
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321812186
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321812186
https://plusone.google.com/share?url=http://www.informit.com/title/9780321812186
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321812186
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321812186/Free-Sample-Chapter

Praise for Effective JavaScript

“Living up to the expectation of an Effective Software Development Series pro-
gramming book, Effective JavaScript by Dave Herman is a must-read for anyone
who wants to do serious JavaScript programming. The book provides detailed
explanations of the inner workings of JavaScript, which helps readers take better
advantage of the language.”

—Erik Arvidsson, senior software engineer

“It’s uncommon to have a programming language wonk who can speak in such
comfortable and friendly language as David does. His walk through the syntax
and semantics of JavaScript is both charming and hugely insightful; reminders
of gotchas complement realistic use cases, paced at a comfortable curve. You’ll
find when you finish the book that you’ve gained a strong and comprehensive
sense of mastery.”

—Paul Irish, developer advocate, Google Chrome

“Before reading Effective JavaScript, I thought it would be just another book on
how to write better JavaScript. But this book delivers that and so much more—it
gives you a deep understanding of the language. And this is crucial. Without that
understanding you’ll know absolutely nothing whatever about the language itself.
You’ll only know how other programmers write their code.

“Read this book if you want to become a really good JavaScript developer. I, for
one, wish I had it when I first started writing JavaScript.”

—Anton Kovalyov, developer of JSHint

“If you’re looking for a book that gives you formal but highly readable insights into
the JavaScript language, look no further. Intermediate JavaScript developers will
find a treasure trove of knowledge inside, and even highly skilled JavaScripters
are almost guaranteed to learn a thing or ten. For experienced practitioners of
other languages looking to dive headfirst into JavaScript, this book is a must-
read for quickly getting up to speed. No matter what your background, though,
author Dave Herman does a fantastic job of exploring JavaScript—its beautiful
parts, its warts, and everything in between.”

—Rebecca Murphey, senior JavaScript developer, Bocoup

“Effective JavaScript is essential reading for anyone who understands that Java-
Script is no mere toy and wants to fully grasp the power it has to offer. Dave Her-
man brings users a deep, studied, and practical understanding of the language,
guiding them through example after example to help them come to the same
conclusions he has. This is not a book for those looking for shortcuts; rather, it
is hard-won experience distilled into a guided tour. It’s one of the few books on
JavaScript that I’ll recommend without hesitation.”

—Alex Russell, TC39 member, software engineer, Google

“Rarely does anyone have the opportunity to study alongside a master in their
craft. This book is just that—the JavaScript equivalent of a time-traveling philos-
opher visiting fifth century BC to study with Plato.”

—Rick Waldron, JavaScript evangelist, Bocoup

This page intentionally left blank

Effective JavaScript

The Effective Software Development Series provides expert advice on

all aspects of modern software development. Books in the series are well

written, technically sound, and of lasting value. Each describes the critical

things experts always do—or always avoid—to produce outstanding software.

Scott Meyers, author of the best-selling books Effective C++ (now in its

third edition), More Effective C++, and Effective STL (all available in both

print and electronic versions), conceived of the series and acts as its

consulting editor. Authors in the series work with Meyers to create essential

reading in a format that is familiar and accessible for software developers

of every stripe.

Visit informit.com/esds for a complete list of available publications.

The Effective Software
Development Series

Scott Meyers, Consulting Editor

Effective JavaScript
68 SPECIFIC WAYS TO HARNESS THE POWER

OF JAVASCRIPT

David Herman

Upper Saddle River, NJ • Boston • San Francisco • New York • Toronto
Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and content
particular to your business, training goals, marketing focus, and branding interests. For more
information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw.com

Library of Congress Cataloging-in-Publication Data

Herman, David.
 Effective JavaScript : 68 specific ways to harness the power of JavaScript / David
Herman.
 pages cm
 Includes index.
 ISBN 978-0-321-81218-6 (pbk. : alk. paper) 1. JavaScript (Computer program language)
I. Title.
 QA76.73.J39H47 2012
 005.2’762—dc23
 2012035939

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. To obtain permission to use material from
this work, please submit a written request to Pearson Education, Inc., Permissions Department,
One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201)
236-3290.

ISBN-13: 978-0-321-81218-6
ISBN-10: 0-321-81218-2
Text printed in the United States by RR Donnelley in Crawfordsville, Indiana.
Third printing, November 2013

For Lisa, my love

This page intentionally left blank

Contents

Foreword xiii

Preface xv

Acknowledgments xvii

About the Author xix

Chapter 1: Accustoming Yourself to JavaScript 1
Item 1: Know Which JavaScript You Are Using 1

Item 2: Understand JavaScript’s Floating-Point Numbers 7

Item 3: Beware of Implicit Coercions 9

Item 4: Prefer Primitives to Object Wrappers 15

Item 5: Avoid using == with Mixed Types 16

Item 6: Learn the Limits of Semicolon Insertion 19

Item 7: Think of Strings As Sequences of 16-Bit Code Units 25

Chapter 2: Variable Scope 31
Item 8: Minimize Use of the Global Object 31

Item 9: Always Declare Local Variables 34

Item 10: Avoid with 35

Item 11: Get Comfortable with Closures 39

Item 12: Understand Variable Hoisting 42

Item 13: Use Immediately Invoked Function Expressions to
Create Local Scopes 44

Item 14: Beware of Unportable Scoping of Named Function
Expressions 47

x Contents

Item 15: Beware of Unportable Scoping of Block-Local
Function Declarations 50

Item 16: Avoid Creating Local Variables with eval 52

Item 17: Prefer Indirect eval to Direct eval 54

Chapter 3: Working with Functions 57
Item 18: Understand the Difference between Function,

Method, and Constructor Calls 57

Item 19: Get Comfortable Using Higher-Order Functions 60

Item 20: Use call to Call Methods with a Custom Receiver 63

Item 21: Use apply to Call Functions with Different Numbers
of Arguments 65

Item 22: Use arguments to Create Variadic Functions 67

Item 23: Never Modify the arguments Object 68

Item 24: Use a Variable to Save a Reference to arguments 70

Item 25: Use bind to Extract Methods with a Fixed Receiver 72

Item 26: Use bind to Curry Functions 74

Item 27: Prefer Closures to Strings for Encapsulating Code 75

Item 28: Avoid Relying on the toString Method of Functions 77

Item 29: Avoid Nonstandard Stack Inspection Properties 79

Chapter 4: Objects and Prototypes 83
Item 30: Understand the Difference between prototype,

getPrototypeOf, and__proto__ 83

Item 31: Prefer Object.getPrototypeOf to __proto__ 87

Item 32: Never Modify __proto__ 88

Item 33: Make Your Constructors new-Agnostic 89

Item 34: Store Methods on Prototypes 92

Item 35: Use Closures to Store Private Data 94

Item 36: Store Instance State Only on Instance Objects 95

Item 37: Recognize the Implicit Binding of this 98

Item 38: Call Superclass Constructors from Subclass
Constructors 101

Item 39: Never Reuse Superclass Property Names 105

Item 40: Avoid Inheriting from Standard Classes 106

Item 41: Treat Prototypes As an Implementation Detail 109

Item 42: Avoid Reckless Monkey-Patching 110

Contents xi

Chapter 5: Arrays and Dictionaries 113
Item 43: Build Lightweight Dictionaries from Direct

Instances of Object 113

Item 44: Use null Prototypes to Prevent Prototype Pollution 116

Item 45: Use hasOwnProperty to Protect Against Prototype
Pollution 118

Item 46: Prefer Arrays to Dictionaries for Ordered Collections 123

Item 47: Never Add Enumerable Properties to
Object.prototype 125

Item 48: Avoid Modifying an Object during Enumeration 127

Item 49: Prefer for Loops to for...in Loops for Array Iteration 132

Item 50: Prefer Iteration Methods to Loops 133

Item 51: Reuse Generic Array Methods on Array-Like Objects 138

Item 52: Prefer Array Literals to the Array Constructor 140

Chapter 6: Library and API Design 143
Item 53: Maintain Consistent Conventions 143

Item 54: Treat undefined As “No Value” 144

Item 55: Accept Options Objects for Keyword Arguments 149

Item 56: Avoid Unnecessary State 153

Item 57: Use Structural Typing for Flexible Interfaces 156

Item 58: Distinguish between Array and Array-Like 160

Item 59: Avoid Excessive Coercion 164

Item 60: Support Method Chaining 167

Chapter 7: Concurrency 171
Item 61: Don’t Block the Event Queue on I/O 172

Item 62: Use Nested or Named Callbacks for Asynchronous
Sequencing 175

Item 63: Be Aware of Dropped Errors 179

Item 64: Use Recursion for Asynchronous Loops 183

Item 65: Don’t Block the Event Queue on Computation 186

Item 66: Use a Counter to Perform Concurrent Operations 190

Item 67: Never Call Asynchronous Callbacks Synchronously 194

Item 68: Use Promises for Cleaner Asynchronous Logic 197

Index 201

This page intentionally left blank

Foreword

As is well known at this point, I created JavaScript in ten days in May
1995, under duress and conflicting management imperatives—“make
it look like Java,” “make it easy for beginners,” “make it control almost
everything in the Netscape browser.”

Apart from getting two big things right (first-class functions, object
prototypes), my solution to the challenging requirements and crazy-
short schedule was to make JavaScript extremely malleable from
the start. I knew developers would have to “patch” the first few ver-
sions to fix bugs, and pioneer better approaches than what I had cob-
bled together in the way of built-in libraries. Where many languages
restrict mutability so that, for example, built-in objects cannot be
revised or extended at runtime, or standard library name bindings
cannot be overridden by assignment, JavaScript allows almost com-
plete alteration of every object.

I believe that this was a good design decision on balance. It clearly
presents challenges in certain domains (e.g., safely mixing trusted
and untrusted code within the browser’s security boundaries). But it
was critical to support so-called monkey-patching, whereby develop-
ers edited standard objects, both to work around bugs and to retro-
fit emulations of future functionality into old browsers (the so-called
polyfill library shim, which in American English would be called
“spackle”).

Beyond these sometimes mundane uses, JavaScript’s malleability
encouraged user innovation networks to form and grow along sev-
eral more creative paths. Lead users created toolkit or framework
libraries patterned on other languages: Prototype on Ruby, MochiKit
on Python, Dojo on Java, TIBET on Smalltalk. And then the jQuery
library (“New Wave JavaScript”), which seemed to me to be a relative
late-comer when I first saw it in 2007, took the JavaScript world by
storm by eschewing precedent in other languages while learning from

xiv Foreword

older JavaScript libraries, instead hewing to the “query and do” model
of the browser and simplifying it radically.

Lead users and their innovation networks thus developed a Java-
Script “home style,” which is still being emulated and simplified in
other libraries, and also folded into the modern web standardization
efforts.

In the course of this evolution, JavaScript has remained backward
(“bugward”) compatible and of course mutable by default, even with
the addition of certain methods in the latest version of the ECMAScript
standard for freezing objects against extension and sealing object
properties against being overwritten. And JavaScript’s evolutionary
journey is far from over. Just as with living languages and biologi-
cal systems, change is a constant over the long term. I still cannot
foresee a single “standard library” or coding style sweeping all others
before it.

No language is free of quirks or is so restrictive as to dictate universal
best practices, and JavaScript is far from quirk-free or restrictionist
(more nearly the opposite!). Therefore to be effective, more so than is
the case with most other programming languages, JavaScript devel-
opers must study and pursue good style, proper usage, and best prac-
tices. When considering what is most effective, I believe it’s crucial to
avoid overreacting and building rigid or dogmatic style guides.

This book takes a balanced approach based on concrete evidence
and experience, without swerving into rigidity or excessive prescrip-
tion. I think it will be a critical aid and trusty guide for many people
who seek to write effective JavaScript without sacrificing expressive-
ness and the freedom to pursue new ideas and paradigms. It’s also a
focused, fun read with terrific examples.

Finally, I have been privileged to know David Herman since 2006,
when I first made contact on behalf of Mozilla to engage him on the
Ecma standards body as an invited expert. Dave’s deep yet unpre-
tentious expertise and his enthusiasm for JavaScript shine through
every page. Bravo!

—Brendan Eich

Preface

Learning a programming language requires getting acquainted with
its syntax, the set of forms and structures that make up legal pro-
grams, and semantics, the meaning or behavior of those forms. But
beyond that, mastering a language requires understanding its prag-
matics, the ways in which the language’s features are used to build
effective programs. This latter category can be especially subtle, par-
ticularly in a language as flexible and expressive as JavaScript.

This book is concerned with the pragmatics of JavaScript. It is not an in-
troductory book; I assume you have some familiarity with Java Script
in particular and programming in general. There are many excellent
introductory books on JavaScript, such as Douglas Crockford’s Java-
Script: The Good Parts and Marijn Haverbeke’s Eloquent JavaScript.
My goal with this book is to help you deepen your understanding of
how to use JavaScript effectively to build more predictable, reliable,
and maintainable JavaScript applications and libraries.

JavaScript versus ECMAScript

It’s helpful to clarify some terminology before diving into the material
of this book. This book is about a language almost universally known
as JavaScript. Yet the official standard that defines the specification
describes a language it calls ECMAScript. The history is convoluted,
but it boils down to a matter of trademark: For legal reasons, the stan-
dards organization, Ecma International, was unable to use the name
“JavaScript” for its standard. (Adding insult to injury, the standards
organization changed its name from the original ECMA—an abbrevi-
ation for European Computer Manufacturers Association—to Ecma
International, without capitalization. By the time of the change, the
capitalized name ECMAScript was set in stone.)

Formally, when people refer to ECMAScript they are usually referring
to the “ideal” language specified by the Ecma standard. Meanwhile,

xvi Preface

the name JavaScript could mean anything from the language as it
exists in actual practice, to one vendor’s specific JavaScript engine.
In common usage, people often use the two terms interchangeably.
For the sake of clarity and consistency, in this book I will only use
ECMAScript to talk about the official standard; otherwise, I will refer
to the language as JavaScript. I also use the common abbreviation
ES5 to refer to the fifth edition of the ECMAScript standard.

On the Web

It’s hard to talk about JavaScript without talking about the web. To date,
JavaScript is the only programming language with built-in support in
all major web browsers for client-side application scripting. Moreover, in
recent years, JavaScript has become a popular language for implement-
ing server-side applications with the advent of the Node.js platform.

Nevertheless, this is a book about JavaScript, not about web pro-
gramming. At times, it’s helpful to talk about web-related examples
and applications of concepts. But the focus of this book is on the lan-
guage—its syntax, semantics, and pragmatics—rather than on the
APIs and technologies of the web platform.

A Note on Concurrency

A curious aspect of JavaScript is that its behavior in concurrent set-
tings is completely unspecified. Up to and including the fifth edition,
the ECMAScript standard says nothing about the behavior of Java-
Script programs in an interactive or concurrent environment. Chap-
ter 7 deals with concurrency and so technically describes unofficial
features of JavaScript. But in practice, all major JavaScript engines
share a common model of concurrency. And working with concurrent
and interactive programs is a central unifying concept of JavaScript
programming, despite its absence from the standard. In fact, future
editions of the ECMAScript standard may officially formalize these
shared aspects of the JavaScript concurrency model.

Acknowledgments

This book owes a great deal to JavaScript’s inventor, Brendan Eich.
I’m deeply grateful to Brendan for inviting me to participate in the
standardization of JavaScript and for his mentorship and support in
my career at Mozilla.

Much of the material in this book is inspired and informed by excellent
blog posts and online articles. I have learned a lot from posts by Ben
“cowboy” Alman, Erik Arvidsson, Mathias Bynens, Tim “ creationix”
Caswell, Michaeljohn “inimino” Clement, Angus Croll, Andrew Dupont,
Ariya Hidayat, Steven Levithan, Pan Thomakos, Jeff Walden, and
Juriy “kangax” Zaytsev. Of course, the ultimate resource for this book
is the ECMAScript specification, which has been tirelessly edited
and updated since Edition 5 by Allen Wirfs-Brock. And the Mozilla
Developer Network continues to be one of the most impressive and
high-quality online resources for JavaScript APIs and features.

I’ve had many advisors during the course of planning and writing this
book. John Resig gave me useful advice on authorship before I began.
Blake Kaplan and Patrick Walton helped me collect my thoughts and
plan out the organization of the book in the early stages. During the
course of the writing, I’ve gotten great advice from Brian Anderson,
Norbert Lindenberg, Sam Tobin-Hochstadt, Rick Waldron, and Pat-
rick Walton.

The staff at Pearson has been a pleasure to work with. Olivia Basegio,
Audrey Doyle, Trina MacDonald, Scott Meyers, and Chris Zahn have
been attentive to my questions, patient with my delays, and accom-
modating of my requests. I couldn’t imagine a more pleasant first
experience with authorship. And I am absolutely honored to contrib-
ute to this wonderful series. I’ve been a fan of Effective C++ since long
before I ever suspected I might have the privilege of writing an Effec-
tive book myself.

xviii Acknowledgments

I couldn’t believe my good fortune at finding such a dream team of
technical editors. I’m honored that Erik Arvidsson, Rebecca Mur-
phey, Rick Waldron, and Richard Worth agreed to edit this book, and
they’ve provided me with invaluable critiques and suggestions. On
more than one occasion they saved me from some truly embarrassing
errors.

Writing a book was more intimidating than I expected. I might have
lost my nerve if it weren’t for the support of friends and colleagues.
I don’t know if they knew it at the time, but Andy Denmark, Rick
Waldron, and Travis Winfrey gave me the encouragement I needed in
moments of doubt.

The vast majority of this book was written at the fabulous Java Beach
Café in San Francisco’s beautiful Parkside neighborhood. The staff
members all know my name and know what I’m going to order before
I order it. I am grateful to them for providing a cozy place to work and
keeping me fed and caffeinated.

My fuzzy little feline friend Schmoopy tried his best to contribute to
this book. At least, he kept hopping onto my lap and sitting in front of
the screen. (This might have something to do with the warmth of the
laptop.) Schmoopy has been my loyal buddy since 2006, and I can’t
imagine my life without the little furball.

My entire family has been supportive and excited about this project
from beginning to end. Sadly, my grandparents Frank and Miriam
Slamar both passed away before I could share the final product with
them. But they were excited and proud for me, and there’s a little
piece of my boyhood experiences writing BASIC programs with Frank
in this book.

Finally, I owe the love of my life, Lisa Silveria, more than could ever be
repaid in an introduction.

About the Author

David Herman is a senior researcher at Mozilla Research. He holds
a BA in computer science from Grinnell College and an MS and PhD
in computer science from Northeastern University. David serves on
Ecma TC39, the committee responsible for the standardization of
JavaScript.

This page intentionally left blank

1 Accustoming
Yourself to
JavaScript

JavaScript was designed to feel familiar. With syntax reminiscent of
Java and constructs common to many scripting languages (such as
functions, arrays, dictionaries, and regular expressions), JavaScript
seems like a quick learn to anyone with a little programming experi-
ence. And for novice programmers, it’s possible to get started writing
programs with relatively little training thanks to the small number of
core concepts in the language.

As approachable as JavaScript is, mastering the language takes more
time, and requires a deeper understanding of its semantics, its idio-
syncrasies, and its most effective idioms. Each chapter of this book
covers a different thematic area of effective JavaScript. This first
chapter begins with some of the most fundamental topics.

Item 1: Know Which JavaScript You Are Using

Like most successful technologies, JavaScript has evolved over time.
Originally marketed as a complement to Java for programming inter-
active web pages, JavaScript eventually supplanted Java as the web’s
dominant programming language. JavaScript’s popularity led to its
formalization in 1997 as an international standard, known officially
as ECMAScript. Today there are many competing implementations of
JavaScript providing conformance to various versions of the ECMA-
Script standard.

The third edition of the ECMAScript standard (commonly referred
to as ES3), which was finalized in 1999, continues to be the most
widely adopted version of Java Script. The next major advancement to
the standard was Edition 5, or ES5, which was released in 2009. ES5
introduced a number of new features as well as standardizing some
widely supported but previously unspecified features. Because ES5
support is not yet ubiquitous, I will point out throughout this book
whenever a particular Item or piece of advice is specific to ES5.

2 Chapter 1 Accustoming Yourself to JavaScript

In addition to multiple editions of the standard, there are a number of
nonstandard features that are supported by some JavaScript imple-
mentations but not others. For example, many JavaScript engines
support a const keyword for defining variables, yet the ECMAScript
standard does not provide any definition for the syntax or behavior
of const. Moreover, the behavior of const differs from implementation
to implementation. In some cases, const variables are prevented from
being updated:

const PI = 3.141592653589793;
PI = "modified!";
PI; // 3.141592653589793

Other implementations simply treat const as a synonym for var:

const PI = 3.141592653589793;
PI = "modified!";
PI; // "modified!"

Given JavaScript’s long history and diversity of implementations, it
can be difficult to keep track of which features are available on which
platform. Compounding this problem is the fact that JavaScript’s pri-
mary ecosystem—the web browser—does not give programmers con-
trol over which version of JavaScript is available to execute their code.
Since end users may use different versions of different web browsers,
web programs have to be written carefully to work consistently across
all browsers.

On the other hand, JavaScript is not exclusively used for client-side
web programming. Other uses include server-side programs, browser
extensions, and scripting for mobile and desktop applications. In
some of these cases, you may have a much more specific version of
JavaScript available to you. For these cases, it makes sense to take
advantage of additional features specific to the platform’s particular
implementation of JavaScript.

This book is concerned primarily with standard features of Java-
Script. But it is also important to discuss certain widely supported
but nonstandard features. When dealing with newer standards or
nonstandard features, it is critical to understand whether your appli-
cations will run in environments that support those features. Oth-
erwise, you may find yourself in situations where your applications
work as intended on your own computer or testing infrastructure, but
fail when you deploy them to users running your application in differ-
ent environments. For example, const may work fine when tested on
an engine that supports the nonstandard feature but then fail with a

 Item 1: Know Which JavaScript You Are Using 3

syntax error when deployed in a web browser that does not recognize
the keyword.

ES5 introduced another versioning consideration with its strict mode.
This feature allows you to opt in to a restricted version of JavaScript
that disallows some of the more problematic or error-prone features
of the full language. The syntax was designed to be backward-
compatible so that environments that do not implement the strict-
mode checks can still execute strict code. Strict mode is enabled in a
program by adding a special string constant at the very beginning of
the program:

"use strict";

Similarly, you can enable strict mode in a function by placing the
directive at the beginning of the function body:

function f(x) {
"use strict";
// ...

}

The use of a string literal for the directive syntax looks a little strange,
but it has the benefit of backward compatibility: Evaluating a string
literal has no side effects, so an ES3 engine executes the directive as
an innocuous statement—it evaluates the string and then discards
its value immediately. This makes it possible to write code in strict
mode that runs in older JavaScript engines, but with a crucial lim-
itation: The old engines will not perform any of the checks of strict
mode. If you don’t test in an ES5 environment, it’s all too easy to write
code that will be rejected when run in an ES5 environment:

function f(x) {
"use strict";
var arguments = []; // error: redefinition of arguments
// ...

}

Redefining the arguments variable is disallowed in strict mode, but
an environment that does not implement the strict-mode checks
will accept this code. Deploying this code in production would then
cause the program to fail in environments that implement ES5. For
this reason you should always test strict code in fully compliant ES5
environments.

One pitfall of using strict mode is that the "use strict" directive is
only recognized at the top of a script or function, which makes it sen-
sitive to script concatenation, where large applications are developed

4 Chapter 1 Accustoming Yourself to JavaScript

in separate files that are then combined into a single file for deploying
in production. Consider one file that expects to be in strict mode:

// file1.js
"use strict";
function f() {

// ...
}
// ...

and another file that expects not to be in strict mode:

// file2.js
// no strict-mode directive
function g() {

var arguments = [];
// ...

}
// ...

How can we concatenate these two files correctly? If we start with
file1.js, then the whole combined file is in strict mode:

// file1.js
"use strict";
function f() {

// ...
}
// ...
// file2.js
// no strict-mode directive
function f() {
 var arguments = []; // error: redefinition of arguments

// ...
}
// ...

And if we start with file2.js, then none of the combined file is in
strict mode:

// file2.js
// no strict-mode directive
function g() {

var arguments = [];
// ...

}
// ...
// file1.js

 Item 1: Know Which JavaScript You Are Using 5

"use strict";
function f() { // no longer strict

// ...
}
// ...

In your own projects, you could stick to a “strict-mode only” or “non-
strict-mode only” policy, but if you want to write robust code that can
be combined with a wide variety of code, you have a few alternatives.

Never concatenate strict files and nonstrict files. This is probably the
easiest solution, but it of course restricts the amount of control you
have over the file structure of your application or library. At best, you
have to deploy two separate files, one containing all the strict files
and one containing the nonstrict files.

Concatenate files by wrapping their bodies in immediately invoked
function expressions. Item 13 provides an in-depth explanation of
immediately invoked function expressions (IIFEs), but in short, by
wrapping each file’s contents in a function, they can be independently
interpreted in different modes. The concatenated version of the above
example would look like this:

// no strict-mode directive
(function() {
 // file1.js
 "use strict";
 function f() {

// ...
 }
 // ...
})();
(function() {
 // file2.js
 // no strict-mode directive
 function f() {
 var arguments = [];

// ...
 }
 // ...
})();

Since each file’s contents are placed in a separate scope, the strict-
mode directive (or lack of one) only affects that file’s contents. For this
approach to work, however, the contents of files cannot assume that
they are interpreted at global scope. For example, var and function
declarations do not persist as global variables (see Item 8 for more on

6 Chapter 1 Accustoming Yourself to JavaScript

globals). This happens to be the case with popular module systems,
which manage files and dependencies by automatically placing each
module’s contents in a separate function. Since files are all placed in
local scopes, each file can make its own decision about whether to
use strict mode.

Write your files so that they behave the same in either mode. To write
a library that works in as many contexts as possible, you cannot
assume that it will be placed inside the contents of a function by a
script concatenation tool, nor can you assume whether the client
codebase will be strict or nonstrict. The simplest way to structure
your code for maximum compatibility is to write for strict mode but
explicitly wrap the contents of all your code in functions that enable
strict mode locally. This is similar to the previous solution, in that
you wrap each file’s contents in an IIFE, but in this case you write
the IIFE by hand instead of trusting the concatenation tool or module
system to do it for you, and explicitly opt in to strict mode:

(function() {
 "use strict";
 function f() {

// ...
 }
 // ...
})();

Notice that this code is treated as strict regardless of whether it is
concatenated in a strict or nonstrict context. By contrast, a function
that does not opt in to strict mode will still be treated as strict if it
is concatenated after strict code. So the more universally compatible
option is to write in strict mode.

Things to Remember

✦ Decide which versions of JavaScript your application supports.

✦ Be sure that any JavaScript features you use are supported by all
environments where your application runs.

✦ Always test strict code in environments that perform the strict-
mode checks.

✦ Beware of concatenating scripts that differ in their expectations
about strict mode.

 Item 2: Understand JavaScript’s Floating-Point Numbers 7

Item 2: Understand JavaScript’s Floating-Point
Numbers

Most programming languages have several types of numeric data, but
JavaScript gets away with just one. You can see this reflected in the
behavior of the typeof operator, which classifies integers and float-
ing-point numbers alike simply as numbers:

typeof 17; // "number"
typeof 98.6; // "number"
typeof -2.1; // "number"

In fact, all numbers in JavaScript are double-precision floating-point
numbers, that is, the 64-bit encoding of numbers specified by the
IEEE 754 standard—commonly known as “doubles.” If this fact
leaves you wondering what happened to the integers, keep in mind
that doubles can represent integers perfectly with up to 53 bits of
precision. All of the integers from –9,007,199,254,740,992 (–253) to
9,007,199,254,740,992 (253) are valid doubles. So it’s perfectly pos-
sible to do integer arithmetic in JavaScript, despite the lack of a dis-
tinct integer type.

Most arithmetic operators work with integers, real numbers, or a
combination of the two:

0.1 * 1.9 // 0.19
-99 + 100; // 1
21 - 12.3; // 8.7
2.5 / 5; // 0.5
21 % 8; // 5

The bitwise arithmetic operators, however, are special. Rather than
operating on their arguments directly as floating-point numbers, they
implicitly convert them to 32-bit integers. (To be precise, they are
treated as 32-bit, big-endian, two’s complement integers.) For example,
take the bitwise OR expression:

8 | 1; // 9

This simple-looking expression actually requires several steps to eval-
uate. As always, the JavaScript numbers 8 and 1 are doubles. But
they can also be represented as 32-bit integers, that is, sequences of
thirty-two 1’s and 0’s. As a 32-bit integer, the number 8 looks like this:

00000000000000000000000000001000

You can see this for yourself by using the toString method of numbers:

(8).toString(2); // "1000"

8 Chapter 1 Accustoming Yourself to JavaScript

The argument to toString specifies the radix, in this case indicating
a base 2 (i.e., binary) representation. The result drops the extra 0 bits
on the left since they don’t affect the value.

The integer 1 is represented in 32 bits as:

00000000000000000000000000000001

The bitwise OR expression combines the two bit sequences by keeping
any 1 bits found in either input, resulting in the bit pattern:

00000000000000000000000000001001

This sequence represents the integer 9. You can verify this by using
the standard library function parseInt, again with a radix of 2:

parseInt("1001", 2); // 9

(The leading 0 bits are unnecessary since, again, they don’t affect the
result.)

All of the bitwise operators work the same way, converting their
inputs to integers and performing their operations on the integer
bit patterns before converting the results back to standard Java-
Script floating-point numbers. In general, these conversions require
extra work in Java Script engines: Since numbers are stored as
floating-point, they have to be converted to integers and then back to
floating-point again. However, optimizing compilers can sometimes
infer when arithmetic expressions and even variables work exclu-
sively with integers, and avoid the extra conversions by storing the
data internally as integers.

A final note of caution about floating-point numbers: If they don’t
make you at least a little nervous, they probably should. Float-
ing-point numbers look deceptively familiar, but they are notoriously
inaccurate. Even some of the simplest-looking arithmetic can produce
inaccurate results:

0.1 + 0.2; // 0.30000000000000004

While 64 bits of precision is reasonably large, doubles can still only
represent a finite set of numbers, rather than the infinite set of real
numbers. Floating-point arithmetic can only produce approximate
results, rounding to the nearest representable real number. When
you perform a sequence of calculations, these rounding errors can
accumulate, leading to less and less accurate results. Rounding also
causes surprising deviations from the kind of properties we usu-
ally expect of arithmetic. For example, real numbers are associative,

 Item 3: Beware of Implicit Coercions 9

meaning that for any real numbers x, y, and z, it’s always the case
that (x + y) + z = x + (y + z).

But this is not always true of floating-point numbers:

(0.1 + 0.2) + 0.3; // 0.6000000000000001
0.1 + (0.2 + 0.3); // 0.6

Floating-point numbers offer a trade-off between accuracy and per-
formance. When accuracy matters, it’s critical to be aware of their
limitations. One useful workaround is to work with integer values
wherever possible, since they can be represented without rounding.
When doing calculations with money, programmers often scale num-
bers up to work with the currency’s smallest denomination so that
they can compute with whole numbers. For example, if the above cal-
culation were measured in dollars, we could work with whole num-
bers of cents instead:

(10 + 20) + 30; // 60
10 + (20 + 30); // 60

With integers, you still have to take care that all calculations fit
within the range between –253 and 253, but you don’t have to worry
about rounding errors.

Things to Remember

✦ JavaScript numbers are double-precision floating-point numbers.

✦ Integers in JavaScript are just a subset of doubles rather than a
separate datatype.

✦ Bitwise operators treat numbers as if they were 32-bit signed integers.

✦ Be aware of limitations of precisions in floating-point arithmetic.

Item 3: Beware of Implicit Coercions

JavaScript can be surprisingly forgiving when it comes to type errors.
Many languages consider an expression like

3 + true; // 4

to be an error, because boolean expressions such as true are incom-
patible with arithmetic. In a statically typed language, a program
with such an expression would not even be allowed to run. In some
dynamically typed languages, while the program would run, such an
expression would throw an exception. JavaScript not only allows the
program to run, but it happily produces the result 4!

10 Chapter 1 Accustoming Yourself to JavaScript

There are a handful of cases in JavaScript where providing the wrong
type produces an immediate error, such as calling a nonfunction or
attempting to select a property of null:

"hello"(1); // error: not a function
null.x; // error: cannot read property 'x' of null

But in many other cases, rather than raising an error, JavaScript
coerces a value to the expected type by following various automatic
conversion protocols. For example, the arithmetic operators -, *, /,
and % all attempt to convert their arguments to numbers before doing
their calculation. The operator + is subtler, because it is overloaded to
perform either numeric addition or string concatenation, depending
on the types of its arguments:

2 + 3; // 5
"hello" + " world"; // "hello world"

Now, what happens when you combine a number and a string? Java-
Script breaks the tie in favor of strings, converting the number to a
string:

"2" + 3; // "23"
2 + "3"; // "23"

Mixing types like this can sometimes be confusing, especially because
it’s sensitive to the order of operations. Take the expression:

1 + 2 + "3"; // "33"

Since addition groups to the left (i.e., is left-associative), this is the
same as:

(1 + 2) + "3"; // "33"

By contrast, the expression

1 + "2" + 3; // "123"

evaluates to the string "123"—again, left-associativity dictates that
the expression is equivalent to wrapping the left-hand addition in
parentheses:

(1 + "2") + 3; // "123"

The bitwise operations not only convert to numbers but to the subset
of numbers that can be represented as 32-bit integers, as discussed
in Item 2. These include the bitwise arithmetic operators (~, &, ^, and
|) and the shift operators (<<, >>, and >>>).

 Item 3: Beware of Implicit Coercions 11

These coercions can be seductively convenient—for example, for auto-
matically converting strings that come from user input, a text file, or
a network stream:

"17" * 3; // 51
"8" | "1"; // 9

But coercions can also hide errors. A variable that turns out to be
null will not fail in an arithmetic calculation, but silently convert
to 0; an undefined variable will convert to the special floating-point
value NaN (the paradoxically named “not a number” number—blame
the IEEE floating-point standard!). Rather than immediately throw-
ing an exception, these coercions cause the calculation to continue
with often confusing and unpredictable results. Frustratingly, it’s
particularly difficult even to test for the NaN value, for two reasons.
First, JavaScript follows the IEEE floating-point standard’s head-
scratching requirement that NaN be treated as unequal to itself. So
testing whether a value is equal to NaN doesn’t work at all:

var x = NaN;
x === NaN; // false

Moreover, the standard isNaN library function is not very reliable
because it comes with its own implicit coercion, converting its argu-
ment to a number before testing the value. (A more accurate name for
isNaN probably would have been coercesToNaN.) If you already know
that a value is a number, you can test it for NaN with isNaN:

isNaN(NaN); // true

But other values that are definitely not NaN, yet are nevertheless
coercible to NaN, are indistinguishable to isNaN:

isNaN("foo"); // true
isNaN(undefined); // true
isNaN({}); // true
isNaN({ valueOf: "foo" }); // true

Luckily there’s an idiom that is both reliable and concise—if some-
what unintuitive—for testing for NaN. Since NaN is the only JavaScript
value that is treated as unequal to itself, you can always test if a
value is NaN by checking it for equality to itself:

var a = NaN;
a !== a; // true
var b = "foo";
b !== b; // false

12 Chapter 1 Accustoming Yourself to JavaScript

var c = undefined;
c !== c; // false
var d = {};
d !== d; // false
var e = { valueOf: "foo" };
e !== e; // false

You can also abstract this pattern into a clearly named utility
function:

function isReallyNaN(x) {
return x !== x;

}

But testing a value for inequality to itself is so concise that it’s com-
monly used without a helper function, so it’s important to recognize
and understand.

Silent coercions can make debugging a broken program particularly
frustrating, since they cover up errors and make them harder to diag-
nose. When a calculation goes wrong, the best approach to debugging
is to inspect the intermediate results of a calculation, working back to
the last point before things went wrong. From there, you can inspect
the arguments of each operation, looking for arguments of the wrong
type. Depending on the bug, it could be a logical error, such as using
the wrong arithmetic operator, or a type error, such as passing the
undefined value instead of a number.

Objects can also be coerced to primitives. This is most commonly
used for converting to strings:

"the Math object: " + Math; // "the Math object: [object Math]"
"the JSON object: " + JSON; // "the JSON object: [object JSON]"

Objects are converted to strings by implicitly calling their toString
method. You can test this out by calling it yourself:

Math.toString(); // "[object Math]"
JSON.toString(); // "[object JSON]"

Similarly, objects can be converted to numbers via their valueOf
method. You can control the type conversion of objects by defining
these methods:

"J" + { toString: function() { return "S"; } }; // "JS"
2 * { valueOf: function() { return 3; } }; // 6

Once again, things get tricky when you consider that + is overloaded
to perform both string concatenation and addition. Specifically, when

 Item 3: Beware of Implicit Coercions 13

an object contains both a toString and a valueOf method, it’s not
obvious which method + should call: It’s supposed to choose between
concatenation and addition based on types, but with implicit coer-
cion, the types are not actually given! JavaScript resolves this ambi-
guity by blindly choosing valueOf over toString. But this means that
if someone intends to perform a string concatenation with an object,
it can behave unexpectedly:

var obj = {
 toString: function() {

return "[object MyObject]";
 },
 valueOf: function() {

return 17;
 }
};
"object: " + obj; // "object: 17"

The moral of this story is that valueOf was really only designed to
be used for objects that represent numeric values such as Number
objects. For these objects, the toString and valueOf methods return
consistent results—a string representation or numeric representation
of the same number—so the overloaded + always behaves consistently
regardless of whether the object is used for concatenation or addi-
tion. In general, coercion to strings is far more common and useful
than coercion to numbers. It’s best to avoid valueOf unless your object
really is a numeric abstraction and obj.toString() produces a string
representation of obj.valueOf().

The last kind of coercion is sometimes known as truthiness. Oper-
ators such as if, ||, and && logically work with boolean values, but
actually accept any values. JavaScript values are interpreted as bool-
ean values according to a simple implicit coercion. Most JavaScript
values are truthy, that is, implicitly coerced to true. This includes
all objects—unlike string and number coercion, truthiness does not
involve implicitly invoking any coercion methods. There are exactly
seven falsy values: false, 0, -0, "", NaN, null, and undefined. All other
values are truthy. Since numbers and strings can be falsy, it’s not
always safe to use truthiness to check whether a function argument
or object property is defined. Consider a function that takes optional
arguments with default values:

function point(x, y) {
if (!x) {

 x = 320;
 }

14 Chapter 1 Accustoming Yourself to JavaScript

if (!y) {
 y = 240;
 }

return { x: x, y: y };
}

This function ignores any falsy arguments, which includes 0:

point(0, 0); // { x: 320, y: 240 }

The more precise way to check for undefined is to use typeof:

function point(x, y) {
if (typeof x === "undefined") {

 x = 320;
 }

if (typeof y === "undefined") {
 y = 240;
 }

return { x: x, y: y };
}

This version of point correctly distinguishes between 0 and undefined:

point(); // { x: 320, y: 240 }
point(0, 0); // { x: 0, y: 0 }

Another approach is to compare to undefined:

if (x === undefined) { ... }

Item 54 discusses the implications of truthiness testing for library
and API design.

Things to Remember

✦ Type errors can be silently hidden by implicit coercions.

✦ The + operator is overloaded to do addition or string concatenation
depending on its argument types.

✦ Objects are coerced to numbers via valueOf and to strings via
toString.

✦ Objects with valueOf methods should implement a toString method
that provides a string representation of the number produced by
valueOf.

✦ Use typeof or comparison to undefined rather than truthiness to
test for undefined values.

 Item 4: Prefer Primitives to Object Wrappers 15

Item 4: Prefer Primitives to Object Wrappers

In addition to objects, JavaScript has five types of primitive values:
booleans, numbers, strings, null, and undefined. (Confusingly, the
typeof operator reports the type of null as "object", but the ECMA-
Script standard describes it as a distinct type.) At the same time, the
standard library provides constructors for wrapping booleans, num-
bers, and strings as objects. You can create a String object that wraps
a string value:

var s = new String("hello");

In some ways, a String object behaves similarly to the string value it
wraps. You can concatenate it with other values to create strings:

s + " world"; // "hello world"

You can extract its indexed substrings:

s[4]; // "o"

But unlike primitive strings, a String object is a true object:

typeof "hello"; // "string"
typeof s; // "object"

This is an important difference, because it means that you can’t
compare the contents of two distinct String objects using built-in
operators:

var s1 = new String("hello");
var s2 = new String("hello");
s1 === s2; // false

Since each String object is a separate object, it is only ever equal to
itself. The same is true for the nonstrict equality operator:

s1 == s2; // false

Since these wrappers don’t behave quite right, they don’t serve much
of a purpose. The main justification for their existence is their util-
ity methods. JavaScript makes these convenient to use with another
implicit coercion: You can extract properties and call methods of a
primitive value, and it acts as though you had wrapped the value
with its corresponding object type. For example, the String prototype
object has a toUpperCase method, which converts a string to upper-
case. You can use this method on a primitive string value:

"hello".toUpperCase(); // "HELLO"

16 Chapter 1 Accustoming Yourself to JavaScript

A strange consequence of this implicit wrapping is that you can set
properties on primitive values with essentially no effect:

"hello".someProperty = 17;
"hello".someProperty; // undefined

Since the implicit wrapping produces a new String object each time
it occurs, the update to the first wrapper object has no lasting effect.
There’s really no point to setting properties on primitive values, but
it’s worth being aware of this behavior. It turns out to be another
instance of where JavaScript can hide type errors: If you set prop-
erties on what you expect to be an object, but use a primitive value
by mistake, your program will simply silently ignore the update and
continue. This can easily cause the error to go undetected and make
it harder to diagnose.

Things to Remember

✦ Object wrappers for primitive types do not have the same behavior
as their primitive values when compared for equality.

✦ Getting and setting properties on primitives implicitly creates object
wrappers.

Item 5: Avoid using == with Mixed Types

What would you expect to be the value of this expression?

"1.0e0" == { valueOf: function() { return true; } };

These two seemingly unrelated values are actually considered equiv-
alent by the == operator because, like the implicit coercions described
in Item 3, they are both converted to numbers before being compared.
The string "1.0e0" parses as the number 1, and the object is con-
verted to a number by calling its valueOf method and converting the
result (true) to a number, which also produces 1.

It’s tempting to use these coercions for tasks like reading a field from
a web form and comparing it with a number:

var today = new Date();

if (form.month.value == (today.getMonth() + 1) &&
 form.day.value == today.getDate()) {

// happy birthday!
// ...

}

 Item 5: Avoid using == with Mixed Types 17

But it’s actually easy to convert values to numbers explicitly using the
Number function or the unary + operator:

var today = new Date();

if (+form.month.value == (today.getMonth() + 1) &&
 +form.day.value == today.getDate()) {

// happy birthday!
// ...

}

This is clearer, because it conveys to readers of your code exactly
what conversion is being applied, without requiring them to memorize
the conversion rules. An even better alternative is to use the strict
equality operator:

var today = new Date();

if (+form.month.value === (today.getMonth() + 1) && // strict
 +form.day.value === today.getDate()) { // strict

// happy birthday!
// ...

}

When the two arguments are of the same type, there’s no difference in
behavior between == and ===. So if you know that the arguments are
of the same type, they are interchangeable. But using strict equality
is a good way to make it clear to readers that there is no conversion
involved in the comparison. Otherwise, you require readers to recall
the exact coercion rules to decipher your code’s behavior.

As it turns out, these coercion rules are not at all obvious. Table 1.1
contains the coercion rules for the == operator when its arguments
are of different types. The rules are symmetric: For example, the first
rule applies to both null == undefined and undefined == null. Most of
the time, the conversions attempt to produce numbers. But the rules
get subtle when they deal with objects. The operation tries to con-
vert an object to a primitive value by calling its valueOf and toString
methods, using the first primitive value it gets. Even more subtly, Date
objects try these two methods in the opposite order.

The == operator deceptively appears to paper over different representa-
tions of data. This kind of error correction is sometimes known as “do
what I mean” semantics. But computers cannot really read your mind.
There are too many data representations in the world for JavaScript

18 Chapter 1 Accustoming Yourself to JavaScript

to know which one you are using. For example, you might hope that
you could compare a string containing a date to a Date object:

var date = new Date("1999/12/31");
date == "1999/12/31"; // false

This particular example fails because converting a Date object to a
string produces a different format than the one used in the example:

date.toString(); // "Fri Dec 31 1999 00:00:00 GMT-0800 (PST)"

But the mistake is symptomatic of a more general misunderstanding
of coercions. The == operator does not infer and unify arbitrary data
formats. It requires both you and your readers to understand its sub-
tle coercion rules. A better policy is to make the conversions explicit
with custom application logic and use the strict equality operator:

function toYMD(date) {
var y = date.getYear() + 1900, // year is 1900-indexed

 m = date.getMonth() + 1, // month is 0-indexed
 d = date.getDate();

return y
 + "/" + (m < 10 ? "0" + m : m)
 + "/" + (d < 10 ? "0" + d : d);
}
toYMD(date) === "1999/12/31"; // true

Table 1.1 Coercion Rules for the == Operator

Argument Type 1 Argument Type 2 Coercions

null undefined None; always true

null or undefined Any other than
null or undefined

None; always false

Primitive string,
number, or boolean

Date object Primitive => number, Date
object => primitive (try toString
and then valueOf)

Primitive string,
number, or boolean

Non-Date object Primitive => number, non-Date
object => primitive (try valueOf
and then toString)

Primitive string,
number, or boolean

Primitive string,
number, or boolean

Primitive => number

 Item 6: Learn the Limits of Semicolon Insertion 19

Making conversions explicit ensures that you don’t mix up the coer-
cion rules of ==, and—even better—relieves your readers from having
to look up the coercion rules or memorize them.

Things to Remember

✦ The == operator applies a confusing set of implicit coercions when
its arguments are of different types.

✦ Use === to make it clear to your readers that your comparison does
not involve any implicit coercions.

✦ Use your own explicit coercions when comparing values of different
types to make your program’s behavior clearer.

Item 6: Learn the Limits of Semicolon Insertion

One of JavaScript’s conveniences is the ability to leave off state-
ment-terminating semicolons. Dropping semicolons results in a pleas-
antly lightweight aesthetic:

function Point(x, y) {
this.x = x || 0
this.y = y || 0

}

Point.prototype.isOrigin = function() {
return this.x === 0 && this.y === 0

}

This works thanks to automatic semicolon insertion, a program pars-
ing technique that infers omitted semicolons in certain contexts,
effectively “inserting” the semicolon into the program for you auto-
matically. The ECMAScript standard precisely specifies the semicolon
insertion mechanism, so optional semicolons are portable between
JavaScript engines.

But similar to the implicit coercions of Items 3 and 5, semicolon
insertion has its pitfalls, and you simply can’t avoid learning its rules.
Even if you never omit semicolons, there are additional restrictions in
the JavaScript syntax that are consequences of semicolon insertion.
The good news is that once you learn the rules of semicolon insertion,
you may find it liberating to drop unnecessary semicolons.

The first rule of semicolon insertion is:

Semicolons are only ever inserted before a } token, after one or more
newlines, or at the end of the program input.

20 Chapter 1 Accustoming Yourself to JavaScript

In other words, you can only leave out semicolons at the end of a line,
block, or program. So the following are legal functions:

function square(x) {
var n = +x
return n * n

}
function area(r) { r = +r; return Math.PI * r * r }
function add1(x) { return x + 1 }

But this is not:

function area(r) { r = +r return Math.PI * r * r } // error

The second rule of semicolon insertion is:

Semicolons are only ever inserted when the next input token cannot be
parsed.

In other words, semicolon insertion is an error correction mechanism.
As a simple example, this snippet:

a = b
(f());

parses just fine as a single statement, equivalent to:

a = b(f());

That is, no semicolon is inserted. By contrast, this snippet:

a = b
f();

is parsed as two separate statements, because

a = b f();

is a parse error.

This rule has an unfortunate implication: You always have to pay
attention to the start of the next statement to detect whether you can
legally omit a semicolon. You can’t leave off a statement’s semicolon if
the next line’s initial token could be interpreted as a continuation of
the statement.

There are exactly five problematic characters to watch out for: (, [, +,
-, and /. Each one of these can act either as an expression operator
or as the prefix of a statement, depending on the context. So watch
out for statements that end with an expression, like the assignment
statement above. If the next line starts with any of the five prob-
lematic characters, no semicolon will be inserted. By far, the most
common scenario where this occurs is a statement beginning with a

 Item 6: Learn the Limits of Semicolon Insertion 21

parenthesis, like the example above. Another common scenario is an
array literal:

a = b
["r", "g", "b"].forEach(function(key) {
 background[key] = foreground[key] / 2;
});

This looks like two statements: an assignment followed by a state-
ment that calls a function on the strings "r", "g", and "b" in order.
But because the statement begins with [, it parses as a single state-
ment, equivalent to:

a = b["r", "g", "b"].forEach(function(key) {
 background[key] = foreground[key] / 2;
});

If that bracketed expression looks odd, remember that JavaScript
allows comma-separated expressions, which evaluate from left to
right and return the value of their last subexpression: in this case,
the string "b".

The +, -, and / tokens are less commonly found at the beginning of
statements, but it’s not unheard of. The case of / is particularly sub-
tle: At the start of a statement, it is actually not an entire token but
the beginning of a regular expression token:

/Error/i.test(str) && fail();

This statement tests a string with the case-insensitive regular expres-
sion /Error/i. If a match is found, the statement calls the fail func-
tion. But if this code follows an unterminated assignment:

a = b
/Error/i.test(str) && fail();

then the code parses as a single statement equivalent to:

a = b / Error / i.test(str) && fail();

In other words, the initial / token parses as the division operator!

Experienced JavaScript programmers learn to look at the line follow-
ing a statement whenever they want to leave out a semicolon, to make
sure the statement won’t be parsed incorrectly. They also take care
when refactoring. For example, a perfectly correct program with three
inferred semicolons:

a = b // semicolon inferred
var x // semicolon inferred
(f()) // semicolon inferred

22 Chapter 1 Accustoming Yourself to JavaScript

can unexpectedly change to a different program with only two inferred
semicolons:

var x // semicolon inferred
a = b // no semicolon inferred
(f()) // semicolon inferred

Even though it should be equivalent to move the var statement up
one line (see Item 12 for details of variable scope), the fact that b is
followed by a parenthesis means that the program is mis-parsed as:

var x;
a = b(f());

The upshot is that you always need to be aware of omitted semicolons
and check the beginning of the following line for tokens that disable
semicolon insertion. Alternatively, you can follow a rule of always pre-
fixing statements beginning with (, [, +, -, or / with an extra semi-
colon. For example, the previous example can be changed to protect
the parenthesized function call:

a = b // semicolon inferred
var x // semicolon on next line
;(f()) // semicolon inferred

Now it’s safe to move the var declaration to the top without fear of
changing the program:

var x // semicolon inferred
a = b // semicolon on next line
;(f()) // semicolon inferred

Another common scenario where omitted semicolons can cause prob-
lems is with script concatenation (see Item 1). Each file might consist
of a large function call expression (see Item 13 for more about imme-
diately invoked function expressions):

// file1.js
(function() {

// ...
})()

// file2.js
(function() {

// ...
})()

 Item 6: Learn the Limits of Semicolon Insertion 23

When each file is loaded as a separate program, a semicolon is auto-
matically inserted at the end, turning the function call into a state-
ment. But when the files are concatenated:

(function() {
// ...

})()
(function() {

// ...
})()

the result is treated as one single statement, equivalent to:

(function() {
// ...

})()(function() {
// ...

})();

The upshot: Omitting a semicolon from a statement requires being
aware of not only the next token in the current file, but any token that
might follow the statement after script concatenation. Similar to the
approach described above, you can protect scripts against careless
concatenation by defensively prefixing every file with an extra semi-
colon, at least if its first statement begins with one of the five vulnera-
ble characters (, [, +, -, or /:

// file1.js
;(function() {

// ...
})()

// file2.js
;(function() {

// ...
})()

This ensures that even if the preceding file omits its final semicolon,
the combined results will still be treated as separate statements:

;(function() {
// ...

})()
;(function() {

// ...
})()

24 Chapter 1 Accustoming Yourself to JavaScript

Of course, it’s better if the script concatenation process adds extra
semicolons between files automatically. But not all concatenation tools
are well written, so your safest bet is to add semicolons defensively.

At this point, you might be thinking, “This is too much to worry about.
I’ll just never omit semicolons and I’ll be fine.” Not so: There are also
cases where JavaScript will forcibly insert a semicolon even though
it might appear that there is no parse error. These are the so-called
restricted productions of the JavaScript syntax, where no newline is
allowed to appear between two tokens. The most hazardous case is
the return statement, which must not contain a newline between the
return keyword and its optional argument. So the statement:

return { };

returns a new object, whereas the code snippet:

return
{ };

parses as three separate statements, equivalent to:

return;
{ }
;

In other words, the newline following the return keyword forces an
automatic semicolon insertion, which parses as a return with no
argument followed by an empty block and an empty statement. The
other restricted productions are

 ■ A throw statement

 ■ A break or continue statement with an explicit label

 ■ A postfix ++ or -- operator

The purpose of the last rule is to disambiguate code snippets such as
the following:

a
++
b

Since ++ can serve as either a prefix or a suffix, but the latter cannot
be preceded by a newline, this parses as:

a; ++b;

The third and final rule of semicolon insertion is:

Semicolons are never inserted as separators in the head of a for loop or
as empty statements.

 Item 7: Think of Strings As Sequences of 16-Bit Code Units 25

This simply means that you must always explicitly include the semi-
colons in a for loop’s head. Otherwise, input such as this:

for (var i = 0, total = 1 // parse error
 i < n
 i++) {
 total *= i
}

results in a parse error. Similarly, a loop with an empty body requires
an explicit semicolon. Otherwise, leaving off the semicolon results in
a parse error:

function infiniteLoop() { while (true) } // parse error

So this is one case where the semicolon is required:

function infiniteLoop() { while (true); }

Things to Remember

✦ Semicolons are only ever inferred before a }, at the end of a line, or
at the end of a program.

✦ Semicolons are only ever inferred when the next token cannot be
parsed.

✦ Never omit a semicolon before a statement beginning with (, [, +, -,
or /.

✦ When concatenating scripts, insert semicolons explicitly between
scripts.

✦ Never put a newline before the argument to return, throw, break,
continue, ++, or --.

✦ Semicolons are never inferred as separators in the head of a for
loop or as empty statements.

Item 7: Think of Strings As Sequences of 16-Bit Code
Units

Unicode has a reputation for being complicated—despite the ubiquity
of strings, most programmers avoid learning about Unicode and hope
for the best. But at a conceptual level, there’s nothing to be afraid
of. The basics of Unicode are perfectly simple: Every unit of text of
all the world’s writing systems is assigned a unique integer between
0 and 1,114,111, known as a code point in Unicode terminology.
That’s it—hardly any different from any other text encoding, such as

26 Chapter 1 Accustoming Yourself to JavaScript

ASCII. The difference, however, is that while ASCII maps each index
to a unique binary representation, Unicode allows multiple different
binary encodings of code points. Different encodings make trade-offs
between the amount of storage required for a string and the speed of
operations such as indexing into a string. Today there are multiple
standard encodings of Unicode, the most popular of which are UTF-8,
UTF-16, and UTF-32.

Complicating the picture further, the designers of Unicode historically
miscalculated their budget for code points. It was originally thought
that Unicode would need no more than 216 code points. This made
UCS-2, the original standard 16-bit encoding, a particularly attrac-
tive choice. Since every code point could fit in a 16-bit number, there
was a simple, one-to-one mapping between code points and the ele-
ments of their encodings, known as code units. That is, UCS-2 was
made up of individual 16-bit code units, each of which corresponded
to a single Unicode code point. The primary benefit of this encod-
ing is that indexing into a string is a cheap, constant-time operation:
Accessing the nth code point of a string simply selects from the nth
16-bit element of the array. Figure 1.1 shows an example string con-
sisting only of code points in the original 16-bit range. As you can
see, the indices match up perfectly between elements of the encoding
and code points in the Unicode string.

As a result, a number of platforms at the time committed to using
a 16-bit encoding of strings. Java was one such platform, and Java-
Script followed suit: Every element of a JavaScript string is a 16-bit
value. Now, if Unicode had remained as it was in the early 1990s,
each element of a JavaScript string would still correspond to a single
code point.

This 16-bit range is quite large, encompassing far more of the world’s
text systems than ASCII or any of its myriad historical successors
ever did. Even so, in time it became clear that Unicode would outgrow

0x0068

0 1 2 3 4

'h' 'e' 'l' 'l' 'o'

0x0065 0x006c 0x006c 0x006f

Figure 1.1 A JavaScript string containing code points from the
Basic Multilingual Plane

 Item 7: Think of Strings As Sequences of 16-Bit Code Units 27

its initial range, and the standard expanded to its current range of
over 220 code points. The new increased range is organized into 17
subranges of 216 code points each. The first of these, known as the
Basic Multilingual Plane (or BMP), consists of the original 216 code
points. The additional 16 ranges are known as the supplementary
planes.

Once the range of code points expanded, UCS-2 had become obsolete:
It needed to be extended to represent the additional code points. Its
successor, UTF-16, is mostly the same, but with the addition of what
are known as surrogate pairs: pairs of 16-bit code units that together
encode a single code point 216 or greater. For example, the musical
G clef symbol (“𝄞”), which is assigned the code point U+1D11E—the
conventional hexadecimal spelling of code point number 119,070—is
represented in UTF-16 by the pair of code units 0xd834 and 0xdd1e.
The code point can be decoded by combining selected bits from each
of the two code units. (Cleverly, the encoding ensures that neither of
these “surrogates” can ever be confused for a valid BMP code point, so
you can always tell if you’re looking at a surrogate, even if you start
searching from somewhere in the middle of a string.) You can see an
example of a string with a surrogate pair in Figure 1.2. The first code
point of the string requires a surrogate pair, causing the indices of
code units to differ from the indices of code points.

Because each code point in a UTF-16 encoding may require either one
or two 16-bit code units, UTF-16 is a variable-length encoding: The
size in memory of a string of length n varies based on the particu-
lar code points in the string. Moreover, finding the nth code point of
a string is no longer a constant-time operation: It generally requires
searching from the beginning of the string.

But by the time Unicode expanded in size, JavaScript had already
committed to 16-bit string elements. String properties and methods
such as length, charAt, and charCodeAt all work at the level of code

0xd834

0 1 2 3 4 5 6

'𝄞' ' ' 'c' 'l' 'e' 'f'

0xdd1e 0x0020 0x0063 0x006c 0x0065 0x0066

Figure 1.2 A JavaScript string containing a code point from a
supplementary plane

28 Chapter 1 Accustoming Yourself to JavaScript

units rather than code points. So whenever a string contains code
points from the supplementary planes, JavaScript represents each as
two elements—the code point’s UTF-16 surrogate pair—rather than
one. Simply put:

An element of a JavaScript string is a 16-bit code unit.

Internally, JavaScript engines may optimize the storage of string
contents. But as far as their properties and methods are concerned,
strings behave like sequences of UTF-16 code units. Consider the
string from Figure 1.2. Despite the fact that the string contains six
code points, JavaScript reports its length as 7:

" clef".length; // 7
"G clef".length; // 6

Extracting individual elements of the string produces code units
rather than code points:

" clef".charCodeAt(0); // 55348 (0xd834)
" clef".charCodeAt(1); // 56606 (0xdd1e)
" clef".charAt(1) === " "; // false
" clef".charAt(2) === " "; // true

Similarly, regular expressions operate at the level of code units. The
single-character pattern (“.”) matches a single code unit:

/^.$/.test(" "); // false
/^..$/.test(" "); // true

This state of affairs means that applications working with the full
range of Unicode have to work a lot harder: They can’t rely on string
methods, length values, indexed lookups, or many regular expres-
sion patterns. If you are working outside the BMP, it’s a good idea to
look for help from code point-aware libraries. It can be tricky to get
the details of encoding and decoding right, so it’s advisable to use an
existing library rather than implement the logic yourself.

While JavaScript’s built-in string datatype operates at the level of code
units, this doesn’t prevent APIs from being aware of code points and
surrogate pairs. In fact, some of the standard ECMAScript libraries cor-
rectly handle surrogate pairs, such as the URI manipulation functions
encodeURI, decodeURI, encodeURIComponent, and decodeURIComponent.
Whenever a JavaScript environment provides a library that operates
on strings—for example, manipulating the contents of a web page or
performing I/O with strings—you should consult the library’s docu-
mentation to see how it handles the full range of Unicode code points.

 Item 7: Think of Strings As Sequences of 16-Bit Code Units 29

Things to Remember

✦ JavaScript strings consist of 16-bit code units, not Unicode code
points.

✦ Unicode code points 216 and above are represented in JavaScript by
two code units, known as a surrogate pair.

✦ Surrogate pairs throw off string element counts, affecting length,
charAt, charCodeAt, and regular expression patterns such as “.”.

✦ Use third-party libraries for writing code point-aware string
manipulation.

✦ Whenever you are using a library that works with strings, con-
sult the documentation to see how it handles the full range of code
points.

This page intentionally left blank

Index

Symbols
*, 10
~, 10
(, 25
!!, 151
==, 15–19
===, 17, 19
$, 169
%, 10
&, 10
&&, 13
+, 10, 12–14, 17, 25
++, 24–25
-, 10, 25
--, 24–25
., 28
<<, 10
>>, 10
>>>, 10
/, 25
;, 19–25
^, 10
|, 10
||, 13, 147, 151, 153
•, 185–186
, (expression sequencing operator), 55
[], 25, 107

A
Actors, 101
Actual argument, 67
add, 160–163
addChild, 96–97
addClass, 169
addEntry, 65
ai.js, 187–188
allKeys, 125–126

Anonymous function expressions, 41,
47–50, 60, 74

append, 66–67
apply, 65–67
Argument creep, 149
Arguments

options object, 149–153
order, 143–144
self-documenting, 149
and variadic functions, 67–72

arguments object, 3–5, 46, 67–72, 79–81,
138–140, 146, 148

Arithmetic operators, 7, 10
Array [[Class]], 107–109
Array constructor, 140–141
Array.isArray, 162
Array-like objects, 138–140, 160–164,

166
Array.prototype, 110–111
Arrays, 113–116, 123–125

associative, 114
concatenation, 139–140
every method, 137–138
filter method, 111, 135, 168
forEach method, 21, 72–73, 75, 108,

111, 128, 130–131, 134–138,
162, 191, 193–194

iteration, 132–138
literals, 140–141
map method, 61, 74–75, 98–100, 111,

134–135, 137, 139, 168
some method, 137–138
testing, 162–163

Asynchronous APIs, 171–175, 182
Asynchronous callbacks, 194–197
Asynchronous loops, 183–186
Automatic semicolon insertion, 19, 24

202 Index

B
Backward compatibility, 3
Basic Multilingual Plane (BMP), 26–28
bind, 72–75, 177
Binding occurrence, 99–100
Bit vectors, 160, 165
Bitwise arithmetic operators, 7–8, 10
Block scoping, 42
Blocking APIs, 174–175
Blocking function, 172
Block-local functions, 50–52
Boolean [[Class]], 108–109
break, 24–25
buffer, 66–67, 72–74
Bullet symbol (•), 185–186

C
Cached files, 195–197
call, 63–65, 119–122, 138–140
Call stack, 184–186
Call stack inspection, 79–81
Callback function, 60, 62, 65, 72–73,

99–100, 175–179
Chainable API, 168–169
checkPassword, 84–86, 92–93, 95
choose, 199
[[Class]] internal property, 107–109
Classes, 86–87
Closures, 39–41, 75–77, 94–95, 176
Code point, 25–29
Code unit, 26–29
Coercion, 9–14, 18, 164–167
Comma-separated values (CSV), 98–100
Comments, 149
concat, 139–140
Concatenation, 3–5, 22–23, 139–140
Concurrency

asynchronous callbacks, 194–197
counter and data race, 190–194
error handling, 179–183
event queue, 172–175, 186–190
nested callbacks, 175–179
promises, 197–200
recursion, 183–186

const, 2
constructor, 140–141
Constructors, 57–59, 91
Context (graphics), 101
continue, 24–25
Countdown, 184–186
Counter and data race, 190–194
C.prototype, 83, 87

CSV (comma-separated values),
98–100

Curry, Haskell, 75
Currying, 75

D
Data race, 192, 198
Date [[Class]], 106, 108–109
Debugging, 48, 105, 182
decodeURI, 28
decodeURIcomponent, 28
Defensive programming, 165
Deferreds, 197
Diagnostic information, 105
Dict, 118–122, 130, 195–196
Dictionaries, 113–116, 123–125
Direct eval, 54–55
displayPage, 157–159
“Do what I mean” semantics, 17
Double negation pattern (!!), 151
Double-precision floating-point, 7–9
downloadAllAsync, 178–179, 181–182,

190–194
downloadAsync, 173–178, 180–184, 195
downloadCachingAsync, 195–196
downloadFiles, 177–178
downloadOneAsync, 183–186
downloadOneSync, 183
downloadSync, 172
downloadURL, 177
Dropped errors, 179–183
Duck testing, 161
Duck typing, 159
Duplicate code, 61, 180
Dynamic typing, 159

E
ECMAScript standard, 1–2, 19, 28, 55,

77, 106–108
Edition 5 (ES5), 1, 3, 134–135, 162
enable, 160–165
encodeURI, 28
encodeURIcomponent, 28
Enumerable properties, 125–127
Enumeration, 114–117, 123–132
Error [[Class]], 108–109
Error-handling callbacks, 180–181
Errors, 179–183
Escape sequences, 168
eval function, 52–55
Event loop, 173
Event queue, 171, 172–175, 186–190

Index 203

Event-loop concurrency, 171
Eventual values, 198–200
every, 137–138
Exceptions, 44, 136, 179–180, 196–197
Expression sequencing operator (,), 55
extend function, 151–153

F
Falsy, 13–14
filter, 111, 135, 168
fillText, 154–155
Fixed-arity, 65, 67–68
Floating-point arithmetic, 124
Floating-point numbers, 7–9
Fluent style, 169
for loop, 24–25, 132–134
forEach, 21, 64–65, 72–73, 75, 108, 111,

128, 130–131, 134–138, 162, 191,
193–194

for...in loop, 113–116, 128–129, 132
Formal parameter, 67
Formatters, 157–159
Function [[Class]], 106, 108–109
Function declaration, 47
Function expression, 41, 47–50
Functions, 57–59

apply method, 65–67
arguments object, 3–5, 46, 67–72,

79–81, 138–140, 146, 148
bind method, 72–75, 177
call method, 63–65, 119–122,

138–140
call stack inspection, 79–81
closures, 75–77
higher-order, 60–63
toString method, 77–78

Futures, 197

G
Generic array methods, 138–140
getAuthor, 157–159
getCallStack, 79–80
getTitle, 157–159
Global variables, 31–34
guard, 165–167

H
hasOwnProperty, 64, 109, 115–122
Height/width, 143–144, 150
Higher-order functions, 60–63
highlight, 145–146
Hoisting, 42–44

hostname, 147
html method, 169

I
Identification number, 105–106
Image data, 102
Immediately invoked function

expressions (IIFE), 5, 6, 44–46
Implementation inheritance, 83, 109
Implicit binding, 98–100
Implicit coercions, 9–14
Index, 138–139
Indirect eval, 54–55
Inheritance, 83–85, 89, 104, 108–109,

118, 158–159
ini object, 155–156
inNetwork, 189
Instance properties, 103
Instance state, 95–98
instanceof operator, 162
Integer addition, 125
Introspection, 109
isNaN, 11
isReallyNaN, 12
Iterator, 70–71

J
join, 198
jQuery, 169
JSON [[Class]], 108
JSON data format, 33

L
Last-in, first out, 185–186
length, 132–133, 138–139, 166
Lexical environment, 36–37
Lexical scope, 42, 122
Library, 143–144
Lightweight dictionaries, 113–116
line.split, 99–100
lint tools, 34–35
Literals, 140–141
Local variables, 34–35, 52–54
Logical OR operator (||), 147, 150–151
Lookup, 118–119
Loops, 183–186

M
map, 61, 74–75, 98–100, 111, 134–135,

137, 139, 168
Math [[Class]], 108
me, 100

204 Index

MediaWiki, 157–158
Merging function, 151
Methods, 58–59

chaining, 167–170
storing on prototypes, 92–94

Mock object, 159
modal, 149–152
Module systems, 6
Monkey-patching, 110–111
moveTo, 102

N
Named function expression, 47
Naming conventions, 143–144
NaN (not a number), 11
Nested callbacks, 175–179
Nested function declaration, 52
Nested functions, 71–72
new, 59, 83, 89–91
newline, 19, 24–25
next, 189
Node.js, 181
NodeList, 138–140
Nonblocking APIs, 172
Nondeterminism, 130–132, 192
Nonstandard features, 2–3
null, 146
Number [[Class]], 108

O
Object [[Class]], 108
Object extension function, 151–153
Object introspection, 109
Objects as scopes, 49
Object wrappers, 15–16
Object.create, 89–91, 103–105, 116–117
Object.defineProperty, 126–127
Object.getPrototypeOf, 83–88, 109
Object.prototype, 115–116, 118–122,

125–127
Objects, 127–132, 138–140

hasOwnProperty method, 64, 109,
115–122

toString method, 12–14, 17–18, 107,
163

Operators
arithmetic, 7, 10, 21
bitwise, 8–9, 166
bitwise arithmetic, 10
expression sequencing (,), 55
typeof, 7, 14, 165–166

Optional arguments, 149–150

Options object, 149–153
or, 166–167
Order dependencies, 123–125
Overloading structural types, 161

P
Page class, 158–159
pick, 130–131
Pollution of objects, 87
Polyfill, 111
Positional arguments, 149–150
postMessage, 187–189
Predicates, 135, 137
Primitives, 15–18
Private data, 94–95, 106
Profiling, 105
Promises, 197–200
Property descriptor map, 116–117
Property names, 105–106
__proto__, 83–84, 86–89, 109, 117, 121
Prototype pollution, 115–122
Prototypes

C.prototype, 83, 87
as implementation detail, 109–110
instance state, 95–98
Object.getPrototypeOf, 83–88
__proto__, 83–84, 86–89, 109, 117,

121
storing methods on, 92–94

Q
Querying web pages, 169

R
Radix, 8
Receiver, 58–59, 63–65, 72–73
Recursion, 183–186
RegExp, 108–109
removeClass, 169
replace, 167–168
Restricted productions, 24
return, 24–25, 91
Run-to-completion guarantee, 172, 175

S
Scene graph, 101
Scope, 31

anonymous and named function
expressions, 47–50

block-local functions, 50–52
closures, 39–41
eval function, 52–55

Index 205

global variables, 31–34
hoisting, 42–44
immediately invoked function

expressions (IIFE), 5, 6, 44–46
local variables, 34–35
with statement, 35–39

Scope chain, 36
Security, 79, 94–95
select, 199–200
self, 90–91, 100, 167
Self-documenting arguments, 149
Semicolon, 19–25
setSection, 155–156
setTimeout, 189–191, 196
shift, 68–69
Shift operators, 10
Short-circuiting methods, 137
Single character pattern, 28
slice, 70, 140
some, 137–138
sort, 60
Source object, 151–153
split, 110
Stack inspection, 79–81
Stack overflow, 185
Stack trace, 79–81
State

instance state, 95–98
stateful API, 154–155, 169
stateless API, 153–156, 167–169

Strict equality, 17–18
Strict mode, 3–6, 51, 69–70
String, 15–16
String characters, replacing, 167–169
String [[Class]], 108–109
String literal, 3
String sets, 160–163
Strings, 75–76
Structural types, 161
Structural typing, 159
Subclass constructors, 101–105
Superclass constructors, 101–105
Superclass property names, 105–106
Supplementary plane, 27
Surrogate pair, 27–29
Synchronous function, 172

T
takeWhile, 135–137
Target object, 151–153
Termination, 133–134
Text formatting, 156, 159

that, 100
then, 197–199
32-bit integers, 7, 10
this, 58–59, 66, 98–100, 169
Threads, 172
throw, 24–25
toHTML, 157–159
Tokens, 20–22, 25
toString, 7–8, 12–14, 17–18, 77–78,

84–86, 92–95, 153, 167
trimSections, 42–43
true, 146
Truthiness, 13, 147–149
Truthy, 13, 135, 137, 147
try, 179, 182
tryNextURL, 183–184
Type errors, 9, 12
TypeError, 90, 108
typeof, 7, 14, 165–166

U
UCS-2, 26–27
uint32, 166
Unary operator, 17
undefined, 11, 14, 144–151, 169
Underscore character, 94
Unicode, 25–29
use strict, 3–6
User class, 86
User.prototype, 84–87, 90–91, 93
UTF-8, 26
UTF-16, 26–28
UTF-32, 26

V
val, 41
valueOf, 12–14, 16–18
var, 22, 32–35, 42–53
Variable hoisting, 42–44
Variable-arity function, 65–66, 68
Variable-length encoding, 27
Variadic function, 65–66, 68

W
Web development practices, 144
when, 198
while loop, 130–132, 188–189
Width/height, 143–144, 150
Wiki formatter, 157
Wiki library, 156–160
with statement, 35–39
Worker, 187–188

206 Index

Work-list, 131
Work-set, 127–131
wrapElements, 44–46

X
x and y, 38, 104, 150, 152
XMLHttpRequest library, 174–175

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 1: Accustoming Yourself to JavaScript
	Item 1: Know Which JavaScript You Are Using
	Item 2: Understand JavaScript’s Floating-Point Numbers
	Item 3: Beware of Implicit Coercions
	Item 4: Prefer Primitives to Object Wrappers
	Item 5: Avoid using == with Mixed Types
	Item 6: Learn the Limits of Semicolon Insertion
	Item 7: Think of Strings As Sequences of 16-Bit Code Units

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

