
Larry Ullman

Modern
JavaScript

Develop and DeSign

Designer-Developers are hot commodities today.
But how do you build your development chops fast enough to join their ranks?

With Peachpit’s Develop and Design series for visual learners.

US $54.99 Canada $57.99PeachPit Press
www.peaChpit.Com

 facebook.com/peachpitCreativeLearning

 @peachpit

Modern JavaScript
Develop and DeSign

“A breath of fresh air in the over-complicated
world of JavaScript books. This is one I’ll keep
close by!”

Jay Blanchard
Web developer and consultant and author of
Applied jQuery: Develop and Design

this book includes:

 J easy step-by-step instruction, ample
illustrations, and clear examples

 J Real-world techniques to build your
skills

 J insight into best practices from a
veteran web expert

 J emphasis on strategies for creating
reliable code that will work on all of
today’s browsers and devices, even
those without JavaScript

it’s time for a current, definitive JavascriPt book,
and in this comprehensive beginner’s guide, bestselling author
Larry Ullman teaches the language as it is implemented today.
Larry demonstrates how to build upon JavaScript’s ease of use,
while demystifying its often-cryptic syntax, especially for those
who have not programmed before. this book enforces modern
JavaScript’s best practices and embraces key web development
approaches such as progressive enhancement and unobtrusive
scripting. the author demonstrates loads of real-world code
and makes it freely available for download.

You’ll learn about JavaScript itself and the relationship between
JavaScript and htmL. next you’ll explore variables, common
operators, and control structures. then you’ll create functions,
handle events, and do more with htmL forms. You’ll master
ajax, work with frameworks, and use JavaScript with php to
create a complete example. the result is a book that helps you
not just tinker with JavaScript but to thoroughly comprehend it.

US $54.99 Canada $57.99

comPanion web site:
http://larryullman.com/

book level BeginneR to inteRmediate
comPuter book shelf category weB deveLopment
covers JavaSCRipt
cover design aRen howeLL StRaigeR

larry ullman is a writer, Web and software developer, trainer, instructor,
speaker, and consultant. He has written 22 books and dozens of articles. As his
readers can attest, Larry’s strength is in translating geek into English: converting
the technical and arcane into something comprehensible and useful.

D
evelo

p a
n
d

 D
eSig

n

tempoRaRY Spine width: 0.000”

u
llm

an
M

odern JavaScript
ISBN-13:
ISBN-10:

978-0-321-81252-0
0-321-81252-2

9 7 8 0 3 2 1 8 1 2 5 2 0

5 5 4 9 9

Larry Ullman

Modern

JavaScript
Develop and DeSign

Modern JavaScript: Develop and Design
Larry Ullman

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com
To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.
Copyright © 2012 by Larry Ullman

Acquisitions Editor: Rebecca Gulick
Copy Editor: Patricia Pane
Technical Reviewer: Jacob Seidelin
Compositor: Danielle Foster
Production Editor: Katerina Malone
Proofreader: Liz Welch
Indexer: Valerie Haynes-Perry
Cover Design: Peachpit Press

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,
the designations appear as requested by the owner of the trademark. All other product names and services
identified throughout this book are used in editorial fashion only and for the benefit of such companies with
no intention of infringement of the trademark. No such use, or the use of any trade name, is intended to
convey endorsement or other affiliation with this book.

13-digit ISBN: 978-0-321-81252-0
10-digit ISBN: 0-321-81252-2

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com

This book is dedicated to Doug and Christina,
and to their family and friends,

for the extraordinary, life-changing gift.

iv Modern JavaScript: develop and deSign

Rebecca, Nancy, and Nancy, for working very hard to make this project happen
and for their supreme flexibility. And, of course, for continuing to work with me
time and again.

Patricia, for her diligent editing and attention to detail.
Jacob, for providing a top-notch technical review, and for not being afraid to

say “Not what I would do….”
Danielle, for magically converting a handful of random materials into something

that looks remarkably like an actual book.
Liz, for the sharp proofreading eye. Never too late to catch a mistake!
The indexer, Valerie, who makes it easy for readers to find what they need

without wading through all of my exposition.
Mimi, for the snazzy interior and cover design work. I love the tool motif!
All the readers over the years who requested that I write this book and provided

detailed thoughts as to what they would and would not want this book to be. I hope
it’s what you were looking for!

Jonas Jacek (http://jonas.me/) for permission to use his HTML5 template.
Sara, for entertaining the kids so that I can get some work done, even if I’d

rather not.
Sam and Zoe, for being the kid epitome of awesomeness.
Jessica, for doing everything you do and everything you can.

So many, many thankS to…

http://jonas.me/

contentS v

Introduction . x

Welcome to JavaScript .xii

Part 1 GeTTiNG STaRTeD

Chapter 1 (Re-)iNTRoDUciNG JavaScRipT . 2
What Is JavaScript? . 4

JavaScript’s History . 6

JavaScript Isn’t... 17

How JavaScript Compares to.... 18

Why JavaScript Is a Good Thing. 21

JavaScript Versions and Browser Support .22

JavaScript Programming Goals .24

Wrapping Up .25

Chapter 2 JavaScRipT iN acTioN .26
Choosing a Doctype .28

An HTML5 Primer . 31

Adding JavaScript to HTML . 37

Key Development Approaches .39

Cobbling Together Some Code .44

Steal this JavaScript. .55

Wrapping Up .56

Chapter 3 TooLS of The TRaDe .58
The Great Debate:
Text Editor or IDE? . 60

The Browser:
Your Friend, Your Enemy .69

Testing on Multiple Browsers . 75

Testing JavaScript. 77

Errors and Debugging . 80

Online Resources . 90

Wrapping Up . 91

ContentS

vi Modern JavaScript: develop and deSign

Part 2 JavaScRipT fUNDaMeNTaLS

Chapter 4 SiMpLe vaRiabLe TypeS .92
Basics of Variables .94

Working with Numbers . 100

Working with Strings . 112

Performing Type Conversions. .122

Review and Pursue .125

Wrapping Up . 127

Chapter 5 USiNG coNTRoL STRUcTUReS . 128
Basics of Conditionals .130

More Conditionals. 140

More Complex Conditions . 153

Basics of Loops . 161

Review and Pursue .168

Wrapping Up .169

Chapter 6 coMpLex vaRiabLe TypeS . 170
Generating Dates and Times .172

Working with Arrays . 190

Working with Objects . 207

Arrays Versus Objects .216

Review and Pursue . 217

Wrapping Up .219

Chapter 7 cReaTiNG fUNcTioNS . 220
The Fundamentals. 222

Functions as Objects . 244

The Fancier Stuff . 254

Review and Pursue .263

Wrapping Up . 265

Chapter 8 eveNT haNDLiNG . 266
The Premise of Event Handling . 268

Creating Event Listeners. 268

Creating a Utility Library .275

contentS vii

Event Types. .278

Event Accessibility. .287

Events and Progressive Enhancement . 288

Advanced Event Handling. 290

Review and Pursue . 305

Wrapping Up . 307

Chapter 9 JavaScRipT aND The bRowSeR . 308
Using Dialog Windows .310

Working with the Window . 313

Manipulating the DOM .335

JavaScript and CSS. 349

Working with Cookies .358

Using Timers . 369

Review and Pursue .372

Wrapping Up .375

Chapter 10 woRkiNG wiTh foRMS .376
General Form Considerations .378

Text Inputs and Textareas .387

Select Menus . 389

Checkboxes . 396

Radio Buttons. 400

Handling File Uploads. 401

Regular Expressions . 403

Putting It All Together. .415

Review and Pursue .421

Wrapping Up . 423

Chapter 11 aJax . 424
Ajax Basics . 426

Working with Other Data. 442

The Server-Side Script . 447

Ajax Examples .451

Review and Pursue . 469

Wrapping Up .471

viii Modern JavaScript: develop and deSign

Part 3 NexT STepS

Chapter 12 eRRoR MaNaGeMeNT .472
Catching and Throwing Errors .474

Using Assertions. 479

Unit Testing. .481

Review and Pursue . 488

Wrapping Up . 489

Chapter 13 fRaMewoRkS . 490
Choosing a Framework . 492

Introducing jQuery . 494

Introducing YUI . 509

Libraries . 522

Review and Pursue .523

Wrapping Up . 525

Chapter 14 aDvaNceD JavaScRipT .526
Defining Namespaces. 528

Creating Custom Objects . 529

Understanding Prototypes .537

Working with Closures .541

Alternative Type Identification .547

Minifying Code . 548

Review and Pursue . 550

Wrapping Up .551

contentS ix

Chapter 15 php aND JavaScRipT ToGeTheR . 552
Identifying the Goal . 554

Creating the Database . 556

Establishing the Site. 558

Coding the Non-JavaScript Version . 559

Creating the Ajax Resources. 569

Adding the JavaScript. .572

Completing this Example. 592

Review and Pursue .593

Wrapping Up . 594

Index. 595

x Modern JavaScript: develop and deSign

JavaScript is one of the most widely used programming languages today, found on
almost every Web page (certainly all the new ones). Over the past ten years, between
economic changes and expansions in how JavaScript is used, more and more Web
developers and designers are expected to know this language. These facts make it
all the more ironic that so few people respect JavaScript as the true programming
language that it is. Furthermore, many books still present JavaScript in a legacy
manner, as a technology to be used piecemeal to implement gimmicks and distrac-
tions. This book was written to address these problems, presenting JavaScript in a
way that you can easily understand, actually master, and appropriately utilize as
a productive asset in today’s dynamic Web sites.

Who this Book is For

This book was written primarily with two types of readers in mind:

 J Those who don’t know JavaScript at all (and perhaps have never done any
programming)

 J Those who may have played with JavaScript some, but don’t have a solid
understanding of why one does what one does in the language.

You may be a Web developer who has written code in other languages but
merely dabbled with JavaScript. Or, you may be a Web designer, with a graphical
focus but an increasing need to learn JavaScript. Whatever the case, if you have a
sincere interest in understanding modern JavaScript and knowing how to use it,
well, then this book is for you.

What You Will learn

By reading this book, and trying the many examples, you will come to comprehend
what JavaScript is and how to reliably program with it, regardless of the task. The
book’s content is organized in three sections.

part 1: getting Started
The first part of the book starts with JavaScript’s history and its role in today’s
Web. You’ll also learn the fundamental terms and concepts, particularly when
it comes to using JavaScript with HTML in a Web page. The last chapter in Part
1 thoroughly covers the types of tools you’ll need to develop, design, debug, and
test JavaScript code.

IntroduCtIon

introduction xi

part 2: JavaScript FundaMentalS
The bulk of the book is in this second part, which teaches the core components
of the language. These fundamentals include the kinds of data you’ll work with,
operators and control structures, defining your own functions, handling events,
and Ajax. Two chapters focus on the browser and HTML forms.

part 3: neXt StepS
All books have their limits, and this book purposefully stops short of trying to cover
everything, or attempting to turn you into a true JavaScript “ninja.” But in the third
part of the book, you will be introduced to what your next logical steps should be
in your development as a JavaScript programmer. One chapter is on frameworks,
another is on advanced JavaScript concepts, and a third walks through a real-world
integration of JavaScript and PHP for a practical Web application.

the CorresPonding WeB site

My Web site can be found at www.LarryUllman.com. To find the materials specific to
this book, click on Books By Topic at the top of the page, and then select JavaScript >
Modern JavaScript: Develop and Design. On the first page that comes up you will
find all of the code used in the book. There are also links to errata (errors found)
and more information that pertains directly to this book.

The whole site is actually a WordPress blog and you’ll find lots of other use-
ful information there, in various categories. The unique tag for this book is jsdd,
meaning that www.larryullman.com/tag/jsdd/ will list everything on the site that
might be useful and significant to you. While you’re at the site, I recommend that
you also sign up for my free newsletter, through which I share useful resources,
answer questions, and occasionally give away free books.

The book has a corresponding support forum at www.LarryUllman.com/forums/.
You are encouraged to ask questions there when you need help. You can also follow
up on the “Review and Pursue” sections through the forums.

let’s get started

With a quick introduction behind you (and kudos for giving it a read), let’s get
on with the show. In very first chapter, you’ll learn quite a bit about JavaScript as
a language and the changing role it has had in the history of Web development.
There’s no programming to be done there, but you’ll get a sense of both the big
picture and the current landscape, which are important in going forward.

www.LarryUllman.com
www.larryullman.com/tag/jsdd/
www.LarryUllman.com/forums/

xii Modern JavaScript: develop and deSign

WelCome to JavaSCrIpt

A great thing about programming with JavaScript is that most, if not all, of the tools you’ll

need are completely free. That’s particularly reassuring, as you’ll want a lot of the follow-

ing items in order to develop using JavaScript in a productive and reliable way. Chapter 3,

Tools of the Trade, goes into the following categories in much more detail.

BrowSerS

Presumably, you already
have at least one Web
browser, but you’ll want
several. All the key mod-
ern browsers are free and
should be used: Chrome,
Firefox, Safari, Opera, and
even Internet Explorer.

teXt editor

To write JavaScript code,
you can use almost any
text editor, although
some are clearly better
than others. The quick
recommendations are
Notepad++ on Windows
and BBEdit or TextMate on
Mac OS X.

welcoMe to JavaScript 1

ide

If you prefer an all-in-one
tool to a text editor, select
an Integrated Develop-
ment Environment (IDE).
The free Aptana Studio
is wonderful and runs
on most platforms; fine
commercial alternatives
exist, too.

deBugger

Debugging is a big facet
of all programming, and
better debugging tools
means less stress and
a faster development
time. Firebug is the clear
champion here, although
many browsers now have
sufficiently good debug-
ging tools built in.

weB Server

Examples in two chapters
require a PHP-enabled
Web server, plus a MySQL
database. If you don’t
have a live Web site with
these already, you can
download and install the
free XAMPP for Windows
or MAMP for Mac OS X.

4

siMPle varIaBle
typeS

93

All programming comes down to taking some action

with some data. In this chapter, the focus is on the data

side of the equation, represented by variables. Even if you’ve

never done any programming, you’re probably familiar with the

concept of a variable: a temporary storage container. This chapter

starts with the basics of variables in JavaScript, and then covers

number, string, and Boolean variables. Along the way you’ll find

plenty of real-world code, representing some of the actions you

will take with these simple variable types.

I think it’s easiest to grasp variables by starting with so-called “simple” variables,
also called “primitive” variable types. By simple, I mean variables that only store a
single piece of information at a time. For example, a numeric variable stores just a
single number; a string, just a sequence of zero or more quoted characters. Simple
variables will be the focus in this chapter, with more advanced alternatives—such
as arrays and objects—coming in Chapter 6, Complex Variable Types.

To be completely accurate, it’s the values in JavaScript that are typed, not the
variables. Further, many values in JavaScript can be represented as either a literal
or an object. But I don’t want to overwhelm you with technical details already,
especially if they won’t impact your actual programming. Instead, let’s focus on
this line of code:

var myVar = ‘easy peasy’;

That’s a standard and fundamental line of JavaScript programming, declaring
a variable named myVar, and assigning to it the string easy peasy. The next few
pages will look at the four components of this one line in detail:

 J var, used to declare a variable

 J the variable’s name

 J =, the assignment operator

 J the variable’s value

deClaring variaBles

To declare a variable is to formally announce its existence. In many languages,
such as C and ActionScript, you must declare a variable prior to referencing it.
JavaScript does not require you to declare variables, you can just immediately
begin referencing them, as in:

quantity = 14;

TIP: remember that you can practice much of the Javascript in
this chapter using your browser’s console window.

BaSICS oF varIaBleS

94 ChaPter 4 SiMple variaBle typeS

(The semicolon is used to terminate a statement. It’s not required, but you
should always use it.)

Now, to clarify, you don’t have to declare variables in JavaScript, but you actu-
ally should. To do that, use the var keyword:

var fullName;

or

var fullName = ‘Larry Ullman’;

The distinction between using var and not using var has to do with the vari-
able’s scope, a topic that will mean more once you begin defining your own func-
tions (see Chapter 7, Creating Functions). Undeclared variables—those referenced
for the first time without using var—will have global scope by default, and global
variables are frowned upon (see the sidebar for more).

Also understand that whether or not you assign a value to the variable when it’s
declared has no impact on its scope. Both lines above used to declare the fullName
variable result in a variable with the same scope.

As discussed in Chapter 1, (Re-)Introducing JavaScript, JavaScript is a weakly
typed language, meaning that variables are not strictly confined to one type or
another. Neither of the above uses of fullName decree that the variable is a string.
With either of those lines of code, this next line will not cause a syntax error:

fullName = 2;

That line would most likely cause a logical or run-time error, as other code
would expect that fullName is a string, but the larger point is that a JavaScript
variable isn’t typed but has a type based upon its value. If fullName stores a quoted
sequence of zero or more characters, then fullName is said to be a string; if fullName
stores 2, then it’s said to be a number.

Note that each variable is only declared once, but you can use var to declare
multiple variables at the same time:

var firstName, lastName;

You can even declare multiple variables at the same time while simultaneously
assigning values:

var firstName = ‘Larry’, lastName = ‘Ullman’;

BaSicS oF variaBleS 95

gloBal varIaBleS

All variables have a scope, which is the realm in which they exist. As you’ll see
in Chapter 7, variables declared within a function have function-level scope:
They only exist within that function. Other languages, but not JavaScript (cur-
rently), have block-level scope, where a variable can be declared and only exist
between a pair of curly braces. Variables declared outside of any function, or
referenced without any use of var, have global scope. There are a few reasons
to avoid using global variables.

First, as a general rule of programming, applications should only do the bare
minimum of what’s required. If a variable does not absolutely need to be
global, it shouldn’t be. Second, global variables can have an adverse effect
on performance, because the application will have to constantly maintain
that variable’s existence, even when the variable is not being used. By com-
parison, function variables will only exist during that function’s execution
(i.e., when the function is called). Third, global variables can cause run-time
and logical errors should they conflict with other global variables. This can
happen if your code has a variable with the same name as a poorly designed
library you might also be including in the same page.

All this being said, understand that for the next few chapters, you will
occasionally be using global variables in your code. This is because variables
declared outside of any function, even when using the var keyword, will
also have global scope, and you won’t have user-defined functions yet. Still,
while it’s best not to use global variables, using them is not a terrible, hor-
rible thing, and it’s much better to knowingly create a global variable than to
accidentally do so.

You’ll rarely see this done in the book, as I will want to better focus on each vari-
able declaration, but lines like that one are common in real-world JavaScript code.

As a final note on the var keyword, you should always declare your variables as
soon as possible in your code, within the scope in which they are needed. Variables
declared outside of any functions should be declared at the top of the code; variables
declared within a function definition should be declared as the first thing within
that function’s code. The technical reason for this is because of something called

“hoisting,” but declaring variables as soon as possible is also standard practice in
languages without hoisting issues.

96 ChaPter 4 SiMple variaBle typeS

variaBle naMes

In order to create a variable, you must give it a name, also called an identifier. The
rules for names in JavaScript are:

 J The name must start with a letter, the underscore, or a dollar sign.

 J The rest of the name can contain any combination of letters, underscores,
and numbers (along with some other, less common characters).

 J You cannot use spaces, punctuation, or any other characters.

 J You cannot use a reserved JavaScript word.

 J Names are case-sensitive.

This last rule is an important one, and can be a frequent cause of problems.
The best way to minimize problems is to use a consistent naming scheme. With
an object-oriented language like JavaScript, it’s conventional to use “camel-case”
syntax, where words within a name are broken up by a capital letter:

 J fullName

 J streetAddress

 J monthlyPayment

In procedural programming languages, the underscore is often used to break
up words. In procedural PHP, for example, I would write $full_name and $street_
address. In JavaScript, camel-case is conventional, but the most important criterion
is that you choose a style and stick with it.

As a final note, you should not use an existing variable’s name for your variable.
For example, when JavaScript runs in the browser, the browser will provide some
variables, such as document and window. Both of these are quite important, and you
wouldn’t want to override them by creating your own variables with those names.
You don’t need to memorize a list of browser-provided variables, however; just
try to be unique and descriptive with your variable names (e.g., theDocument and
theWindow would work fine).

BaSicS oF variaBleS 97

assigning values

As you probably already know or guessed from what you’ve seen in this book or
online, a single equals sign is the assignment operator, used to assign a value on
the right to the variable on the left. Here is the declaration of, and assignment to,
a numeric variable:

var rate;

rate = 5.25;

This can be condensed into a single line:

var rate = 5.25;

That one line not only declares a variable, but initializes it: provides an initial
value. You do not have to initialize variables when you declare them, but sometimes
it will make sense to.

siMPle value tYPes

JavaScript recognizes several “simple” types of values that can be assigned to vari-
ables, starting with numbers, strings, and Booleans. A number is exactly what you’d
expect: any quantity of digits with or without a single decimal point. Numeric
values are never quoted and may contain digits, a single decimal point, a plus or
minus, and possibly the letter “e” (for exponential notation). Numeric values do
not contain commas, as would be used to indicate thousands.

A string is any sequence of zero or more quoted characters. You can use single
or double quotation marks, but you must use the same type to end the string as
you used to begin it:

 J 'This is a string.'

 J "This is also a string."

If you need to include a single or double quotation mark within the string, you
can either use the other mark type to delineate the string or escape the potentially
problematic character by prefacing it with a backslash:

 J "I've got an idea."

 J 'Chapter 4, "Simple Variable Types"'

98 ChaPter 4 SiMple variaBle typeS

 J 'I\'ve got an idea.'

 J "Chapter 4, \"Simple Variable Types\""

What will not work is:

 J 'I've got an idea.'

 J "Chapter 4, "Simple Variable Types""

Note that a string does not need to have any characters in it: Both '' and "" are
valid strings, called empty strings.

JavaScript also has Boolean values: true and false. As JavaScript is a case-
sensitive language, you must use true and false, not True or TRUE or False or FALSE.

Two more simple, yet special, values are null and undefined. Again, these are
case-sensitive words. The difference between them is subtle. null is a defined
non-value and is best used to represent the consequence of an action that has no
result. For example, the result of a working Ajax call could be null, which is to say
that no data was returned.

Conversely, undefined is no set value, which is normally the result of inaction.
For example, when a variable is declared without being assigned a value, its value
will be undefined (Figure 4.1):

var unset; // Currently undefined.

Similarly, if a function does not actively return a value, then the returned value
is undefined (you’ll see this in Chapter 7).

Both null and undefined are not only different from each other, but different
from false, which is a known and established negative value. As you’ll see in
Chapter 5, Using Control Structures, when used as the basis of a condition, both
null and undefined are treated as FALSE, as are the number 0 and the empty string.
Still, there are differences among them.

TIP: as a reminder, the combination of two slashes together (//)
creates a comment in Javascript.

fiGURe 4 .1 Because this vari-
able has not yet been assigned
a value, its value is undefined.

BaSicS oF variaBleS 99

WorkInG With numBerS

Unlike a lot of languages, JavaScript only has a single number type, used to repre-
sent any numerical value, from integers to doubles (i.e., decimals or real numbers)
to exponent notation. You can rest assured in knowing that numbers in JavaScript
can safely represent values up to around 9 quadrillion!

Let’s look at everything you need to know about numbers in JavaScript, from
the arithmetic operators to formatting numbers, to using the Math object for more
sophisticated purposes.

arithMetiC oPerators

You’ve already been introduced to one operator: a single equals sign, which is the assign-
ment operator. JavaScript supports the standard arithmetic operators, too (Table 4.1).

TabLe 4 .1 Arithmetic Operators

sYMBol Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder

The modulus operator, in case you’re not familiar with it, returns the remainder
of a division. For example:

var remainder = 7 % 2; // 1;

One has to be careful when applying the modulus operator to negative numbers,
as the remainder itself will also be negative:

var remainder = -7 % 2; // -1

These arithmetic operators can be combined with the assignment operator to
both perform a calculation and assign the result in one step:

var cost = 50; // Dollars

cost *= 0.7373; // Converted to euros

100 ChaPter 4 SiMple variaBle typeS

You’ll frequently come across the increment and decrement operators: ++
and --. The increment operator adds one to the value of the variable; the decre-
ment operator subtracts one:

var num = 1;

num++; // 2

num--; // 1

These two operators can be used in both prefix and postfix manners (i.e., before
the variable or after it):

var num = 1;

num++; // num now equals 2.

++num; // num is now 3.

--num; // num is now 2.

A difference between the postfix and prefix versions is a matter of operator pre-
cedence. The rules of operator precedence dictate the order operations are executed
in a multi-operation line. For example, basic math teaches that multiplication and
division have a higher precedence than addition and subtraction. Thus:

var num = 3 * 2 + 1; // 7, not 9

Table 4.2 lists the order of precedence in JavaScript, from highest to lowest,
including some operators not yet introduced (I’ve also omitted a couple of opera-
tors that won’t be discussed in this book). There’s also an issue of associativity that
I’ve omitted, as that would be just one more thing you’d have to memorize. In fact,
instead of trying to memorize that table, I recommend you use parentheses to force,
or just clarify, precedence, without relying upon mastery of these rules. For example:

var num = (3 * 2) + 1; // Still 7.

That syntax, while two characters longer than the earlier version, has the same
net effect but is easier to read and undeniably clear in intent.

Some of the operators in Table 4.2 are unary, meaning they apply to only one
operand (such as ++ and --); others are binary, applying to two operands (such as
addition). In Chapter 5, you’ll learn how to use the one trinary operator, which
has three operands.

worKing with nuMBerS 101

TabLe 4 .2 Operator Precedence

PreCedenCe oPerator note

1 . [] member operators

1 new creates new objects

2 () function call

3 ++ -- increment and decrement

4 ! logical not

4 + - unary positive and negative

4 typeof void delete

5 * / % multiplication, division, and modulus

6 + - addition and subtraction

8 < <= > >= comparison

9 == != === !== equality

13 && logical and

14 || logical or

15 ?: conditional operator

16 = += -= *= /= %= <<=
>>= >>>= &= ^= |=

assignment operators

The last thing to know about performing arithmetic in JavaScript is if the result
of the arithmetic is invalid, JavaScript will return one of two special values:

 J NaN, short for Not a Number

 J Infinity

For example, you’ll get these results if you attempt to perform arithmetic using
strings or when you divide a number by zero, which surprisingly doesn’t create an
error (Figure 4.2). In Chapter 5, you’ll learn how to use the isNaN() and isFinite()
functions to verify that values are numbers safe to use as such.

fiGURe 4 .2 The result of
invalid mathematical opera-
tions will be the special values
NaN and Infinity.

102 ChaPter 4 SiMple variaBle typeS

Creating CalCulators

At this point in time, you have enough knowledge to begin using JavaScript to
perform real-world mathematical calculations, such as the kinds of things you’d
put on a Web site:

 J Mortgage and similar loan calculators

 J Temperature and other unit conversions

 J Interest or investment calculators

For this particular example, let’s create an e-commerce tool that will calculate
the total of an order, including tax, and minus any discount (Figure 4.3). The most
relevant HTML is:

<div><label for=”quantity”>Quantity</label><input type=”number”
p name=”quantity” id=”quantity” value=”1” min=”1” required></div>

<div><label for=”price”>Price Per Unit</label><input type=”text”
p name=”price” id=”price” value=”1.00” required></div>

<div><label for=”tax”>Tax Rate (%)</label><input type=”text”
p name=”tax” id=”tax” value=”0.0” required></div>

<div><label for=”discount”>Discount</label><input type=”text”
p name=”discount” id=”discount” value=”0.00” required></div>

<div><label for=”total”>Total</label><input type=”text” name=”total”
p id=”total” value=”0.00”></div>

<div><input type=”submit” value=”Calculate” id=”submit”></div>

That would go in a page named shopping.html, which includes the shopping.
js JavaScript file, to be written in subsequent steps. You’ll notice that the HTML
form makes use of the HTML5 number input type for the quantity, with a minimum
value. The other types are simply text, as the number type doesn’t deal well with
decimals. Each input is given a default value, and set as required. Remember that
as Chapter 2, JavaScript in Action, explains, browsers that don’t support HTML5
will treat unknown types as text elements and ignore the unknown properties. The
final text element will be updated with the results of the calculation.

fiGURe 4 .3 A simple calculator.

worKing with nuMBerS 103

To create a calculator:

1. Create a new JavaScript file in your text editor or IDE, to be named shopping.js.

2. Begin defining the calculate() function:

function calculate() {

 ‘use strict’;

This function will be called when the user clicks the submit button. It does
the actual work.

3. Declare a variable for storing the order total:

var total;

As mentioned previously, you should generally declare variables as soon
as you can, such as the first line of a function definition. Here, a variable
named total is declared but not initialized.

4. Get references to the form values:

var quantity = document.getElementById(‘quantity’).value;

var price = document.getElementById(‘price’).value;

var tax = document.getElementById(‘tax’).value;

var discount = document.getElementById(‘discount’).value;

In these four lines of code, the values of the various form elements are
assigned to local variables. Note that in the Chapter 2 example, variables
were assigned references to the form elements, and then the element val-
ues were later checked. Here, the value is directly assigned to the variable.

At this point in time, one would also perform validation of these values,
prior to doing any calculations. But as Chapter 5 more formally covers the
knowledge needed to perform validation, I’m skipping this otherwise needed
step in this example.

TIP: You can download all the book’s code at
www.LarryUllman.com.

104 ChaPter 4 SiMple variaBle typeS

www.LarryUllman.com

5. Calculate the initial total:

total = quantity * price;

The total variable is first assigned the value of the quantity times the price,
using the multiplication operator.

6. Factor in the tax rate:

tax /= 100;

tax++;

total *= tax;

There are a couple of ways one can calculate and add in the tax. The first,
shown here, is to change the tax rate from a percent (say 5.25%) to a decimal
(0.0525). Next, add one to the decimal (1.0525). Finally, multiply this number
times the total. You’ll see that the division-assignment, incrementation, and
multiplication-assignment operators are used here as shorthand. This code
could also be written more formally:

tax = tax/100;

tax = tax + 1;

total = total * tax;

You could also make use of precedence and parentheses to perform all these
calculations in one line.

An alternative way to calculate the tax would be to convert it to decimal,
multiply that value times the total, and then add that result to the total.

7. Factor in the discount:

total -= discount;

The discount is just being subtracted from the total.

8. Display the total in the form:

document.getElementById(‘total’).value = total;

worKing with nuMBerS 105

The value attribute can also be used to assign a value to a text form input.
Using this approach, you can easily reflect data back to the user. In later
chapters, you’ll learn how to display information on the HTML page using
DOM manipulation, rather than setting the values of form inputs.

9. Return false to prevent submission of the form:

return false;

The function must return a value of false to prevent the form from actu-
ally being submitted (to the page named by the form’s action attribute).

10. Complete the function:

} // End of calculate() function.

11. Define the init() function:

function init() {

 ‘use strict’;

 var theForm = document.getElementById(‘theForm’);

 theForm.onsubmit = calculate;

} // End of init() function.

The init() function will be called when the window triggers a load event
(see Step 12). The function needs to add an event listener to the form’s sub-
mission, so that when the form is submitted, the calculate() function will
be called. To do that, the function gets a reference to the form, by calling the
document object’s getElementById() method, providing it with the unique
ID value of the form. Then the variable’s onsubmit property is assigned the
value calculate, as explained in Chapter 2.

12. Add an event listener to the window’s load event:

window.onload = init;

This code was also explained in Chapter 2. It says that when the window
has loaded, the init() function should be called.

106 ChaPter 4 SiMple variaBle typeS

It’s a minor point, as you can organize your scripts in rather flexible ways,
but this line is last as it references the init() function, defined in Step 12,
so that definition should theoretically come before this line. That function
references calculate(), so the calculate() function’s definition is placed
before the init() function definition. You don’t have to organize your code
this way, but I prefer to.

13. Save the file as shopping.js, in a js directory next to shopping.html, and
test in your Web browser (Figure 4.4).

Play with the numbers, including invalid values (Figure 4.5), and retest the
calculator until you’re comfortable with how arithmetic works in JavaScript.

ForMatting nuMBers

Although the previous example is perfectly useful, and certainly a good start, there
are several ways in which it can be improved. For example, as written, no checks
are made to ensure that the user enters values in all the form elements, let alone
that those values are numeric (Figure 4.5) or, more precisely, positive numbers.
That knowledge will be taught in the next chapter, which discusses conditionals,
comparison operators, and so forth. Another problem, which can be addressed here,
is that you can’t expect someone to pay, say, 22.1336999 (Figure 4.4). To improve the
professionalism of the calculator, formatting the calculated total to two decimal
points would be best.

fiGURe 4 .4 The result of the total
order calculation.

fiGURe 4 .5 Performing arithmetic
with invalid values, such as a quantity
of cat, will result in a total of NaN.

worKing with nuMBerS 107

A number in JavaScript is not just a number, but is also an object of type Number.
As an object, a number has built-in methods, such as toFixed(). This method
returns a number with a set number of digits to the right of a decimal point:

var num = 4095.3892;

num.toFixed(3); // 4095.389

Note that this method only returns the formatted number; it does not change
the original value. To do that, you’d need to assign the result back to the variable,
thereby replacing its original value:

num = num.toFixed(3);

If you don’t provide an argument to the toFixed() method, it defaults to 0:

var num = 4095.3892;

num.toFixed(3); // 4095

The method can round up to 20 digits.
Similar to toFixed() is toPrecision(). It takes an argument dictating the total

number of significant digits, which may or may not include those after the decimal.
Let’s apply this information to the calculator in order to add some better for-

matting to the total.
To format a number:

1. Open shopping.js in your text editor or IDE, if it is not already.

2. After factoring in the discount, but before showing the total amount, format
the total to two decimals:

total = total.toFixed(2);

This one line will take care of formatting the decimal places. Remember
that the returned result must be assigned back to the variable in order for
it to be represented upon later uses.

Alternatively, you could just call total.toFixed(2) when assigning the
value to the total form element.

108 ChaPter 4 SiMple variaBle typeS

3. Save the file, reload the HTML page, and test it in your Web browser (Fig-
ure 4.6).

An even better way of formatting the number would be to add commands
indicating thousands, but that requires more logic than can be understood at this
point in the book.

the Math oBJeCt

You just saw that numbers in JavaScript can also be treated as objects of type Number,
with a couple of built-in methods that can be used to manipulate them. Another
way to manipulate numbers in JavaScript involves the Math object. Unlike Number,
you do not create a variable of type Math, but use the Math object directly. The Math
object is a global object in JavaScript, meaning it’s always available for you to use.

The Math object has several predefined constants, such as π, which is 3.14… and
E, which is 2.71… A constant, unlike a variable, has a fixed value. Conventionally,
constants are written in all uppercase letters, as shown. Referencing an object’s
constant uses the same dot syntax as you would to reference one of its methods:
Math.PI, Math.E, and so forth. Therefore, to calculate the area of a circle, you
could use (Figure 4.7):

var radius = 20;

var area = Math.PI * radius * radius;

fiGURe 4 .6 The same input
as in Figure 4.4 now generates
a more appropriate result.

fiGURe 4 .7 The area of a
circle, πr2, is calculated using
the Math.PI constant.

worKing with nuMBerS 109

The Math object also has several predefined methods, just a few of which are:

 J abs(), which returns the absolute value of a number

 J ceil(), which rounds up to the nearest integer

 J floor(), which rounds down to the nearest integer

 J max(), which returns the largest of zero or more numbers

 J min(), which returns the smallest of zero or more numbers

 J pow(), which returns one number to the power of another number

 J round(), which returns a number rounded to the nearest integer

 J random(), which returns a pseudo-random number between 0 (inclusive)
and 1 (exclusive)

There are also several trigonometric methods like sin() and cos().
Another way of writing the formula for determining the area of a circle is:

var radius = 20;

var area = Math.PI * Math.pow(radius, 2);

To apply this new information, let’s create a new calculator that calculates the
volume of a sphere, based upon a user-entered radius. That formula is:

volume = 4/3 * π * radius3

Besides using the π constant and the pow() method, this next bit of JavaScript
will also apply the abs() method to ensure that only a positive radius is used for
the calculation (Figure 4.8). The relevant HTML is:

<div><label for=”radius”>Radius</label><input type=”text”
p name=”radius” id=”radius” required></div>

<div><label for=”volume”>Volume</label><input type=”text”
p name=”volume” id=”volume”></div>

<div><input type=”submit” value=”Calculate” id=”submit”></div>

The HTML page includes the sphere.js JavaScript file, to be written in sub-
sequent steps.

fiGURe 4 .8 This calculator
determines and displays the
volume of a sphere given a
specific radius.

110 ChaPter 4 SiMple variaBle typeS

To calculate the volume of a sphere:

1. Create a new JavaScript file in your text editor or IDE, to be named sphere.js.

2. Begin defining the calculate() function:

function calculate() {

 ‘use strict’;

 var volume;

Within the function, a variable named volume is declared, but not initialized.

3. Get a reference to the form’s radius value:

var radius = document.getElementById(‘radius’).value;

Again, this code closely replicates that in shopping.js, although there’s
only one form value to retrieve.

4. Make sure that the radius is a positive number:

radius = Math.abs(radius);

Applying the abs() method of the Math object to a number guarantees a
positive number without having to use a conditional to test for that.

5. Calculate the volume:

volume = (4/3) * Math.PI * Math.pow(radius, 3);

The volume of a sphere is four-thirds times π times the radius to the third
power. This one line performs that entire calculation, using the Math object
twice. The division of four by three is wrapped in parentheses to clarify
the formula, although in this case the result would be the same without
the parentheses.

6. Format the volume to four decimals:

volume = volume.toFixed(4);

Remember that the toFixed() method is part of Number, which means it’s
called from the volume variable, not from the Math object.

worKing with nuMBerS 111

7. Display the volume:

document.getElementById(‘volume’).value = volume;

This code is the same as in the previous example, but obviously referencing
a different form element.

8. Return false to prevent the form’s submission, and complete the function:

 return false;

} // End of calculate() function.

9. Add an event listener to the form:

function init() {

 ‘use strict’;

 document.getElementById(‘calcForm’).onsubmit = calculate;

} // End of init() function.

window.onload = init;

This is the same code used in shopping.js. As in that example, when the
form is submitted, the calculate() function will be called.

10. Save the file as sphere.js, in a js directory next to sphere.html, and test
it in your Web browser.

WorkInG With StrInGS

Strings and numbers are two of the most common types used in JavaScript, and
both are easy to comprehend and use. You’ve seen the fundamentals when it comes
to numbers—and there’s not all that much to it, really, so now it’s time to look at
strings in more detail.

Creating strings

Informally, you’ve already witnessed how strings are created: just quote anything.
As with a number, once you have a string value, you also have predefined methods
that can be used to manipulate that value. Unlike numbers, though, strings have a

112 ChaPter 4 SiMple variaBle typeS

lot more methods, and even a property you’ll commonly use: length. The length
property stores the number of characters found in the string, including empty spaces:

var fullName = ‘Larry Ullman’;

fullName.length; // 12

If you’re following this book sequentially, you’ll have already seen this in Chapter 2:

var email = document.getElementById(‘email’);

if ((email.value.length > 0) { ...

What you’re actually seeing here is the beauty of object-oriented program-
ming: A string is a string, with all the functionality that comes with it, regardless
of how the string was created. The assignment to the email variable starts with the
document object, which is a representation of the page’s HTML. That object has a
getElementById() method, which returns an HTML element. The specific element
returned by that line is a text input, in other words, a text object. This is assigned
to email. That object has a value property for finding the text input’s value (or
for setting its value). Since the value returned by that property is a string, you can
then refer to its length property. Thanks to the ability to chain object notation,
this could be reduced to one line:

if ((document.getElementById(‘email’).value.length > 0) { ...

deConstruCting strings

Once you’ve created a string, you can deconstruct it—break it into pieces—in
a number of ways. As a string is just a sequence of length characters, you can
reference individual characters using the charAt() method. This method takes
an index as its first argument, an index being the position of the character in the
string. The trick to using indexes is that they begin at 0, not 1 (this is common to
indexes of all types across all programming languages). Thus, the first character
of string fullName can be retrieved using fullName.charAt(0). And a string’s last
character will be indexed at length - 1:

var fullName = ‘Larry Ullman’;

fullName.charAt(0); // L

fullName.charAt(11); // n

worKing with StringS 113

Sometimes you don’t want to know what character is at a specific location
in the string, but rather if a character is found in the string at all. For this need,
use the indexOf() method. This method returns the indexed position where the
character is first found:

var fullName = ‘Larry Ullman’;

fullName.indexOf(‘L’); // 0

fullName.indexOf(‘a’); // 1

fullName.indexOf(‘ ‘); // 5

The first argument can be more than a single character, letting you see if entire
words are found within the string. In that case, the method returns the indexed
position where the word begins in the string:

var language = ‘JavaScript’;

language.indexOf(‘Script’); // 4

The indexOf() method takes an optional second argument, which is a location
to begin searching in the string. By default, this is 0:

var language = ‘JavaScript’;

language.indexOf(‘a’); // 1

language.indexOf(‘a’, 2); // 3

However you use indexOf(), if the character or characters—the needle—is
not found within the string (the haystack), the method returns −1. Also, indexOf()
performs a case-sensitive search:

var language = ‘JavaScript’;

language.indexOf(‘script’); // -1

Another way to look for needles within a string haystack is to use lastIndexOf(),
which goes backward through the string. Its second argument is also optional, and
indicates the starting point, but the search again goes backward from that starting
point, not forward:

var fullName = ‘Larry Ullman’;

fullName.indexOf(‘a’); // 1

114 ChaPter 4 SiMple variaBle typeS

fullName.lastIndexOf(‘a’); // 10

fullName.lastIndexOf(‘a’, 5); // 1

To pull a substring out of a string, there’s the slice() method. Its first argu-
ment is the index position to begin at. Its optional second argument is the indexed
position where to stop. Without this second argument, the substring will continue
until the end of the string:

var language = ‘JavaScript’;

language.slice(4); // Script

language.slice(0,4); // Java

A nice trick with slice() is that you can provide a negative second argument,
which indicates the index at which to stop, counting backward from the end of the
string. If you provide a negative starting point, the slice will begin at that indexed
position, counting backward from the end of the string:

var language = ‘JavaScript’;

language.slice(0,-6); // Java

language.slice(-6); // Script

However you use slice(), this method only returns a new string, without
affecting the value of the original.

JavaScript also has a substring() method, which uses the same arguments as
slice(), but it has some unexpected behaviors, and it’s recommended that you
use slice() instead.

JavaScript has another string method for retrieving substrings: the aptly named
substr(). Its first argument is the starting index for the substring, but the second
is the number of characters to be included in the substring, not the terminating
index. In theory, you can provide negative values for each, thereby changing both
the starting and ending positions to be relative to the end of the string, but Internet
Explorer doesn’t accept negative starting positions.

NOTE: in Chapter 6, you’ll learn about the split() method, which breaks
a string into an array of strings.

worKing with StringS 115

To test using slice(), let’s create some JavaScript code that limits the amount
of data that can be submitted by a textarea. For the time being, a second textarea
will show the restricted string; in Chapter 8, Event Handling, you’ll learn how to
dynamically restrict the amount of text entered in a text area in real time. The
relevant HTML for this example is:

<div><label for=”comments”>Comments</label><textarea name=”comments”
p id=”comments” maxlength=”100” required></textarea></div>

<div><label for=”count”>Character Count</label><input type=”number”
p name=”count” id=”count”></div>

<div><label for=”result”>Result</label><textarea name=”result”
p id=”result”></textarea></div>

<div><input type=”submit” value=”Submit” id=”submit”></div>

The HTML form has one textarea for the user’s input, a text input indicat-
ing the number of characters used, and another textarea showing the truncated
result. To make the truncated text more professional, it’ll be broken on the final
space before the character limit (Figure 4.9), rather than having the text broken
midword. The page, named text.html, includes the text.js JavaScript file, to be
written in subsequent steps.

To deconstruct strings:

1. Create a new JavaScript file in your text editor or IDE, to be named text.js.

2. Begin defining the limitText() function:

function limitText() {

 ‘use strict’;

 var limitedText;

The limitedText variable will be used to store the edited version of the
user-supplied text.

3. Retrieve the original text:

var originalText = document.getElementById(‘comments’).value;

The original text comes from the first textarea in the form and is assigned
to originalText here.

fiGURe 4 .9 The HTML form, as
it works in Internet Explorer.

116 ChaPter 4 SiMple variaBle typeS

4. Find the last space before the one-hundredth character in the original text:

var lastSpace = originalText.lastIndexOf(‘ ‘, 100);

To find the last occurrence of a character in a string, use the lastIndexOf()
method, applied to the original string. This script is not looking for the abso-
lute last space, though, just the final space before the hundredth character,
so 100 is provided as the second argument to lastIndexOf(), meaning that
the search will begin at the index of 100 and work backward.

5. Trim the text to that spot:

limitedText = originalText.slice(0, lastSpace);

Next, a substring from originalText is assigned to limitedText, starting
at the beginning of the string—index of 0—and stopping at the previously
found space.

6. Show the user the number of characters submitted:

document.getElementById(‘count’).value = originalText.length;

To indicate that the user submitted too much data, the original character
count will be shown in a text input.

7. Display the limited text:

document.getElementById(‘result’).value = limitedText;

The value of the second textarea is updated with the edited string.

8. Return false and complete the function:

 return false;

} // End of limitText() function.

TIP: it’d be more professional to break the text on a space or
comma or the end of a sentence, but that capability is beyond this
point in the book.

worKing with StringS 117

9. Add an event listener to the form:

function init() {

 ‘use strict’;

 document.getElementById(‘calcForm’).onsubmit = limitText;

} // End of init() function.

window.onload = init;

This is the same basic code used in the previous example. When the form
is submitted, the limitText() function will be called.

10. Save the file as text.js, in a js directory next to text.html, and test it in
your Web browser (Figure 4.9).

Try using different strings (Figure 4.10), and retest, to make sure it’s work-
ing as it should.

ManiPulating strings

The most common way to manipulate a string is to change its value using concat-
enation. Concatenation is like addition for strings, adding more characters onto
existing ones. In fact, the concatenation operator in JavaScript is also the arithmetic
addition operator:

var message = ‘Hello’;

message = message + ‘, World! ‘;

As with the arithmetic addition, you can combine the plus sign with the assign-
ment operator (=) into a single step:

var message = ‘Hello’;

message += ‘, World! ‘;

This functionality is duplicated by the concat() method, although it’s less com-
monly used. This method takes one or more strings to be appended to the string:

var address = ‘100 Main Street’;

address.concat(‘ Anytown’, ‘ ST’, ‘ 12345’, ‘ US’);

fiGURe 4 .10 In Chrome,
which supports the textarea’s
maxlength attribute, only 100
characters can be submitted,
but the partial word is still
chopped off.

118 ChaPter 4 SiMple variaBle typeS

ConStantS

Many programming languages have the concept of a constant: a single value
that cannot be changed (depending upon how and where the constant was
created, and depending upon the language, the constant can have other
qualities, too). In theory, JavaScript has the ability to create a constant, using
this code:

const NAME = value;

The same naming rules as those for variables apply to constants, but con-
stants are conventionally written in all uppercase letters, using underscores
to separate words. Regardless, the const keyword is not supported across all
browsers; specifically, Internet Explorer doesn’t recognize it. There are ways
to fake a constant, but that requires code well beyond what you would know
at this point. The end result is that you shouldn’t plan on creating your own
constants in JavaScript code.

On the other hand, many built-in JavaScript objects have their defined con-
stants, like the Number object’s MAX_VALUE. This constant represents the maxi-
mum value that a number can have in the given environment. You’d refer to
it using Number.MAX_VALUE.

Two methods exist to simply change the case of the string’s characters:
toLowerCase() and toUpperCase(). You can apply these to a string prior to using
one of the previously mentioned methods, in order to fake case-insensitive
searches:

var language = ‘JavaScript’;

language.indexOf(‘script’); // -1, aka not found

language.toLowerCase().indexOf(‘script’); // 4

Added to JavaScript in version 1.8.1 is the trim() method, which removes extra
spaces from both ends of a string. It’s supported in more current browsers—Chrome,
Firefox 3.5 and up, IE9 and above, Safari 5 and up, and Opera 10.5 and above, but
isn’t available on older ones.

Note that, as with slice() and the other methods already covered, toLowerCase(),
toUpperCase(), and trim() do not affect the original string, they only return a modified
version of that string. Concatenation, however, does alter the original.

worKing with StringS 119

To test this new information, this next example will take a person’s first and last
names, and then format them as Surname, First Name (Figure 4.11). The relevant
HTML is:

<div><label for=”firstName”>First Name</label><input type=”text”
p name=”firstName” id=”firstName” required></div>

<div><label for=”lastName”>Last Name</label><input type=”text”
p name=”lastName” id=”lastName” required></div>

<div><label for=”result”>Formatted Name</label><input type=”text”
p name=”result” id=”result” required></div>

<div><input type=”submit” value=”Submit” id=”submit”></div>

This would go into an HTML page named names.html, which includes the names.
js JavaScript file, to be written in subsequent steps. By this point in the chapter,
this should be a simple and obvious exercise for you.

To manipulate strings:

1. Create a new JavaScript file in your text editor or IDE, to be named names.js.

2. Begin defining the formatNames() function:

function formatNames() {

 ‘use strict’;

 var formattedName;

The formattedName variable will be used to store the formatted version of
the user’s name.

3. Retrieve the user’s first and last names:

var firstName = document.getElementById(‘firstName’).value;

var lastName = document.getElementById(‘lastName’).value;

4. Create the formatted name:

formattedName = lastName + ‘, ‘ + firstName;

To create the formatted name, assign to the formattedName variable the
lastName plus a comma plus a space, plus the firstName. There are other
ways of performing this manipulation, such as:

fiGURe 4 .11 The values
entered in the first two inputs
are concatenated together to
create a formatted name.

120 ChaPter 4 SiMple variaBle typeS

formattedName = lastName;

formattedName += ‘, ‘;

formattedName += firstName;

That code would probably perform worse, though, than the one-line option.

5. Display the formatted name:

document.getElementById(‘result’).value = formattedName;

6. Return false and complete the function:

 return false;

} // End of formatNames() function.

7. Add an event listener to the form:

function init() {

 ‘use strict’;

 document.getElementById(‘calcForm’).onsubmit = formatNames;

} // End of init() function.

window.onload = init;

When the form is submitted, the formatNames() function will be called.

8. Save the file as names.js, in a js directory next to names.html, and test it
in your Web browser (Figure 4.11).

esCaPe sequenCes

Another thing to understand about strings in JavaScript is that they have certain
meaningful escape sequences. You’ve already seen two examples of this: to use a
type of quotation mark (single or double) within a string delimited by that same
type, the inserted quotation mark must be prefaced with a backslash:

 J 'I\'ve got an idea.'

 J "Chapter 4, \"Simple Variable Types\""

worKing with StringS 121

Three other meaningful escape sequences are:

 J \n, a new line

 J \r, a carriage return

 J \\, a literal backslash

Note that these work within either single or double quotation marks (unlike,
for example, in PHP, where they only apply within double quotation marks).

performInG tYPe ConverSIonS

Because JavaScript is weakly typed, different value types can be used together with-
out causing formal errors. In, say, ActionScript, the following would cause an error:

var cost:int = 2;

cost += ‘ dollars’;

But in JavaScript, you can do that without the browser complaining. That being
said, although you can use different types together without causing formal errors,
it’s quite possible to end up with logical errors, which is to say bugs, if you’re not
careful. One complication stems from the fact that the addition operator in math
is the same as the concatenation operator for strings. When you add a string to a
number, or add a number to a string, JavaScript will convert the number to a string
and then concatenate the two. For example, say the shopping example added a
shipping value to the total:

var shipping = document.getElementById(‘shipping’).value;

total = quantity * price;

tax /= 100;

tax++;

total *= tax;

total += shipping;

TIP: When a user presses enter or return within a textarea,
that translates to \n in a corresponding Javascript string.

122 ChaPter 4 SiMple variaBle typeS

By the time JavaScript gets to the final line, total is a number, but shipping is
a string, because it comes from a form’s text input. That final line won’t have the
effect of mathematically adding the shipping to the total but rather concatenating
the shipping onto the total (Figure 4.12).

This issue doesn’t apply to other operators, though. For example, subtraction
converts a string to a number and then performs the math, as the shopping example
already demonstrated.

To perform math using strings, without worrying about creating bugs, you can
forcibly convert the string to a number. There are many ways of doing so, starting
with parseFloat() and parseInt(). These are “top-level” functions, which is to
say they are not associated with any object and can be called directly. The first
function always returns a floating-point number (aka, a decimal), and the latter,
an integer. Both functions take the value to be converted as its first argument. The
parseInt() function takes the radix as the second. The radix is the number’s base,
as in base-8 (aka, octal), base-10 (decimal), and base-16 (hexadecimal). Although
the second argument is optional, you should always provide it to be safe, and will
normally use a value of 10:

total += parseFloat(shipping, 10);

To best use these functions, you should have an understanding of how they
work. Both functions begin at the start of the string and extract a number until an
invalid numeric character is encountered. If no valid number can be pulled from
the start of the value, both functions return NaN (Figure 4.13):

parseInt(‘20’, 10);

parseInt(‘20.0’, 10);

parseInt(‘20 ducklings’, 10);

parseInt(‘I saw 20 ducklings.’, 10);

fiGURe 4 .12 Adding the string ‘5.00’ to the total
has the impact of concatenation, converting the
total number into an unusable string.

fiGURe 4 .13 How the parseInt() function
extracts numbers from strings.

perForMing type converSionS 123

oBJeCtS vS. lIteralS

A point that this chapter has thus far ignored is that values can be represented
in two ways: as objects or as literals. All of the examples in this chapter are
literals, such as these:

 J 2

 J 'JavaScript'

 J false

This is the most common way for creating simple variable types, but you can
create numbers, strings, and Booleans as formal objects, too:

var number = new Number(2);

var fullName = new String(‘JavaScript’);

var flag = new Boolean(false);

In that code, the corresponding global function—String, Number, and
Boolean—is used to create and return an object of the given type.

Besides being more complicated to write, creating simple types as objects
will actually have slightly worse performance and have some unexpected
behaviors. And you can continue to use literals as if they were objects, as
many of the examples in this chapter have shown, without formally creat-
ing the object. In such cases, when needed, JavaScript will convert the literal
value to a corresponding object, call the object’s method, and then remove
the temporary object.

A trickier way to convert a string to a number is to prepend it with a +:

total += +shipping;

or

total += +(shipping);

TIP: You can also convert a string to a number by
multiplying it by 1.

124 ChaPter 4 SiMple variaBle typeS

Using this unary operator is the fastest solution, in terms of how quickly JavaScript
performs the conversion, but is not as clear in terms of programmer readability as
parseInt() and parseFloat().

Converting from a number to a string is far less likely to cause problems, but
you can do so by invoking the toString() method:

var message = ‘Your total is $’ + total.toString();

The toString() method is supported by most objects and returns a string
representation of the object itself.

Earlier in the chapter, I mentioned two other meaningful values in JavaScript:
undefined and null. As a gotcha, you should be aware of what happens when
an undefined or null value is used as if it were a number. The undefined value
translates to NaN when used as a number. When a null value is used as a number,
the result is better, although not great: null values are treated as 0 as numbers
(Figure 4.14). In the next chapter, you’ll learn how to verify that a value is numeric
prior to attempting to use it as such.

revIeW and purSue

Beginning in Part 2: JavaScript Fundamentals, each chapter of this book ends with
a “Review and Pursue” section. In these sections, you’ll find questions regarding
the material just covered and prompts for ways to expand your knowledge and
experience on your own. If you have any problems with these sections, either in
answering the questions or pursuing your own endeavors, turn to the book’s sup-
porting forum (www.LarryUllman.com/forums/).

revieW

 J How do you declare a variable?

 J What is variable scope?

 J What are the rules for a variable’s name?

 J What is the assignment operator?

fiGURe 4 .14 How arithmetic is
handled if undefined or null is
involved.

review and purSue 125

www.LarryUllman.com/forums/

 J What simple types were introduced in this chapter?

 J How can you use a single quotation mark within a string? A double quota-
tion mark?

 J What does the *= operator do? How about +=? (There are two answers to
this last question.) And what about ++?

 J What operator can cause bugs when used with a string and a number
together?

 J What does the toFixed() method do?

 J What are some of the differences between Number objects and the Math object?

 J What is an empty string?

 J What does the charAt() method do? What does indexOf() do? How about
lastIndexOf()? What are the arguments to the indexOf() and lastIndexOf()
methods? What happens when you use negative numbers for the second
argument to either method?

 J What function should you use to pull a substring out of a string and how
do you use it?

 J What are the various ways you can perform concatenation with strings?

 J What are escape sequences?

 J What are some of the ways you can convert a string to a number?

Pursue

 J Use a development tool such as Firebug to practice creating and manipu-
lating variables.

 J Look up some of JavaScript’s reserved words, if you have not already.

 J If you’re curious, find out what “hoisting” is.

 J Create another calculator, such as one that calculates the area of a shape
(rectangle, triangle, circle, etc.).

126 ChaPter 4 SiMple variaBle typeS

 J Look online (e.g., at https://developer.mozilla.org) to research all the
Number and Math object properties and methods.

 J Look online to learn more about the String object and its methods.

 J Create another string manipulation example.

 J Update the shopping example to add a shipping cost option, and then rework
the JavaScript to properly add the shipping amount to the total.

 J Test all of this chapter’s code in as many browsers and devices as you can
to see the various results.

WraPPing up

In this chapter, you started learning the fundamental lessons of real programming
in JavaScript, centered around the simple variable types. Those types include num-
bers, strings, and Booleans. You learned how to declare variables, how to properly
name them, and how to assign them simple values.

Next, the chapter looked into the number type in detail, which starts with basic
arithmetic. From there, you saw how to use the Number and Math object methods in
this object-oriented language to perform such commonplace tasks as formatting
numbers and rounding them.

After numbers, similar treatment was given to strings: what they are and how
to create them. You also learned that there are several methods defined within the
String object that are usable on any string you have. One of the most common
manipulations of strings is concatenation, accomplished via the plus sign. Atten-
tion was also given to using the backslash as an escaping character.

The chapter concluded with a discussion of type conversion between numbers
and strings. Implicit conversion can lead to bugs, as demonstrated, so it’s best to
formally convert values when needed. Along the way you also started creating
practical examples, mostly as mathematical calculators.

This knowledge will be expanded in the next chapter, where you will learn
about control structures. These are primarily conditionals and loops, but Chapter
5 will introduce more operators, too, before Chapter 6 gets into more complicated
variable types.

wrapping up 127

https://developer.mozilla.org

indeX 595

IndeX

sYMBols
+ (addition) operator, 100, 102
&& (And) operator, 102, 136, 138
| (alternatives) meta-character, 407
\ (backslash), using with escape

sequences, 121–122
^ (beginning of string) meta-

character, 407, 411
?; (conditional) operator, 102
-- (decrement) operator, 102
/ (division) operator, 100, 102
“ (double quote), using with strings,

98–99
] (end of class) meta-character, 407
} (end of quantifier)

meta-character, 407
$ (end of string) meta-character, 407
) (end of subpattern)

meta-character, 407
== (equal to) operator, 131
\ (escape) meta-character, 407
() (function call) operator, 102
> (greater than) operator, 102, 133
>= (greater than or equal to) operator,

102, 133
=== (identical to) operator, 131
++ (increment) operator, 102
< (less than) operator, 102, 133
<= (less than or equal to) operator,

102, 133
! (logical not) operator, 102
|| (logical or) operator, 102, 136, 138
[] (member) operator, 102
% (modulus) operator, 100, 102
* (multiplication) operator, 100, 102
! (Not) operator, 136, 138
!= (not equal to) operator, 131
!== (not identical to) operator, 131
.. (periods), using with relative

paths, 38
% (remainder) operator, 100, 102

; (semicolon), using with
statements, 95

. (single character)
meta-character, 407

‘ (single quote), using with strings, 4,
98–99

// (slashes), using with comments,
99, 132

[(start of class) meta-character, 407
{ (start of quantifier)

meta-character, 407
 ((start of subpattern)

meta-character, 407
- (subtraction) operator, 100, 102
- (unary negative) operator, 104
+ (unary positive) operator, 102
_ (underscore), using with

variables, 97

a
absolute vs. relative paths, 38
accessible pop-up, creating, 323–324,

338–339
ActionScript, 5–6, 20
addEvent() function, defining,

275–277
addEventListener() method, 272, 274
addition (+) operator, 100, 102
addTask() function, using with

arrays, 196
addToSomething() function, 325
Adobe BrowserLab Web site, 75
Adobe Dreamweaver IDE, 67–68
Ajax

append() method, 438
asynchronous requests, 430
client-side JavaScript, 12
contact form, 456–460
FormData object, 438
GET method, 437–438
GET request, 429

impact on JavaScript, 7–13
incorporating, 12
JSON data, 444–447
link click handler, 463
login example, 453–456
maintaining state, 457
making requests, 429–431
onclick anonymous function, 464
onload anonymous function, 464
onreadystatechange function,

435–436
open() method for requests, 430
overview, 426
performing in jQuery framework,

501–502
performing in YUI framework, 515
popularity of, 12
POST request, 429, 437–438
preloading data, 461–465
progressive enhancement, 427
readyState property, 431–432, 434
registration form example, 8–9
result handler, 429
send() method, 438
sending data, 436–439
sending files, 453
server HTTP codes, 432
server response, 431–436
server-side requests, 12–13
server-side script, 447–450
statusText property, 433
stock quotes with timer, 465–469
synchronous requests, 430
testing, 434
URLs (Uniform Resource

Locators), 430
XML data, 442–444
XMLHttpRequest object, 428–429

Ajax debugging, 439–441
disabling cache, 441
network monitor, 440
PHP script, 439

596 indeX

Ajax object
creating, 426, 428–429, 434
creating for login form, 453–454
setRequestHeader() method, 437

Ajax processes
delaying, 452
progress event, 452
showing progress, 451–453
starting, 451–452

Ajax request, invoking, 460
Ajax resources

bidding script, 570–571
creating for auction site, 569–572
get bids script, 571–572
login script, 570

ajax.js script, 457–460
including in login.html file, 453
try...catch block example,

478–479
Ajaxload Web site, 451
alert() method

using, 310
using in debugging, 85
using wit arrays, 192

altKey property, 297
anonymous functions, using,

257–258, 260–261
Apple Safari browser. See Safari

browser
Aptana Studio IDE, 68
arithmetic operators. See also

assignment operators
+ (addition), 100, 102
comparison, 104
?; (conditional), 102
-- (decrement), 102
/ (division), 100, 102
() (function call), 102
> (greater than), 102
>= (greater than or equal to), 102
++ (increment), 102
< (less than), 102

<= (less than or equal to), 102
&& (logical and), 102
! (logical not), 102
|| (logical or), 102
[] (member), 102
% (modulus), 100, 102
* (multiplication), 100, 102
new, 102
order of precedence, 101
% (remainder), 100, 102
- (subtraction), 100, 102
typeof void delete, 102
unary, 101–102, 104

array elements
accessing, 192–195, 198–199
removing, 200

array functions. See also functions
addTask(), 196
alert(), 192
concat(), 201–202
console.log(), 192
every(), 248–249
filter(), 249
forEach(), 248
indexOf(), 194
join(), 206
lastIndexOf(), 194
LIFO (Last-In, First-Out) data type,

202
map(), 249, 252
pop(), 202
push(), 200
queues, 202
reduce(), 249
shift(), 202
slice() method, 203–204
some(), 248
splice(), 202–203
split(), 207
stacks, 202
unshift(), 200

array notation, using with object
properties, 210

arrays
converting between strings,

206–207
converting strings to, 207, 252
converting to strings, 206
creating, 190–192
event listener, 197–198
global variable, 196
indexes, 193
inner, 201
length property, 194
literal syntax, 191, 194
multidimensional, 201
new operator, 190–191
.vs objects, 216–217
in operator, 199
passing by reference, 231
sorting with user-defined

functions, 251–253
sparsely populated, 199
to-do list, 195–198
updating To-Do Manager, 204–206

assertion methods
creating, 479–481
using in jsUnity, 483

assignment operators, 98, 100,
102, 104. See also arithmetic
operators

bugs caused by, 134
using, 100–101

asynchronous events, handling, 8
attachEvent() method, 274–275
auction site. See also JavaScript for

auction site; PHP for auction site
Ajax resources, 569–572
configuration file, 558–559
database, 556–557
encrypting passwords, 557
establishing, 558–559
index.php page, 554–555
login.php page, 554–555
PHP scripts, 558–559

indeX 597

SHA1() function, 557
structure, 558
view.php page, 554–555

autocomplete, implementing,
388–389

B
Back button, linking text to, 343–344
backslash (\), using with escape

sequences, 121–122
BBEdit text editor, 67
Blackbird library, 523
Boolean values, using with

variables, 99
boundaries, using, 414
branching statements, 130
break control statement, using, 167
breakpoints, using in Firebug, 88
Brosera Web site, 76
browser events, 284–285

copy, 285
cut, 285
paste, 285
resize, 285
unload, 284–285

browser improvements, 14–15
browser mode, confirming, 30
browser support, 22–23
browser window, moving, 316–317
BrowserCam Web site, 76
BrowserLab Web site, 75
browserling Web site, 76
browsers

Apple Safari, 73–75
Chrome, 15, 69–70, 90
as development tools, 69
elements, 314
Firefox, 15, 69, 71, 90
hash example, 330
history property, 326–328
inner height, 314

Internet Explorer (IE), 15, 69, 72
mobile usage, 69
“modern,” 22
object detection, 75
online services for testing, 76
Opera, 69, 72–73, 90
outer height, 314
outer width, 314
print option, 333
redirecting, 329–330
Safari, 15, 69
same origin security, 327
Spoon software, 76
statistics, 69
status bar, 314
testing on, 75–77
toolbar, 314
using virtualization software, 76
window.location property, 330

Browsershots Web site, 75
bugs

caused by assignment operator, 134
occurrence of, 5–6

C
calculate() function

creating for switch conditional, 147
defining, 104

calculation, performing, 100–101
calculators. See also numbers

creating, 103–107
discounts, 105
event listener, 106–107
init() function, 106
references to form values, 104
returning false, 106
storing order total, 104
with switch conditional, 146–150
tax rates, 105
total calculation, 105

calendar, date-picking, 15

camel-case
use in OOP, 5
using with variables, 97

Cascading Style Sheets (CSS). See CSS
(Cascading Style Sheets)

case of characters, changing, 118
catching errors, 474–476
<![CDATA[]]> wrapper, using with

script, 39
change events, handling, 287
character classes

[] (square brackets), 411
[0-9], 413
[^0-9], 413
[A-Za-zo-9_], 413
[^A-Za-zo-9_], 413
boundaries, 414
[f\r\t\n\v], 413
[^f\r\t\n\v], 413
meta-characters, 411
using, 411–414

characters, referencing in strings, 113.
See also meta-characters

charAt() method, using with
strings, 113

checkboxes
creating, 396–399
on e-commerce sites, 397
taking action, 397
value property, 396

Chrome browser, 15. See also Google
extensions, 70
features, 70
Firebug extension, 70
JavaScript Tester extension, 70
Pendule extension, 70
Speed Tracer extension, 70
usage statistic, 69
Validity extension, 70
Web Developer extension, 70
Web site, 90

circle, calculating area of, 109–110

598 indeX

class, start and end of, 407
client-server model, registration form

in, 9
ClosureCompiler, 549
closures

creating, 542
creating faders, 545–546
functions returning functions, 544
using, 541–546

Cloud Testing Web site, 76
code, downloading, 44
code minification, 548–549

ClosureCompiler, 549
JSMin command-line tool, 549
YUI Compressor, 549

comments, creating, 99, 132
comparison operators, 104, 133–136

equal vs. identical values, 135–136
== (equal to), 131
> (greater than), 133
>= (greater than or equal to), 133
=== (identical to), 131
< (less than), 133
<= (less than or equal to), 133
!= (not equal to), 131
!== (not identical to), 131
TRUE vs. FALSE conditions,

135–136
concat() method

using with arrays, 201–202
using with strings, 118

concatenating strings, 118
conditional breakpoints, setting in

Firebug, 89
conditional operator, using, 102,

150–151
conditionals. See also switch

conditionals
branching statements, 130
checking for positive radius value,

138–139
comparing numbers, 153–154

comparing strings, 155–159
comparison operators, 133–136
cryptic, 150–152
else clause, 140
if, 130–131
if-else, 140
if-else if, 141
logical operators, 136–138
nesting, 142
and and or operators, 151–152
switch, 143–150
TRUE vs. FALSE, 131, 133
typeof operator, 159–160
using, 138–139

configuration object, creating, 529
confirm() function, using, 311
console, writing messages to, 85
console.log() method, using with

arrays, 192
console.trace() function, using in

debugging, 86
constants

creating, 118
using with Math object, 109

contact form. See also forms
creating in Ajax, 456–460
processing, 157–159

contact.js file, 157–159, 457–460
content.js file, creating, 461
content.php script, creating, 465
context and this variable, 254–257
control statements

break, 167
return, 167

control structures
nesting, 142
using, 131

cookie library
creating, 361–364
using, 364–368

cookies
click handlers, 367–368

contents, 358
creating, 359–360
deleting, 361
expiration date and time, 358
limitations, 359
name=value pairs, 360
overview, 358–359
reading, 360
retrieving, 360
separating, 360
setting, 367
using, 365–368

cookies.js file, 361–364
Coordinated Universal Time (UTC),

180–181
Crockford, Douglas, 90, 444
CrossBrowserTesting Web site, 76
CSS (Cascading Style Sheets)

creating modal windows, 351–356
customizing, 365–368
display property, 350–351
hiding elements, 350–351
and HTML vs. JavaScript, 18
modal windows, 351–356
referencing style sheets, 356–357
showing elements, 350–351
style property, 349–350
visibility property, 350–351

CSS selectors
querySelector() method, 342
querySelectorAll() method, 342
using, 341–342
using with jQuery, 496–497
.vs XPath expressions, 341

ctrlKey property, 297
cursor and mouse properties, 297
custom objects. See also objects

completing, 533
configuration object, 529
creating, 530
creating and using, 534–537
multiple instances, 530–532

indeX 599

passing to functions, 532
tasks management application,

534–537
toString() method, 533, 535
valueOf() method, 533

d
data, preloading in Ajax, 461–465
date and time, showing, 178–180
date arithmetic

calculating intervals, 185, 188
getX(), 184–185
setX(), 184–185
timestamps, 182–184

date methods
atomic value retrieval, 176
get*() and to*(), 176–177
getTime(), 175
using, 175–180

Date objects, creating, 172, 174, 178,
180, 187

date-picking calendar, 15
dates

atomic values, 173
changing, 181–182
creating, 172–175
errors as messages, 189
event listeners, 189
process() function, 186
RFC822/IETF format, 175
set*() methods, 181–182
start and end for events, 186–190
using strings, 174–175
using timestamps, 174
validating for events, 187

debugging. See also Firebug
Ajax, 439–441
JavaScript, 17
with text editor vs. IDE, 63

debugging techniques
alert() method, 85

browser console, 83
browsers, 84
coding, 85
console.trace() function, 86
development browser, 83
external files, 84
IDEs (Integrated Development

Environments), 83
JavaScript validator, 83
log() method, 85
network monitor, 86
rubber duck, 84
saving and refreshing, 84
text editors, 83
writing messages to console, 85

decrement (--) operator, 102
default behavior, preventing, 297–301
development approaches

graceful degradation, 39–41
noscript element, 39–41
progressive enhancement,

41–42, 45
unobtrusive JavaScript, 43, 52

dialog windows. See also windows
alerts, 310
confirmations, 311
customizing, 312
\n (newline) character, 312
prompts, 312
using, 310–312

discount, including in calculator, 105
division (/) operator, 100, 102
do...while loop, using, 166
DOCTYPE

benefits, 30
choosing, 28–30
HTML 4.01, 28
Transitional option, 28–30
triggering Quirks mode, 30
XHTML 1.0, 28

document, requesting from server, 48
document object

using, 333–334
write() method, 333–334
writeln() method, 333–334

document.compatMode, 334
document.createElement()

method, 344
The Dojo Toolkit framework, 16
DOM (Document Object Model), 29

adding elements to, 345
changing elements, 342–344
copying elements, 346
creating, 48
creating elements, 344–348
creating print button, 347–348
CSS selectors, 341–342
Level 0 specification, 272
Level 2 specification, 271, 273
manipulation, 338–339
nodes, 336–337
nodeType property, 337
overview, 335–337
removeChild() method, 346
replacing elements, 345
shortcuts, 337–338
tree representation, 335–336

DOM elements, referencing, 48
DOM methods, 340
dot notation, chaining, 5
double quote (“), using with strings,

98–99
Dreamweaver IDE, 67–68
duck typing, using to test value

types, 548
dynamically typed language, 6

e
Eclipse IDE, 68
ECMAScript, 6, 22
EditPlus text editor, 66
Edwards, Dean, 90
Eich, Brendon, 90

600 indeX

else clause, using, 140
Emacs text editor, 67
email address, validating, 414
employee.html page, 212–213
employee.js file

creating, 213
opening, 256
saving, 215, 257

epoch.js file, creating, 280
equal to (==) operator, 131
error causes

= instead of ==, 82
angle brackets, 82
curly braces, 82
function names, 81
object names, 81
object references, 82
object types, 82
parentheses, 82
quotation marks, 82
reserved words, 82
variable names, 81

error management
assertions, 479–481
unit testing, 481–485

error messages
adding, 380–383
creating for forms, 379–383
removing, 380–383
span, 381

error types
logical, 80–81
run-time, 80–81
syntactical, 80

errorMessages.js file
creating, 380
saving, 383

errors
catching, 474–476
finally clause, 476
in try block, 475

escape (\) meta-character, 407
escape sequences, 121–122
eval() function, using with

windows, 371
event assigner, creating, 273–274
event handlers

inline, 269, 272
naming, 270

event handling
delegating, 304
event phases, 302–304
event properties, 291–295
finding key pressed, 296–297
IE (Internet Explorer), 273
preventing default behavior,

297–301
progressive enhancement, 269
referencing events, 290–291
traditional, 269–272
W3C (World Wide Web

Consortium), 271–273
event listeners

addEventListener() method, 272
adding for dates, 189
adding to calculator, 106–107
adding to forms, 46–47, 49–50,

118, 121
adding to page elements, 274
adding to random.js file, 165
creating, 268–274
using with arrays, 197–198
using with objects, 215

event phases
advantages, 304
bubbling, 302–303
capturing, 302–303
relatedTarget property, 304

event types
browsers, 284–285
forms, 286–287
input devices, 278–282
keyboards, 282–284

event-driven language, explained, 46
event.js file, 186–190
events

accessibility, 287–288
associating with functions, 268
asynchronous, 8
handling, 46–50
pairing, 288
progressive enhancement,

288–289
reliability, 287
reporting on, 292–295
this variable, 295

events.html page, 292
events.js file, creating, 292
every() array function, 248–249
exceptions, throwing, 475, 477–478
execution context and this variable,

254–257
expressions .vs statements, 245
Extensible Markup Language (XML).

See XML (eXtensible Markup
Language)

ExtJS framework, 16

F
fader, creating with closure, 545–546
fallthroughs, performing, 144
FALSE

determining for control structures,
131, 133

vs. TRUE conditions, 135
false and true values, 99
file uploads, handling, 401–402
filter() array function, 249
finally clause, adding to try...

catch, 476
Firebug. See also debugging

applying to Web pages, 87
assertions in, 481
breakpoints, 88–89
clear() function, 87

indeX 601

conditional breakpoints, 89
Console tab, 87
Continue in Script panel, 88–89
executing lines of JavaScript, 87
inspect() function, 87
opening, 87
Rerun in Script panel, 88–89
Script panel for debugging, 88
Step Into in Script panel, 88–89
Step Out in Script panel, 88–89
Step Over in Script panel, 88–89
using, 86–89
watch expressions, 89–90
Wiki, 89

Firefox browser, 6, 15
Console2 extension, 71
extensions, 71
features, 71
Firebug extension, 71
Greasemonkey extension, 71
JS View extension, 71
Total Validator extension, 71
usage statistic, 69
View Source Chart extension, 71
Web Developer extension, 71
Web site, 90
YSlow! extension, 71

Flash vs. JavaScript, 20
focus, changing, 321
for loop

defining in random.js file, 163
executing, 161–162
program flow, 161
syntax, 161–162
using, 163
using with arrays, 201

for...in loop, using with object
properties, 211

forEach() array function, 248
form data, problems with, 8

form events
blur, 286
change, 286–287
focus, 286
reset, 286
select, 286

form input, assigning values to, 106
form submission

handling, 378
preventing default behavior,

378–379
forms. See also contact form;

login form
accessibility, 378
action attribute, 378
autocomplete, 388–389
baseline functionality for, 42
checkboxes, 396–399
client-side validation, 9–10
disabling submit button, 386
error messages, 379–383
file uploads, 401–402
preventing submission of, 106
radio buttons, 400–401
register.js example, 416–420
registration page example, 415–420
select menus, 389–396
server-side validation, 10–11
text inputs, 387–388
textareas, 387–388
tooltips, 383–385
validation, 379

frames, iframe, 328
frameworks, 15–16. See also jQuery

framework; YUI framework
arguments against use of, 16
choosing, 16
considering, 493
The Dojo Toolkit, 16
ExtJS framework, 16
jQuery, 16

MooTools, 16
overview, 492, 494
Prototype, 16
script.aculo.us, 16
YUI (Yahoo! User Interface), 16

Fuchs, Thomas, 90
function call (()) operator, 102
function keyword, using, 50
function parameters, 226, 228–229,

241–242
functionality, developing, 44–45
functions. See also array functions

anonymous, 257–258, 260–261
applying to variables, 4
as argument values, 246–248
arguments variable, 227
associating events with, 268
context and this variable, 254–257
creating and calling, 232–234,

236–238
defined, 4, 49
defining, 222–223
design theory, 243
immediately invoked, 257–261
lack of default values, 228–229
lack of parameter checking, 228
lack of type checking, 226
local scope, 239
nested, 258–261
as objects, 244–248
passing objects to, 231
passing values, 230–234
passing values to, 223–225
recursion, 261–262
returning objects, 235
returning values from, 234–238
sort() method, 246–248
user-defined, 251–253
variable scope, 238–243
as variable values, 245–246

602 indeX

g
getElementById() method, using

with form, 47
getRandomNumber() function,

calling, 238
getTime(), using with dates, 175
getTimeZoneOffset() method, 181
getX(), using with dates, 184–185
Git version control software, 62
global variables, 95. See also variables

in functions, 239–240
namespace pollution, 243
problem with, 243
using with arrays, 196

GMT (Greenwich Mean Time), 180
Google, browser support, 22. See also

Chrome browser
graceful degradation, 39–41
Graded Browser Support, 23
greater than (>) operator, 102, 133
greater than or equal to (>=) operator,

102, 133

h
handling events, 46–50
hash example, 330
hash property, 330–332
hash value, watching for changes

in, 372
Head JS library, 522–523
Heilmann, Christian, 90
history property

back() method, 326–327
forward() method, 326–327
go() method, 326–327

HTML (HyperText Markup Language)
avoiding use of dummy links, 43
and CSS vs. JavaScript, 18
DOCTYPE, 28
Semantic, 41–42
vs. XHTML, 28

HTML buttons, using, 289
HTML document, loading, 48
HTML elements

adding to DOM, 345
changing, 343
cloneNode() method, 346
copying, 346
creating, 344–348
customizing, 344
innerHTML property, 343
placing text in, 163
replacing, 345

HTML forms
example of, 8
validating, 46

HTML pages
adding JavaScript to, 37–39
path/to part, 37
script element, 37
testing looks of, 75
tree representation, 335
validating, 28

HTML5
explained, 31
form elements, 34–35
pattern attribute, 36
template, 31–33
vs. XHTML, 36

i
identical to (===) operator, 131
IDEs (Integrated Development

Environments)
Adobe Dreamweaver, 67–68
Aptana Studio, 68
Eclipse, 68
features, 65
IntelliJ IDEA, 68
JetBrains, 68
Komodo IDE, 67
NetBeans, 68

PhpStorm, 68
price range, 64
WebStorm, 68

IE versions, testing HTML pages on, 76
if conditional

FALSE, 130
omitting curly braces ({}), 130
syntax, 130–131
TRUE, 130

if-else conditionals, using, 140
if-else if conditionals, using, 141
iframe, using, 328
images, preloading in Ajax, 464
in operator

using with arrays, 199
using with object properties, 210

increment (++) operator, 102
indexes

using with arrays, 193
using with methods for strings, 113

indexOf() method
using with arrays, 194
using with strings, 114, 155, 408

index.php page, in auction site,
554–555

Infinity value, returning, 102
init() function

calling, 49–50, 52–53
using with calculators, 106

innerText property, using, 163
input device events, 278–282

click, 278
contextmenu, 279
double-click, 279
input button, 278–279
input movement, 279–282
mousedown, 278
mousemove, 279
mouseout, 279
mouseover, 279–282
mouseup, 278
touch devices, 281

indeX 603

Integrated Development
Environments (IDEs). See
IDEs (Integrated Development
Environments)

IntelliJ IDEA IDE, 68
Internet Explorer (IE) browser, 15

event handling, 273
features, 72
usage statistic, 69

intervals, calculating for dates,
185, 188

Irish, Paul, 90
isFinite() function, using with

numbers, 154
isNan() function, using with

numbers, 154
iteration .vs recursion, 262

J
JavaScript

vs. ActionScript, 20
adding to HTML pages, 37–39
benefits, 21
browser improvements, 14–15
browser support, 22–23
case-sensitivity of, 81
current version of, 22
debugging, 17
dynamically typed, 6
ECMAScript implementation, 6
execution of, 40
features, 17
vs. Flash, 20
founders, 90
frameworks, 15–16
as Good Thing, 21
vs. HTML and CSS, 18
impact of Ajax, 7–13
vs. Java, 17
learning curve, 14, 17
as object-oriented language, 4–5
original uses of, 7

overview, 4–6
vs. PHP, 18–19
programming goals, 24–25
progressive enhancement, 24
prototype-based, 5
putting between in script tags, 43
scripting language, 6
security concern, 17
testing, 77–79
unobtrusive, 24, 43
versions, 22–23
weakly-typed, 5, 95

JavaScript 1.0, release of, 6
JavaScript alert, appearance of, 52
JavaScript code, executing, 77
JavaScript for auction site. See also

auction site; view.js file for
auction site

completing, 592
login.js file, 572–578
utilities.js file, 572

JavaScript layer, adding, 45–46
JetBrains IDEs, 68
join() method, using with arrays and

strings, 206
jQuery framework, 16. See also

frameworks
CDN (Content Delivery Network)

version, 495
changing CSS classes, 498
creating effects, 501
CSS selectors, 496–497
DOM manipulation, 498–499
downloading, 494
features, 494
handling events, 500–501
manipulating elements, 497–498
performing Ajax, 501–502
selecting page elements, 496–497
UI library, 503
using, 495–496

jQuery() function, using, 495

jQuery Mobile library, 523
jQuery plug-ins

Autocomplete widget, 504–507
DataTables, 507–508
date-picker widget, 503
using, 503–504

JS Bin tool
keyboard shortcuts, 79
using, 78–79

JScript implementation, 6
jsFiddle Web site, 79
JSHint validator, using, 83
JSLint validation service, using, 83
JSMin command-line tool, 549
JSON data

returning, 450
sending to server, 445
using with Ajax, 444–447
validating, 440

jsUnity library
assertion methods, 483
using in unit testing, 482

k
key pressed, finding, 296–297
keyboard events, 282–284

handling, 283–284
keydown, 282
keypress, 282
keyup, 282

Komodo Edit text editor, 66
Komodo IDE, 67

l
lastIndexOf() method

using with arrays, 194
using with strings, 114–115

length property, using with
arrays, 194

less than (<) operator, 102, 133

604 indeX

less than or equal to (<=) operator,
102, 133

libraries
Blackbird, 523
Head JS, 522–523
jQuery Mobile, 523
MediaElement.js, 523
Modernizr, 522
RequireJS, 523
Sencha Touch, 523
SWFObject, 522
VideoJS, 523
Zepto, 523

LIFO (Last-In, First-Out) data type, 202
literal syntax, using with arrays,

191, 194
literals vs. objects, 94, 124
local scope, explained, 239
log() method, using in debugging, 85
logical operators, 102, 136–138
login form. See also forms

adding JavaScript layer, 45–46
base functionality, 44–45
getElementById() method, 47
init() function, 49, 52–53
JavaScript alert, 52
submission event, 47
validateForm() function, 52–53
validating, 50–54

loginForm object, onsubmit
property, 49

login.html file, 44
including ajax.js script in, 453
readyState change handling

function, 454–455
login.js file, 45, 54

creating Ajax object, 453–454
saving, 455
writing for auction site, 573–578

login.php script
in auction site, 554–555
creating, 455–456
submitting login form to, 45

loops
do...while, 166
for, 161–165
for...in, 211
nesting, 166
while, 166

M
MAMP for Mac OS X, 430
map() array function, 249, 252
math, performing with strings, 123
Math object

abs() method, 110
ceil() method, 110
constants, 109
cos() method, 110
floor() method, 110
max() method, 110
min() method, 110
pow() method, 110
predefined methods, 110
random() method, 110
round() method, 110
sin() method, 110
using, 109–112

MediaElement.js library, 523
member ([]) operator, 102
membership cost calculation, 299
membership.html file, using, 145–150
membership.js file, preventing default

behavior, 300–301
meta-characters. See also characters

| (alternatives), 407
^ (beginning of string), 407, 411
in character classes, 411
] (end of class), 407
} (end of quantifier), 407
$ (end of string), 407
) (end of subpattern), 407
\ (escape), 407
. (single character), 407

[(start of class), 407
((start of subpattern), 407
{ (start of quantifier), 407
using with patterns, 406–407

methods. See functions
Microjs Web site, 523
Minify JavaScript Web Site, 548
mobile browsers, usage of, 69
modal windows, creating, 351–356.

See also windows
modal.css file, 353–355
modal.html file, 351–353
modal.js file

closeModal() function, 355
creating, 355
openModal() function, 355
saving, 356

Modernizr library, 522
modulus (%) operator, 100, 102
Mogotest Web site, 76
MooTools framework, 16
mouse and cursor properties, 297
mouseover event, handling, 280–282
Mozilla Firefox. See Firefox browser
multiplication (*)operator, 100, 102

n
\n (newline) character, using with

dialogs, 312
namespace pollution, 243
namespaces, defining, 528–529
NaN value, returning, 102
nested functions, using, 258–261
nesting

conditionals, 142
control structures, 142
loops, 166

NetBeans IDE, 68
network monitor

for Ajax debugging, 440
using, 63
using in debugging, 86

indeX 605

new operator
explained, 102
using with arrays, 190–191

noscript element, using, 39–41
not equal to (!=) operator, 131
not identical to (!==) operator, 131
Notepad text editor, 66
null value, using, 99, 125
Number object type, 108
numbers. See also calculators

adding to strings, 122–123
arithmetic operators, 100–103
comparing, 153–154
comparing to strings, 156
converting strings to, 123–124
creating years to, 147
formatting, 107–109
Infinity value, 102
isFinite() function, 154
isNan() function, 154
NaN value, 102
toFixed() method, 108
toPrecision() method, 108

o
object detection, using, 42, 50, 75
object event properties, 49
object inspectors, using, 211
object methods

creating, 256–257
using this keyword with, 256

object notation, using, 4
object properties

accessing, 209–211
array notation, 210
creating, 208
events, 49
for...in loop, 211
in operator, 210
removing, 212–215
testing for, 210
typeof operator, 211

object-oriented language, 4–5
objects. See also custom objects

.vs arrays, 216–217
associating with functions, 268
components of, 207
creating, 207–209
event listener, 215
functions as, 244–248
vs. literals, 94, 124
mutable and immutable, 212
passing by reference, 231
passing to functions, 231
process() function, 213
returning from functions, 235
using, 213–215

Opera browser, 72–73
Dragonfly development tool, 73
usage statistic, 69
Web site, 90

order of precedence, 101, 137
os.js file, 392–396

P
parent directory, moving up to, 38
parseFloat() method, 123, 125
parseInt() method, 123, 125
passing

by reference, 230
by value, 230

passwords, encrypting, 557
paths, absolute vs. relative, 38
patterns

defining, 406–408
literals, 406
meta-characters, 406–407
using, 408, 410

periods (..), using with relative
paths, 38

phone number, validating, 418
PHP

vs. JavaScript, 18–19
Web site, 90

PHP for auction site. See also
auction site

bid form submission, 568–569
creating bid form, 567–568
current bids, 569
displaying item details, 565–566
listing auctions, 560–563
logging in, 563–564
validating item ID, 564–565
viewing auctions, 564–569

PhpStorm IDE, 68
pizza.js file, checkbox example,

398–399
plain text, returning, 447–448. See

also text
pop() method, using with arrays, 202
popup.js file

creating, 323
opening, 338
saving, 324, 339

pop-ups
accessible solution, 323–324,

338–339
customizing, 319–321

postfix vs. prefix versions, 101
prefix vs. postfix versions, 101
preloading

data in Ajax, 461–465
images in Ajax, 464

print button, creating, 347–348
printing pages, 333
procedural language vs. object-

oriented language, 4
process() function, using with

objects, 213
progressive enhancement

Ajax, 427
and events, 288–289
explained, 24
limitation, 269
overview, 41–42

prompt() function, using, 312
properties, defined, 4

606 indeX

Prototype framework, 16
prototype-based language, 5
prototypes

changing, 540
inheritance, 538
methods, 539–540
overview, 537
trim() method, 539

push() method, using with arrays, 200

q
quantifiers, 409
Quirks mode, triggering, 30
quotation marks, using with

variables, 98–99
quote.js file, 466–468
quote.php script, creating, 468

r
radio buttons

dynamic effects, 401
flag variable, 400
using, 400–401

random numbers
generating, 164–165
returning, 237

random.html page, 163–165
random.js file

creating, 164
saving, 165
showNumbers() function, 164

recursion
.vs iteration, 262
performing, 261–262

reduce() array function, 249
register.js file, 416–420
registration form example, 8–9,

415–420
regular expressions

creating, 404
defining patterns, 406–408

exec() function, 405–406
functions, 405–406
literals, 406
match() function, 405–406
meta-characters, 406–407
overview, 403–404
performance issues, 412
RegExp object type, 404
replace() method, 406
rules for, 411
search() function, 405
split() method, 406
test() function, 405

relatedTarget property, 304
relative vs. absolute paths, 38
remainder (%) operator, 100, 102
removeEvent() method, defining, 277
reportEvent() function, creating, 292
RequireJS library, 523
Resig, John, 90
resize event, triggering, 285
return statement, using, 167, 236
RFC822/IETF format, using with

dates, 175
RIAs (Rich Internet Applications), 20
Ruby Web site, 90

s
Safari browser, 15, 73–75

Develop menu, 74
disabling JavaScript, 74
usage statistic, 69
Web Inspector, 74

Sauce Labs Web site, 76
screen properties, using with

windows, 317
script element

<![CDATA[]]> wrapper, 39
parsing data in, 39
using, 37–39

script tags, putting JavaScript
between, 43

script.aculo.us framework, 16
scripting language, JavaScript as, 6
scripts, organizing, 107
select menus

creating, 389–390
dynamic select boxes, 390–396
linking, 392–396
validating, 390

Semantic HTML, using, 41–42
semicolon (;), using with

statements, 95
Sencha Touch library, 523
server-side requests, 12–13
server-side script

returning JSON, 450
returning plain text, 447–448
returning XML, 449–450

server-side validation, 10–11
setHandlers() function, defining, 293
setText() function

defining, 237, 251
for utility library, 276

setX(), using with dates, 184–185
Sexton, Alex, 90
SHA1() function, using with

passwords, 557
Sharp, Remy, 78, 90
shift() method, using with

arrays, 202
shiftKey property, 297
shopping.html page, creating, 103
shopping.js file, 107–109
single quote (’), using with strings, 4,

98–99
slashes (//), using with comments,

99, 132
slice() method

using with arrays, 203–204
using with strings, 115–116

some() array function, 248
sort() method, using with functions,

246–248

indeX 607

sortWords() function
completing, 253
defining, 252

span, adding to DOM for errors, 381
sphere, calculating volume of, 111–112
sphere.js file, 110, 138–139
splice() method, using with arrays,

202–203
split() method, using with arrays

and strings, 207
Spoon software, using, 76
srcElement event property, 291–292
state, maintaining in Ajax, 457
statements .vs expressions, 245
stock ticker, creating, 466–469
strict mode, invoking, 53
strings

adding to numbers, 122–123
beginning and end of, 407
changing case, 118, 155
charAt() method, 113
comparing, 155–159
comparing to numbers, 156
concatenating, 118
converting arrays to, 206
converting to arrays, 207, 252
converting to numbers, 123–124
creating, 112–113
deconstructing, 113–118
empty, 99
escape sequences, 121–122
example of, 4
indexes for methods, 113
indexOf() method, 114, 155, 408
lastIndexOf() method, 114–115
length property, 113
manipulating, 120–121
matching, 408
performing math with, 123
processing contact form, 157–159
referencing characters, 113
slice() method, 115–116
substr() method, 115

substring() method, 115
toLowerCase() function, 118, 155
toUpperCase() function, 118, 155
trim() method, 118
using with dates, 174–175

strongly typed language, 5
style sheets

addRule() method, 357
createElement() method, 357
deleteRule() method, 357
disabled property, 356
insertRule() method, 357
referencing, 356–357

submission event, watching for, 47
submit button, disabling, 386
substr() method, using with

strings, 115
substring() method, using with

strings, 115
subtraction (-) operator, 100, 102
Subversion version control

software, 62
SWFObject library, 522
switch conditionals. See also

conditionals
calculator, 146–150
default case, 144
expressions, 145
fallthroughs, 144
identity matches, 144
membership.html file, 145–146
parentheses in, 143
quotes in, 143
using, 143–150

syntax highlighting, 60–61

t
tasks.js file

closure example, 540
creating, 196
custom objects example, 535–537
saving, 198

tax rate, including in calculator, 105
ternary operator, using, 150–151
testing

on browsers, 75–77
JavaScript, 77–79

test.js file, 434–436
tests

creating for utilities library,
485–488

defining for unit testing, 482–483
log() function, 487
preparing for, 484–485
running, 487
running for unit testing, 483–484
setUp() function, 484–485

tests.js file, 485–488
text, placing in HTML elements, 163.

See also plain text
text editor vs. IDE (Integrated

Development Environment)
choosing between, 66
code completion, 61
code intelligence, 61–62
common features, 60–64
comparing, 64–65
debugging, 63
file management, 62
HTML and CSS, 64
network monitor, 63
project management, 62
syntax highlighting, 60–61
unit testing, 63
version control software, 62
vi editor, 64

text editors, 64–65
BBEdit, 67
EditPlus, 66
Emacs, 67
features, 65
hardware resources, 64
Komodo Edit, 66
Notepad, 66
price range, 64

608 indeX

text editors (continued)
TextMate, 66
TextWrangler, 66
UltraEdit, 66
Vim, 67

text form input, assigning values
to, 106

text inputs
retrieving contents of, 387
value attribute, 387

textareas
retrieving contents of, 387
value attribute, 387

textContent property, using, 163
text.html page, 116–117
text.js file

for change events, 287
creating, 283
saving, 284, 287
using, 116–118

TextMate text editor, 66
TextWrangler text editor, 66
theme.js file, using with cookies and

CSS, 365–368
this variable

using with context, 254–257
using with events, 295

throwing exceptions, 477–478
time and date, showing, 178–180
time zones

getTimeZoneOffset() method, 181
using, 180–181

timers
changes in hash values, 372
clearInterval() function,

369–370
clearTimeout() function, 370
setInterval() function, 369
setTimeout() function, 369–370
stock quotes example, 465–469
using, 369–372

times, creating dates for, 172–173
timestamps, using, 174
today.js file

creating, 178
opening, 232
saving and testing, 234

to-do list, creating with arrays,
195–198

To-Do Manager, updating, 204–206
toLowerCase() function, using with

strings, 155
tooltips

creating, 383–385
hideTooltip() function, 385
hiding, 384
showTooltip() function, 385
visibility property, 384

toString() method, using in type
conversions, 125

touch devices, input events, 281
toUpperCase() function, using with

strings, 155
tree structure, 288–289
trim() method

using with prototype, 539
using with strings, 118

trinary operator, using, 150–151
TRUE

determining for control structures,
131, 133

vs. FALSE conditions, 135
true and false values, 99
try block

errors in, 475
throwing exception in, 477–478

try...catch block
finally clause, 476
syntax, 474
using, 478–479

type conversions
parseFloat() method, 123, 125
parseInt() method, 123, 125

performing, 122–125
toString() method, 125

type identification, alternative,
547–548

typeof operator
alternative, 547–548
Array type, 159–160
Boolean type, 159
NaN value, 159
Null type, 159–160
Number type, 159
Object type, 159
return values, 159
String type, 159
Undefined type, 159
using, 159–160
using with object properties, 211

typeof void delete operator, 102

u
U object

creating, 275
finishing declaration of, 277

UltraEdit text editor, 66
unary operators, 101–102, 104
undefined value, using, 99, 125
underscore (_), using with

variables, 97
Unicode character, returning, 296
unit testing, 481–482

defining tests, 482–483
logging results, 484
on multiple browsers, 487
performing, 485–488
setting up jsUnity library, 482
support for, 63

unload event, triggering, 284
unobtrusive JavaScript, 43, 52
unshift() method, using with

arrays, 200

indeX 609

URLs (Uniform Resource Locators)
part of, 331
creating, 331–332
deep linking, 331
parsing hash in, 331–332

user experience, improving, 24
UTC (Coordinated Universal Time),

180–181
utilities library

creating, 275–277
creating unit tests for, 485–488

utilities.js file, 275–277

v
validateForm() function, using, 47,

50–53
validating

HTML forms, 46
HTML pages, 28–29
JSON, 440
phone number, 418
XML, 440

validation, performing, 50–54
validation services, using, 83
validators, W3C Markup Validation

Service, 91
value attribute

using, 105–106
using with text inputs, 387
using with textareas, 387

value types
Booleans, 98
duck typing, 548
exponential notation, 98
Infinity value, 102
NaN value, 102
null, 99
numbers, 98
quotation marks, 98–99
strings, 98
testing, 548–549

true and false, 99
undefined, 99

values
assigning to variables, 98
equal vs. identical, 135
literals .vs objects, 94
passing to functions, 223–225
returning from functions, 234–238

var keyword, using, 95–96
variable scope

explained, 239
function parameters, 241–242

variables. See also global variables
applying functions to, 4
camel-case, 97
declaring, 94–96, 136
declaring outside of functions, 96
global scope, 95–96
hoisting, 96
identifiers, 97
local .vs global, 239–240
names, 97
undeclared, 95
use of underscore (_), 97
value types, 98–99
values, 98

version control software, using, 62
vi editor, using, 64
VideoJS library, 523
view.js for auction site. See also

JavaScript for auction site
getBids() function, 589
handleBidAjaxResponse()

function, 583
handleGetBidsAjaxResponse()

function, 586, 588
init() function, 589, 591
load handler, 591
structure, 581
submitBid() function, 585–586
writing for auction site, 581–591

view.php page
in auction site, 554–555
writing for auction site, 578–581

Vim text editor, 67
virtualization software, using, 76

W
W3C event handling, 271–273
W3C Markup Validation Service, 91
watch expressions, creating in

Firebug, 89–90
weakly-typed language, 5, 95
Web browsers. See browsers
Web sites

Adobe BrowserLab, 75
Adobe Dreamweaver IDE, 67–68
Ajaxload, 451
Apple Safari browser, 73
Aptana Studio IDE, 68
BBEdit, 67
Blackbird, 523
Brosera, 76
BrowserCam, 76
browserling, 76
browsers, 90
Browsershots, 75
Chrome, 70
Cloud Testing, 76
Crockford, Douglas, 90
CrossBrowserTesting, 76
The Dojo Toolkit, 16
Eclipse IDE, 68
ECMAScript 5, 22
EditPlus, 66
Edwards, Dean, 90
Eich, Brendon, 90
Emacs, 67
ExtJS framework, 16
Firebug Wiki, 89
Firefox browser, 6, 71

610 indeX

Web sites (continued)
Fuchs, Thomas, 90
Git version control software, 62
Google Chrome, 70
Graded Browser Support, 23
Head JS library, 522–523
Heilmann, Christian, 90
IntelliJ IDEA, 68
Internet Explorer, 72
Irish, Paul, 90
JetBrains IDEs, 68
jQuery framework, 16, 494
jQuery Mobile, 523
JS Bin tool, 78
jsFiddle, 79
JSHint validator, 83
JSLint validation service, 83
Komodo Edit, 66
Komodo IDE, 67
MAMP for Mac OS X, 430
MediaElement.js library, 523
Microjs, 523
Minify JavaScript, 548
Modernizr library, 522
Mogotest, 76
MooTools, 16
Mozilla Firefox browser, 6, 71
NetBeans IDE, 68
Notepad, 66
Opera browser, 72–73
PHP, 90
PhpStorm, 68
Prototype, 16
RequireJS library, 523
Resig, John, 90
Ruby, 90
Safari browser, 73
Sauce Labs, 76
script.aculo.us, 16
Sencha Touch, 523

Sexton, Alex, 90
Sharp, Remy, 90
Spoon software, 76
Subversion version control

software, 62
SWFObject library, 522
TextMate, 66
TextWrangler, 66
UltraEdit, 66
validation services, 83
version control software, 62
VideoJS library, 523
Vim, 67
W3C Markup Validation Service,

28, 91
WebStorm, 68
XAMPP for Windows, 430
YUI (Yahoo! User Interface), 16
Zepto, 523

WebStorm IDE, 68
while loop, using, 166
window object

close() method, 319
focus() method, 321
global, 313–315
height property, 320
innerHeight property, 316
innerWidth property, 316
left property, 320
location property, 320
members, 314
menubar property, 320
moveTo() method, 316–317
open() method, 318–320
outerHeight property, 316, 320
outerWidth property, 316, 320
print() method, 333
properties, 315
resizable property, 320
screen properties, 317

screenX property, 316
screenY property, 316
scrollbars property, 320
status property, 320
toolbar property, 320
top property, 320
width property, 320
window.navigator property, 315

window properties, document object,
333–334

window.frames property, 328
window.history.back() method,

343–344
window.location property

hash property, 330–332
search property, 330
using with browsers, 330

windows, 371. See also dialog
windows; modal windows

accessible solution, 322–324
addToSomething() function, 325
browser’s history, 326–328
changing focus, 321
communicating between, 325–326
creating, 318–319, 322
customizing pop-ups, 319–321
document object, 333–334
eval() function, 371
global window object, 313–315
printing pages, 333
redirecting browsers, 329–330
repositioning, 315–317
representative URLs, 331–332
resizing, 315–317
screen properties, 317
target attribute, 322

words.html page, 250–251
words.js file, 251–253

indeX 611

x
XAMPP for Windows, 430
XHTML

vs. HTML, 28
vs. HTML5, 36

XML (Extensible Markup Language)
documentElement, 442–443
fetching, 442
getAttribute() method, 443
getElementsByTagName()

method, 443
returning, 449–450
sending to server, 445
using with Ajax, 442–444
validating, 440

XMLHttpRequest object, 428–429
XPath expressions vs. CSS

selectors, 341

Y
Yahoo!, Graded Browser Support, 23
Yahoo! Query Language (YQL) utility,

using, 518–522
years, converting to numbers, 147
YQL (Yahoo! Query Language) utility,

using, 518–522
YUI (Yahoo! User Interface), 15–16
YUI Compressor, 549
YUI framework. See also frameworks

Autocomplete widget, 516–517
creating effects, 514–515

DOM manipulation, 513–514
handling events, 514
manipulating elements, 512–513
overview, 509
performing Ajax, 515
selecting elements, 511–512
skinning widgets, 516
using, 509–511
widgets and utilities, 516–522
YQL (Yahoo! Query Language)

utility, 518–522

z
Zepto library, 523

	Contents
	Introduction
	Welcome to JavaScript
	CHAPTER 4 SIMPLE VARIABLE TYPES
	Basics of Variables
	Working with Numbers
	Working with Strings
	Performing Type Conversions
	Review and Pursue
	Wrapping Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

