

Programming in
Objective-C

Fourth Edition

00_9780321811905_fm.qxd 11/22/11 11:48 AM Page i

informit.com/devlibrary

Developer’s
Library

ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library books are designed to provide practicing programmers with
unique, high-quality references and tutorials on the programming languages and
technologies they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners
who are especially skilled at organizing and presenting information in a way that’s
useful for other programmers.

Key titles include some of the best, most widely acclaimed books within their
topic areas:

PHP & MySQL Web Development
Luke Welling & Laura Thomson
ISBN 978-0-672-32916-6

MySQL
Paul DuBois
ISBN-13: 978-0-672-32938-8

Linux Kernel Development
Robert Love
ISBN-13: 978-0-672-32946-3

Python Essential Reference
David Beazley
ISBN-13: 978-0-672-32978-4

PostgreSQL
Korry Douglas
ISBN-13: 978-0-672-32756-8

C++ Primer Plus
Stephen Prata
ISBN-13: 978-0321-77640-2

Developer’s Library books are available at most retail and online bookstores, as well
as by subscription from Safari Books Online at safari.informit.com

Developer’s Library

00_9780321811905_fm.qxd 11/22/11 11:48 AM Page ii

Programming in
Objective-C

Fourth Edition

Stephen G. Kochan

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

00_9780321811905_fm.qxd 11/22/11 11:48 AM Page iii

Programming in Objective-C, Fourth Edition
Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-13: 978-0-321-81190-5

ISBN-10: 0-321-81190-9

Library of Congress Cataloging-in-Publication Data

Kochan, Stephen G.

Programming in objective-c / Stephen G. Kochan. -- 4th ed.

p. cm.

ISBN 978-0-321-81190-5 (pbk.)

1. Objective-C (Computer program language) 2. Object-oriented

programming (Computer science) 3. Macintosh (Computer)--Programming.

I. Title.

QA76.64.K655 2012

005.1'17--dc23

2011046245

Printed in the United States of America

First Printing December 2011

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Acquisitions
Editor
Mark Taber

Development
Editor
Michael Thurston

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Indexer
Heather McNeill

Proofreader
Sheri Cain

Technical Editors
Wendy Mui
Michael Trent

Publishing
Coordinator
Vanessa Evans

Designer
Gary Adair

Compositor
Mark Shirar

00_9780321811905_fm.qxd 11/22/11 11:48 AM Page iv

❖

To Roy and Ve, two people whom I dearly miss.

To Ken Brown,“It’s just a jump to the left.”

❖

00_9780321811905_fm.qxd 11/22/11 11:48 AM Page v

Contents at a Glance
1 Introduction 1

2 Programming in Objective-C 7

3 Classes, Objects, and Methods 27

4 Data Types and Expressions 51

5 Program Looping 71

6 Making Decisions 93

7 More on Classes 127

8 Inheritance 151

9 Polymorphism, Dynamic Typing, and
Dynamic Binding 177

10 More on Variables and Data Types 195

11 Categories and Protocols 219

12 The Preprocessor 233

13 Underlying C Language Features 247

14 Introduction to the Foundation Framework 303

15 Numbers, Strings, and Collections 307

16 Working with Files 369

17 Memory Management and Automatic
Reference Counting 399

18 Copying Objects 413

19 Archiving 425

20 Introduction to Cocoa and Cocoa Touch 443

21 Writing iOS Applications 447

A Glossary 479

B Address Book Example Source Code 487

Index 493

00_9780321811905_fm.qxd 11/22/11 11:48 AM Page vi

Contents

1 Introduction 1
What You Will Learn from This Book 2

How This Book Is Organized 3

Support 5

Acknowledgments 5

Preface to the Fourth Edition 6

2 Programming in Objective-C 7
Compiling and Running Programs 7

Using Xcode 8

Using Terminal 17

Explanation of Your First Program 19

Displaying the Values of Variables 23

Summary 25

Exercises 25

3 Classes, Objects, and Methods 27
What Is an Object, Anyway? 27

Instances and Methods 28

An Objective-C Class for Working with Fractions 30

The @interface Section 33

Choosing Names 34

Class and Instance Methods 35

The @implementation Section 37

The program Section 39

Accessing Instance Variables and Data Encapsulation 45

Summary 49

Exercises 49

4 Data Types and Expressions 51
Data Types and Constants 51

Type int 51

Type float 52

Type char 52

00_9780321811905_fm.qxd 11/22/11 11:48 AM Page vii

viii Contents

Qualifiers: long, long long, short, unsigned,
and signed 53

Type id 54

Arithmetic Expressions 55

Operator Precedence 55

Integer Arithmetic and the Unary Minus Operator 58

The Modulus Operator 60

Integer and Floating-Point Conversions 61

The Type Cast Operator 63

Assignment Operators 64

A Calculator Class 65

Exercises 67

5 Program Looping 71
The for Statement 72

Keyboard Input 79

Nested for Loops 81

for Loop Variants 83

The while Statement 84

The do Statement 88

The break Statement 90

The continue Statement 90

Summary 91

Exercises 91

6 Making Decisions 93
The if Statement 93

The if-else Construct 98

Compound Relational Tests 100

Nested if Statements 103

The else if Construct 105

The switch Statement 114

Boolean Variables 117

The Conditional Operator 122

Exercises 124

00_9780321811905_fm.qxd 11/22/11 11:48 AM Page viii

ixContents

7 More on Classes 127
Separate Interface and Implementation Files 127

Synthesized Accessor Methods 132

Accessing Properties Using the Dot Operator 134

Multiple Arguments to Methods 135

Methods Without Argument Names 137

Operations on Fractions 137

Local Variables 140

Method Arguments 141

The static Keyword 141

The self Keyword 145

Allocating and Returning Objects from Methods 146

Extending Class Definitions and the Interface File 148

Exercises 148

8 Inheritance 151
It All Begins at the Root 151

Finding the Right Method 155

Extension Through Inheritance: Adding New Methods 156

A Point Class and Object Allocation 160

The @class Directive 161

Classes Owning Their Objects 165

Overriding Methods 169

Which Method Is Selected? 171

Abstract Classes 173

Exercises 174

9 Polymorphism, Dynamic Typing,
and Dynamic Binding 177
Polymorphism: Same Name, Different Class 177

Dynamic Binding and the id Type 180

Compile Time Versus Runtime Checking 182

The id Data Type and Static Typing 183

Argument and Return Types with Dynamic Typing 184

Asking Questions About Classes 185

Exception Handling Using @try 189

Exercises 192

00_9780321811905_fm.qxd 11/22/11 11:48 AM Page ix

x Contents

10 More on Variables and Data Types 195
Initializing Objects 195

Scope Revisited 198

Directives for Controlling Instance Variable Scope 198

More on Properties, Synthesized Accessors, and
Instance Variables 200

Global Variables 200

Static Variables 202

Enumerated Data Types 205

The typedef Statement 208

Data Type Conversions 209

Conversion Rules 210

Bit Operators 211

The Bitwise AND Operator 212

The Bitwise Inclusive-OR Operator 213

The Bitwise Exclusive-OR Operator 214

The Ones Complement Operator 214

The Left Shift Operator 216

The Right Shift Operator 216

Exercises 217

11 Categories and Protocols 219
Categories 219

Class Extensions 224

Some Notes About Categories 225

Protocols and Delegation 226

Delegation 229

Informal Protocols 229

Composite Objects 230

Exercises 231

12 The Preprocessor 233
The #define Statement 233

More Advanced Types of Definitions 235

The #import Statement 240

Conditional Compilation 241

The #ifdef, #endif, #else 241

The #if and #elif Preprocessor Statements 243

The #undef Statement 244

Exercises 245

00_9780321811905_fm.qxd 11/22/11 11:48 AM Page x

xiContents

13 Underlying C Language Features 247
Arrays 248

Initializing Array Elements 250

Character Arrays 251

Multidimensional Arrays 252

Functions 254

Arguments and Local Variables 255

Returning Function Results 257

Functions, Methods, and Arrays 261

Blocks 262

Structures 266

Initializing Structures 269

Structures Within Structures 270

Additional Details About Structures 272

Don’t Forget About Object-Oriented Programming! 273

Pointers 273

Pointers and Structures 277

Pointers, Methods, and Functions 279

Pointers and Arrays 280

Constant Character Strings and Pointers 286

Operations on Pointers 290

Pointers and Memory Addresses 292

They’re Not Objects! 293

Miscellaneous Language Features 293

Compound Literals 293

The goto Statement 294

The null Statement 294

The Comma Operator 294

The sizeof Operator 295

Command-Line Arguments 296

How Things Work 298

Fact #1: Instance Variables Are Stored
in Structures 298

Fact #2: An Object Variable Is Really a Pointer 299

Fact #3: Methods Are Functions, and Message
Expressions Are Function Calls 299

Fact #4: The id Type Is a Generic Pointer Type 299

Exercises 300

00_9780321811905_fm.qxd 11/22/11 11:48 AM Page xi

xii Contents

14 Introduction to the Foundation Framework 303
Foundation Documentation 303

15 Numbers, Strings, and Collections 307
Number Objects 307

String Objects 312

More on the NSLog Function 312

The description Method 313

Mutable Versus Immutable Objects 314

Mutable Strings 320

Array Objects 327

Making an Address Book 330

Sorting Arrays 347

Dictionary Objects 354

Enumerating a Dictionary 355

Set Objects 358

NSIndexSet 362

Exercises 365

16 Working with Files 369
Managing Files and Directories: NSFileManager 370

Working with the NSData Class 375

Working with Directories 376

Enumerating the Contents of a Directory 379

Working with Paths: NSPathUtilities.h 381

Common Methods for Working with Paths 383

Copying Files and Using the NSProcessInfo Class 386

Basic File Operations: NSFileHandle 390

The NSURL Class 395

The NSBundle Class 396

Exercises 397

17 Memory Management and Automatic Reference
Counting 399
Automatic Garbage Collection 401

Manual Reference Counting 402

Object References and the Autorelease Pool 403

00_9780321811905_fm.qxd 11/22/11 11:48 AM Page xii

xiiiContents

The Event Loop and Memory Allocation 405

Summary of Manual Memory Management Rules 407

Automatic Reference Counting (ARC) 408

Strong Variables 408

Weak Variables 409

@autoreleasepool Blocks 410

Method Names and Non-ARC Compiled Code 411

18 Copying Objects 413
The copy and mutableCopy Methods 413

Shallow Versus Deep Copying 416

Implementing the <NSCopying> Protocol 418

Copying Objects in Setter and Getter Methods 421

Exercises 423

19 Archiving 425
Archiving with XML Property Lists 425

Archiving with NSKeyedArchiver 427

Writing Encoding and Decoding Methods 429

Using NSData to Create Custom Archives 436

Using the Archiver to Copy Objects 439

Exercises 441

20 Introduction to Cocoa and Cocoa Touch 443
Framework Layers 443

Cocoa Touch 444

21 Writing iOS Applications 447
The iOS SDK 447

Your First iPhone Application 447

Creating a New iPhone Application Project 449

Entering Your Code 452

Designing the Interface 455

An iPhone Fraction Calculator 461

Starting the New Fraction_Calculator Project 462

Defining the View Controller 464

00_9780321811905_fm.qxd 11/22/11 11:48 AM Page xiii

xiv Contents

The Fraction Class 469

A Calculator Class That Deals with Fractions 473

Designing the UI 474

Summary 475

Exercises 476

A Glossary 479

B Address Book Example Source Code 487

Index 493

00_9780321811905_fm.qxd 11/22/11 11:48 AM Page xiv

About the Author
Stephen Kochan is the author and coauthor of several bestselling titles on the C
language, including Programming in C (Sams, 2004), Programming in ANSI C (Sams, 1994),
and Topics in C Programming (Wiley, 1991), and several Unix titles, including Exploring
the Unix System (Sams, 1992) and Unix Shell Programming (Sams, 2003). He has been
programming on Macintosh computers since the introduction of the first Mac in 1984,
and he wrote Programming C for the Mac as part of the Apple Press Library. In 2003
Kochan wrote Programming in Objective-C (Sams, 2003), and followed that with another
Mac-related title, Beginning AppleScript (Wiley, 2004).

About the Technical Reviewers
Wendy Mui is a programmer and software development manager in the San Francisco
Bay Area.After learning Objective-C from the second edition of Steve Kochan’s book,
she landed a job at Bump Technologies, where she put her programming skills to good
use working on the client app and the API/SDK for Bump’s third-party developers.

Prior to her iOS experience,Wendy spent her formative years at Sun and various other
tech companies in Silicon Valley and San Francisco. She got hooked on programming
while earning a B.A. in Mathematics from University of California Berkeley.When not
working,Wendy is pursuing her 4th Dan Tae Kwon Do black belt.

Michael Trent has been programming in Objective-C since 1997—and programming
Macs since well before that. He is a regular contributor to Steven Frank’s cocoadev.com
website, a technical reviewer for numerous books and magazine articles, and an occasional
dabbler in Mac OS X open-source projects. Currently, he is using Objective-C and
Apple Computer’s Cocoa frameworks to build professional video applications for Mac
OS X. Michael holds a Bachelor of Science degree in computer science and a Bachelor
of Arts degree in music from Beloit College of Beloit,Wisconsin. He lives in Santa
Clara, California, with his lovely wife,Angela.

00_9780321811905_fm.qxd 11/22/11 11:48 AM Page xv

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator.We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write directly to let us know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail we receive, we might not be able to reply to every message.

When you write, please be sure to include this book’s title and author, as well as your
name and phone or email address.

Email: feedback@developers-library.info

Mail: Reader Feedback
Addison-Wesley Developer’s Library
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at www.informit.com/register for convenient
access to any updates, downloads, or errata that might be available for this book.

00_9780321811905_fm.qxd 11/22/11 11:48 AM Page xvi

www.informit.com/register

2
Programming in Objective-C

In this chapter, we dive right in and show you how to write your first Objective-C pro-
gram.You won’t work with objects just yet; that’s the topic of the next chapter.We want
you to understand the steps involved in keying in a program and compiling and running it.

To begin, let’s pick a rather simple example: a program that displays the phrase “Pro-
gramming is fun!” on your screen.Without further ado, Program 2.1 shows an Objective-
C program to accomplish this task.

Program 2.1

// First program example

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])

{

@autoreleasepool {

NSLog (@"Programming is fun!");

}

return 0;

}

Compiling and Running Programs
Before we go into a detailed explanation of this program, we need to cover the steps
involved in compiling and running it.You can both compile and run your program using
Xcode, or you can use the Clang Objective-C compiler in a Terminal window. Let’s go
through the sequence of steps using both methods.Then you can decide how you want
to work with your programs throughout the rest of this book.

02_9780321811905_ch02.qxd 11/22/11 11:52 AM Page 7

8 Chapter 2 Programming in Objective-C

Note
You’ll want to go to developer.apple.com and make sure you have the latest version of the
Xcode development tools. There you can download Xcode and the iOS SDK at no charge. If
you’re not a registered developer, you’ll have to register first. That can also be done at no
charge. Note that Xcode is also available for a minimal cost from the Mac App Store.

Using Xcode
Xcode is a sophisticated application that enables you to easily type in, compile, debug, and
execute programs. If you plan on doing serious application development on the Mac,
learning how to use this powerful tool is worthwhile.We just get you started here. Later
we return to Xcode and take you through the steps involved in developing a graphical
application with it.

Note
As mentioned, Xcode is a sophisticated tool, and the introduction of Xcode 4 added even
more features. It’s easy to get lost using this tool. If that happens to you, back up a little
and try reading the Xcode User Guide, which can be accessed from Xcode help menu, to get
your bearings.

Xcode is located in the Developer folder inside a subfolder called Applications.
Figure 2.1 shows its icon.

Start Xcode.You can then select “Create a New Xcode Project” from the startup
screen.Alternatively, under the File menu, select New, New Project... (see Figure 2.2).

Figure 2.1 Xcode icon

02_9780321811905_ch02.qxd 11/22/11 11:52 AM Page 8

9Compiling and Running Programs

Figure 2.2 Starting a new project

Figure 2.3 Starting a new project: selecting the application type

A window appears, as shown in Figure 2.3.

02_9780321811905_ch02.qxd 11/22/11 11:52 AM Page 9

10 Chapter 2 Programming in Objective-C

Figure 2.4 Starting a new project: specifying the product name and type

In the left pane, you’ll see a section labeled Mac OS X. Select Application. In the
upper-right pane, select Command Line Tool, as depicted in the previous figure. On the
next pane that appears, you pick your application’s name. Enter prog1 for the Product
Name and make sure Foundation is selected for the Type.Also, be sure that the Use Auto-
matic Reference Counting box is checked.Your screen should look like Figure 2.4.

02_9780321811905_ch02.qxd 11/22/11 11:52 AM Page 10

11Compiling and Running Programs

Figure 2.5 Selecting the location and name of the project folder

Click Next.The dropdown that appears allows you to specify the name of the project
folder that will contain the files related to your project. Here, you can also specify where
you want that project folder stored.According to Figure 2.5 we’re going to store our
project on the Desktop in a folder called prog1.

02_9780321811905_ch02.qxd 11/22/11 11:52 AM Page 11

12 Chapter 2 Programming in Objective-C

Click the Create button to create your new project. Xcode will open a project win-
dow such as the one shown in Figure 2.6. Note that your window might look different if
you’ve used Xcode before or have changed any of its options.

Figure 2.6 Xcode prog1 project window

02_9780321811905_ch02.qxd 11/22/11 11:52 AM Page 12

13Compiling and Running Programs

Now it’s time to type in your first program. Select the file main.m in the left pane (you
may have to reveal the files under the project name by clicking the disclosure triangle).
Your Xcode window should now appear as shown in Figure 2.7.

Figure 2.7 File main.m and edit window

02_9780321811905_ch02.qxd 11/22/11 11:52 AM Page 13

14 Chapter 2 Programming in Objective-C

Table 2.1 Common Filename Extensions

Extension Meaning

.c C language source file

.cc, .cpp C++ language source file

.h Header file

.m Objective-C source file

.mm Objective-C++ source file

.pl Perl source file

.o Object (compiled) file

Objective-C source files use .m as the last two characters of the filename (known as its
extension).Table 2.1 lists other commonly used filename extensions.

Returning to your Xcode project window, the right pane shows the contents of the
file called main.m, which was automatically created for you as a template file by Xcode,
and which contains the following lines:
//
// main.m
// prog1
//
// Created by Steve Kochan on 7/7/11.
// Copyright 2011 ClassroomM, Inc.. All rights reserved.
//
#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
@autoreleasepool {

// insert code here...
NSLog (@"Hello World!");

}
return 0;

}

You can edit your file inside this window. Make changes to the program shown in the
Edit window to match Program 2.1.The lines that start with two slash characters (//) are
called comments; we talk more about comments shortly.

Your program in the edit window should now look like this (don’t worry if your
comments don’t match).

Program 2.1

// First program example

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])

{

02_9780321811905_ch02.qxd 11/22/11 11:52 AM Page 14

15Compiling and Running Programs

@autoreleasepool {

NSLog (@"Programming is fun!");

}

return 0;

}

Note
Don’t worry about all the colors shown for your text onscreen. Xcode indicates values,
reserved words, and so on with different colors. This will prove very valuable as you start
programming more, as it can indicate the source of a potential error.

Now it’s time to compile and run your first program—in Xcode terminology, it’s called
building and running. Before doing that, we need to reveal a window pane that will display
the results (output) from our program.You can do this most easily by selecting the middle
icon under View in the toolbar.When you hover over this icon, it says “Hide or show the
Debug area.”Your window should now appear as shown in Figure 2.8. Note that XCode
will normally reveal the Debug area automatically whenever any data is written to it.

Now, if you press the Run button located at the top left of the toolbar or select Run
from the Product menu, Xcode will go through the two-step process of first building and
then running your program.The latter occurs only if no errors are discovered in your
program.

If you do make mistakes in your program, along the way you’ll see errors denoted as
red stop signs containing exclamation points—these are known as fatal errors and you can’t

Figure 2.8 Xcode Debug area revealed

02_9780321811905_ch02.qxd 11/22/11 11:52 AM Page 15

16 Chapter 2 Programming in Objective-C

run your program without correcting these. Warnings are depicted by yellow triangles
containing exclamation points—you can still run your program with them, but in general
you should examine and correct them.After running the program with all the errors
removed, the lower right pane will display the output from your program and should look
similar to Figure 2.9. Don’t worry about the verbose messages that appear.The output line
we’re interested in is the one you see in bold.

You’re now done with the procedural part of compiling and running your first pro-
gram with Xcode (whew!).The following summarizes the steps involved in creating a
new program with Xcode:

1. Start the Xcode application.

2. If this is a new project, select File, New, New Project... or choose Create a New
Xcode Project from the startup screen.

3. For the type of application, select Application, Command Line Tool, and click Next.

4. Select a name for your application and set its Type to Foundation. Make sure Use
Automatic Reference Counting is checked. Click Next.

5. Select a name for your project folder, and a directory to store your project files in.
Click Create.

6. In the left pane, you will see the file main.m (you might need to reveal it from
inside the folder that has the product’s name). Highlight that file.Type your program
into the edit window that appears in the rightmost pane.

7. In the toolbar, select the middle icon under View.This will reveal the Debug area.
That’s where you’ll see your output.

8. Build and run your application by clicking the Run button in the toolbar or select-
ing Run from the Product menu.

Note
Xcode contains a powerful built-in tool known as the static analyzer. It does an analysis of
your code and can find program logic errors. You can use it by selecting Analyze from the
Product menu or from the Run button in the toolbar.

Figure 2.9 Xcode Debug output

02_9780321811905_ch02.qxd 11/22/11 11:52 AM Page 16

17Compiling and Running Programs

9. If you get any compiler errors or the output is not what you expected, make your
changes to the program and rerun it.

Using Terminal
Some people might want to avoid having to learn Xcode to get started programming
with Objective-C. If you’re used to using the UNIX shell and command-line tools, you
might want to edit, compile, and run your programs using the Terminal application. Here,
we examine how to go about doing that.

The first step is to start the Terminal application on your Mac.The Terminal applica-
tion is located in the Applications folder, stored under Utilities. Figure 2.10 shows its icon.

Start the Terminal application.You’ll see a window that looks like Figure 2.11.

You type commands after the $ (or %, depending on how yourTerminal application is
configured) on each line. If you’re familiar with using UNIX, you’ll find this straightforward.

Figure 2.10 Terminal program icon

Figure 2.11 Terminal window

02_9780321811905_ch02.qxd 11/22/11 11:52 AM Page 17

18 Chapter 2 Programming in Objective-C

First, you need to enter the lines from Program 2.1 into a file.You can begin by creat-
ing a directory in which to store your program examples.Then, you must run a text edi-
tor, such as vi or emacs, to enter your program:

sh-2.05a$ mkdir Progs Create a directory to store programs in

sh-2.05a$ cd Progs Change to the new directory

sh-2.05a$ vi main.m Start up a text editor to enter program

--

Note
In the previous example and throughout the remainder of this text, commands that you, the
user, enter are indicated in boldface.

For Objective-C files, you can choose any name you want; just make sure the last two
characters are .m.This indicates to the compiler that you have an Objective-C program.

After you’ve entered your program into a file (and we’re not showing the edit com-
mands to enter and save your text here), you can use the LLVM Clang Objective-C com-
piler, which is called clang, to compile and link your program.This is the general format
of the clang command:

clang -fobjc-arc –framework Foundation files -o program

This option says to use information about the Foundation framework:

-framework Foundation

Just remember to use this option on your command line. files is the list of files to be
compiled. In our example, we have only one such file, and we’re calling it main.m.
progname is the name of the file that will contain the executable if the program compiles
without any errors.

We’ll call the program prog1; here, then, is the command line to compile your first
Objective-C program:

$ clang -fobjc-arc –framework Foundation main.m -o prog1 Compile main.m & call it prog1

$

The return of the command prompt without any messages means that no errors were
found in the program. Now you can subsequently execute the program by typing the
name prog1 at the command prompt:

$ prog1 Execute prog1

sh: prog1: command not found

$

This is the result you’ll probably get unless you’ve used Terminal before.The UNIX
shell (which is the application running your program) doesn’t know where prog1 is
located (we don’t go into all the details of this here), so you have two options: One is to
precede the name of the program with the characters ./ so that the shell knows to look in
the current directory for the program to execute.The other is to add the directory in

02_9780321811905_ch02.qxd 11/22/11 11:52 AM Page 18

19Explanation of Your First Program

which your programs are stored (or just simply the current directory) to the shell’s PATH
variable. Let’s take the first approach here:

$./prog1 Execute prog1

2008-06-08 18:48:44.210 prog1[7985:10b] Programming is fun!

$

You should note that writing and debugging Objective-C programs from the terminal
is a valid approach. However, it’s not a good long-term strategy. If you want to build Mac
OS X or iOS applications, there’s more to just the executable file that needs to be “pack-
aged” into an application bundle. It’s not easy to do that from the Terminal application,
and it’s one of Xcode’s specialties.Therefore, I suggest you start learning to use Xcode to
develop your programs.There is a learning curve to do this, but the effort will be well
worth it in the end.

Explanation of Your First Program
Now that you are familiar with the steps involved in compiling and running Objective-C
programs, let’s take a closer look at this first program. Here it is again:

//

// main.m

// prog1

//

// Created by Steve Kochan on 7/7/11.

// Copyright 2011 ClassroomM, Inc.. All rights reserved.

//

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])

{

@autoreleasepool {

NSLog (@"Programming is fun!");

}

return 0;

}

In Objective-C, lowercase and uppercase letters are distinct.Also, Objective-C doesn’t
care where on the line you begin typing—you can begin typing your statement at any
position on the line.You can use this to your advantage in developing programs that are
easier to read.

The first seven lines of the program introduce the concept of the comment.A comment
statement is used in a program to document a program and enhance its readability. Com-
ments tell the reader of the program—whether it’s the programmer or someone else

02_9780321811905_ch02.qxd 11/22/11 11:52 AM Page 19

20 Chapter 2 Programming in Objective-C

whose responsibility it is to maintain the program—just what the programmer had in
mind when writing a particular program or a particular sequence of statements.

You can insert comments into an Objective-C program in two ways. One is by using
two consecutive slash characters (//).The compiler ignores any characters that follow
these slashes, up to the end of the line.

You can also initiate a comment with the two characters / and *.This marks the
beginning of the comment.These types of comments have to be terminated.To end the
comment, you use the characters * and /, again without any embedded spaces.All charac-
ters included between the opening /* and the closing */ are treated as part of the com-
ment statement and are ignored by the Objective-C compiler.This form of comment is
often used when comments span many lines of code, as in the following:

/*

This file implements a class called Fraction, which

represents fractional numbers. Methods allow manipulation of

fractions, such as addition, subtraction, etc.

For more information, consult the document:

/usr/docs/classes/fractions.pdf

*/

Which style of comment you use is entirely up to you. Just note that you can’t nest the
/* style comments.

Get into the habit of inserting comment statements in the program as you write it or type
it into the computer, for three good reasons. First, documenting the program while the partic-
ular program logic is still fresh in your mind is far easier than going back and rethinking the
logic after the program has been completed. Second, by inserting comments into the program
at such an early stage of the game, you can reap the benefits of the comments during the
debug phase,when program logic errors are isolated and debugged.Not only can a comment
help you (and others) read through the program,but it also can help point the way to the
source of the logic mistake. Finally, I haven’t yet discovered a programmer who actually enjoys
documenting a program. In fact, after you’ve finished debugging your program, you will prob-
ably not relish the idea of going back to the program to insert comments. Inserting comments
while developing the program makes this sometimes-tedious task a bit easier to handle.

This next line of Program 2.1 tells the compiler to locate and process a file named
Foundation.h:

#import <Foundation/Foundation.h>

This is a system file—that is, not a file that you created. #import says to import or
include the information from that file into the program, exactly as if the contents of the file
were typed into the program at that point.You imported the file Foundation.h because it
has information about other classes and functions that are used later in the program.

In Program 2.1, this line specifies that the name of the program is main:

int main (int argc, const char * argv[])

main is a special name that indicates precisely where the program is to begin execu-
tion.The reserved word int that precedes main specifies the type of value main returns,

02_9780321811905_ch02.qxd 11/22/11 11:52 AM Page 20

21Explanation of Your First Program

which is an integer (more about that soon).We ignore what appears between the open
and closed parentheses for now; these have to do with command-line arguments, a topic we
address in Chapter 13,“Underlying C Language Features.”

Now that you have identified main to the system, you are ready to specify precisely
what this routine is to perform.This is done by enclosing all the program statements of the
routine within a pair of curly braces. In the simplest case, a statement is just an expression
that is terminated with a semicolon.The system treats all the program statements included
between the braces as part of the main routine.

The next line in main reads

@autoreleasepool {

Any program statements between the { and the matching closing } are executed
within a context known an autorelease pool.The autorelease pool is a mechanism that
allows the system to efficiently manage the memory your application uses as it creates
new objects. I mention it in more detail in Chapter 17,“Memory Management and Auto-
matic Reference Counting.” Here, we have one statement inside our @autoreleasepool
context.

That statement specifies that a routine named NSLog is to be invoked, or called.The
parameter, or argument, to be passed or handed to the NSLog routine is the following string
of characters:

@"Programming is fun!"

Here, the @ sign immediately precedes a string of characters enclosed in a pair of dou-
ble quotes. Collectively, this is known as a constant NSString object.

Note
If you have C programming experience, you might be puzzled by the leading @ character. With-
out that leading @ character, you are writing a constant C-style string; with it, you are writing
an NSString string object. More on this topic in Chapter 15.

The NSLog routine is a function in the Objective-C library that simply displays or logs
its argument (or arguments, as you will see shortly). Before doing so, however, it displays
the date and time the routine is executed, the program name, and some other numbers
we don’t describe here.Throughout the rest of this book, we don’t bother to show this
text that NSLog inserts before your output.

You must terminate all program statements in Objective-C with a semicolon (;).This
is why a semicolon appears immediately after the closed parenthesis of the NSLog call.

The final program statement in main looks like this:

return 0;

It says to terminate execution of main and to send back, or return, a status value of 0.
By convention, 0 means that the program ended normally.Any nonzero value typically
means some problem occurred—for example, perhaps the program couldn’t locate a file
that it needed.

02_9780321811905_ch02.qxd 11/22/11 11:52 AM Page 21

22 Chapter 2 Programming in Objective-C

If you’re using Xcode and you glance back to your output window (refer to Figure
2.9), you’ll recall that the following displayed after the line of output from NSLog:

Program exited with status value:0.

You should understand what that message means now.
Now that we have finished discussing your first program, let’s modify it to also display

the phrase “And programming in Objective-C is even more fun!” You can do this by
simply adding another call to the NSLog routine, as shown in Program 2.2. Remember
that every Objective-C program statement must be terminated by a semicolon. Note that
we’ve removed the leading comment lines in all the following program examples.

Program 2.2

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

@autoreleasepool {
NSLog (@"Programming is fun!");
NSLog (@"Programming in Objective-C is even more fun!");

}
return 0;

}

If you type in Program 2.2 and then compile and execute it, you can expect the fol-
lowing output (again, without showing the text that NSLog normally prepends to the
output):

Program 2.2 Output

Programming is fun!

Programming in Objective-C is even more fun!

As you will see from the next program example, you don’t need to make a separate call
to the NSLog routine for each line of output.

First, let’s talk about a special two-character sequence.The backslash (\) and the letter
n are known collectively as the newline character.A newline character tells the system to
do precisely what its name implies: go to a new line.Any characters to be printed after
the newline character then appear on the next line of the display. In fact, the newline
character is very similar in concept to the carriage return key on a typewriter (remember
those?).

Study the program listed in Program 2.3 and try to predict the results before you
examine the output (no cheating, now!).

02_9780321811905_ch02.qxd 11/22/11 11:52 AM Page 22

23Displaying the Values of Variables

Program 2.3
#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])
{

@autoreleasepool {

NSLog (@"Testing...\n..1\n...2\n....3");
}
return 0;

}

Program 2.3 Output

Testing...

..1

...2

....3

Displaying the Values of Variables
Not only can simple phrases be displayed with NSLog, but the values of variables and the
results of computations can be displayed as well. Program 2.4 uses the NSLog routine to
display the results of adding two numbers, 50 and 25.

Program 2.4
#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])
{

@autoreleasepool {

int sum;

sum = 50 + 25;
NSLog (@"The sum of 50 and 25 is %i", sum);

}

return 0;
}

Program 2.4 Output

The sum of 50 and 25 is 75

The first program statement inside main after the autorelease pool is set up defines the
variable sum to be of type integer.You must define all program variables before you can

02_9780321811905_ch02.qxd 11/22/11 11:52 AM Page 23

24 Chapter 2 Programming in Objective-C

use them in a program.The definition of a variable specifies to the Objective-C compiler
how the program should use it.The compiler needs this information to generate the cor-
rect instructions to store and retrieve values into and out of the variable.A variable
defined as type int can be used to hold only integral values—that is, values without deci-
mal places. Examples of integral values are 3, 5, –20, and 0. Numbers with decimal places,
such as 2.14, 2.455, and 27.0, are known as floating-point numbers and are real numbers.

The integer variable sum stores the result of the addition of the two integers 50 and
25.We have intentionally left a blank line following the definition of this variable to visu-
ally separate the variable declarations of the routine from the program statements; this is
strictly a matter of style. Sometimes adding a single blank line in a program can make the
program more readable.

The program statement reads as it would in most other programming languages:

sum = 50 + 25;

The number 50 is added (as indicated by the plus sign) to the number 25, and the result
is stored (as indicated by the assignment operator, the equals sign) in the variable sum.

The NSLog routine call in Program 2.4 now has two arguments enclosed within the
parentheses.These arguments are separated by a comma.The first argument to the NSLog
routine is always the character string to be displayed. However, along with the display of
the character string, you often want to have the value of certain program variables dis-
played as well. In this case, you want to have the value of the variable sum displayed after
these characters are displayed:

The sum of 50 and 25 is

The percent character inside the first argument is a special character recognized by the
NSLog function.The character that immediately follows the percent sign specifies what
type of value is to be displayed at that point. In the previous program, the NSLog routine
recognizes the letter i as signifying that an integer value is to be displayed.

Whenever the NSLog routine finds the %i characters inside a character string, it auto-
matically displays the value of the next argument to the routine. Because sum is the next
argument to NSLog, its value is automatically displayed after “The sum of 50 and 25 is”.

Now try to predict the output from Program 2.5.

Program 2.5

#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])
{

@autoreleasepool {
int value1, value2, sum;

value1 = 50;
value2 = 25;
sum = value1 + value2;

NSLog (@"The sum of %i and %i is %i", value1, value2, sum);

02_9780321811905_ch02.qxd 11/22/11 11:52 AM Page 24

25Displaying the Values of Variables

}
return 0;

}

Program 2.5 Output

The sum of 50 and 25 is 75

The second program statement inside main defines three variables called value1,
value2, and sum, all of type int.This statement could have equivalently been expressed
using three separate statements, as follows:

int value1;

int value2;

int sum;

After the three variables have been defined, the program assigns the value 50 to the
variable value1 and then the value 25 to value2.The sum of these two variables is then
computed and the result assigned to the variable sum.

The call to the NSLog routine now contains four arguments. Once again, the first
argument, commonly called the format string, describes to the system how the
remaining arguments are to be displayed.The value of value1 is to be displayed immedi-
ately following the phrase “The sum of.” Similarly, the values of value2 and sum are to be
printed at the points indicated by the next two occurrences of the %i characters in the
format string.

Summary
After reading this introductory chapter on developing programs in Objective-C, you
should have a good feel of what is involved in writing a program in Objective-C—and
you should be able to develop a small program on your own. In the next chapter, you
begin to examine some of the intricacies of this powerful and flexible programming lan-
guage. But first, try your hand at the exercises that follow, to make sure you understand
the concepts presented in this chapter.

Exercises
1. Type in and run the five programs presented in this chapter. Compare the output

produced by each program with the output presented after each program.

2. Write a program that displays the following text:
In Objective-C, lowercase letters are significant.

main is where program execution begins.

Open and closed braces enclose program statements in a routine.

All program statements must be terminated by a semicolon.

02_9780321811905_ch02.qxd 11/22/11 11:52 AM Page 25

26 Chapter 2 Programming in Objective-C

3. What output would you expect from the following program?
#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

@autoreleasepool {
int i;
i = 1;
NSLog (@"Testing...");
NSLog (@"....%i", i);
NSLog (@"...%i", i + 1);
NSLog (@"..%i", i + 2);

}
return 0;

}

4. Write a program that subtracts the value 15 from 87 and displays the result, together
with an appropriate message.

5. Identify the syntactic errors in the following program.Then type in and run the
corrected program to make sure you have identified all the mistakes:
#import <Foundation/Foundation.h>

int main (int argc, const char *argv[]);
(

@autoreleasepool {
INT sum;
/* COMPUTE RESULT //
sum = 25 + 37 - 19
/ DISPLAY RESULTS /
NSLog (@'The answer is %i' sum);

}
return 0;

}

6. What output would you expect from the following program?
#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])

{

@autoreleasepool {

int answer, result;

answer = 100;

result = answer - 10;

NSLog (@"The result is %i\n", result + 5);

}

return 0;

}

02_9780321811905_ch02.qxd 11/22/11 11:52 AM Page 26

Index

Symbols
& (ampersand)

address operator, 274-275
bitwise AND operator, 211-213

&& (AND operator), 101

= (assignment operator), 64

* (asterisks)

arithmetic expressions, 55
indirection operator, 274-275
object references, 41-42

@ (at signs), 21

^ (carets)

blocks, 263
Exclusive-OR operator, 211, 214

% characters, 24

: (colons)

conditional operator, 122
methods, 37

, (comma operators), 294-295

// (comments), 20

/* */ (comments), 20

{ } (curly braces), 21

— (decrement operators), 78

pointers to arrays, 282-284
pre/post, 287-289

/ (division operators), 55

. (dot operators), 134-135

== (equal to operator), 74

> (greater than operator), 74

>= (greater than or equal to operator), 74

24_9780321811905_index.qxp 11/22/11 3:53 PM Page 493

++ (increment operator), 77-137

pointers to arrays, 282-284
pre/post, 287-289

<< (left shift operator), 211, 216

< (less than operator), 74

<= (less than or equal to operator), 74

-= (minus equals operator), 64

- (minus signs)

arithmetic expressions, 55
methods, 35

% (modulus operator), 60-61

\n (newline characters), 22

!= (not equal to) operator, 74

~ (ones complement operator),
211, 214-215

|| (OR operator), 101

| (pipe)

bitwise Inclusive-OR operator,
213-214

Inclusive-OR operator, 211
+ (plus signs)

arithmetic expressions, 55
methods, 35

+= (plus equals operator), 64

(pound signs), 233

? (question marks), conditional operator,
122

>> (right shift operator), 211, 216-217

; (semicolons), 21

-> (structure pointer operator), 278

~ (tildes), home directories, 370

_ (underscores), 200

4 x 5 matrix, 252

10 number objects program, 328-329

50 + 25 program, 23

A
absolute value program, 94-98

abstract classes, 173-174

abstract protocols, 229-230

accessing

Foundation framework
documentation, 304

instance variables, 45-48
inherited, 198
methods, creating, 45-48
setters/getters, 48

properties, 134-135
var from blocks, 263-265

accessor methods

setters/getters, 48
synthesizing, 200

AddressCard class, 334-337
display property, 454-455
synthesize directive, 132-133

add: method

adding arguments to message receiver,
138

adding fractions test program, 138-139
Fraction class object reference,

137-138
references, 138
result object, 146-148
self keyword, 145

addCard: method, 339

addition operator, 55

addition program, 23

addObject: method, 330, 352, 360, 362

address book, creating

address cards
adding, 339
counting, 339
creating, 331-332

494 ++ (increment operator)

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 494

deleting, 344-347
email, setting, 332
holding, 337-338
names, setting, 332
names and email, setting at once,

335-337
number of, reporting, 337-339
printing, 333
sorting with blocks, 350-351
sorting with selectors, 347-350
synthesizing, 334-337
test program, 333-334

AddressCard class, 331
contents, listing, 337-338
custom archives

creating, 436-437
restoring, 438-439

decoding, 430-434
encoding, 430-433
name of book, storing, 337-338
names

deleting, 344-347
looking up, 341-344

overview, 330-331
program, 339-341
sequencing through, 339

address operator (&), 274, 275

AddressBook class

implementation file, 338-339
methods

addCard:, 339
count, 339
entries, 339
initWithName:, 339
lookup:, 341-344
sortUsingSelector:, 347-350

interface file, 337-338
program, 339-341

AddressCard class

defining, 331
implementation file, 331-332
interface file, 331
methods

accessor methods, synthesizing,
334-337

compareNames:, 348-350
encodeWithCoder:, 431
print, 333
removeCard:, 344-347
setEmail:, 332
setName:, 332
setName:andEmail:, 335-337

test program, 333-334
allKeys method, 357

alloc methods, 40, 155, 309

allocating objects, 39-40, 146

analogous notation, 252-253

AND operator (&&), 101

And programming in Objective-C is even
more fun! phrase program, 22

anyObject method, 361

appendString: method, 323, 326

Apple

acquisition of Objective-C, 1
developer website, 447
iOS. See iOS
iPhone. See iPhone applications

Application Kit framework, 303

Application Services, 444

applications

bundles, 396-397
hierarchy, 444

Application Services, 444
Core Services, 443
kernel, 443

iPhone. See iPhone applications

495applications

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 495

ARC (Automatic Reference Counting),
41, 310, 408

non-ARC compiled code, 411
strong variables, 409

archiveRootObject:toFile: method, 428

archiving objects

custom archives
address book program, 436-437
completing archiving process, 437
encoding messages, storing, 437
mutable data areas, creating, 436
objects, encoding, 437
restoring data, 438-439
writing data to files, 438

decoding
address book example program,

430-431
data types, 430, 434-436
method, 430
process, 432
test program, 433-434

deep copies, creating, 439-441
encoding, 430

address book example program,
430-431

data types, 430, 434-436
method, 430
process, 431
test program, 432-433

keyed archives, 427
creating, 428
defined, 428
reading, 428-429
support, 428

sequential archives, 428
XML propertylists, 425

creating, 425-427
reading, 427
writing, 427

argc argument, 386

arguments

argc, 386
argv, 386
colons in method names, 37
command-line, 296-298
declaring, 36-37
define statement, 238
format string, 25
methods, 29
multiple, 135-139

adding fractions test program,
138-139

adding to message receiver, 138
dot operator, 138
names, 135
no names, 137
references, 138
referencing class objects, 137
setTo:over: method, 135-137
syntax, 135

names, 137, 141
numeric conversions, 260
pointers, 279-280
syntax, 256
types, declaring, 259
variable number of, 260
zone, 419

arguments method, 386

argv arguments, 386

arithmetic expressions

* (asterisks), 55
Calculator class, 65-67
counting numbers loop example,

71-72
Fraction class. See Fraction class
integer, 58-60
numeric data type conversions, 61-63

496 ARC (Automatic Reference Counting)

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 496

operators
— (decrement), 78
++ (increment), 77-162
-= (minus equals), 64
+= (plus equals), 64
assignment, 64
defined, 55
modulus, 60-61
precedence, 55-58
relational, 74-75
type cast, 63-64

array method, 352

arrays

assigning to other variables, 248
character, 251-252
declaring, 249
defined, 248
elements, beginning, 248
fast enumeration, 339
Fibonacci numbers program, 249-250
Foundation

10 number objects program,
328-329

address book, creating. See address
book, creating

creating, 328
data type conversions to objects,

353-354
displaying, 327-330
month names program, 327-328
mutable, creating, 330
objects, adding at end, 330
overview, 327
retrieving elements with index

numbers, 328
sorting methods, 352
sorting with blocks, 350-351
sorting with selectors, 347-350

initializing, 196, 250-251
multidimensional, 252-254

4 x 5 matrix, 252
declaring, 253
initializing, 253-254
notation, 252-253

passing to functions/methods,
261-262

pointers, 280-284
character strings, 285-286
comparing pointers, 283
copying character strings version 2,

289-290
defining, 281
first element, setting, 281
function references with pointers,

284
function to sum elements of

integer array program, 283-284
increment /decrement operators,

282
sequencing through arrays, 281-284

sequencing through, 248-249
subscripts, 248
values, storing, 248

arraySum function, 283-284

arrayWithCapacity: method, 352

arrayWithObjects: method, 328, 351

assignment operators (=), 64

asterisks (*)

arithmetic expressions, 55
object references, 41-42

at sign (@), 21

attributes

dictionary, 372
labels, 458

attributesOfItemAtPath: method,
371-372, 374

497attributesOfItemAtPath: method

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 497

automatic local variables, 257

Automatic Reference Counting. See ARC

autorelease pools, 403-405

blocks, 410-411
defined, 21
draining, 403
main routine example, 404
objects

adding, 403
autoreleasing, 404-405
owned, releasing, 404
survival after draining, 405-407

availableData method, 390

B
binary notation, 212

bit operators

AND, 212-213
binary/hexadecimal notation

conversions, 212
Exclusive-OR, 214
Inclusive-OR, 213-214
left shift, 216
listing of, 211
ones complement, 214-215
program example, 215-216
right shift, 216-217

bitwise AND operator (&), 211-213

blank spaces (expressions), 103

blocks

advantages, 262
arrays, sorting, 350-351
autorelease pools, 410-411
globally defining, 263
overview, 262
syntax, 262-263

variables
accessing, 263-265
assigning, 263
values, editing, 265-266

Boolean variables, 121-122

BOOL data type, 121-122
defined, 119
prime numbers tables, creating,

118-119
true/false values, 119-121

break statements

loops, 90
switch statements, 115

buffers, 375-376

bundles, 396-397

buttons (interfaces)

actions, adding, 460
adding, 459

C
c file extension, 14

C programming language

creation, 1
Objective-C comparison, 2

Caches directory, 385

calculate: method, 141

calculateTriangularNumber function,
255-257

Calculator class

defining, 65-67
fraction calculator application,

473-474
number operator number expressions

program, 109-112
camelCase, 411

capitalizedString method, 326

498 automatic local variables

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 498

carets (^), 263

blocks, 263
Exclusive-OR operator, 211, 214

case sensitivity, 19

class names, 33
conversion macro, 239
define statements, 235
names, 34

caseInsensitiveCompare: nsstring method,
325

catch directive, 191

categories

amounts, 225
defined, 218
implementation file, 221
interface file, 220
inheritance, 225
MathOps example, 221-224
NSComparisonMethods, 229
object/category named pairs, 225
overriding methods, 225
protocols, adopting, 228
unnamed. See classes, extensions

cc file extension, 14

CGPoint method, 353

CGPoint structures, 270

CGRect method, 353

CGRect structures, 270

CGSize method, 353

CGSize structures, 270

changeCurrentDirectoryPath: method, 376

character arrays, 251-252

characterAtIndex: i method, 325

characters

analysis program, 107-109
defined, 51
overview, 52

pointers, 275-277, 285-286
string objects, deleting, 323
Unicode, 312

charPtr pointer, 275-277

choosing

methods
names, 135
objects, 155-156

names, 34-35
circle area/circumference example, 234-235

class directive, 161-162

classes

abstract, 173-174
accessor methods, synthesizing,

132-133
AddressBook

count method, 339
implementation file, 338-339
initWithName: method, 339
interface file, 337-338
lookup: method, 341-344
program, 339-341
sortUsingSelector: method,

347-350
AddressCard

accessor methods, synthesizing,
334-337

compareNames: method, 348-350
defining, 331
encodeWithCoder:, 431
implementation file, 331-332
interface file, 331
print method, 333
removeCard: method, 344-347
setEmail: method, 332
setName: method, 332
setName:andEmail: method,

335-337
test program, 333-334

499classes

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 499

Calculator
defining, 65-67
fraction calculator application,

473-474
number operator number expres-

sions program, 109-112
Complex, 177-180
declaring, 33
defining, 130-131
extending, 148

methods, adding, 156-158
storing information, 161
subclasses, creating, 158-160

extensions, 224-225
Foo, 434-436
Fraction, 31-33

add: method, 137-138
adding fractions test program,

138-139
calculate: method, 141
convertToNum method, 95
copying fractions, 419-420
declaring, 129-130
defining, 130-131
exception handling, 189-190
extending, 148
fraction calculator iPhone

application, 469-473
initialization, 197-198
macros, 239
MathOps category, adding,

220-224
reduce method, 140, 142-145
reducing fractions inside the add:

method, 145
reducing fractions outside the add:

method, 144-145
result object, 146-148
setTo:over: method, 135-137

Fraction_CalculatorViewController,
464-469

clickDigit: method, 469
clickEquals method, 469
implementation file, 465-468
interface file, 464-465
processDigit: method, 469

GraphicObject
categories example, 224-225
Drawing protocol, 227

IBAction, 454
IBOutlet, 454
inheritance

benefits of subclasses, 173
class directive, 161-162
copying objects, 420
instance variables/methods,

152, 153-154
methods, adding, 156-158
methods, overriding, 169-173
object methods, choosing, 155-156
objects, owning, 165-169
parent class methods, adding, 162
program example, 154-155
root classes, 151
storing information, 160-161
subclasses. See subclasses

instance variables, declaring, 33
instances, 28
iPhone_1ViewController.h class,

453-454
iPhone_1ViewController.m class,

454-455
methods. See methods
names

case sensitivity, 33
choosing, 34

500 classes

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 500

NSArray
initialization methods, 196
sortedArrayUsingComparator:

method, 350
sorting methods, 352

NSAutoreleasePool, 403
NSBundle, 396-397
NSCountedSet, 361
NSData

buffers, 375-376
custom archives, 436

NSDictionary, 357
NSFileHandle, 390-391
NSFileManager

directory methods, 376-378
file methods, 370-371
objects, creating, 371

NSIndexSet
methods, 364
overview, 362

NSKeyedArchiver, 428
NSKeyedUnarchiver, 428-429
NSMutableArray, 330

sorting methods, 352
sortUsingComparator: method,

350-351
NSMutableDictionary

empty mutable dictionary, creating,
354-355

methods, 357
NSMutableSet, 362
NSMutableString, 320
NSNumber, 174

allocation methods, 309
methods, listing of, 310

NSObject, 151
methods, 185

NSPathUtilities.h, 381-382
functions, 384
methods, 384

NSProcessInfo, 386-390
methods, 386-387
program, 388-389

NSPropertyListSerialization, 427
NSSet

methods, 361
print method, 360

NSString
methods, listing of, 324-326
overview, 312
unichar characters, 312

NSValue, 353-354
objects

creating, 186
membership, 186
questioning, 185
responding to methods, 186-187
testing program, 187-189

overview, 27
polymorphism

Complex class example, 177-180
defined, 180

Printer, 199
properties, accessing, 134-135
Rectangle

declaring, 156-158
defining, 163-164
getter methods, 168
origin/setOrigin: methods, 162
setter method, 168
Square subclass, 158-160
storing information, 161
XYPoint subclass, 160-161

501classes

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 501

separate interface/implementation
files, 127-132

implementation file, 130-131
interface file, 129-130

Square, 158-160
declaring, 158
defining, 158
program, 159-160
setSide: method, 159
side method, 159

UILabel, 454
UITableView, 229
XYPoint

class directive, 161-162
declaring/defining,

160-161, 162-163
program, 164-165

clickDigit: method, 469

clickEquals method, 469

closeFile method, 391

closing files, 391

Cocoa

frameworks, 444
overview, 274, 443

Cocoa Touch, 444-445

colons (:)

conditional operators, 122
methods, 37

comma operator (,), 294-295

command-line arguments, 296-298

comments

// (slash characters), 20
/**/, 20
benefits, 20
define statements, 237
defined, 20

compare: nsstring method, 325

compareNames: method, 348-350

compile time

runtime checking, compared, 182-183
compiling programs

Terminal, 18-19
Xcode, 15-16

Complex class, 176-180

composite objects, 230-231

compound literals, 293

compound relational tests, 100-103

leap year program, 101-103
operators, 101

conditional compilation

if statements, 243-244
names, defining, 242
overview, 241
programs, debugging, 243
system dependencies, 241-243
undef statements, 244

conditional operator

macros, 239
syntax, 122
variable values, assigning, 122-123

conditions

for loops, 74
relational operators, 74-75

conformsToProtocol: method, 227

constants

character strings
pointers, 286-287

defined, 51
expressions, 51
symbolic names. See define statement

containIndex: idx method, 364

containsObject: method, 351, 360-361

contentsAtPath: method, 371, 376

contentsEqualAtPath: method, 371

502 classes

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 502

contentsOfDirectoryAtPath: method, 376

continue statements, 90

conversions (data type), 209-211

ending, 211
example, 210-211
rules, 210-211
type cast operator, 211

convertToNum method, 95

copy method, 414-415

copying

files, 371, 386
fractions, 419-420
objects

copy method, 414-415
deep copies, 417-418, 439-441
getter methods, 422-423
immutable strings, 414-415
mutable strings, 416-417
mutableCopy method, 413-415
NSCopying protocol, 418-421
setter methods, 421-423
shallow copies, 417

copyItemAtPath: method, 371, 376

copyString function, 286

copyWithZone: method, 226, 418

class inheritance, 420
zone argument, 419

Core Services, 443

count method

AddressBook class, 339
NSArray class, 351
NSDictionary class, 357
NSIndexSet class, 364
NSSet class, 361

counting 1 to 5 program example, 84-85

counting numbers loop example, 71-72

Cox, Brad J.

cpp file extension, 14

createDirectoryAtPath: method, 376

createFileAtPath: method, 371, 376

creating programs

Terminal, 17-19
compiling and running, 18-19
disadvantages, 19
entering programs, 17-18
icon, 17
window, 17

Xcode, 8-17
application types, selecting, 9
building and running, 15-16
editing, 14-15
filename extensions, 14
icon, 8
new projects, starting, 8
process overview, 16-17
product names/types, 10
project folders, selecting, 11
project windows, 12

curly braces ({ }), 21

currentDirectoryPath method, 376

custom archives

address book program, 436-437
completing archiving process, 437
encoding messages, storing, 437
mutable data areas, creating, 436
objects, encoding, 437
restoring data, 438-439
writing data to files, 438

503custom archives

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 503

D
dangling pointer references, 403

data encapsulation

instance variables, 45-48
methods, creating, 45-48
setters/getters, 48

data method, 436

data types

BOOL, 121-122
char

analysis program, 107-109
defined, 51
overview, 52
pointers, 275-277, 285-286
string objects, deleting, 323
Unicode, 312

conversions, 209-210
ending, 211
example, 210-211
rules, 210-211
type cast operator, 211

converting to objects, 353-354
double, 51
encoding/decoding, 430, 434-436
enumerated

defined, 205
defining, 208
identifiers, 206
integers, 205
month program, 206-208
variables as, declaring, 205

float, 24, 61-63
defined, 51
overview, 52

id, 54
compile time versus runtime

checking, 182-183

dynamic binding, 180-182
pointers, 300
static typing, 183-184

int data type. See int data type
listing of, 54-55
numeric conversions, 61-63
program example, 52-53
qualifiers

counter, 54
long, 53-54
long long, 54
short, 54

typedef statements, 208-209, 270
dataArray objects, filling

immutable strings, 414-415
mutable strings, 416-417

date program, 268-269

date structure

defining, 266-267
initializing, 269-270
month value, testing, 267-268
pointer, 277-279
program, 268-269
todaysDate/purchaseDate variables,

declaring, 272
datePtr pointer, 277-279

dealloc method, 402

debugging conditional compilation, 243

decision-making constructs

Boolean variables, 121-122
BOOL data type, 121-122
defined, 119
prime numbers tables, creating,

118-119
true/false values, 119-121

conditional operator
syntax, 122
variable values, assigning, 122-123

504 dangling pointer references

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 504

else if statements
character analysis program, 107-109
number operator number

expressions program, 109-112
overview, 105
sign function program, 106-107
syntax, 105-106
value operator value expressions

program, 112-114
if statements

absolute value program, 94-98
compound relational tests, 100-103
else if constructs. See else if

statements
nesting, 103-105
syntax, 93

if-else statements, 98-100
prime numbers tables, creating,

118-119
switch statements

break statements, 115
case values, 117
syntax, 114-116
value operator value expressions

program, 116-117
declaring

arrays, 249
classes, 129-130

interface file, 33
separating from class definitions,

127-132
display property, 454
external variables, 201-202
functions, 260

argument types, 259
return values, 259

immutable string objects, 317
instance variables, 33, 37-38

methods
arguments, 36-37
class versus instance, 35
return values, 36

multidimensional arrays, 253
pointers, 275
prototype declarations, 259-260
string objects

immutable, 315-316
mutable, 323

variables, 271
weak variables, 410

decodeObject:forKey: method, 430, 432

decoding objects

address book example program,
430-431

data types, 430, 434-436
method, 430
process, 432
test program, 433-434

decrement operator (—), 78

pointers to arrays, 282-284
pre/post, 287-289

deep copies, 417-418, 439-441

define statement, 233-239

argument spaces, 238
capitalization, 235
circle area/circumference example,

234-235
comments, reducing, 237
defined value references, 237
equality tests, 236
expressions

including, 235
validity, 236

literal text substitutions, 236

505define statement

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 505

macros, 238-239
case conversion, 239
conditional operator, 239
Fraction class, 239
lowercase letters, testing, 239
SQUARE, 238-239

multiple code lines, 237
placement, 234
syntax, 234
TRUE/FALSE values, 233-234

defined names. See also define statement

adding (Xcode), 242
arguments, 238
circle area/circumference example,

234-235
equality tests, 236
expressions

including, 235
validity, 236

literal text substitutions, 236
macros, 238-239

case conversion, 239
conditional operator, 239
Fraction class, 239
lowercase letters, testing, 239
SQUARE, 238-239

undefining, 244
values, 234

defined values, referencing, 237

defining

AddressCard class, 331
blocks, 263
classes, 127-132
enumerated data types, 208
object variables, 299
pointers to arrays, 281
protocols, 226-227

delegates

methods, 187
subclasses, 452

delegation, 229

deleteCharactersInRange: method, 323, 326

deleting

address cards, 344-347
characters from string objects, 323
files, 371
files from directories, 371
mutable string objects, 324

denominator method, 45

dependencies (system), 241-243

description method, 313-314

designing interfaces, 455-460

Attributes Inspector, 455
black window, creating, 455
buttons

actions, adding, 460
adding, 459

fraction calculator iPhone application,
474-475

guide lines, 458
labels

adding, 455
attributes, 458
positioning, 458
sizing, 458

user interface design pane, 455
desired triangular number calculation

program example, 79-81

developer program (iOS), 449

dictionaries

adding keys, 355
alphabetizing, 356
attributes, 372
enumerating, 355-356

506 define statement

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 506

glossary program, 354-355
mutable/immutable, 354
overview, 354
property lists

creating, 425-427
reading, 427

retrieving key values, 355
dictionaryWithCapacity: size method, 357

dictionaryWithObjectsAndKeys: method,
355-357

directives

catch, 191
class, 161-162
instance variable scope, 199
optional, 230
package, 199
private, 199
protected, 199
protocol, 226
public, 199
selector, 186
synthesize, 133
try, 190

directories, 376-378

attributes dictionary, 372
Caches, 385
current path, displaying, 378
Documents, 385
enumerating, 379-381
files, deleting, 371
home, 370, 383
iOS, 385
locating, 385
moving files between, 374
NSFileManager class methods,
376-378
operations program, 377-378

pathnames, 370
adding filenames to end, 383
arrays, returning, 383
creating, 384
deconstructing, 384
directories, locating, 385
extensions, adding, 384
extensions, extracting, 384
extensions, removing, 384
file extensions, 383
full, 370
hard-coding, 370
home directories, 383
last component, extracting, 384
last component, removing, 384
last file, extracting, 383
NSPathUtilities.h class, 381
paths, adding to end, 384
relative, 370
standardizing, 384
symbolic links, 384
temporary directories, 384
user information, returning, 384

temporary files, 383
display property

accessor methods, synthesizing,
454-455

declaring, 454
displaying

arrays, 309-330
directory current path, 378
phrases

And programming in Objective-C
is even more fun! program, 22

Programming is fun! program, 7
program results, 41
string objects, 313
variable values, 23-25

507displaying

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 507

division operator, 55

do loops

executing, 89
reversing integer digits program,

89-90
syntax, 88
while loops, compared, 89

Documents directory, 385

dot operator

multiple arguments, 138
properties, accessing, 134-135

double data type, 51

doubleValue method, 326

Drawing protocol, 227

dynamic binding, 180-182

dynamic typing

invoking methods, 184-185
methods, listing of, 185

E
editing

programs, 14-15
variable values outside blocks,

265-266
else if statements

character analysis program, 107-109
number operator number expressions

program, 109-112
overview, 105
sign function program, 106-107
syntax, 105-106
value operator value expressions

program, 112-114
else statements, 241

Empty Application template, 450

encapsulation

instance variables, 45-48
methods, creating, 45-48
setters/getters, 48

encodeObject:forKey: method, 430, 431

encodeWithCoder: method, 430, 431

encoding objects, 430

address book example program,
430-431

custom archives, 437
data types, 430, 434-436
method, 430
process, 431
test program, 432-433

endif statements, 241

ending

data type conversions, 210
functions, 257
loops, 75, 90

entries method, 339

enumerated data types

defined, 205
defining, 208
identifiers, 206
integers, 205
month program, 206-208
variables as, declaring, 205

enumerateObjectsUsingBlock: method, 352

enumerating

dictionaries, 355-356
directories, 379-381

enumeratorAtPath: method, 376, 381

environment method, 386

equal to (==) operator, 74

equality tests

expressions, 236
sets, 360
string objects, 316-317

event loops, 405-407

exception handling, 189

abnormal program termination,
avoiding, 190

508 division operator

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 508

catching expressions program,
190-191

Fraction class example, 189-190
multiple catch blocks, 191
throwing exceptions, 191

exchange function, 280

Exclusive-OR operator, 211, 214

expressions

arithmetic
assignment operators, 64
Calculator class, 65-67
counting numbers loop example,

71-72
Fraction class. See Fraction class
integer arithmetic, 58-60
modulus operator, 60-61
numeric data type conversions,

61-63
operator precedence, 55-58
operators, 55
type cast operator, 63-64

blank spaces, 103
compound relational, 101

leap year program, 101-103
operators, 101

constant, 51
data type conversions

ending, 211
example, 210-211
rules, 210-211
type cast operator, 211

define statements
including, 235
validity, 236

number operator number evaluation
program, 109-112

extending classes, 148, 224-225

methods, adding, 156-158
storing information, 161
subclasses, creating, 158-160

extensions

class, 224-225
files, 14

extern keyword, 201

external variables, 201-202

F
false values, 119-121

fast enumeration, 339

Fibonacci numbers program, 249-250

fileExistsAtPath: method, 371, 376

fileHandleForReadingAtPath: method, 390

fileHandleForUpdatingAtPath: method, 390

fileHandleForWritingAtPath: method, 390

files

appending contents between, 393-395
attributes dictionary, 372
buffers, 375-376
closing, 391
copying, 371, 386
custom archives. See custom archives
data, returning, 390
deleting, 371
directory, deleting, 371
existence, testing, 371
extensions, 14
handling operations program, 391-392
header, importing, 307, 454
implementation

AddressBook class, 338-339
categories, 221
classes, defining, 130-131

509files

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 509

Fraction class, 470-473
Fraction_CalculatorViewController

class, 465-468
instance variables, declaring, 37-38
overview, 33
syntax, 37

importing, 20, 131
interface. See interface file
moving between directories, 374
NSFileManager methods, 370-371
offsets, 390-391, 393
opening, 390
operations program, 372-374
pathnames

adding filenames to end, 383
arrays, returning, 383
creating, 384
deconstructing, 384
directories, locating, 385
extensions, adding, 384
extensions, extracting, 384
extensions, removing, 384
file extensions, 383
full, 370
hard-coding, 370
home directories, 383
last component, extracting, 384
last component, removing, 384
last file, extracting, 383
NSPathUtilities.h class, 381
paths, adding to end, 384
relative, 370
standardizing, 384
symbolic links, 384
temporary directories, 384
user information, returning, 384

program
allocating objects, 39-40
initializing objects, 40
main routines, 39
multiple objects, 42-45
object references, 41-42
object values, setting, 40-41
overview, 33
results, displaying, 41
variables, defining, 39

reading, 371, 390
relative file positioning, 393
renaming, 371
separate interface/implementation

files, 127-132
implementation file, 130-132
interface file, 129-130, 132

size, 374
test, creating, 374
writing data to, 371, 390
xib, 455

firstIndex method, 364

float data type, 24, 61-63

defined, 51
overview, 52

floatValue method, 326

fnPtr pointer, 291-292

Foo class, 434-436

for loops

200th triangular number example,
72-75

conditions, 74
initial values, 73
keyboard input, 79-81
nesting, 81-82
overview, 75
syntax, 83

510 files

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 510

table of triangular numbers example,
75-79

while loops, compared, 85
format string arguments, 25

Foundation framework

archiving objects. See archiving
objects

arrays
10 number objects program,

328-329
address books. See address book,

creating
creating, 328
data type conversions to objects,

353-354
displaying, 327-330
month names program, 327-328
mutable, creating, 330
objects, adding at end, 330
overview, 327
retrieving elements with index

numbers, 328
sorting methods, 352
sorting with blocks, 350-351
sorting with selectors, 347-350

bundles, 396-397
copying objects

copy method, 414-415
deep copies, 417-418
getter methods, 422-423
immutable strings, 413-415
mutable strings, 416-417
mutableCopy method, 414-415
NSCopying protocol, 418-421
setter methods, 421-422
shallow copies, 417

dictionaries
adding keys, 355

alphabetizing, 356
enumerating, 355-356
glossary program, 354-355
mutable/immutable, 354
overview, 354
retrieving key values, 355

directories, 376-378
attributes dictionary, 372
Caches, 385
current path, displaying, 378
Documents, 385
enumerating, 379-381
hard-coding pathnames, 370
home directories, 370
iOS, 385
locating, 385
NSFileManager methods, 370-371,

376-378
operations program, 377-378
pathnames, 370

documentation, 304-306
Mac OS X reference library, 306
Quick Help, 304-305
Xcode access, 304

files
appending contents between,

393-395
attributes dictionary, 372
buffers, 375-376
closing, 391
copying, 371, 386
data, returning, 390
deleting, 371
deleting from directories, 371
existence, testing, 371
handling operations program,

391-392

511Foundation framework

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 511

hard-coding pathnames, 370
home directories, 370
moving between directories, 374
NSFileManager file methods, 370-

371
offsets, 390-391, 393
opening, 390
operations program, 372-374
pathnames, 370
reading, 371, 390
relative file positioning, 393
renaming, 371
size, 374
test, creating, 374
writing data to, 371, 390

header files, importing, 307
number objects, 307-311

allocation methods, 309
comparing, 311
creating, 309
double objects, creating, 310
NSNumber methods, listing of,

310
numberWithInt: versus

numberWithInteger: methods,
311

program, 307-309
stored values, retrieving, 310
values, editing, 311
values, retrieving, 309

overview, 274
pathnames

adding filenames to end, 383
arrays, returning, 383
creating, 384
deconstructing, 384
directories, locating, 385
extensions, adding, 384
extensions, extracting, 384

extensions, removing, 384
file extensions, 383
home directories, 383
last component, extracting, 384
last component, removing, 384
last file, extracting, 383
NSPathUtilities.h class, 381
paths, adding to end, 384
standardizing, 384
symbolic links, 384
temporary directories, 384
temporary file directories, 383
user information, returning, 384

sets
adding/removing objects, 360
counted, 361
equality tests, 360
intersections, 360
operations program, 358-360
ordered indexes, 362-364
overview, 358
unions, 360

string objects
creating, 312
description method, 313-314
displaying, 313
immutable. See immutable string

objects
mutable. See mutable string objects
NSString class, 312, 324-326
program, 312-313
unichar characters, 312

fraction calculator iPhone application

Calculator class, 473-474
completing operations, 462
digit buttons, pressing, 469
Fraction class, 469-473

512 Foundation framework

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 512

implementation file, 470-473
interface file, 469-470

Fraction_Calculator, starting, 462
Fraction_CalculatorViewController

class, 464-469
implementation file, 465-468
interface file, 464-465

interface design, 474-475
keying in fractions, 462
multiplying fractions example, 462
overview, 448
project files, 475
sequence overview, 475-476
templates, 464
viewing in simulator after launching,

461
Fraction class, 31-33

add: method, 137-138
adding arguments to message

receiver, 138
adding fractions test program,

138-139
references, 138
result object, 146-148
self keyword, 145

calculate: method, 141
convertToNum method, 95
copying fractions, 419-420
declaring, 129-130
defining, 130-131
exception handling, 189-190
extending, 148
fraction calculator iPhone application,

469-473
implementation file, 470-473
interface file, 469-470

initialization
testing, 197-198
initialization method, 197

macros, 239
MathOps category, adding, 220-224
reducing fractions, 140-145

creating, 140
declaring, 142-143
defining, 143-144
inside the add: method, 145
outside the add: method, 144-145

setTo:over: method, 135-137
Fraction_CalculatorViewController class,

464-469

clickDigit: method, 469
clickEquals method, 469
implementation file, 465-468
interface file, 464-465
processDigit: method, 469

fractions programs

copying fractions, 419-420
Fraction class. See Fraction class
iPhone fraction calculator application.

See iPhone fraction calculator
application

multiple fractions, 42-45
reducing fractions, 140-145
creating, 140
declaring, 142-143
defining, 143-144
inside the add: method, 145
outside the add: method, 144-145

without classes, 30-31
frameworks

Application Kit, 274
Cocoa, 443
defined, 3, 274
Foundation. See Foundation

framework
layers, 443-444

513frameworks

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 513

Application Services, 444
bypassing, 444
Cocoa, 444
Core Services, 443
kernel, 443

FSF (Free Software Foundation),

full pathnames, 370

functions

arguments
command-line, 296-298
numeric conversions, 260
pointers, 279-280
types, declaring, 259
variable number of, 260

arrays
references with pointers, 284
passing, 261-262

arraySum, 283-284
calculateTriangularNumber, 255-257
copyString, 286
declaring, 260
ending, 257
exchange, 280
greatest common divisor program,

257-259
local variables, 257
main

adding, 255
autorelease pools, 404
program sections, 39

NSPathUtilities.h class, 384
pointers, 291-292
printMessage, 254
prototype declarations, 259-260
relationship with methods, 299
return types

declaring, 259
omitting, 259

scope, 260
sign

defined, 105
else if program, 106-107

static, 261
syntax, 254, 256
values, returning

greatest common divisor program,
257-259

overview, 257
return type declaration, omitting,

259

G
garbage collection

disadvantages, 402
iOS support, 401
overview, 401
turning on, 401

gcd function, 257-259

getter methods, 48

copying objects, 422-423
Rectangle class, 168

global variables, 200-202

defined, 200
external, 201
lowercase g, 200

globallyUniqueString method, 387

glossary program

archiving, 428
creating, 354-355
reading, 428-429

GNUStep, 1

goto statements, 294

GraphicObject class

categories example, 224-225
Drawing protocol, 227

greater than (>) operator, 74

514 frameworks

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 514

greater than or equal to (>=) operator, 74

greatest common divisor programs, 85-87,
257-259

grouping elements. See arrays; structures

H
h file extension, 14

handling exceptions, 189

abnormal program termination,
avoiding, 190

catching expressions program,
190-191

Fraction class example, 189-190
multiple catch blocks, 191
throwing exceptions, 191

hard-coding pathnames, 370

hasPrefix: nsstring method, 325

hasSuffix: nsstring method, 325

header files, importing, 307, 454

help

forum support website, 5
Foundation framework

documentation, 304-306
Quick Help, 304-305

hexadecimal notation, 212

history

acquisition by Apple, 1
creation, 1
licensing, 1
standardized specification, 1
version 2.0, 1

home directories, 370, 383

hostName method, 387

I
IBAction class, 454

IBOutlet class, 454

id data type, 54

compile time versus runtime
checking, 182-183

dynamic binding, 180-182
pointers, 300
static typing, 183-184

if statements

absolute value program, 94-98
compound relational tests, 100-103

leap year program, 101-103
operators, 101

conditional compilation, 243-244
else if constructs

character analysis program, 107-109
number operator number

expressions program, 109-112
overview, 105
sign function program, 106-107
syntax, 105-106
value operator value expressions

program, 112-114
if-else construct, 98-100
nesting, 103-105
syntax, 93

ifdef statements, 241

if-else statements, 98-100

immutable dictionaries, 354

immutable string objects

case, converting, 316
character length, counting, 316
character strings, joining, 316
copying objects, 416-417
creating based on another, 316
declaring, 315-317
defined, 314
equality, testing, 316-317
initialization, 317

515immutable string objects

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 515

messages, sending, 317
mutable, compared, 320
program, 314-315
references, 317
substrings, creating, 318-320

from inside strings, 320
leading characters, 319
locating strings inside another, 320
ranges, 320
specified index characters, 319

implementation file

AddressBook class, 338-339
categories, 221
classes, defining, 130-131
Fraction class, 470-473
Fraction_CalculatorViewController

class, 465-468
instance variables, declaring, 37-38
overview, 33
syntax, 37

import statement, 240-241

importing

files, 20, 131
header files, 307, 454
macros, 240-241

Inclusive-OR operator (|), 211, 213-214

increment operator (++), 77

pointers to arrays, 282-284
pre/post, 287-289

index numbers, 248

indexesPassingTest: method, 364

indexLessThanIndex: method, 364

indexOfObject: obj method, 351

indexOfObjectPassingTest: method, 351, 362

indexSet method, 364

indirection, 273

indirection operator (*), 274, 275

informal protocols, 229-230

inheritance

categories, 225
class directive, 161-162
copying objects, 420
instance variables, 152-154, 198
methods

adding, 156-158
methods, 152-154
overriding, 169-173

object methods, choosing, 155-156
objects, owning, 165-169

instance variables, testing, 167
memory reference, 166
passing values to methods, 166
values, setting, 166

parent classes, 162
program example, 154-155
root classes, 151
storing information, 161
subclasses, 152-153, 230

benefits, 173
creating, 158-160
defining, 173

super classes, 152-153
init methods, 40, 155

creating, 197
overriding, 196-197
testing, 197-198

initial values, assigning, 272

initializing

arrays, 250-251
immutable string objects, 317
multidimensional arrays, 253-254
objects, 40, 195-197

arrays, 196

516 immutable string objects

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 516

init prefix for methods, 196
methods, creating, 197
overriding init methods, 196-197
syntax, 195-196
testing, 197-198

structures, 269-270
initVar method, 169-170

initWith: method, 197

initWithCapacity: method,
326, 352, 357, 361

initWithCoder: method, 430, 432

initWithContentsOfFile: method, 325

initWithContentsOfURL: method, 325

initWithName: method, 339

initWithObjects: method, 361

initWithObjectsAndKeys: method, 357

initWithString: nsstring method, 325

insertObject: obj AtIndex: i method, 352

insertString: nsstring atIndex: i method, 326

insertString:atIndex: method, 323

instance methods, 35

class versus instance, 29
syntax, 28-29

instance variables

_ (underscores), 200
accessing, 45-48

methods, creating, 45-48
setters/getters, 48

accessor methods, synthesizing, 200
declaring, 33, 37-38
inheritance, 152-154
names

_ (underscores), 200
choosing, 34
versus property names, 454

origin, 161

outlets
connecting, 460
defined, 453

properties, 200
scope, 198

directives, 199
inheritance, 198
Printer class example, 199

storing, 298-299
testing, 167

instancesRespondToSelector: method, 185

int data type, 24

bit operators
AND, 212-213
binary/hexadecimal notation

conversions, 212
Exclusive-OR, 214
Inclusive-OR, 213-214
left shift, 216
listing of, 211
ones complement, 214-215
program example, 215-216
right shift, 216-217

conversions, 61-63
enumerated data types, 205
overview, 52
pointers, 274
qualifiers

long, 53-54
long long, 54
short, 54
unsigned, 54

integer arithmetic, 58-60

integers. See int data type

integerValue method, 326

interface design, 455-460

Attributes Inspector, 455
black window, creating, 455

517interface design

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 517

buttons
actions, adding, 460
adding, 459

fraction calculator iPhone application,
474-475

guide lines, 458
labels

adding, 455
attributes, 458
positioning, 458
sizing, 458

user interface design pane, 455
interface file

AddressBook class, 337-338
AddressCard class, 331, 337-338
arguments, 36-37
classes

declaring, 33, 129-130
definitions, extending, 148
instance methods, compared, 35

Fraction class, 469-470
Fraction_CalculatorViewController

class, 464-465
methods

arguments, 36-37
categories, 220
class versus instance, 35
return values, 36

names, choosing, 34-35
overview, 33
syntax, 33

intersect: method, 360

intersectSet: method, 361, 362

intPtr pointer, 274

intValue method, 326

iOS

applications
declaring display property, 454
delegate subclasses, 452

header files, importing, 454
IBAction identifiers, 454
IBOutlet identifiers, 454
instance variable names versus

property names, 454
interface design, 455-460
iPhone simulator, 449, 452, 460
new projects, starting, 449
outlets, 453, 460
project folder locations, 451
project options, choosing, 450
synthesizing display property

accessor methods, 454-455
templates, 449-450
view controllers, 453
views, 409

developer program, 449
directories, 385
displaying text in response to button

presses
black window, creating, 455
button actions, adding, 460
display variable and label

connection,460
iPhone_1ViewController.h class,

453-454
iPhone_1ViewController.m class,

454-455
overview, 448
running, 460
sequence overview, 459
source code, displaying, 460

fraction calculator application
Calculator class, 473-474
completing operations, 462
digit buttons, pressing, 469
Fraction class, 469-473
Fraction_Calculator, starting, 462

518 interface design

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 518

Fraction_CalculatorViewController
class, 464-469

interface design, 474-475
keying in fractions, 462
multiplying fractions example, 462
overview, 448
project files, 475
sequence overview, 475-476
templates, 464
viewing in simulator after

launching, 461
garbage collection support, 401
SDK, 447

iPhone applications

delegate subclasses, 452
display property

accessor methods, synthesizing,
454-455

declaring, 454
displaying text in response to button

presses
black window, creating, 455
button actions, adding, 460
display variable and label

connection,460
iPhone_1ViewController.h class,

453-454
iPhone_1ViewController.m class,

454-455
overview, 448
running, 460
sequence overview, 459
source code, displaying, 460

fraction calculator
Calculator class, 473-474
completing operations, 462
digit buttons, pressing, 469
Fraction class, 469-473

Fraction_Calculator, starting, 462
Fraction_CalculatorViewController

class, 464-469
interface design, 474-475
keying in fractions, 462
multiplying fractions example, 462
overview, 448
project files, 475
sequence overview, 475-476
templates, 464
viewing in simulator after

launching, 461
header files, importing, 454
IBAction identifiers, 454
IBOutlet identifiers, 454
instance variable names versus

property names, 454
interface design, 455

Attributes Inspector, 455
black window, creating, 455
button actions, adding, 460
buttons, adding, 459
guide lines, 458
labels, 455-459
user interface design pane, 455

iOS
developer program, 449
SDK, 447

iPhone simulator, choosing, 452
native, 2
new projects, starting, 449
outlets

connecting, 460
defined, 453

project folder locations, 451
project options, choosing, 450
simulator, 449

519iPhone applications

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 519

button presses, 460
choosing, 452
fraction calculator, displaying, 461

templates, 449-450
view controllers, 453

iPhone_1ViewController.h class, 453-454

iPhone_1ViewController.m class, 454-455

isEqualToSet: method, 360, 361

isEqualToString: nsstring method, 325

isKindOfClass: method, 185

isMemberOfClass: method, 185

isReadableFileAtPath: method, 371

isSubClassOfClass: method, 185

isSubsetOfSet: method, 361

isWritableFileAtPath: method, 371

K
kernel, 443

keyboard input, for loops, 79-81

keyed archives, 427

creating, 428
defined, 428
reading, 428-429
support, 428

keyEnumerator method, 357

keysSortedByValueUsingSelector: method,
357

keywords

extern, 201
self, 145
static, 141-142

L
labels (interfaces)

adding, 455
attributes, 458
positioning, 458
sizing, 458

lastIndex method, 364

lastObject method, 351

lastPathComponent method, 383-384

layers (frameworks), 443-444

Application Services, 444
bypassing, 444
Cocoa, 444
Core Services, 443
kernel, 443

leap year program, 101-103

left shift operator (<<), 211, 216

length method, 325

less than (<) operator, 74

less than or equal to (<=) operator, 74

line position, 19

LinuxSTEP,

local variables

argument names, 141
automatic, 257
defined, 140
functions, 257
static, 141-142, 257
values, 141, 257

long long qualifier, 54

long qualifiers, 53-54

lookup: method, 341-344

loops

continue statements, 90
counting numbers example, 71-72
do

executing, 89
reversing integer digits program,

89-90
syntax, 88
while loops, compared, 89

ending, 75, 90

520 iPhone applications

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 520

event, 405-407
for

200th triangular number example,
72-75

conditions, 74
initial values, 73
keyboard input, 79-81
nesting, 81-82
overview, 75
syntax, 83
table of triangular numbers

example, 75-79
while loops, compared, 85

while
counting 1 to 5 program example,

84-85
do loops, compared, 89
greatest common divisor program,

85-87
for loops, compared, 85
reversing integer digits program,

87-88
syntax, 84

lowercase versus uppercase, 19

lowercaseString method, 326

M
m file extension, 14

Mac OS X

Cocoa, 274, 443
Cocoa Touch, 444-445
reference library, 305-306

macros

case conversion, 239
conditional operator, 239
define statement, 238-239
Fraction class, 239
importing, 240-241

521memory management

lowercase letters, testing, 239
SQUARE, 238-239

main function

adding, 255
autorelease pools example, 404
program sections, 39

makeObjectsPerform Selector: method, 351

manual reference counting, 402-403

autorelease pools, 403-405
adding objects, 403
autoreleasing objects, 404-405
blocks, 410-411
draining, 403
main routine example, 404
object survival after draining,

405-407
owned objects, releasing, 404

dangling pointer reference, 403
deallocating, 402
decrementing, 402
incrementing, 402
methods, 402
strong variables, 408

Master-Detail template, 450

MathOps category, adding, 220-224

matrix

4 x 5, 252
notation, 252-253

member: method, 361

memory management

ARC, 408
non-ARC compiled code, 411
strong variables, 409

autorelease pools
blocks, 410-411
defined, 21
object survival after draining.

See autorelease pools

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 521

event loops, 405-407
garbage collection

disadvantages, 402
iOS support, 401
overview, 401
turning on, 401

manual reference counting, 402-403
autorelease pools, 403-405
dangling pointer reference, 403
deallocating, 402
decrementing, 402
incrementing, 402
methods, 402
strong variables, 408

object references, 166
pointers, 292-293
releasing, 41
rules, 407-408
strong variables, 408-409
weak variables, 409-410

declaring, 410
delegates, 410
objects with strong references, 409
support, 410

methods

+/- signs, 35
accessor

setters/getters, 48
synthesizing. See synthesizing

accessor methods
add:

arguments to message receiver, 138
Fraction class object reference, 137
fractions test program, 138-139
references, 138
result object, 146-148
self keyword, 145

addCard:, 339
addObject:, 330, 352, 360, 362
allKeys, 357
alloc, 40, 155, 309
anyObject, 361
appendString:, 323, 326
ARC, 310
archiveRootObject:toFile:, 428
arguments, 29, 141, 386
arrays, 261-262, 352
arrayWithCapacity: size, 352
arrayWithObjects:, 328, 351
attributesOfItemAtPath:, 371, 372, 374
availableData, 390
calculate:, 141
camelCase, 411
capitalizedString, 326
caseIndensitiveCompare: nsstring, 325
categories

amounts, 225
defined, 219
defining (interface file), 220
implementation file, 221
inheritance, 225
MathOps example, 221-224
NSComparisonMethods, 229
object/category named pairs, 225
overriding methods, 225
protocols, adopting, 228
unnamed, 224-225

changeCurrentDirectoryPath:, 376
characterAtIndex: i, 325
class object responses, 186-187
class versus instance, 29
clickDigit:, 469
clickEquals, 469

522 memory management

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 522

closeFile, 391
colons, 37
compare: nsstring, 325
compareNames:, 348-350
conformsToProtocol:, 227
containIndex: idx, 364
containsObject:, 351, 360, 361
contentsAtPath:, 371, 376
contentsEqualAtPath:, 371
convertToNum, 95
copy, 414-415
copyItemAtPath:, 371, 376
copyWithZone:, 226, 418

class inheritance, 420
zone argument, 419

count
AddressBook class, 339
NSArray class, 351
NSDictionary class, 357
NSIndexSet class, 364
NSSet class, 361

createDirectoryAtPath:, 376
createFileAtPath:, 371, 376
currentDirectoryPath, 376
data, 436
dealloc, 402
declaring

arguments, 36-37
class versus instance, 35
return values, 36

decodeObject:forKey:, 430, 432
delegation, 187
deleteCharactersInRange:, 323, 326
denominator, 45
description, 313-314
dictionaryWithCapacity: size, 357

dictionaryWithObjectsAndKeys:,
355-357

doubleValue, 326
dynamic binding, 180-182
dynamic typing

invoking methods, 184-185
listing of, 185

encodeObject:forKey:, 430-431
encodeWithCoder:, 430-431
entries, 339
enumerateObjectsUsingBlock:, 352
enumeratorAtPath:, 376, 381
environment, 386
examples, 29-30
fileExistsAtPath:, 371, 376
fileHandleForReadingAtPath:, 390
fileHandleForUpdatingAtPath:, 390
fileHandleForWritingAtPath:, 390
firstIndex, 364
floatValue, 326
getter, 48

copying objects, 422-423
Rectangle class, 168

globallyUniqueString, 387
hasPrefix: nsstring, 325
hasSuffix: nsstring, 325
hostName, 387
indexesPassingTest:, 364
indexLessThanIndex:, 364
indexOfObject: obj, 351
indexOfObjectPassingTest:, 351, 362
indexSet, 364
inheritance, 152-154

classes, extending, 156-158
objects, choosing, 155-156
overriding, 169-173
parent class, methods, 162

523methods

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 523

init, 40, 155
creating, 197
overriding, 196-197
testing, 197-198

init prefix, 196
initVar, 169-170
initWith:, 197
initWithCapacity: size, 352, 357, 361
initWithCoder:, 430, 432
initWithContentsOfFile: path

encoding: enc error: err, 325
initWithContentsOfURL: url

encoding: enc error: err, 325
initWithName:, 339
initWithObjects:, 361
initWithObjectsAndKeys:, 357
initWithString: nsstring, 325
insertObject: obj AtIndex: i, 352
insertString: nsstring atIndex: i, 326
insertString:atIndex:, 323
instance, 35
integerValue, 326
intersect:, 360
intersectSet:, 361, 362
intValue, 326
isEqualToSet:, 360, 361
isEqualToString: nsstring, 325
isReadableFileAtPath:, 371
isSubsetOfSet:, 361
isWritableFileAtPath:, 371
keyEnumerator, 357
keysSortedByValueUsingSelector:, 357
lastIndex, 364
lastObject, 351
lastPathComponent, 383-384
length, 325

local variables
argument names, 141
defined, 140
static, 141-142
values, 141

lookup:, 341-344
lowercaseString, 326
makeObjectsPerform Selector:, 351
member:, 361
minusSet:, 362
moveItemAtPath:, 371, 374, 377
multiple arguments, 135-139

adding fractions test program,
138-139

adding to message receiver, 138
dot operator, 138
names, 135
no names, 137
references, 137, 138
setTo:over: method example,

135-137
syntax, 135

mutableCopy, 413-415
mutableCopyWithZone:, 419
names, choosing, 34, 135
new, 48
NSArray class, 352
NSDictionary class, 357
NSFileHandle class, 390-391
NSFileManager class,

370-371, 376-378
NSIndexSet class, 364
NSMutableArray class, 352
NSMutableDictionary class, 357
NSNumber class, 309, 310
NSObject class, 185
NSPathUtilities.h class, 384
NSProcessInfo, 386-387

524 methods

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 524

NSSet class, 361
NSString class, listing of, 324-326
NSValue class, 353-354
numerator, 45
objectAtIndex:, 328, 351
objectEnumerator, 357, 361
objectForKey:, 355, 357
objects, 28

allocating, 146
choosing, 155-156
returning, 146

offsetInFile, 390
operatingSystem, 387
operatingSystemName method, 387
operatingSystemVersionString, 387
origin, 162
pathComponents, 383-384
pathExtension, 383-384
pathWithComponents:, 384
performSelector:, 186
polymorphism

Complex class example, 177-180
defined, 180

print
address cards, 333
NSSet class, 360
program results, displaying, 41

printVar:, 153
processDigit:, 469
processIdentifier, 386
processInfo, 386
processName, 387
protocols

adopting, 226
category adoptions, 228
defined, 226

defining, 226-227
delegation, 229
existing definitions, extending, 228
informal, 229-230
multiple, 226
names, 228
NSCopying, 226-227
object conformance, 227-228
subclasses, 227

rangeOfString:, 324
readDataOfLength:, 390
readDataToEndOfFile, 390
receivers, identifying, 145
reduce

creating, 140
declaring, 142-143
defining, 143-144
program, 144-145

relationship with functions, 299
removeAllObjects, 357, 362
removeCard:, 344-347
removeItemAtPath:, 371, 377
removeObject:, 352, 360, 362
removeObjectAtIndex: i, 352
removeObjectIdenticalTo:, 345
replaceCharactersInRange: range

withString: nsstring, 326
replaceObjectAtIndex: i withObject:

obj, 352
replaceOccurrencesOfString:, 324, 327
respondsToSelector:, 187
seekToEndOfFile, 391
seekToFileOffset:, 391
selector directive, 186
setAttributesOfItemAtPath:, 371
setDenominator, 36
setEmail:, 332

525methods

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 525

setName:, 332, 421
setName:andEmail:, 335-337
setNumerator, 36
setObject:, 355, 357
setOrigin:, 162
setProcessName:, 387
setSide:, 159
setString:, 324, 326
setter, 48

copying objects, 421-423
Rectangle class, 168

setTo:over:, 135-137
setWithCapacity:, 361
setWithObjects:, 361
side, 159
sortedArrayUsingComparator:,

350, 352
sortedArrayUsingSelector:, 352
sortUsingComparator:, 350, 352
sortUsingSelector:, 347-350, 352
string, 325
stringByAppendingPathComponent:,

383-384
stringByAppendingPathExtension:,

384
stringByDeletingLastPathComponent,

384
stringByDeletingPathExtension, 384
stringByExpandingTildeInPath, 384
stringByResolvingSymlinksInPath,

384
stringByStandardizingPath method,

384
stringWithCapacity: size, 326
stringWithContentsOfFile:, 325, 374
stringWithContentsOfURL: url

encoding: enc error: err, 325
stringWithFormat: format, arg1, arg2,

arg3 . . ., 325

stringWithString: nsstring, 325
substringFromIndex:, 319, 325
substringToIndex:, 319, 325
substringWithRange:, 320, 325
syntax, 28-29
truncateFileAtOffset:, 391
unarchiveObjectWithFile:, 428-429
union:, 360
unionSet:, 362
uppercaseString, 326
UTF8String, 326
writeData:, 390
writeToFile:, 352

minus equals (-=) operators, 64

minus signs (-)

arithmetic expressions, 55
methods, 35

minusSet: method, 362

mm file extension, 14

modulus operator (%), 60-61

month enumerated data type program,
206-208

month names program, 327-328

moveItemAtPath: method, 371, 374, 377

multidimensional arrays, 252-254

4 x 5 matrix, 252
declaring, 253
initializing, 253-254
notation, 252-253

multiple arguments, 135-139

adding to message receiver, 138
dot operator, 138
Fraction class, 138-139
names, 135
no names, 137
references, 137-138
setTo:over: method, 135-137
syntax, 135

526 methods

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 526

multiple objects, 42-45

multiple protocols, 226

multiplication operator, 55

mutable arrays, creating, 330

mutable data areas, creating, 436

mutable dictionaries, 354

mutable string objects

characters, deleting, 323
contents, setting, 324
copying objects, 416-417
declaring, 323
defined, 314
deleting, 324
immutable, compared, 320
inserting at end of another, 323
inserting into receiver beginning, 323
locating then deleting, 324
NSMutableString class, 320
program, search and replace, 323-324

mutableCopy method, 413-415

mutableCopyWithZone: method, 419

mutex locks, 422

N
names

arguments, 137, 141
case sensitivity, 34
choosing, 34-35
classes, 33
compound literals, 293
defined. See also define statement

adding (Xcode), 242
argument spaces, 238
circle area/circumference example,

234-235
equality tests, 236
expression validity, 236

expressions, 235
literal text substitutions, 236
macros, 238-239
undefining, 244
values, 234

instance variables, 200, 454
methods, 135
preprocessor definitions, 242
programs, 20-21
properties, 454
protocols, 228
reserved, 34
structures, omitting, 272
variables, 34

native applications (iPhone), 2

nesting

if statements, 103-105
for loops, 81-82

new iOS projects, starting, 449

new method, 48

newline characters, 22

NEXTSTEP, 1

nib files, 455

non-ARC compiled code, 411

not equal to (!=) operator, 74

NSArray class

initialization methods, 196
sortedArrayUsingComparator:

method, 350
sorting methods, 352

NSAutoreleasePool class, 403

NSBundle class, 396-397

NSCoding protocol, 430

NSComparisonMethods category, 229

NSCopying protocol, 226-227, 418-421

class inheritance, 420
copying fractions, 419-420
copyWithZone: method, 418

527NSCopying protocol

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 527

NSCountedSet class, 361

NSData class

buffers, 375-376
custom archives, 436

NSDictionary class, 357

NSFileHandle class, 390-391

NSFileManager class

directory methods, 376-378
file methods, 370-371
objects, creating, 371

NSFullUserName function, 384

NSHomeDirectory function, 384

NSHomeDirectoryForUser function, 384

NSIndexSet class

methods, 364
overview, 362

NSKeyedArchiver class, 428

NSKeyedUnarchiver class, 428-429

NSLog routine

% characters, 24
arrays, 309-330
phrases, displaying, 21
string objects, 313
variable values, displaying, 23-25

NSMutableArray class, 330

sorting methods, 352
sortUsingComparator: method,

350-351
NSMutableCopying protocol, 419

NSMutableDictionary class

empty mutable dictionary, creating,
354-355

methods, 357
NSMutableSet class, 362

NSMutableString class, 320

NSNumber class, 174

allocation, 309
methods, listing of, 310

NSObject class, 151

methods, 185
NSPathUtilities.h class, 381-382

functions, 384
methods, 384

NSProcessInfo class, 386-390

methods, 386-387
program, 388-389

NSPropertyListSerialization class, 427

NSRange method, 353

NSSearchPathForDirectoriesInDomains
function, 385

NSSet class

methods, 361
print method, 360

NSString class

methods, listing of, 324-326
overview, 312
unichar characters, 312

NSTemporaryDirectory function, 384

NSUserName function, 384

NSValue class, 353-354

null statement, 294

number objects, 307-311

comparing, 311
creating, 309
double objects, creating, 310
methods, 309
NSNumber class methods,

listing of, 310
numberWithInt: versus

numberWithInteger: methods, 311
program, 307-309
stored values, retrieving, 310
values

editing, 311
retrieving, 309

528 NSCountedSet class

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 528

number operator number expressions
program, 109-112

numerator method, 45

numeric conversions

arguments, 260
data types, 61-63

O
o file extension, 14

objectAtIndex: method, 328, 351

objectEnumerator, 357, 361

objectForKey: method, 355, 357

Objective-C

acquisition by Apple, 1
C programming language compared, 2
creation, 1
licensing, 1
standardized specification, 1
version 2.0, 1

objects

adding at end of arrays, 330
allocating, 39-40
ARC, 408
archiving. See archiving objects
car comparison, 27-28
class ownership, 165-169

instance variables, testing, 167
memory reference, 166
passing values to methods, 166
values, setting, 166

classes
creating, 186
membership, 186
responding to methods, 186-187
testing, 185, 187-189

compile time versus runtime
checking, 182-183

composite, 230-231
constants, 21
copying

copy method, 414-415
deep copies, 417-418, 439-441
getter methods, 422-423
immutable strings, 414-415
mutable strings, 416-417
mutableCopy method, 413-415
NSCopying protocol, 418-421
setter methods, 421-423
shallow copies, 417

data types, converting, 353-354
decoding

address book example program,
430-431

data types, 430, 434-436
method, 430
process, 432
test program, 433-434

deep copies, creating, 439-441
defined, 27
dictionary

adding keys, 355
alphabetizing, 356
enumerating, 355-356
glossary program, 354-355
mutable/immutable, 354
overview, 354
retrieving key values, 355

dynamic binding, 180-182
encoding, 430

address book example program,
430-431

custom archives, 437

529objects

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 529

data types, 430, 434-436
method, 430
process, 431
test program, 432-433

initializing, 40, 193-197
arrays, 196
init prefix for methods, 196
methods, creating, 197
overriding init methods, 196-197
syntax, 195-196
testing, 197-198

manual reference counting, 402-403
autorelease pools, 403-405
dangling pointer reference, 403
deallocating, 402
decrementing, 402
incrementing, 402
methods, 402

methods, 28
allocating, 146
choosing, 155-156
returning, 146

multiple, 42-45
names, choosing, 34
number, 307-311

allocation methods, 309
comparing, 311
creating, 309
double objects, creating, 310
NSNumber class methods, listing

of, 310
numberWithInt: versus

numberWithInteger: methods, 311
program, 307-309
stored values, retrieving, 310
values, editing, 311
values, retrieving, 309

protocol conformance, 227-228

references, 41-42
sets

adding/removing objects, 360
counted, 361
equality tests, 360
intersections, 360
operations program, 358-360
ordered indexes, 362-364
overview, 358
unions, 360

static typing, 183-184
string

creating, 312
description method, 313-314
displaying, 313
immutable. See immutable string

objects
mutable. See mutable string objects
NSString class, 312, 324-326
program, 312-313
unichar characters, 312

temporary, 410-411
values, setting, 40-41
variables, defining, 299

odd/even integers program, 98-100

offsetInFile method, 390

ones complement operator (~),
211, 214-215

OpenGL Game template, 450

opening files, 390

OPENSTEP, 1

operatingSystem method, 387

operatingSystemName method, 387

operatingSystemVersionString method, 387

operators

& (address), 274, 275
— (decrement), 78

pointers to arrays, 282-284

530 objects

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 530

pre/post, 287-289
++ (increment), 77-137

pointers to arrays, 282-284
pre/post, 287-289

* (indirection), 274, 275
-= (minus equals), 64
+= (plus equals), 64
-> (structure pointer), 278
, (comma), 294-295
assignment and arithmetic

combination, 64
bit

AND, 212-213
binary/hexadecimal notation

conversions, 212
Exclusive-OR, 214
Inclusive-OR, 213-214
left shift, 216
listing of, 211
ones complement, 214-215
program example, 215-216
right shift, 216-217

compound, 101
conditional

macros, 239
syntax, 122
variable values, assigning, 122-123

defined, 55
dot

multiple arguments, 138
properties, accessing, 134-135

modulus, 60-61
precedence, 55-58
relational, 74-75
sizeof, 295-296
type cast, 63-64, 211

optional directive, 230

OR operator (||), 101

origin instance variable, 161

origin method, 162

outlet variables

connecting, 460
defined, 453

overriding methods, 169-173

categories, 225
init methods, 196-197

P
package directive, 199

Page-based Application template, 450

pathComponents method, 383, 384

pathExtension method, 383, 384

pathnames, 370

adding filenames to end, 383
arrays, returning, 383
creating, 384
deconstructing, 384
directories, locating, 385
extensions

adding, 384
extracting, 384
removing, 384

file extensions, 383
full, 370
hard-coding, 370
home directories, 383
last components

extracting, 384
removing, 384

last file, extracting, 383
NSPathUtilities.h class, 381
paths, adding to end, 384
relative, 370

531pathnames

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 531

standardizing, 384
symbolic links, 384
temporary directories, 384
user information, returning, 384

pathWithComponents: method, 384

percent sign (%), 24

performSelector: method, 185-186

phrases, displaying

And programming in Objective-C is
even more fun! program, 22

Programming is fun! program, 7
pl file extension, 14

plus equals (+=) operators, 64

plus signs (+)

arithmetic expressions, 55
methods, 35

pointers, 273

& (address operator), 274-275
* (indirection operator), 274-275
arguments, 279-280
arrays, 280-284

character strings, 285-286
comparing pointers, 283
copying character strings version 2,

289-290
defining, 281
first element, setting, 281
function references with pointers,

284
function to sum elements of

integer array program, 283-284
increment/decrement operators,

282
sequencing through arrays, 281-275

characters, 275-277
constant character strings, 286-287
dangling references, 403

declaring, 275
functions, 291-292
id data types, 300
indirection, 273
integers, 274
memory addresses, 292-293
program example, 275
structures, 277-279
subtracting, 290

polymorphism

Complex class example, 177-180
defined, 180

pound sign (#), 233

preprocessor, 233

conditional compilation
if statements, 243-244
names, defining, 242
overview, 241
programs, debugging, 243
system dependencies, 241-243
undef statements, 244

multiple code lines, 237
statements, 233

define. See define statement
else, 241
endif, 241
if, 243-244
ifdef, 241
import, 240-241

prime numbers

defined, 117
table of, creating, 118-119

print method

address cards, 333
NSSet class, 360
program results, displaying, 41

532 pathnames

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 532

Printer class, 199

printMessage function, 254

printVar: method, 153

private directive, 199

processDigit: method, 469

processIdentifier method, 386

processInfo method, 386

processName method, 387

program section

main routines, 39
objects

allocating, 39-40
initializing, 40
multiple, 42-45
references, 41-42
values, setting, 40-41

overview, 33
results, displaying, 41
variables, defining, 39

Programming is fun! program, 7

programs

10 number objects, 328-329
200th triangular number example,

72-75
absolute value, 94-98
adding 50 and 25, 23
address book. See address book, creat-

ing
address cards

encoding/decoding, 430-431
testing, 333-334

arrays
character arrays, 251-252
Fibonacci numbers, 249-250

bit operators, 215-216
BOOL data type, 121-122
buffers, 375-376

characters
analysis, 107-109
string pointers, 285-286

circle area/circumference example,
234-235

class objects, testing, 187-189
compile time versus runtime

checking, 182-183
copying objects

immutable strings, 414-415
mutable strings, 416-417

counting 1 to 5 while loop example,
84-85

creating with Terminal, 17-19
compiling and running, 18-19
disadvantages, 19
entering programs, 17-18
icon, 17
window, 17

creating with Xcode, 8-17
application types, selecting, 9
building and running, 15-16
editing, 14-15
filename extensions, 14
new projects, starting, 8
process overview, 16-17
product names/types, 10
project folders, selecting, 11
project windows, 12
Xcode icon, 8

data types example, 52-53
date, 268-269
deep copies, 439-440
desired triangular number calculation

example, 79-81
dictionary property lists

creating, 425-427
reading, 427

533programs

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 533

directories
enumerating, 379-381
operations, 377-378

files
importing, 20
operations, 372-374, 391-392

fractions
Fraction class, 31-33
multiple, 42-45
without classes, 30-31

function to sum elements of integer
array program, 283-284

glossary
archiving, 428
creating, 354-355
reading, 428-429

greatest common divisor, 85-87
greatest common divisor in function

form, 257-259
implementation file

classes, defining, 130-131
instance variables, declaring, 37-38
overview, 33
syntax, 37

inheritance example, 154-155
interface file

arguments, 36-37
class definitions, extending, 148
class versus instance methods, 35
classes, declaring, 33, 129-130
method return values, 36
names, choosing, 34-35
overview, 33
syntax, 33

leap year, 101-103
months

enumerated data type, 206-208
names, 327-328

names, 20-21
nesting loops, 81-82
NSProcessInfo class, 388-389
number operator number expressions,

109-112
odd/even integers, 98-100
overriding methods, 169-170
pointers, integer variables, 275
prime numbers tables, creating,

118-119
program section

allocating objects, 39-40
initializing objects, 40
main routines, 39
multiple objects, 42-45
object references, 41-42
object values, setting, 40-41
overview, 33
results, displaying, 41
variables, defining, 39

And programming in Objective-C is
even more fun! phrase, 22

Programming is fun!, 7
reducing fractions

inside the add: method, 145
outside the add: method, 144-145

returning/allocating objects, 146-148
reversing integer digits

do loops, 89-90
while loops, 87-88

sections, 33
sets, 358-360
Square class, 159-160
string objects, 312-313

immutable, 314-315
mutable, 314-315

substrings, creating, 318-320

534 programs

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 534

table of triangular numbers example,
75-79

terminating, 21
triangular numbers, calculating

blocks, 263-265
calculateTriangularNumber

function, 255-257
value operator value expressions

else if statements, 112-114
switch statements, 116-117

what would happen if prevention, 112
XYPoint class, 164-165

properties

accessing, 134-135
display

accessor methods, synthesizing,
454-455

declaring, 454
instance variables, 200
names, 454

property lists. See XML propertylists

protected directive, 199

protocol directive, 226

protocols

adopting, 226
category adoptions, 228
defined, 226
defining, 226-227
delegation, 229
Drawing, 227
existing definitions, extending, 228
informal, 229-230
multiple, 226
names, 228
NSCopying, 226-227
object conformance, 227-228

subclasses, 227
UITableViewDataSource, 229
UITableViewDelegate, 229

prototype declarations, 259-260

public directive, 199

purchaseDate variable, 272

Q
qualifiers

long, 53-54
long long, 54
short, 54
unsigned, 54

question marks (?), conditional operators, 122

questioning class objects, 185

creating objects, 186
membership, 186
responses to methods, 186-187
testing program, 187-189

Quick Help, 304-305

R
rangeOfString: method, 324

readDataOfLength: method, 390

readDataToEndOfFile method, 390

reading

files, 390
keyed archives, 428-429
XML propertylists, 427

receivers, identifying, 145

Rectangle class

declaring, 156-158
defining, 163-164
getter methods, 168
origin: method, 162
setOrigin: method, 162

535Rectangle class

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 535

setter method, 168
Square subclass, 158-160
storing information, 161
XYPoint subclass

class directive, 161-162
declaring/defining,

160-163
program, 164-165

rectangles, creating, 271-272

reduce method

creating, 140
declaring, 142-143
defining, 143-144
program, 144-145

reducing fractions program

inside the add: method, 145
outside the add: method, 144-145

reference counting

automatic. See ARC
manual. See manual reference

counting
non-ARC compiled code, 411
strong variables, 408
weak variables, 409-410

declaring, 410
delegates, 410
objects with strong references, 409
support, 410

relational operators, 74-75

relative file positioning, 393

relative pathnames, 370

releasing memory, 41

removeAllObjects method, 357, 362

removeCard: method, 344-347

removeItemAtPath: method, 371, 377

removeObject: method, 352, 360, 362

removeObjectAtIndex: i method, 352

removeObjectIdenticalTo: method, 345

renaming files, 371

replaceCharactersInRange: range withString:
nsstring method, 326

replaceObjectAtIndex: i withObject: obj
method, 352

replaceOccurrencesOfString: method,
324, 327

reserved names, 34

respondsToSelector: method, 185, 187

restoring archive data, 438-439

return statement, 257

return values

declaring, 36
functions

declaring, 259
greatest common divisor program,

257-259
omitting, 259
overview, 257

returning objects from methods, 146

reversing integer digits program

do loops, 89-90
while loops, 87-88

right shift operator (>>), 211, 216-217

Ritchie, Dennis, 1

root classes, 151

routines

NSLog, 21
% characters, 24
arrays, 309-330
phrases, displaying, 21
string objects, 313
variable values, displaying, 23-25

scanf, 79, 108
running programs

Terminal, 18-19
Xcode, 15-16

runtime compared to compile time
checking, 182-183

536 Rectangle class

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 536

S
scanf routine, 79, 108

scope

functions, 260
instance variables, 198

directives, 199
inheritance, 198

variables, 198
SDK (iOS), 447

sections (programs), 33

seekToEndOfFile method, 391

seekToFileOffset: method, 391

selecting. See choosing

selector directive, 186

self keyword, 145

semicolons (;), 21

separate interface/implementation files,
127-132

implementation file, 130-132
interface file, 129-132

sequencing through arrays, 248-249

sequential archives, 428

setAttributesOfItemAtPath: method, 371

setDenominator method, 36

setEmail: method, 332

setName: method, 332, 421

setName:andEmail: method, 335-337

setNumerator method, 36

setObject: method, 355, 357

setOrigin: method, 162

setProcessName: method, 387

sets

adding/removing objects, 360
counted, 361
equality tests, 360
intersections, 360

operations program, 358-360
ordered indexes, 362-364
overview, 358
unions, 360

setSide: method, 159

setString: method, 324, 326

setter methods, 48

copying objects, 421-423
Rectangle class, 168

setTo:over: method, 135-137

setWithCapacity: method, 361

setWithObjects: method, 361

shallow copies, 417

short qualifier, 54

side method, 159

sign function

defined, 105
else if program, 106-107

simulator (iPhone), 449

button presses, 460
choosing, 452
fraction calculator, displaying, 461

Single View Application template, 450

size

files, 374
labels, 458

sizeof operator, 295-296

slashes (/), division, 55

sortedArrayUsingComparator: method,
350, 352

sortedArrayUsingSelector: method, 352

sorting arrays

blocks, 350-351
methods

NSArray class, 352
NSMutableArray class, 352

selectors, 347-350

537sorting arrays

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 537

sortUsingComparator: method, 350, 352

sortUsingSelector: method, 347-350, 352

Square class, 158-160

declaring, 158
defining, 158
program, 159-160
setSide: method, 159
side method, 159

SQUARE macro, 238-239

starting

Terminal, 17
Xcode, 8

statements

{ } (curly braces), 21
break

loops, 90
switch statements, 115

continue, 90
defined, 21
do

executing, 89
reversing integer digits program,

89-90
syntax, 88
while loops, compared, 89

else if
character analysis program, 107-109
number operator number

expressions program, 109-112
overview, 105
sign function program, 106-107
syntax, 105-106
value operator value expressions

program, 112-114
for

200th triangular number example,
72-75

conditions, 74
initial values, 73

keyboard input, 79-81
nesting, 81-82
overview, 75
syntax, 83
table of triangular numbers

example, 75-79
while loops, compared, 85

goto, 294
if

absolute value program, 94-98
compound relational tests, 100-103
conditional compilation, 243-244
else if constructs. See else if

constructs
if-else construct, 98-100
nesting, 103-105
syntax, 93

if-else, 98-100
null, 294
preprocessor, 233

define. See define statement
else, 241
endif, 241
if, 243-244
ifdef, 241
import, 240-241

return, 257
switch

break statements, 115
case values, 117
syntax, 114-116
value operator value expressions

program, 116-117
typedef, 208-209

data types, 270
definitions, 270-271
variables, declaring, 271

538 sortUsingComparator: method

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 538

undef, 244
while

counting 1 to 5 program example,
84-85

do loops, compared, 89
greatest common divisor program,

85-87
for loops, compared, 85
reversing integer digits program,

87-88
syntax, 84

static functions, 261

static keyword, 141-142

static local variables, 257

static typing, 183-184

static variables, 202-205

storing

array values, 248
instance variables, 298-299

string method, 325

string objects

characters, 323
creating, 312
description method, 313-314
displaying, 313
immutable

case, converting, 316
character length, counting, 316
character strings, joining, 316
copying objects, 414-415
creating based on another, 316
declaring, 315-317
defined, 314
equality, testing, 316-317
initialization, 317
messages, sending, 317
mutable, compared, 320

program, 314-315
references, 317
substrings, creating, 318-320

mutable
characters, deleting, 323
contents, setting, 324
copying objects, 416-417
declaring, 323
defined, 314
deleting, 324
immutable, compared, 320
inserting at end of another, 323
inserting into receiver beginning,

323
locating then deleting, 324
NSMutableString class, 320
program, search and replace,

323-324
NSString class

methods, listing of, 324-326
overview, 312
unichar characters, 312

program, 312-313
unichar characters, 312

stringByAppendingPathComponent: method,
383-384

stringByAppendingPathExtension: method,
384

stringByDeletingLastPathComponent
method, 384

stringByDeletingPathExtension method, 384

stringByExpandingTildeInPath method, 384

stringByResolvingSymlinksInPath method, 384

stringByStandardizingPath method, 384

stringWithCapacity: size method, 326

stringWithContentsOfFile: method, 325, 374

stringWithContentsOfURL: url encoding: enc
error: err method, 325

539stringWithContentsOfURL: url encoding: enc error: err method

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 539

stringWithFormat: format, arg1, arg2,
arg3 . . . method, 325

stringWithString: nsstring method, 325

strong variables, 408-409

structure pointer operator (->), 278

structures

date
defining, 266-267
initializing, 269-270
month value, testing, 267-269
pointer, 277-279
program, 268-269
todaysDate/purchaseDate variables,

declaring, 272
expressions, evaluating, 269
initializing, 269-270
instance variables, storing, 298-299
names, omitting, 272
pointers, 277-279
within structures, creating, 270-272
syntax, 267
variables

declaring in structure definition,
272

initial values, assigning, 272
subclasses, 152-153

benefits, 173
creating, 158-160
defining, 173
delegate, 452
inheritance, 230
protocols, 227

subscripts, 248

substringFromIndex: method, 319, 325

substrings, creating, 318-320

from inside strings, 320
leading characters, 319

locating strings inside another, 320
ranges, 320
specified index characters, 319

substringToIndex: method, 319, 325

substringWithRange: method, 320, 325

subtracting pointers, 290

subtraction operator, 55

sum variable, 24

superclasses, 152-153

support, forum website, 5

switch statements

break statements, 115
case values, 117
syntax, 114-116
value operator value expressions

program, 116-117
syntax

@ (at sign), 21
{ } (curly braces), 21
_ (underscores), 200
arguments, 256
blank spaces, 103
blocks, 262-263
case sensitivity, 19
class extensions, 224-225
comments

// (slash characters), 20
/* */, 20
benefits, 20
defined, 20

conditional operator, 122
constants, 21
define statement, 234
do loops, 88
else if statements, 105-106
functions, 254
if statements, 93

540 stringWithFormat: format, arg1, arg2, arg3 . . . method

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 540

implementation file, 37
interface file, 33
line position, 19
for loops, 83
methods, 28-29
multidimensional arrays, 252-253
multiple arguments, 135
newline characters, 22
object initialization, 195-196
properties, 134-135
statements, 21
structures, 267
switch statements, 114-116
terminating programs, 21
while loops, 84

synthesize directive, 133

synthesizing accessor methods, 200

AddressCard class, 334-337
display property, 454-455
synthesize directive, 132-133

system dependencies, 241-243

T
Tabbed Application template, 450

table of triangular numbers example, 75-79

templates (iOS applications), 449-450

temporary files directory, 383

temporary objects, 410-411

Terminal

disadvantages, 19
icon, 17
programs, creating, 17-19

compiling and running, 18-19
entering programs, 17-18
icon, 17
window, 17

starting, 17

terminating programs, 21

test files, creating, 374

threadsafe code, mutex locks, 422

throwing exceptions, 191

tildes (~), home directories, 370

todaysDate variable, 272

triangular numbers, calculating

blocks, 263-265
calculateTriangularNumber function,

255-257
true values, 119-121

truncateFileAtOffset: method, 391

try directive, 190

two-dimensional arrays, 252

type cast operator, 63-64, 211

typedef statements, 208-209, 270

definitions, 270-271
variables, 271

U
UILabel class, 454

UITableView class, 229

UITableViewDataSource protocol, 229

UITableViewDelegate protocol, 229

unarchiveObjectWithFile: method, 428-429

undef statements, 244

underscores (_), 200

Unicode characters, 312

union: method, 360

unionSet: method, 362

unsigned qualifier, 54

unwrapping, 353-354

uppercaseString method, 326

UTF8String method, 326

Utility Application template, 450

541Utility Application template

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 541

V
value operator value expressions program

else if statements, 112-114
switch statements, 116-117

values

arrays
assigning, 250-251
storing, 248

define statements, 233-234
defined, referencing, 237
functions, returning

declaring, 259
greatest common divisor program,

257-259
omitting, 259
overview, 257
return type declaration, omitting,

259
initial, assigning, 272
integer pointers, 274
local variables, 141, 257
objects in memory, 166
true/false, 119-121
variables

assigning, 122-123
displaying, 23-25
outside blocks, editing, 265-266

variables

arrays, assigning, 248
blocks

accessing, 263-265
assigning, 263
values, editing, 265-266

Boolean
BOOL data type, 121-122
defined, 119
prime numbers tables, creating,

118-119
true/false values, 119-121

declaring, 271
defining, 24, 39
enumerated data types, 205
external, 201-202
global, 200-202

defined, 200
external, 201
lowercase g, 200

instance
_ (underscores), 200
accessing, 45-48
accessor methods, synthesizing, 200
choosing, 34
declaring, 33, 37-38
directives, 199
inheritance, 152-154, 198
names, 454
origin, 161
Printer class example, 199
properties, 200
scope, 198
storing, 298-299
testing, 167

integer. See int data type
integer pointers, 274
local

argument names, 141
automatic, 257
defined, 140
functions, 257
static, 141-142, 257
values, 141, 257

memory addresses, 292
names, choosing, 34
objects, defining, 299
outlets

connecting, 460
defined, 453

542 value operator value expressions program

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 542

purchaseDate, 272
references to objects, 41-42
scope, 198
static, 202-205
static typing, 183-184
strong, 408-409
structures

declaring in structure definition, 272
initial values, assigning, 272

sum, 24
todaysDate, 272
typedef statements, 208-209
values

assigning, 122-123
displaying, 23-25

weak, 409-410
declaring, 410
delegates, 410
objects with strong references, 409
support, 410

view controllers, 453

views, 409

W
weak variables, 409-410

declaring, 410
delegates, 410
objects with strong references, 409
support, 410

websites

Apple developer, 447
forum support, 5
Mac OS X reference library, 305-306
Xcode development tools, 8

what would happen if prevention, 112

while loops

counting 1 to 5 program example,
84-85

do loops, compared, 89
greatest common divisor program,

85-87
for loops, compared, 85
reversing integer digits program, 87-88
syntax, 84

wrapping, 353-354

writeData: method, 390

writeToFile: method, 352

X
Xcode

defined names, adding, 242
development tools website, 8
Foundation framework

documentation, 304
garbage collection, turning on, 401
icon, 8
iPhone applications

declaring display property, 454
delegate subclasses, 452
fraction calculator. See fraction

calculator application
header files, importing, 454
IBAction identifiers, 454
IBOutlet identifiers, 454
instance variable names versus

property names, 454
interface design, 455-460
iPhone simulator, 452, 460
iPhone_1ViewController.h class,

453-454
new projects, starting, 449
outlets, 453

543Xcode

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 543

project folder locations, 451
project options, choosing, 451
synthesizing display property

accessor methods, 454-455
templates, 449-450
view controllers, 453

programs, creating, 8-17
application types, selecting, 9
building and running, 15-16
editing, 14-15
filename extensions, 14
new projects, starting, 8
process overview, 16-17
product names/types, 10
project folders, selecting, 11
project windows, 12

separate class interface/
implementation files, 127-132

starting, 8
test files, creating, 374

xib files, 455

XML propertylists, 425

creating, 425-427
reading, 427
writing, 427

XYPoint subclass

class directive, 161-162
declaring/defining, 160-162
defining, 163
programs, 164-165

Z
zone argument, 419

544 Xcode

24_9780321811905_index.qxp 11/22/11 11:48 AM Page 544

	Contents
	2 Programming in Objective-C
	Compiling and Running Programs
	Using Xcode
	Using Terminal

	Explanation of Your First Program
	Displaying the Values of Variables
	Summary
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

