory in the file manager (for exam-
ple, E:/AI/APK), copy the APK file (Copy in Windows or use the keyboard shortcut 
Ctrl + C), go to the smart phone’s desired target directory in the file manager (such as 
F:/downloads), and paste the copied file there (Paste in Windows or use the keyboard 
shortcut Ctrl + V). Remember this directory, as you will later need to access it on your 
smart phone and select the APK file to install it.



125Creating and Installing the App

 

Figure 3.42 Copying the file LaughBag.apk to 
the SD card of an LG P500 smart phone

Once you have copied the file LaughBag.apk onto the SD card of your smart phone, 
you can disconnect the smart phone from the computer. Close the USB connection by 
clicking on the button “Turn off USB storage” (see Figure 3.41 on the right), or unmount 
the drive from your computer just like any other USB device (in Windows, use the icon 
“Safely remove hardware,” which is found in the status bar).

Now you have the APK file on your smart phone, but you can neither start it nor see 
it in the app overview. Before the app can appear in the application overview, you must 
first install it. The APK file is merely the installation file. If you tap on an APK file on your 
smart phone, Android automatically installs the app archived within that file. But how can 
you find the file LaughBag.apk, which you copied into the /downloads directory on 
your smart phone’s SD card using the file manager? To do so, you need an app that lets you 
access the directories and files on your smart phone and its SD card in the same way as the 
file manager does on your computer. 

File Manager for Android Smart phones
To access the files and directories of your smart phone and its SD card, you need an 
additional app, similar to the file manager on a computer. The current Android smart phones 
do not usually include a mobile file manager, so you need to obtain one from the Android 
Market—for example, by searching for “Explorer.” The free version AndExplorer, by Lysesoft, 
is a good choice.



126 Chapter 3 Developing Your First App

If you have an Android Explorer, such as the AndExplorer program created by 
Lysesoft, installed on your smart phone, you can start it now to find the copied file 
LaughBag.apk on your SD card. After starting AndExplorer and pressing the SDCard 
button, you should see the same directories (shown in Figure 3.43 on the left) as were 
visible in the file manager on the computer (shown in Figure 3.42). Now you can simply 
press the directory name /download to go to that directory; there you will find the cop-
ied file LaughBag.apk. Click on the file name to start the installation process, as shown 
in on the right-hand side of Figure 3.43.

 

Figure 3.43 Installing the file LaughBag.apk  
using the AndExplorer file manager

As described in the previous section, an APK file is an archive of several files and 
directories. With a program for unpacking—for example, 7-Zip (www.7-zip.org)—you 
can take a closer look at the contents of this archive. Figure 3.43 shows the unpacked 
directory structure of the file LaughBag.apk. It is a bit bigger than that of the proj-
ect file LaughBag.zip (shown in Figure 3.23), but still resembles it. In addition, the 
APK file now includes the Java-type files of an Android app—for example, the Android 
Manifest in the XML file of the same name, various meta files, and the integrated Java 
classes in classes.dex, plus the three media files as assets in the directory /assets (see 
Figure 3.44).

www.7-zip.org


127Creating and Installing the App

 

Figure 3.44 Directory structure of the unpacked 
app archive file LaughBag.apk

Now that you have used all three methods for downloading and installing the 
LaughBag app on your smart phone, it is entirely up to you which installation method 
you decide to use and when. If you want to test your independent app quickly during 
your development work, the direct installation is certainly the fastest option. If you are 
using several smart phones for testing, the quickest way of getting the app to the various 
Android devices is probably using the QR codes with online installation. If you want 
to make your app available to third parties for testing or general use, however, the best 
option is downloading the APK file.

Google Play and other Android Markets
In the context of exporting your own app as an APK file, you are probably wondering 
whether you could offer apps created with AI within Google Play (formerly known as 
Android Market), where apps are also available as APK files. Any developer who wants 
to distribute an app on Google Play first has to register, regardless of which development 
language has been used or whether the app is free or sold for a fee.

Registering as a Developer on Google Play
Before you can distribute your apps on Google Play, you first need to register and pay a 
one-time fee (currently $25). You can register online at this website:

http://market.android.com/publish/signup

For further help, refer to the Help page on the registration process:

http://market.android.com/support/bin/answer.py?hl = en&answer = 
113468

Before you think about registering to publish the apps you have developed with AI on 
Google Play, please read the rest of this section first.

http://market.android.com/publish/signup
http://market.android.com/support/bin/answer.py?hl=en&answer=113468
http://market.android.com/support/bin/answer.py?hl=en&answer=113468


128 Chapter 3 Developing Your First App

On the Help page mentioned in the note, you can read a statement explaining the 
motivation behind this financial “hurdle”: “We charge this fee to encourage higher-
quality products on the market (e.g., less spammy products).” Just like other distributors 
of competing platforms for marketing apps, Google is trying to keep the quality of apps 
offered on Google Play as high as possible. Whereas some competitors require each of the 
apps to undergo a complicated approval procedure with more or less transparent evalua-
tion criteria, the requirements for Google Play are not yet as restrictive. Despite the reg-
istration fee, the number of apps available on Google Play continues to grow rapidly, and 
it is becoming increasingly difficult to find a suitable app among the multitude of avail-
able apps. To keep the growing Google Play attractive to consumers as well as developers, 
Google is trying to limit the excessive proliferation of apps.

Against this backdrop, it should not be surprising to find that for a long time, apps 
created with AI were not intended or officially allowed to be distributed on Google 
Play. AI is aimed mainly at beginners and seeks to didactically provide basic methods of 
developing mobile apps; it is not targeted toward professional Java developers who want 
to develop commercial apps for Google Play. The prospect of hundreds of additional 
“HelloWorld” apps inundating Google Play understandably did not seem to be a good 
idea. Some of the discussions in the AI Forum, therefore, debate the question of whether 
professional apps can be created at all under the current limitations of AI and whether 
keeping them off Google Play altogether might be justified. Also, you should not forget 
that AI is only in the beta stage. 

As there was no built-in export-to-market function integrated into AI for a long time, 
some clever alternative tools have been developed. You can still use the search term “mar-
ket” in the AI Forum to find tips about publication tools such as Marketizer and AppTo-
Market, which have been available online and sometimes even free. With these tools, 
you are still supposedly able to sign the APK files created with AI relatively simply and 
convert them to compatible APK files, which you can then upload to Google Play with a 
valid registration.

Tools for Converting AI Apps for Google Play
According to the product information, the following tools enable you to convert, sign, and 
publish the APK files created with AI under a valid registration on Google Play:

AppToMarket: http://amerkashi.wordpress.com/

Marketizer: http://www.taiic.com/marketizer/

Since the release of AI Version 125 (see http://beta.appinventor.mit.edu/
ReleaseNotes.html) from May 6, 2012, apps created with AI can be uploaded to 
Google Play. There is a complete description about how to download your apps from AI 
and upload them to Google Play on the documentation sites of the MIT AI.

http://amerkashi.wordpress.com/
http://www.taiic.com/marketizer/
http://beta.appinventor.mit.edu/ReleaseNotes.html
http://beta.appinventor.mit.edu/ReleaseNotes.html


129Creating and Installing the App

How to Upload AI Apps to Google Play
You can find a complete description of  how to prepare and upload your AI apps to Google 
Play at the MIT AI documentation website:

http://beta.appinventor.mit.edu/learn/reference/other/
appstoplay.html

We should also mention that apart from Google Play, a growing number of alternative 
or additional online platforms are emerging on which you can offer your apps either free 
or for a charge. Please refer to the terms and conditions on the respective websites for 
details.

Alternatives to Google Play

In addition to or as an alternative to the official Google Play, you can offer your apps 
among all the others on these platforms:

Amazon Appstore for Android: http://www.amazon.com/mobile-apps/b?ie = 
UTF8&node = 2350149011

AppBrain: http://www.appbrain.com/

GetJar: http://www.getjar.com/

Yet Another Android Market: http://yaam.mobi/

Regardless of where and how you want to offer your AI apps, it is essential to keep 
your target audience in mind. The success of an app depends not solely on marketing, but 
primarily on a good idea and its appealing and appropriate implementation—which is 
what we will concentrate on in the rest of this book.

http://beta.appinventor.mit.edu/learn/reference/other/appstoplay.html
http://beta.appinventor.mit.edu/learn/reference/other/appstoplay.html
http://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
http://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
http://www.appbrain.com/
http://www.getjar.com/
http://yaam.mobi/


This page intentionally left blank 



2D (two-dimensional) animations
collision detection, 351-355
moving graphic objects, 349-351
overview, 345-349
squash game with dynamic animation, 

355-358
Abelson, Hal

App Inventor at MIT and, 10
background information on, 544
preface, xv-xvi

Abstract block types, 59
Accelerometer, 20
AccelerometerSensor

balance game for whole body, 397-403
basics of sensory acceleration 

measurement, 387-389
measuring g-force with, 387
setting measurement sensitivity via 

slider control, 393-397
using phone as musical shaker, 389-393

Access
audio file, 195-196
emulator, 69
options for media, 175-178

Acoustic feedback, 192
Actions

at app start with Screen, 171-174
creating interactive logic, 99-101
triggering with Button, 150-153

Active media key
creating headers, 214
defined, 212

ActivityError, 466
ActivityStarter

car navigation with Google 
Navigation, 473-475

identifying/using activities with ADB, 
477

online elections with Voting 
component, 515

reading barcodes with BarcodeScanner 
component, 515

sending e-mails with Android Mailer, 
483

sharing apps/web services with, 462-467
ActivityStarterMaps, 469, 472
ADB (Android Debug Bridge)

defined, 276-277
tool, 476-477

Adding list items, 251-252
Address book, 478-479
AfterActivity, 466
AfterPicking, 189-190
AfterPicture

defined, 183-184
using, 186-187

AfterSoundRecorded, 203-204
A-GPS (Assisted GPS), 404
AI (App Inventor)

Abelson on, xv-xvi
Android device settings, 33-38
Android platform, 19-23
background information on, 544
computer platform, 17-19
history, 5-11
IDE. See IDE (integrated development 

environment)
initiatives, tutorials and collections of 

examples, 543-544
installation of Setup Software, 29-33
introduction, 1
Java configuration, 23-27
login data for, 27-29
online resources for, 542-543
preface, xvii-xix
preparation and installation, 15-17

Index



546 AI (App Inventor)

overview, 41-42
program structure, 216
setting component properties, 49-50
structuring objects under Components 

and Media, 49
“AI in Education” forum, 77
AI Java Bridge, 523-525
AI References

Blocks Reference, 143-144
Component Reference, 139-143
Concepts Reference, 145
media file integration, 176
tips in, 267

Alarm clock, 369-373
Alerts, 164-167
Algorithms

calculating custom color values, 228
defined, 223
defining container structures, 241

“Allow mock locations”, 34-35
Alphanumeric characters, 234
Altitude, 414
Analog spirit level, 383-386
AND, 233-234
AndExplorer

file manager, 125-126
media file integration, 177-178

Android
audio format support, 95
deleting app data from, 313
eSpeak for. See eSpeak for Android
image format support, 92
requirements, 5
system requirements, 19-23

Android apps. See also app projects
developing attractive, 3-4
preface, xvii-xix
preparing first app, 2

Android Debug Bridge (ADB)
defined, 276-277
tool, 476-477

“Android Developers” forum, 529
Android devices

integration, 63-68
settings, 33-38

Android Logs, 276-277
Android Mailer, 482-487

AI (App Inventor) (continued)
preparing first app, 13-14
requirements, 5
running your own service, 544
structure and overview, 2-4

“AI Announcements” forum, 77
AI Blocks Editor

component-specific blocks, 57-58
copy and paste in, 219
creating first app, 82
defined, 25
developing app functionality. See 

functionality
developing app functions, 56
generic block groups, 56-57
implementing and editing apps in, 

59-63
integrating Android phone, 63-68
integrating emulator, 69-72
monitoring loading processes in Java 

Console, 532-533
overview, 53-55
quiz game project, 288-291
start-up problems, 72-74
using status information in Java 

Console, 533-535
AI Blocks Reference, 143-144
“AI Coffee Shop” forum, 77
AI Concepts Reference, 464

understanding ActivityStarter, 463
AI Designer

creating first app, 82-84
creating project in, 42-44
designing apps with component 

objects in Viewer, 47-49
designing user interface. See user 

interface design
five panels, 44-45
integrating Android phone, 63-68
interaction of components and blocks, 

56
inventory of Palette components, 

45-47
managing and saving app projects, 

50-53
online installation via barcode, 

117-122



547Azimuth

online elections with Voting, 515-516
reading barcodes with 

BarcodeScanner, 515
tweeting with Twitter, 513-515

Apps
assets, 176
attractive, 3-4, 327
barcode readers, 117-118
closing, 266-267

App-to-app, 434
App-to-Web, 434
AR (augmented reality)

Kloss and, xxiii
mobile, 20

Arguments, 243-245
Aristotle, 224
Arithmetic

basic, 229-230
scientific, 230

ASCII character table, 235
/assets Directory

APK files, 124-127
media files, 106

Assignment blocks, 56
Assisted GPS (A-GPS), 404
Asynchronous communication, 315
Attractive apps, 3-4, 327
Audio

recording with SoundRecorder, 
203-210

sound effects and vibration with 
Sound, 192-195

supported formats, 527-528
using phone as musical shaker, 

389-393
Audio files

adding to app, 95-97
playing, 195-198
troubleshooting, 106-107

Audio player, 195
Augmented reality (AR)

Kloss and, xxiii
mobile, 20

Autocompletion process, 478-481
Automatic processes, 358-360
Auto-rotation, 35-36
Azimuth, 378

Android Market
allowing app installation outside, 36
app installation and, 122-127
file managers, 125

Android Package (APK) files. See APK 
(Android Package) files

Animation and graphics. See graphics and 
animation

Animation paths
defined, 344
keyframe animations with finger, 

366-369
API, Web. See Web API
APK (Android Package) files

defined, 121
downloading, 122-127
media file integration, 176-177
projects on companion website for 

this book as, 541
/APK Directory, 123, 541
App Inventor. See AI (App Inventor)
App projects

AccelerometerSensor. See 
AccelerometerSensor

calculator, 278-286
creating first app, 82-84
creating in AI Designer, 42-44
driver assistance system. See driver 

assistance system project
first app development. See developing 

first app
graphics and animation. See graphics 

and animation
locally saving, 103-106
LocationSensor. See LocationSensor
managing and saving, 50-53
media center. See media center project
online resources for, 543
OrientationSensor. See 

OrientationSensor
quiz game, 286-291
on this book’s companion website, 541
vocabulary trainer, 292-303

Apple, 18
Application-specific components

data tables with FusiontablesControl, 
516-518



548 Back function key

method blocks, 137-138
property blocks, 133-135
selection, 56

Blocks Editor. See AI Blocks Editor
Blocks Reference, 143-144
BluetoothClient

data exchange with, 519-521
robot control with Lego Mindstorms 

group using, 521-523
BluetoothServer, 519-521
Body, 214
Boolean operators, 233-234
Boolean values

of CheckBox, 153-158
defined, 153
in Logic block group, 232-233

Bottom-up approach, 434
Bouncing ball, 351-355
Branches

defined, 227, 253
nested ifelse, 290-291

Break points, 276
Browsers

enabling Java Console in, 531
requirements, 18-19

Brush sizes, 332-337
Bug reports, 111
Built-In tab

adding blocks from, 60
developing quickly and more 

comfortably, 277-278
generic block groups in, 56-57

Buttons
adding Close to WebViewer, 503-504
calculator project, 279-286
CameraButton, 185
creating custom icon, 114
creating interactive logic, 99-101
defined, 85-86
expanding interactive component, 

89-91
ImagePicker, 188-192
media center, 212
NumberQuiz, 288-291
Player, 197-198
SoundRecorder, 205-208
speed dial, 435

Back function key
interface design for Navi Setup, 468
navigation query to Google Maps via 

URI, 472-473
pedestrian navigation with Google 

Maps, 467-469
user interface design for, 436

Background colors
in Blocks Editor, 57
component properties, 49-50

Background images
in Blocks Editor, 57
component properties, 49
showing and hiding in Canvas, 340

Background information
AI, 544
GPS and location-based services, 

404-405
Backward key (<<<), 503-504
Balance game, 397-403
Ball and ImageSprite

2D squash game with dynamic 
animation, 355-358

collision detection, 351-355
moving graphic objects, 349-351
overview, 345-349

Ball balance game, 397-403
Barcode generators, 117
Barcode scanners

BarcodeScanner, 515
defined, 117-118
online installation via barcode, 119

Barcodes, 117-122
Basic arithmetic, 229-230
Basic terms and concepts

events and event handlers, 135-137
methods and method blocks, 137-138
properties and property blocks, 

133-135
Beta phase, 15
Blocks

collapsing, 268-270
defined, 56
event, 135-137
groups. See generic block groups
implementing functional structure, 

101-103



549Components

Closing apps
calculator project, 286
properly, 266-267

Cloud computing
defined, 18
Java configuration and, 25

Cloud storage
defined, 305
storing dictionary in, 316-323
TinyWebDB, 313-316

CML (Center for Mobile Learning), 10
Collapsing event handlers, 268-270
Collision detection

in Balance game, 403
in Ball and ImageSprite, 351-355

Color block group
data types, 225
defined, 56-57
using colors with, 227-229

Color values
defined, 227-229
defining with procedure, 246-247

Color-coding block types, 102
Colored dots painting, 332-337
Comma (,), 407, 431
Commands, 56
Comments, 270-271
Communication, 433-434. See also driver 

assistance system project
Comparisons

relational operators, 231-232
text, 235-236

Compass
GeoCacher, 422-432
with graphical direction indicator, 

379-383
Complaints, 271-274
Component objects, 48, 86
Component Reference, 85

defined, 46-47
Notifier, 164
overview, 139-143

Components. See also application-specific 
components; dedicated component groups

adding sound to user interface, 95-97
assigning names, 88

Ticker. See Ticker button
triggering actions with, 150-153
uploading and integrating media files, 

91-93
vocabulary trainer project, 293-307
WebcamButton, 181-182

Caches, 421
Calculator project, 278-286
Calibrating electronic compass, 383
Cameras

in media center project, 213
taking photos and displaying them 

with Camera, 183-188
Canvas

colored dots with different brush sizes, 
332-337

drawing lines by dragging on screen, 
337-342

overview, 330-332
undo function, 342-344

Car navigation, 473-475
CarAssistant app. See driver assistance sys-

tem project
Cardinal points, 406-407
Case sensitivity, 235
Center for Mobile Learning (CML), 10
Centering components, 281
CheckBox, 153-158
Checkpoints, 52
Chrome, 18
Circle drawing, 335
Clearing data, 313
Click events, 150-153
Client apps

defined, 316
shared databases, 323-326

Clock
alarm clock with timer events, 

369-373
controlling automatic processes with, 

358-360
external control of animations, 

361-366
keyframe animations with finger, 

366-369
Close button, WebViewer, 503-504
Closed issues, 111



550 Components

Contacts
adding to speed dial list, 443-444
deleting from speed dial list, 445-448
differences in smartphones in 

accessing, 443
making phone calls via speed dial list, 

440-442
picking phone numbers with 

PhoneNumberPicker, 443-445
selecting speed dial numbers with 

ListPicker, 445-448
selecting with EmailPicker and 

ContactPicker, 478-482
sending e-mails with Android Mailer, 

484-486
Container structures, 241-247
Contains, 237-238
Content URLs, 176
Contents

checking and converting list, 248-250
searching text, 237-238

Context menus, 270
Control block group

closing app properly, 266-267
conditional statements and branches, 

253-256
generic loops, 260-266
list-specific and numeric loops, 

256-260
Control characters, 257-258
Control interfaces

audio player, 197
slider control, 393-397

Controlling events, 99
Conversions

AI app, 129
geocoordinates to decimal notation, 

406-407, 431
list, 249-250
Math block method, 231

Copy
in AI Editor, 219
downloading APK files, 124-125
saving app projects, 52
shortcuts, 277-278

Corel Paint Shop Pro, 113

Components (continued)
basic terms and concepts. See basic 

terms and concepts
vs. component objects, 48, 86
designing GUI. See GUI (graphical 

user interface)
expanding interactive button, 89-91
generic block groups and, 223-224
graphics and animation. See graphics 

and animation
inserting Label, 85-87
interaction with blocks, 56
inventory of Palette, 45-47
multimedia. See multimedia
sensors. See sensors
setting properties, 49-50, 88-89
specific blocks in My Blocks, 57-58
structuring objects under Media, 49
TinyDB. See TinyDB
TinyWebDB. See TinyWebDB

Computer platform requirements, 17-19
Concatenation, 236-237
Concepts. See basic terms and concepts
Concepts Reference

overview, 145
screen design, 168

Conditional statements and branches, 
253-256

Confidential text, 161-164
Configuration

Java, 23-27
keys, 436

Connections, smartphone
in Blocks Editor, 62-66
first app development, 82
online installation via barcode, 117
problems with freezing, 74-76
restarting in case of “freezes”, 67
troubleshooting sound, 107

Constants, 242-243
ContactPicker

selecting contacts with, 478-482
selecting e-mail addresses from address 

book with, 479-482
sending e-mails with Android Mailer, 

484



551Developers

Java interface with AI Java Bridge, 
523-525

online multiplayer games with 
GameClient, 518-519

overview, 518
robot control with Lego Mindstorms, 

521-523
Def variable, 242-243
Definition block group

defining container structures with, 
241-247

structures, 226
Degrees, 406
Deleting

app data from Android, 313
apps on smartphone, 115
blocks, 61
dictionary, 301
image files, 93
labels, 87
list items, 251-252
online data, 323
shortcuts, 278
track log, 411, 418
word pairs from dictionary, 296

Demo projects, 541
Demo_GUI. See GUI (graphical user inter-

face)
Design

ergonomic redesign of media center 
project, 211-215

GUI. See GUI (graphical user 
interface)

icon, 110-117
screen arrangement, 168-170
user interface. See user interface design

Designer. See AI Designer
Developer forum, 529
Developers

features and useful resources for, 4
program basics. See program 

development basics
registering on Android Market, 127
users as, xviii
on the way to becoming, 3
on way to becoming, 221-222

CSV (Comma-Separated Values) format
defined, 249-250
FusiontablesControl component, 518
stock data in raw, and in ticker, 495

CurrentAddress, 408
Custom color values, 227-229
Custom icons, 110-117
Custom procedures, 245-247
Custom variables, 242-243
Data connections, 5
Data exchange

with BluetoothClient and 
BluetoothServer, 519-521

car navigation with Google 
Navigation, 473-475

identifying/using activities with ADB, 
476-477

overview, 462
pedestrian navigation with Google 

Maps, 467-473
selecting contacts with EmailPicker 

and ContactPicker, 478-482
sending e-mails with Android Mailer, 

482-487
sharing apps/web services with 

ActivityStarter, 462-467
Data online, 316
Data processing elements, 224-227
Data store, 307
Data structures, 247-252
Data tables, 516-518
Data types, 225
Database query, 300
Databases. See storage and databases
Date

displaying on switchboard, 440
setting alarm clock, 370-372

Debugging
ADB tool, 476-477
infinite loops, 263
program development tips, 274-277

Decimal separators, 405-409
Decoder formats, 529
Decremented, 261
Dedicated component groups

exchange of data with Bluetooth-
Client and BluetoothServer, 519-521



552 Developing first app

/assets, 106, 124-127
/downloads, 124-126
/MEDIA, 92, 180
media file, 177-178
/PROJECT, 104
on this book’s companion website, 541

Display
analog spirit level, 383
online and local image with Image, 

179-183
photo with Camera, 183-188
troubleshooting image, 95

Distance
calculating, 428-432
GeoCacher, 422-423

Documentation
AI IDE, 76
AI references. See AI references
online resources for App Inventor, 

542-543
specifications. See specifications

“Do-it”, 274-275
Dot size, 336-337
Downcase, 237
Downloading

AI Setup Software, 30
APK file, 122-127
Blocks Editor, 53-55
direct to Smartphone, 108-110
Java, 24
local data from dictionary, 311-313
monitoring in Java Console, 532-533
online data, 315, 316-323
online installation via barcode, 

117-122
saving app projects, 52-53
saving project locally, 103-104
track log, 419

/downloads Directory, 124-126
Downward compatibility, 19
Dragged

defined, 331-332
drawing lines with, 337-342

Drawing with Canvas. See Canvas
Driver assistance system project

data exchange via interface. See data 
exchange

Developing first app
Android Market and, 122-127
assigning component names, 88
creating and installing, 107-108
creating project, 82-84
custom icons for, 110-117
designing user interface, 84
direct smartphone installation, 

108-110
downloading APK file, 122-127
expanding interactive component 

button, 89-91
functionality, 97-99
implementing functional block 

structure, 101-103
inserting label, 85-87
interactive logic, 99-101
online installation via barcode, 

117-122
optimizing app design, 93-95
overview, 81
saving project locally, 103-106
setting properties, 88-89
sound component, 95-97
testing and troubleshooting, 106-107
uploading and integrating media files, 

91-93
Development, 16
Development environment. See IDE (inte-

grated development environment)
Development menu, 33-38
Dictaphone

defined, 203
in media center project, 213

Dictation, 456-458
Dictionary

loading local data from, 311-313
storing in cloud, 316-323
vocabulary trainer project, 292-303

Digital signatures, 54-55
Direction

compass with graphical direction 
indicator, 379-383

GeoCacher, 422-432
moving graphic objects, 349-351

Directories
/APK, 123



553Event handlers

integrating, 69-72
switching languages, 161

Encoder formats, 529
English keyboard, 161
English-to-German vocabulary trainer, 

292-303
Enhanced Data Rates for GSM Evolution 

(EDGE), 117
Entering text, 158-160
Equals (=) operator

Boolean operators, 234
in Text block group, 236

Ergonomics
calculator design, 279
redesign of media center project, 

211-215
user interface design, 84

Error messages
if Blocks Editor won’t start, 73
during live development, 271-274

Error reports, 43
Error tolerance, 272
ESpeak for Android

downloading and enabling, 535-536
installing text-to-speech, 535-536
speech synthesis settings, 536-538
troubleshooting speech output, 538-540

Event control, 99
Event handlers

audio player, 197-198
basic terms and concepts, 135-137
for Button component, 151-152
for Camera, 185-187
collapsing and expanding, 268-269
copy and paste, 277-278
defined, 99
if then-do vs. when-do, 254
for ImagePicker, 190-191
incomplete, 155
Notifier, 166-167
PasswordTextBox, 162-163
retrieving webcam images, 181-182
for SoundRecorder, 205-209
starting and closing Email Setup, 

483-484
switching between subscreens, 218-220
triggering ticker updates, 492-493

demands, functions, and requirements, 
435-436

fully automatic SMS. See SMS 
messaging

installation in smartphone, 508-510
ListPicker component, 445-448
mobile mashups. See mobile mashups 

with web services
modular design of app structure, 

436-437
need for, 434-435
PhoneCall component, 448-450
PhoneNumberPicker component, 

442-445
switchboard with multiple screens, 

437-440
telephone calls via speed dial list, 

440-442
Driver installation, 32-33
Dynamic animation, 355-358
Dynamic images, 180-182
Edge, 351-355
EDGE (Enhanced Data Rates for GSM 

Evolution), 117
Editing. See AI Blocks Editor
Electronic compass, 376
E-mail

driver assistance system requirements, 
435

selecting contacts with EmailPicker 
and ContactPicker, 482-487

sending with Android Mailer, 482-487
Email function key

selecting contacts with EmailPicker 
and ContactPicker, 479

sending e-mails with Android Mailer, 
486

user interface design for, 436
Email module, 482-483
EmailPicker

selecting contacts with, 478-482
sending e-mails with Android Mailer, 

484-485
Empty lists, 311
EmptyBoxes, 295
Emulator

in Blocks Editor, 62



554 Event handlers

Finger keyframe animations, 366-369
Finger painting

with colored dots, 332-337
lines by dragging, 337-342

Firefox, 18-19
First app development. See developing first 

app
Five panels of AI Designer, 44-45
Fixed issues, 111-112
Focus events

in Button, 150-151
in CheckBox, 154
in TextBox, 158

For each loops, 253
For loops, 253, 256-260
Formats

audio support, 95
CSV, 249-250
geocoordinates, 406
image support, 92
supported media, 527-529
time, 360

Formulas
defining container structures, 241
route calculation, 428-430

Forums
AI, 38
AI troubleshooting, 77-79
Android Market, 128

Forward key (>>>), 503-504
Freezes

connection problems, 74-76
restarting in case of, 67

Function buttons
driver assistance system switchboard, 

436
as modular structure in CarAssistant, 

437
Function menu

AI Designer, 43
Blocks Editor, 61-62
opening Blocks Editor, 53
project management, 51-53

Functionality
alarm clock, 371-373
calculator project, 281-286

Event handlers (continued)
vibration, 194-195
for VideoPlayer, 202

Events
AccelerometerSensor, 389
ActivityStarter, 464
AfterPicture, 183-184, 186-187
alarm clock with timer, 369-373
Ball, 346
basic terms and concepts, 135-137
Button component, 150-153
Canvas, 331-332
CheckBox, 154
Clock, 359
in Component Reference, 141-142
creating interactive logic, 99-101
ImagePicker, 189
LocationSensor, 408
Notifier, 164-165
OrientationSensor, 378
Screen, 172
SoundRecorder, 204
TextBox, 158-160
TinyWebDB, 315

Example projects. See app projects
Exclamation mark (!), 155
Expanding event handlers, 268-270
Exponents, 263-264
Exporting

to Android Market, 127-129
app projects, 52-53

Expressions, 233, 279
External control of animations, 361-366
False, 232-233
False values

in CheckBox, 153-158
defined, 153

Feature requests, 111
Feedback, 271-274
Feedzilla

documentation, 496
new ticker with data by, 496-502

File managers
media file integration, 177-178
smartphone, 125

File URLs, 177



555Google Maps

defined, 403-404
deleting and inserting current, as 

destination address, 471
generating reply to SMS with 

optional, 453-454
pedestrian navigation with Google 

Maps, 467-473
GeoTracker, 409-421
GET request

new ticker with data by Feedzilla, 496
stock market ticker with data from 

Yahoo, 494
using Web APIs with Web component, 

489-491
Getter blocks, 135
“Getting Set Up and Connecting Your Phone 

to AI” forum, 77
GetValue, 307
G-force, 387
“Glassy Buttons”, 114
Global Positioning System (GPS). See GPS 

(Global Positioning System)
Global procedures, 243-245
Global variables, 242-243
GNU/Linux

AI requirements, 17
AI Setup Software, 30

Google
AI requirements, 18
IDE, 39-40
online resources for App Inventor, 

543-544
Google accounts

logging in to AI, 27-28
online app installation via barcode, 

119-121
Google App Inventor. See also AI (App 

Inventor)
discrepancies in representations, 

16-17
history, 6-8

Google App Inventor Team, 6-8
Google Goggles, 119-120
Google Maps

online documentation for, 473
pedestrian navigation with, 467-473

developing app, 56
driver assistance system requirements, 

435-436
ergonomic media center project, 

211-215
GeoTracker, 413-420
implementing functional block 

structure, 101-103
interactive logic, 99-101
multiple screens, 215-220
overview of, 97-99
quiz game project, 286-291
saving project locally, 103-106
testing and troubleshooting, 106-107
vocabulary trainer project, 292-303

Fusion Tables API, 517-518
FusiontablesControl, 516-518
GameClient, 518-519
Games

balance game for whole body, 397-403
collision detection, 352-355
online multiplayer games, 518-519
quiz game project, 286-291
squash game, 355-358

General Packet Radio Service (GPRS), 117
Generic block groups

Blocks Reference, 143-144
in Built-In and My Blocks tabs, 56-57
checking program states with Logic, 

232-234
controlling program flow with 

Control. See Control block group
defining container structures with 

Definition, 241-247
editing text and strings with Text, 

234-241
managing lists with List, 247-252
processing numbers with Math, 

229-232
using colors with Color, 227-229

Generic loops, 260-266
Geocaching, 421-432
Geocoordinates, 405-409
Geopositioning

background of GPS and location-
based services, 404-405



556 Google Navigation

actions at app start with Screen, 
171-174

displaying notices and alerts with 
Notifier, 164-167

displaying text with Label, 147-150
entering confidential text with 

PasswordTextBox, 161-164
entering text with TextBox, 158-161
overview, 147
selecting options with CheckBox, 

153-158
tidying screen with Screen 

Arrangement, 167-171
triggering actions with Button, 

150-153
Haptic feedback, 192
Hardware requirements, 19-20
Headers, 214
Heading, 349-351
Hierarchical tree structure, 49
High-Speed Downlink Packet Access 

(HSDPA), 117
Hint field, 158
History

AI, 5-11
Android versions, 21
GPS and location-based services, 

404-405
sprites, 345

Home function key
interface design for Navi Setup, 

468-469
starting car navigation with Google 

Navigation, 473-475
starting navigation from driver 

assistance system via, 477
user interface design for, 436

HorizontalArrangement, 168, 170
HSDPA (High-Speed Downlink Packet 

Access), 117
HTTP (HyperText Transfer Protocol)

further information on, 489
new ticker with data by Feedzilla, 496
using Web APIs with Web component, 

489-491
HyperText Transfer Protocol (HTTP). See 

HTTP (HyperText Transfer Protocol)

Google Navigation
car navigation with, 473-475
manually starting navigation with, 

476-477
GPRS (General Packet Radio Service), 117
GPS (Global Positioning System)

background of, 404-405
displaying location on switchboard, 

440
overview, 403-404
pedestrian navigation with Google 

Maps, 469-473
SMS reply text with optional 

geoposition, 454
Graphical user interface (GUI). See GUI 

(graphical user interface)
Graphics

custom icon design, 113
direction indicator, 379-383
level indicator, 383-386

Graphics and animation
2D squash game with dynamic 

animation, 355-358
alarm clock with timer events, 

369-373
animations with Ball and ImageSprite, 

345-349
collision detection, 351-355
colored dots with different brush sizes, 

332-337
compass with graphical direction 

indicator, 379-383
controlling automatic processes with 

Clock, 358-360
drawing lines by dragging on screen, 

337-342
external control of animations, 

361-366
keyframe animations with finger, 

366-369
moving graphic objects, 349-351
overview, 329-330
painting with Canvas, 330-332
painting with undo function, 342-344

Great-circle distance, 428
Groups. See generic block groups
GUI (graphical user interface)



557Interactive components

calculator, 280
Camera, 184
compass project, 380
defined, 133-134
dictaphone, 204
GeoCacher, 423
GeoTracker, 412
Label component, 149
media file integration, 176
NumberQuiz, 288
painting program, 333
photo album, 190
Sound, 194
spirit level, 384
squash game, 348
using images as, 180-181
VideoPlayer, 200
vocabulary trainer, 293

Initialize, 172-173
Initializing lists, 248
Inserting labels, 85-87
Installation

AI, 15-17
AI Setup Software, 29-33
allowing app without USB or Android 

Market, 36
Android Market, 122-127
custom icons, 110-117
direct smartphone installation, 

108-110
downloading APK file, 122-127
Java, 23-24
online installation via barcode, 

117-122
overview of first app, 107-108

Instants, 360
Instruction blocks, 56
Integrated development environment (IDE). 

See IDE (integrated development environ-
ment)

Intelligent Brick (programmable Lego brick), 
519-521

Intents
ActivityStarter, 464-465
collections of useful, 465

Interactive components
creating button, 89-91

Icons
custom for first app, 110-117
Icon properties, 49
media center, 212

IDE (integrated development environment)
AI Designer. See AI Designer
collapsing and expanding blocks in, 

268-270
integrating Android phone, 63-68
overview, 39-40
persistent data in, 308
start-up problems, 72-79
using emulator, 69-72
welcome to AI, 40

Identifiers, 307
IEEE 802.15.1 (Bluetooth) standard, 

519-521
If-then-else statements

calculator project, 284-285
defined, 253-256
quiz game project, 290-291

Images
adding to button, 91-93
correct reproduction in app, 116
creating custom icon, 114-115
displaying local and online images 

with Image, 179-183
ImageSprite. See Ball and ImageSprite
managing image with ImagePicker, 

188-192
painting with Canvas. See Canvas
supported formats, 528
taking photos and displaying them 

with Camera, 183-188
Implementation

app in Blocks Editor, 59-63
functional block structure, 101-103

Incremental development, 271
Incremented, 261
Infinite loops

avoiding, 263
defined, 253

Initial position, 349
Initial properties

alarm clock, 371
audio player, 196
Balance game, 398



558 Interactive components

JRE (Java Runtime Environment), 23-27, 
530-531

JSON format, 497-500
Keyboards

calculator project, 279
switching languages, 161

Keyframe animations with finger, 366-369
Keyframes, 366
Kloss, Jörg H., xxiii
Labels

displaying text with Label, 147-150
inserting, 85-87
making headers, 214
naming, 88
optimizing app design, 93-94
setting properties, 88-89

Languages
speech synthesis settings, 536
switching keyboard, 161
TextToSpeech component setup, 455
vocabulary trainer project, 292-303

Last in, first out (LIFO) principle, 417
Latitude

defined, 406
GeoTracker app, 414
methods, 408

LaughBag app. See developing first app
Laws of physics, 399
LBS (location-based services). See also 

LocationSensor
background of, 404-405
system requirements, 20

Lego Mindstorms group, 521-523
Level, 383-386
LIFO (last in, first out) principle, 417
Line drawing, 337-342
List block group

managing lists with, 247-252
structures, 226

ListPicker
making phone calls via speed dial list, 

441
selecting speed dial numbers with, 

445-448
Lists

displaying with foreach loop, 259
generating in Text block, 238-241

Interactive components (continued)
number game, 286-291
triggering actions with Button, 

150-153
Interactive logic, 99-101
Intercepted values, 311
Interfaces, data exchange via. See data 

exchange
Interfaces, user. See user interface design
International System of Units, 387
Internet

media file integration, 177
saving data on Web with TinyWebDB, 

313-316. See also TinyWebDB
web services. See web services

Internet Explorer, 18
Is a list?, 248-249
Issues List

bug reports and feature requests, 
111-112

exporting to Android Market, 
128-129

Iteration, 253
IxMAT, 120
JAR (Java Archive)

defined, 121
running your own App Inventor 

service, 544
Java

configuration, 23-27
enabling Java Console for, 530-531
if Blocks Editor won’t start, 73
interface with AI Java Bridge, 523-525

Java Bridge, 523-525
Java Console

enabling, 530-531
monitoring loading processes, 

532-533
overview, 530
using status information, 533-535

Java Runtime Environment (JRE), 23-27, 
530-531

Java System Logs, 277
Java Web Start, 24-27

opening Blocks Editor, 53-55
JNLP files, 72-74
Joining in Text block group, 236-237



559/MEDIA Directory

methods, 408
Loops

blocks, 56
defined, 227, 253
for, 256-260
while, 260-266

M2M (machine-to-machine)
automating SMS between, 458-462
defined, 433

Macintosh
AI requirements, 17
AI Setup Software, 30

Make a list, 248
Make text, 156-157
Managing app projects, 50-53
Mashups, 488. See also mobile mashups 

with web services
Massachusetts Institute of Technology (MIT). 

See MIT (Massachusetts Institute of 
Technology)

Massive multiplayer online games (MMOG), 
518-519

Massive multiplayer online role-playing 
games (MMORPG), 518-519

Master apps
defined, 316
shared databases, 323-326

Math block group
calculator project, 278-286
data types, 225
processing numbers with, 229-232
route calculation, 428-430

Measurements
basics of sensory acceleration, 387-389
basics of sensory orientation, 376-379
g-force, 387
orientation, 376

Media
components, 45-47
structuring objects under Components 

and, 49
Media center project

ergonomic redesign, 211-215
multiple screens for, 215-220
overview, 211

/MEDIA Directory
defined, 92

loading empty, 311
output with while loop, 264-266
for recording geodata, 413
speed dial. See speed dial list
vocabulary trainer project, 294-302

List-specific loops, 256-260
Live development, 271-274
Loading. See downloading
Local data

directories, 177-178
displaying image with Image, 179-183
loading from dictionary, 311-313
saving project, 103-106
saving with TinyDB, 306-307

Location
displaying on switchboard, 440
pedestrian navigation with Google 

Maps, 467-473
SMS reply text with optional 

geoposition, 453-454
Location-based services (LBS)

background of, 404-405
system requirements, 20

LocationSensor
background of GPS and location-

based services, 404-405
determining geoposition with, 

403-404
geocaching with smartphone, 421-432
geocoordinates and decimal separators, 

405-409
GeoTracker for tracking route profile, 

409-421
Log, track, 409-421
Log files, 276-277
LogError, 164
Logic block group

checking program states with, 
232-234

data types, 225
Login

to AI Designer, 41-42
data for AI, 27-29

Logout of AI Designer, 68
Longitude

defined, 406
GeoTracker app, 414



560 /MEDIA Directory

LocationSensor, 408
make text, 156
media file integration, 176-178
Notifier, 164
Player, 195, 198
Sound, 192-195
SoundRecorder, 204
TinyDB, 307
TinyWebDB, 315
VideoPlayer, 199-200

Micro-blogging, with Twitter, 514
Microsoft, 18
Milliseconds, 360
Minutes, 406
Misses, 355-358
MIT (Massachusetts Institute of Technology)

AI at, xvii
current AI installation information, 15
discrepancies in representations, 16-17
logging in to AI, 28-29
online resources for App Inventor, 

542-544
open source and AI at, 9-11

MMOG (massive multiplayer online games), 
518-519

MMORPG (massive multiplayer online role-
playing games), 518-519

Mobile augmented reality, 20, 375
Mobile mashups with web services

integrating websites with WebViewer 
component, 502-510

news ticker with data by Feedzilla, 
496-502

overview, 487-488
stock market ticker with data from 

Yahoo, 493-496
using Web APIs, 489-493

Modular design
benefits of, 434
driver assistance system, 436-437
fully automatic SMS messages, 

450-452
Movies player, 199-203
Moving graphic objects, 349-351
Mozilla, 18-19
Multi-caches, 421

/MEDIA Directory (continued)
media files, 180
on this book’s companion website, 

541
Media files. See also multimedia

access options, 175-178
adding sound to user interface, 95-97
for projects, on companion website for 

this book, 541
uploading and integrating, 91-93

Media formats
news from “Android Developers” 

developer forum, 529
supported, 527-529

Media keys
creating headers, 214-215
defined, 212

Media types, 175-178
Memory

media file integration, 176-178
SD cards. See SD cards
storage and databases. See storage and 

databases
video file support, 199

Menus
context, 270
functionality for multiple screens, 

217-220
media center buttons, 212

Messages
area in AI Designer, 43
entering text with TextBox, 158-160
error during live development, 

271-274
SMS. See SMS messaging

Methods
ActivityStarter, 464-466
Ball, 346
basic terms and concepts, 137-138
Camera, 183-187
Canvas, 331
Clock, 359-360
in Component Reference, 142
for data types, 225
generic block group. See generic block 

groups



561Numeric loops

user interface, 468-469
Navigation

Google Navigation, 473-475
GPS, 404. See also LocationSensor

NAVSTAR GPS (NAVigational Satellite Timing 
And Ranging GPS), 403

NeedleSprite, 380-381
Negation operator, 234
Nesting

components, 168
ifelse branches, 290
multiple screens, 216

News ticker
creating Ticker module, 491-492
with data by Feedzilla, 496-502
integrating websites in app with 

WebViewer, 502-510
overview, 487-488
update methods for, 492-493
using Web APIs with Web component, 

489-491
Non-visible components

adding sound to user interface, 95-97
Notifier, 165

Nonvolatile storage methods, 305
NOT, 234
Notation

displaying lists, 248
geocoordinates, 406-407

Notes and Details
defined, 145
media file integration, 176

Notices
“ALARM!”, 370, 373
displaying with Notifier, 164-167
“RECORDING!”, 205-208

Notifier
displaying notices and alerts with, 

164-167
onlyNumbersNotifier, 284

Numbers
data types, 225
processing with Math block group, 

229-232
quiz game project, 286-291

Numeric loops, 256-260

Multimedia
displaying local and online images 

with Image, 179-183
managing image with ImagePicker, 

188-192
media access options, 175-178
media center project. See media center 

project
playing audio files with Player, 

195-198
playing movies with VideoPlayer, 

199-203
recording audio with SoundRecorder, 

203-210
sound effects and vibration with 

Sound, 192-195
synergy, 178-179
taking photos and displaying them 

with Camera, 183-188
Multiplayer games, 518-519
Multiple screens

for driver assistance system, 437-440
for media center, 215-220
with MIT AI, 211-212

Musical shaker
adding slider control, 393-397
using AccelerometerSensor, 389-393

My Blocks tab
component-specific blocks in, 57-58
generic block groups in, 56-57

MyBall, 397-403
\n (Control character), 257-258
Naming

app projects, 44
buttons, 90
components, 88
first app, 83
tags, 411
variables, 243

Navi Setup
car navigation with Google 

Navigation, 474-475
inserting current geodata in, 470-471
recording location of parked car in, 

472
starting and closing, 471



562 NXT (Intelligent Brick)

spirit level with graphical level 
indicator, 383-386

Orthodromic distance, 428
Package for Phone

direct smartphone installation, 108
downloading APK files, 123
online installation via barcode, 118

Painting with Canvas. See Canvas
Palette

inventory of components, 45-47
labels, 86
link to Component Reference, 

139-140
Parameters

animation, 349-351
vs. arguments, 244
Blocks Reference, 143-144
defined, 138

Parsing raw data, news ticker, 499-502
Passive media key, 214-215
PasswordTextBox, 161-164
Paste

in AI Editor, 219
shortcuts, 277-278

Paths, animation
defined, 344
keyframe animations with finger, 

366-369
Pause(), 198
PC-based online games, 518-519
PCs (personal computers), 17-19
Pedestrian navigation, 467-473
Period, 407
Persistent data

defined, 305-306
deleting, 313
development environment and, 308
saving values of variables as, 307-311

Personal computing, xv
Phone calls

driver assistance system requirements, 
435-436

making via speed dial list, 440-442
making with PhoneCall, 448-449
picking phone numbers with 

PhoneNumberPicker, 442-445

NXT (Intelligent Brick), 519-521
OAuth, 514-515
Objects

creating labels, 86-87
designing apps with component in 

Viewer, 47-49
moving graphic, 349-351
structuring under Components and 

Media, 49
OHA (Open Handset Alliance), 5-6
Online database. See TinyWebDB
Online elections, 515-516
Online images, 179-183
Online installation via barcode, 117-122
Online multiplayer games, 518-519
Online references

Blocks Reference, 143
Component Reference, 140
Concepts Reference, 145
documentation, 139

Opacity, 228
Open Handset Alliance (OHA), 5-6
Open issues, 111
Open source, 9-11
Operands, 233, 279
Operating systems

AI requirements, 17
AI Setup Software, 30
Android versions, 19-23
integrating emulator, 69-71

Operations, 230
Operators

Boolean, 233-234
defined, 279
relational. See relational operators

Optic design, 93-95
OR, 233-234
Orientation

component properties, 49-50
disabling auto-rotation, 35-36
setting screen, 84

OrientationSensor
basics of sensory orientation 

measurement, 376-379
compass with graphical direction 

indicator, 379-383
measuring orientation with, 376



563Program development basics

Pitch, 376-378
Platforms

AI, 16
AI Online, 40
Android requirements, 19-23
computer requirements, 17-19
for offering AI apps, 129
test, 314

Player, 195-198
Playing video, 199-203
Point (.), 407
Pong, 345, 347
Pop-up notifier window, 164-167
Position

background of GPS and location-
based services, 404-405

collision detection, 353
dynamic animation, 356
external control of animations, 

361-366
geopositioning, 403-404
moving graphic objects, 349-351
sensor, 376, 408-409

POST, 489-491
Post-test loops, 261
Power computation, 263-264
Predefined colors, 227
Pre-test loops, 261
Prime Meridian, 406
Procedures

collapsing and expanding, 268-270
defined, 226
overview, 243-245
with results, 245-247
screenBlank, 439

Processing data, 224-227
Processing numbers, 229-232
Program development basics

better overview using comments, 
270-271

checking program states with Logic 
block group, 232-234

complaints and error messages during 
live development, 271-274

controlling program flow with 
Control block group. See Control 
block group

selecting speed dial numbers with 
ListPicker, 445-448

Phone function button
invoking speed dial list with, 448-449
selecting speed dial numbers, 445-448
switchboard module in CarAssistant 

project, 439
telephone calls via speed dial list, 

440-442
user interface design for, 436

Phone Setup screen
making phone calls via speed dial list, 

441-442
picking phone numbers with 

PhoneNumberPicker, 443-445
PhoneCall, 448-449
PhoneNumberPicker

ContactPicker vs., 479
picking phone numbers with, 

442-445
Phones. See smartphones
PHONEvArr, 441-442
Photo album

in media center project, 213
using ImagePicker, 190-191

Photos
displaying local and online with 

Image, 179-183
taking and displaying with Camera, 

183-188
Picking contacts. See ContactPicker
Picking emails

EmailPicker, 478-482
sending e-mails with Android Mailer, 

484-485
Picking images, 188-192
Picking lists

making phone calls via speed dial list, 
441

selecting speed dial numbers, 445-448
Picking phone numbers

PhoneNumberPicker, 442-445
PhoneNumberPicker vs. 

ContactPicker, 479
Pico TTS speech synthesis module, 537-538
Picture Gallery, 188-191



564 Program development basics

initial. See initial properties
Label component, 148-149
LocationSensor, 407-408
moving graphic objects, 349
non-visible component, 96
optimizing app design, 93-94
OrientationSensor, 378
photo album, 190
Player, 195
predefined colors, 227
Screen, 172
Screen Arrangement, 169-170
setting button, 91
setting component, 49-50
setting user interface, 88-89
Sound, 193
switchboard module in CarAssistant 

project, 438-439
TinyWebDB, 315
VideoPlayer, 199-202

Property blocks, 133-135
Providers

GeoCacher, 426-427
geodata, 407-408

Pseudocode
defined, 99
program development basics, 223

Puzzle pieces
blocks as, 57
creating interactive logic, 100
implementing functional block 

structure, 102-103
QR (Quick Response) codes

defined, 36
online installation via barcode, 

117-122
Quick Response (QR) codes. See QR (Quick 

Response) codes
Quiz game project, 286-291
QWERTY keyboard, 161
RacquetSprite

Ball animations, 347-348
collision detection, 352-355
dynamic animation, 355-358

Random ball serves, 355-358
Random numbers

generating, 230-231

Program development basics (continued)
defining container structures with 

Definition block group, 241-247
developing quickly and more 

comfortably, 277-278
editing text and strings with Text 

block group, 234-241
elements of data processing, 224-227
example calculator project, 278-286
example quiz game project, 286-291
example vocabulary trainer project, 

292-303
managing lists with List block group, 

247-252
overview, 223-224
processing numbers with Math block 

group, 229-232
testing and debugging, 274-277
tips, 267-270
using colors with Color block group, 

227-229
“Programming with AI” forum, 77
/PROJECT Directory

defined, 104
on this book’s companion website, 541

Projects. See app projects
Pronunciation, 455
Properties

AccelerometerSensor, 389
ActivityStarter, 464-466
animation components, 345-346
animation with Clock, 361
basic terms and concepts, 133-135
Button component, 150-153
calculator project, 280-281
Camera, 184
Canvas, 331-332
CheckBox, 154
Clock, 359
in Component Reference, 140-142
in Designer vs. Blocks Editor, 57
functionality for multiple screens, 

218-219
general principles of animation, 347
Hint field, 158
ImagePicker, 189
individual block, 61-62



565Screens

Robot control, 521-523
Robotics Command System (RCX), 519-521
Roll, 376-378
Roll-pitch-yaw (RPY) values, 376-378
Root elements, 216
Routes

orthodromic distance, 428
profile tracking, 409-421

RPY (roll-pitch-yaw) values, 376-378
Runtime

changing properties at, 134
properties vs. starting properties, 57

Safari, 18
Satellite-based GPS, 404
Saving

APK files, 123
app projects, 50-53
in Blocks Editor, 62
in Canvas, 332, 341-342
Canvas undo function and, 343-344
current speed dial list and returning to 

switchboard, 447
data locally with TinyDB, 306-307
data on Web with TinyWebDB, 

313-316
files from this book’s companion 

website, 542
geodata online, 415-416
JNLP files if Blocks Editor won’t start, 

72-74
photos, 187
project locally, 103-106
user data in WebViewer, 505-506
values of variables as persistent data, 

307-311
Scientific arithmetic, 230
Screen, 171-174
Screen Arrangement

calculator design, 280-281
tidying screen with, 167-171

ScreenBlank, 439
ScreenOrientation, 49-50
Screens

for driver assistance system, 437-440
for media center project, 215-220
setting orientation, 84
troubleshooting image display, 95

quiz game project, 289
vocabulary trainer project, 298-299

RCX (Robotics Command System), 519-521
Reading list items, 250-251
Read-only properties, 140
Recording audio, 203-210
Recycle bin in Blocks Editor, 61
Redo in Blocks Editor, 62
Reference types, 139
References

Blocks Reference, 143-144
Component Reference, 139-143
Concepts Reference, 145
media file integration, 176-177

Registration
as developer on Android Market, 127
login data for AI, 27-29

Relational operators
Boolean operators and, 233
in Math block, 231-232
in Text block group, 235-236

Reload button, 492-493
Replacing list items, 251-252
Reply options

reply text with optional geoposition, 
453-454

SpeechRecognizer, 456-458
Reporting bugs, 43
Requirements

Android Market, 128
App Inventor, 5
driver assistance system, 435-436
online installation via barcode, 

117-118
system. See system requirements

ResolveActivity, 466
Resources

background, history and outlook, 544
initiatives, tutorials and collections of 

examples, 543-544
official resources, 542-543
running your own App Inventor 

service, 544
on this book’s companion website, 

541-542
Restarting in case of freezes, 67
RGB color tables, 229



566 Scroll window in Blocks Editor

switching keyboard languages, 161
Setup Software, 29-33
Sexagesimal format, 406
Shaker instrument

adding slider control, 393-397
using AccelerometerSensor, 389-393

Shared databases
defined, 314
for master and client apps, 323-326

Sharing apps
online via barcode, 120
synergy, 178-179
and web services with ActivityStarter, 

462-467
Shortcuts, 277-278
ShowAlert, 172-173
ShowList, 295
SI (Système International d’unités), 387
Sizing components, 88-89
Slider controls, 393-397
Smartphones

Android system requirements, 19-23
connecting to Blocks Editor, 62-66
deleting apps on, 115
development settings, 33-38
direct app installation on, 108-110
driver installation, 32
enabling GPS, 409
geocaching with, 421-432
integrating Android, 63-68
as musical shaker, 389-393

SMS function key, 436
SMS messaging

driver assistance system requirements, 
435

generating reply with optional 
geoposition, 453-454

overview, 450-452
SpeechRecognizer component, 456-458
Texting component, 458-462
TextToSpeech component, 454-456

SMS module, 450-452
SMS Setup

dictation and voice recognition with 
SpeechRecognizer, 456-458

letting Android read your SMS aloud 
with TextToSpeech, 454-456

Scroll window in Blocks Editor, 59
Scrollable, 50
SD cards

AI requirements, 37
for downloading APK files, 124
media file integration, 177

Search button
selecting e-mail address via 

ContactPicker, 478
sending e-mails with Android Mailer, 

484
Searching

AI forums, 79
Issues List, 112
list items, 250-251
text content, 237-238
vocabulary trainer project, 300-301

Seconds, 406
Security

loading Blocks Editor, 54-55
PasswordTextBox, 161-164
stopping application, 67-68

Segment, 238
Selection with CheckBox, 153-158
Semantic errors, 273-274
Send button, 478
Sensitivity

musical shaker, 390-392
setting with slider control, 393-397

Sensors
accelerometer. See 

AccelerometerSensor
defined, 3-4
location. See LocationSensor
orientation. See OrientationSensor
overview, 375-376

Serial checking, 297-298
Servers

saving geodata online, 416
shared servers for testing, 314

Sessions, 67-68
Setter blocks, 135
Settings

Android development, 33-38
component properties, 49-50
selecting options with CheckBox, 

153-158



567Static images

Speech module
installing text-to-speech, 535-536
overview, 535
speech synthesis settings, 536-538
troubleshooting speech output, 

538-540
Speech recognition, 456-458
Speech synthesis

settings, 536-538
with TextToSpeech, 454-456

SpeechRecognizer, 456-458
Speed

increasing ball, 356-357
moving graphic objects, 349-351
MyBall, 399-400
sensory acceleration measurement, 

387-389
Speed dial buttons, 435
Speed dial list

invoking with Phone function button, 
448-449

making phone calls via, 440-442
selecting numbers with ListPicker, 

445-448
Spirit level with graphical level indicator, 

383-386
Split element, 239
Split methods, 238-241
Sprite, 345
SQL (Standard Query Language), 517-518
Squash game

collision detection, 352-355
with dynamic animation, 355-358
moving graphic objects, 349-351

Standard Query Language (SQL), 517-518
Start(), 198
StartActivity, 466
StartedRecording, 203-204
Starting properties, 57
Starts, 237-238
Start-up

actions at app start with Screen, 
171-174

troubleshooting, 72-77
State, 232-234
Static images, 180-181

receiving/sending SMS messages with 
options of, 459-462

setting reply options, 453-454
showing and hiding, 452

SMSvArr object, 452
Social group

picking phone numbers, 442-445
speed dial list, 440-441

Software
App Inventor requirements, 5
app projects inspired by engineering, 

437
installing AI Setup, 29-33

Sorting
numbers, 231
text, 235-236

Sound
adding to user interface, 95-97
Component Reference, 142-143
sound effects and vibration with, 

192-195
specifications, 46-47

SoundRecorder, 203-210
Sounds

correct reproduction in app, 116
musical shaker, 389-397
troubleshooting, 106-107

Source, 199-200
Specific block objects, 59
Specifications

AccelerometerSensor, 389
AI References. See AI References
Ball, 346
Camera, 184
Canvas, 331
Clock, 359
Component Reference, 46-47
ImagePicker, 189
LocationSensor, 408
OrientationSensor, 378
Player, 195
Screen, 172
Sound, 193
SoundRecorder, 204
TinyDB, 307
TinyWebDB, 315



568 Status information

multiple screens, 215-216
Switchboard

driver assistance system functions, 436
with multiple screens, 437-440
saving speed dial list and returning to, 

447-448
SWITCHBvArr

creating switchboard with multiple 
screens, 439

preparing to test driver assistance 
system functions, 508

Synergy, 178-179
Syntax

defined, 56
syntactic vs. semantic errors, 273-274

System parameters, 2
System requirements

Android platform, 19-23
computer platform, 17-19
Java configuration, 23-27

System time, 360
Système International d’unités (SI), 387
TableArrangement, 168-169
Tables, 516-518
Tablet PCs

AI system requirements, 20
Android apps on, xviii

Tags
defined, 307
naming, 411

TakePicture, 183-185
Target distance, 422-432
Telemetry, 433
Telescope icon, 212
Television, xv
Terminology

events and event handlers, 135-137
mathematics, 279
methods and method blocks, 137-138
properties and property blocks, 133-135

Test server
defined, 314
saving geodata online, 416

Testing
apps using emulator, 69-72
functionality, 106-107
Java, 23-24, 27

Status information
in Java Console when loading AI 

Blocks Editor, 533
using in Java Console, 533-535

Status of provider, 426-427
“Stay awake”, 34-36
Step interval, 350
Step size, 350
Stock market ticker

creating Ticker module, 491-492
overview, 487-488
update methods for, 492-493
using Web APIs with Web component, 

489-491
using Yahoo API to implement, 492-496

Stop(), 198
StoppedRecording, 203-204
Stopping apps, 67-68
Storage and databases

deleting app data from Android, 313
loading local data from dictionary, 

311-313
media file, 176-177
overview, 305-306
saving data locally with TinyDB, 

306-307
saving data on Web with TinyWebDB, 

313-316
saving geodata online, 415-416
saving values of variables as persistent 

data, 307-311
shared databases for master and client 

apps, 323-326
storing dictionary in cloud, 316-323

StoreValue, 307
Strings

data types, 225
editing with Text block group, 

234-241
Structures

control, 227
data, 225-226
defining container, 241-247
implementing functional block, 101-103
multiple screens, 215-220

Subscreens
media center, 212



569Transparency

overview of, 487-488
triggering updates, 492-493

Ticker module, 491-492
Time. See Clock
Time display on switchboard, 440
Timer

in Clock component, 358-360
ending in WebViewer, 505-506

Timer events
alarm clock with, 369-373
Balance game, 400, 402-403
GeoTracker app, 414-416

TinyDB
deleting app data from Android, 313
loading local data from dictionary, 

311-313
saving data locally with, 306-307
saving values of variables as persistent 

data, 307-311
TinyWebDB

saving data on Web with, 313-316
saving geodata online, 416
shared databases for master and client 

apps, 323-326
storing dictionary in cloud, 316-323

Tips and tools
control with Java Console. See Java 

Console
news from “Android Developers” 

developer forum, 529
setting up Speech module. See Speech 

module
supported audio formats, 527-528
supported image formats, 528
supported video formats, 529

Title, 50
Top-down approach, 434
Touched

colored dots painting, 332-337
defined, 331-332

Track angle
compass, 379
GeoCacher, 422-423, 428-430

Track log, 409-421
Tracking route profile, 409-421
Traditional caches, 421
Transparency, 228

Java Web Start, 25-27
program development tips, 274-277

Text
adding to button, 151-152
adding to CheckBox, 154-158
adding to dictaphone, 206
aligning, 94
Camera properties, 184
dictating in SMS with 

SpeechRecognizer, 456-458
display with Label, 147-150
entering confidential with Textbox, 

161-164
entering desired contact name for 

e-mail, 478-479
outputting in SMS as speech with 

TextToSpeech, 454-456
setting button, 91
setting label, 88-89

Text block group
data types, 225
editing text and strings with, 234-241

TextBox, 158-161
Texting, 458-462
Text-to-speech

in Android platform, 22
installing in Speech module, 535-536

TextToSpeech
letting Android read your SMS aloud 

with, 454-456
troubleshooting speech output, 538-540

Texturing, 94
Ticker

creating Ticker module, 491-492
implementing stock and news, 488-489
integrating information using mashup, 

488
integrating websites in app for news, 

502-510
update methods for, 492-493
using Web APIs with Web component, 

489-491
using Yahoo to implement stock 

market, 493-496
Ticker button

implementing ticker for driver 
assistance system, 491-492



570 Trim

Uploading
audio files, 96-97
data online, 316-323
media files, 91-93
projects in AI, 104-105

URI (Uniform Resource Identifier)
encoding special characters in, 475
functionality of, 465
navigation query to Google Maps via, 

472-473
search queries to web services via, 465
sending e-mails with Android Mailer, 

486-487
URLs

content, 176
encoding special characters in, 475
file, 177
news ticker with data by Feedzilla 

API, 497-499
procedure for data request to Yahoo 

API, 494-495
Web, 177

U.S. Department of Defense, 403
USB

connecting to smartphone in Blocks 
Editor, 63-64

debugging, 34-35
downloading APK files, 123-124
restarting in case of “freezes”, 67
stopping applications, 67-68
troubleshooting sound, 107

USB drivers
AI Setup Software installation, 32-33
troubleshooting connection, 75

User interface design
assigning component names, 88
calculator project, 279-281
Camera, 185
data exchange via. See data exchange
driver assistance system functions/

requirements, 435-436
expanding interactive component 

button, 89-91
graphical user interface. See GUI 

(graphical user interface)
inserting label, 85-87
optimizing app design, 93-95

Trim, 237
Troubleshooting

AI forums, 77-79
AI installation, 32-33
app images, 95
first app, 106-107
speech output, 538-540
start-up problems, 72-77

True values
in CheckBox, 153-158
defined, 153, 232-233

TTS Extended Service, 539-540
TTS module

downloading speech module if 
lacking, 535-536

troubleshooting speech output, 538-540
Tutorials, online resources, 543
Tweeting, 513-515
Twitter, 513-515
Two-dimensional (2D) animations. See 2D 

(two-dimensional) animations
Typeblocking, 277
UfoSprite

external control of animations, 363
keyframe animations with finger, 

366-369
UMTS (Universal Mobile Telecommunications 

System), 117
Undo function

in Blocks Editor, 62
in Canvas, 342-344

Uniform Resource Identifier (URI). See URI 
(Uniform Resource Identifier)

Uninstalling apps, 115
Universal Mobile Telecommunications 

System (UMTS), 117
Universal Time Code (UTC), 360
University of Muenster, 229
Unknown sources

allowing, 121
enabling, 36

Upcase, 237
Updates

Android operating systems, 22-23
Blocks Editor start-up problems, 73
triggering for news ticker, 496-497
triggering for stock ticker, 492-493



571Web Start Launcher

screen arrangement, 168-170
setting component properties, 88-89

Virtual ballots, 516
Virtual reality (VR)

Kloss and, xxiii
vs. mobile augmented reality, 375

Visible
defined, 199-202
functionality for multiple screens, 218

Visual development language
AI as, 13
block functions, 100-101
commands, blocks and syntax, 56
IDE and, 39
terminology. See terminology

Visual feedback, 192
Vocabulary. See terminology
Vocabulary trainer project, 292-303. See 

also storage and databases
Voice recognition, 456-458
Volatile memory, 305
Voting, 515-516
VR (virtual reality)

Kloss and, xxiii
vs. mobile augmented reality, 375

Watch, 276, 402
Web. See Internet
Web API

mashup and, 488
new ticker with data by Feedzilla, 

496-502
stock market ticker with data from 

Yahoo, 492-496
using with Web component, 489-492

Web services
data tables with FusiontablesControl, 

516-518
mobile mashups with. See mobile 

mashups with web services
online elections with Voting, 515-516
reading barcodes with 

BarcodeScanner, 515
search queries via URI to, 465-466
tweeting with Twitter, 513-515

Web Start Launcher
defined, 25
if Blocks Editor won’t start, 72-74

overview, 84
pedestrian navigation with Google 

Maps, 467-468
setting properties, 88-89
sound component, 95-97
uploading and integrating media files, 

91-93
UTC (Universal Time Code), 360
Value property, 153-158
Values

accelerometer, 388
Boolean. See Boolean values
color, 227-229
geocoordinates, 405-409
RPY, 376-378
saving of variables as persistent data, 

307-311
Variables

debugging, 276
defined, 242-243
drawing lines, 338-339
image, 186-187
saving values of as persistent data, 

307-311
Versions

Android features, 21
Java, 23

VerticalArrangement, 168
VerticalArrangement

adding additional components to 
WebViewer, 504

EMAILvArr, 482
PHONEvArr object, 441-442
SMSvArr object, 450-452
SWITCHBvArr object, 438-439

Vibrate, 192-195
Vibration

in Balance game, 403
with Sound, 192-195

Video formats, 529
Video player

in media center project, 213
playing movies with VideoPlayer, 199-203

Viewer
designing apps with component  

objects in, 47-49
non-visible components and, 95



572 Web URLs

interface design for Navi Setup, 
468-469

starting car navigation with Google 
Navigation, 473-475

starting navigation from driver 
assistance system via, 477

user interface design for, 436
Workaround for connection problems, 75
Working memory, 305
XAccel

Balance game, 402
defined, 388
using phone as musical shaker, 

392-393
YAccel

Balance game, 402
defined, 388
using phone as musical shaker, 

392-393
Yahoo

implementing stock market ticker 
using, 493-494

procedure for data request to Yahoo, 
494-495

receiving and processing stock data 
from, 495-496

Yaw, 376-378
ZAccel

Balance game, 402
defined, 388
using phone as musical shaker, 

392-393
.Zip, 105
Zoom slider, 59-60

Web URLs, 177
Webcams

integrating images, 180-182
in media center project, 212-214

Websites
integrating in app with WebViewer, 

502-510
resources, 541-544

WebViewer
adding additional components to, 

503-504
calling news websites and surfing via, 

505
loading saved data when launching 

system, 506-507
for news ticker, 503
overview, 502
setting all multiple screens to non-

visible, 508
specification of, 503

WebViewerArr
adding additional components to 

WebViewer, 504
calling news websites and surfing via, 

505
While loops, 260-266
Wikipedia, 404, 405, 407
Windows

AI requirements, 17
installing AI Setup Software, 30-33

Windows Device Manager, 32-33
WoodCanvas, 399-403
Work area, 43
Work function key

Android App
Development
Fundamentals I and II
LiveLessons
Downloadable Video
Paul J. Deitel
ISBN-13: 978-0-13-216062-9

For more information and to
read sample material, please
visit informit.com.

Titles are also available at
safari.informit.com.

The Android
Developer’s Cookbook
James Steele 
and Nelson To
ISBN-13: 978-0-321-74123-3

Sams Teach Yourself
AndroidTM Application
Development in 24
Hours, Second Edition
Lauren Darcey 
and Shane Conder
ISBN-13: 978-0-672-33569-3

AndroidTM Wireless
Application
Development: 
Volume I, Third Edition
Lauren Darcey 
and Shane Conder
ISBN-13: 978-0-321-81383-1

AndroidTM for
Programmers
Paul Deitel,
Harvey Deitel,
Abby Deitel,
and Michael Morgano
ISBN-13: 978-0-13-212136-1

Essential Resources for Android Developers

Learning Android
Game Programming
Rick Rogers
ISBN-13: 978-0-321-76962-6

Android Apps 
with App Inventor
Jörg H. Kloss
ISBN-13: 978-0-321-81270-4

Titles are available in print and eBook formats.

9780321812704_Kloss_BoBad.qxd  1/4/12  2:36 PM  Page 1


	Contents
	Preface
	Preface
	Acknowledgments
	About the Author
	Introduction
	Structure and Overview
	Part I: Preparing Your First App
	Part II: Easy Projects as a Warm-Up
	Part III: On the Way to Becoming an App Developer
	Part IV: Developing Attractive Apps
	Part V: Useful Things for the Developer

	Requirements
	History
	App Inventor at Google
	Open Source and App Inventor at MIT


	3 Developing Your First App
	Creating the Project “LaughBag”
	Designing the User Interface
	Developing App Functionality
	Creating and Installing the App

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




