Digital Archaeology
The Art and Science of Digital Forensics

Michael W. Graves

FREE SAMPLE CHAPTER
SHARE WITH OTHERS
Digital Archaeology
This page intentionally left blank
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Graves, Michael W.
pages cm
Includes bibliographical references and index.
HV8079.C65G7293 2013
363.250285—dc23
2013020221

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann Arbor, Michigan.
First printing, August 2013
I guess I’m just a regular guy after all. In spite of the fact that my daughter’s assignment to draw a picture of one of her parents consisted of a silhouette of my head against a computer monitor—despite the fact that I learned that my son got a blue ribbon in marksmanship by seeing the award hanging on the wall—even though my wife had to remind me twice of anniversaries and dozens of times about birthdays—my family always stuck with me. This book is for them.
This page intentionally left blank
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>About the Author</td>
<td>xxi</td>
</tr>
<tr>
<td>1 The Anatomy of a Digital Investigation</td>
<td>1</td>
</tr>
<tr>
<td>A Basic Model for Investigators</td>
<td>2</td>
</tr>
<tr>
<td>Understanding the Scope of the Investigation</td>
<td>8</td>
</tr>
<tr>
<td>Identifying the Stakeholders</td>
<td>12</td>
</tr>
<tr>
<td>The Art of Documentation</td>
<td>13</td>
</tr>
<tr>
<td>Chapter Review</td>
<td>21</td>
</tr>
<tr>
<td>Chapter Exercises</td>
<td>21</td>
</tr>
<tr>
<td>References</td>
<td>22</td>
</tr>
<tr>
<td>2 Laws Affecting Forensic Investigations</td>
<td>23</td>
</tr>
<tr>
<td>Constitutional Implications of Forensic Investigation</td>
<td>24</td>
</tr>
<tr>
<td>The Right to Privacy</td>
<td>29</td>
</tr>
<tr>
<td>The Expert Witness</td>
<td>31</td>
</tr>
<tr>
<td>Chapter Review</td>
<td>32</td>
</tr>
<tr>
<td>Chapter Exercises</td>
<td>32</td>
</tr>
<tr>
<td>References</td>
<td>33</td>
</tr>
</tbody>
</table>
3 Search Warrants and Subpoenas
Distinguishing between Warrants and Subpoenas 36
What Is a Search and When Is It Legal? 37
Basic Elements of Obtaining a Warrant 40
The Plain View Doctrine 43
The Warrantless Search 44
Subpoenas 50
Chapter Review 51
Chapter Exercises 52
References 52

4 Legislated Privacy Concerns
General Privacy 56
Financial Legislation 59
Privacy in Health Care and Education 62
Privileged Information 64
Chapter Review 67
Chapter Exercises 68
References 68

5 The Admissibility of Evidence
What Makes Evidence Admissible? 71
Keeping Evidence Authentic 76
Defining the Scope of the Search 84
When the Constitution Doesn’t Apply 84
Chapter Review 89
Chapter Exercises 89
References 89

6 First Response and the Digital Investigator
Forensics and Computer Science 91
Controlling the Scene of the Crime 96
Handling Evidence 100
Chapter Review 109
Chapter Exercises 109
References 110
Contents

7 Data Acquisition
- Order of Volatility
- Memory and Running Processes
- Acquiring Media
- Chapter Review
- Chapter Exercises
- References

8 Finding Lost Files
- File Recovery
- The Deleted File
- Data Carving
- Chapter Review
- Chapter Exercises
- References

9 Document Analysis
- File Identification
- Understanding Metadata
- Mining the Temporary Files
- Identifying Alternate Hiding Places of Data
- Chapter Review
- Chapter Exercises
- References

10 E-mail Forensics
- E-mail Technology
- Information Stores
- The Anatomy of an E-mail
- An Approach to E-mail Analysis
- Chapter Review
- Chapter Exercises
- References
Contents

11 Web Forensics
- Internet Addresses
- Web Browsers
- Web Servers
- Proxy Servers
- Chapter Review
- Chapter Exercises
- References

12 Searching the Network
- An Eagle’s Eye View
- Initial Response
- Proactive Collection of Evidence
- Post-Incident Collection of Evidence
- Router and Switch Forensics
- Chapter Review
- Chapter Exercises
- References

13 Excavating a Cloud
- What Is Cloud Computing?
- Shaping the Cloud
- The Implications of Cloud Forensics
- On Virtualization
- Constitutional Issues
- Chapter Review
- Chapter Exercises
- References

14 Mobile Device Forensics
- Challenges of Mobile Device Forensics
- How Cell Phones Work
- Data Storage on Cell Phones
- Acquisition and Storage
- Legal Aspects of Mobile Device Forensics

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Web Forensics</td>
<td>213</td>
</tr>
<tr>
<td>12</td>
<td>Searching the Network</td>
<td>247</td>
</tr>
<tr>
<td>13</td>
<td>Excavating a Cloud</td>
<td>277</td>
</tr>
<tr>
<td>14</td>
<td>Mobile Device Forensics</td>
<td>307</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>15</td>
<td>Fighting Antiforensics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Artifact Destruction</td>
<td>328</td>
</tr>
<tr>
<td></td>
<td>Hiding Data on the System</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td>Covert Data</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>Chapter Review</td>
<td>354</td>
</tr>
<tr>
<td></td>
<td>Chapter Exercises</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>355</td>
</tr>
<tr>
<td>16</td>
<td>Litigation and Electronic Discovery</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>What Is E-Discovery?</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td>A Roadmap of E-Discovery</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>Chapter Review</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>Chapter Exercises</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>378</td>
</tr>
<tr>
<td>17</td>
<td>Case Management and Report Writing</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>Managing a Case</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>Writing Reports</td>
<td>389</td>
</tr>
<tr>
<td></td>
<td>Chapter Review</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>Chapter Exercises</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>394</td>
</tr>
<tr>
<td>18</td>
<td>Tools of the Digital Investigator</td>
<td>395</td>
</tr>
<tr>
<td></td>
<td>Software Tools</td>
<td>395</td>
</tr>
<tr>
<td></td>
<td>Working with “Court-Approved” Tools</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td>Hardware Tools</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>Nontechnical Tools</td>
<td>418</td>
</tr>
<tr>
<td></td>
<td>Chapter Review</td>
<td>421</td>
</tr>
<tr>
<td></td>
<td>Chapter Exercises</td>
<td>422</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>422</td>
</tr>
</tbody>
</table>
Contents

19 Building a Forensic Workstation

What Is a Forensic Workstation? 424
Commercially Available Forensic Workstations 425
Building a Forensic Workstation From Scratch 429
Chapter Review 440
Chapter Exercises 440
References 440

20 Licensing and Certification

Digital Forensic Certification 441
Vendor-Neutral Certification Programs 442
Vendor-Specific Certification Programs 449
Digital Forensic Licensing Requirements 452
Chapter Review 454
Chapter Exercises 454
References 454

21 The Business of Digital Forensics

Starting a New Forensics Organization 458
Maintaining the Organization 466
Generating Revenue 478
Organizational Certification 481
Chapter Review 483
Chapter Exercises 483
References 483

A Chapter Review Answers

B Sample Forms

Glossary 511
Index 521
In performing an investigation that explores the use of computers or digital data, one is basically embarking on an archaeological expedition. To extract useful artifacts (information, in our case), one must be exceedingly careful in how one approaches the site. The similarities between a digital investigation and an archaeological excavation are much closer than you might imagine. Data, like physical artifacts, gets dropped into the oddest places. The effects of time and environment are just as damaging, if not more so, to digital artifacts as they are physical mementos.

Why This Book?

Archaeologists are fully aware that, due to the passage of time, there are things they can never recover. The skin that once covered a skeleton long buried in the desert can never be found and analyzed. Likewise, data that was once stored in active memory on a computer can’t be recovered once the computer is switched off. However, in each example, it is possible to uncover evidence that both existed. When you first begin a digital investigation, you are undertaking a modern archaeological dig. Just like the shards of broken pots tell the anthropologist a lot about the culture that once used the vessel, the data you dig out of the computer can tell you volumes about the people who used the system.

This book takes the concepts of archaeology and applies them to computer science. It is a tutorial on how to investigate a computer system to find evidence of a crime or other misbehavior, and to make sure that evidence will stand up in
court. While there are numerous other books that cover the whys and wherefores of digital forensics, this one will go into some detail on how to accomplish the task.

We’ve all watched the TV programs where the good guys figure out everything the bad guys did just from examining a piece of hair. (Is this why the bad guys are always called “hairballs”?) In modern-day investigations, the role of the computer plays as big a part as the star witness in many cases. In fact, the computer often is the star witness. Many cases have been solved or settled on the basis of what trained professionals were able to discover while examining electronic evidence (e-evidence).

However, the courts take a dim view on just anybody digging around in somebody else’s computers. They generally insist that legal process be followed, and that only a trained professional attempt the examination. The extraction and analysis of e-evidence is all part of what we call computer forensics. So what is forensics? The word itself originated from the Latin word forum, which described a place where people could assemble publicly and discuss matters of interest to the community. In that context, the word was derived from the strict rules of presentation applied to such discussions. In the context of this book, the word best means application of science or technology to the collection of evidence for the purpose of establishing facts. The vast majority of references specify that forensic science is targeted at criminal investigation. However, in the real world, digital investigations are commonly used in civil cases and within organizations to identify members engaged in illicit activities.

A crime scene investigator might have DNA from samples of hair found at the scene analyzed to prove that a specific individual was on the scene at least once. Chemical analysis of soil can identify a geographical origin. The process of computer forensics is a series of steps by which professionals can prove the following:

- Data exists.
- Data once existed.
- Data originated from a specific source.
- A particular individual either created or had access to the data in question.
- The data is relevant to the case.
- The data has not changed in any way from acquisition to analysis.

While it is not always necessary to prove all of the above statements are true, in order to secure a case it is best if as many as possible can be locked down. Even when all of the above are proven, a slick lawyer can always point out the fact that e-evidence is almost always circumstantial and press for reasons why the investigation team has presented insufficient corroborating evidence to demonstrate relevance or authenticity. (Both of these terms will be discussed in greater detail in the course of this book.) Even if you can prove beyond a shadow of a doubt that Tammy Sue created the letter
you found on Billy Bob’s computer, can you prove that Billy Bob actually acquired the letter illegally? Probably not—which is why, as an expert witness, you don’t even try. You simply collect the evidence and state the facts. The more incriminating evidence that you can find, the better the chances are that your side wins the battle.

Who Will Benefit from This Book?

This book is primarily targeted at the reader who is preparing for a career as a professional investigator. It will not serve as a legal tome for the prosecutor but will provide the background needed to efficiently and accurately collect evidence that a prosecutor can use. It will also prove handy to the IT professional who is occasionally called upon to perform e-investigations.

In addition, while the book’s primary goal is not to show people how to hide their tracks, understanding the processes discussed in this book can help an individual or organization prepare for a hostile demand for the delivery of electronic information (e-discovery). Properly identifying the bits on your computer can go a long way in preparing a defensible stance. If you know the garbage they are likely to find, you can be ready with an explanation. Foreknowledge also stops you from making the legally indefensible mistake of deliberately destroying evidence in advance of e-discovery. Such bad behavior doesn’t just result in a slap on the wrist. It can result in fines ranging into the millions (or even billions) of dollars.

Who Will NOT Benefit from This Book?

Before attempting to fully understand this book, a wise reader will already have fulfilled a few prerequisites. He or she already knows a computer inside and out. Swapping out hard disks is second nature, and she finds it easier to work from the command prompt than a GUI. And he doesn’t have to ask what a GUI is. Operating systems and file systems aren’t a foreign language. Opening a registry editor doesn’t induce spasms of panic, and most of all, exploring new areas of technology is a form of entertainment—not a nightmare.

There will be terms used in this book that I assume the reader already knows from previous experience or learning, because they are more relevant to general computer technology than to digital forensics. While it is not necessary to be a networking guru, it is certainly essential that you have a firm understanding of the concepts of networking, including principles of TCP/IP, network hardware, and communications.
How This Book Is Organized

The book starts out by introducing the reader to various things that must be clear before an investigation is ever initiated. The key differences between civil and criminal investigations are covered. What are the rules of the game? What laws affect us? Tools of the trade and minimum levels of training are a topic of discussion. What are the basic procedures of performing a computer forensic investigation?

From there on, the book describes tools and techniques that the average investigator will use on a day-in, day-out basis. The chapters are set up in approximately the order that the tasks will be accomplished in the real world. Finally, some of the humdrum aspects of the profession are discussed. Documentation, certification, and business aspects of digital forensics aren’t that much fun. But they are necessary aspects of the profession.

Understanding the Book’s Format

In order to present information in an orderly fashion, this book follows a scheme that will help the reader learn the material more quickly:

- **Bold**: A new term that will appear in the glossary
- **Italics**: A definition
- **Monospace type**: Code or commands to be typed into the computer
- **Command Syntax:**

 \[
 \text{copy \{} \text{filename.doc} \\{ \text{PATH:}\newfile.doc \} \text{ is the syntax used in the text to represent the command copy novel.doc c:\temp\docs\\ novel.doc. Brackets will not be used at the command prompt.}
 \]

- **Sidebars**: Anecdotes or examples that relate to the current text

The Need for Professionals

Sadly enough, this is a litigious world we live in. If you run a business, chances get better every day that you will find the need to sue someone—or will be on the wrong end of the need. Some people want to retain a rosy outlook on life and go into computer forensics because they think it is a way to bring the bad guys to justice. I’m delighted to report that sometimes, they are actually right. Just don’t forget that the other side always has their team of professionals ready to refute everything you say or write. That’s why so many computer investigators are needed.
A sign of how strong the field is can be seen in the Great Recession of 2008. When nearly six million people in regular walks of life all lost their jobs, openings couldn’t be filled for practitioners in the black arts of digital forensics. To top things off, scanning a listing of job offerings showed the lowest offering salary (that was stated) at $46,000 per year. The vast majority of starting salaries listed ranged from the high fifties to the mid-sixties per year. And this was starting salary.

With recent laws such as Sarbanes-Oxley and the new Federal Rules of Civil Procedure, along with venerable old laws like HIPAA and Gramm-Leach-Bliley, putting more pressure on business, health, and nonprofit organizations, it is a certain bet that the number of investigators needed will only increase. The key to getting one of these jobs is training and certification. And compliance has become a huge issue for many organizations.

Certification Programs for Forensics Professionals

As of this writing, there are several certification programs dedicated specifically to forensic investigation of digital data sources. In order to impress a potential client with your qualifications, it is not only necessary to demonstrate your competence with digital forensic tools, but you must also show that you have a satisfactory knowledge of operating systems, networks, and computer hardware. The following list is by no means comprehensive, but offers a glimpse of what the industry offers. In addition to certification programs, a number of colleges have begun to offer computer forensics as a degree program, including a handful that offers master’s degree programs in the subject.

Generic Forensics Certifications

- Certified Computer Examiner (CCE): International Society of Forensic Computer Examiners
- Certified Electronic Evidence Collection Specialist (CEECS): International Association of Computer Investigative Specialists (offered only to law enforcement officials)
- Certified Forensic Computer Examiner (CFCE): International Association of Computer Investigative Specialists
- Certified Information Systems Security Professional (CISSP): (ISC)^2
- Global Information Assurance Certification (GIAC) Certified Forensic Analyst
- GIAC Certified Forensic Examiner
VENDOR-SPECIFIC FORENSICS CERTIFICATIONS

- AccessData Certified Examiner (ACE): Certification of proficiency with the AccessData Forensics Toolkit
- EnCase Certified Examiner: Guidance Software
- Paraben: Various certificates of completion

NONFORENSIC CERTIFICATIONS

- Microsoft Certified Systems Engineer (MCSE): Microsoft certification of professional excellence in managing Microsoft servers
- Cisco Certified Network Engineer (CCNE): Proof of mastery of Cisco router and switch management
- A+:
 - Vendor-neutral certification of expertise in computer hardware installation and maintenance offered by the Computing Technology Industry Association (CompTIA)
- Network1:
 - Vendor-neutral certification of expertise in network infrastructure and administration offered by CompTIA

A PERSONAL NOTE ON CERTIFICATION PROGRAMS

Many years ago, I earned my daily bread in a completely different field. I sold computer hardware and systems to businesses and schools. As it was, the company for which I worked was unwilling to hire telephone support staff to assist customers with hardware issues. Instead, they expected the sales staff to field support calls. I got very good at that task. So much so that my boss started dispatching me to perform actual repairs any time the service call was close enough to justify the travel.

I discovered that I liked repairing computers a whole lot more than I did selling them. So I started distributing my resume to a variety of potential employers—and didn’t get a single response. On a whim, I self-studied for the A+ certification from CompTIA, took the exams, and passed with flying colors. As soon as I had those letters behind my name, I started circulating my resume again and got three invitations to interview on the first pass. Of those, I was offered a position that paid approximately 35% more than I earned in my best year as a sales rep. For me, that was a very powerful lesson on the value of certification. Getting a master of science in digital investigation management hasn’t hurt either.
Acknowledgments

A book of this nature is not the product of a single individual. I get my name on the cover because it was my idea and I did most of the writing—on the first go-around, anyway. However, there are some people who might go completely unnoticed for their patience, knowledge, skill, and understanding if I don’t point them out.

First of all, I would like to thank Robert J. Sherman for his help in mobile phone technology. Okay, to be precise, he didn’t just help . . . he wrote the whole chapter on mobile device forensics. He is an expert in this field, and my knowledge pales in comparison. So in the face of a lot of begging and pleading, along with promises of fame and fortune (sorry, bud . . . this is all the fame and fortune you’re likely to get out of this deal), he caved and agreed to help me. In the end, he turned out an excellent chapter. So if, after reading that chapter, you wonder why it reads so much better than the rest of the book, now you know.

Next, I’d like to give credit to two amazing reviewers whose comments turned a marginal first draft into a profoundly better final manuscript. Jay Lightfoot and Ruth Watson both provided chapter-by-chapter comments on my first effort, suggesting numerous improvements in both structure and content. Without those reviews, I don’t think this book would be as good as it is (however good that may be).

Naturally, I’m saving the best for last. My publisher actually made me complete the book! What’s with that? Michelle Housley, Michael Thurston, and Bernard Goodwin at Addison-Wesley all refused to give up hope on either me or the project (although I’m sure there were times it was tempting) and got me through that inevitable mid-book crisis where I felt I couldn’t possibly write another page without insanity setting in. This book is proof that I was wrong about the former, but I cannot with certainty attest to the latter.

Michael W. Graves
April, 2013
This page intentionally left blank
Michael W. Graves has worked as an IT professional for more than 15 years—as a network specialist, a security analyst, and most recently as a forensic analyst. He holds a master of science in digital investigation from Champlain College, where he spent several semesters as an adjunct professor of computer science. His publications include a number of certification manuals for several of the CompTIA certifications, as well as two novels. When not poking around in computers or writing books, he carts around an 8x10 view camera and makes black-and-white landscape photographs with a nod toward the F64 school of photography.
This page intentionally left blank
This chapter will deal with the structural aspects that are common to most, if not all, digital investigations. Most current texts on the subject refer to a common investigation model, although there is some disagreement on how many components make up the model. This book will use a six-part model, which will be covered in more detail later in this chapter.

It is essential to understand at the outset precisely what the scope of the investigation entails. The type of investigation dictates the level of authorization required. Generally, there are three types of investigation. Internal investigations are sponsored by an organization. They generally start out as a deep, dark secret that the company doesn’t want getting out. Therefore, courts and state and federal agencies are rarely involved at the outset. The other two types—civil and criminal—both require involvement by the courts, but on different levels.

There will never be an investigation that does not have multiple stakeholders. In all court cases, there is the plaintiff and the defendant. In civil cases, these are the two litigants asking the courts to settle a dispute. In criminal cases, the defendant is the person accused of a crime and the plaintiff is the one making the accusation, which will always be some level of government authority. In addition to these obvious players, there are those on the sidelines whose interests must be considered. Lawyers will almost always be involved, and in cases that are likely to end up in court, be assured that the judge will take an active interest.

With people’s finances, freedom, or even lives at stake, the necessity for accurate and thorough reporting cannot be emphasized enough. It is so critically
important that the subject of documentation will be discussed several times and in several places in this book. This chapter will start the reader off with the basics of good documentation.

Please be aware that this chapter deals only with the process of investigation. In Chapters 2 and 3, there will be detailed discussions of the various legal issues that the digital investigator must face on a daily basis. Consider the legal issues to be the glue that binds the model, but not the actual model. You can perform any number of investigations with no regard for the law. The results will be very revealing, but useless. Failure to be aware of legal aspects will cause the most perfectly executed investigation to fall apart the instant the case is picked up by the legal team.

A Basic Model for Investigators

Today’s teaching methods require everything to be broken down into a simplified structure that you can put into a diagram. Computer investigations are no different. Even though there will probably never be any two cases that are identical, they should always be processed in accordance with a standard investigative model. Kruse and Heiser (2001) laid out the basic computer investigation model in their book entitled Computer Forensics: Incident Response Essentials. Their model was a four-part model with the following steps:

- Assess
- Acquire
- Analyze
- Report

As shown in Figure 1.1, the four steps are further broken down into more granular levels that represent processes that occur within each step. A more thorough study expands the model to six steps, as follows:

- Identification/assessment
- Collection/acquisition
- Preservation
- Examination
- Analysis
- Reporting
The six-step model (Casey 2001) as seen in Figure 1.1 emphasizes the importance (and process) of preserving the data. It also distinguishes between the process of examination and analysis, whereas Kruse and Heiser considered them to be two parts of a single process. Experience has shown that acquisition and preservation are not the same, and while it might be an easy enough procedure to extract and examine data, accurate analysis is as much an art as it is a science.

From a management standpoint, each of these steps must be carefully monitored. Through a process of careful documentation of the history of each case, the various processes can be constantly reassessed for efficiency and reliability. When it becomes necessary, knowing what works and what doesn’t allows the observant manager to tweak the steps in order to improve organizational effectiveness.

Figure 1.1 emphasizes just how detailed these seemingly simple steps can actually be. The assessment phase alone has a multitude of steps involving people, hardware, environment factors, political implications, and jurisdiction. Acquisition of evidence cannot begin until all potential sources of evidentiary material
are identified, collected, inventoried, and catalogued. All of this must be done according to strict legal guidelines, or any subsequent investigation will be a waste of time. Legal and internal regulations regarding privacy must be followed at all times, or any information collected will not be admissible as evidence should the case ever make its way to court. In the case of internal investigations, adherence to corporate guidelines will generally be sufficient.

Identification/Assessment

Before beginning any investigation, the general rules of engagement must be established in advance and from the very start be strictly followed. Those rules can be very different between criminal and civil cases. It is essential that the investigator know what regulations apply to a specific investigation in order to not damage or destroy a case by failure to abide, either flagrantly or inadvertently.

In a criminal investigation, it is almost always necessary to obtain a warrant before seizing systems, media, or storage devices. In order to obtain that warrant, the investigating entity must provide a judge sufficient evidence that a crime has been committed, is about to be committed, or is in the process of commission. The specific type of information sought by the investigation must be identified; general fishing expeditions are never approved by a reputable judge—at least not for the purpose of issuing warrants.

Civil cases have more lenient guidelines. Internal investigations sponsored by an organization can be even more lenient. Federal guidelines regarding invasion of privacy are not as strictly enforced on civilian investigators looking into civil infractions as they are on agents of a government—state, federal, or local—who are investigating criminal complaints. Internal investigations can be made even easier when employees or members have signed a statement outlining an organization’s policies and guidelines.

No case should be accepted by an investigator directly. An executive-level decision, based on a set of predefined guidelines (to be discussed later), must be made on whether to accept or decline each individual case presented to the organization. While it falls upon a law enforcement agency to accept any case assigned that involves violation of state or federal statutes, a private organization can refuse to accept cases for a variety of reasons. The organization’s leadership must identify the criteria for case acceptance and stick to those criteria. It does the company’s reputation no good to be associated with a pedophile after publicly stating that its motives are to defend the community.

Make a list of all legal documentation that will be required. Warrants will be required in criminal cases. Court orders or subpoenas will be needed in civil
matters. Signed agreements outlining the scope of the investigation should be required in all internal investigations.

Once the ground rules are established, it is time to identify potential sources of evidence. The obvious place to look is on the local system, including hard disk drives, removable media that might be lying about, printers, digital cameras, and so forth. Less obvious sources of information might be PDAs, external hard disks or optical drives, and even system RAM if the data processing systems are still running when the incident is reported. Knowing in advance what must be acquired can prevent the investigator from making critical errors during the process of acquisition.

Collection/Acquisition

This is the most technical part of the investigation and can also be the most critical time for making errors. If the case under scrutiny should ever come to trial, the investigator presenting the case must be able to prove the following:

- The data is authentic.
- The copy of the data used for analysis is reliable.
- The data was not modified during acquisition or analysis (chain of custody).
- The tools used to analyze the data are valid tools.
- Sufficient evidence, both **incriminating** and **exculpatory**, has been acquired and analyzed to support the proffered conclusion.
- The conclusions drawn are consistent with the data collected and analyzed.
- People involved in the collection and analysis of the data are properly trained and qualified to do their job.

This doesn’t sound easy, and it isn’t. Details on how to assure that all of these requirements are met are covered in greater detail in later chapters. For now, suffice it to say that it is essential that they be fulfilled.

Preservation

A cardinal rule of digital investigation is that the original data must **never** be touched. For many years, the standard rule has been that a forensically sound copy of the original be made and that the examination and analysis of data be performed on the forensic copy. In terms of nonvolatile media, such as hard disks, removable media, and optical disks, this is still the rule. Devices should always be...
mounted as read-only in order to assure that no data is modified or overwritten during the process of mounting the device. Hard disk duplicators are designed specifically for this purpose, and in Windows systems, a simple modification of the registry allows USB devices to mount read-only.

Legal issues might arise if there is any possibility that media used to store images may have been contaminated. Be aware of that possibility and either have new media available for collection or be certain that previously used media has been forensically wiped.

In many cases, it becomes essential that copies of data be acquired through a process of live acquisition. This is the case when it becomes necessary to capture the contents of memory from a running system, to acquire log files from network devices that cannot be brought down, or to archive information from network servers or storage appliances that defy the making of a forensic copy. If it is not possible, for any reason, to create a forensically sound copy, it is essential that the investigator document the reasons such a copy could not be made and record as accurately as possible the state of the evidentiary source before and after acquisition.

Storage of preserved information becomes part of the chain of custody process, and care must be taken that all data and devices collected during this phase are properly documented and tracked. Be able to verify that there was never a possibility for evidence to become tainted through outside tampering, corruption, or improper procedure.

Examination

The process of examining data increases in scope and complexity every year. Whereas 1.44MB floppy disks were once the repository for stolen and illicit data, investigators these days are presented with flash drives the size of key fobs that hold 64 or more gigabytes of data and hard disks that store in excess of a terabyte. To make matters worse, the data is not likely to sit on a porch swing in plain view for anyone to see. Investigators will find it necessary to look for evidence in **unallocated space** left behind by deleted files. Hidden partitions, **slack space**, and even registry entries are capable of hiding large quantities of data. Steganography can hide documents inside of an image or music file. So essentially, the investigator is given an archive the size of the Chicago Public Library and asked to find a handwritten note on the back of a napkin tucked somewhere inside of a book.

Data carving tools and methods of looking for evidentiary material have evolved, and depending on the nature of the case, the investigator's tool kit will require having several utilities. For criminal cases requiring forensically sound
presentation, it is critical that the tools used to examine data be those considered valid by the courts. There are a few commercially available software suites approved for evidentiary use. Among these are Encase by Guidance Software and the Forensics Tool Kit (FTK) from Access Data Corporation. A suite of tools running on Linux that is not “officially” sanctioned but is generally considered acceptable by most courts is The Sleuth Kit, designed by Brian Carrier.

Keeping up with technical innovations in the industry is most critical in this area. As new technology emerges, new tools will be needed to examine the accumulated data it creates. The organization that follows the cutting edge of technology will always be two steps behind those that help develop it. The balancing act comes when management must defend the use of a new tool to which the courts and lawyers have not yet been exposed. Be prepared to defend the tool along with the conclusions it helped you formulate.

Analysis

Here is where the process of digital forensic investigation leaves the realm of technology and enters that of black magic. It is up to the investigator to determine what constitutes evidence and what constitutes digital clutter. A variety of tools exist that assist the investigator in separating OS files from user data files. Others assist in identifying and locating specific types of files.

Technique is as critical as the selection of tools. For example, when searching an e-mail archive for messages related to a specific case, string searches can bring up all those that contain specific keywords. Other utilities can detect steganography or alternate data streams in NTFS file systems. Collecting the data necessary to prove a case becomes as much art as it is science. One thing that the investigator must always keep in mind is that exculpatory evidence must be considered as strongly as incriminating evidence.

Reporting

Documentation of the project begins the minute an investigator is approached with a potential case. Every step of the process must be thoroughly documented to include what people are involved (who reported what, who might be potential suspects, potential witnesses, or possible sources of help), as well as thorough documentation of the scene, including photographs of the environment and anything that might be showing on computer monitors. Each step taken by the investigator needs to be recorded, defining what was done, why it was done, how it was done, and what results were obtained. Hash files of data sources must be generated before
and after acquisition. Any differences must be documented and explained. Conclusions drawn by the investigating team must be fully explained. On the witness stand, it is likely that an investigator will be required to prove his or her qualifications to act as an investigator. A meticulously investigated case can be destroyed by inadequate documentation. While commercial forensic suites automate much of the documentation process, there is still much manual attention required of the investigator.

Understanding the Scope of the Investigation

As mentioned, there are three basic types of investigation. With each type, the rules get tighter and the consequences of failure to comply get progressively stricter. A good rule of thumb is to pretend that the strictest rules apply to all investigations. However, as you might imagine, there are some role-specific requirements that don’t apply to all of them.

Internal Investigations

Internal investigation is the least restrictive of the inquiries you might make. From a standpoint of professional courtesy, internal investigations are more likely to be the least hostile type you’ll ever do. You work directly with management, and the target of your inquiries probably won’t even be aware of your activities until you are finished. You don’t have courts and lawyers combing every word you say or write, hoping to find the smallest mistake.

That is not to say that there aren’t laws that apply to internal probes. There most certainly are. State and federal laws regarding privacy apply to even the smallest organization. Also, different states have different laws regarding how companies deal with employment matters, implied privacy issues, and implied contracts. This isn’t intended to be a law book, so for the purposes of brevity and clarity, understand this. It is important to review any relevant regulations before you make your first move.

Most corporations have formal guidelines for such matters. In addition to a written employee handbook, it is very likely that a company has documented guidelines regarding issues leading to termination, use of company infrastructure (including computers, e-mail systems, and network services), and so forth. In every step of your process, make sure that you adhere to the law and to corporate policy. If there appears to be a conflict between the two, get legal advice. At the very least, make sure you have written authorization to perform every step you take. Management needs to be aware of your process and every step involved in
the course of investigation, and they must sign off, giving approval. Document everything you do, how you did it, and what results you obtained. In digging into the source and impact of any internal security breach, your foremost concern is the protection of your client. However, should your probe uncover deeper issues, such as illegal activity or a national security breach, then it becomes necessary to call in outside authorities.

Civil Investigations

Civil cases are likely to be brought to the organization in situations where intellectual property rights are at risk, when a company’s network security has been breached, or when a company suspects that an employee or an outsider is making unauthorized use of the network. Marcella and Menendez (2008) identify the following possible attacks:

- Intrusions
- Denial-of-service attacks
- Malicious code
- Malicious communication
- Misuse of resources

An investigator involved in a civil dispute should be cognizant of the Federal Rules of Civil Procedure. Although a legal degree is hardly necessary, a strong background in civil law is invaluable. Additionally, experience in business management is useful, in that a good understanding of standard corporate policy is necessary. Good communications skills are required. Management needs to be able to feel equally comfortable dealing with a CEO or a secretary.

When working with large repositories of data connected to many different users and devices, it becomes more difficult to assess who actually committed an infraction. Proving that a specific user was accessing the network at a specific time (and possibly from a particular machine) can be critical to winning a case. Anson and Bunting (2007) point out the difficulties of generating an accurate timeline and recommend some good tools for simplifying the matter. A good manager will keep abreast of changing technology and make sure that the organization is equipped with the proper tools.

Tools required for examining large networks or performing live data capture are substantially more expensive than those used to search individual data sources. Generally, it is not possible to bring down a corporate network while the investigative team captures images of thousands of drives. Costs in time and materials
would be prohibitive, as would be the negative impact of downtime on the company. Specialized software is needed to capture, preserve, and document the data. Additional tools are needed for data reduction. Filtering out the general network chatter and unrelated business documents can be a time-consuming process.

Keeping up with newer technology is essential, as is constant refresher training. The organization must continually assess its current capabilities and apply them to what imminent future needs are likely to be. As technology advances, investigative tools and techniques need to advance as well. Cases are won and lost on the ability of investigators to extract evidence. If a forensics team finds itself faced with a technology it doesn’t understand, there will be no time for on-the-job training.

Criminal Procedure Management

Defining precisely what constitutes computer crime is very difficult to do. Fortunately, it is not up to the investigator to determine what is and what is not criminal activity. However, some definitions have been presented by various experts. Reyes (2007) states that a computer crime will exhibit one or more of the following characteristics:

- The computer is the object, or the data in the computer are the objects, of the act.
- The computer creates a unique environment or unique form of assets.
- The computer is the instrument or the tool of the act.
- The computer represents a symbol used for intimidation or deception.

Generally speaking, computer crimes are little different from conventional crimes. Somebody stole something, somebody hurt somebody else, somebody committed fraud, or somebody possessed or distributed something that is illegal to own (contraband). While not an exhaustive list of possible computer crimes, the following is a list of the most commonly investigated:

- Auction or online retail fraud
- Child pornography
- Child endangerment
- Counterfeiting
- Cyberstalking
- Forgery
• Gambling
• Identity theft
• Piracy (software, literature, and music)
• Prostitution
• Securities fraud
• Theft of services

Prosecution of criminal cases requires a somewhat different approach than do civil cases. Legal restrictions are stricter, and the investigator is more likely to be impacted by constitutional limitations regarding search and seizure or privacy. Failure to abide by all applicable regulations will almost certainly result in having all collected evidence suppressed because of technicalities. Many civil investigations are not impacted as severely by constitutional law because there is no representative of the government involved in the investigation. To assure that the investigation succeeds, management of a criminal division needs to have someone with a strong legal background. Courts will use the Federal Rules of Evidence to decide whether or not to allow evidence to be admitted in an individual case.

For the same reasons, reporting procedures and chain of custody must be rigorously followed by each person involved in an investigation, whether they are involved directly or peripherally. Even a minor departure from best practice is likely to be challenged by opposing counsel. Because of this, selection of personnel becomes a greater challenge. A technical whiz with little or no documentation ability is likely to fail in criminal investigation. Anyone who demonstrates a disregard for authority is a poor candidate for investigating criminal cases.

Tools used in criminal cases are subject to a tighter scrutiny than those used in civil cases. When a person’s life or liberty hangs in the balance, judges and juries are less sympathetic to a technician who cannot verify that the tools used to extract the evidence being presented are reliable. Software and hardware tools used by the organization must be recognized by the court for use, and the techniques used by investigators must be diligently documented to show there was no deviation from accepted standard procedures.

Funding is likely to be more limited in criminal work than in civil investigations. Money will be coming from budget-strapped government entities or from law offices watching every dime. In some cases, courts will apply the Zubulake test to determine if costs should be shifted from one party to the other. This test is based on findings from the case Zubulake v. UBS Warburg (217 F.R.D. at 320, 2003) where the judge issued a list of seven factors to be considered in ordering
discovery (and in reassigning costs). These factors are to be considered in order of importance, the most important being listed first:

1. The extent to which the request is specifically tailored to discover relevant information
2. The availability of such information from other sources
3. The total cost of production compared to the amount in controversy
4. The total cost of production compared to the resources available to each party
5. The relative ability of each party to control costs and its incentive to do so
6. The importance of the issues at stake in the litigation
7. The relative benefits to the parties of obtaining the information

Identifying the Stakeholders

In any investigation, there are going to be a large number of people with a vested interest in the outcome. These people are the stakeholders. Stakeholders vary in each investigation, depending in part on the scope of the investigation and in part on the raw size of the organization and the data set involved. Sometimes it is easy for the investigator to become overwhelmed by the sheer number of people involved. In all cases, it is safe to assume that there are two primary stakeholders with a greater investment than any other. Those are the accused and the accuser.

The accuser is the easiest to identify. This is the person or the organization that initiated the inquiry to begin with. As simple as that may seem, all too often the actual accuser gets left in the wake of bureaucracy and procedure. This is particularly true in cases that are destined to be presented before a court. Lawyers suddenly take the place of the stakeholders, and the assumption becomes that suddenly they are the primary stakeholders. A good investigator never lets this happen. Communications may be with these attorneys as representatives of the stakeholders, but the primary stakeholders remain the accused and the accuser.

Depending on the magnitude and the scope of the case, there might be a wide variety of secondary stakeholders—or none at all. To be a stakeholder of any kind, an individual or organization must have something to gain or lose from the outcome of the investigation. In spite of possible arguments to the contrary, this does not include the news media. Key stakeholders include:

- Decision makers: Those who have the authority to initiate or to cancel an investigation or to reassign personnel.
• Mediators: Judges or third-party arbitrators who are responsible for deciding the outcome of the case or issue decisions pertaining to procedure.

• Customers: People or organizations downstream from the accused or accuser who will be directly impacted by the decision. For example, in *i4i Limited Partnership v. Microsoft Corporation*, virtually every reseller of Microsoft Word was impacted (*i4i v. Microsoft Corporation*, 6:07VC113, 2009).

• Process owners: People or organizations whose actions may have contributed to the case or whose operations were or will be impacted by the case.

Extraordinary circumstances can lead to unexpected stakeholders. The Exxon-Valdez incident in 1989 started out as the accidental grounding of an oil tanker that resulted in Exxon’s launch of an investigation into the actions of the ship’s captain. Before it was over, there were more than 38,000 litigants, including individuals, agencies, and environmental organizations, and three different sets of judges involved in a variety of decisions (Lebedoff 1997). That’s a lot of stakeholders.

The Art of Documentation

Any individual who lacks organizational skills or who finds it difficult to keep accurate notes as he works is not a likely candidate for the position of digital investigator. The vast majority of work the investigator does is documentation. There are five levels of documentation that must be either maintained or created during the course of each case study:

• General case documentation
• Procedural documentation
• Process documentation
• Case timeline
• Evidence chain of custody

Every one of these is important to winning a case should it make its way to court. Faulty, incomplete, or missing documentation can destroy an otherwise meticulously prepared case. In addition to these items, there is also the final report, but that will be covered elsewhere in this book.

The Craft of Project Management

While this book is not intended to be a treatise on what makes a good project manager, it should be pointed out that good project management practices can
facilitate the smooth completion of an investigation from beginning to end. Virtually all of the principles defined in the Project Management Institute’s (PMI) Project Management Book of Knowledge (PMBOK) apply directly to the investigatory process. Wysocki (2009) defines a project as “a sequence of unique, complex, and connected activities that have one goal or purpose and that must be completed by a specific time, within budget, and according to specification.”

Like all other projects, a digital forensics investigation involves multiple stakeholders and a defined scope, and has specific objectives that must be pursued. Multiple people will be involved, requiring the project leader to manage people’s time, to assure that tasks are assigned to the person most skilled in performing the work involved, and to keep everything in budget and on time.

General Case Documentation

Case documentation begins the moment you are asked to consider investigating an incident. Even if an investigator or agency chooses not to accept a case (assuming that possibility exists), it may later become necessary to explain why the case was turned away. Another thing the investigator needs to keep in mind is that anything recorded during the case is discoverable. To be discoverable means that opposing counsel has the right to examine and analyze data collected during the process. If an investigator takes written notes or uses a digital voice recorder to make verbal observations, copies of the notes and audio files must be made available to the opposition if requested. Therefore, great care should be taken in the creation of documentation.

A number of factors need to be addressed in the basic case documentation:

- What is the name and contact information for the organization involved in the incident? Record every individual contacted during the investigation, that person’s role in the process, and when, where, and how he or she was contacted.
- When was the investigative agency notified, and who initially took the information? Record exact dates and times.
- A description of the incident, both in technical terms and in lay terms.
- When was the incident discovered?
- When did the incident occur? This may be a best-guess scenario.
- Who discovered the incident?
- To whom was the incident reported? This means anyone who learned of it, regardless of rank and file.
- What systems, information, or resources were impacted by the event? This includes hardware, organizational entities, and people.
• Is there any preliminary information that suggests how the offending actions were accomplished?
• What is the impact of the incident on the individual or organization affected? This includes financial impact, impact on the systems involved, and any effect it may have had on the health or mental welfare of individuals involved.
• What actions were taken between discovery of the incident and reporting it to authorities? This means everything that was done, including simple files searches.
• Who are the stakeholders as they are identified?
• As soon as possible, provide a detailed inventory of all hardware (and possibly software) that is involved in the incident. If hardware is seized, provide a separate, itemized list of seized equipment.
• Have all copies of all pertinent documentation, such as warrants, summons, written correspondence, and so forth, been added to the case file?

Any other generic information that does not fit directly into one of the other reporting categories would be included in this section. This would include expense reports, timesheets, and any other general recordkeeping.

Procedural Documentation

During the course of the investigation, a number of tasks will be performed. The history of these tasks should be maintained as painstakingly as possible. The investigator should describe every step taken, the tools used to perform specific tasks, a description of the procedure, and a brief summary of the results. Detailed results can be included in the final report. When describing a technical process, process documentation should be provided whenever possible (as described in the next section).

Anytime the investigator chooses not to follow recommended best practice, it is essential to record the action being taken, what the recommended procedure would normally be, and what actual procedure is being used, and to explain precisely why the deviation is occurring. For the longest time, the best practice when coming upon a running suspect system was to pull the plug. The reasoning was that an orderly shutdown of the system overwrote a lot of data and drastically altered paging files. However, in a live network event that is still transpiring, it may be necessary to collect information from active memory, including current network connections, user connections, and possibly cached passwords. Shutting down the system would kill all that information. The proper course would then be to perform a live analysis and document precisely why the action was taken.
The following is a summary of events and tasks that should be meticulously reported. Some organizations performing investigations on a full-time basis have a template that the investigator follows, filling in the results as tasks are completed.

- Document the condition of the original scene, including a list of hardware found, status (on/off, logged on/logged off, etc.), along with photographs or a video tape.
- Record the names and contact information of all individuals interviewed during the investigations. A summary (or if possible, a transcript) of the interview should be provided as an attachment.
- If equipment is seized, document the make, model, and serial numbers of each device. Provide documentation authorizing the seizure as a separate attachment.
- Record the exact time materials were seized, the location it was taken from, and the name and contact information of the person performing the action.
- If equipment is transported, provide a detailed description of how the devices were packaged if antistatic or Faraday protection was provided. If not, why not?
- Describe the location where seized materials were taken, including the location and type of storage facilities used to house the materials. Record the name and contact information of the person transporting each item.
- Whenever live data acquisition is deemed necessary, record the following:
 - What type of date was acquired (memory dump, system files, paging files, etc.)?
 - What tools and procedures were used to connect to the suspect machine?
 - What tools and procedures were used to acquire the data?
 - What was the time and date the data was imaged, and what was the time and date reported by the device from which the data was acquired? The two are not always the same.
 - What are the type, make, model, and serial number of the target device to which the data was copied?
 - What is the condition of the target device (new, forensically cleaned, data-wiped, or formatted)?
 - What are the MD5 and SHA-2 hash calculations of the image?
• When devices are imaged for later analysis, record the following:
 • The type, make, model, and serial numbers of source devices
 • The type, make, model, and serial numbers of target devices
 • Precautions taken to avoid contamination or loss of data in evidence
 • For disk drives:
 ○ Drive parameters of disk drives, both target and source
 ○ Jumper settings
 ○ Master/slave configuration if IDE
 ○ Device ID if SCSI or SATA
 • For optical or flash drives:
 ○ Make, model, and capacity
 ○ Mounted or not mounted at time of seizure
 ○ Inventory of blank or used media
 • For seized media:
 ○ Form of disks (CD, DVD, Zip, etc.)
 ○ Capacity of disks
 ○ Number and type of seized disks
 ○ Possible evidence that there are missing disks (empty jewel boxes, etc.)
 • The date and time of each action taken.
 • The process used for mounting the seized device, including mechanisms in place to assure write-protection
 • The process and tools used to acquire the forensic image
 • MD5 and SHA-2 hash calculations of the image before and after acquisition
 • Photograph computer systems before and after disassembling for transport.
 • During the examination and analysis of data, record each procedure in detail, identifying any tool used. Record beginning and ending hash calculations of source data, explaining any discrepancies that may occur.
 • Above all: Maintain an unbroken chain of custody that includes each piece of evidence handled throughout the course of the investigation.

As is readily apparent, case documentation is not to be taken lightly. While individuals should be treated as innocent until proven guilty, sources of evidence by default get the opposite treatment. The astute investigator always assumes that
any case he or she is working will eventually end up in court. Even the seemingly benign cases, such as uncovering evidence of employee misconduct, can end up in court as a civil (or even criminal) court case. Poor documentation can endanger what would otherwise be a sound case.

Process Documentation

Unless an investigator or an organization utilizes homegrown tools, most process documentation is likely to come from the vendors providing the hardware or software used. There are some pieces of documentation that must be generated by the agency. Process documentation includes

- User manuals
- Installation manuals
- Readme files stored on installation media
- Updates to manuals posted online by the vendor
- Logs showing updates, upgrades, or patch installations

This is the type of documentation that does not necessarily need to be provided with each investigation report. It must, however, be available if demanded by opposing counsel, a judge, or arbitrator. There are situations that occur where process documentation is used to support or refute claims that proper procedure was followed during specific steps in the investigation.

Building the Timeline

Key to virtually every investigation involving computer or network activity is the creation of an accurate history of events related to the incident under investigation. By creating an easily comprehensible report of the order of events that occurred, the investigator can more easily and more accurately show correlation between those events. For example, it is easier to associate a specific user to the origination of a particular file if the timeline shows that the file was created at a time when it can be shown unequivocally that the user was logged onto the computer or network.

The timeline (Figure 1.2) needs to start from a time just before the incident was known to begin or was initially discovered to the point when the evidentiary materials were acquired for analysis. This is why it is essential that the investigator do nothing that could alter the metadata of files stored on the computer. Metadata is information about files that can be either stored within the file itself
or extracted from other repositories, such as the Windows master file tables or registry. Three critical pieces of information are the creation date, last accessed date, and last modified date. Together these form the file’s MAC (modified, accessed, and created) data. Simply viewing a file in a browser or application alters the accessed data. Copying a file from one location to another can modify both the creation and modified dates if forensically acceptable methods are not used. Metadata and ways of protecting and analyzing it will be covered in greater detail in Chapters 9 and 10.

Network and user logon activity are also critical to creating a timeline, as are Internet and e-mail usage. There are various tools that help the investigator validate times that certain events occurred. MACtime is a common forensic tool that can extract a history of user activity on a system. It creates an ASCII timeline of file activity. X-Ways Trace can be used to extract and analyze Internet history. In a network environment, event tracking in utilities such as Microsoft’s Event Viewer, the registry, or log files can reveal valuable information that can be used for assembling a credible timeline.

Timelines can be assembled in graphical form that makes it easy for laypeople such as lawyers and judges to understand. Some of the forensic suites (notably Encase) produce automated timelines. Others, such as the Forensic Tool Kit, do not. It is possible, but not necessarily pleasant, to create a timeline using commercial products such as Microsoft Visio, Excel, or OpenOffice. Excel is very cumbersome for this task and is not recommended. Microsoft Visio produces more polished timelines but is limited by the fact that each event must be entered into the timeline separately. A better use of the investigator’s time is to invest
in a proprietary product such as Timeline Maker for Windows or Bee Docs for Macintosh computers.

Chain of Custody Reports

For every physical unit of evidence taken into possession by an investigator or agency, there must be a continuously maintained chain of custody report. Consider it the equivalent of a timeline for evidence. The chain of custody report must be able to verify several critical pieces of information:

- Identify the item precisely, listing type of evidence, make, model, and serial number (if relevant), and make a photograph of the item (if possible).
- Specify when was the item taken into possession.
- Identify where or from whom the item was seized.
- Record who acquired the item along with the time and date acquired.
- Document who transported the item and how was it transported.
- Document how was the item stored during transport.
- Regularly record how the item was stored during possession.
- Provide a continual log, showing the time and date of each time it was checked out for examination, the purpose for checking it out, and the time and date it was checked back in for storage, identifying who had possession of the item during that time.

While an item is in possession of an individual investigator, that person should document what steps were taken to preserve the integrity of the evidence while in possession. Such documentation needs to include a precise identification of the device in possession (as defined above) and what controls were in place to protect the device from electrostatic discharge, electromagnetic interference, and other potential sources of data corruption and other protections. Document what methods were used to prevent data from being inadvertently written to the device (write-blocker devices, software write-protection, etc.). Generate before and after hash values to confirm that the data source did not change while in possession. If it did change, document what process caused the change, along with how and why the change occurred.

Any deviation from standard documentation procedures in preparing the chain of custody can, and most likely will, lead to challenges from opposing counsel and can possibly cause the evidence to be thrown out. No breaks can exist in the timeline, because this indicates an opportunity for the data to be replaced, corrupted, or modified.
Case Law: Chain of Custody

It is inevitably a good idea to present a flawless chain of custody in order to avoid having evidence declared inadmissible. The courts have vacillated in how they treat evidence in regards to “missing links” in the chain. In *Jeter v. Commonwealth*, Justice Roberts of the Twelfth Virginia Appellate Court wrote, “When a ‘vital link’ in the possession and treatment of the evidence is left to conjecture, the chain of custody is incomplete, and the evidence is inadmissible” (*Jeter v. Commonwealth* 2005).

Conversely, in *Hargrove v. Commonwealth*, the defendant argued that since the chain of custody did not include any signed statements or testimony from the officer who delivered the evidence to the laboratory, nor was there any evidence that an authorized agent accepted delivery of the evidence at the lab, the integrity of the evidence was in doubt. In denying this appeal, Justice Felton wrote, “It concluded that because the evidence container was received at the lab ‘sealed and intact,’ there was no evidence that it was subject to tampering between the time it left the police evidence room and the time that it was removed from the lab storage locker. We conclude that the trial court did not err in admitting the evidence container and the certificate of its analysis” (*Hargrove v. Commonwealth* 2009).

Chapter Review

1. In what ways does Casey’s six-step model differ from the earlier four-step models of digital investigation? What is new, and what has changed?

2. Where in the Casey model would one begin to ascertain precisely what legal documentation would be required for a particular investigation?

3. Is *Zubulake v. UBS Warburg* more relevant to a criminal case or a civil matter? Explain your answer.

4. Discuss the difference between procedural documentation and process documentation. In which document would you explain what steps you took during the examination of a file system?

5. During the process of examination, you have reason to suspect that files that were deleted may still exist. What is the process for locating intact files in unallocated disk space?

Chapter Exercises

1. Look up at least one criminal case that involved data carving. Was the technique useful for the prosecution or for the defense?
Chapter 1 The Anatomy of a Digital Investigation

2. Think of as many ways as possible in which a civil case involving electronic discovery of specific e-mails would differ from a criminal cases in which a search of a suspect’s e-mail archives must be conducted. Don’t try to get too specific here, as this is simply an overview chapter.

3. Throughout the investigation, a myriad of actions are performed. At what point does the chain of custody begin, and how is it relevant at each subsequent stage?

References

* (asterisk), in string searches, 180
@ (at sign)
 in e-mail addresses, 187
 in passwords, 349
“ ” (double quotes), Boolean operator, 205
$ metadata file, 136
− (minus sign), Boolean operator, 205
+ (plus sign), Boolean operator, 205
8.3 file names, 134
32-bit vs. 64-bit forensics workstations, 432, 438

A
The A+ Guide to PC Hardware
 Maintenance and Repair, 423
Abbot Papyrus, 379
Absolute direct addressing, 125
Abstraction layers
 lossless, 399
 lossy, 399
 overview, 396–398
Access attribute, 160
Access Data Corporation
 certification program, 450–451
 EDiscovery, 408
 FTK Imager, 118, 121
 SilentRunner, 408
Access Data Corporation, FTK (Forensic Tool Kit)
 case management, 383–384
 creating timelines, 19
 e-discovery, 370
 EWF support, 124
 live capture of registry entries, 331
Access log, 243
AccessData Certified Examiner (ACE), 451
AccessData Mobile Examiner (AME), 451
Accessible data
 definition, 511
 e-discovery, 366–367
 forensics workstations, 425
Accused. See Defendant.
Accuser. See Plaintiff.
ACE (AccessData Certified Examiner), 451
Acquisition. See also Cell phones,
 acquisition; Data acquisition.
Acquisition (cont’d)
and preparation for final report, 391–392
window for evidence collection, 255
Active measures, detecting, 227–230
Active online data, 366–367
Active@KillDisk (AKD), 108
Actual authority, 47, 511
Addonics, 437
Address book folder, 191
Addressable memory vs. system, 114–115
Adhesive labels, 421
Admissible/admissibility, 511
Adroit Photo Forensics, 146
ADS (alternate data stream)
definition, 511
hiding data, 344–346
Advanced Test Products, 415
AFF (Advanced Forensic Format), 126
Affidavits
definition, 511
of probable cause, 36
for search warrants, 36, 40
After-hours warrants, 41, 511
Agent of the government
definition, 511
in the Fourth Amendment, 25–26
Aguilar v. Immigration and Customs Enforcement, 157–158
Airplane mode, cell phones, 319
AKD (Active@KillDisk), 108
AMD processors, 431
AME (AccessData Mobile Examiner), 451
Amendments to the Constitution, 24.
See also Fifth Amendment; First Amendment; Fourth Amendment.
American Society of Crime Laboratory Directors/Laboratory Crediting Board (ASCLD/LAB) certification, 481–483
Analysis, description, 6–7. See also
Browser history analysis.
Analysis and Review package, 372
Analyzing proxy server logs
Sawmill utility, 244
tools, 243–244
WebTrends utility, 243
Analyzing Web server logs
centralized logging, 238
epoch time conversion, 237–238
logging per server, 238
overview, 236–238
rotating logs, 237
W3C fields, 237
AND operator, 204
Andrus, U.S. v., 83
Anonymous remailers, 254
Antiforensics. See also Artifact destruction; Hiding data.
definition, 512
overview, 327–328
Antistatic bags, 420–421
Antivirus logs, 267–268
Apache Systems
OpenOffice suite, 439
Web server logs. See Web server logs, Apache files.
Apparent authority
definition, 512
description, 47
Application logs, 263, 264–268
Appropriation of name or likeness, 30
Artifact destruction
overview, 328
temporary files, 335–336
Artifact destruction, extracting registry history
deleted applications, 330
HKEY_USERS, Windows registry, 328–331
installed software, by user, 331
listing users, 328–331
MRU (most recently used) files, 328–331
SID (Security Identifier), 329
tools, 331. See also specific tools.
Artifact destruction, file system metadata
DCO (Device Configuration Overlay), 331
deleted files, 334–335
event logs, 331
MFT (Master File Table), 332–335
NTFS metafiles, 333
string search, 333
Artists Against 419, 88
ASCII character set, 396–398
ASCLD/LAB (American Society of Crime Laboratory Directors/Laboratory Crediting Board) certification, 481–483
Assessment. See Identification/assessment.
Assumed permission, 48
Asterisk (*), in string searches, 180
At sign (@)
in e-mail addresses, 187
in passwords, 349
Atech Flash Technology, 437
Attachment statistics, e-mail analysis, 207
Attorney/client privilege, 64–65
$AttrDef metadata file, 136
Audit trails, privacy legislation, 57
Audits, 512
Authentication
DD (bit for bit) images, 124
definition, 512
Authenticity of evidence
computers as containers, 79
consent search doctrine, 81–83. See also Warrantless searches, with consent.
digital evidence, 95
forensics workstations, 425
inadvertence approach, 78
multiple users on a computer, 80–81, 83
overview, 72, 77
password-encoded accounts, 80–81, 88
plain view doctrine, 77–79
proactive evidence collection, 254–255
prophylactic test, 78–79
Authority to consent to search
actual, 47, 511
apparent, 47, 82
common, 81–82
erroneous assumption of, 83
ostensible, 49, 516
Autoruns, 404
AVG Antivirus logs, 268
AWSTATS log, 236

B
Bad clusters, hiding data, 181–182, 339
$BadClus metadata file, 135–136, 182, 339
Baron, Jason, 205
Barth, U.S. v., 39, 88
Base addresses, 125
Base Station Controller, 310
Base Transceiver Station, 310
Bates numbering, 512
Bates numbering, 376
Batteries, removing and handling, 103
Bee Docs, 20
Bellar, State v., 302
Bill of Rights, 24
BIN (Centralized Binary) Web server logs, 234
Binary metadata vs. human-readable, 156
Bit for bit (DD) images
authentication, 124
data acquisition format, 124
file splitting, 124
BitLocker encryption, 98, 347
$Bitmap metadata file, 136
BlackBag technologies, 321
Blackburn, Robert, 75
BlackLight, 321
Blanket search, 252
Block, U.S. v., 81
Blogs, First Amendment protection, 28–29
Blue screen snapshots of memory, 112
Body file, 163
Books and publications
 Computer Forensics: Incident Response Essentials, 2
 Crime Investigation: ...and the Police Laboratory, 93
 *Cyber Forensics: A Field Manual..., 91
 *Electronic Crime Scene Investigation..., 91
 Guidelines for Evidence Collection and Archiving, 112
 *A Hardware-Based Memory Acquisition..., 119
 PC Hardware Maintenance and Repair, 417
 PMBOK (Project Management Book of Knowledge), 14
 “Privacy,” 30
 Records, Computers, and the Rights of Citizens, 56
 The Right to Privacy, 30
 *Searching and Seizing Computers..., 64–65, 67
 Steganografia, 350
Boolean operators
definition, 512
e-mail searches, 204–205
-Saharan metadata file, 136
Bradley Joseph Steiger, U.S. v., 86–87
Branzburg v. Hayes, 28
Breath of search, 84, 512. See also Scope of search.
Briggs Software, 135, 143–144
British Government, metadata incident, 167–168
Broadband network access, cloud computing, 278
Browser engines, 216
Browser history analysis
control of digital material, 226–227
counting contraband, 230
DAT files, displaying, 221
deleted files, 227–230
detecting active measures, 227–230
detecting malware, 227
Directory Snoop, 223, 227
establishing user actions, 224–230
evidence of deleted files, 223
fast meta refresh, 224
file wipes, 227–230
goal of forensic analysis, 222
HTTP 300 message, 224
identifying specific records, 221
job of the investigator, 222–224
knowledge of possession, 222–224
MFT (Master File Table), 223
MFT metadata, effects of deleting files, 229
for multiple users, 224
pop-up bombs, 224
present possession concept, 222
redirects, 224–225
sorting records, 221
timeline, creating, 227
tools, 221, 223, 225, 227, 230, 233
Trojan horse defense, 227
typed URLs, 225–226
user intent and control, 226–227
Web Historian, 225, 231–233
Website Profiler, 233
Windows registry, 225–226
Browser history analysis, tools for
BUTIL, 243
The Coroner’s Toolkit, 233
CSAUSDIT, 243
Directory Snoop, 223
e-mail analysis, 206
Log Parser 2.2, 236
MAC analysis, 163
Metadata Analyzer, 181
NWAdmin, 243
ODBC, 243
Pasco, 221
Index

proxy server log analysis, 243–244
Registry Analyzer, 178
Sawmill, 244
summary of, 230
Web Historian, 220, 225, 227
WebTrends, 243
Browsers. See Web browsers.
Browsing Web sites. See Web browsers.
Brute-force attacks, password cracking, 349
Buckner, Frank Gary, 82
Buckner, Michelle, 82
Burden of proof, 5
Business change control, 476–477
Business of forensics. See Starting a shop.
Business Wire, 450
BUTIL, 243

C
Cables and connectors, evidence handling, 104
Cache log, 243
Cached browser history, 219
Cached files, location of, 219
Caching browser information, 216
Cain and Abel, 349
Canon Imageware, 298
Captain Nemo, 409
Capture, 408
Carey, U.S. v., 37, 78
Carrier, Brian, 7, 119
Carriers, steganography, 351
carver-recovery, 149
Carvey Harlen, 331
CascadeShark, 255
Case logs
definition, 512
sample forms, 508–509
for software tools, 412
Case management
ancient example of, 379
file-naming conventions, 381–382
frameworks, 380
overview, 379–381
preparation stage, 381–382
presenting the results, 388–389
teams, 382
threat assessment, 381
Case management, investigation stage
crime scene management, 385–386
evidence examination, 387–388
evidence handling, 386–387
first response, 384–385
lab preparation, 386
overview, 382–383
triage, 383–384
Case summary, final report, 391
Casey Marie Anthony, State of Florida v., 224
CCE (Certified Computer Examiner), 448
CDFE (Certified Digital Forensic Examiner), 445–446
CDMA (Code Division Multiple Access), 310
CDs, evidence handling, 103
Cell phones. See also Mobile devices.
Base Station Controller, 310
Base Transceiver Station, 310
CDMA (Code Division Multiple Access), 310
cellular networks, 310–311
charging, 319
cocktail effect, 310
device information, retrieving, 315–317
differentiating between users, 310
GPS (Global Positioning System), 311–313
GSM (Global System for Mobile Communications), 310–311
HLR (Home Locator Register), 310
location, determining, 311–313
MSC (Mobile Switching Center), 310
passwords, extracting, 320–321
permanently blocked, 315

525
Cell phones (cont’d)
removing moisture from, 321
setting to airplane mode, 319
TDMA (Time Division Multiple
Access), 310–311
triangulation, 311–313
trilateration, 311–313
unlocking a PIN, 315, 320–321
VLR (Visitor Locator Register), 310
Cell phones, acquisition
image extraction, 320–321
recovering deleted data, 320–321
reporting software, 321
screen capture, 320
SITA (search incident to arrest), 317
tools, 317–321. See also specific tools.
Cell phones, cellular towers
description, 308–310
triangulation, 311–313
Cell phones, data storage
blocking communication, 318–319
cloning SIM cards, 320
ESN (electronic serial number), 315
Faraday enclosures, 318–319
ICCID (Integrated Circuit Chip
Identifier), 315
IMEI (International Mobile Equipment
Identity), 315–316
MEID (mobile equipment identifier),
315–316
memory, 313–315
micro-SIM cards, 314
mini-SIM cards, 314
overview, 313
PIN (personal identification number),
314
portable charging devices, 318–319
printed on the case, 315–317
PUK (pin unlock key), 314
radio frequency isolation, 318–319
RAM (random access memory), 315
ROM (read-only memory), 315
SIM cards, 313–315, 320, 518
SIMless phones, 314
TAC (Type Allocation Code), 316
tools, 319. See also specific tools.
Cellboost device, 319
Cellebrite, 320–321
Cellular networks, 310–311
Centralized Binary (BIN) Web server
logs, 234
Centralized logging, 238
Certification
areas of competency, 442
ASCLD/LAB, 481–483
licensing requirements, 451–452
organizational, 481–483
Certification, vendor-neutral programs
CCE (Certified Computer
Examiner), 448
CDFE (Certified Digital Forensic
Examiner), 445–446
DFCB (Digital Forensics Certification
Board), 446–447
Digital Forensics Certified Associate,
446–447
Digital Forensics Certified Practitioner,
446–447
fees, 447
GCFA (GIAC Certified Forensic
Analyst), 443–444
GCFE (GIAC Certified Forensic
Examiner), 443–445
GIAC (Global Information Assurance
Certification), 443
GIAC Reverse Engineering Malware,
443
hard skills, 445
ISFCE (International Society of
Forensic Computer Examiners), 448
MFCE (Mobile Forensics Certified
Examiner), 448
MFI (Mobile Forensics, Inc.), 448–449
overview, 442
soft skills, 445
Certification, vendor-specific programs
AccessData, 450–451
ACE (AccessData Certified Examiner), 450–451
AME (AccessData Mobile Examiner), 451
Business Wire, 450
Encase forensic suites, 450
ENCE (Encase Certified Examiner), 450
ENCEP (Encase Certified eDiscovery Practitioner), 450
Guidance Software, 450
overview, 450
Paraben Corporation, 451–452
PCFE (Paraben Certified Forensic Examiner), 452
PCME (Paraben Certified Mobile Examiner), 452
Certified Computer Examiner (CCE), 448
Certified Digital Forensic Examiner (CDFE), 445–446
CFTT (Computer Forensics Tool Testing), 411
Chain of command, crime scene, 96–97
Chain of custody
 case law, 21
definition, 512
documenting, 20
evidence handling, 101–102
 sample forms, 509
Change control
 business change, 476–477
 software change, 477–478
Character sets, 396–398
Charging cell phones, 318–319
Child pornography. See also Pedophiles.
 inadvertent discovery, 78
 private searches, 86–87
Chimel v. California, 45
Chinex device, 320–321
Cisco Router Evidence Extraction Disk (CREED), 271
Cisco routers, 271–273
Civil action, definition, 512
Civil cases
 defendants, 1
 mobile device forensics, 323–324
 plaintiff, 1
Civil investigations
 definition, 1
 investigation scope, 9–10
 scope of investigation, 9–10
 timelines, 9
 types of attacks, 9. See also specific attacks.
Class characteristics of evidence, 94
Clearing and Sanitizing Matrix, 142
Client-server networking, cloud forensics, 288–289
Clients. See E-mail clients.
Cloning SIM cards, 320
Closed container, definition, 512
Closed container clause, 27, 38–39. See also Computers as containers.
Cloud computing. See also Virtualization.
broadband network access, 278
characteristics of, 278
community cloud, 279
definition, 277
deployment models, 278–279
elasticity, 278
hybrid cloud, 279
measured service, 278
on-demand service, 278
private cloud, 278–279
Cloud computing (cont’d)
public cloud, 279
resource pooling, 278
Cloud computing, service models. See also specific models.
hosted application management, 282
IaaS (Infrastructure as a Service), 280–282
overview, 278, 279–280
PaaS (Platform as a Service), 284
SaaS (Software as a Service), 282–284
SSO (single sign-on) security, 283
Cloud forensics
checklist of questions, 286
client-server networking, 288–289
cloud structure, overview, 287
communications model, 288–290
computational model, 287
data collection, 285, 290–291
document imaging systems, file naming conventions, 296–297
documents vs. metadata, 285
elasticity, 287
jurisdictional issues, 285
lack of physical disks, 285, 290–291
P2P (peer to peer) networking, 288
protecting non-targeted information, 290–291
real-time monitoring, 291
recovering deleted data, 291
reproducible methods, 285
stateful applications, 289
stateless applications, 289
storage models, 287–288
Cloud forensics, constitutional issues
ESCA (Electronic Stored Communications Act), 301–302
exclusionary rule, 301–302
Fifth Amendment issues, 303
forced surrender of passwords, 303
Fourth Amendment issues, 301–302
overview, 300–301
reasonable expectation of privacy, 302
Cloud forensics, technical aspects
capturing virtual machines, 299–300
cloud data types, 296–299
collecting artifacts, 296
database transaction logs, 298
LDF (log data file), 298
MDF (master database file), 296, 298–299
overview, 295–296
CLSID (Content Class Identifier), 192, 512
Clusters
definition, 513
Microsoft file system, 133, 138–140
Cocktail effect, 310
Code Division Multiple Access (CDMA), 310
Collecting evidence. See Data acquisition; E-discovery, data collection; Evidence handling.
Collecting live information, 103, 104
Commands
#copy startupconfig tftp, 272
#dir slot, 272
history, listing, 272
mem, 114–115
net sessions, 262
net share, 262
net use, 262
netstat, 262
nslookup, 208–209
P2 Commander, 331, 408
piping, 124
router and switch forensics, 271, 272
#show history, 272
#show users, 272
Common Log fields, 240
Common Log (NCSA) Web server logs, 234
Communications model, cloud forensics, 288–290
Community cloud, 279
CommView, 255–256
Competence of evidence, 74–76, 513
Competent, definition, 513
Comprehensive Drug Testing, U.S. v., 44, 78–79
Computational model, cloud forensics, 287
Computer crimes
- characteristics of, 10
- defining, 10–12
- most common, 10–11
- types of attacks, 9
Computer Forensics: Incident Response Essentials, 2
Computer Forensics Tool Testing (CFTT), 411
Computer power, forensics workstations, 424
Computer science vs. digital forensics, 92
Computer Watchdog, 251
Computers as containers. See also Closed container clause.
- admissibility of evidence, 79
- authenticity of evidence, 79
- case law, 38–39
- plain view doctrine, 79
Computers for forensics work. See Forensics workstations.
Concept extraction, e-discovery, 371–372
Concept searching, e-mail searches, 207–208
Conclusion, final report, 392–393
Configuration log, 243
Consent exception, proactive evidence collection, 252
Consent search doctrine. See also Warrantless searches, with consent.
- authenticity of evidence, 81–83
- case law, 82
Consent to warrantless search. See Warrantless searches, with consent.
Constitution of the United States amendments, 24. See also Fifth Amendment; First Amendment; Fourth Amendment.
Bill of Rights, 24 modifications to, 24
privacy rights, 55
right to privacy, 29–30
Constitution of the United States, limits of
- constraints on evidence, 75
digital vigilantes, 85–88
jurisdiction in cyberspace, 85–86
private searches, 86–87
self-incrimination, 27. See also Fifth Amendment issues.
Constitutional issues, cloud forensics
- ESCA (Electronic Stored Communications Act), 301–302
- exclusionary rule, 301–302
- Fifth Amendment issues, 303
- forced surrender of passwords, 303
- Fourth Amendment issues, 301–302
- overview, 300–301
- reasonable expectation of privacy, 302
Consumer Reporting Agencies (CRA), guidelines for, 60
Contamination teams. See Taint teams.
Content Class Identifier (CLSID), 192, 512
ContentAnalysis, 207–208
Context triggered piecewise hashing (CTPH), 369–370
Contraband, counting, 230
Control of digital material, 226–227
Cookies
- definition, 217
- storage location, 219
#copy startupconfig tftp command, 272
Copyright infringement, 29
The Coroner’s Toolkit, 233
Corporate departments as revenue source, 480–481
Cost justification, starting a forensics shop, 480–481
Costs. See also Revenue sources.
facilities improvement, 466
hardware acquisition, 463–464
software acquisition, 464–466
starting a forensics shop, 462–466
Court approval of software tools, 410–413
Cover files, steganography, 351
Covert data, definition, 347, 513. See also Hiding data.
Covert data, encryption
BitLocker Drive Encryption, 347
DESX (Data Encryption Standard eXORed), 347
EFS (Encrypting File System), 347
methods of, 347
passwords, 348–350
smart cards, 347
Covert data, steganography
algorithms, 351
 carriers, 351
cover files, 351
detecting, 354
dictionary attacks, 354
filtering, 351
lossless compression, 350
lossy compression, 350
LSB (least significant bit) insertion, 351
masking, 351
messages, 351
methodology, 350–351
null cipher, 354
overview, 350
redundant pattern encoding, 351
signatures, 354
stegoimage, 351
stegokiey, 351
tools, 351–354. See also specific tools.
transformations, 351
CRA (Consumer Reporting Agencies), guidelines for, 60
Crack, 349
Cracking algorithms, password cracking, 349
Create attribute, 159–160
Credibility of evidence, 74, 513
Credible, definition, 513
Credit reports, privacy legislation, 60
CREED (Cisco Router Evidence Extraction Disk), 271
Crime Investigation: ...and the Police Laboratory, 93
Crime scene management, 385–386
Crime scenes. See also Digital evidence; Evidence.
BitLocker encryption, 98
chain of command, 96–97
concealed passwords, 100
devices of interest, 97–98
documenting, 98–99
Faraday bags, 98
hardware inventory, 99–100
identifying data sources, 99–100
laser printers, 100
missing devices, 99
safety, 97
scan once/print many devices, 99
securing the scene, 97–98
USB devices, 98
Criminal action, definition, 513
Criminal cases
defendants, 1
plaintiff, 1
Criminal investigations
definition, 1
investigation scope, 10–12
CSAUDIT, 243
CSI Effect, 91
CTPH (context triggered piecewise hashing), 369–370
Curriculum vitae, 513
CV (curriculum vitae), 31
Cyber Forensics: A Field Manual..., 91
D
“Dance hall proprietor vs. landlord” argument, 29
Dark data. See also Hiding data.
 definition, 513
description, 336–337
DAT files, displaying, 221
Data acquisition layers
 lossless, 399
 lossy, 399
 overview, 396–398
Data acquisition. See also Cell phones, acquisition; E-discovery, data collection.
 blue screen snapshots of memory, 112
 .DMP files, 112
 Guidelines for Evidence Collection and Archiving, 112
 imaging process, legal argument for, 123
 order of volatility, 112
 from original data, 111
 priority list for, 112
Data acquisition from media
 absolute direct addressing, 125
 base addresses, 125
 encrypted devices, 122
 offsets, 125
 password recovery, 122
tools, 124–128
types of media, 121
write-protected port replicator, 122
Data acquisition from media, file formats for disk images
 AFF (Advanced Forensic Format), 126
 DD (bit for bit) images, 124
 EWF (Expert Witness Format), 124–125
 IDIF (iLook Default Image Format), 127
 IEIF (iLook Encrypted Image Format), 127
 iLook, 127
 IRBF (iLook Raw Bitstream Format), 127
 ProDiscover, 127–128
 proprietary formats, 126–128
Safeback, 126–127
 summary of, 123
Data acquisition from memory and running processes
 capturing, software for, 116
 changes over time, 113–115
 footprints, 116
 A Hardware-Based Memory Acquisition..., 119
 hardware memory capture, 119–120
 hashing the memory image, 114
 hooks, detecting, 117
 kernel mode, 116
 live response, 113–115
 log files, creating, 118–119
 MAC data, modifying, 121
 MD5 hash, calculating, 118
 mem command, 114–115
 memory as a device, 116
 overview, 112–115
 paths to memory, 116
 priority data, 114
 procedures for, 120–121
 rootkits, detecting, 114, 117
 SHA1 hash, calculating, 118
 smear images, 116
 software memory capture, 117–119
 system memory vs. addressable memory, 114–115
 user mode, 116
Data attribute, file metadata, 154
Data carving. See also File recovery.
carver-recovery utility, 149
definition, 145, 513
description, 145–147
DFRSW (Digital Forensics Research Workshop), 146
false positives, 146
file headers, 145–147
files embedded in other files, 146
Foremost utility, 147–148
fragmented files, 146
overview, 145
Data carving (cont’d)
Scalpel utility, 149
SmartCarving, 146
tools for, 146, 147–149
Data collection, cloud forensics, 285, 290–291
Data Encryption Standard eXORed (DESX), 347
Data mapping, 363–364
Data recovery
from slack space. See Data carving.
from unallocated space. See Data carving.
Data recovery, cell phones, 320–321. See also File recovery.
Data retention, policies and procedures, 471–472
Data sources, crime scene, 99–100
Data wiping utilities, 108–109
Database activity logs, 266
Database transaction logs, 298
DATE: field, e-mail, 196–197
Daubert Process, 400–401
Daubert v. Merrel Dow Pharmaceuticals, 317, 401
David, U.S. v., 39
.dbx files, 192–193
DBX files, 192–193
DCO (Device Configuration Overlay), 331
DD (bit for bit) images
authentication, 124
data acquisition format, 124
file splitting, 124
DD (Disk Dump), 338, 405
dd utility, 108
DDR (dual data rate) memory, 432
debt collection, privacy legislation, 62
Decryption Collection, 408
Defendant
in civil cases, 1
in criminal cases, 1
definition, 513
as stakeholder, 12
Deleted applications, extracting registry history, 330
Deleted documents, proving existence of, 159–162
Deleted files. See also Data recovery; File recovery; Recycle Bin.
browser history analysis, 223, 227–230
file metadata, 154–155
file system metadata, 334–335
Deleting e-mail messages, 191
Deleting files. See also Recycle Bin.
Clearing and Sanitizing Matrix, 142
deletion process, 141–143
Department of Defense specifications, 142
hidden files, 142
INFO file, 142
INFO2 file, 142
invisible file names, 141–142
permanent deletion, 142–143
recovery process, 143–145
temporary files, 175
Dentries, UNIX/Linux file systems, 137–138
Department of Defense specifications, data destruction, 142
Deployment models, cloud computing, 278–279
Destroying data
acceptable destruction methods, 142–143
AKD (Active@KillDisk), 108
Clearing and Sanitizing Disk, 142
data wiping utilities, 108–109
dd utility, 108
Department of Defense specifications, 142
Disk Scrub utility, 109
evidence handling, 107–109
file wipes, 227–230
Digital Forensics Certification Board (DFCB), 446–447
Digital Forensics Certified Associate, 446–447
Digital Forensics Certified Practitioner, 446–447
Digital Forensics Research Workshop (DFRSW), 146
Digital Intelligence, 415
Digital Intelligence, forensics workstations, 425–427
Digital Millennium Copyright Act (DMCA), 29
Digital vigilantes, 85–88
#dir slot command, 272
Directed compound file, 335–336
Directory Snoop
 browser history analysis, 223, 227
description, 409
examining metadata files, 135
restoring file under NTFS, 143–144
Disclosure, e-discovery, 361–363
Discoverable items, 14
Discovery. See also E-discovery.
definition, 513
rules for ordering, 11–12
Disguised files. See File recovery.
Disk Dump (DD), 338, 405
Disk Explorer for FAT, 409
Disk Explorer for NTFS, 409
Disk images, file formats
 AFF (Advanced Forensic Format), 126
 DD (bit for bit) images, 124
 EWF (Expert Witness Format), 124–125
 IDIF (iLook Default Image Format), 127
 IEIF (iLook Encrypted Image Format), 127
 iLook, 127
 IRBF (iLook Raw Bitstream Format), 127
 ProDiscover, 127–128
 proprietary formats, 126–128
during graceful shutdown, 143
permanent deletion, 142–143
Shred utility, 108
WIPE.EXE utility, 108
DESX (Data Encryption Standard eXORed), 347
Device Configuration Overlay (DCO), 331
Device Seizure, 321
DFCB (Digital Forensics Certification Board), 446–447
DFRSW (Digital Forensics Research Workshop), 146
Dictionary attacks, steganography, 354
Digital Assembly, 146
Digital audio recorder, 420
Digital camera, as forensic tool, 419–420
Digital evidence. See also Crime scene;
 Digital forensics.
 authenticity, 95
class characteristics, 94
individual characteristics, 94
latent, 94
longevity, 95
obtaining legally, 96
patent, 94
vs. physical, 94–96
relevance, 96
reliability, 95
stability, 95
types of, 94–95
Digital forensics. See also Digital evidence.
 vs. computer science, 92
Crime Investigation: ...and the Police Laboratory, 93
Cyber Forensics: A Field Manual..., 91
definition, 92
digital evidence vs. physical, 94–96
Locard’s exchange principle, 93
Disk images, file formats (cont’d)
 Safeback, 126–127
 summary of, 123
Disk Investigator, 409
Disk Scrub, 109
DM (document management) systems, 164
DMCA (Digital Millennium Copyright Act), 29
.DMP files, 112
DNA testing, freeing the innocent, 95
DNS cache poisoning, 254
DNS logs, 266–267
DocScrubber, 168
Doctor. See Physician.
Document management (DM) systems, 164
Documentation. See also Report writing;
 Reporting.
 legal, preparing a list of, 4–5
 levels of, 13
 project management, 13
 template for, 16–17
Documentation, levels of
 case timeline, 18–20
 chain of custody, 20
 general case, 14–15
 procedural, 15–18
 process, 18
Documenting
 crime scenes, 98–99
 evidence, 104–105
 execution of search warrants, 41
Documents. See also Files.
 authenticity, e-discovery, 375–377
 DM (document management) systems, 164
 imaging systems, file naming conventions, 296–297
 management systems, e-discovery, 374–375
metadata, hiding data in, 166–175,
 178–181
 vs. metadata, cloud forensics, 285
 preservation orders, 164
 revision history, viewing, 168, 170–171
Doe v. U.S., 303
Domain, in e-mail addresses, 187
Domain name, querying e-mail by,
 209–210
Double quotes (“ ”), Boolean operator, 205
DriveImageXL, 409
DriveLook, 409
Dual-channel memory, 432
Dual data rate (DDR) memory, 432
dumpchk.exe, 404
Duty to preserve, 362
DVDs, evidence handling, 103

E
E-discovery
 analyzing potential data, 373–374
 comparing hash values, 369–370
 concept extraction, 371–372
 CTPH (context triggered piecewise
 hashing), 369–370
 data mapping, 363–364
 definition, 357
 disclosure, 361–363
 duplicates vs. near duplicates, 369–370
 duty to preserve, 362
 EDRM (Electronic Discovery Reference
 Model), 359–360
 ESI (electronically stored information),
 368–369
 filter categories, 371–372
 focus categories, 371–372
 identifying target data, 361–364
 information management, 360–361
 litigation hold, 362–363
 metrics for potential data, 373–374
 overview, 358
pre-search processes, 361–363
development, 368–369
preservation, 368–369
preservation order, 362–363
privacy legislation, 61–62
processing potential data, 370–371
production and presentation, 374–377
reasonable anticipation of litigation, 362
reviewing potential data, 372–373
rolling hash, 370
rolling review, 372–373
search processes, 363–364
security of potential data, 372–373
spoliation, 361, 362–363
trigger point, 362
E-discovery, data collection
accessible data, 366–367
active online data, 366–367
determining completeness, 366
forms of data, 366–367
inaccessible data, 366–367
near-line data, 366–367
off-line storage, 366–367
overview, 364–365
search strings, 365–366
tools, 367–368. See also specific tools.
E-discovery, production and presentation
analyzing potential data, 375–377
Bates numbering, 376
document authenticity, 375–377
document management systems, 374–375
native format, 374
near-native format, 374
overview, 374
redaction, 376
unique identifiers, 376
E-mail
multiple inboxes, 195
shared inboxes, 195
tracing sources, 202–203, 208–210
E-mail addresses
@ (at sign), 187
overview, 187–188
as passwords, 349
spoofing, 188
user domain, 187
user name, 187
E-mail analysis
domain name, querying by, 209–210
IP address, querying by, 208–210
nslookup command, 208–209
WHOIS lookup, 209–210
E-mail clients
address book folder, 191
common examples, 190
definition, 187
handling deleted messages, 191
mail folders, 191
main functions, 189, 191
.mbx folders, 191
overview, 193
.pst folders, 191
saving messages, 191
.wab folders, 191
E-mail information stores, e-mail servers
ACK (acknowledgement) packets, 195
activity logs, 199–202
delivery agents, 194–195
DNS (Domain Name Services), 195
IMAP servers, 195
incoming messages, 195
message deletion, 195
NACK (nonacknowledgement) packets, 195
outgoing messages, 194–195
POP servers, 195
SMTP servers, 194–195
E-mail information stores, Outlook
overview, 193
PST files, 193
version history, 194
E-mail information stores, Outlook Express
 CLSID (content class identifier), 192
 .dbx files, 192–193
 DBX files, 192–193
 file formats, 192
 IDX files, 192
 .mbx files, 192
 MBX files, 192
 NCH files, 192
 overview, 192
 version history, 192
E-mail information stores, overview, 191–192. See also specific stores.
E-mail Mining Toolkit (EMT), 206
E-mail protocols
 ESMTP (Extended SMTP), 188
 handshaking packet, 188
 HELO packet, 188
 IMAP (Internet Message Access Protocol), 189
 incoming messages, 188
 outgoing messages, 188
 POP3 (Post Office Protocol 3), 188–189
 port 25, 188
 port 143, 189
 SMTP (Simple Mail Transport Protocol), 188
E-mail searches
 advanced methods, 206–208
 analyzing search results, 205–206
 attachment statistics, 207
 Boolean operators, 204–205
 companies involved in, 208
 concept searching, 207–208
 EMT (E-mail Mining Toolkit), 206
 false negatives, 206
 false positives, 205–206
 group communications, 207
 histogram of account activity, 206
 keyword searches, 205
 precision, 206
 recall, 206
 recipient frequency, 207
 searching messages, 203–205
 similar users, 206
 tobacco industry, 205
 tools for, 206
 true negatives, 206
 true positives, 206
 warrants, 203
E-mail servers. See E-mail information stores, e-mail servers.
E-mail structure
 DATE: field, 196–197
 Entourage utility, 199–202
 FROM: field, 196–197
 header extraction, tools, 199–202
 MIME headers, 197–202
 MIME (Multipurpose Internet Mail Extensions), 196
 overview, 196
 RE: prefix, 197
 standard headers, 196–197
 SUBJECT: field, 196–197
 TO: field, 196–197
E-mail transport
 clients, 187
 e-mail servers, 187
 MDA (mail delivery agent), 186, 515
 MTA (mail transport agent), 186, 515
 MUA (mail user agent), 186, 515
 overview, 186–187
Eclipse device, 320
ECFA (Electronic Communications Privacy Act of 1986), 58–59
ECS (Electronic Communications Services), 58
EDiscovery, 408
EDRM (Electronic Discovery Reference Model), 359–360
Education, privacy legislation, 63–64
EFS (Encrypting File System), 347
Index

EFSDump, 404
Egyptians, ancient case document, 379
8.3 file names, 134
Elasticity
 cloud computing, 278
 cloud forensics, 287
Electronic Crime Scene Investigation:..., 91
Electronic discovery, privacy legislation.
 See E-discovery.
Electronic information in the hands of a
 third party, expectation of privacy, 39–40
Electronic serial number (ESN), 315
Electronic Stored Communications Act
 (ESCA), 301–302
Electronically stored information (ESI),
 368–369
EM (entry modified) attribute, 160–162
Embarrassing public disclosure, 30
Embedded metadata, 164–172
EMT (E-mail Mining Toolkit), 206
Encase
 creating timelines, 19
 e-discovery, 370
 forensic suites, certification
 program, 450
 saving images in EWF (Expert Witness
 Format), 124
Encase Data, 118
Encase Enterprise, 234
Encase Forensics, 408
ENCE (Encase Certified Examiner), 450
ENCEP (Encase Certified eDiscovery
 Practitioner), 450
Enclosures for forensics workstations, 430
Encrypted devices, data acquisition from,
 122
Encrypting File System (EFS), 347
Encryption
 BitLocker, 98, 347
 DESX (Data Encryption Standard
 eXORed), 347
 EFS (Encrypting File System), 347
 methods of, 347
 passwords, 348–350
 smart cards, 347
Endace, 255
EndaceExtreme, 255
Energizer device, 319
Entourage, 199–202
Entry modified (EM) attribute,
 160–162
Environmental Law Publishing, 72
EOI, 118
Epoch time conversion, 237–238
Equifax, 60
Erasing data. See Deleting files;
 Destroying data.
ERRORLOG file, 266
ESCA (Electronic Stored
 Communications Act), 301–302
ESI (electronically stored information),
 368–369
ESMTP (Extended SMTP), 188
ESN (electronic serial number), 315
Event logs, 263–264, 331
Event Viewer, 403–404
Evidence. See also Crime scene.
 class characteristics, 94
 collection. See E-discovery, data
 collection; Network search, post-
 incident evidence collection;
 Network search, proactive evidence
 collection.
electronic. See Digital evidence.
examination, investigation stage,
 387–388
individual characteristics, 94
latent, 94
patent, 94
provided under duress, 76
timeline for. See Chain of custody.
types of, 94–95
uncovering. See Discovery.
Evidence, admissibility. See also
 Authenticity of evidence; Federal Rules of Evidence.
 competence, 74–76
 constitutional constraints, 75
 credibility, 74
 evidence provided under duress, 76
 exclusionary rule, 72, 76
 flowchart, 73
 hearsay, 75–76
 material, 72
 opinions, 73–74
 overview, 71–72
 prejudice, 74
 privileged information, 74–75
 probitive, 72
 relevance, 72
 statutory restraints, 74–75
Evidence handling. See also Data acquisition.
 chain of custody, 101–102
 collecting evidence, 100–101
 destroying, 107–109
 determining usability, 102
 documenting evidence, 104–105
 intrusion detection, 107
 investigation stage, 386–387
 McKeever Test, 102
 overview, 100
 packaging evidence, 105
 packaging materials, 105
 photographing evidence, 104
 policies and procedures, 470
 secure evidence storage facilities, 107
 securing the storage area, 107
 storing evidence, 106–107
 transporting evidence, 105–106
 video surveillance, 107
 workflow, 100–101
Evidence handling, computer systems
 capturing live information, 103, 104
 CDs, 103
 DVDs, 103
 floppy disks, 103
 labeling cables and connectors, 104
 networked computers, 104
 overview, 102–103
 powering off, 103–104
 removing the battery, 103
 standalone computers, 103–104
 storing digital media, 103
 VPNs (virtual private networks), 103
EWF (Expert Witness Format), 124–125
EWFACQUIRE, 124
ex ante (before the fact) action, 26
Examination, description, 6–7
Excel
 creating timelines, 19
 loading registry file, 343
 metadata, extracting, 181
Exclusionary rule
 cloud forensics, 301–302
 evidence, 72, 76
 warrantless searches, 44
Exculpatory, definition, 513
Exigent circumstances, mobile device forensics, 323
Expansion slots for forensics workstations, 434
Experion, 60
Expert witnesses
 becoming recognized as, 31
 conditions for, 31
 CV (curriculum vitae), 31
 definition, 514
 neutrality, 31
 regulation of, 31
Ext file systems, 137
$Extend metadata file, 136
Extended Log fields, 242
Extended SMTP (ESMTP), 188
Extensible Markup Language (XML), 234
Index

External storage units, 416
Exxon Valdez incident, 13
Eyewitnesses, 31

F
Fair Credit Reporting Act of 1970, 60
False negatives, 206
False positives, 146, 205–206
False publicity, 30
Faraday, Michael, 420
Faraday bags, 98
Faraday enclosures, 318–319
Faraday shields, 420
Fast meta refresh, 224
FAT12, 133–134
FAT16, 134, 141–142
FAT32, 134–135
FDPA (Fair Debt Collection Practices Act of 2006), 62
Federal Rules of Evidence. See also Evidence.
 admissibility of evidence, 11. See also Evidence, admissibility.
 definition, 514
 expert witnesses, 31
 eyewitnesses, 31
 issuing a warrant (41b), 40
Fees, certification, 447
Felt-tipped pens, 421
FERPA (Family Educational Rights and Privacy Act) of 2008, 63–64
Fifth Amendment issues
 cloud forensics, 303
 divulging passwords, 27
File Allocation Tables, 133–135
File extensions
 changing, 151–153
 as file identifiers, 151–153
File formats for disk images
 AFF (Advanced Forensic Format), 126
 DD (bit for bit) images, 124
 EWF (Expert Witness Format), 124–125
 IDIF (iLook Default Image Format), 127
 IEIF (iLook Encrypted Image Format), 127
 iLook, 127
 IRBF (iLook Raw Bitstream Format), 127
 Prodiscover, 127–128
 proprietary formats, 126–128
 Safeback, 126–127
 summary of, 123
File headers
 data carving, 145–147
 file metadata, 156
File metadata. See also Metadata.
 common examples, 178
 data attribute, 154
 for deleted files, 154–155
 file header, 156
 human-readable vs. binary, 156
 magic numbers, 157
 MFT attributes, 153–155
 NTFS attributes, 154
 overview, 153
 sample, 156
File names, Microsoft file system, 134
File objects, UNIX/Linux file systems, 137–138
File recovery. See also Data recovery.
 by data string, 140–141
 GREP utility, 140–141
 LBD (Long Block Data) standard, 139–140
 overview, 131–132
 from slack space. See Data carving.
 tools, 135, 140–141, 143–144
 from unallocated space. See Data carving.
File recovery, deleted files

Clearing and Sanitizing Matrix, 142
cloud forensics, 291
deletion process, 141–143
Department of Defense specifications, 142
hidden files, 142
INFO file, 142
INFO2 file, 142
invisible file names, 141–142
permanent deletion, 142–143
recovery process, 143–145
Recycle Bin, 142

File recovery, Microsoft file systems

8.3 file names, 134
$BadClus metadata file, 135–136
clusters, 133, 138–140
FAT12, 133–134
FAT16, 134, 141–142
FAT32, 134–135
File Allocation Tables, 133–135
file names, 134
floppy disks, 133–134
hard disks, 133–137
IDEMA (International Disk
Drive Equipment and Materials
Association), 139
LBD (Long Block Data) standard, 139–140
metadata files, 135–137
MFT (Master File Table), 135, 144
$Mft metadata file, 135–136
NTFS, 135–137
overview, 132–133
partitions, 132–133
sectors, 132–133, 139
slack space, description, 138–140
slack space vs. unallocated space, 140
storage devices, layout, 132–133
summary of, 132
from unallocated space, 140

File recovery, UNIX/Linux file systems
dentries, 137–138
Ext, 137
file objects, 137–138
master node, 137–138
metadata, 137–138
Reiser, 137
superblocks, 137–138
UFS (UNIX File System), 137

File structure
overview, 153
sample, 156

File systems. See Microsoft file systems; UNIX/Linux file systems.

File Transfer Protocol (FTP), 214
File wipes, browser history analysis, 227–230
Filematch, 409

Files. See also Documents.
comparing hash values, 369–370
creation time stamp, 159–160
duplicates vs. near duplicates, 369–370
embedded in other files, 146
internal identifiers, 153
last access time stamp, 160
last modification time stamp, 160–162
naming conventions for case management, 381–382

Film cameras, as threat to privacy, 30

Filter categories, e-discovery, 371–372
Filtering steganography, 351

Financial privacy. See Privacy legislation, financial.

Finder, 406

Findings, final report, 392

Finley, U.S. v., 323
Firefox, browser history, 220

First Amendment
assigning accountability, 29
blogs, 28–29
copyright infringement, 29
“dance hall proprietor vs. landlord” argument, 29
DMCA (Digital Millennium Copyright Act), 29
ISPs and, 29
LiveJournal, 29
vs. pedophilia, 29
pirated intellectual property, 29
press, definition of, 28
YouTube, 29
First response
Electronic Crime Scene Investigation:..., 91
investigation stage, 384–385
Flash disk files, displaying, 272
Flash RAM, 272–273
Floppy disks
evidence handling, 103
Microsoft file system, 133–134
fils, 163
Focus categories. e-discovery, 371–372
Footprints, software, 116
For-profit organizations, as revenue source, 478–479
Foremost, 147–148
Forensic, definition, 514
Forensic ComboDock, 122
Forensic Computers, Inc., 415, 428–429
Forensic Dossier, 119
Forensic PC, 415
Forensic Recovery of Evidence Device Diminutive Interrogation Equipment (FREDDIE), 425, 427
Forensic Recovery of Evidence Device (FRED), 425–427
Forensic Replicator, 328, 408
Forensic Tool Kit (FTK). See FTK (Forensic Tool Kit).
Forensic Ultra Dock, 118
Forensics
computer analysis, 92. See also Digital forensics.
definition, 92
Forensics workstations
accessibility of data, 425
authenticity of data, 425
computer power, 424
computer security, 424
definition, 424
features, 417
Forensics workstations, building
The A+ Guide to PC Hardware Maintenance and Repair, 423
PC Hardware Maintenance and Repair, 417
requirements, 418
Upgrading and Repairing PCs, 423
Forensics workstations, building (hardware)
32-bit vs. 64-bit systems, 432, 438
AMD processors, 431
DDR (dual data rate) memory, 432
dual-channel memory, 432
dual-throw memory, 432
enclosures, 430
expansion slots, 434
front side bus, 431
hot-swap bays, 435–436
I/O ports, 437
Intel processors, 431
memory, 432–433
memory card reader, 437
memory density, 433
memory errors, 432–433
motherboards, 433–434
multicore processors, 431
permanent hard disks, 434–435
processor power, 430–431
RDRAM (Rambus Dynamic Random Access Memory), 432
system boards, 433–434
Tableau controllers, 436
Tableau write protection devices, 436
write-protected I/O, 436–437
Forensics workstations, building
(software)
applications, 439
GIMP, 439
image processing, 439
KOffice, 439
Linux, 438–439
Office, 439
office suites, 439
OpenOffice, 439
operating systems, 438–439
OpticsPro, 439
Photoshop, 439
Windows 7, 438
Forensics workstations, buying
Digital Intelligence, 425–427
Forensic Computers, 428–429
FRED (Forensic Recovery of Evidence
Device), 425–427
FREDDIE (Forensic Recovery of
Evidence Device Diminutive
Interrogation Equipment), 425, 427
TriTech Forensics, 429
WiebeTech components, 428–429
Forms, samples
case logs, 508–509
chain of custody, 509
forensic imaging data, 510
photographs of physical disk, 510
physical disk information, 510
search warrants, 506
subpoenas, 507
Fourth Amendment
agent of the government, 25–26
cloud forensics issues, 301–302
fishing expeditions, 24
overview, 24–25
probable cause, 26
purpose of, 24–25
reasonable expectation of privacy, 26
unreasonable search and seizure, 25–26
Writs of Assistance, 24
FQDN (Fully Qualified Domain Name),
214–215, 514
Fragmented files, data carving, 146
Frameworks for case management, 380
FRCP (Federal Rules of Civil Procedure)
civil investigations, 9
disclosure (Rule 26f), 361–363
expert witnesses, 31
eyewitnesses, 31
role of electronic documentation (Rule
34), 358
FRED (Forensic Recovery of Evidence
Device), 425–427
FREDDIE (Forensic Recovery of Evidence
Device Diminutive Interrogation
Equipment), 425, 427
Fricosu, Ramona, 75
Fricosu, U.S. v., 75, 303
FROM: field, e-mail, 196–197
Front side bus, 431
Fruit of a poisonous tree, 88
FTK (Forensic Tool Kit)
case management, 383–384
creating timelines, 19
e-discovery, 370
EWF support, 124
live capture of registry entries, 331
FTK Imager, 118–119, 121, 295
FTP (File Transfer Protocol), 214
Fully Qualified Domain Name (FQDN),
214–215, 514
G
Garbage, reasonable expectation of
privacy, 39, 274
Gargoyle, 354
GCFA (GIAC Certified Forensic Analyst),
443–444
GCFE (GIAC Certified Forensic
 Examiner), 443–445
General case documentation, 14–15
General warrants. See Writs of assistance.
<table>
<thead>
<tr>
<th>Index</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Georgia v. Randolph, 48</td>
<td>Guidelines for Evidence Collection and Archiving, 112</td>
</tr>
<tr>
<td>Ghost partitions, 338–339</td>
<td>H</td>
</tr>
<tr>
<td>GIAC Certified Forensic Analyst (GCFA), 443–444</td>
<td>Handling evidence. See Evidence handling.</td>
</tr>
<tr>
<td>GIAC Certified Forensic Examiner (GCFE), 443–445</td>
<td>Handshaking packet, 188</td>
</tr>
<tr>
<td>GIAC (Global Information Assurance Certification), 443</td>
<td>Hard disks</td>
</tr>
<tr>
<td>GIAC Reverse Engineering Malware, 443</td>
<td>collecting data from. See Data acquisition from media.</td>
</tr>
<tr>
<td>GIMP (Graphics Image Manipulator Program), 439</td>
<td>Microsoft file system, 133–137</td>
</tr>
<tr>
<td>Governance, policies and procedures, 468</td>
<td>permanent, 434–435</td>
</tr>
<tr>
<td>GPS (Global Positioning System), 311–313</td>
<td>physical disk information, sample form, 510</td>
</tr>
<tr>
<td>Graceful shutdown, data destruction, 143</td>
<td>Hard skills, certification, 445</td>
</tr>
<tr>
<td>Graff, Gayle, 47–48</td>
<td>A Hardware-Based Memory Acquisition... , 119</td>
</tr>
<tr>
<td>Grand, Joe, 119</td>
<td>Hardware memory capture, 119–120</td>
</tr>
<tr>
<td>Grants, as revenue source, 480</td>
<td>Hargrove v. Commonwealth, 21</td>
</tr>
<tr>
<td>Graphics Image Manipulator Program (GIMP), 439</td>
<td>Hash, definition, 514</td>
</tr>
<tr>
<td>Greenwood, California v., 39, 274</td>
<td>Hash files, reporting, 7–8</td>
</tr>
<tr>
<td>GREP</td>
<td>Hash utility, 409</td>
</tr>
<tr>
<td>description, 140–141</td>
<td>Hash values</td>
</tr>
<tr>
<td>Linux, 405</td>
<td>comparing, 369–370</td>
</tr>
<tr>
<td>Macintosh OSX, 406</td>
<td>rolling hash, 370</td>
</tr>
<tr>
<td>searching hidden data, 180–181</td>
<td>Hashing the memory image, 114</td>
</tr>
<tr>
<td>Group communications, e-mail searches, 207</td>
<td>HDAT2, 338</td>
</tr>
<tr>
<td>Grouping VMs (virtual machines), 292</td>
<td>HEAD, 406</td>
</tr>
<tr>
<td>GSM (Global System for Mobile Communications), 310–311</td>
<td>Health care, privacy legislation, 62–63</td>
</tr>
<tr>
<td>Guessing passwords, 348</td>
<td>Health Insurance Portability and Accountability Act (HIPAA) of 1996, 62–63</td>
</tr>
<tr>
<td>Guest operating systems, VMs, 291–292</td>
<td>Hearsay</td>
</tr>
<tr>
<td>Guidance Software certification program, 450</td>
<td>admissibility as evidence, 75–76</td>
</tr>
<tr>
<td>detecting duplicate files, 370</td>
<td>definition, 514</td>
</tr>
<tr>
<td>Encase Forensics, 408</td>
<td>exceptions, 75–76</td>
</tr>
<tr>
<td>evidentiary tools, 7</td>
<td>Hellman tables, 349</td>
</tr>
<tr>
<td>EWF (Expert Witness Format), 124</td>
<td>HELO packet, 188</td>
</tr>
</tbody>
</table>
Index

Hidden files, Recycle Bin, 142. See also File recovery.
Hidden partitions, 337–338
Hiding data. See also Covert data.
in an ADS (alternate data stream), 344–346
in bad clusters, 181–182, 339
common file metadata, 178
dark data, 336–337, 513
document metadata, 166–175, 178–181
finding hidden streams, 346
ghost partitions, 338–339
hidden partitions, 337–338
HPA/DCO data hiding, 338
HPA (Host Protected Area), 337–338
in metadata files, 166–172
partition slack, 339
reading, 168, 178–182
in the registry, 176–178
in slack space, 338–339
tools for finding, 168, 178–181, 338. See also specific tools.
warrens, 337
Hiding data, in the registry
field values, 343
key types, 340–341
registry structure, 339–341
tools, 342. See also specific tools.
HIPAA (Health Insurance Portability and Accountability Act) of 1996, 62–63
Hiring, policies and procedures, 469
Histogram of e-mail account activity, 206
History of events. See Timeline.
HKEY_USERS, Windows registry, 328–331
HLR (Home Locator Register), 310
Hooks, detecting, 117
Horowitz, U.S. v., 40
Horton v. California, 77–79
Host operating systems, VMs, 291–292
Host protected area, 514
Hosted application management, 282
Hot-swap bays, 435–436
Howard et al., U.S. v., 25
HPA/DCO data hiding, 338
HPA (Host Protected Area), 337–338
HTML (HyperText Markup Language), 216
HTTP 300 message, 224
HTTP (Hypertext Transfer Protocol)
Internet addresses, 214
status codes, 241–242
HTTPERR Web server logs, 235
HTTPS (Hypertext Transfer Protocol Secure), 214
Hudson v. Michigan, 41–42
Human-readable metadata vs. binary metadata, 156
Hybrid cloud, 279
I
I/O ports, 437
i4i Limited Partnership v. Microsoft Corporation, 13
IaaS (Infrastructure as a Service), 280–282
ICCID (Integrated Circuit Chip Identifier), 315
IDEMA (International Disk Drive Equipment and Materials Association), 139
Identification/assessment, 4–5
IDIF (iLook Default Image Format), 127
IDX files, 192
IEIF (iLook Encrypted Image Format), 127
IIS ODBC (Open Database Connectivity)
Web server logs, 234
IIS Web server logs, 234–235
IISMSID Web server logs, 235
iLook, 127
Image extraction, cell phones, 320–321
Image processing
forensic imaging data, sample form, 510
forensics workstations, 439
legal argument for, 123
photographs of physical disk, sample form, 510
IMAP (Internet Message Access Protocol), 189, 514
IMEI (International Mobile Equipment Identity), 315–316
Inaccessible data, 366–367, 514
Inadvertence approach
 authenticity of evidence, 78
 plain view doctrine, 78
Inadvertent discovery of child pornography, 78
Inboxes, e-mail
 multiple per user, 195
 sharing, 195
Incriminating, definition, 514
Inculpatory, definition, 514
Indexed Log, 242–243
 Individual characteristics of evidence, 94
INFO file, 142
INFO2 file, 142
Information store, definition, 514
Infrastructure as a Service (IaaS), 280–282
Installed software, extracting registry history by user, 331
Instances, 282. See also VMs (virtual machines).
Integrated Circuit Chip Identifier (ICCID), 315
Intel processors, 431
Intelligent Computer Systems, 415
Interception devices, 251–252
Internal investigations
 definition, 1, 514
 investigation scope, 8–9
International Disk Drive Equipment and Materials Association (IDEMA), 139
International Mobile Equipment Identity (IMEI), 315–316
International Society of Forensic Computer Examiners (ISFCE), 448
Internet addresses
 FQDM (fully qualified domain name), 214–215
 FTP (File Transfer Protocol), 214
 HTTP (Hypertext Transfer Protocol), 214
 HTTPS (Hypertext Transfer Protocol Secure), 214
 overview, 213
 scheme, 214
 top-level domain, 215
 URLs (Uniform Resource Locators), 213–214
Internet Explorer, browser history, 219
Internet history, tools for tracing, 19
Internet Message Access Protocol (IMAP), 189, 514
Intrusion detection, 107
Intrusion on seclusion or solitude, 30
Investigation model
 analysis, 6–7
 collection/acquisition, 5
 examination, 6–7
 flowchart, 3
 identification/assessment, 4–5
 investigator’s burden of proof, 5
 legal documentation, listing, 4–5
 overview, 2–4
 preservation, 5–6
 reporting, 7–8
Investigation scope
 civil investigations, 9–10
 criminal investigations, 10–12
 internal investigations, 8–9
Investigation stage, case management
 crime scene management, 385–386
 evidence examination, 387–388
 evidence handling, 386–387
 first response, 384–385
 lab preparation, 386
Investigation stage, case management (cont’d)
overview, 382–383
triage, 383–384
Investigations, 1. See also specific types.
Invisible file names, 141–142
Invisible files. See File recovery.
IP addresses
 querying e-mail by, 208–210
 spoofing, 254
IRBF (iLook Raw Bitstream Format), 127
ISFCE (International Society of Forensic
 Computer Examiners), 448
ISP (Internet service providers), First
 Amendment protection, 29. See also
 Service providers, electronic
 communication.
IXimager, 127

J
Jackson, Dorothy, 82
Jarrett, U.S. v., 87
JavaCool Software, 168
Jefferson, William, 67
Jeter v. Commonwealth, 21
John Doe, U.S. v., 75
John the Ripper, 349
Jurisdiction in cyberspace, 85–86
Jurisdictional issues, cloud forensics, 285

K
Katz v. U.S., 38, 81
Kazeon Systems, 372
KeeLog, 251
Kendra D’Andrea, U.S. v., 88
Kernel mode, 116, 515
KeyCapture, 251
Keygrabber Wi-Fi, 251
Keyloggers
 definition, 515
 proactive evidence collection,
 251–252
Keystrokes, recording, 251–252
Keyword searches, e-mail, 205
Kill switch on targeted equipment, 41–42
Kirk, Paul L., 93
Knock and announce rule, 41
Knowledge of possession, 222–224
KOffice, 439
Kornblum, Jesse, 271

L
Lab preparation, 386
Laptop computer, as forensic tool, 419
Laser printers, retrieving evidence from, 100
Latent evidence, 94
Laws. See Constitution of the United States; Privacy legislation; specific
 laws.
LBD (Long Block Data) standard, 139–140
LDE (Linux Disk Editor), 405
LDF (log data file), 298
Least significant bit (LSB) insertion, 351
Legal aspects of investigations. See
 Constitution of the United States; Privacy legislation; specific issues.
Legal/ethical issues of starting a forensics
 shop, 471–472
Legislation. See Constitution of the United States; Privacy legislation; specific legislation.
Licensing, 452–453. See also Certification.
Linux, forensics workstations, 438–439
Linux, tools
 DD (Disk Dump), 405
 GREP, 405
 LDE (Linux Disk Editor), 405
 overview, 404–405
 PhotoRec, 405–406
 suites, 407
Litigation, definition, 515
Litigation hold
 definition, 515
e-discovery, 362–363
Live acquisition, Web servers, 233–234
Live connection information, 261–262
Live response, 113–115. See also Data acquisition from memory.
LiveJournal, 29
Locard’s exchange principle, 93
Lockdown, 408
Log files. See also Web server logs.
 definition, 515
 investigation, creating, 118–119
Log files, post-incident evidence collection
 antivirus logs, 267–268
 application logs, 263, 264–268
 AVG Antivirus logs, 268
 database activity logs, 266
 DNS logs, 266–267
 ERRORLOG file, 266
 event logs, 263–264
 log.trc file, 266
 McAfee Antivirus logs, 267–268
 overview, 262
 security logs, 264, 265
 SQL Server Agent log, 266
 SQL Server Error log, 266
 SQL Server Profile log, 266
 SQLAGENT.OUT file, 266
 Symantec Antivirus logs, 267
 system logs, 263–264
Log Parser 2.2, 236
$LogFile metadata file, 136
Logging per server, 238
Logicube, 119
LogParser, 342
Logs
 database transaction logs, 298
 LDF (log data file), 298
 Windows, 403–404
Log.trc file, 266
Long Block Data (LBD) standard, 139–140
Longevity of digital evidence, 95
Lossless
 abstraction layers, 399
 definition, 515
 steganography compression, 350
Lossy
 abstraction layers, 399
 definition, 515
 steganography compression, 350
Lost files. See File recovery.
Lovell v. City of Griffin, 28
LSB (least significant bit) insertion, steganography, 351
Lyons, U.S. v., 39

M
MAC (modify, access, create) file data
 −fls utility, 163
 access attribute, 160
 analysis tool, 163
 body file, 163
 create attribute, 159–160
 creating a timeline, 19
 definition, 515
 DM (document management) systems, 164
 EM (entry modified) attribute, 160–162
 file creation time stamp, 159–160
 investigative uses for, 162–164
 last access time stamp, 160
 last modification time stamp, 160–162
 metadata, 159–162
 modifying attribute, 160
 protecting, 121, 159
 The Sleuth Kit, 163
 time stamps, viewing, 161–162
 timeline creation, 163
Macintosh OSX, tools
 Finder, 406
 GREP, 406
cell phones, 313–315
density, 433
as a device, 116
errors, 432–433
forensics workstations, 432–433
system vs. addressable, 114–115
Memory card reader, 437
Memory Grabber Forensic Tool, 119
Memoryze, 117
Messages, steganography, 351
Metadata. See also Documents, metadata;
File metadata; Temporary files.
British Government incident, 167–168
definition, 515
deleted documents, proving existence
of, 159–162
vs. documents, cloud forensics, 285
MAC data, 159–162
OS, value of, 159–162
overview, 157–158
timeline research, 159–162
UNIX/Linux file systems, 137–138
viewing, 165–170
Metadata, types of
embedded, 164–172
substantive, 164–172
summary, 158. See also specific types.
system, 158–164
Metadata Analyzer, 181
Metadata Extraction Tool, 178
Metadata files
hidden data, 166–172
overview, 135–137
tools, 135
Metadiscover, 408
Metasploit, 182, 274, 338
Metaviewer, 409
Metrics for software tools, 400
MFCE (Mobile Forensics Certified
Examiner), 448–449
MFI (Mobile Forensics, Inc.), 448–449
MFT attributes, 153–155
MFT (Master File Table), 135, 144, 223, 332–335
MFT metadata, effects of deleting files, 229
$Mft metadata file, 135–136
$MftMirr metadata file, 136
MHDD, 338
Micro-SIM cards, 314
Microsoft file systems
 8.3 file names, 134
 $BadClus metadata file, 135–136
 clusters, 133, 138–140
 FAT12, 133–134
 FAT16, 134, 141–142
 FAT32, 134–135
 File Allocation Tables, 133–135
 file names, 134
 floppy disks, 133–134
 hard disks, 133–137
 IDEMA (International Disk Drive Equipment and Materials Association), 139
 LBD (Long Block Data) standard, 139–140
 metadata files, 135–137
 MFT (Master File Table), 135, 144
 $Mft metadata file, 135–136
 NTFS, 135–137
 overview, 132–133
 partitions, 132–133
 sectors, 132–133, 139
 slack space, description, 138–140
 slack space vs. unallocated space, 140
 storage devices, layout, 132–133
 summary of, 132
 from unallocated space, 140
Microsoft products. See specific products.
Miller, U.S. v., 302
MIME headers, 197–202
MIME (Multipurpose Internet Mail Extensions), 196, 515
Mini-SIM cards, 314
Minus sign (-), Boolean operator, 205
Mnemonics as passwords, 349
Mobile devices, forensics. See also specific devices.
in civil cases, 323–324
exigent circumstances, 323
legal aspects, 322–324
overview, 307–308
presumption of ownership, 323–324
search and seizure laws, 322–323
Mobile equipment identifier (MEID), 315–316
Mobile Forensics, Inc. (MFI), 448–449
Mobile Forensics Certified Examiner (MFCE), 448–449
Mobile Switching Center (MSC), 310
Modify, access, create (MAC) file data.
 See MAC (modify, access, create) file data.
Modifying attribute, 160
MoonSols toolkit, 118
Most, U.S. v., 40
Most recently used (MRU) files,
 extracting registry history, 328–331
Most recently used (MRU) sites, Web browsers, 217
Motherboards, 433–434
MRU (most recently used) files,
 extracting registry history, 328–331
MRU (most recently used) sites, Web browsers, 217
MSC (Mobile Switching Center), 310
MTA (mail transport agent), 186, 515
MUA (mail user agent), 186, 515
Multicore processors, 431
Multiple users on a computer,
 authenticity of evidence, 80–81, 83
Multipurpose Internet Mail Extensions (MIME), 196, 515
N
National Library of New Zealand, 178
Native format, 374
NCH files, 192
NCSA (Common Log) Web server logs, 234
Near-line data, 366–367
Near-native format, 374
NEAR operator, 205
net sessions command, 262
net share command, 262
net use command, 262
Netcat, 118
Netstat, definition, 516
netstat command, 262
netstats.txt file, 261–262
Network connections, listing, 262
Network forensics, Windows tools, 403–404
Network Instruments, 255
Network interface cards (NICs), promiscuous mode, 257
Network Monitor, 255–256
Network search. See also Virtual networking.
overview, 247–248
response plan objectives, 250
scope assessment, 248–250
Network search, evidence collection overview, 250–251
types of, 250–251
Network search, post-incident evidence collection
antivirus logs, 267–268
application logs, 263, 264–268
AVG Antivirus logs, 268
database activity logs, 266
DNS logs, 266–267
ERRORLOG file, 266
event logs, 263–264
log.trc file, 266
McAfee Antivirus logs, 267–268
overview, 262
security logs, 264, 265
SQL Server Agent log, 266
SQL Server Error log, 266
SQL Server Profile log, 266
SQLAGENT.OUT file, 266
Symantec Antivirus logs, 267
system logs, 263–264
Network search, proactive evidence collection
acquisition window, 255
altering the source IP, 254
anonymous remailers, 254
authenticity, verifying, 254–255
blanket search, 252
collecting passwords, 251
consent exception, 252
DNS cache poisoning, 254
interception devices, 251
IP spoofing, 254
keyloggers, 251–252
live connection information, 261–262
net sessions command, 262
net share command, 262
net use command, 262
netstat command, 262
netstats.txt file, 261–262
Network capture, 254–262
network connections, listing, 262
onion routing, 254
Ordinary Course of Business exception, 252
password requirements, modifying, 262
promiscuous mode, 257
recording keystrokes, 251–252
sessionizing, 257
shared resources, listing, 262
system auditing, 252–254
tapping private computers, 252
tools, 251, 255–256. See also specific tools.
traffic, identifying, 255–257
Nodes, 292
Nonprofit organizations, as revenue source, 479–480
Nonvolatile information collecting, 272–273
definition, 269
NOT operator, 205
Notepad++, loading registry file, 343
Novell log files. See Proxy server logs, Novell.
NSLookup, 516
nslookup command, 208–209
NTFS, 135–137
NTFS attributes, 154
NTFS metafiles, 333
Null cipher definition, 516
steganography, 354
NVRAM files, 293
NVRAM (Nonvolatile Random Access Memory), router and switch forensics, 272
NWAdmin, 243

Observer, 255
O’Connor v. Ortega, 324
ODBC, 243
Off-line storage, 366–367
Office, 439
Office suites, 439
Offsets, 125, 516
Oliver v. U.S., 39
Omnibus Control and Safe Streets Act of 1968, 58
OmniPeek, 255–256
On-demand service, cloud computing, 278
Onion routing, 254
Open Database Connectivity (IIS ODBC) Web server logs, 234
Open source tools, 408–410
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenOffice</td>
<td>439</td>
</tr>
<tr>
<td>Operating systems, forensics workstations</td>
<td>438–439</td>
</tr>
<tr>
<td>Opinions as evidence</td>
<td>73–74</td>
</tr>
<tr>
<td>OpticsPro</td>
<td>439</td>
</tr>
<tr>
<td>OR operator</td>
<td>204</td>
</tr>
<tr>
<td>Oracle</td>
<td>292</td>
</tr>
<tr>
<td>Order of volatility, data acquisition</td>
<td>112</td>
</tr>
<tr>
<td>Ordinary Course of Business exception</td>
<td>252</td>
</tr>
<tr>
<td>Ortiz, U.S. v.</td>
<td>322</td>
</tr>
<tr>
<td>OS metadata, value of</td>
<td>159–162</td>
</tr>
<tr>
<td>OS utilities</td>
<td>401</td>
</tr>
<tr>
<td>O'Scannlain, Diarmuid F.,</td>
<td>49</td>
</tr>
<tr>
<td>Ostensible authority</td>
<td>516</td>
</tr>
<tr>
<td>description</td>
<td>49</td>
</tr>
<tr>
<td>Outgoing messages</td>
<td>188</td>
</tr>
<tr>
<td>Outlook</td>
<td>193</td>
</tr>
<tr>
<td>overview</td>
<td>193</td>
</tr>
<tr>
<td>PST files</td>
<td>193</td>
</tr>
<tr>
<td>version history</td>
<td>194</td>
</tr>
<tr>
<td>Outlook Express</td>
<td></td>
</tr>
<tr>
<td>CLSID (content class identifier)</td>
<td>192</td>
</tr>
<tr>
<td>.dbx files</td>
<td>192–193</td>
</tr>
<tr>
<td>DBX files</td>
<td>192–193</td>
</tr>
<tr>
<td>file formats</td>
<td>192</td>
</tr>
<tr>
<td>IDX files</td>
<td>192</td>
</tr>
<tr>
<td>.mbx files</td>
<td>192</td>
</tr>
<tr>
<td>MBX files</td>
<td>192</td>
</tr>
<tr>
<td>NCH files</td>
<td>192</td>
</tr>
<tr>
<td>overview</td>
<td>192</td>
</tr>
<tr>
<td>version history</td>
<td>192</td>
</tr>
<tr>
<td>Outsourcing</td>
<td>478–479</td>
</tr>
<tr>
<td>P2 Commander</td>
<td>331, 408</td>
</tr>
<tr>
<td>P2 Explorer</td>
<td>328</td>
</tr>
<tr>
<td>P2P (peer to peer) networking</td>
<td>288</td>
</tr>
<tr>
<td>PaaS (Platform as a Service)</td>
<td>284</td>
</tr>
<tr>
<td>Packaging evidence</td>
<td>105</td>
</tr>
<tr>
<td>Paraben Certified Forensic Examiner</td>
<td>452</td>
</tr>
<tr>
<td>Paraben Certified Mobile Examiner</td>
<td>452</td>
</tr>
<tr>
<td>Paraben Software</td>
<td></td>
</tr>
<tr>
<td>certification program</td>
<td>451–452</td>
</tr>
<tr>
<td>Decryption Collection</td>
<td>408</td>
</tr>
<tr>
<td>Device Seizure</td>
<td>321</td>
</tr>
<tr>
<td>Eclipse</td>
<td>320</td>
</tr>
<tr>
<td>Forensic Replicator</td>
<td>328, 408</td>
</tr>
<tr>
<td>Lockdown</td>
<td>408</td>
</tr>
<tr>
<td>P2 Commander</td>
<td>331, 408</td>
</tr>
<tr>
<td>P2 Explorer</td>
<td>328</td>
</tr>
<tr>
<td>Project-A-Phone</td>
<td>320</td>
</tr>
<tr>
<td>Registry Analyzer</td>
<td>178</td>
</tr>
<tr>
<td>Save-A-Phone</td>
<td>321</td>
</tr>
<tr>
<td>StrongHold pouch</td>
<td>319</td>
</tr>
<tr>
<td>Parse, definition</td>
<td>516</td>
</tr>
<tr>
<td>Particularity</td>
<td>516</td>
</tr>
<tr>
<td>search</td>
<td>84</td>
</tr>
<tr>
<td>search warrant requirements</td>
<td>36</td>
</tr>
<tr>
<td>Partition slack</td>
<td>339</td>
</tr>
<tr>
<td>Partitions</td>
<td>516</td>
</tr>
<tr>
<td>definition</td>
<td>516</td>
</tr>
<tr>
<td>e-mail addresses as</td>
<td>349</td>
</tr>
<tr>
<td>guessing</td>
<td>348</td>
</tr>
<tr>
<td>Hellman tables</td>
<td>349</td>
</tr>
<tr>
<td>mnemonics as</td>
<td>349</td>
</tr>
<tr>
<td>rainbow tables</td>
<td>349</td>
</tr>
<tr>
<td>recovering from media</td>
<td>122</td>
</tr>
<tr>
<td>tools</td>
<td>349</td>
</tr>
<tr>
<td>Password-encoded accounts, authenticity</td>
<td></td>
</tr>
<tr>
<td>of evidence</td>
<td>80–81, 88</td>
</tr>
<tr>
<td>Passwords</td>
<td></td>
</tr>
<tr>
<td>cell phone, extracting</td>
<td>320–321</td>
</tr>
</tbody>
</table>
collecting during proactive evidence collection, 251
concealed at a crime scene, 100
encryption, 348–350
Fifth Amendment protection, 27, 303
forced surrender of, 303
multiple user access to, 284
requirements, modifying, 262
Patent evidence, 94
Patriot Act, sneak and peek warrants, 42
Payton v. New York, 38
PC Hardware Maintenance and Repair, 417
PCFE (Paraben Certified Forensic Examiner), 452
PCME (Paraben Certified Mobile Examiner), 452
PCs for forensics work. See Forensics workstations.
Pedophiles. See also Child pornography,
exposed by vigilantes, 88
on LiveJournal, 29
private citizens searching for, 88
Peer to peer (P2P) networking, 288
PendMoves, 404
Personal property, warrantless searches, 47–48
Personnel, starting a forensics shop, 472–473
Perverted Justice, 88
PG Pinpoint, 408
Phone companies. See Service providers, electronic communication.
Photographing evidence, 104
PhotoRec, 405–406
Photoshop, 439
Physical disk information, sample form, 510
Physical disk photographs, sample form, 510
Physical evidence vs. digital, 94–96
Physician/patient privilege, 64–65
PII (personally identifiable information)
definition, 516
handling, 473
PIN (personal identification number)
cell phones, 314
description, 314
unlocking, 315, 320–321
Pin unlock key (PUK), 314
Pinpoint Labs
Metadiscover, 408
PG Pinpoint, 408
SafeCopy, 408
Pinpoint Tools
Filematch, 409
Hash, 409
Metaviewer, 409
Safecopy, 409
Piping commands, 124
Pirated intellectual property, 29
Pivotal Guidance, 409
Plain view doctrine
applied to computers, 43–44
authenticity of evidence, 77–79
collectors as containers, 79
definition, 516
description, 43–44
exception to reasonable expectation of privacy, 39
inadvertence approach, 78
overview, 77
prophylactic test, 78–79
search and seizure, 37
search warrants, 43–44
Plaintiff
in civil cases, 1
in criminal cases, 1
definition, 517
as stakeholder, 12
Platform as a Service (PaaS), 284
Plus sign (+), Boolean operator, 205
PMBOK (Project Management Book of Knowledge), 14
PMI (Project Management Institute), 14
Policies and procedures, in a forensics shop
accepting assignments, 469
data retention, 471–472
evidence handling, 470
governance, 468
hiring, 469
overview, 466–468
procedural policies, 470
reporting, 470–471
training, 469
Pop-up bombs, 224
POP3 (Post Office Protocol 3), 188–189,
517
Port 25, e-mail protocols, 188
Port 143, e-mail protocols, 189
Port replicator, 122
Post-incident evidence collection. See
Network search, post-incident
evidence collection.
Powering off devices
destroying data during graceful
shutdown, 143
with encryption, 348
evidence handling, 103–104
pulling the plug, 143
Precision, e-mail searches, 206
Prejudiced, definition, 517
Prejudicial of evidence, 74, 517
Preparation stage, case management,
381–382
Present possession concept, 222
Presenting results, case management,
388–389
Preservation
description, 5–6
e-discovery, 368–369
Preservation orders
definition, 517
description, 59
for documents, 164
e-discovery, 362–363
Press, definition of, 28
Presslock evidence bags, 421
Pretexting provision, 62
Privacy, right to
appropriation of name or likeness, 30
in the Constitution of the United
States, 29–30
embarrassing public disclosure, 30
false publicity, 30
film cameras as threat to, 30
individual, 30
intrusion on seclusion or solitude, 30
laws restricting, 30
legal precedence for, 29–30
“Privacy,” 30
The Right to Privacy, 30
seclusion and solitude tort, 30
“Privacy,” 30
The Privacy Act of 1974, 56–58
Privacy legislation. See also Reasonable
expectation of privacy.
education, 63–64
FERPA (Family Educational Rights and
Privacy Act) of 2008, 63–64
health care, 62–63
HIPAA (Health Insurance Portability
and Accountability Act) of 1996,
62–63
rights covered in the Constitution,
29–30, 55
student information, 63–64
Privacy legislation, financial
CRA (Consumer Reporting Agencies),
guidelines for, 60
credit reports, 60
debt collection, 62
electronic discovery, 61–62
Fair Credit Reporting Act of 1970, 60
FDPA (Fair Debt Collection Practices
Act of 2006), 62
Graham-Leach-Bliley Act of 1999,
61–62
overview, 59
pretexting provision, 62
Right to Financial Privacy Act of 1978, 60–61
The Safeguards Act, 61–62
Privacy legislation, general privacy audit trails, 57
ECPA (Electronic Communications Privacy Act of 1986), 58–59
ECS (Electronic Communications Services), 58
Omnibus Control and Safe Streets Act of 1968, 58
overview, 56
The Privacy Act of 1974, 56–58
private communications over electronic media, 58–59
RCS (Remote Computing Services), 58
SCA (Stored Communication Act), 58
Wiretap Act, 58
Privacy legislation, privileged information
attorney/client privilege, 64–65
exceptions to, 66
identifying, 66–67
overview, 64
physician/patient privilege, 64–65
protective orders, 66
taint teams, 66–67
work/product doctrine, 65–66
Private citizens performing searches vs. agents of the government, 38
Artists Against 419, 88
constitutional limitations, 86–87
fruit of a poisonous tree, 88
legality of warrants, 87–88
limits of the Constitution, 86–87
for pedophiles, 88
Perverted Justice, 88
for scam artists, 88
“wink and the nod” approach, 87
Private cloud, 278–279
Private communications over electronic media, privacy legislation, 58–59
Private investigators, as agents of the government, 25–26
Private sector organizations reasonable expectation of privacy, 49
warrantless searches, 48–49
Privileged information. See also Privacy legislation, privileged information.
definition, 517
as evidence, 74–75
Proactive evidence collection. See Network search, proactive evidence collection.
Probable cause
definition, 26, 517
ex ante (before the fact) action, 26
in the Fourth Amendment, 26
search warrants, 36
warrantless searches, 26, 46
Probitive evidence, 72
Procedural documentation, 15–18
Process documentation, 18
Processes, acquiring data from. See Data acquisition from memory.
Processor power, forensics workstations, 430–431
Prodiscover, 127–128
Product testing, 475
Project-A-Phone device, 320
Project management, documentation, 13
Project Management Book of Knowledge (PMBOK), 14
Project Management Institute (PMI), 14
Promiscuous mode, 257, 517
Prophylactic test, 78–79
Prosser, William, 30
Protected mode, Web browsers, 219
Protecting non-targeted information, 290–291
Protective orders
definition, 517
privacy legislation, 66
Index

Proxy, definition, 517
Proxy server logs
 access log, 243
 cache log, 243
 configuration log, 243
 file formats, 239
 file naming conventions, 239
 Squid, 243
Proxy server logs, analyzing
 Sawmill utility, 244
 tools, 243–244
 WebTrends utility, 243
Proxy server logs, Novell
 BUTIL utility, 243
 Common Log fields, 240
 CSAUDIT utility, 243
 Extended Log fields, 242
 HTTP status codes, 241–242
 Indexed Log, 242–243
 NWAdmin utility, 243
 ODBC utility, 243
 tools, 243
Proxy servers. See also Web servers.
 overview, 238
 purpose of, 238
PSFile, 404
PSList, 404
PSService, 404
PST files, 193
.pst folders, 191
Public cloud, 279
Public sector organizations, warrantless
 searches, 49–50
PUK (pin unlock key), 314
Putting VMs to sleep, 294–295
PyFlag, 124
R
Radio frequency isolation, 318–319
Rainbow tables, 349, 517
Rakas v. Illinois, 39
RAM (random access memory), 315
Ramses IX, ancient case document, 379
Rangwala, Glen, 168
RAT (Router Audit Tool), 272
RCS (Remote Computing Services), 58
RDRAM (Rambus Dynamic Random
 Access Memory), 432
RE: prefix, e-mail, 197
Real-time monitoring, cloud forensics, 291
Reasonable anticipation of litigation, 362
Reasonable expectation of privacy. See
 also Privacy legislation.
 case law, 38–39
 closed container clause, 38–39
 cloud forensics, 302
 definition, 517
 examples, 38–39
 factors determining, 38
 in the Fourth Amendment, 26
 garbage, 39, 274
 law enforcement exceptions, 57
 multiple users on a computer, 80–81, 83
 non-U.S. citizens, 57
 password-encoded accounts, 80–81, 88
 plain view exception, 39
 in private sector organizations, 49
 right to sue violators, 57–58
 searches, 38
 society’s acceptance, 38–39
 stored electronic information in the
 hands of a third party, 39–40
Recall, e-mail searches, 206
Recipient frequency, e-mail
 searches, 207
Recording keystrokes, 251–252
Records, Computers, and the Rights of
 Citizens, 56

Q
Quashing subpoenas, 36–37, 51
Quon, City of Ontario,
 California v., 324
Recovering files or data. See Data recovery; File recovery.
Recycle Bin. See also Deleted files; File recovery.
 deleting files, 142
 for multiple users, 144–145
 subdirectories, 144–145
$Recycle Bin file, 144
Redaction, 376, 518
Redirects, 224–225
Redundant pattern encoding, steganography, 351
regedit (registry editor), 402–403
Registry
 accessing, 225
 browser history analysis, 225–226
 hidden data, 176–178
Registry, extracting history from deleted applications, 330
HKEY_USERS, Windows registry, 328–331
installed software, by user, 331
listing users, 328–331
MRU (most recently used) files, 328–331
SID (Security Identifier), 329
tools, 331. See also specific tools.
Registry, hiding data in field values, 343
key types, 340–341
registry structure, 339–341
tools, 342. See also specific tools.
Registry Analyzer, 178
RegRipper, 331
Reiser file system, 137
Relevance
 definition, 518
 digital evidence, 96
Relevant, definition, 518
Relevant evidence, 72
Reliability of digital evidence, 95
Remote Computing Services (RCS), 58
Report writing, contents, 389–390
Report writing, structure
 acquisition and preparation, 391–392
 case summary, 391
 conclusion, 392–393
 findings, 392
 overview, 390–391
Reporting. See also Documentation.
 description, 7–8
 hash files, 7–8
 policies and procedures, 470–471
 software for cell phones, 321
Resource pooling, cloud computing, 278
Revenue sources. See also Costs.
 corporate departments, 480–481
 for-profit organizations, 478–479
 grants, 480
 nonprofit organizations, 479–480
 outsourcing, 478–479
 overview, 478
Reviewing potential data, 372–373
Revision history, viewing, 168, 170–171
Reyes, U.S. v., 39
Right to Financial Privacy Act of 1978, 60–61
Right to privacy
 appropriation of name or likeness, 30
 in the Constitution of the United States, 29–30
 embarrassing public disclosure, 30
 false publicity, 30
 film cameras as threat to, 30
 individual, 30
 intrusion on seclusion or solitude, 30
 laws restricting, 30
 legal precedence for, 30
 “Privacy,” 30
 The Right to Privacy, 30
 seclusion and solitude tort, 30
The Right to Privacy, 30
Riverbed, 255
Rodriguez, U.S. v., 251
Rodriguez, Illinois v., 82–83
Rolling hash, 370
Rolling review, 372–373
ROM (read-only memory), 315
RootkitRevealer, 404
Rootkits
definition, 114
detecting, 114, 117
Ross, U.S. v., 38
Rotating logs, 237
Router Audit Tool (RAT), 272
Router forensics. See Network search,
router and switch forensics.
Router interfaces, 269–270
Royal & Sunalliance ... v. Lauderdale
Marine Center, 362
Runtime
Captain Nemo, 409
Disk Explorer for FAT, 409
Disk Explorer for NTFS, 409
DriveImageXL, 409
DriveLook, 409
S
SaaS (Software as a Service), 282–284
Safeback, 126–127
SafeCard Services, Inc. v. SEC, 366
SafeCopy, 408–409
The Safeguards Act, 61–62
Salgado, U.S. v., 323
Save-A-Phone product, 321
Sawmill, 244
SCA (Stored Communication
Act), 58
Scalpel, 149
Scam artists, private citizens searching for, 88
Scan once/print many devices, 99
Schemes
definition, 518
Internet addresses, 214
Schneckloth v. Bustamonte, 47
Scope of search. See also Breadth of search.
defining, 84
definition, 518
e-discovery, 362
Scope of the investigation. See
Investigation scope.
Screen capture, cell phones, 320
Search, definition, 37, 518
Search, legal bounds. See also Warrantless searches.
breadth, 84
defining the scope, 84
exceeding the scope of the warrant, 38
particularity, 84
performed by a private citizen. See
Private citizens performing searches.
reasonable expectation of privacy, 38
specificity, 84
Search and seizure. See also Unreasonable search and seizure.
fishing expeditions, 24
mobile device forensics, 322–323
offices of the press, 28
plain view doctrine, 37
sequence of events, 27
Search incident to arrest (SITA), cell phones, 317
Search processes, e-discovery, 363–364
Search protocols, 43–44
Search warrants
affidavits, 36, 40
after-hours, 41
after hours, 511
definition, 36, 520
documenting execution of, 41
e-mail searches, 203
exception to requiring. See Plain view doctrine.
general. See Writs of assistance.
for offices of the press, 28
particularity requirements, 36
plain view doctrine, 43–44
private citizens performing searches, 87–88
probable cause, 36
sample form, 506
vs. subpoenas, 36–37
Search warrants, no-knock
definition, 516
description, 41–42
knock and announce rule, 41
Search warrants, sneak and peek
definition, 518
delayed notice, 42
description, 42
Patriot Act provisions, 42
third-party assistance, 42
Searching. See E-mail searches.
Searching and Seizing Computers..., 64–65, 67
Seclusion and solitude tort, 30
Sectors
definition, 518
Microsoft file system, 132–133, 139
Secure evidence storage facilities, 107
Secure Hash Algorithm
256-bit (SHA256), 518
512-bit (SHA512), 518
$Secure metadata file, 136
Security
forensics workstations, 424
of potential data, 372–373
Security logs, 264, 265
Seizure, 37, 518. See also Search and seizure.
Server logs. See Proxy server logs; Web server logs.
Servers. See E-mail information stores, e-mail servers; Proxy servers; Web servers.
Service providers, electronic communication. See also ISPs (Internet service providers).
basic subscriber information, 58
categories of customer information, 58–59
content information, 59
customer records, 58
legislation affecting, 58–59
preservation orders, 59
voluntary release of information, 59
Serving subpoenas, 50
Sessionizing evidence collection, 257, 518
SHA1 hash, calculating, 118
Shared resources, listing, 262
#show history command, 272
#show users command, 272
Shred, 108
SID (Security Identifier), 329
Signatures, steganography, 354
SilentRunner, 408
SIM cards, 313–315, 320
SIM (Subscriber Identity Module) cards, 313–315, 518
SIMless phones, 314
Simons, U.S. v., 50, 252
Simple Mail Transport Protocol (SMTP), 188
Single sign-on (SSO) security, 283
SITA (search incident to arrest), cell phones, 317
64-bit vs. 32-bit forensics workstations, 432, 438
Slack space
definition, 518
description, 138–140
hiding data, 338–339
Slack space (cont'd)
retrieving data from. See Data carving.

vs. unallocated space, 140

Slacker, 338

The Sleuth Kit
browser history analysis, 220
for evidentiary use, 7
timelines from MAC data, 163

Smart cards, encryption, 347

Smart PC Solutions, 181

SmartCarving, 146

Smear images, 116

SMTP (Simple Mail Transport Protocol), 188

Snapshots, virtual machines, 294–295

Sneak and peek warrants
definition, 518
delayed notice, 42
description, 42
Patriot Act provisions, 42
third-party assistance, 42

Societal recognition of privacy, 38–39, 81

Soft skills, certification, 445

Software as a Service (SaaS), 282–284

Software change control, 477–478

Software memory capture, 117–119. See also Data acquisition from memory and running processes.

Sorting records, browser history analysis, 221

Specificity, search, 84

Spoliation
definition, 518
e-discovery, 361, 362–363

Spoofing
e-mail addresses, 188
IP addresses, 254

Spotlight, 406–407

SQL MDF viewer, 298

SQL Server Agent log, 266

SQL Server Error log, 266

SQL Server Profile log, 266

SQLAGENT.OUT file, 266

SQUID, 519

Squid proxy server, 243

ssdeep fuzzy hashing algorithm, 370

SSO (single sign-on) security, 283

Stability of digital evidence, 95

Stakeholders
accused, 12
accuser, 12
definition, 12, 519
identifying, 12–13

Standalone computers, evidence handling, 103–104

Starting a shop
legal/ethical issues, 471–472
organizational certification, 481–483
personnel, 472–473
PII (personally identifiable information), handling, 473

Starting a shop, building from scratch
cost justification, 480–481
estimating startup costs, 462–466
facilities improvement costs, 466
factors to consider, 458–459
hardware acquisition costs, 463–464
logistics of building, 460–462
operational planning aspects, 461–462
preplanning, 459
scope of services, 460
software acquisition costs, 464–466

Starting a shop, change control
business change, 476–477
software change, 477–478

Starting a shop, policies and procedures
accepting assignments, 469
data retention, 471–472
evidence handling, 470
governance, 468
hiring, 469
overview, 466–468
procedural policies, 470
reporting, 470–471
training, 469
Starting a shop, revenue sources
 corporate departments, 480–481
 for-profit organizations, 478–479
 grants, 480
 nonprofit organizations, 479–480
 outsourcing, 478–479
 overview, 478
Starting a shop, technology management
 adding new technology, 475–476
 choosing equipment, 474
 product testing, 475
 support infrastructure, 474–475
Startup configuration, copying for router
 and switch forensics, 272
Stateful applications, 289
Stateless applications, 289
Statements requesting a warrant. See
 Affidavits.
Stationary user profiles, 206
StegAlyzer AS, 354
StegAlyzer SS, 354
Steganografia, 350
Steganography
 algorithms, 351
 carriers, 351
 cover files, 351
 definition, 519
 detecting, 354
 dictionary attacks, 354
 filtering, 351
 lossless compression, 350
 lossy compression, 350
 LSB (least significant bit) insertion, 351
 masking, 351
 messages, 351
 methodology, 350–351
 null cipher, 354
 overview, 350
 redundant pattern encoding, 351
 signatures, 354
 stegoimage, 351
 stegokey, 351
 tools, 351–354
 transformations, 351
 StegBreak, 354
 StegDetect, 354
 Stego Watch, 354
 StegoImage, 351
 Stegokey, 351
 Storage device layout, Microsoft file
 system, 132–133
 Storage models, cloud forensics,
 287–288
 Stored Communication Act (SCA), 58
 Storing
digital media, 103
 evidence, 106–107
 streams, 346, 519
 Streams, 404
 string (Linux utility), 180
 String search, file system metadata, 333
 Strings (of text), recovering, 140–141
 strings (Windows utility)
 description, 404
 reading hidden data, 178–181
 wildcard searches, 180
 StrongHold pouch, 319
 Student information, privacy legislation,
 63–64
 SUBJECT: field, e-mail, 196–197
 Subjective expectation of privacy, 81
 Subpoena duces tecum
 definition, 519
 description, 36
 Subpoenas
 definition, 36, 519
 federal vs. state, 37
 for journalists, 28
 to produce materials. See Subpoena
 duces tecum.
 proposing alternate conditions, 51
 purpose of, 50
Subpoenas (cont’d)
quashing, 36–37, 51
rules for issuing, serving, and
executing, 50
sample form, 507
serving, 50
vs. warrants, 36
Subscriber Identity Module (SIM) cards,
313–315, 518
Substantive metadata, 164–172
Superblocks, UNIX/Linux file systems,
137–138
Switch forensics. See Network search,
routers and switch forensics.
Syba I/O panels, 437
Symantec Antivirus logs, 267
SysInternals, 404
SYSINTERNALS suite, 346
System auditing, proactive evidence
collection, 252–254
System boards, 433–434
System logs, 263–264
System memory vs. addressable, 114–115
System metadata, 158–164
System Research and Application
Corporation, 119
Systools, 298

T
Tableau controllers, 436
Tableau write protection devices, 436
TAC (Type Allocation Code), 316
Taint teams, 66–67, 519
Tapping private computers, 252
Tarasoff v. Regents of the University of
California, 65
TDMA (Time Division Multiple Access),
310–311
Teams, case management, 382. See also
Taint teams.
Teams of virtual machines, 292
Technician’s toolkit, 414
Technology management
adding new technology, 475–476
choosing equipment, 474
product testing, 475
support infrastructure, 474–475
Technology Pathways, 127
Templates, documentation, 16–17
Temporary files
artifact destruction, 335–336
automatic deletion, 175
common files, 173–175
creating, 172
Word, 335–336
Terminal emulators, 140–141
Terry v. Ohio, 45
Testimony
definition, 519
hearsay rule, 31
to material not witnessed by the
speaker. See Hearsay.
Text Retrieval Conference (TReC), 205
Third-party assistance, sneak and peek
warrants, 42
32-bit vs. 64-bit forensics workstations,
432, 438
Threat assessment, case management, 381
Time Division Multiple Access (TDMA),
310–311
Timeline Maker, 20
Timelines
browser history, creating, 220, 227
definition, 519
documenting, 18–20
for evidence. See Chain of custody.
researching, 159–162
Timelines, creating
element, 19
MAC file data, 163
MAC (modify, access, create), file data,
19
overview, 18–20
tools for, 19–20
Timestamps
 browser history, 220
 definition, 519
 viewing, 161–162
TO: field, e-mail, 196–197
Tobacco industry, e-mail searches, 205
Tools (hardware), nontechnical
 adhesive labels, 421
 antistatic bags, 420–421
 digital audio recorder, 420
 digital camera, 419–420
 Faraday shields, 420
 felt-tipped pens, 421
 laptop computer, 419
 overview, 418
 presslock evidence bags, 421
 video recorder, 419–420
Tools (hardware), technical
 Advanced Test Products, 415
 Digital Intelligence, 415
 external storage units, 416
 Forensic Computers, Inc., 415
 Forensic PC, 415
 forensics workstations, 416–418
 Guidance Software, 415
 Intelligent Computer Systems, 415
 overview, 413
 technician’s toolkit, 414
 WiebeTech, 118, 122, 416, 428–429
 write-protect interfaces, 414–416
Tools (software). See also specific tools.
 Adroit Photo Forensics, 146
 applications, 407–408
 Bee Docs, 20
 Canon Imageware, 298
 Captain Nemo, 409
 Capture, 408
 carver-recovery, 149
 categories of, 395–396
 cell phone acquisition, 317–321
 cell phone storage, 319
CFTT (Computer Forensics Tool Testing), 411
 cloud forensics, 295, 298
 court approval, 11, 410–413
 data abstraction layers, 396–398
 data acquisition from media, 124–128
 data carving, 146, 147–149
 Daubert Process, 400–401
 Decryption Collection, 408
 demonstrating sound use of, 412–413
 Directory Snoop, 135, 143–144, 409
 Disk Explorer for FAT, 409
 Disk Explorer for NTFS, 409
 Disk Investigator, 409
 displaying metadata files, 135
 DocScrubber, 168
 DriveImageXL, 409
 DriveLook, 409
 e-mail analysis, 206
 e-mail header extraction, 199–202
 e-mail searches, 206
 EDiscovery, 408
 EMT (E-mail Mining Toolkit), 206
 Encase Forensics, 408
 Entourage utility, 199–202
 EWFACQUIRE, 124
 Excel, 19
 extracting registry history, 331
 file recovery, 135, 140–141, 143–144
 Filematch, 409
 Forensic ComboDock, 122
 Forensic Dossier, 119
 Forensic Replicator, 408
 Forensic Ultra Dock, 118
 FTK (Forensic Tool Kit), 124
 FTK Imager, 118–119, 121, 295
 GREP, 140–141, 180–181
 hardware memory capture, 119–120
 Hash, 409
 hidden data, reading, 168, 178–182
 hiding data in slack space, 338
 hiding data in the registry, 342
Tools (software) (cont’d)
Internet history, tracing, 19
IXimager, 127
Lockdown, 408
Log Parser 2.2, 236
logging in a case log, 412
MAC analysis, 163
MACtime, 19
Memory Grabber Forensic Tool, 119
Memoryze, 117
Metadata Analyzer, 181
Metadiscove, 408
Metaviewer, 409
metrics for capabilities, 400
MoonSols toolkit, 118
Netcat, 118
Neutrino, 408
open source, 408–410
OS utilities, 401. See also specific operating systems.
Outlook header extraction, 199–202
P2 Commander, 408
password cracking, 349
PG Pinpoint, 408
proxy server log analysis, 243–244
PyFlag, 124
recovering temporary files, 175
Registry Analyzer, 178
SafeCopy, 409
SafeCopy, 408
Scalpel, 149
SilentRunner, 408
software memory capture, 117–119
SQL MDF viewer, 298
strings, 131
suitability for purpose, 398–401
timeline creation, 19–20
Timeline Maker, 20
Trace, 408
Tribble, 119
user activity, tracing, 19
Visio, 19
Web server logs, 236
Web servers, 233
WINDD, 117–118
Winhex, 408, 410
X-Ways Trace, 19
Tools (software), browser history analysis
BUTIL, 243
The Coroner’s Toolkit, 233
CSAUDIT, 243
Directory Snoop, 223
Log Parser 2.2, 236
NWAdmin, 243
ODBC, 243
Pasco, 221
Sawmill, 244
summary of, 230
Web Historian, 220, 225, 227
WebTrends, 243
Tools (software), e-discovery
Analysis and Review package, 372
collection, 372
data collection, 367–368
ZyLab Discovery, 372
Tools (software), Encase
creating timelines, 19
e-discovery, 370
saving images in EWF (Expert Witness Format), 124
Tools (software), evidence collection
CascadeShark, 255
CommView, 255–256
Computer Watchdog, 251
EndaceExtreme, 255
interception devices, 251–252
KeyCapture, 251
Keygrabber Wi-Fi, 251
keyloggers, 251
Network Monitor, 255–256
Observer, 255
OmniPeek, 255–256
WireShark, 255–256, 257–261
Tools (software), FTK (Forensic Tool Kit)
 case management, 383–384
 creating timelines, 19
 e-discovery, 370
 EWF support, 124
 live capture of registry entries, 331

Tools (software), RootkitRevealer
 404

Tools (software), Streams
 404

Tools (software), SysInternals
 404

Tools (software), Userdump
 404

Top-level domains
 Internet addresses, 215
 Web browsers, 215

Trace
 408

Tracing e-mail sources, 202–203,
 208–210

Training, policies and procedures,
 469

Transacted compound file, 335–336

Transporting evidence, 105–106

TransUnion, 60

Trash. See Garbage.

TRec (Text Retrieval Conference), 205

Triage, 383–384

Triangulation
 between cellular towers, 311–313
 definition, 519

Tribble, 119

Trigger point, e-discovery, 362

Trilateration, cell phones, 311–313

TriTech Forensics, forensics workstations,
 429

Trithemius, Johannes, 350

Trojan horse defense, 227

True negatives, 206

True positives, 206

Tucker, U.S. v., 223

Turbocharge device, 319

Type Allocation Code (TAC), 316

UFED (Universal Forensic Extraction
 Device), 320–321

UFS (UNIX File System), 137
Unallocated space
 definition, 519
 recovering data from. See Data
 carving.
 recovering files from, 140
 vs. slack space, 140
Uniform Resource Locators (URLs). See
 URLs (Uniform Resource Locators).
Unique identifiers, 376
Universal Forensic Extraction Device
 (UFED), 320–321
UNIX File System (UFS), 137
UNIX/Linux file systems
 dentries, 137–138
 Ext, 137
 file objects, 137–138
 master node, 137–138
 metadata, 137–138
 Reiser, 137
 superblocks, 137–138
 UFS (UNIX File System), 137
Unknown user (vigilante), 86–87
Unprovoked flight, 46
Unreasonable search and seizure
 in the Fourth Amendment, 25–26
 societal recognition of privacy, 81
 subjective expectation of privacy, 81
 two-component test, 81
$Upcase metadata file, 136
Upgrading and Repairing PCs, 423
Upjohn v. U.S., 65
URL logging, Web browsers, 217
URLs (Uniform Resource Locators)
 definition, 520
 Internet addresses, 213–214
 typed into a browser, 225–226
URLSCAN Web server logs, 235
USB devices at crime scenes, 98
User mode, 116, 520
Userdump, 404
Users
 actions, establishing, 224–230
 activity, tracing, 19
 extracting registry history, 328–331
 intent and control, 226–227
 listing, router and switch forensics, 272
 names, in e-mail addresses, 187
V
 Vantec I/O panels, 437
 Video recorder, as forensic tool, 419–420
 Video surveillance, 107
 Viking DNA, 95
 Virtual adapter (VNIC), 293
 Virtual local area networks (VLANs), 293
 Virtual Machine Manager application, 292
 Virtual machines (VMs). See VMs
 (virtual machines).
 Virtual networking. See also Network
 search.
 overview, 293–294
 VLANs (virtual local area networks), 293
 VNIC (virtual adapter), 293
 VSs (virtual switches), 293–294
 Virtual PC application, 292
 Virtual private networks (VPNs), 103
 Virtual server applications, 292
 Virtual switches (VSs), 293–294
 VirtualBox application, 291–292
 Virtualization. See also Cloud computing;
 Virtual networking.
 for IaaS (Infrastructure as a Service), 281–282
 instances, 282. See also VMs (virtual
 machines).
 nodes, 282
 overview, 291
 servers. See Nodes.
 virtual machines. See Instances.
 Visio, 19
 Visitor Locator Register (VLR), 310
 VLANs (virtual local area
 networks), 293
Index

VLR (Visitor Locator Register), 310
VMDK files, 292
VMEM files, 292
VMs (virtual machines). See also Virtualization.
capturing, 299–300
files specific to, 292–293
grouping, 292
guest operating systems, 291–292
host operating systems, 291–292
NVRAM files, 293
putting to sleep, 294–295
server applications, 292
snapshots, 294–295
teams, 292
VMDK files, 292
VMEM files, 292
VMSD files, 292
VMSN files, 292
VMSS files, 293
VMTM files, 293
VMX files, 293
VMXF files, 293
VMSD files, 292
VMSN files, 292
VMSS files, 293
VMTM files, 293
VMWare application, 292–293
VMX files, 293
VMXF files, 293
VNIC (virtual adapter), 293
Volatile information
collecting, 270–272
definition, 268–269
$Volume metadata file, 136
Voluntary release of information. See also Warrantless searches, with consent.
consent to search, 81
in corporate environments, 88
medical facilities, 63
service providers, electronic communication, 59
VPNs (virtual private networks), 103
VSs (virtual switches), 293–294
W
W3C fields, 237
W3C Web server logs, 234
.wab folders, 191
Wardlow, Illinois v., 45
Warrantless searches
exclusionary rule, 44
health care information, 63
incident to arrest, 45–46
by medical facilities, 63
mitigating circumstances, 45
overview, 44–45
probable cause, 26, 46
unprovoked flight, 46
Warrantless searches, with consent. See also Voluntary release of information.
actual authority, 47, 511
apparent authority, 47, 82
assumed permission, 48
categories of consent, 47
common authority, 81–82
erroneous assumption of authority, 83
ostensible authority, 49, 516
overview, 46–47
parental permission over children, 48
personal property, 47–48
potential issues, 46
private sector organizations, 48–49
public sector organizations, 49–50
shared computers, 83
Warrants. See Search warrants.
Warrens, 337, 520
Washington, Earl, 95
Web browsers
browser engine, 216
browsing Web sites, 217
cached files, location of, 219
caching information, 216
cookies, 217
Web browsers (cont’d)

description, 216–217
effects on performance, 216
HTML (HyperText Markup Language), 216
MRU (most recently used) sites, 217
parsing HTML, 216
settings, 217–219
top-level domains, 215
URL logging, 217
Web browsers, browser history analysis tools, 220
cached history, 219
cookies, storage location, 219
Firefox, 220
Internet Explorer, 219
overview, 219
protected mode, 219
settings, 218
The Sleuth Kit, 220
timelines, creating, 220
timestamps, 220
Web Historian, 220
Web browsers, browser history analysis control of digital material, 226–227
counting contraband, 230
DAT files, displaying, 221
deleted files, 227–230
detecting active measures, 227–230
detecting malware, 227
Directory Snoop, 223, 227
establishing user actions, 224–230
evidence of deleted files, 223
fast meta refresh, 224
file wipes, 227–230
goal of forensic analysis, 222
HTTP 300 message, 224
identifying specific records, 221
job of the investigator, 222–224
knowledge of possession, 222–224
MFT (Master File Table), 223
MFT metadata, effects of deleting files, 229
for multiple users, 224
pop-up bombs, 224
present possession concept, 222
redirects, 224–225
sorting records, 221
timeline, creating, 227
tools, 221, 223, 225, 227, 230, 233
Trojan horse defense, 227
typed URLs, 225–226
user intent and control, 226–227
Web Historian, 225, 231–233
Website Profiler, 233
Windows registry, 225–226
Web Historian, browser history analysis
downloading, 231
redirected URLs, 225
running, 231–233
for undetermined browsers, 220
Web server logs
AWSTATS log, 236
Log Parser 2.2, 236
parsing, 236
tools, 236
Web server logs, analyzing
centralized logging, 238
epoch time conversion, 237–238
logging per server, 238
overview, 236–238
rotating logs, 237
W3C fields, 237
Web server logs, Apache files
access log, 235
access_log, 235
error log, 235
erro_log, 235
httpd.pid file, 236
NCFA (Common Log), 235
Rewrite log, 236
Script log, 236
Web server logs, Windows
 BIN (Centralized Binary), 234
 HTTPERR, 235
 IIS, 234–235
 IIS ODBC (Open Database Connectivity), 234
 IISMSID, 235
 NCSA (Common Log), 234
 URLSCAN, 235
 W3C, 234
 XML (Extensible Markup Language), 234

Web servers. See also Proxy servers.
 The Coroner’s Toolkit, 233
description, 233–234
live acquisition, 233–234
tools, 233

Website Profiler, 233
WebTrends, 243
Weeks v. U.S., 44–45, 76
Wetstone Technologies, 354
WHOIS query, 209–210, 273–275

WiebeTech
 components in forensic workstations, 428–429
 Forensic ComboDock, 122
 Forensic Ultra Dock, 118
 write-protect interfaces, 416

William Anderson Jarrett, U.S. v., 87
Williams, Curtis, 79
Williams, Karol, 79
Williams, U.S. v., 79
Wilson v. R, 72
WINDD, 117–118

Windows, tools
 Autoruns, 404
downloading, 401
dumpchk.exe, 404
EFSDump, 404
Event Viewer, 403–404

network forensics, 403–404
PendMoves, 404
PSFile, 404
PSList, 404
PSService, 404
regedit (registry editor), 402–403
RootkitRevealer, 404
Streams, 404
strings, 404
suites, 407
SysInternals, 404
system logs, 403–404
Userdump, 404

Windows 7, forensics workstations, 438

Windows registry. See Registry.

Winhex, 408, 410
"Wink and the nod" approach, 87
WIPE.EXE, 108
WireShark, 255–256, 257–261
Wiretap Act, 58
Witnesses. See Expert witnesses; Eyewitnesses.

Word
 autosave function, 336
directed compound file, 335–336
metadata, extracting, 181
redo function, 336
temporary files, 335–336
transacted compound file, 335–336

Work/product doctrine, 65–66
Write-protect interfaces, 414–416
Write-protected I/O, 436–437
Write-protected port replicator, 122
Writing reports. See Report writing.
Writs of Assistance, 24

X

X-Ways Forensics
 Capture, 408
duplicate files, detecting, 370
Index

X-Ways Forensics (cont’d)
 Trace, 408
 Winhex, 408
X-Ways Trace, 19
XML (Extensible Markup Language), 234

Z
 Ziegler, U.S. v., 49
 Zubulake test, 11–12
 Zubulake v. UBS Warburg, 11–12, 362
 ZyLab Discovery, 372

Y
 Young, U.S. v., 323
 YouTube, First Amendment protection, 29