
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321802057
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321802057
https://plusone.google.com/share?url=http://www.informit.com/title/9780321802057
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321802057
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321802057/Free-Sample-Chapter

Architecting Composite
Applications and
Services with TIBCO®

Brown_book.indb iBrown_book.indb i 6/28/12 10:20 AM6/28/12 10:20 AM

TIBCO® Press provides books to help users of TIBCO technology design and build real-world

solutions. The initial books – the architecture series – provide practical guidance for building

solutions by combining components from TIBCO’s diverse product suite. Each book in the

architecture series covers an application area from three perspectives: a conceptual overview,

a survey of applicable TIBCO products, and an exploration of common design challenges

and TIBCO-specific design patterns for addressing them. The first book in the series, TIBCO®

Architecture Fundamentals, addresses the basics of SOA and event-driven architectures. Each of the

advanced books addresses a particular architecture style, including composite applications and

services, complex event processing, business process management, and data-centric solutions.

The series emphasizes the unification of business process and system design in an approach

known as total architecture. A technology-neutral description of this approach to distributed

systems architecture is described in Implementing SOA: Total Architecture in Practice. Techniques

for addressing the related organizational and management issues are described in Succeeding with

SOA: Realizing Business Value through Total Architecture.

Visit informit.com/tibcopress for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

TIBCO® Press

Brown_book.indb iiBrown_book.indb ii 6/28/12 10:20 AM6/28/12 10:20 AM

Architecting Composite
Applications and
Services with TIBCO®

Paul C. Brown

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Brown_book.indb iiiBrown_book.indb iii 6/28/12 10:20 AM6/28/12 10:20 AM

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

TIB, TIBCO, TIBCO Software, TIBCO Adapter, Predictive Business, Information Bus, The Power of Now,
TIBCO ActiveMatrix® Adapter for Database, TIBCO ActiveMatrix® Adapter for Files (Unix/Win), TIBCO
ActiveMatrix® Adapter for IBM I, TIBCO ActiveMatrix® Adapter for Kenan BP, TIBCO ActiveMatrix® Adapter
for Lotus Notes, TIBCO ActiveMatrix® Adapter for PeopleSoft, TIBCO ActiveMatrix® Adapter for SAP, TIBCO
ActiveMatrix® Adapter for Tuxedo, TIBCO ActiveMatrix® Adapter for WebSphere MQ, TIBCO ActiveMatrix®
Administrator, TIBCO ActiveMatrix® Binding Type for Adapter, TIBCO ActiveMatrix® Binding Type for EJB,
TIBCO ActiveMatrix® BPM, TIBCO ActiveMatrix BusinessWorks™, TIBCO ActiveMatrix BusinessWorks™
BPEL Extension, TIBCO ActiveMatrix BusinessWorks™ Service Engine, TIBCO ActiveMatrix® Implementation
Type for C++, TIBCO ActiveMatrix® Lifecycle Governance Framework, TIBCO ActiveMatrix® Service Bus,
TIBCO ActiveMatrix® Service Grid, TIBCO® Adapter for CICS, TIBCO® Adapter for Clarify, TIBCO® Adapter
for COM, TIBCO® Adapter for CORBA, TIBCO® Adapter for EJB, TIBCO® Adapter for Files i5/OS, TIBCO®
Adapter for Files z/OS (MVS), TIBCO® Adapter for Infranet, TIBCO® Adapter for JDE OneWorld Xe, TIBCO®
Adapter for Remedy, TIBCO® Adapter SDK, TIBCO® Adapter for Siebel, TIBCO® Adapter for SWIFT,
TIBCO® Adapter for Teradata, TIBCO Business Studio™, TIBCO BusinessConnect™, TIBCO BusinessEvents™,
TIBCO BusinessEvents™ Data Modeling, TIBCO BusinessEvents™ Decision Manager, TIBCO BusinessEvents™
Event Stream Processing, TIBCO BusinessEvents™ Standard Edition, TIBCO BusinessEvents™ Views, TIBCO
BusinessWorks™, TIBCO BusinessWorks™ BPEL Extension, TIBCO BusinessWorks™ SmartMapper, TIBCO
BusinessWorks™ XA Transaction Manager, TIBCO Collaborative Information Manager™, TIBCO Enterprise
Message Service™, TIBCO Enterprise Message Service™ Central Administration, TIBCO Enterprise Message
Service™ OpenVMS Client, TIBCO Enterprise Message Service™ OpenVMS C Client, TIBCO® EMS Client for
AS/400, TIBCO® EMS Client for i5/OS, TIBCO® EMS Client for IBM I, TIBCO® EMS Client for z/OS, TIBCO®
EMS Client for z/OS (CICS), TIBCO® EMS Client for z/OS (MVS), TIBCO® EMS Transport Channel for WCF,
TIBCO® General Interface, TIBCO Rendezvous®, and TIBCO Runtime Agent are either registered trademarks or
trademarks of TIBCO Software Inc. and/or its affiliates in the United States and/or other countries.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inci-
dental or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Brown, Paul C.
 Architecting composite applications and services with TIBCO / Paul C. Brown.
 p. cm.
 Includes index.
 ISBN 978-0-321-80205-7 (pbk. : alk. paper) — ISBN 0-321-80205-5 (pbk. : alk. paper) 1.
Composite applications (Comuter science) 2. Application software—Development. 3.
Computer network architectures. 4. TIBCO Software Inc. I. Title.
 QA76.76.A65B78 2012
 004.2'2—dc23 2012016968

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and per-
mission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To
obtain permission to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request
to (201) 236-3290.

ISBN-13: 978-0-321-80205-7
ISBN-10: 0-321-80205-5

Text printed in the United States on recycled paper at RR Donnelly in Crawfordsville, Indiana.
First printing, July 2012

Brown_book.indb ivBrown_book.indb iv 6/28/12 10:20 AM6/28/12 10:20 AM

To Michael Fallon and the TIBCO Education Team:
Thank you for your perseverance teaching me

the fine art of knowledge transfer.

Brown_book.indb vBrown_book.indb v 6/28/12 10:20 AM6/28/12 10:20 AM

Brown_book.indb viBrown_book.indb vi 6/28/12 10:20 AM6/28/12 10:20 AM

vii

Contents

Preface xxv

Acknowledgments xxxiii

About the Author xxxv

Part I: Getting Started 1

Chapter 1: Components, Services, and Architectures 3

Objectives 3

Architecture Views 4

Process Model 4

Architecture Pattern 6

Process-Pattern Mapping 6

A Hierarchy of Architectures 7

Solution Architecture 8

Service or Component Specification Architecture 9

Service or Component Implementation Architecture 9

Why Make These Architecture Distinctions? 11

Solutions Comprising Dedicated Components 11

Solutions Comprising Shared Services 12

Design Patterns: Reference Architectures 13

Solution Architecture 14

Solution Architecture Pattern 14

Solution Business Processes 14

Solution Process Mapping 14

Brown_book.indb viiBrown_book.indb vii 6/28/12 10:20 AM6/28/12 10:20 AM

Contentsviii

Service Architecture 17

Service Utilization Pattern 17

Service Utilization Architecture Pattern 18

Service Utilization Process Models 18

Service Utilization Process Mappings 19

Composite Service Architecture 20

Composite Service Architecture Pattern 20

Composite Service Process Mapping 21

Service Utilization Contract 22

Component Life Cycle 22

Summary 23

Chapter 2: TIBCO® Architecture Fundamentals Review 25

Objectives 25

Products Covered in TIBCO® Architecture Fundamentals 25

TIBCO Enterprise Message Service™ 26

TIBCO ActiveMatrix® Product Portfolio 27

ActiveMatrix® Service Bus 27

ActiveMatrix® Service Grid 28

ActiveMatrix BusinessWorks™ 28

ActiveMatrix® Adapters 30

ActiveMatrix Deployment Options 31

Design Patterns 33

Basic Interaction Patterns 33

Event-Driven Interaction Patterns 35

Mediation Patterns 36

External System Access Patterns 37

Coordination Patterns 40

ActiveMatrix Service Bus Policies 44

Summary 46

Brown_book.indb viiiBrown_book.indb viii 6/28/12 10:20 AM6/28/12 10:20 AM

Contents ix

Chapter 3: TIBCO Products 47

Objectives 47

Hawk® 48

Overview 48

Hawk Agent 49

Hawk Rules 49

Hawk Microagent Adapter (HMA) 53

Microagent Interfaces 54

Hawk Display 55

Hawk Event Service 55

Hawk Adapters 56

TIBCO® Managed File Transfer Product Portfolio 56

Mainframe and iSeries Integration 58

Mainframe and iSeries Interaction Options 58

Interaction Intent 59

Substation ES 60

TIBCO Mainframe Service Tracker 60

TIBCO ActiveMatrix BusinessWorks Plug-in for CICS 61

TIBCO Adapter for IBM i 61

Mainframe and iSeries File Adapters 62

BusinessConnect™ 63

TIBCO Collaborative Information Manager 64

Summary 65

Chapter 4: Case Study: Nouveau Health Care 67

Objectives 67

Nouveau Health Care Solution Architecture 68

Nouveau Health Care Business Processes 68

Nouveau Health Care Architecture Pattern 70

Nouveau Health Care in Context 71

Processing Claims from Providers 71

Brown_book.indb ixBrown_book.indb ix 6/28/12 10:20 AM6/28/12 10:20 AM

Contentsx

Payment Manager Service Specification 73

Payment Manager Specification: Process Overview 74

Health Care Claim 74

Manage Payments Processes 75

Process Coordination 76

Payment Manager Specification: Domain Model 77

Accounts and Funds Transfers 77

Settlement Accounts 78

Settlement Concepts 79

Payment Domain Concepts 80

Payment Manager Specification: Interfaces 82

Payment Manager Specification: Processes 83

Immediate Payment Process 83

Deferred Payment and Settlement Processes 85

Summary 91

Part II: Designing Services 93

Chapter 5: Observable Dependencies and Behaviors 95

Objectives 95

The Black Box Perspective 96

Facets of Observable Dependencies and Behaviors 97

Example: Sales Order Service 97

Placing the Order 98

Order Shipped 102

Order Delivered 104

Observable State Information 104

Observable State and Cached Information 108

Avoiding Caches: Nested Retrieval 111

Characterizing Observable Dependencies
and Behaviors 111

Context 111

Usage Scenarios 112

Triggered Behaviors 113

Brown_book.indb xBrown_book.indb x 6/28/12 10:20 AM6/28/12 10:20 AM

Contents xi

Observable State 114

Coordination 114

Constraints 115

Nonfunctional Behavior 116

Some Composites May Not Be Suitable
for Black Box Characterization 117

Summary 119

Chapter 6: Service-Related Documentation 121

Objectives 121

Service One-Line Description and Abstract 122

Service One-Line Description 122

Service Abstract 122

Service Specification Contents 123

One-Line Description 124

Abstract 124

Context 124

Intended Utilization Scenarios 125

Interface Definitions 125

References 125

Observable State 125

Triggered Behaviors 126

Coordination 126

Constraints 127

Nonfunctional Behavior 127

Deployment Specifics 127

Example Service Specification: Payment Manager 128

Service One-Line Description 128

Service Abstract 128

Service Context 128

Intended Utilization Scenarios 129

Payment Manager Service Interfaces 129

Referenced Interfaces 132

Observable State 134

Brown_book.indb xiBrown_book.indb xi 6/28/12 10:20 AM6/28/12 10:20 AM

Contentsxii

Triggered Behaviors 136

Coordination 138

Constraints 140

Nonfunctional Behavior 140

Deployment Specifics 141

Service Usage Contracts 142

Organizations 142

Service Consumers and Access Mechanisms 143

Functional Requirements 143

Nonfunctional Requirements 144

Deployment 144

Service Architecture 144

Payment Manager Architecture Pattern 145

Payment Manager Behavior Implementations 145

Payment Manager Behaviors 145

Summary 149

Chapter 7: Versioning 151

Objectives 151

Dependencies and Compatibility 152

Packages 152

OSGI Versioning 153

The Version Numbering Scheme 153

Expressing Dependencies as Ranges 154

Versioning and Bug Fixes 155

WSDL and XML Schema Versioning 156

WSDL Scope 157

XML Schema Scope 158

Version Number Placement for WSDLs
and XML Schemas 159

Version Numbers in Filenames 159

Version Numbers in Namespace Names 159

Version Numbers in soapAction Names 160

Brown_book.indb xiiBrown_book.indb xii 6/28/12 10:20 AM6/28/12 10:20 AM

Contents xiii

Backwards-Compatible WSDL and XML
Schema Changes 160

Adding Definitions to a WSDL 160

Deleting Unused Definitions from a WSDL (Conditional) 161

Adding Definitions to an XML Schema 161

Deleting Unused Definitions from an XML Schema
(Conditional) 161

Replacing a SimpleType with an Identical SimpleType 161

Adding an Optional Field to an XML Schema
(Conditional Future) 162

Incompatible Changes 163

Incompatible Changes in a Schema 163

Incompatible Changes in a WSDL 163

Rules for Versioning WSDLs and Schemas 164

Architecture Patterns for Versioning 165

Accommodating a Compatible Change 165

Incompatible Change Deployment 166

Versioning SOAP Interface Addresses (Endpoints) 168

Versioning the SOAP Action 168

How Many Versions Should Be Maintained? 169

Summary 171

Chapter 8: Naming Standards 173

Objectives 173

Using This Chapter 174

Concepts 174

Abstract Services 174

WSDL Interface Definitions 176

Relating Abstract and WSDL-Defined Services 178

Why Are Names Important? 180

Names Are Difficult to Change 180

Name Structures Define Search Strategies 181

Name Structures Define Routing Strategies 181

Brown_book.indb xiiiBrown_book.indb xiii 6/28/12 10:20 AM6/28/12 10:20 AM

Contentsxiv

What Needs a Name? 182

Structured Name Design Principles 183

Use a General-to-Specific Structure 183

Employ Hierarchical Naming Authorities 185

Base Naming on Stable Concepts 187

Avoid Acronyms and Abbreviations 188

Distinguish Types from Instances 189

Plan for Multi-Word Fields 189

Use a Distinct WSDL Namespace URI for Each Interface 190

Incorporate Interface Major Version Numbers 191

Applying Naming Principles 191

Idealized Name Structures 191

Functional Context 192

WSDL and XSD Namespace URIs 194

WSDL and XSD Filenames 195

WSDL Names 196

Schema Locations 197

WSDL-Specific Schema Location 197

WSDL Message Names 197

Port Type, Service, and Binding Names 198

Operation Names 200

SOAP Address Location 200

soapAction Names 203

Schema Types Specific to an Interface and an Operation 203

Schema Shared Data Types (Common Data Model Types) 204

Complicating Realities 205

Technology Constraints 205

Naming Authorities 206

Complex Organizational Structures 206

Environments: Values for Address Location Variables 209

Deployment Flexibility for HA and DR 210

Developing Your Standard 211

Summary 212

Brown_book.indb xivBrown_book.indb xiv 6/28/12 10:20 AM6/28/12 10:20 AM

Contents xv

Chapter 9: Data Structures 215

Objectives 215

Domain Models 215

Information Models 218

Data Structure Design 220

Deep Data Structures 220

Flattened Data Structures 222

Shallow Data Structures 223

Reusability 224

Common Data Models 224

Representing an Entity 225

Representing an Association 226

Designing an XML Schema 227

Identify Required Entities and Associations 228

Determine Entity Representations 229

Create the Information Model 229

Create the Schema 232

Organizing Schema and Interfaces 233

Example Schema 235

Summary 235

Part III: Service Architecture Patterns 237

Chapter 10: Building-Block Design Patterns 239

Objectives 239

Solution Architecture Decisions 240

Separating Interface and Business Logic 240

Design Pattern: Separate Interface and Business Logic 241

Using Services for Accessing Back-End Systems 243

Rule Service Governing Process Flow 244

Design Pattern: Rule Service Separated from Process
Manager 245

Design Pattern: Rule Service as Process Manager 246

Brown_book.indb xvBrown_book.indb xv 6/28/12 10:20 AM6/28/12 10:20 AM

Contentsxvi

Hybrid Rule-Process Approaches 247

Design Pattern: Rule Service Assembles
Process Definition 248

Design Pattern: Rule Service Directs Process Manager 249

Rule Services and Data 250

Design Pattern: Rule Client Provides Data 250

Design Pattern: Rule Service Acquires Data 250

Business Exceptions: Services Returning Variant
Business Responses 252

Asynchronous JMS Request-Reply Interactions 257

The Problem with Temporary Destinations 257

Asynchronous Request-Reply: Single Reply Destination 258

Asynchronous Request-Reply: Multiple
Reply Destinations 260

Supporting Dual Coordination Patterns 261

Summary 262

Chapter 11: Load Distribution and Sequencing Patterns 265

Objectives 265

Using IP Redirectors to Distribute Load 266

Using JMS Queues to Distribute Load 266

Partitioning JMS Message Load between Servers 267

Planning for Future Partitioning 267

Partitioning by Nature of Traffic 268

A Word of Caution Regarding Over-Partitioning 269

Enterprise Message Service Client Connection
Load Distribution 269

Client Load Distribution: Topic Pattern 269

Client Load Distribution: Queue Pattern 270

Client Load Distribution: Combined Patterns 271

Load Distribution in ActiveMatrix Service Bus 271

ActiveMatrix Service Bus Load Distribution
Using Virtual Bindings 272

ActiveMatrix Service Bus Load Distribution
of Promoted Services 272

Brown_book.indb xviBrown_book.indb xvi 6/28/12 10:20 AM6/28/12 10:20 AM

Contents xvii

The Sequencing Problem 273

Sequencing 274

Limited Sequencing: Partial Ordering 274

Patterns That Preserve Total Sequencing 275

Single-Threaded Pattern 275

Sequence Manager Pattern 276

Load Distribution Patterns That Preserve
Partial Ordering 278

Preserving Partial Order Sequencing in ActiveMatrix
BusinessWorks 278

Two-Tier Load Distribution Preserving Partial Ordering 279

Implementing Two-Tier Load Distribution
Preserving Partial Ordering 279

Summary 280

Chapter 12: Data Management Patterns 283

Objectives 283

System-of-Record Pattern 284

System of Record with Cached Read-Only Copies Pattern 285

Replicated Data with Transactional Update Pattern 286

Edit-Anywhere-Reconcile-Later Pattern 287

Master-Data-Management Pattern 288

Summary 290

Chapter 13: Composites 293

Objectives 293

What Is a Composite? 293

Specifying a Composite 294

Architecting a Composite 294

Composite Architecture Pattern 295

Composite Behavior Management: Orchestration
and Choreography 296

Composite Processes 298

Composite Mappings 299

Brown_book.indb xviiBrown_book.indb xvii 6/28/12 10:20 AM6/28/12 10:20 AM

Contentsxviii

Completing the Component Specifications 303

The Process of Architecting a Composite 303

Composite Services and Applications 303

Information Retrieval Design Patterns 304

Cascading Control Pattern 304

Cached Information Pattern 304

Lookup and Cross Reference 306

TIBCO ActiveMatrix Composite Implementation 307

Defining the Composite 307

Selecting Implementation Types 307

Summary 308

Part IV: Advanced Topics 311

Chapter 14: Benchmarking 313

Objectives 313

Misleading Results 314

The Bathtub Test 314

Disabling Features 315

Test Harness Design 316

Determining Operating Capacity 316

Documenting the Test Design 317

Test Harness Architecture Pattern 317

Test Harness Process Mapping 318

Experimental Parameters 321

Test Results 322

Benchmarking Complex Components 324

Overhead Benchmarks 325

Individual Activity Benchmarks 326

Benchmark Common Scenarios in which
Activities Interact 326

Interpreting Benchmark Results 327

Identifying the Capacity Limit 327

Identifying CPU Utilization Limits 328

Brown_book.indb xviiiBrown_book.indb xviii 6/28/12 10:20 AM6/28/12 10:20 AM

Contents xix

Identifying Network Bandwidth Limits 329

Identifying Disk Performance Limits 331

Identifying Memory Limits 335

Identifying Test Harness Limits 336

Using Benchmark Results 336

Summary 338

Chapter 15: Tuning 341

Objectives 341

ActiveMatrix Service Bus Node Architecture 341

Thread Pools 342

Worker Thread Assignments 345

Default SOAP/HTTP Thread Usage 345

Default JMS Thread Usage 347

Default Node-to-Node Communications Thread
Usage 349

Thread Usage with the Virtualize Policy Set 351

Thread Usage with the Threading Policy Set 353

ActiveMatrix BusinessWorks™ Service Engine
Architecture 357

Thread Pools 357

ActiveMatrix BusinessWorks Internal Architecture 358

JMS Process Starters 360

Starting Jobs from the ActiveMatrix Service Bus 361

ActiveMatrix BusinessWorks Job Processing 362

ActiveMatrix BusinessWorks Tuning Parameters 365

Summary 369

Chapter 16: Fault Tolerance and High Availability 371

Objectives 371

Common Terms 372

Deferred JMS Acknowledgement Pattern 373

Intra-Site Cluster Failover Pattern 374

Generic Site Failover 377

Brown_book.indb xixBrown_book.indb xix 6/28/12 10:20 AM6/28/12 10:20 AM

Contentsxx

Storage Replication Strategies and the Recovery
Point Objective 377

Inter-Site Failover with Different Host Identity Pattern 378

Inter-Site Failover with Same Host Identity Pattern 380

Enterprise Message Service Failover 381

EMS File-Based Intra-Site Failover Pattern 382

EMS Database-based Intra-Site Failover Pattern 383

EMS Client Configuration for Failover 384

Considerations in Selecting an EMS Failover Strategy 384

ActiveMatrix BusinessWorks Failover 385

ActiveMatrix BusinessWorks Deferred JMS
Acknowledgement Pattern 386

ActiveMatrix BusinessWorks Built-In Intra-Site
Failover Pattern 387

ActiveMatrix BusinessWorks Cluster Failover Pattern 388

ActiveMatrix Service Bus Failover 390

Using the Deferred JMS Acknowledgement Pattern 390

Using the ActiveMatrix BusinessWorks Built-In
Intra-Site Failover Pattern 390

Using the Intra-Site Cluster Failover and Inter-Site
Failover with Same-Host Identity Patterns 391

An Example of a 99.999% Availability Environment
for the Enterprise Message Service 391

EMS Multi-Site with No Message Persistence Pattern 391

EMS Multi-Site with Message Persistence Pattern 393

Summary 396

Chapter 17: Service Federation 401

Objectives 401

Factors Leading to Federation 402

Issues in Federation 402

Access Control 402

Repositories 403

Basic Federation Pattern 403

Brown_book.indb xxBrown_book.indb xx 6/28/12 10:20 AM6/28/12 10:20 AM

Contents xxi

Federation with Remote Domain Pattern 405

Distributed Federation Pattern 406

Standardizing Service Domain Technology 407

Summary 407

Chapter 18: Documenting a Solution Architecture 409

Business Objectives and Constraints 409

Quantified Business Expectations 409

Business Constraints 410

Business Risks 410

Solution Context 410

Business Process Inventory 410

Domain Model 410

Solution Architecture Pattern 411

Business Process 1 411

Business Process Design 411

Process-Pattern Mapping 411

Business Process 2 411

Business Process n 412

Addressing Nonfunctional Solution Requirements 412

Performance and Scalability 412

Availability within a Data Center 412

Site Disaster Recovery 412

Security 412

Component/Service A 413

Business Process Involvement 413

Interfaces 414

Observable Architecture 414

Observable State 414

Coordination 414

Constraints 414

Nonfunctional Behavior 414

Component/Service B 415

Brown_book.indb xxiBrown_book.indb xxi 6/28/12 10:20 AM6/28/12 10:20 AM

Contentsxxii

Component/Service n 415

Deployment 416

Deployment Environment Migration 416

Development Configuration 416

Test Configuration 416

Production Configuration 416

Integration and Testing Requirements 416

Integration Strategy 416

Behavioral Testing 416

Failure Testing 417

Performance Testing 417

Appendix A: Common Data Format Specifications 417

Appendix B: Message Format Specifications 417

Appendix C: Service Interface Specifications 417

Appendix D: Data Storage Specifications 417

Chapter 19: Documenting a Service Specification 419

Service Overview 419

Service One-Line Description 419

Service Abstract 420

Service Context 420

Intended Utilization Scenarios 420

Interface Definitions 421

Referenced Components 421

Observable State 421

Triggered Behaviors 422

Coordination 422

Constraints 422

Nonfunctional Behavior 422

Deployment 423

Appendix A: Service Interface Specifications 423

Appendix B: Referenced Interface Specifications 423

Brown_book.indb xxiiBrown_book.indb xxii 6/28/12 10:20 AM6/28/12 10:20 AM

Contents xxiii

Afterword 425

Appendix A: UML Notation Reference 427

Class Diagram Basics 427

Classes 427

Interfaces 428

Associations 429

Part-Whole Relationships: Aggregation
and Composition 430

Generalization 431

Structure 432

Composite Structure Diagrams 432

Avoiding Common Structure Editing Mistakes 434

Execution Environments 435

Execution Environment Structure 435

Ports 436

Activity Diagrams 437

Actions and Control Flow 437

Artifacts 437

Structured Activities 438

Call Operation Action 438

Decisions, Forks, and Joins 438

Event Actions 439

Swimlanes 439

Swimlanes with Structure 440

Collaborations 440

State Machines 441

States and Transitions 441

Composite States 441

Orthogonal States 441

Brown_book.indb xxiiiBrown_book.indb xxiii 6/28/12 10:20 AM6/28/12 10:20 AM

Contentsxxiv

Appendix B: WSDLs and Schemas from Examples 443

Sales Order Example 443

Sales Order Service Interface WSDL 443

Address Schema 444

Carrier Schema 445

Customer Schema 446

Manufacturer Schema 447

Phone Schema 448

Product Schema 448

Order Fulfillment Schema 449

Sales Order Interface Schema 450

Sales Order Schema 451

Index 453

Brown_book.indb xxivBrown_book.indb xxiv 6/28/12 10:20 AM6/28/12 10:20 AM

xxv

Preface

About This Book

In composite applications and services, multiple components collabo-
rate to provide the required functionality. These are distributed solu-
tions for which there are many possible architectures. Some of these will
serve the enterprise well, while others will lead to dead-end projects.

The Dual Roles of an Architecture

At the core lies an understanding of the dual role that architecture plays
in a distributed design. One role is as an expression of an overall design:
how the components collaborate to solve the problem. The other role is
as a specification for the components and services that are part of that
design. Understanding this dual role leads to an understanding of the
information that must be present in an architecture document in order
to effectively play this dual role.

This dual perspective on architecture is recursive: Dive in to a com-
ponent or service and you’ll find that it, too, has an architecture that
must play both of these roles. It describes how its sub-components col-
laborate to provide the capabilities of the component. At the same time,
it serves as a specification for each of its sub-components. And so on.

This perspective is so important to success that the better parts of
three chapters (1, 5, and 6) are devoted to its exploration both by dis-
cussion and by example. All of the examples in the book are docu-
mented in the same manner.

Design Patterns

The architectures you define provide solutions for your enterprise. Many
of these require solutions to well-known problems. To aid you in this
work, this book covers a wide variety of design patterns for addressing

Brown_book.indb xxvBrown_book.indb xxv 6/28/12 10:20 AM6/28/12 10:20 AM

Prefacexxvi

common challenges. These include partitioning interfaces and business
logic; incorporating rules into your design; asynchronous interactions
involving multiple consumers and providers; providing services with
both synchronous and asynchronous coordination patterns; distributing
workload with and without sequencing constraints; managing repli-
cated data; creating composite components, services, and applications;
fault-tolerance, high-availability, and site disaster recovery; and federat-
ing services. These build upon the basic service and integration patterns
covered in the book TIBCO® Architecture Fundamentals.1

Relevant TIBCO Products

Components and services need to be implemented, of course, and to do
this appropriate technologies need to be selected. TIBCO provides a
number of products that are intended to play specific roles in compos-
ite applications and services. This book provides an overview of these
roles for TIBCO ActiveMatrix® Service Bus, TIBCO ActiveMatrix®
Service Grid, TIBCO ActiveMatrix BusinessWorks™, TIBCO Hawk®,
TIBCO® Managed File Transfer components, TIBCO® mainframe inte-
gration products, TIBCO BusinessConnect™, and TIBCO Collaborative
Information Manager™.

Best Practices

A good architecture is a living thing that evolves gracefully over time
as the demands facing the enterprise change. Facilitating this evolution
requires careful consideration of service and data structure versioning,
naming standards, modular data structure design, and the federation
of services. This book devotes a chapter to each of these topics.

Performance and Tuning

Your solution must perform well enough to meet the needs of the
enterprise. Assuring yourself that you have achieved the performance
goals requires suitable benchmarking, and one chapter is devoted to
the conduct of such experiments and the interpretation of results.
Hand in hand with benchmarking goes tuning, and one chapter is

1. Paul C. Brown, TIBCO® Architecture Fundamentals, Boston: Addison-Wesley (2011).

Brown_book.indb xxviBrown_book.indb xxvi 6/28/12 10:20 AM6/28/12 10:20 AM

Preface xxvii

devoted to the tuning of ActiveMatrix® Service Bus and ActiveMatrix
BusinessWorks™.

Service Federation

Services will arise in many contexts both within and external to your
enterprise. Some of these services will be intended for local use, while
others will be intended for more widespread use. One chapter is
devoted to service federation, which focuses on organizing services
that arise in these different contexts.

Documenting Solution Architectures
and Service Specifications

Finally, all of your architecture decisions must be captured in a form
that can be communicated to all interested parties, from the business
people who chartered the project to the technical teams that will
implement, deploy, and operate the components that comprise the
finished solution. One chapter is devoted to documenting solution
architectures and another to documenting service specifications.
Augmenting these chapters are online templates for each of these
documents and a worked example of each. These may be found at
informit.com/title/9780321802057.

In summary, this book is a guide to successfully architecting com-
posite applications and services employing TIBCO technologies. It pre-
sents a comprehensive approach for architecting everything from the
overall solution to the individual components and services. It builds
upon and extends the basic design patterns and product information
presented in the book TIBCO® Architecture Fundamentals.

TIBCO Architecture Book Series

Architecting Composite Applications and Services with TIBCO® is the sec-
ond book in a series on architecting solutions with TIBCO products
(Figure P-1). It builds upon the material covered in TIBCO® Architecture
Fundamentals, which provides material common to all TIBCO-based
designs. Each of the more advanced books, including this one, explores
a different style of solution, all based on TIBCO technology. Each
explores the additional TIBCO products that are relevant to that style of

Brown_book.indb xxviiBrown_book.indb xxvii 6/28/12 10:20 AM6/28/12 10:20 AM

Prefacexxviii

solution. Each defines larger and more specialized architecture pat-
terns relevant to the style, all built on top of the foundational set of
design patterns presented in TIBCO® Architecture Fundamentals.

Intended Audience

Project architects are the intended primary audience for this book. These
are the individuals responsible for defining an overall solution and
specifying the components and services required to support that solu-
tion. Experienced architects will find much of interest, but no specific
prior knowledge of architecture is assumed in the writing. This is to
ensure that the material is also accessible to novice architects and
advanced designers. For this latter audience, however, a reading of
TIBCO® Architecture Fundamentals is highly recommended. It explores
basic concepts in greater detail. This book provides a summary of that
material in Chapter 2.

TIBCO specialists in a center of excellence will find material of interest,
including background on the TIBCO product stack and design patterns
showing best-practice uses of TIBCO products. The material on bench-
mark testing and tuning ActiveMatrix Service Bus and ActiveMatrix
BusinessWorks lay the foundations for building high-performance
applications based on these products.

Enterprise architects will find content of interest as well. The mate-
rial on architecture documentation, component and service specifica-
tion, versioning, namespace design, modular data structure design,

 Figure P-1: TIBCO Architecture Book Series

TIBCO® Architecture Fundamentals

Architecting Complex Event Processing
Solutions with TIBCO®

Architecting Composite Applications
and Services with TIBCO®

Architecting BPM Solutions with TIBCO®

Brown_book.indb xxviiiBrown_book.indb xxviii 6/28/12 10:20 AM6/28/12 10:20 AM

Preface xxix

and benchmarking can be used as a reference for defining or review-
ing enterprise standards in these areas. The collection of design pat-
terns, in conjunction with those presented in TIBCO® Architecture
Fundamentals, provide the basis for a baseline set of standard design
patterns for the enterprise.

Technical managers will also find material of interest, particularly the
description of the content expected in architecture documents and
specifications. The guidelines for conducting benchmark tests will also
be of interest.

Detailed Learning Objectives

After reading this book, you will be able to

• Create and document architectures for solutions, component and
service specifications, and component and service implementations.

• Describe the intended roles for ActiveMatrix Service Bus,
ActiveMatrix® Service Grid, ActiveMatrix BusinessWorks, Hawk®,
TIBCO Managed File Transfer components, TIBCO mainframe
integration products, BusinessConnect, and TIBCO Collaborative
Information Manager in composite applications and services.

• Define a manageable approach to versioning services and their
artifacts.

• Establish practical standards for naming services and related
artifacts.

• Design modular and manageable data structures.

• Conduct and interpret performance benchmark tests.

• Tune ActiveMatrix Service Bus and ActiveMatrix BusinessWorks™.

• Identify and select appropriate design patterns for

 ° Separating interface and business logic

 ° Incorporating rules into an architecture

 ° Supporting asynchronous interactions involving multiple
consumers and providers

 ° Simultaneously supporting synchronous and asynchronous
coordination patterns

 ° Distributing workload with and without sequencing constraints

Brown_book.indb xxixBrown_book.indb xxix 6/28/12 10:20 AM6/28/12 10:20 AM

Prefacexxx

 ° Managing replicated data

 ° Creating composites of components and services

 ° Fault-tolerance, high-availability, and site disaster recovery

 ° Federating services

Organization of the Book

This book is divided into four parts (Figure P-2). Part I begins with a
discussion of components, services, and architectures that provides the
conceptual foundation for the book. It next reviews the material cov-
ered in TIBCO® Architecture Fundamentals, which is foundational mate-
rial for this book. Next comes a discussion of some TIBCO products not
covered in TIBCO® Architecture Fundamentals that play prominent roles
in composite applications and services. Finally, the Nouveau Health
Care case study is introduced. This rich case study will be used as the
basis for many of the examples in the book.

Part II covers the basics of designing services. It starts with a dis-
cussion of observable dependencies and behaviors—the externally
observable characteristics of a component or service. This understand-
ing is next incorporated into a discussion of service-related documen-
tation. The following three chapters address issues that greatly impact
the flexibility of the architecture: versioning, naming standards, and
data structures.

Part III describes a number of common design challenges and archi-
tectural patterns that can be used to address them. It starts with a num-
ber of general building-block patterns. Next are patterns for load
distribution, with and without sequencing constraints. Patterns for
managing replicated data are then followed by patterns for composing
components and services.

Part IV addresses advanced topics. The conduct and interpretation
of benchmark experiments are key for achieving performance goals, as
is the tuning of key products. Fault-tolerance, high-availability, and site
disaster recovery are discussed, followed by a discussion about feder-
ating multiple service domains. The book concludes with chapters cov-
ering the documentation of a solution and a service specification.

Brown_book.indb xxxBrown_book.indb xxx 6/28/12 10:20 AM6/28/12 10:20 AM

Preface xxxi

 Figure P-2: Organization of the Book

Part I: Getting Started Part III: Service Architecture

Patterns

Part II: Designing Services

TIBCO® Architecture
Fundamentals

Case Study: Nouveau

Health Care

Observable Dependencies

and Behaviors

Documenting a Service

Specification

Documenting a Solution

Architecture

Fault Tolerance and High

Availability

Service Federation

Tuning

Composites

Data Management Patterns

Load Distribution and

Sequencing Patterns

Building-Block Design Patterns

Benchmarking

Part IV: Advanced Topics

Service-Related

Documentation

Versioning

Naming Standards

Data Structures

TIBCO Products

«structured»«structured»

«structured»«structured»

Components, Services,

and Architectures

Review

Brown_book.indb xxxiBrown_book.indb xxxi 6/28/12 10:20 AM6/28/12 10:20 AM

Brown_book.indb xxxiiBrown_book.indb xxxii 6/28/12 10:20 AM6/28/12 10:20 AM

xxxiii

Acknowledgments

Knowingly or unknowingly, many people have contributed to this
book. Chief among these are my fellow global architects at TIBCO,
particularly Kevin Bailey, Todd Bowman, Richard Flather, Ben
Gundry, Nochum Klein, Marco Malva, Heejoon Park, and Michael
Roeschter. Many of the other members of the architectural services
team have contributed as well, including JenVay Chong, Dave
Compton, Roger Kohler, Ed Presutti, and Michael Zhou. My thanks to
these folks and the rest of the architectural services group—you’re a
great team to work with.

The educational services team at TIBCO has played a key role in
conceptualizing this book, along with the accompanying course and
architect certification program. More broadly, they have taught me
the fine art of knowledge transfer and greatly influenced the manner
in which this material is presented. Particular thanks to Alan Brown,
Michael Fallon, Mike Goldsberry, Robert Irwin, Michelle Jackson,
Lee Kleir, Madan Mashalkar, Tom Metzler, Howard Okrent, and
Ademola Olateju.

The folks in TIBCO engineering have been more than generous
with their time helping me understand the architecture underlying
their products, including Bill Brown, John Driver, Michael Hwang, Eric
Johnson, Collin Jow, Salil Kulkarni, Erik Lundevall, Bill McLane,
Jean-Noel Moyne, Kevin O’Keefe, Denny Page, and Shivajee Samdarshi.
My specific thanks to those who corrected my flawed understanding
and provided the foundation for the threading diagrams in this book:
Mohamed Aariff, Praveen Balaji, Seema Deshmukh, Laurent Domenech,
Tejaswini Hiwale, Sabin Ielceanu, Shashank Jahagirdar, Salil Kulkarni,
and Pankaj Tolani.

I wish to thank the management team at TIBCO whose support
made this book possible: Paul Asmar, Eugene Coleman, Jan Plutzer,
Bill Poteat, Murray Rode, and Murat Sonmez.

Brown_book.indb xxxiiiBrown_book.indb xxxiii 6/28/12 10:20 AM6/28/12 10:20 AM

Acknowledgmentsxxxiv

I would like to thank those who took the time to review the manu-
script for this book and provide valuable feedback: Rodrigo Candido
de Abreu, Sunil Apte, Abbey Brown, Antonio Bruno, Jose Estefania,
Marcel Grauwen, Ben Gundry, Nochum Klein, Lee Kleir, Alexandre
Jeong, Michael Roeschter, Peter Schindler, Mohamed Shahat, Mark
Shelton, Mohan Sidda, and Nikky Sooriakumar.

Finally, I would like to once again thank my wife, Maria, who makes
all things possible for me.

Brown_book.indb xxxivBrown_book.indb xxxiv 6/28/12 10:20 AM6/28/12 10:20 AM

xxxv

About the Author

Dr. Paul C. Brown is a Principal Software Architect
at TIBCO Software Inc., and is the author of
Succeeding with SOA: Realizing Business Value
Through Total Architecture (2007), Implementing
SOA: Total Architecture in Practice (2008), and
TIBCO® Architecture Fundamentals (2011), all from
Addison-Wesley. He is also a co-author of the
SOA Manifesto (soa-manifesto.org). His model-

based tool architectures are the foundation of a diverse family of appli-
cations that design distributed control systems, process control
interfaces, internal combustion engines, and NASA satellite missions.
Dr. Brown’s extensive design work on enterprise-scale information sys-
tems led him to develop the total architecture concept: business pro-
cesses and information systems are so intertwined that they must be
architected together. Dr. Brown received his Ph.D. in computer science
from Rensselaer Polytechnic Institute and his BSEE from Union College.
He is a member of IEEE and ACM.

Brown_book.indb xxxvBrown_book.indb xxxv 6/28/12 10:20 AM6/28/12 10:20 AM

Brown_book.indb xxxviBrown_book.indb xxxvi 6/28/12 10:20 AM6/28/12 10:20 AM

95

 Chapter 5

Observable
Dependencies and
Behaviors

Objectives

When you are creating a design as a collection of interacting compo-
nents (e.g., services), it is useful to be able to ignore the internals of
those components and concentrate on their interactions. However, you
still need to know something about the component—how it depends
upon the environment in which it operates and how it will behave. This
chapter is about how to characterize these dependencies and behav-
iors. As we shall see in the next chapter, this type of characterization
forms the core of component and service specifications.

If you are conceptualizing (defining) the component as part of your
design, you will be called upon to create this characterization. If you
are using an existing component, then you will be the consumer of the
characterization. Either way, you need to understand what is required
to appropriately characterize the component.

Behavior is the way in which something, in our case a component,
responds to a stimulus. To effectively utilize the component in a solution,

Brown_book.indb 95Brown_book.indb 95 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 5 Observable Dependencies and Behaviors96

you need to understand how the component will respond to stimuli pro-
vided by the other solution components and what stimuli the compo-
nent will provide to the rest of the solution.

In this work we will use the term observable dependency to refer to
the relationship between the component and components in the envi-
ronment upon which it depends. We will use the term observable behav-
ior to refer to the behavior as seen by the rest of the solution—without
looking inside the component. After reading this chapter you should
be able to describe the concepts of observable dependency and observ-
able behavior and explain how they can be characterized. This will pro-
vide the foundation for an ensuing discussion of component and
service specifications.

The Black Box Perspective

When you have a solution comprised of collaborating components
(services), it is easier to understand the solution if you are able to view
each component as a black box and not have to worry about what is
inside. To do this, you need to be able to characterize two things: (1) the
observable dependencies of the black box—the components in its envi-
ronment upon which it depends, including their interfaces and behav-
iors, and (2) the observable behavior of the black box—how it responds
to stimuli provided by other solution components and which stimuli it
provides to those components. That’s what this chapter is about.

There is a strong analogy here to the way in which people learn
about things in their environment. When presented with an object they
want to learn about, people are inclined to pick it up, turn it at different
angles, and experiment with different ways in which they can interact
with it. On electronic gadgets they press the keys, flip the switches, and
touch the screen, all the while observing both the dependencies and the
resultant behavior. They are making observations about the object.

You can think about solution components the same way, only the
observations you make are not visual. The other components upon
which they rely for proper operation characterize their dependencies,
and the stimuli are the invocations of interface operations and other
events that trigger component responses. Observations are the responses,
such as returned data structures and the invocations of other compo-
nent’s interfaces. What you learn about the component are its depend-
encies and observable behavior.

Brown_book.indb 96Brown_book.indb 96 6/28/12 10:20 AM6/28/12 10:20 AM

Example: Sales Order Service 97

Of course, experimenting with a component to learn its dependen-
cies and behaviors is likely to be a time-consuming and error-prone
activity. Preferably you would like to have someone tell you how the
component will behave and the components upon which it depends for
proper operation. Such a characterization of dependency and behavior
forms the core of the component’s specification.

Facets of Observable Dependencies and Behaviors

So what do you need to know about a component to describe its observ-
able dependencies and behaviors? Some important facets include

• External component dependencies upon the component as charac-
terized by the component’s interfaces and operations

• The component’s dependencies upon external components, con-
sisting of the identification of these components and the characteri-
zation of their interfaces and operations

• Usage scenarios: characterizations of the business processes in
which the component is expected to participate and the compo-
nent’s participation in those processes

• Triggered behaviors: the structure of component activities that
explain the relationships between the component’s triggers,
responses, inputs, observable state, and outputs

• Observable state: information retained by the component with a
presence that is observable through its interactions

• Coordination: the manner in which the component’s activity can be
coordinated with that of external components

• Constraints: limitations, particularly on the sequencing of triggers

• Nonfunctional behavior: performance, availability, and so on

Example: Sales Order Service

We will use the example of a Sales Order Service supporting an Order-
to-Delivery business process to illustrate the various facets of observa-
ble dependencies and behaviors. An overview of the Order-to-Delivery
business process is depicted in Figure 5-1. This figure presents a usage
scenario for the Sales Order Service, which is one of the participants in

Brown_book.indb 97Brown_book.indb 97 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 5 Observable Dependencies and Behaviors98

the process. The Sales Order Service manages the full life cycle of an
order. Let’s examine how it participates in the process and note the
relevant observable facets that come into play.

Placing the Order

The Sales Order Service accepts an order from the Web Site via the
 placeOrder() operation of the Sales Order Service Interface (Fig-
ure 5-2). The invocation of this operation constitutes a trigger, and the
fact that it is invoked by the Web Site indicates a dependency on the
interface.

The invocation of the placeOrder() operation triggers an associ-
ated behavior of the service. This behavior validates the order and
obtains payment, in the process deciding whether or not to accept the

 Figure 5-1: Sales Order Service in the Order-to-Delivery Business Process

display checkout
page(s)

place order

display order
acceptance

accepted?

Sales Order Service
Scope

record items
shipped

send order for
fulfillment

validate order
and obtain
payment

close order

record items
received

all
received?

deliver items

report delivery

ship items

send delivery
notice

Customer Order Fulfillment ServiceWeb Site Sales Order Service Carrier

shipment notice

delivery notice

goods

enter
addresses,
credit card info,
submit order

select checkout

print order

receive goods

yes

yes

Brown_book.indb 98Brown_book.indb 98 6/28/12 10:20 AM6/28/12 10:20 AM

Example: Sales Order Service 99

order. These activities involve interactions with other components,
components that are not part of the service and are thus dependencies.
Let’s look at the interfaces involved, and later we’ll identify the compo-
nents that provide those interfaces.

The validity of each itemID is established by calling the validate-
ProductID() operation of the Product Query Interface (Figure 5-3).

The validity of the customerID is established by calling the get-
Customer() operation of the Customer Query Interface (Figure 5-4).

Payment is obtained by calling the obtainPayment() operation
on the Credit Interface (Figure 5-5).

At this point the service returns the Place Order Response to the
waiting caller of placeOrder(). This data structure indicates whether
the order was accepted and, if not accepted, the reason why. The data
structure exposes the fact that the service is validating the order and
obtaining payment, thus making this portion of the behavior observa-
ble to the caller of placeOrder().

 Figure 5-2: Sales Order Service Interface—placeOrder() Operation

+placeOrder(request : Place Order Request) : Place Order Response

+getOrderDetails(request : Get Order Details Request) : Get Order Details Response
...

Sales Order Service Interface

-requestDate

-customerID

Place Order Request

-orderID

Accepted Sales Order Response

-rejectionReason

Rejected Sales Order Response

-orderAccepted : Boolean

Place Order Response

-itemID : SKU
-quantity
-price

Sales Order Request Item

-streetAddress1
-streetAddress2
-city
-state
-country
-postalCode

Address

-cardType
-cardNumber
-expiration
cardholderName

Credit Card Info

1..*

-shippingAddress

-billingAddress

-paymentInformation

Brown_book.indb 99Brown_book.indb 99 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 5 Observable Dependencies and Behaviors100

The observable behavior does not end with the return of the Place
Order Response data structure. If the order is accepted, the service then
sends the order to Order Fulfillment using the fillOrder() opera-
tion of the Order Fulfillment Interface to accomplish this (Figure 5-6).
This is yet another dependency. Note that, as designed, this is an
In-Only operation and does not return a response.

At this point the behavior that began with the invocation of the
place Order() operation comes to a conclusion. Putting all the pieces
together, the behavior triggered by this invocation is that shown in
Figure 5-7. This diagram also indicates components for which there are
observable dependencies: Product Service, Customer Service, Credit
Service, and Order Fulfillment Service.

 Figure 5-3: Product Query Interface—validateProductID() Operation

+validateProductID(request : Validate Product ID Request) : Validate Product ID Response
...

Product Query Interface

-productID : SKU

-valid : Boolean

Validate Product ID Response

-productID : SKU

Validate Product ID Request

 Figure 5-4: Customer Query Interface—getCustomer() Operation

+getCustomer(request : Get Customer Request) : Get Customer Response

Customer Query Interface

-customerIDValid : Boolean

Get Customer Response

-customerID

Get Customer Request

-customerID
-name

Customer

0..1

Brown_book.indb 100Brown_book.indb 100 6/28/12 10:20 AM6/28/12 10:20 AM

Example: Sales Order Service 101

 Figure 5-5: Credit Interface—obtainPayment() Operation

+obtainPayment(request : Obtain Payment Request) : Obtain Payment Response

Credit Interface

-paymentObtained : Boolean

-paymentAmount

-transactionID

Obtain Payment Response

-paymentAmount

Obtain Payment Request

-cardType

-cardNumber

-expiration

-cardholderName

Credit Card Info

 Figure 5-6: Order Fulfillment Interface—fillOrder() Operation

+fillOrder(order : Fill Order Request)

Order Fulfillment Interface

-quantity
-price
-/status

Sales Order Line Item

-streetAddress1

-streetAddress2

-city

-state

-country

-postalCode

Address

Fill Order Request

-datePlaced
-orderID
-/status

Sales Order

-lineItems 1..*
-shippingAddress -billingAddress

-customerName
-customerID

Brown_book.indb 101Brown_book.indb 101 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 5 Observable Dependencies and Behaviors102

Order Shipped

When Order Fulfillment ships the items, it sends a copy of the ship-
ment notice to the Sales Order Service. It does this by calling the
orderShipped() operation of the Sales Order Status Interface (Fig-
ure 5-8). This is another dependency: Order Fulfillment depends on
this interface. As designed, this is an In-Only operation.

The triggered behavior related to this interaction, the update of
order status, is simple, although somewhat obscure from an observ-
ability perspective (Figure 5-9). The obscurity arises because the
update of the order status cannot be inferred from this interaction
alone. It is only the fact that the order status can be retrieved (via
other operations), coupled with the fact that this status indicates
whether or not the order has shipped, that reveals the fact that the
order status exists and has been changed. We have identified an ele-
ment of observable state.

 Figure 5-7: Triggered Behavior for placeOrder()

«structured»

for each item

validateProductID
(Product Query Interface::)

getCustomer
(Customer Query Interface::)

fillOrder

(Order Fulfillment Interface::)

save and acknowledge

order

obtainPayment

(Credit Interface::)

return
customer
information

save fill order

request

fill order

validate
product ID

charge

customer’s

credit card

placeOrder
(Sales Order Service Interface::)

wait for response

service consumer Sales Order Service Order Fulfillment Service

: Place Order Response

: Place Order Request

Credit ServiceProduct Service Customer Service

Brown_book.indb 102Brown_book.indb 102 6/28/12 10:20 AM6/28/12 10:20 AM

Example: Sales Order Service 103

 Figure 5-8: Sales Order Status Interface—orderShipped() Operation

+orderShipped(notification : Order Shipped Notification)

...

Sales Order Status Interface

Order Shipped Notification

-itemID : SKU

-quantity

-orderLineID

-shipmentLineID

Shipment Line Item

-shipmentID

-dateShipped

-orderID

Shipment Notice

 Figure 5-9: orderShipped() Triggered Behavior

orderShipped

(Sales Order Status Interface::)

ship order

Order Fulfillment Service Sales Order Service

update order

status

: Order Shipped Notification

Brown_book.indb 103Brown_book.indb 103 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 5 Observable Dependencies and Behaviors104

Order Delivered

When the Carrier reports that the shipment has been delivered, Order
Fulfillment forwards the delivery notice to the Sales Order Service
by calling the orderDelivered() operation of the Sales Order Status
Interface (Figure 5-10). This is another dependency. Note that this is an
In-Only operation and does not return a response.

Figure 5-11 shows the triggered behavior resulting from the invoca-
tion of the orderDelivered() operation. Once again, the existence
of the order status update activity is inferred from information visible
through other interface operations.

Observable State Information

Some component operations can reveal that information has been
retained within a component. Consider the getOrder() operation of
the Sales Order Service Interface shown in Figure 5-12. It returns infor-
mation about the sales order and its line items. In order for the

 Figure 5-10: Sales Order Status Interface—orderDelivered() Operation

+orderDelivered(notification : Order Delivered Notification)

...

Sales Order Status Interface

-dateDelivered

Order Delivered Notification

-itemID : SKU

-quantity

-orderLineID

-shipmentLineID

Shipment Line Item

-shipmentID

-dateShipped

-orderID

Shipment Notice

Brown_book.indb 104Brown_book.indb 104 6/28/12 10:20 AM6/28/12 10:20 AM

Example: Sales Order Service 105

 Figure 5-11: orderDelivered() Triggered Behavior

Order Fulfillment Service

orderDelivered
(Sales Order Status Interface::)

receive
delivery notice

Sales Order Service

update order
status

: Order Delivered Notification

 Figure 5-12: Sales Order Service Interface—getOrder() Operation

-datePlaced

-orderID

-/status

Sales Order

+getOrder(request : Get Order Request) : Get Order Response
...

Sales Order Service Interface

-quantity

-price

-/status

Sales Order Line Item

Get Order Response

-orderID

Get Order Request

-streetAddress1

-streetAddress2

-city

-state

-country

-postalCode

Address

-productID : SKU

-productName

Product Ref

-customerID

-customerName

Customer Ref

-product

-shippingAddress -lineItems 1..*-billingAddress-customer

Brown_book.indb 105Brown_book.indb 105 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 5 Observable Dependencies and Behaviors106

component to be able to return this information, it must retain it as part
of its state. This makes that portion of the state observable.

There are two types of information typically observable through
such interfaces: operational information and milestone-level status.

Operational Information

Figure 5-13 shows, at a conceptual level, the operational information
involved in the ordering and shipping of goods. It also indicates which
components are responsible for managing individual information ele-
ments. The Sales Order Service manages operational information
related to the sales order, including the Sales Order, the Sales Order
Line Items, the billing information, and the shipping and billing
addresses. The service is stateful since it retains this information. The
fact that the service makes this information (and changes to it) visible
at its interfaces makes this state information observable.

 Figure 5-13: Operational Information in the Order-to-Delivery Process

Customer Service

Sales Order Service

Product Service

Order Fulfillment Service

-quantity

-price

-orderLineID

-/status

Sales Order Line Item

-quantity

-shipmentLineID

Shipment Line Item

-name

-manufacturerID

Manufacturer

-cardType

-cardNumber

-expiration

-cardholderName

Credit Card Info

-productID : SKU

-name

Product

-name

-customerID

Customer

-date

-orderID

-/status

Sales Order

-name

-carrierID

Carrier

-shipmentID

-/status

Shipment

Address

Address

Address

-shippedItem

0..*1

-trackingNumber

Carrier Shipment

Carrier Shipment

0..10..*

-customerAddress

*

-manufacturers

1..*

-billingAddress

-shippingAddress

-shipmentAddress

0..*1

-substitute
 For

0..*

0..1

-orderedItem 1

0..*

Brown_book.indb 106Brown_book.indb 106 6/28/12 10:20 AM6/28/12 10:20 AM

Example: Sales Order Service 107

When a component retains stateful information, component users
need to know the relationship between the interface operations and
this stateful information in order to use the operations correctly. Users
need to know which operations modify and reveal the state, and the
details about which portions of the state are modified or revealed.

Milestone Status

There is another kind of information often visible through service inter-
faces: milestone-level status. This is usually an abstracted summary of
the overall solution state, which includes state information originating
outside the component.

For example, the status attribute of the sales order takes on one of a
number of values depending upon the overall status of the order
(Figure 5-14). Much of the state information being summarized resides
outside the scope of the Sales Order Service. Thus, there must be inter-
faces (and systems implementing or invoking those interfaces) that
provide the detailed state information needed to update this summary

 Figure 5-14: Order Milestone Status

Partially
Delivered Fully Delivered

Undelivered

Partially
Shipped Fully Shipped

Unshipped

In Order Fulfillment

Presented

Order Closed

AcceptedRejected

Brown_book.indb 107Brown_book.indb 107 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 5 Observable Dependencies and Behaviors108

state information. In this case, these are the orderShipped() and
orderDelivered() operations of the Sales Order Status Interface
that are invoked by the Order Fulfillment Service.

Observable State and Cached Information

The Sales Order Service makes use of some state information that it
does not directly manage (own): customer information, product infor-
mation, and information about the related shipments. Other services
(components) are the systems of record for this information, but at
least some of this information is cached in the Sales Order Service.
This situation can raise some interesting design challenges, challenges
that when resolved, can impact the observable behavior of the Sales
Order Service.

A core design challenge is deciding how to maintain consistency
between the cached information as viewed through the Sales Order
Service and the same information viewed through its actual system of
record. If it is possible (and it almost always is) for inconsistencies to
arise, then the component’s observable behaviors must indicate the
scenarios under which this can arise. Users need to be aware that such
inconsistencies are possible and the circumstances under which they
can arise.

Let’s take a look at how such a situation can arise in the Sales Order
Service. If the other systems of record have separate data stores (e.g.,
databases), then it must be the case that the Sales Order Service retains
copies of at least some of the information in its physical data store
(Figure 5-15). Since this information is a copy, inconsistencies will arise
if the system of record is updated but the copy is not. The more infor-
mation that is copied, the more likely it is that a discrepancy will arise
and be observed.

Maintaining the accuracy of cached information requires interac-
tions with the information’s system of record. One common approach
is for the system of record to provide facilities to inform interested par-
ties of changes to its information. The system of record provides an
interface for interested parties to subscribe to such notifications, and a
second interface to actually notify the parties of changes. This approach
is often taken when it is likely that more than one party will be inter-
ested in the changes. Note that the uses of these interfaces constitute
additional observable dependencies.

In the present design, the Sales Order Service has two relation-
ships of this type, one for product information and the other for

Brown_book.indb 108Brown_book.indb 108 6/28/12 10:20 AM6/28/12 10:20 AM

Example: Sales Order Service 109

customer information. Figure 5-16 shows the interfaces provided by
the Product Service for this purpose. The Sales Order Service is a user
of these interfaces.

Two interesting questions arise with respect to the subscription
interface. The first of these relates to the granularity of the subscription:
Does the interested party subscribe to changes to particular products,
or to all products? The second relates to the timing of the subscription:
When does subscription occur? When the component is deployed?
When it is started? Does it occur at some other time?

In practice, subscriptions are often realized without implement-
ing subscription interfaces at all. Instead, the design uses a messaging
service (e.g., JMS) for the delivery of notifications. The granularity
issue is addressed through the choice of the number of destinations
(topics or queues) in the design and the determination of which

 Figure 5-15: Sales Order Service Data Store

Order Fulfillment Service

Sales Order Service Data Store

Product Service

Customer Service

-quantity
-price
-orderLineID
-/status

Sales Order Line
Item

-quantity
-shipmentLineID

Shipment Line Item

-shipmentLineID

Shipment Line Ref

-cardType
-cardNumber
-expiration
-cardholder
 Name

Credit Card Info

-productID : SKU
-name

Product

-customerID

Customer Ref

-shipmentID

Shipment Ref-date
-orderID
-/status

Sales Order

-SKU

Product Ref

-name
-customerID

Customer

-shipmentID
-/status

Shipment
-name
-carrierID

Carrier

Address

Address

Address

-shippedItem

-shipmentAddress

-trackingNumber

Carrier Shipment

0..10..*

-customer
Address

-billingAddress

-shippingAddress

-substituteFor

0..*

0..1

1 0..*

1

0..*

Carrier
Shipment

Brown_book.indb 109Brown_book.indb 109 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 5 Observable Dependencies and Behaviors110

notifications will be sent to which destinations. Subscriptions are
implemented through deployment-time configuration of components
as listeners to specific destinations.

The productChange() operation raises another interesting situa-
tion from the Sales Order Service’s perspective: its invocation triggers
activity in the service that is not related to an operation being provided
by the Sales Order Service itself (Figure 5-17). It is the arrival of the

 Figure 5-16: Product Change Notification Context

+subscribeToProductChanges(request : Product Change Subscription Request) : Product Change Subscription Response

Product Change Subscription Interface

+placeOrder(request : Place Order Request) : Place Order Response

Sales Order Service

+productChange(notification : Product Change Notification)

Product Change Notification Interface

Product Service

«use»

«use»

 Figure 5-17: Product Change Notification Process

process product

change notification

initiate

notification

processing

productChange

(Product Change Notification Interface::)

make change
to product

Product Service Sales Order Service

: Product Change Notification

Brown_book.indb 110Brown_book.indb 110 6/28/12 10:20 AM6/28/12 10:20 AM

111Characterizing Observable Dependencies and Behaviors

notification that triggers the service’s activity. This is commonly
referred to as an event-driven interaction. As shown, the process
depicted in the diagram does not indicate what action should be taken
as a result of this notification. However, if the final resolution requires
either a change to the observable state of the service (e.g., replacing the
item with another item) or an interaction with an external component
(such as sending an e-mail notification), these actions constitute changes
to the observable behavior that must be documented.

Avoiding Caches: Nested Retrieval

An approach to minimizing inconsistencies is to minimize the amount
of cached information in a component. For example, instead of caching
a lot of data, the component might only cache an identifier. Then, when
the service needs more information about the identified entity, it
retrieves it dynamically from the system of record for that entity.

The placeOrder() operation described earlier contains two inter-
actions of this type. First, it interacts with the Product Service to vali-
date the productID in the order request. Second, it interacts with the
Customer Service for two reasons: to validate the customerID, and to
retrieve the customerName, which is a required field for the Fill Order
Request (Figure 5-6) data structure used in the fillOrder() invoca-
tion. Note that only the identifiers for these two entities are retained as
part of the Sales Order Service’s state.

Characterizing Observable Dependencies
and Behaviors

Let’s now summarize the information needed to characterize the
observable dependencies and behavior of a component.

Context

Context places the component in question into the larger environ-
ment in which it must exist and with which it must interact. It defines
the dependencies that the component has upon other components.
For services, the consumer of the service is often shown only as an
abstraction since there may be many service consumers. For compo-
nents that are not services, the component may require specific

Brown_book.indb 111Brown_book.indb 111 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 5 Observable Dependencies and Behaviors112

interfaces on the consumer and is designed to work only with that
consuming component. In such cases the type of the consuming com-
ponent is explicitly shown.

Dependencies can be readily shown with an abstracted architecture
pattern (Figure 5-18). The difference between this and a full architec-
ture pattern is that the actual communications channels have been
replaced with the more abstract <<use>> relationship. As the design is
refined, these can be replaced with the more concrete communications
channels.

This particular diagram indicates another area requiring refine-
ment: The actual mechanisms for subscribing to the Product Change
Notification and Customer Change Notification have not been defined,
nor is it clear which participant will employ this mechanism to estab-
lish the subscriptions. In reality, the implementation of this activity
may require manual configuration done at deployment time. The com-
pleted component dependency and behavioral description must indi-
cate how this will happen.

Usage Scenarios

The architecture pattern does not indicate how the component (in this
case the Sales Order Service) functionally participates in the business
processes that comprise the overall solution. For this you need to

 Figure 5-18: Sales Order Service Context Showing Dependencies

+placeOrder(request : Place Order Request) : Place Order Response

Sales Order Service

 : Sales Order
Service Interface

: Sales
Order Status
Interface

Customer Service

: Customer
Query
Interface

: Customer
Change
Notification
Interface

: Customer
Change
Subscription
Interface

Order Fulfillment Service

: Order
Fulfillment
Interface

Product Service

: Product
Query
Interface

: Product
Change
Notification
Interface

: Product
Change
Subscription
Interface

service consumer

Credit Service

: Credit
Interface

«use» «use»«use»
«use»

«use»

«use»

??? «use» «use»

«use»

???

«use»

Brown_book.indb 112Brown_book.indb 112 6/28/12 10:20 AM6/28/12 10:20 AM

113Characterizing Observable Dependencies and Behaviors

understand the scenarios that involve the component and show its
involvement in the solution’s operation. Process-pattern mappings
similar to that of Figure 5-1 are well suited for this purpose. For each
triggering event of the component, there should be at least one exam-
ple of a scenario in which the component is expected to participate. If
reusability is an issue and the usages are different, there should be a
scenario illustrating each type of usage.

To fully characterize the component, more is required than simply
the scenario. You need to know how often each scenario occurs, the
expected execution time of the scenario, and the required availability of
the scenario. It is from this information that the corresponding through-
put, response time, and availability characteristics of the component
will be derived.

Particularly in the case of services, it is not unusual for some of the
scenarios to be speculative, representing potential future usages.
Nevertheless, these scenarios need to be documented along with work-
ing assumptions about their associated performance and availability
characteristics.

From a practical perspective, usage scenarios may only show the
fragment of the larger business process in which the component actu-
ally participates. However, if the process requires multiple interactions
with the component, it is important that the usage scenario span these
multiple interactions. If significantly different sequences must be sup-
ported, each sequence must be documented.

Triggered Behaviors

The behavior of a component is a description of the sequences of inter-
actions it can have with the components upon which it depends along
with the details of those interactions. In most circumstances, this behav-
ior can be readily documented using one or more UML Activity dia-
grams. The diagrams indicate the behavior’s trigger along with the
resulting responses, inputs, outputs, and observable state changes.

Figure 5-7 is an example of a triggered behavior. Its trigger is the
invocation of the placeOrder() process, and its initial input is the
Place Order Request. Responses include the calls to validate-
ProductID(), getCustomer(), and obtainPayment(); the return
of the Place Order Response; and the invocation of the fillOrder()
operation. The data structures associated with these operations pro-
vide details of the interactions. Prior to sending the Place Order
Response, the order information is saved and becomes part of the com-
ponent’s observable state.

Brown_book.indb 113Brown_book.indb 113 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 5 Observable Dependencies and Behaviors114

This, of course, is just one possible behavior for this trigger. Other
scenarios are required to describe the expected behavior when one or
more of the dependent components becomes unavailable or returns
unexpected results.

To fully characterize a component’s behavior, a triggered behavior
description is required for each possible trigger. Triggering events may
include the invocation of interface operations, the receipt of notifica-
tions, the expiration of timers, and component life-cycle events such as
start, stop, deployment, and un-deployment. In the Sales Order Service
example, it is likely that the subscriptions to product and customer
change notifications would actually be made via configuration changes
implemented as part of the deployment process. Here the deployment
would be the event, and one of the participants in the process is the
person doing the deployment.

Observable State

The observable state of a component reflects the information or other
types of status (such as physical machine state) that can be altered or
viewed by interactions among the component and other components.
A model of this state information will help the user of the component
understand the component’s behavior. The model should clearly dis-
tinguish between information for which the component is the system
of record and information that is a cached copy of information originat-
ing in another component.

Figure 5-15 is an example of an observable state model related to
the Sales Order Service. It shows the information for which the Sales
Order Service is the system of record and the information that it has
cached from other components. It also indicates the relationship
between the cached information and the system-of-record information
from which it is derived.

Some state information can be a derived summary of information
that is distributed across a number of components. The status of the
Sales Order is such an example. When this type of information is
 present, the allowed values that it can assume must be modeled
(Figure 5-14), and the triggers and triggered behaviors that result in its
update must also be captured (Figures 5-9 and 5-11).

Coordination

The work of a component does not occur in isolation, and the perfor-
mance of this work needs to be coordinated with that of other compo-

Brown_book.indb 114Brown_book.indb 114 6/28/12 10:20 AM6/28/12 10:20 AM

115Characterizing Observable Dependencies and Behaviors

nents in the solution. Consequently, the available coordination ap-
proaches are a significant part of the component’s observable behavior.

Some coordination patterns are readily captured in the modeling of
individual triggered behaviors. For example, in the placeOrder()
process of Figure 5-7 it is clear that the interaction between the service
consumer and the Sales Order Service uses synchronous request-reply
coordination.

Other coordination patterns may involve multiple triggering events
and therefore multiple triggered behaviors. For example, place-
Order() sends a fillOrder() request to the Order Fulfillment
Service, but the responses from the Order Fulfillment Service are returned
asynchronously. These interactions involve the Order Fulfillment
Services’s invocations of the orderShipped() (Figure 5-9) and
orderDelivered() (Figure 5-11) operations. The overall coordination
is only apparent when the usage scenario (Figure 5-1) is considered.

Capturing coordination is important because changing coordina-
tion patterns involves changes in both components. In the Sales Order
Service example, shipment and delivery notices are delivered to the
Sales Order Service by calling operations on its Sales Order Status
Interface. This makes the design of the Order Fulfillment Service spe-
cific to the Sales Order Service.

There is an alternative approach. Consider a situation in which
other components in addition to the Sales Order Service need to know
about shipments and deliveries. With the present design, accommodat-
ing this requirement would necessitate an Order Fulfillment Service
change to individually notify each of the additional components.

Alternatively, the Order Fulfillment Service could provide a sub-
scription interface where any component could register to be informed
about shipments and deliveries (Figure 5-19). Thus any number of
components could subscribe without requiring any design changes in
the Order Fulfillment Service. However, to switch to this design the
Sales Order Service has to be modified to utilize the new approach to
learning about shipments and notifications.

Constraints

Usage scenarios show allowed sequences of interactions with the com-
ponent, but they do not illustrate sequences that are not allowed. These
need to be documented as well.

Consider the Sales Order Service Interface shown in Figure 5-20.
This interface has some obvious constraints upon its usage. You can’t
get, modify, or cancel an order that hasn’t been placed. However, there

Brown_book.indb 115Brown_book.indb 115 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 5 Observable Dependencies and Behaviors116

may be some less obvious constraints. Depending upon business rules,
you may not be able to modify or cancel an order that has already
shipped. Users of a component need to understand these constraints.

Nonfunctional Behavior

A component may provide all the functionality required for a usage
scenario, but still may not be suitable for nonfunctional reasons. Its
throughput capability may be insufficient to support the volume of
activity required by the scenario or its response time may be inade-
quate. The availability of the component may not be sufficient to give
the usage scenario its required availability.

Nonfunctional requirements are not arbitrary—they are (or should
be) derived from the business requirements. The connection between
the business requirements and the individual components is estab-
lished through the usage scenarios. For example, the business might

 Figure 5-19: Alternative Design for Shipment and Delivery Notifi cation

+placeOrder(request : Place Order Request) : Place Order Response

Sales Order Service

+shipmentSent()

+shipmentDelivered()

Order Fulfillment Status Notification Interface

+subscribe()

Order Fulfillment Status

Subscription Interface

Order Fulfillment Service

«use»«use»

 Figure 5-20: Full Sales Order Service Interface

+cancelOrder(request : Cancel Order Request) : Cancel Order Response

+getOrder(request : Get Order Request) : Get Order Response

+getOrderDetails(request : Get Order Details Request) : Get Order Details Response

+modifyOrder(request : Modify Order Request) : Modify Order Response

+placeOrder(request : Place Order Request) : Place Order Response

Sales Order Service Interface

Brown_book.indb 116Brown_book.indb 116 6/28/12 10:20 AM6/28/12 10:20 AM

117Some Composites May Not Be Suitable for Black Box Characterization

require that customers be able to place orders at a peak rate of 100 per
second. With reference to Figure 5-1, this means that the Sales Order
Service must be able to accept order requests at this rate. If the business
requires that orders be acknowledged within three seconds, this means
that the Sales Order Service must be able to validate orders and obtain
payment within three seconds with orders coming in at a rate of 100
per second. Similar reasoning can be used to determine the rate at
which shipment and delivery notices will occur and be processed.

This same type of thinking applies to other types of nonfunctional
requirements as well. If the business requires that online ordering capa-
bility be available 24/7, then this means that the Sales Order Service
must be available 24/7. Availability, outage time restrictions, and secu-
rity requirements must also be connected back to the business require-
ments via the usage scenarios.

There is another reason for establishing this connection between busi-
ness requirements and component requirements: It captures the design
assumptions that went into specifying the component. When a new utili-
zation for the service comes along, this makes it easy to determine whether
the new usage is consistent with the original design assumptions. If it is
not, then it is necessary to open the black box and determine whether the
actual design is capable of meeting the new requirements.

For all of these reasons, it is important to document the nonfunc-
tional behavior of the component. It is an observable characteristic of
the component.

Some Composites May Not Be Suitable
for Black Box Characterization

For the black box approach to work, the component must appear to be
a coherent whole. For a monolithic self-contained component, that’s
not a problem. But for a composite, a component comprising other
components (Figure 5-21), some conditions must be satisfied for it to be
treated as a black box:

• It must (to all appearances) be managed as a single unit.

• It must have a single organization responsible for its operation.

• Access to the constituent parts must be exclusively through the
interface(s) of the black box. Note that this does not preclude expos-
ing a sub-component’s interface as one of the composite’s interfaces.

Brown_book.indb 117Brown_book.indb 117 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 5 Observable Dependencies and Behaviors118

Key indicators that the composite is not a black box include

• Different organizations are responsible for operating (starting and
stopping) different parts of the composite.

• Decisions to start and stop the composite are separate from deci-
sions to start and stop its component parts.

• A component part can be accessed directly via its own interfaces,
interfaces that are not declared to be part of the composite’s inter-
faces. This is particularly important when the constituent compo-
nent is stateful.

An example of a component that should not be treated as a black
box is a service (interface) wrapping the functionality of a stateful back-
end system that other solution components access directly. In this situ-
ation, state changes made via the service interface may be visible
through the back-end system’s interface, and vice versa. Characterizing
the observable behavior of the service will not explain the state changes
that are visible through the service interface but did not originate as the
result of a service interaction.

Any of these conditions make it important for the user of the com-
posite to be aware of the composite’s architectural structure—aware of
those components that are independently accessible or managed.
Under such circumstances, you can’t treat the composite, including its
component parts, as a single entity—a black box. Instead, each of the
components becomes a black box in its own right. The context and
usage scenarios for the “composite” then indicate how these support-
ing components collaborate with the composite.

 Figure 5-21: Black Box Perspective

Organizational Responsibility

+start()

+stop()

part A : Component

part C : Component

part B : Component

Black Box Composite

interface

Brown_book.indb 118Brown_book.indb 118 6/28/12 10:20 AM6/28/12 10:20 AM

Summary 119

Summary

When you want to use a component as part of a solution, you need to
understand the behavior of that component so that you can determine
whether it is suitable for use in the solution. What you need to know
are the aspects of the component’s behavior that are observable from
outside the component. You treat the component as a black box and
focus on its observable behavior.

Understanding observable behavior requires characterizing a num-
ber of things, including

• Context: the component’s dependencies upon external components
and vice versa

• Usage scenarios: characterizations of the business processes in
which the component is expected to participate

• Triggered behaviors: structures of activities that explain the rela-
tionships among the component’s triggers, responses, inputs,
observable state, and outputs

• Observable state (information retained from one trigger to the next)

• Coordination: the manner in which the component’s activity can be
coordinated with that of external components

• Constraints: limitations, particularly on the sequencing of triggers

• Nonfunctional Behavior: performance, availability, and so on

Some composites cannot be safely considered as black boxes.
These include components whose constituent parts are operated
 independently or are accessible by means other than the composite’s
interfaces.

Brown_book.indb 119Brown_book.indb 119 6/28/12 10:20 AM6/28/12 10:20 AM

Brown_book.indb 120Brown_book.indb 120 6/28/12 10:20 AM6/28/12 10:20 AM

173

Chapter 8

Naming Standards

Objectives

This chapter provides guidance for an enterprise architect defining the
standardized structure of names for web services and other IT elements
in the enterprise. It explores the issues and best practices involved in
defining and managing enterprise naming standards. The topic is of
particular importance because the structuring of the names and the
challenges involved in maintaining the consistency in naming WSDL
and XML schema namespaces, services, ports, operations, and other
artifacts in the web services space have a significant impact on the com-
plexity of managing an SOA environment.

Although the discussion and examples are focused largely on web
services (i.e., services defined with a WSDL), the basic naming princi-
ples also apply to schemas, JMS destination names, uniform resource
identifiers (URIs) and uniform resource locators (URLs). Several of the
important names in a WSDL are required to be URIs.

There are many possible approaches to designing names for use in
SOA environments. This chapter sets forth one concise set of best-
practice concepts for designing names that can be readily tailored to
the needs of your enterprise. In explaining the concepts, particular
emphasis is placed on explaining the rationale behind the approach so
that the refinements that will inevitably be required in practice can be
designed with the same principles.

Brown_book.indb 173Brown_book.indb 173 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 8 Naming Standards174

After reading this chapter you should be able to

• Describe the principles guiding name structure design.

• Apply the principles to the ideal design of names for WSDL and
schema artifacts.

• Describe the choices available for addressing real-world complica-
tions in name structure design.

Using This Chapter

The intent of this chapter is to provide guidance in the formulation of
naming standards. It begins with a discussion of the concepts and gen-
eral principles for structuring names. These principles represent a ration-
ale for structuring names that should, as a rule, always be adhered to.

But principles are not enough: There are circumstances under
which the principles alone will not provide a unique solution. As these
cases arise in this chapter, guidelines are provided to indicate reasona-
ble ways of addressing the situation and guidance for selecting an
appropriate approach.

Next, some complicating realities are discussed. Practical con-
straints imposed by the implementation technology constrain the
structures of names. Organizational issues of various types introduce
complications that require guidelines for resolution. The existence of
multiple environments (development, test, production) and the need
for flexible deployment (for fault tolerance, high availability, site disas-
ter recovery, or simply administrative convenience) add wrinkles of
their own. Versioning must also be taken into consideration.

The chapter concludes with some practical guidance for creating
SOA naming standards.

Concepts

Abstract Services

Any discussion of service naming standards has to begin by putting a
stake in the ground in terms of defining what a service is. Here you run
into a difference of abstraction between the working definitions used in

Brown_book.indb 174Brown_book.indb 174 6/28/12 10:20 AM6/28/12 10:20 AM

Concepts 175

the broader SOA community and those provided specifically by web
services (i.e., defined by the WSDL schemas).

Thomas Erl provides the following statement that is generally
representative of the broader SOA community perspective: “Each
[abstract] service is assigned its own distinct functional context and is
comprised of a set of capabilities related to this context. Those capa-
bilities suitable for invocation by external consumer programs are
commonly expressed via a published service [interface] contract
(much like a traditional API).” 1

The structure of the concepts in this statement is shown in Fig ure 8-1.
Here the term Interface Contract is used to reinforce the fact that the
concept being represented is an interface. This also emphasizes that an
Abstract Service may have multiple interfaces. This concept structure
provides a useful framework for exploring the structure of names.

1. Thomas Erl, SOA: Principles of Service Design, Upper Saddle River, NJ: Prentice Hall
(2008), p. 39.

 Figure 8-1: Abstract Service Concepts

Functional Context

Interface Contract

Abstract Service

Capability

*

*

*

Brown_book.indb 175Brown_book.indb 175 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 8 Naming Standards176

WSDL Interface Definitions

The Web Services Description Language (WSDL) is designed to define
service interfaces. A WSDL file contains two different kinds of defini-
tions: abstract definitions (often referred to as types or meta-data) and
concrete definitions (Figure 8-2). The abstract definitions specify the
types of portTypes (interfaces), operations, messages, and message
parts. The message parts, in turn, reference schema data types (see the
sidebar on incorporating schema data types). The concrete specifica-
tions define the instances of services, ports (endpoints), and their bind-
ings to protocols. WSDL and schema definitions each occur in a context
uniquely identified by their respective namespace URIs.

Two of the names are particularly important: the address of the
port (endpoint) and the soapAction of the operation binding. Their
importance stems from the fact that these are the two primary names
used in the communications between the service consumer and pro-
vider when SOAP bindings are being used. The address specifies the
place to which messages are being sent, and the soapAction is the sole
indication of the operation that is being invoked. It is from these two
pieces of information that the recipient determines the abstract defini-
tions (meta-data) that characterize the message structure and the
operation to be performed.

The WSDL part definitions reference data types from a schema def-
inition. It is a best practice for each message part to have its own dedi-
cated schema type associated with it. This allows each data structure to
be specific to the operation it supports and avoids unnecessary updates
if these data types are shared. The namespace URI for this schema
should be the same as the WSDL namespace URI except for their respec-
tive endings (schema or WSDL). The use of different endings is primar-
ily for human readability.

Best Practice: Dedicated Data Types for Message Parts

Use a different dedicated data type for each message part, and define these data
types in a schema dedicated to the WSDL. The namespace for the schema and
WSDL should be the same except for their respective endings (schema or WSDL).

The dedicated data types for message parts may well contain ele-
ments having data types that belong to a common data model. Those

Brown_book.indb 176Brown_book.indb 176 6/28/12 10:20 AM6/28/12 10:20 AM

Concepts 177

 Figure 8-2: Simplified WSDL Concepts

Abstract Definition Concrete Definition

Notes:
Concept names reflect WSDL 1.1
terminology; names in parentheses
reflect WSDL 2.0 terminology.

[operation binding] is an implied

WSDL concept.

Schema Definition

-name

-address : URI

port (endpoint)

-name

portType (interface)

-name : URI

Schema namespace

-name : URI

WSDL namespace

-soapAction : URI

[operation
binding]

-name

operation

-name

Data Type

-name

part

-name

message

-name

binding

-name

serviceIn WSDL 2.0 the interface
is associated with the

service and only one
interface is allowed per
service.

-services *

1

-type 1

1 *

I

-interfaces *

1..*

*
1

*

*

*

Brown_book.indb 177Brown_book.indb 177 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 8 Naming Standards178

data types, which are designed to be shared, should be defined in
their own schema, one that has a definition that will be in its own XSD
file. The namespace for the common data model XSD should reflect
the intended scope of utilization of the contained data types (more on
this later).

Best Practice: Incorporate Schema Data Types,
Not Elements

Definitions that occur in an XML Schema Definition (XSD) are often incorporated
into other schema and WSDL definitions. Both WSDL and XSD standards pro-
vide two options for doing this. One is to incorporate a data type, in which case
the WSDL or XSD incorporating the type defines a local element of that type. The
other is to incorporate an element definition and use it as-is—including its name.
The best practice is to incorporate the data type.

The rationale behind this best practice is that the name of an element reflects the
role that the element plays in the context in which it is being used. The author of
the shared schema has no way of knowing how those definitions are going to be
employed and therefore may not be in a position to choose appropriate element
names. Furthermore, new usages may require new names.

Consider the concept of an address, a likely candidate for a shared schema defi-
nition. If the shared schema defines an Address data type, then it is easy for one
consuming data structure to define a homeAddress element and another to
define a workAddress element.

This approach is open ended: You do not need to know all of the usages ahead
of time to create the correct element names. You can later create other data struc-
tures that define a shippingAddress or billingAddress, or any other address role
you can imagine. The flexibility occurs because these roles are defined in the new
data structures—not the shared schema.

The alternative, creating the elements in the shared schema, not only requires
a change to the shared schema each time a new role is added (which requires a
new element with that role name), but these shared schema changes impact all
of the other consumers of the shared schema. For this reason, the best practice
is to incorporate data types, not elements.

Relating Abstract and WSDL-Defined Services

The correspondence between Erl’s abstract concepts and the WSDL
definitions is shown in Figure 8-3. The functional context corresponds
to a functional area that may contain many WSDL-defined service
interfaces. The subdivisions of the functional context, the abstract

Brown_book.indb 178Brown_book.indb 178 6/28/12 10:20 AM6/28/12 10:20 AM

Concepts 179

 Figure 8-3: Correspondence between Abstract Services and WSDL Definitions

-name : URI

WSDL namespace

-name

-address : URI

port (endpoint)

-name

portType (interface)

-soapAction : URI

[operation binding]

Functional Context

Interface Contract

-name

Functional Area

Abstract Service

-name

operation

-name

service

-name

binding

Capability

-name

message

In WSDL 2.0 the interface is
associated with the service and
only one interface is allowed
per service.

Best practice is to have
one service with one
interface per WSDL.

-services*

1 *

1

I

-interfaces *

*

1

*

*

*

1..*

*

1

*

-name

part

Brown_book.indb 179Brown_book.indb 179 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 8 Naming Standards180

service and capability, are largely implicit in the structure of the
WSDL namespace (this will be discussed in detail later). The interface
contract encompasses the interface definition but, as was discussed in
Chapter 6, there is a lot more to the contract than just the interface defi-
nition. The interface contract may encompass multiple WSDLs, partic-
ularly if the best practice recommendation (Chapter 7) of only having
one interface per WSDL is followed. In the ensuing discussion, unless
explicitly stated otherwise, the term service is a reference to the abstract ser-
vice concept, not the WSDL definition.

Why Are Names Important?

When you use a service, that service and its operations need to be read-
ily identifiable and distinguishable from other services and operations.
This is accomplished by giving a unique name to each abstract service
and, within the service, to each port type (interface) and operation of
that service. Unique names are also required for the messages, data
structures, and other artifacts used in the definition of the service inter-
face. When you use JMS destinations (queues and topics), it is also
important to distinguish them from other destinations. This gives you
the flexibility to move these destinations to other EMS servers.

There are two significant challenges that you will encounter when
creating names:

1. Ensuring that each name is reasonably descriptive

2. Ensuring that each name is unique

Naming standards establish how names are structured and organ-
ized and how (by whom) uniqueness is guaranteed, and thus deter-
mine how both challenges are addressed.

Names Are Difficult to Change

Unfortunately, once established, names tend to become deeply embed-
ded in service providers, service consumers, and the components that
mediate interactions between the two. Thus changing established
names is expensive—often prohibitively so. You are going to be stuck
with the names you choose for a long time, so it is worth an investment
of time in considering the standards that govern their structure.

Brown_book.indb 180Brown_book.indb 180 6/28/12 10:20 AM6/28/12 10:20 AM

Concepts 181

Name Structures Define Search Strategies

In SOA, the structure of a name not only identifies the item being named,
but often indicates how to find the item. When people are looking for an
artifact, they often begin with only a vague notion of what they are look-
ing for. While indexes and keyword associations can be of use, the struc-
ture of the name implicitly defines a search strategy for locating items.
Consider, for example, the Nouveau Health Care Payment Manager’s
Claim Payment Interface. Its WSDL might have the URL

http://insurance.nouveau.com/finance/paymentManager/
 claimPayment/wsdl/claimPayment.wsdl

This name not only uniquely identifies the WSDL file, it tells us
where to find it: Go to the machine designated by insurance.
 nouveau.com (at the default port 80), look in the finance/
paymentManager/claimPayment/wsdl directory, and obtain the
file ClaimPayment.wsdl.

Name Structures Define Routing Strategies

Although it is not formally a part of the web services paradigm, ports
(endpoints) often make use of names in directing service requests to the
actual service provider. The component (and often the machine) that
accepts service requests is often different than the component actually
servicing those requests. Appropriate naming can aid the receiving
component in routing requests to the provider.

For example, the port (endpoint) address (the address to which ser-
vice requests are directed) is designated by a URI, which is a form of
name. Consider the address of the claim payment interface for Nouveau
Health Care, given as

https://insurance.nouveau.com:443/finance/paymentManager/
 claimPayment

Also consider the address of the claim submission interface, given as

https://insurance.nouveau.com:443/claims/claimRouter/
 claimSubmission

The actual component to which both kinds of requests are directed is
designated by the first part of the address URI, namely the domain
name and port (not to be confused with the WSDL concept of port):

https://insurance.nouveau.com:443

Brown_book.indb 181Brown_book.indb 181 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 8 Naming Standards182

This indicates that requests are received on port 443 of the machine
designated by insurance.nouveau.com. From there, if the requests
are to be serviced by another component, they must be routed to the
actual service provider. The presence of the URI path structure in the
address below the Internet domain name and port number makes it
possible to route requests arriving at port 443 based on this path.
Alternately, this information can be ignored and all requests can be
routed to a common destination that provides support for all web ser-
vices sharing the domain name and port.

In contrast, both addresses could have been given as

https://insurance.nouveau.com:443

In this case, since the path is absent, there is no information that can be
used to route requests.

Using the structure of the address is, of course, not the only way to
route. Other information such as the soapAction, the structure of the
WSDL namespace URI, and the port/operation naming structure under-
neath it can also be used for routing. Regardless of which names are
being used, the structure of these names and the consistency with which
that structure is used can greatly simplify the routing of service requests.

What Needs a Name?

In an SOA environment there are many things that require names.
These include

• WSDL-related names:

 ° The WSDL itself (the name attribute in the top-level
 <definitions> tag).

 ° The WSDL filename.

 ° The targetNamespace defined by the WSDL (also in the top-
level <definitions> tag). This name is a URI, and is the logi-
cal prefix for the name of each entity defined in the WSDL.

 ° The entities defined by the WSDL: services, port types (inter-
face), operations, messages, bindings, and ports (endpoints).

 ° The soapAction.

 ° The schemaLocation of each imported XSD file.

 ° The address of each service port (endpoint).

Brown_book.indb 182Brown_book.indb 182 6/28/12 10:20 AM6/28/12 10:20 AM

Structured Name Design Principles 183

• Schema-related names:

 ° The XSD filename (if the schema is not embedded in a WSDL).

 ° The targetNamespace defined by the schema (either embed-
ded in the WSDL or a stand-alone XSD). This name is a URI and
is the logical prefix for the name of each entity defined in the
schema.

 ° The entities defined by the schema: types, elements, and
attributes.

 ° The schemaLocation of each imported XSD file.

• JMS-related names:

 ° Static destination (topic or queue) names

 ° EMS server names

• SCA-related names

 ° Composite names

 ° Component type names

 ° Service names

Some of these items are actual artifacts, such as files. Others are simply
logical names for definitions (port types, messages, elements, etc.) or
groups of definitions (namespace URIs). All of them will have to be
dealt with by the producers and consumers of services. These names,
and the standards for defining them, are the focus of this chapter.

Structured Name Design Principles

Use a General-to-Specific Structure

Structured names (think www.nouveau.com) are trees. The root of the
tree represents the entire tree. Each node below represents a subtree
rooted at that node. The root of the Internet (the parent of com) is not
explicitly named, but the next tier down in the Internet naming system
(referred to as top-level domains) consists of nodes such as .com, .net,
.org, and .edu. Within each of those domains there are subdomains
whose names are meaningful only in the context of the parent domain.
Thus for uniqueness you refer to nouveau.com rather than just
 nouveau (which has different meanings in .com, .net, .org, etc.).

Brown_book.indb 183Brown_book.indb 183 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 8 Naming Standards184

Because of the inherent tree structure, it is important that the logic
of the structure you define be organized around a true hierarchy. The
outline of such a hierarchy for services derives from the description of
a service presented in the concepts discussion earlier. From the abstract
concept discussion we have

<functionalContext><abstractService><abstractInterface>

This is a general-to-specific structure. A functional context may
contain more than one service, and each service can contain more than
one interface. Conversely, services are specific to a particular functional
context, and each interface is specific to a particular service.

Ideally, the actual hierarchy is represented by a uniform sequence
of fields in a left-to-right, most-general-to-most-specific fashion. This is
the pattern you see in the naming of Java classes:

com.nouveau.insurance.finance.paymentManager.claimPayment.
 payClaim

Here com.nouveau.insurance.finance represents the func-
tional context. The abstract service is the paymentManager. The
abstract interface is represented by claimPayment.payClaim, the
interface and operation used for paying a claim. Note that there is hier-
archical structure both within the functional context and within the
interface.

Unfortunately, many names in the SOA world are required to be
URIs or URLs. These include namespace names and WSDL/SOAP
address and soapAction fields. The structuring scheme for URIs
does not strictly adhere to a uniform principle. Each URI or URL actu-
ally contains two name hierarchies, each with different construction
rules. Consider the earlier example:

http://insurance.nouveau.com/finance/paymentManager/
 claimPayment/wsdl/claimPayment.wsdl

There are three parts to this string involving two different name
structures:

1. http://, the first part, represents a protocol to be used to access
the artifact. From a name structure perspective, we can ignore this.

2. insurance.nouveau.com, the second part, is an Internet domain
name that designates a machine on the Internet. In the Internet
domain name, hierarchy is read right to left.

Brown_book.indb 184Brown_book.indb 184 6/28/12 10:20 AM6/28/12 10:20 AM

Structured Name Design Principles 185

3. /finance/paymentManager/claimPayment/wsdl/
claimPayment.wsdl, the third part, is called the path. It repre-
sents a name hierarchy local to the machine designated by the
Internet domain name. The path name hierarchy is read left to right.

What makes the use of two different name hierarchies and their dif-
ferences in right-to-left and left-to-right reading unambiguous is the
use of two different field separators. The Internet domain namespace
fields are separated by a period (.), while the local namespace fields are
separated by a forward slash (/). The occurrence of the first slash to the
right of the Internet domain name is the clue that you have switched
naming hierarchies.

If you wanted to make this namespace uniform, reading entirely
left to right, you would have to switch the order of the Internet name-
space elements:

com.nouveau.insurance.finance.paymentManager.claimPayment.wsdl.
 claimPayment.wsdl

This is, of course, the kind of structure used for naming Java classes.

Best Practice: General-to-Specific Structure

When the structure of names is not already constrained, establish a uniform left-to-
right, general-to-specific hierarchical structure for names following the pattern

<functionalContext><abstractService><abstractInterface>

When the structure of names is partially constrained (e.g., URLs and URIs),
apply this principle to the lower-level structure of the names (i.e., the path in the
URL or URI).

Employ Hierarchical Naming Authorities

Names, to be useful, must be unique. Uniqueness requires that some
authority keep track of which names have been assigned so that newly
issued names can be assured to be different. Unfortunately, having a
single authority to keep track of all names is impractical, particularly
for names with global scope.

The systems that have evolved (in numerous places) to address this
issue involve the use of hierarchical authorities. This strategy involves
two elements. The first is a standardized syntactic structure for defin-
ing names as sequences of fields. The Internet domain name structure
(e.g., insurance.nouveau.com) is one example.

Brown_ch08.indd 185Brown_ch08.indd 185 6/28/12 10:38 AM6/28/12 10:38 AM

Chapter 8 Naming Standards186

The other element is a policy that establishes authorities for main-
taining the uniqueness of individual fields at different levels of the
hierarchy. For example, in the Internet domain name structure, the
authority for the top-level domain names (.com, .net, .org, etc.) is
ICANN (the Internet Corporation for Assigned Names and Numbers).
For each of the assigned top-level domain names, ICANN also identi-
fies an authority for maintaining the uniqueness of the next-level
names. For the generic top-level domains (.com, .net, .org, etc.)
ICANN itself is the naming authority. For sponsored top-level domains
(.edu, .gov, .mil) this authority has been delegated to other enti-
ties—one for each sponsored domain. For example, the .edu domain
is administered by EDUCAUSE, the .gov domain by the General
Services Administration of the US Government, and the .mil domain
by the US Department of Defense Network Information Center.

Each naming authority does two things:

• It directly manages the field level for which it is responsible.

• It establishes the policy for managing the lower-level fields.

It is in this latter point that the hierarchical authority gains its flexibil-
ity: A naming authority can delegate the responsibility for managing
subordinate namespaces. For our fictional domain, ICANN would not
only establish nouveau.com as a domain name, it would delegate the
authority for managing the lower levels of the hierarchy to Nouveau
Health Care Inc. Nouveau Health Care directly manages the next level
of names (such as www.nouveau.com and insurance.nouveau.
com) and (if desired) delegates the responsibility of managing the next
level of namespace.

This idea can, and should, be extended within the enterprise. Rather
than having a centralized authority for managing all names, the central
authority establishes a policy for the structure of names, directly man-
ages the top field(s) of this namespace, and delegates the authority for
managing the lower-level fields.

Best Practice: Hierarchical Naming Authorities

Do not fully centralize the management of names in the enterprise. Instead, set
up a central authority to (a) establish a generic structure for names, (b) assign the
values for the top-level branches of the namespace, and (c) designate appropri-
ate authorities to manage the lower-level structure of individual branches.

Brown_book.indb 186Brown_book.indb 186 6/28/12 10:20 AM6/28/12 10:20 AM

Structured Name Design Principles 187

Base Naming on Stable Concepts

Because of the difficulty in changing both the structure of names and
the individual names that have been chosen, it is prudent to base the
namespace structure and individual names on concepts that remain
stable over time, with the exception of enterprise identifiers.

Domain Concepts

The concepts that are most likely to remain stable over time are those
that generically occur in any discussion of the business. In a discussion
of the shipping industry, you would tend to use general terms like
package, shipment, track, rate, shipper, recipient, and location. In bank-
ing, you would use general terms like customer, account, deposit, with-
drawal, payment, and transaction.

What you want to avoid are terms that are likely to change over
time, particularly those with branded terminology. Thus you would
want to use the generic term “claim” instead of “expressClaim” or
“account” instead of “premierAccount.” In doing so, you hedge your
bets against mergers, acquisitions, and changes in marketing.

Business Processes

The same rule applies when naming operations associated with
business processes. You want to stick with generic names that will
remain stable over time. Thus the operation for tracking a claim is
called simply “track,” while the marketing-branded process may be
called “Nouveau Track.” An idealized (and somewhat simplified)
operation name for tracking a Nouveau Health Care claim might be
something like

com.nouveau.insurance.claims.claimTracker.claimTrack.trackClaim

Here the claimTracker service presents a claimTrack interface
with a trackClaim operation.

The Exception to the Rule: Enterprise Identifiers

Names, in the context of the world-wide web, must be unique. To guar-
antee the global uniqueness of names issued by your enterprise, you
need to qualify the name with something that identifies the enterprise
issuing the name. The most common approach is to base this on the
Internet domain name that has been assigned to your enterprise.

Brown_book.indb 187Brown_book.indb 187 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 8 Naming Standards188

This, of course, violates the notion of naming being based on stable
concepts—your enterprise could change its name at any time. Mergers
and acquisitions are constantly changing this landscape. Despite this
potential for change, the use of the enterprise name as a name prefix is
necessary. In the examples we have been using so far, ideally structured
names in Nouveau Health Care would be prefixed by com.nouveau.
Note that the order of the fields in this idealized name structure is
reversed from the Internet domain names.

The use of the name prefix not only guarantees the global uniqueness
of names, but also serves as a hedge against mergers and acquisitions.
Without introducing the enterprise-specific prefix, the IT consolidation
after a merger or acquisition is liable to create name conflicts. It is
likely that two health care insurance providers would both have names
like claimProcessing.claimSubmission.submitClaim. Adding
the prefix averts a conflict with these names as used by the different
companies.

Best Practice: Base Naming on Stable Concepts

Base the namespace structure and individual names on concepts that remain
stable over time, with the exception of enterprise identifiers.

Avoid Acronyms and Abbreviations

It is good practice to make the names in individual fields of the naming
structure as readable and obvious as possible. This argues against using
acronyms unless they are widely used across an entire industry and are
universally understood. Some common functional abbreviations that
might be considered acceptable (at least in English) include

• HR—Human Resources

• MKTG—Marketing

• MFG—Manufacturing

• FIN—Finance

Best Practice: Avoid Acronyms

Avoid using acronyms and abbreviations unless they are universally understood
across an industry.

Brown_book.indb 188Brown_book.indb 188 6/28/12 10:20 AM6/28/12 10:20 AM

Structured Name Design Principles 189

Distinguish Types from Instances

It is not unusual in a WSDL or schema to define a type and then use
that type to define an element. For example, you might define a data-
type to represent an account balance and then create an instance of that
type (an element) as a field in an account to show the current balance.
Even if the structure of the defining language allows the same name to
be used for both the type and the field name, doing so can be very con-
fusing to a human reader.

Consequently it is a good idea to adopt a standard way of distin-
guishing type names from instance names. Some examples of such con-
ventions include

• Using leading capitals to indicate types and leading lowercase to
indicate instances. Thus the type for the account balance would have
the name AccountBalance, and the instance field in the account
(the element name) would have the name accountBalance.

• Appending a distinguishing term to the end of the type name. Thus
the type for the account balance would have the name Account-
BalanceType, and the instance field in the account would have
the name accountBalance.

It is not unusual to combine the two strategies, as was done in the sec-
ond example. Note that it is likely that you already have similar stand-
ards in place for writing code. If so, you should examine those standards
to determine whether they are applicable here as well. If those stand-
ards are applicable, you should adopt the existing standard rather than
inventing a new one—this will avoid confusion when people are devel-
oping code that references WSDL and schema definitions.

Best Practice: Distinguish Types from Instances

Adopt a standard way of distinguishing type names from instance names.

Plan for Multi-Word Fields

It is often useful to be able to use more than one word when construct-
ing a name. This can be accommodated by adopting a convention for
capitalizing names that ensures that the resulting multi-word names

Brown_book.indb 189Brown_book.indb 189 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 8 Naming Standards190

are readily readable. Two common conventions that satisfy this crite-
rion are

• Non-leading capitals: Each word in a field other than the first begins
with a capital letter, such as ClaimService (for a type) or claim-
Service (for an instance). The leading capital should be deter-
mined by whether the field references a type or an instance (see
previous section).

• All letters are capitalized, and an underscore (_) or other separator
is used between words, for example, CLAIM_SERVICE. This con-
vention pretty much requires that an additional term be used to
distinguish types from instances (see previous section).

One convention to be avoided is the use of all capitals with no spe-
cial characters allowed (e.g., no underscores). Such a convention leads
to names like CLAIMSERVICE, which is not only hard to read but also
may lead to ambiguities.

Best Practice: Plan for Multi-Word Fields

Adopt a convention for capitalizing names that ensures that the resulting multi-
word names are readily readable.

Use a Distinct WSDL Namespace URI for Each Interface

To avoid naming conflicts among the messages, ports, and operations
of different interfaces, each interface should have its own namespace
URI. Equally important, using distinct namespace URIs makes it pos-
sible to independently version the interfaces. This will facilitate the
graceful evolution of interfaces in the environment.

Best Practice: Use a Unique WSDL Namespace URI for
Each Interface

Define each interface in a separate WSDL, and use a unique namespace URI for
each WSDL.

Brown_book.indb 190Brown_book.indb 190 6/28/12 10:20 AM6/28/12 10:20 AM

Applying Naming Principles 191

Incorporate Interface Major Version Numbers

In keeping with the versioning best practices outlined in Chapter 7,
wherever the interface name is incorporated into certain naming struc-
tures, the interface’s <major> version number should be appended to
the interface name in those structures. This affects the following items:

• WSDL namespace URLs

• Schema namespace URLs when the schema is dedicated to a spe-
cific WSDL (see the section, “Schema Types Specific to an Interface
and an Operation” later in this chapter)

• WSDL filenames (also include the interface’s <minor> version
number, as per versioning best practices)

• Schema filenames when the schema is dedicated to the specific
WSDL (also include the interface’s <minor> version number in the
filename, as per versioning best practices)

• SOAP addresses (endpoints)

• SOAP action names

For simplicity, the version numbers are omitted from the examples in
the following sections.

Applying Naming Principles

Idealized Name Structures

Given the structured name design principles laid out above, an ideal-
ized form of structure for naming service operations might have the
following structure:

<functionalContext><abstractService><interfaceName>
 <operationName>2

2. In a WSDL the scope of an operation name is the portType (WSDL 1.1) or interface
(WSDL 2.0).

Brown_book.indb 191Brown_book.indb 191 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 8 Naming Standards192

For the data types involved in defining the service, you might use one
or more of the following structures depending upon the intended scope
of utilization for the data type:

<functionalContext><abstractService><interfaceName>
 <operationName><datatypeName>
<functionalContext><abstractService><interfaceName>
 <datatypeName>
<functionalContext><abstractService><conceptPackage>
 <datatypeName>
<functionalContext><conceptPackage><datatypeName>

The <conceptPackage> is explained later in the section on
schema shared data types. Similar idealized structures would apply for
the messages, elements, and other artifacts involved in defining the
service.

Such idealized structures are rarely are seen in their entirety as sin-
gle strings, with the possible exception of fully qualified Java class
names. In most SOA applications, the name structure is fragmented in
two different ways:

1. The leading part of the complete name structure appears as the
namespace of the WSDL or schema, while the remainder of the
structure appears as the name of the artifact being defined within
the namespace.

2. Within the namespace URI of the WSDL or schema, part of the
name appears as an Internet domain name while the rest appears as
the path.

The following sections explore the practical use of these idealized
name structures and show how they can be used to guide and standard-
ize the definitions of names. These will be illustrated using the Nouveau
Health Care example. Each topic area will first present an idealized
name structure and then discuss its practical implementation.

Functional Context

A fact of life is that enterprises frequently acquire or merge with other
enterprises. To avoid name conflicts in the ensuing IT consolidation, it
is good practice to make the first field in the functional context be an
enterprise-specific qualifier, giving

<enterpriseID><functionalArea>

Brown_book.indb 192Brown_book.indb 192 6/28/12 10:20 AM6/28/12 10:20 AM

Applying Naming Principles 193

In practice, the enterpriseID is almost always defined using an
Internet domain name. For example,

nouveau.com

Most often the enterprise ID occurs in the context of a URL or URI
and has the form

http://nouveau.com

Many businesses have more than one line of business, with each
line of business essentially operating as a separate company (particu-
larly from an IT perspective). When this occurs, it is good practice to
include the line of business as part of the <functionalContext>.
This helps avoid name conflicts among similar functional areas (e.g.,
sales, human resources, finance) in the different lines of business of the
same company. The result is

<functionalContext> :== <enterpriseID><lineOfBusiness>
 <functionalArea>

Consider Nouveau Health Care and the possibility that it might
have two very different lines of business. One is an insurance provider,
and the other is an online pharmacy. The idealized enterprise identifi-
ers for Nouveau would then be

com.nouveau.insurance
com.nouveau.pharmacy

In transforming the idealized form into the form needed for a URL or
URI, you have two choices, depending upon whether or not you want
the line-of-business name to be part of the Internet domain name or the
path. If you want it to be part of the Internet domain name, you end
up with

http://insurance.nouveau.com
http://pharmacy.nouveau.com

If you want the line of business to be part of the path, you end up with

http://nouveau.com/insurance
http://nouveau.com/pharmacy

This, in practice, may not be an arbitrary choice: Making the line of
business part of the Internet domain name allows distinct machines to
be used as targets for the different lines of business; making the line of
business part of the path forces a single machine to be used as the entry

Brown_book.indb 193Brown_book.indb 193 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 8 Naming Standards194

point for both lines of business. There may be organizational and man-
agement issues involved. These are discussed later in this chapter in
the Complicating Realities section.

To deal with this type of situation, many enterprises employ net-
work appliances that can make seamless conversions between these
two formats. Although this adds flexibility, it requires network config-
uration—yet another administrative task.

Best Practice: Global Uniqueness

Include an enterprise-specific qualifier to the functional context. If the enterprise
has independent lines of business, include the line of business in the functional
context as well.

A Notational Convention for Internet Domain Names

This question of how much of the idealized name will become part of the Internet
domain name occurs so often that we will adopt a convention for indicating the
answer: The portion of the idealized structure that will become the Internet
domain name will be outlined with a border. Using this convention, the example
of the line-of-business name being part of the Internet domain name would be
idealized as

<enterpriseID><lineOfBusiness><functionalArea>

The example of the line-of-business name being part of the path would be ideal-
ized as

<enterpriseID><lineOfBusiness><functionalArea>

WSDL and XSD Namespace URIs

The idealized structure for a WSDL namespace URI has the form

<functionalContext><abstractService><abstractInterface>wsdl
 <wsdlName>

Expanding the functional context, we have

<enterpriseID><lineOfBusiness><functionalArea><abstractService>
 <abstractInterface>wsdl<wsdlName>

Brown_book.indb 194Brown_book.indb 194 6/28/12 10:20 AM6/28/12 10:20 AM

Applying Naming Principles 195

It is common practice to make the actual name structure a URI. For
the Payment Manager service’s Claim Payment interface WSDL and
including the major version number in the name, this gives

http://insurance.nouveau.com/finance/paymentManager/
 claimPayment/wsdl/claimPayment1

The idealized structure for a schema namespace URI has the form

<functionalContext><abstractService><abstractInterface>schema
 <schemaName>

Expanding the functional context, we have

<enterpriseID><lineOfBusiness><functionalArea><abstractService>
<abstractInterface>schema<schemaName>

It is common practice to make the actual name structure a URI. For the
Claim Payment schema associated with the Claim Payment WSDL and
including the schema major version number, this gives

http://insurance.nouveau.com/finance/paymentManager/
 claimPayment/schema/claimPayment1

Best Practice: WSDL and Schema Namespace URIs

Include the full functional context, abstract service name, abstract interface
name, and WSDL or schema name in the WSDL and schema namespace URIs.
Insert wsdl or schema prior to the WSDL or schema name to differentiate WSDL
and schema namespaces.

WSDL and XSD Filenames

It is a good practice is to use the WSDL or schema namespace structure
as the basis for defining the structure of the filename (i.e., the path to
the file). The idea is to make the fully qualified filename a URL (or at
least a URI). Making it a URL tells you where to locate the file. With this
approach, the idealized structure for a filename is

<enterpriseID><lineOfBusiness><functionalArea><abstractService
 <abstractInterface>wsdl<filename>
<enterpriseID><lineOfBusiness><functionalArea><abstractService
 <abstractInterface>schema<filename>

Brown_book.indb 195Brown_book.indb 195 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 8 Naming Standards196

In the implementation, there are a couple of options depending on how
the systems hosting the files are physically organized. One uses a sin-
gle machine as the access point for all files:

<enterpriseID><lineOfBusiness><functionalArea><abstractService>
 <interface><filename>

Preferable is an approach that uses a different machine per line of
business:

<enterpriseID><lineOfBusiness><functionalArea><abstractService>
 <interface><filename>

This yields the following type of URL:

http://insurance.nouveau.com/finance/paymentManager/
claimPayment/wsdl/ClaimPayment.wsdl

In some situations, the file will be present in a file system. In such cases,
the full structure of the name should be preserved in the folder hierar-
chy of the file system. For example, you might have

file://<rootPath>/com/nouveau/insurance/finance/paymentManager/
 claimPayment/wsdl/claimPayment.wsdl

This, however, can lead to deep folder structures in which there is only
a single folder in each of the upper-level folders. When converted to
Java class structures, it also leads to a Java class for each level. In such
cases, the upper part of the structure can be collapsed into a single
folder name:

file://<rootPath>/com.nouveau.insurance.finance/paymentManager/
 claimPayment/wsdl/claimPayment.wsdl

Best Practice: WSDL and Schema Filenames

Include the full functional context, abstract service name, interface name, and
wsdl or schema in the WSDL and schema filenames.

WSDL Names

To ensure the uniqueness of the WSDL name and to make it clear which
WSDL it is, it is a good practice to make the WSDL name the same as
the fully qualified filename, which should be a URI or URL.

http://insurance.nouveau.com/finance/paymentManager/
 claimPayment/wsdl/claimPayment.wsdl

Brown_book.indb 196Brown_book.indb 196 6/28/12 10:20 AM6/28/12 10:20 AM

Applying Naming Principles 197

Schema Locations

The schema location, by definition, is a URI and is ideally a URL. If the
above naming practice for schema filenames is followed, then the fully
qualified filename is the schema location.

http://insurance.nouveau.com/finance/paymentManager/
 claimPayment/schema/claimPayment.xsd

WSDL-Specific Schema Location

Each WSDL requires a schema that defines the types used in its mes-
sage definitions. The WSDL standard provides two options for supply-
ing the schema: importing a schema file or placing the schema
definitions in-line within the WSDL file. The latter approach is pre-
ferred. This is because an import statement in the WSDL requires
retrieving the file, which requires access to that file. In many environ-
ments, providing access to these files is impractical. For this reason it is
a best practice to place the WSDL schema definitions directly in the
WSDL file rather than using an import statement.

Best Practice: WSDL-Specific Schema Location

Place WSDL schema definitions in the WSDL file.

WSDL Message Names

When defining WSDL messages, there are two different namespaces
involved, one for the message itself and the other for the schema that
defines the element type used in the message. While technically the two
namespace URIs are allowed to be the same, it creates a very confusing
situation when looking at the WSDL. For this reason, it is good practice
to include WSDL or schema as the last field in the namespace URIs to
keep them distinct, which is the earlier-recommended best practice.

The messages themselves are defined within the WSDL name-
space. Typically each message is intended to play a particular role
with respect to a specific operation, so it is good practice to include the
 <operationName> as part of the message name. This gives you the
following idealized structure for the fully qualified message name:

<enterpriseID><lineOfBusiness><functionalArea><abstractService>
 <interfaceName><operationName><messageName>

Brown_book.indb 197Brown_book.indb 197 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 8 Naming Standards198

There is a wrinkle in turning this idealized structure. The name given
to the message in the WSDL file is defined directly in the context of
the WSDL namespace, not under the operation. Thus if two opera-
tions have the same message name (such as requestMessage or
 responseMessage), there will be a conflict. To avoid this, you simply
concatenate the operation name with the message name to give the
implementation, for example, PayClaimRequestMessage. For the
claim payment operation, this gives us the following message defini-
tions in the WSDL.

<message name = "PayClaimRequestMessage">
 <part name = "request" type = "ns:PayClaimRequest"/>
</message>
<message name = "PayClaimResponseMessage">
 <part name = "response" type = "ns:PayClaimResponse"/>
</message> <message name="processShipmentRequest">

Each message has parts, and each part has a name that is also defined
in the WSDL namespace. Since the scope of the part name is local to the
message definition, the actual name is not particularly important.

Each part requires a type definition. The type refers to a datatype
that is defined in the schema namespace referenced by the WSDL.

Port Type, Service, and Binding Names

An idealized structure for these names has the form

<functionalContext><abstractService><interfaceName>
 <portTypeName>
<functionalContext><abstractService><interfaceName>
 <serviceName>
<functionalContext><abstractService><interfaceName>
 <bindingName>

Note that, following the best practice recommendations, there is
some redundancy here. The best practice is to have a WSDL for each
interface and to include the interface name in the WSDL namespace
URI. The portType is actually the interface, so appending it to the
namespace name is redundant. However, since the portType is actu-
ally defined within this namespace, this is the structure you actually
get. A similar situation arises for the service and binding names.

Using the portType name as an example and expanding the func-
tional context, you have

<enterpriseID><lineOfBusiness><functionalArea><abstractService>
 <interfaceName><portTypeName>

Brown_book.indb 198Brown_book.indb 198 6/28/12 10:20 AM6/28/12 10:20 AM

Applying Naming Principles 199

In practice, this idealized structure never appears as a single string in
the WSDL. Instead, it is divided into two parts. The first part of the
structure is represented by the target namespace in the WSDL. By the
best practice recommendation, this includes everything up to and
including the interface name.

The second part is the portType name, which is declared within
the scope of the namespace. The names of the service and binding
are similarly declared within the namespace. Here are some example
fragments from the claimPayment.wsdl file:

<definitions
 xmlns:tns=http://insurance.nouveau.com/finance/
 paymentManager/claimPayment/wsdl/claimPayment1
 targetNamespace="http://insurance.nouveau.com/finance/
 paymentManager/claimPayment/wsdl/claimPayment1
 xmlns:ns="http://insurance.nouveau.com/finance/
 paymentManager/claimPayment/schema/claimPayment1">
…
 <portType name="ClaimPayment">
 <operation name="payClaim">
 <input message="tns:PayClaimRequestMessage"
 name="input"/>
 <output message="tns:PayClaimResponseMessage"
 name="output"/>
 </operation>
 …
 </portType>

 <service name="ClaimPaymentService">
 <port name="ClaimPaymentPort"
 binding="tns:ClaimPaymentPortBinding">
 <soap:address location="http://insurance.nouveau.com:5555/
 com.nouveau.insurance.finance.paymentManager.
 claimPayment.endpoint1"/>
 </port>
 </service>
 <binding name="ClaimPaymentPortBinding" type="tns:ClaimPayment">
 <soap:binding style="document" transport="http://
 schemas.xmlsoap.org/soap/http"/>
 <operation name="payClaim">
 <soap:operation style="document" soapAction="/
 com.nouveau.insurance.finance.paymentManager.
 claimPayment1.payClaim"/>
 <input>
 <soap:body use="literal" parts="request"/>
 </input>
 <output>

Brown_book.indb 199Brown_book.indb 199 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 8 Naming Standards200

 <soap:body use="literal" parts="response"/>
 </output>
 </operation>
 </binding>
</definitions>

There is a nuance here worth pointing out: portTypes are not directly
associated with services. Instead, a declaration known as a binding pro-
vides details of the portType’s implementation, and then that binding is
used in defining a port (an actual interface instance or endpoint) on the
service. The port has its own name. For clarity, it is good practice to
choose names for ports and portTypes that distinguish between the two.

Operation Names

An idealized structure for operation names has the form

<functionalContext><abstractService><interfaceName>
 <operationName>

Expanding the functional context, you have

<enterpriseID><lineOfBusiness><functionalArea><abstractService>
 <interfaceName><operationName>

In practice, this idealized structure never appears as a single string in
the WSDL. Instead, it is divided into two parts. The first part of the
structure is represented by the target namespace in the WSDL. By the
best practice recommendation, this includes everything up to and
including the interface name. The second part is the operation name,
which is declared within the scope of the portType (interface).

SOAP Address Location

The SOAP address location is a URI that indicates the connection
point (physical destination) to which operation requests are directed.
Depending upon the policy you choose for separating the traffic
directed to different services, you should use one of the following
idealized structures for this URI:

<enterpriseID><lineOfBusiness><functionalArea>
<enterpriseID><lineOfBusiness><functionalArea><abstractService>
<enterpriseID><lineOfBusiness><functionalArea><abstractService>
 <interfaceName>

The choice between these is not arbitrary. If the first form is used, all
requests for a given functional area will be sent to the same location.

Brown_book.indb 200Brown_book.indb 200 6/28/12 10:20 AM6/28/12 10:20 AM

Applying Naming Principles 201

The second form offers at least the possibility that requests for different
services may be directed to different components, and the third can
distinguish based on the interface.

This difference may have significant performance implications for
the subsequent implementation, particularly if one interface provides
real-time operations involving small data structures and quick response
while another provides batch operations involving huge data struc-
tures and asynchronous responses. Performance considerations drive
you toward separating this traffic, but separation requires sufficient
information in the location.

Another consideration is that, for many implementation technolo-
gies, the use of a detailed path allows the convenient routing of requests
for different services and interfaces.

WSDL 2.0 allows multiple endpoints for an interface, giving yet
another possibility:

<enterpriseID><lineOfBusiness><functionalArea><abstractService>
 <interfaceName><endpointName>

It is generally a good idea to include too much rather than too little
information in the location. It is relatively easy to ignore the lower-level
details, but you cannot synthesize information that is not present.

For JMS bindings, the idealized structure translates in a very
straightforward way into JMS destination names:

enterpriseID.lineOfBusiness.functionalArea
enterpriseID.lineOfBusiness.functionalArea.serviceName
enterpriseID.lineOfBusiness.functionalArea.serviceName.
 interfaceName
enterpriseID.lineOfBusiness.functionalArea.serviceName.
 interfaceName.endpointName3

With HTTP bindings a further implementation consideration, relevant
to locations, is the choice of a socket number. The structure of a URL is
determined by the transport that has been selected. For http (and https)
transports, the syntax is

http://<hostIdentifier>:<socketNumber>/<path>

This raises the question as to which parts of the idealized namespace
should map to the <hostIdentifier> and which parts should map

3. A fully qualified destination name provides maximum flexibility in assigning desti-
nations to JMS servers.

Brown_book.indb 201Brown_book.indb 201 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 8 Naming Standards202

to the <path>. Answering this question requires the recognition that
the combination <hostIdentifier>:<portNumber> denotes a
physical destination, while the <path> is used logically at that destina-
tion to further distinguish between requests. There are architectural
trade-offs involved in this decision, with considerations that go beyond
the scope of this book (e.g., how many sockets should there be versus
what load can each socket reasonably handle).

For the purposes of the discussion here, consider the socket-
Number to be part of the Internet domain name. Assuming you want
to include the structural detail down to the interface level, this gives
you the following possibilities for the idealized structure of the loca-
tion URL:

<enterpriseID><lineOfBusiness><functionalArea><abstractService>
 <interfaceName>
<enterpriseID><lineOfBusiness><functionalArea><abstractService>
 <interfaceName>
<enterpriseID><lineOfBusiness><functionalArea><abstractService>
 <interfaceName>
<enterpriseID><lineOfBusiness><functionalArea><abstractService>
 <interfaceName>
<enterpriseID><lineOfBusiness><functionalArea><abstractService>
 <interfaceName>

The first indicates that a single socket will handle all of the service
requests for the entire enterprise. This requires centralized manage-
ment of the port and a common technology touch point for all services.
Generally, the technology employed here uses the <path> to redirect
different requests to different sockets. The second results in a single
socket for each line of business, which again may employ technology to
redirect requests to different sockets. The third and fourth choices gen-
erally reflect the actual structure of the implementations to which
requests of the first or second type are redirected. If you have multiple
endpoints per interface, you will need to append an <endpoint> field
to each of these possibilities.

Best Practice: Location Names

Include the full functional context, abstract service, and interface in the location
name.

Brown_book.indb 202Brown_book.indb 202 6/28/12 10:20 AM6/28/12 10:20 AM

Applying Naming Principles 203

soapAction Names

The soapAction name is nearly identical to the fully qualified opera-
tion name as described earlier, with the major version number appended
to the interface name. An idealized structure for soapAction names
has the form

<functionalContext><abstractService><interfaceName+major>
 <operationName>

Expanding the functional context, you have:

<enterpriseID><lineOfBusiness><functionalArea><abstractService>
 <interfaceName+major><operationName>

This approach provides the maximum flexibility in defining endpoints.
Using this approach, all requests for all operations could be sent to a sin-
gle endpoint (location) without ambiguity: The soapAction uniquely
identifies the required operation.

Best Practice: SOAP Action Names

The SOAP action name should be the fully qualified operation name with the
major version number appended to the interface name.

Schema Types Specific to an Interface and an Operation

As mentioned in the previous section, schema types are often created
that are dedicated to a single operation. The ideal structure for an
operation-specific message type name would be

<enterpriseID><lineOfBusiness><functionalArea><abstractService>
 <interfaceName><operationName><typeName>

This leads to idealized names like

com.nouveau.insurance.finance.paymentManager.claimPayment.
 payClaim.Request
com.nouveau.insurance.finance.paymentManager.claimPayment.
 payClaim.Response

In reducing this idealized structure to an implementation you encoun-
ter a limitation of the schema definition language: It does not support
hierarchical names within the namespace. Specifically, the Request
and Response cannot be scoped within the payClaim operation

Brown_book.indb 203Brown_book.indb 203 6/28/12 10:20 AM6/28/12 10:20 AM

Chapter 8 Naming Standards204

name—they have to be declared directly within the namespace. Thus if
other operations have Request and Response data types (as they likely
would), then you’ll have a name conflict. The solution to this problem is
to concatenate the operation name and the ideal message name, giving
type names like PayClaimRequest and PayClaimResponse.

These definitions would occur (following the earlier recommended
best practice) within the schema namespace:

http://insurace.nouveau.com/finance/paymentManager/
 claimPaymentInterface/schema/claimPaymentInterface1

Schema Shared Data Types (Common Data Model Types)

Even though the types that represent entire messages are often special-
ized for the operations they support, the subordinate data types that
they reference many times can be shared between messages. If these
shared data types are specific to the interface, then they can remain in
the interface’s namespace. But if they are of more general intent, they
belong in namespaces of their own.

You might, for example, want to define the standard representation
for an address as shown in Figure 8-4. You might want to standardize
the use of this data type across all of Nouveau Health Care. To do so,
you use the namespace in which the type is defined to indicate the
intended scope of utilization.

Types like Address Type often have other closely-related types, such
as the ISO Country Code. To keep related concepts grouped together yet
separated from other concepts, it is a good practice to define a name-
space for the concept and its related elements, which shall be termed a

 Figure 8-4: Address Type

package Address: Namespaces [Version 1.0]

namespace: http://nouveau.com/address/schema/address1

-addressLine1 : String

-addressLine2 : String

-city : String

-state : String

-postalCode : String

-countryCode : ISO Country Code

Address

«enumeration»

ISO Country Code

Brown_book.indb 204Brown_book.indb 204 6/28/12 10:21 AM6/28/12 10:21 AM

Complicating Realities 205

concept package. In this example, the concept package is named Address
and, in keeping with the versioning best practices, has the version major
number appended.

The portion of the namespace that precedes the package name is
determined by the intended scope of utilization. This gives the follow-
ing possibilities for the fully qualified type name:

<enterpriseID><conceptPackage>schema<schemaName>
<enterpriseID><lineOfBusiness><conceptPackage>
 schema<schemaName>
<enterpriseID><lineOfBusiness><functionalArea><conceptPackage>
 schema<schemaName>
<enterpriseID><lineOfBusiness><functionalArea><abstractService>
 <conceptPackage>schema<schemaName>
<enterpriseID><lineOfBusiness><functionalArea><abstractService>
 <abstractInterfaceName><conceptPackage>schema<schemaName>

Schema names should be versioned in the same manner as inter-
faces, with <major> and <minor> version numbers. Wherever the
 <schemaName> name appears in a name structure, its major version
should be appended. This includes the namespace URI for the schema
and the XSD filename. Note that the XSD filename also includes the
minor version number.

 Complicating Realities

Technology Constraints

Reality often constrains the ideal approach. This is particularly true
with names. Ideally, names have no restrictions with respect to either
the number of fields or the length of any individual field. Unfortunately,
this does not hold true in practice. The various technologies being
employed have both theoretical restrictions and practical limitations.

Internet domain names limit the number of fields in a name to 127
and allow each field to contain up to 63 octets (bytes). The whole
domain name (including “.” separators) is limited to 253 octets. In prac-
tice, some domain registries may have shorter limits.

The JMS standard places no limitations on names, but vendor
implementations often do. For example, Enterprise Messages Service
 destinations can have up to 64 fields. Individual fields cannot exceed
127 characters. Destination names are limited to a total length of 249
characters.

Brown_book.indb 205Brown_book.indb 205 6/28/12 10:21 AM6/28/12 10:21 AM

Chapter 8 Naming Standards206

Whatever naming standards are established, they must obviously
take into consideration the constraints of the chosen supporting
technologies.

There is a practical limitation to consider as well. By default, every
byte (octet) of every name must be transmitted with every message.
Thus it is a good practice to avoid excessive length in names, while at
the same time preserving the readability of the name.

Naming Authorities

Every position in a naming hierarchy requires an authority for its
administration. As discussed earlier, each naming authority (a) directly
manages the field level for which it is responsible, and (b) establishes
the policy for managing the lower-level fields.

The ability to delegate the management of the lower-level struc-
tures is part of the power of hierarchical name structures. At the enter-
prise level, the authority must

• Assign names to represent each of the lines of business.

• Identify who in each line of business will manage the lower-level
structures below the line-of-business field.

• Assign names to represent each enterprise-level service.

• Identify who will manage the lower-level structure for each enter-
prise service.

• Assign names to represent each enterprise-level concept package

• Identify who will manage the lower-level structure for each enter-
prise concept package.

Within each line of business, the responsibilities are similar: assigning
names for line-of-business services, functional areas, and concept
packages, and identifying who will manage the lower-level structures
for each.

Complex Organizational Structures

Functional Organizations

If a line-of-business organization is functionally complete (i.e., horizon-
tally integrated), then all of the services and concepts required to oper-
ate the line of business are part of that organization. The naming
structure we have been discussing reflects the line-of-business’s singu-

Brown_book.indb 206Brown_book.indb 206 6/28/12 10:21 AM6/28/12 10:21 AM

Complicating Realities 207

lar line of authority over all the services and concepts relevant to the
organization.

Many organizations, however, are structured functionally rather
than by line of business. An organization might have functional groups
for marketing, sales, logistics, finance, engineering, manufacturing,
and so forth. If such an organization provides capabilities uniformly
across multiple lines of business, the top-level structure may be more
appropriately based on function rather than line of business:

<enterpriseID><functionalArea>

Mixed Functional and Line-of-Business Organizations

Some organizations combine these two approaches. A line-of-business
organization may well have a functional substructure under each line
of business. In such cases, the structure of the functional context must
be expanded. This gives a functional context of

<enterpriseID><lineOfBusiness><functionalArea>

Less frequently it may be appropriate to reverse the hierarchy:

<enterpriseID><functionalArea><lineOfBusiness>

The challenge here is that there are, in reality, two hierarchies: the func-
tional hierarchy and the line-of-business hierarchy. Yet the representa-
tional technologies (WSDL and schema) only allow for one hierarchy,
so the two must be combined into a single functional context. This
forces one to be somewhat arbitrarily chosen to dominate the other.

Regardless of how the hierarchies are combined, some caution is in
order: Enterprises tend to reorganize. Since you are going to be living
with the namespace structure even after the reorganization, it is impor-
tant to choose a structure and names for both functions and lines of
business that will remain stable over time. Bear in mind that a single
organization may actually serve more than one functional purpose
(e.g., sales and marketing could be in one parent organization) or serve
more than one line-of-business purpose (e.g., a division that handles
multiple lines of business). In such cases, each individual purpose
should have a distinct name in the namespace. This makes the name-
space structure relatively stable with respect to reorganization.

Geographic Distribution

Another challenge you are liable to encounter is geographic distribu-
tion. This is particularly true for multinational enterprises, where the

Brown_book.indb 207Brown_book.indb 207 6/28/12 10:21 AM6/28/12 10:21 AM

Chapter 8 Naming Standards208

operations in different countries or regions tend to be conducted by
legally distinct entities. This adds yet a third hierarchy to the ways that
the enterprise can be viewed (Figure 8-5).

The presence of yet a third hierarchy further complicates the func-
tional context. One possible structure that could emerge is

<enterpriseID><geographicRegion><lineOfBusiness><functionalArea>

This is but one of six possible combinations, and that does not even
count the possibilities of leaving one or more of these hierarchies out of
the structure entirely. Altogether, there are 15 possibilities. So how do
you select the one for your enterprise?

There are two factors that should drive your thinking. The first one
focuses on organizational realities. In this you need to consider the
following:

• What does the current organizational structure look like (i.e., what
is the actual organizational hierarchy today)?

• What are the realistic prospects for cooperation between
organizations?

• Is there a place in the parent organization for a working group to
manage namespaces that cross organizational boundaries?

• Is there sufficient authority for such a working group to effectively
manage such a namespace (i.e., will the other organizations listen)?

 Figure 8-5: Multiple Hierarchies in the Enterprise

pakage Hierarchies [Multiple Hierachies]

GeographicRegion

Global Enterprise

LineOfBusinessFunction

-lineOfBusiness *-regions *

-subRegions

*

-subLinesOfBusiness

*

-subFunctions

*

-functions *

Brown_book.indb 208Brown_book.indb 208 6/28/12 10:21 AM6/28/12 10:21 AM

Complicating Realities 209

If the prospects look dim for cooperation between organizational units,
then you have little choice other than to adopt a namespace structure
that treats the organizations as being independent (see naming authori-
ties earlier).

The other factor to consider is the intended future direction for the
enterprise in terms of sharing data, resources, services, and business
processes across the organization. If there is an effort underway to
increase sharing (which presupposes that there is a reasonable pros-
pect for cooperation between organizations), then the hierarchy you
choose should be one that makes the most sense with respect to the
chosen direction.

Environments: Values for Address Location Variables

Each service will, in its lifetime, exist in a number of environments,
ranging from development through several test environments and,
finally, one or more production environments. Thus it becomes neces-
sary to distinguish among the different instances of the service when
accessing the service.

The logical place to make this distinction would be in the address
location in the WSDL. Unfortunately, the structure of the WSDL does
not make provisions for designating different addresses for different
environments. Even worse, changing the WSDL to indicate the differ-
ent environment requires changes to both the consumer and the pro-
vider. From a change management and versioning perspective, since
the WSDL is the service interface definition, edits to the WSDL could
potentially change anything. Therefore, editing the WSDL invalidates
whatever testing has been performed and thus defeats the purpose of
the WSDL as a specification.

To work around this limitation, most service consumer and service
provider implementation technologies allow the address (endpoint) to
be provided by a variable whose value is set at deployment time. With
this approach, environments must be distinguished within the values
provided for the address. These addresses (the provided values) need
to be distinct from one another while remaining descriptive of their
purpose so that they can be accurately and appropriately set at deploy-
ment time.

Referring back to the earlier discussion of addresses, a portion of
the idealized address structure maps to the hostIdentifier. This is
the level at which development, test, and production environments
should be distinguished from one another. Using the scheme described

Brown_book.indb 209Brown_book.indb 209 6/28/12 10:21 AM6/28/12 10:21 AM

Chapter 8 Naming Standards210

earlier, you have the following possibilities (the portions in the box cor-
respond to the host identifier):

<enterpriseID><environment><lineOfBusiness><functionalArea>
 <abstractService><interface>
<enterpriseID><lineOfBusiness><environment><functionalArea>
 <abstractService><interface>
<enterpriseID><lineOfBusiness><abstractService><environment>
 <functionalArea><interface>
<enterpriseID><lineOfBusiness><abstractService><functionalArea>
 <interface><environment>
<enterpriseID><lineOfBusiness><abstractService><functionalArea>
 <interface><environment>

For HTTP bindings, manifestation of the <environment> can take one
of two forms: It can be the hostIdentifier itself or the socket on the
host. It is generally not a good practice to use the same hostIdentifier
and socket for multiple environments. It is generally not a good practice to
share a hostIdentifier between a production environment and any other
environment.

For JMS bindings, the manifestation of the <environment> can
also take one of two forms: It can be the hostIdentifier and socket
for the JMS server itself or it can be included directly in the queue name.
It is generally not a good practice to share a JMS server between a production
environment and any other environment.

Deployment Flexibility for HA and DR

An address (at least in the http[s] type of addressing) identifies a spe-
cific machine to which requests are to be sent. Should this machine
move (for fault tolerance, site disaster recovery, or simply administra-
tive convenience), all the interfaces accessed through that machine
would become unavailable. One way around this is to use virtual IP
addresses or hostnames, allowing the networking infrastructure to
reroute requests to another machine. Another approach is to make the
address actually an http query with a response that is the real address.
Amazon e-commerce web services, for example, use this approach:

<soap:address location="https://ecs.amazonaws.com/onca/
 soap?Service=AWSECommerceService"/>

Abstracting the logical structure here, the <hostIdentifier>/<path>
part of the location actually identifies the server to which the query is
being submitted, while the value of the Service parameter indicates

Brown_book.indb 210Brown_book.indb 210 6/28/12 10:21 AM6/28/12 10:21 AM

Developing Your Standard 211

the desired service. This approach facilitates the flexible rehosting of
the actual service providers over time.

For greatest flexibility, it is recommended that the full path name of
the interface be used as the argument for this type of query. Thus if one
query service is being used to support the entire enterprise, the value
for the query would have the structure

<lineOfBusiness><abstractService><interfaceName>

If the query service supports just a line of business, then the query
value would be

<abstractService><interfaceName>

It is not good practice to use the same query service for different environments.
SOAP over JMS utilizes JNDI lookups in a similar manner. The

same considerations apply.

Developing Your Standard

To begin with, you need to identify the organization that will have
overall responsibility for the naming standards in your enterprise. If
you are in the early stages of adopting SOA, you may not be in a posi-
tion to mandate that a particular naming structure be followed.
Nevertheless, there is no reason that you cannot adopt a structure that
can be appropriately generalized to meet the needs of the larger enter-
prise as outlined in this chapter.

The enterprise-level authority has several responsibilities. One is to
define an overall strategy for

• WSDL and schema namespace URIs, including versioning

• Location names, including:

 ° Versioning

 ° Directing requests to the appropriate environment

 ° Using indirection (http query or JNDI lookup) for addresses

Another responsibility is to identify which organizations will be
responsible for managing the lower levels of the naming structure. If the
enterprise is large, this will likely mean identifying an organization in
each line of business that is responsible for names used in that line of
business. Each of those organizations, in turn, will have to determine

Brown_book.indb 211Brown_book.indb 211 6/28/12 10:21 AM6/28/12 10:21 AM

Chapter 8 Naming Standards212

how much of the naming structure it will directly manage and how much
management responsibility it will delegate to other organizations.

Summary

In the complex world of IT, how things are named has a significant
influence on the usability of components when building solutions.
Clear, descriptive names make it possible for you to identify things
without having to look them up. The structure of the name also helps
to avoid ambiguity and name conflicts.

There are a number of general principles that should guide the cre-
ation of names. Names should have a hierarchical structure. That hier-
archical structure should follow a general-to-specific organization. The
names chosen should remain stable over time. With the exception of
enterprise identifiers, the names used to identify organizations and
systems should be avoided and generic names used instead. The use of
acronyms should be avoided unless they are universally understood.
Type and instance names should be clearly distinguishable. Conventions
should be adopted to ensure that multi-word fields are easily readable.
For ease in managing versions, each interface should have its own
WSDL with its own namespace.

A good idealized name structure has the form

<functionalContext><abstractService><abstractInterface>

The functional context commonly expands as follows, with the pres-
ence of the <enterpriseID> avoiding naming conflicts in the event
of mergers and acquisitions:

<functionalContext> :== <enterpriseID><lineOfBusiness>
 <functionalArea>

The <abstractService> may encompass multiple interfaces, each
with its own WSDL. For service operations, the <abstractInterface>
commonly expands to

<abstractInterface> :== <interfaceName><operationName>

Ideally, WSDL namespaces, WSDL filenames, and SOAP addresses
(endpoints) should have the idealized form

<enterpriseID><lineOfBusiness><functionalArea><abstractService>
 <interfaceName>

Brown_book.indb 212Brown_book.indb 212 6/28/12 10:21 AM6/28/12 10:21 AM

Summary 213

SOAP action names should have this form with the operation name
appended at the end. Schema namespaces and filenames should use
the portion of this structure that describes the intended scope of utiliza-
tion of the schema.

Technology constraints on the length of individual fields and the
overall length of identifiers must be taken into consideration when
defining names. The enterprise should establish a policy defining the
hierarchical structure of names to be used and identifying the organiza-
tion responsible for establishing the values of the top-level fields and
the organizations responsible for ensuring the uniqueness of subordi-
nate field values.

Brown_book.indb 213Brown_book.indb 213 6/28/12 10:21 AM6/28/12 10:21 AM

Brown_book.indb 214Brown_book.indb 214 6/28/12 10:21 AM6/28/12 10:21 AM

453

Index

A
Abbreviations, avoiding in naming structure,

188
Abstract architecture pattern

overview of, 8
reference architectures as, 13
showing dependencies with, 112

Abstract definitions, WSDL, 176–177
Abstract, service

overview of, 122–123
service specification contents, 124
service specification documentation, 420
service specification example, 128

Abstract services, 174–175, 178–180
Accept Queue Size parameter, HTTP

Connector, 345
Acceptor threads, HTTP Connector, 345–347
Access control, service federation, 402–403,

405–406
Access points, 143, 405–406
Access rate, benchmark results, 332–334
Accounts and fund transfers, Payment

Manager, 77–81
Acknowledge Mode parameter, JMS process

starters, 360–361
Acronyms, avoiding in naming structure, 188
Actions, Hawk rules, 51–52
Actions, UML activity diagrams, 437–439
Activation Limit tuning parameter, Active-

Matrix BusinessWorks, 367–368
ActiveMatrix BusinessWorks. See TIBCO

ActiveMatrix BusinessWorks™

ActiveMatrix deployment options, 31–33
ActiveMatrix Adapters. See TIBCO ActiveMa-

trix® Adapters
ActiveMatrix Administrator. See TIBCO

ActiveMatrix® Administrator
ActiveMatrix composite implementation,

307–308
ActiveMatrix® Decisions. See TIBCO

ActiveMatrix® Decisions
ActiveMatrix Service Bus failover, 390–391

ActiveMatrix Lifecycle Governance Frame-
work. See TIBCO ActiveMatrix®
Lifecycle Governance Framework

ActiveMatrix Product Portfolio. See TIBCO
ActiveMatrix® Product Portfolio

ActiveMatrix Service Bus. See TIBCO
ActiveMatrix® Service Bus

ActiveMatrix Service Grid. See TIBCO
ActiveMatrix® Service Grid

Activity diagrams, UML
documenting process-pattern mapping, 7
documenting triggered behaviors, 113
notation reference for, 437–440

Adapters. See also TIBCO ActiveMatrix®
Adapters

external access interaction via, 38–39
Hawk, 53–54, 56
single-threaded solutions with, 276
TIBCO Adapter for Files, 62–63
TIBCO Adapter for IBM i, 61–62

Address location
SOAP, 200–202
values for variables in, 209–210
versioning SOAP endpoints, 168

Address schema, WSDL Sales Order example,
444–445

AeRvMsg format, BusinessConnect, 64
Aggregation, UML Class Diagram notation,

430–431
Alerts, Hawk Event Service, 55
AMI (Application Microagent Interface)

interfaces, Hawk Agent, 56
Appendices

service specification documentation, 423
solution architecture documentation, 417

Applications, composite, 304
Architecting BPM Solutions with TIBCO®

(forthcoming, TIBCO Press and
Addison-Wesley), 426

Architecting Complex Event Processing Solutions
with TIBCO® (forthcoming, TIBCO
Press and Addison-Wesley), 425

Brown_book.indb 453Brown_book.indb 453 6/28/12 10:21 AM6/28/12 10:21 AM

Index454

Architecture fundamentals, TIBCO
ActiveMatrix Adapters, 30–31
ActiveMatrix BusinessWorks, 28–30
ActiveMatrix deployment options, 31–33
ActiveMatrix Product Portfolio, 27
ActiveMatrix Service Bus, 27–28
ActiveMatrix Service Bus policies, 44–45
ActiveMatrix Service Grid, 28–29
design patterns, 33–44
Enterprise Message Service (EMS)

product, 26
overview of, 25
summary review, 46

Architecture pattern
as architecture view, 6
in composite service architecture, 20–21
documenting service, 145–146
documenting test harness, 317–319
hierarchy of architecture and, 7–11
Nouveau Health Care case study, 70
In-Only, 33–34, 102–104
Out-In, 34
Out-Only, 34
process-pattern mapping executing, 6–7
service utilization, 18
showing dependencies with abstracted,

112
solution architecture, 14–16
solution architecture documentation of,

411
used in this book. See Design patterns,

used in this book
for versioning, 165–167

Architectures
component life cycle and, 22–23
composite service, 20–22
design pattern, 13
hierarchy of, 7–11
making distinctions in, 11–12
service, 17
service utilization contract and, 22
service utilization pattern, 17–19
solution, 14–16
summary review, 23–24
views, 4–7

Artifacts, UML activity diagrams, 437
Associations

designing XML schema by identifying,
228–229

representing in data models, 226–227
UML Class Diagram notation for, 429–430

Asynchronous coordination patterns, 261–262
Asynchronous events, choreography with,

298–299
Asynchronous JMS request-reply interac-

tions, 257–261

Asynchronous request-reply coordination
pattern, 40–41, 268

Asynchronous storage replication strategies,
site failover, 377–378

Augmentation and content transformation
mediation pattern, 36–37

Autostart Core Threads parameter, named
thread pools, 344

Availability. See also FT and HA (fault
tolerance and high availability)

defined, 372
service usage contract specifying, 144
solution architecture documentation, 412

B
B2B (business-to-business) protocols,

BusinessConnect, 63–64
Back-end systems

accessing, 243–244
solution architecture decisions, 240–243

Backwards compatible changes
architecture pattern for, 165–166
defined, 152
OSGi version numbering scheme for,

153–154
versioning SOAP interface addresses and,

168
to WSDL and XML schema, 160–163

Basic federation pattern, 403–405
Basic interaction design patterns, 33–34
Bathtub (or fire hose) test, benchmark results,

314–315
Behaviors. See also Observable dependencies

and behaviors
composite, 293–294
defining component, 95–96
documenting nonfunctional, 116–117, 127,

140
documenting service architecture,

145–149
managing composite, 296–298
observable. See Observable dependencies

and behaviors
solution architecture documentation,

416–417
triggered. See Triggered behaviors

Benchmarking
of complex components, 324–327
determining operating capacity in,

316–317
identifying capacity limit, 327–328
identifying CPU utilization limits,

328–329
identifying disk performance limits,

331–334
identifying memory limits, 335–336

Brown_book.indb 454Brown_book.indb 454 6/28/12 10:21 AM6/28/12 10:21 AM

Index 455

identifying network bandwidth limits,
329–331

identifying test harness limits, 336
misleading results of, 314–316
objectives, 313
summary review, 338–339
using results of, 326–327

Benchmarking, documenting test design
experimental parameters, 321–322
overview of, 317
test harness architecture pattern, 317–318
test harness process mapping, 318–321
test results, 322–324

Benefits Service, Nouveau Health Care case
study, 80–81

Binding names, WSDL, 198–200
Black box perspective

composites not suitable for, 117–118
of observable dependencies and behav-

iors, 96–97
BPMN diagrams, 7
Brackets, OSGi versioning ranges, 155
Bug fixes, 154–156
Building-block design patterns

asynchronous JMS request-reply
interactions of, 257–261

business exceptions, 252–257
for dual coordination patterns, 261–262
objectives, 239
rule service governing process flow,

244–250
rule services and data, 250–252
separating interface and business logic,

240–243
solution architecture decisions, 240
summary review, 262–264
using services for back-end systems,

243–244
Business logic, solution architecture

decisions, 240–243
Business processes

managing, 425–426
managing with rule service. See Rule

service, process flow
naming based on stable concepts for, 187
Nouveau Health Care case study, 68–69
Sales Order Service in Order-to-Delivery.

See Sales Order Service example
solution architecture, 14–16
solution architecture documentation,

409–414
Business requirements, nonfunctional

behavior, 116–117
Business-to-business (B2B) protocols,

BusinessConnect, 63–64
Business variations, expected, 252–257

BusinessConnect. See TIBCO
BusinessConnect™

BusinessConnect DMZ Component, 64
BusinessConnect Interior Engine, 63–64
BusinessEvents. See TIBCO BusinessEvents®

BusinessWorks. See TIBCO ActiveMatrix
BusinessWorks™; TIBCO ActiveMatrix
BusinessWorks™ Service Engine

BusinessWorks SmartMapper. See TIBCO
BusinessWorks™ SmartMapper

C
Cache

avoiding with nested retrieval, 111
observable state and, 108–111
speeding up lookup process, 306
System-of-Record-with-Cached-

Read-Only-Copies pattern, 285–286
Cached Information Pattern, composite

services, 304–306
Call Operation Action, UML activity

diagrams, 438
Capacity limit, benchmarking, 327–329
Capacity measurement tests, 314
Capitalization, structured name design,

189–190
Carrier schema, WSDL Sales Order example,

445–446
Cascading Control Pattern, composite

services, 304
Case study. See Nouveau Health Care, case

study
Checkpoints, ActiveMatrix BusinessWorks

failover, 387
Choreography design pattern, 297–299
Claim Payment Service Implementation,

Payment Manager Composite, 296
Claims management, case study

architecture pattern, 70–71
payment domain concepts, 80–83
Payment Manager service interfaces for,

129–132
Class Diagram. See UML Class Diagram

notation
Classes, UML

associations between, 429–430
Class Diagram notation, 427–428
part-whole relationship between two,

430–431
“Classic,” TIBCO, 29
Client Acknowledgement Mode, JMS process

starters, 360–361
Client connection load distribution, EMS,

269–271, 393–396
Client libraries, EMS, 26
Client, providing data to rule service, 250–251

Brown_book.indb 455Brown_book.indb 455 6/28/12 10:21 AM6/28/12 10:21 AM

Index456

Cluster failover pattern, 388–390
Collaborations, UML notation, 440
Combined Pattern, TIBCO EMS client load

distribution, 271
Command Center, TIBCO Managed File

Transfer, 58
Command-line interface, configuring EMS

servers, 26
Commercial off-the shelf packages. See COTS

(commercial off-the shelf) software
packages

Communications latency, documenting test
process mapping, 320

Compatibility, and dependencies, 152
Compensating transactions, 44–45
Complex components, in benchmarking,

324–327
Components

ActiveMatrix Adapters, 30–31
ActiveMatrix BusinessWorks, 28–30
ActiveMatrix Service Bus, 27–28
ActiveMatrix Service Grid, 28–29
architectural distinctions and, 11–12
benchmarking complex, 324–327
in composite service architecture, 20–22,

303
documenting under test parameters, 321
implementation architecture for, 9, 11
life cycle, 22–23
misleading benchmark results, 315
monitoring status. See TIBCO Hawk®

Payment Manager Composite, 296
service utilization contract for, 22
solution architecture documentation,

413–416
specification architecture for, 9–10

Composite service architecture, 20–22
Composite services

in Cached Information Pattern, 304–306
in Cascading Control Pattern, 304–305
overview of, 303–304

Composite states, 441–442
Composite Structure Diagram, UML,

432–434
Composites

implementing TIBCO ActiveMatrix,
307–308

information retrieval design patterns,
304–306

initiating interaction, 37–39
objectives, 293
services and applications, 303–304
specifying, 294
summary review, 308–309
understanding, 293–294

Composites, architecting
behavior management, 296–298
completing component specifications, 303
composite architecture pattern, 295–296
mappings, 299–302
process of, 303
processes, 298–299

Composition, UML Class Diagram notation,
430–431

Concepts
data model, 216–218
naming based on stable, 187

Concrete definitions, WSDL, 176–177
Connection factories, JMS destinations, 267–268
Constraints

service specification contents, 127
service specification documentation, 422
service specification example, 140–141
solution architecture documentation, 410
technological, for naming standards,

205–206
understanding component, 115–116

Content transformation mediation pattern, 36
Contention, disk, 333–334
Context

assigning for abstract services, 175
service specification contents, 124
service specification documentation, 420
service specification example, 128–129
solution architecture documenting, 410
understanding component, 111–112

Contracts, service usage, 22, 142–144, 404
Control flow, UML activity diagrams, 437
Coordination patterns

component behavior and, 114–115
composite behavior and, 296–298
highly available solutions and, 373
service specification documenting, 126,

138, 140, 422
solution architecture documenting, 414
supporting dual, 261–262
understanding, 40–44

Core Pool Size parameter
HTTP Connector thread pools, 344
JCA thread pool, 342
named thread pools, 343

COTS (commercial off-the shelf) software
packages

not designed for distributed transactions,
286

System-of-Record pattern and, 284–285
using Edit-Anywhere-Reconcile-Later

pattern, 287–288
CPU utilization limits, benchmark results,

328–329, 337

Brown_book.indb 456Brown_book.indb 456 6/28/12 10:21 AM6/28/12 10:21 AM

Index 457

Credit interface, Sales Order Service, 99, 101
Customer Query interface, Sales Order

Service, 99–101
Customer schema, WSDL Sales Order

example, 446–447

D
Data access, mainframe interaction intent, 59
Data center failover, 373
Data format specifications, solution architec-

ture, 417
Data management patterns

Edit-Anywhere-Reconcile-Later,
287–288

Master-Data-Management, 288–289
Replicated-Data-with-Transactional-

Update, 286–287
summary review, 290–291
System-of-Record, 284–285
System-of-Record-with-Cached-

Read-Only-Copies, 285–286
Data models

designing common, 224
designing XML schema, 227–232
example schema, 235
organizing schema and interfaces for,

233–234
representing associations, 226–227
representing entities, 225–226

Data, rule services and, 250–252
Data storage specifications, 417
Data structures

common data models, 224–227
designing deep, 220–222
designing flattened, 222–223
designing shallow, 223–224
designing XML schema, 227–232
domain models, 215–218
example schema, 235
information models, 218–219
objectives, 215
organizing schema and interfaces,

233–234
reusability and, 224

Data types
designing XML schema with, 227–228
entity in data model using, 225–226
idealized name structures using, 192
instance names vs. names for, 189
in WSDL message parts, 176–178

Database-based intra-site failover pattern,
EMS, 383–384

Decisions, UML activity diagrams, 438
Dedicated data types, WSDL message parts,

176–178

Deep data structures, 220–222
Default JMS thread usage, 347–349
Default node-to-node communications thread

usage, 349–351
Default SOAP/HTTP thread usage, 345–347
Deferred JMS Acknowledgement Pattern

ActiveMatrix Service Bus, 390
ActiveMatrix BusinessWorks, 386
fault tolerance and high availability, 374

Deferred payments, case study
composite mappings of, 299–300
documenting behavior, 146–149
Manage Payments process, 75–76
Payment Manager Composite, 296
process coordination, 76–77
process overview, 85, 87–88
Settle Deferred Payments Service

Implementation for, 296
Definitions, adding to WSDL, 160–163
Delegation coordination pattern, 41–42
Delegation with confirmation coordination

pattern, 41–42
Deliverables

hybrid rule-process approaches,
247–248

Sales Order Service example, 104
using rule service to assemble process

definition, 248–249
Dependencies. See also Observable dependen-

cies and behaviors
and compatibility, 152
on packages, 152–153
as ranges in OSGi versioning, 154–155

Deployment
ActiveMatrix, 31–33
ActiveMatrix Adapters and, 30–31
ActiveMatrix BusinessWorks, 28–30
high availability and disaster recovery,

210–211
service specification contents, 127–128
service specification documentation, 423
service specification example, 141–142
service usage contract, 144
solution architecture documenting, 416

Design patterns
architecture of, 13
rule service. See Rule service, process flow

Design patterns, used in this book
basic interaction patterns, 33–34
coordination patterns, 40–44
event-driven interaction patterns, 35
external system access patterns, 37–39
federations. See Service federation
mediation patterns, 36–37
service utilization pattern, 17–19

Brown_book.indb 457Brown_book.indb 457 6/28/12 10:21 AM6/28/12 10:21 AM

Index458

Destinations
asynchronous JMS request-reply,

257–261
constraints on destination names,

205–206
grouping JMS, 267–268
JMS destination names, 183, 201
problem with temporary JMS, 257–258
SOAP address location indicating, 200
subscription interface and, 109–110

Development configuration, solution
architecture documenting, 416

Disk performance limits, benchmark results,
331–334, 337

Dispatch Queue, ActiveMatrix Business-
Works job processing, 365

Distributed Federation Pattern, 406
Distributed transaction

COTS packages not designed for,
286–287

with two-phase commit coordination
pattern, 43

DMZ Component, BusinessConnect, 64
Documentation

nonfunctional behaviors, 127
service-related. See Service-related

documentation
service specification. See Service specifica-

tion documentation
solution architecture. See Solution

architecture, documenting
test design. See Test design documentation

Domain, basing naming on concepts for, 187
Domain models

information models vs., 218–219
Payment Manager, 77–81
solution architecture documenting,

410–411
understanding data with, 215–218

Domain names
general-to-specific structured name

design, 183–185
hierarchical naming authority for, 186
notational convention for Internet, 194

Dot-separated number sequence, OSGi
versioning, 153–154

Dual coordination-pattern processing,
261–262

E
Eclipse IDE, Substation ES and, 60
Edit-Anywhere- Reconcile-Later pattern,

287–288
Editing, avoiding structure mistakes, 434–435
EMS (Enterprise Message Service). See TIBCO

Enterprise Message Service™ (EMS)

Engine thread pool
ActiveMatrix BusinessWorks Service

Engine, 357
ActiveMatrix BusinessWorks Service

Engine job processing, 362
setting ActiveMatrix BusinessWorks

Service Engine HTTP server type, 357
Enterprise identifiers

basing naming on, 187–188
including qualifier for functional context,

192–194
naming authority complications, 206
naming complications in complex

organizations, 206–209
Enterprise Message Service (EMS). See TIBCO

Enterprise Message Service™ (EMS)
Entities, in data models, 225–226
Environment

service usage contract specifying, 22
solution architecture documenting, 416
test harness documenting details of, 318
UML execution, 436–437
values for address location variables,

209–210
WSDL schema location, 197

Event-driven interaction, 35, 111
Event recognition interaction intent, 59
Event Service, Hawk, 55–56
Events

complex processing of, 425
triggering. See Triggered behaviors
UML activity diagrams for actions, 439

Exceptions, raising, 253–257
Execution environments, UML, 436–437
External system access patterns

interaction via adapter, 38–39
interaction via non-supported protocol, 39
interaction via supported protocol, 37–38
overview of, 37

F
Facets, observable dependencies and

behaviors, 97
Failover. See FT and HA (fault tolerance and

high availability)
Fault tolerance. See FT and HA (fault

tolerance and high availability)
Federation. See Service federation
Fedex.com, 306
File-based intra-site failover pattern

client configuration for, 384
EMS multi-site with message persistence

pattern, 393–396
EMS multi-site with no message persis-

tence pattern, 391–393
overview of, 382–383

Brown_book.indb 458Brown_book.indb 458 6/28/12 10:21 AM6/28/12 10:21 AM

Index 459

Files
reliable mechanism for locking, 385
TIBCO Adapter for Files, 62–63
transferring, 56–58
WSDL and XSD filenames, 159–160,

195–196
FillOrder() operation, case study

coordination pattern in, 115
overview of, 100–102
triggered behaviors, 113

Fire-and-forget coordination pattern, 40
Flattened data structures, 222–223
Flow Limit parameter, ActiveMatrix

BusinessWorks, 368
Forks, UML activity diagrams, 438
Front-end, solution architecture decisions,

240–243
FT and HA (fault tolerance and high

availability)
ActiveMatrix BusinessWorks failover,

385–390
common terms, 372–373
deferred JMS acknowledgement pattern,

373–374
EMS example environment, 391–396
EMS failover, 381–385
generic site failover, 377–381
Intra-Site Cluster Failover Pattern,

374–376
objectives, 371–372
Service Bus failover, 390–391
summary review, 396–399

Fulfillment schema, WSDL Sales Order,
449–450

Functional context, naming standards. See
also Naming principles, 192–194,
205–209

Functional requirements, service usage
contracts, 143–144

Funds transfers
Payment Manager domain model,

77–81
Payment Manager tracking all, 91
settlement process, 85, 89

G
General-to-specific structure, of structured

name design, 183–185
Generalization, UML Class Diagram notation

for, 431–432
Generic site failover

EMS strategy for, 384–385
intra-site failover with different host

identity pattern, 378–380
intra-site failover with same host identity

pattern, 380–381

overview of, 377
storage replication strategies and RPO,

377–378
Geographic distribution, naming complica-

tions, 207–209
GetCustomer() operation, case study,

100–102, 113
GetOrder() operation, case study, 104–105
GetOrderDetails() operation, case study

designing XML schema, 227–232
example schema, 227–232
organizing schema and interfaces for data

model, 233–234
WSDL Sales Order Interface example,

443–444
Graphs

documenting test results, 322–324
identifying capacity limit, 327–328
identifying CPU utilization limits, 329
identifying memory limits, 335
identifying network bandwidth limits,

330–331

H
HA (high availability). See FT and HA (fault

tolerance and high availability)
Hawk. See TIBCO Hawk®

Hawk agents, 49, 55
Hawk Display, 51, 54–55
Hawk Microagent Adapter (HMA), 53–54
Health care claims, 74–75
Hierarchical naming authorities, 185–186
Hierarchies

of architecture, 7–11
general-to-specific structured names,

184–185
naming complications in complex

organizations, 206–209
High availability. See FT and HA (fault

tolerance and high availability)
HMA (Hawk Microagent Adapter), 53–54
Host identity pattern, intra-site failovers,

378–381
HostIdentifier

deployment flexibility for HA and DR,
210–211

SOAP address location, 201–202
values for address location variables,

209–210
HTTP

interaction via non-supported protocol, 39
location naming principles, 201
setting ActiveMatrix Service Engine,

357–358
thread usage with virtualize policy set

and, 352

Brown_book.indb 459Brown_book.indb 459 6/28/12 10:21 AM6/28/12 10:21 AM

Index460

HTTP Connector
default SOAP/HTTP thread usage,

345–347
process starters in ActiveMatrix

 BusinessWorks using, 359
starting jobs from ActiveMatrix Service

Bus, 361–363
thread pools, 344–345
thread usage with threading policy set,

353–356
worker thread assignments, 345

HTTPComponent thread pool, 358
Hybrid rule-process approaches, 247–248

I
I/O activities, ActiveMatrix BusinessWorks,

362–365, 367–368
I5/OS, using TIBCO Adapter for IBM i,

61–62
IBM i platforms

TIBCO Adapter for Files, 62–63
TIBCO Adapter for IBM i, 61–62

ICANN (Internet Corporation for Assigned
Names and Numbers), 186

Idealized name structures, 191–192
Identity pattern, inter-site failover with

same-host, 391
Immediate payments, case study

behavior, 136, 139, 146–147
Claim Payment Service Implementation,

296
composite mappings of, 299, 302
coordination, 76, 138–140
manage payments process and, 75–76
nonfunctional behavior and, 140
orchestrating, 298
overview of, 83–85
Payment Manager architecture pattern,

145–147
Payment Manager service interfaces for,

130–132
thread usage with threading policy set,

354–356
utilization scenario, 129–130

Implementation
TIBCO ActiveMatrix composite, 307–308
understanding composite, 294

Implementation architecture
ActiveMatrix Service Bus using

 Mediation, 27
architectural distinctions and, 12
services or components, 9, 11

Implementing SOA: Total Architecture in
Practice (Brown), 425

In-memory Job pool, ActiveMatrix Business-
Works, 362

In-Only architecture pattern
orderDelivered() operation, 104
orderShipped() operation, 102–103
overview of, 33–34

In-Out architecture pattern, 34
Incompatible change

architecture pattern for deploying,
166–167

defined, 152
versioning and bug fixes resulting in, 155
versioning SOAP interface addresses

(endpoints), 168
in WSDLs and XML schemas, 163–164

Inconsistencies, reconciling data, 287–289
Individual activity benchmarks, 326
Information models

creating XML schema with, 229–232
domain models vs., 218–219

Information retrieval design patterns,
304–306

Information Storage and Management: Storing,
Managing, and Protecting Digital
Information (Somasundaram and
Shrivastava), 333

Input rates
determining operating capacity, 316–317
documenting test results, 322–324
identifying capacity limit, 327–328
misleading benchmark results on,

314–316
Instance names, distinguishing type names

from, 189
Integration and testing, solution architecture

documenting, 416–417
Intended utilization scenarios

service specification contents, 125
service specification documentation,

420–421
service specification example, 129

Intents, mainframe interaction, 59
Inter-site failover pattern, ActiveMatrix

BusinessWorks, 388–389
Inter-site failover with different-host identity

pattern, 378–379
Inter-site failover with same-host identity

pattern
ActiveMatrix Service Bus failover, 391
EMS multi-site with message persistence

pattern, 393–396
EMS multi-site with no message persis-

tence pattern, 391–393
generic site failover, 380–381

Interaction patterns
basic, 33–34
event-driven, 35
external system access, 37–39

Brown_book.indb 460Brown_book.indb 460 6/28/12 10:21 AM6/28/12 10:21 AM

Index 461

Interface definitions
service specification contents, 125
service specification documentation, 421
service specification example, 129–132
WSDL, 176–178

Interface major version numbers, structured
name design, 191

Interfaces
dependencies and compatibility of, 152
distinct WSDL namespace URI for, 190
Payment Manager, 82–83
solution architecture decisions, 240–243
solution architecture documenting, 414
UML Class Diagram notation for, 428–429

Internal engine architecture, ActiveMatrix
BusinessWorks, 358–359

Internet Corporation for Assigned Names
and Numbers (ICANN), 186

Internet naming system
general-to-specific structure of, 183–185
hierarchical naming authorities in, 185–186
notational convention for domain names,

194
technology constraints on, 205

Internet Server, TIBCO Managed File
Transfer, 56

Intra-Site Cluster Failover Pattern, 374–376
Intra-site failover pattern

ActiveMatrix BusinessWorks built-in,
387–388, 390–391

ActiveMatrix BusinessWorks cluster,
388–389

ActiveMatrix Service Bus cluster, 391
with different host identity pattern, 378–380
EMS strategy for, 382–384
recovery point objectives, 373
with same host identity pattern, 380–381

Invoke Partner thread pool, 358, 365–366
IOPS (I/O operations per second), disk

performance, 331–334
IP redirectors, load distribution, 266
ISeries, 58–63

J
JCA thread pool, 342–343
JDBC, external access interaction via, 39
JMS Binding thread pool

ActiveMatrix nodes, 343
default JMS thread usage, 347–349
default node-to-node communications

thread usage, 349–351
thread usage with threading policy set,

355–356
thread usage with virtualize policy set

and initiation of, 352–353
worker thread assignments, 345

JMS (Java Message Service)
ActiveMatrix BusinessWorks Service

Engine thread usage, 361–364
asynchronous request-reply interactions,

257–261
Deferred JMS Acknowledgement Pattern,

373–374
load distribution, partitioning between

servers, 267–269
load distribution, two-tier, 279–280
load distribution, with queues, 266
name requirements, 183
naming constraints, 205
naming principles, 201

JMS process starters, 360–361
JMSCorrelationID property, asynchronous

request-reply, 258–261
JMSReplyTo property, asynchronous

request-reply, 258–261
JNDI lookups, partitioning JMS message

load, 268
Jobs, ActiveMatrix BusinessWorks

Activation Limit parameter, 367–368
Flow Limit parameter, 368
Max Jobs parameter, 365–367
processing, 362–366
starting from Service Bus, 361–364
Step Count parameter, 368–369

Joins, UML activity diagrams, 438

K
Keep Alive Time parameter, thread pools,

343–344

L
Licenses, message service, 27
Lines of business

naming authority complications, 206
naming complications in complex

organizations, 206–209
naming principles for WSDL and XSD

filenames, 196
naming principles in functional context

for, 193–194
Load distribution

EMS client connections, 269–271
IP redirectors for, 266
JMS queues for, 266
objectives, 265–266
partitioning JMS message load between

servers, 267–269
patterns preserving partial ordering,

278–280
patterns preserving total sequencing,

275–278
sequencing problem, 273–275

Brown_book.indb 461Brown_book.indb 461 6/28/12 10:21 AM6/28/12 10:21 AM

Index462

Load distribution, continued
with Service Bus, 271–273
summary review, 280–281

Logging, Hawk Event Service, 55–56
Lookup and cross reference, information

retrieval, 306

M
MagicDraw tool, 434
Mainframe-related products, and iSeries

interaction, 58–63
Major version numbers

namespace names and, 159–160
OSGi versioning and, 153–154
rules for WSDLs and schemas, 164, 191

Manage payments, case study
Payment Manager specification, 74
Payment Manager specification, domain

model, 77–81
process coordination, 76–77
processes of, 75–76

Managed File Transfer product portfolio,
TIBCO®, 56–58

Manufacturer schema, 447–448
Mapping processes. See Process mapping
Master-Data-Management pattern, 288–289
Max_connections parameter, EMS client load

distribution, 270–271
Max Jobs tuning parameter, ActiveMatrix

BusinessWorks, 365–367
Max Pool Size parameter

default SOAP/HTTP thread usage, 347
JCA thread pool, 342
named thread pools, 344

Maximum size parameter, thread pools,
343–344

Mediation patterns
ActiveMatrix BusinessWorks, 30
ActiveMatrix Service Bus, 27–28
ActiveMatrix Service Grid, 29
overview of, 36–37

Memory limits
interpreting benchmark results, 335–336
setting Max Jobs parameter in Active-

Matrix BusinessWorks, 367–368
using benchmark results on, 337

Message format specifications, solution
architecture, 417

Message service. See TIBCO Enterprise
Message Service™ (EMS)

Messages
avoiding deep data structure for, 222
avoiding flattened data structure for, 223
using shallow data structures for,

223–224
Micro version numbers, OSGi, 154

Microagent interfaces, Hawk, 54–55
Migration, solution architecture document-

ing, 416
Milestone-level status, service interfaces,

107–108
Minimum size parameter, JMS Binding

thread pool, 343
Minor version numbers

OSGi, 154
placement for WSDLs and XML schemas,

159–160
rules for versioning WSDLs and XML

schemas, 164
structured names incorporating interface,

191
Multi-word fields, name structure with,

189–190

N
Named thread pools, ActiveMatrix nodes,

343–344
Namespace URIs, WSDL and schemas,

159–160
Namespaces, responsibility for subordinate,

186
Naming authorities

complications of, 206
hierarchical, 185–186

Naming principles
functional context, 192–194
idealized name structures, 191–192
operation names, 200
port type, service, and binding names,

198–200
schema locations, 197
schema shared data types, 204–205
schema types specific to interface and

operation, 203–204
SOAP action names, 203
SOAP address location, 200–202
WSDL and XSD filenames, 195–196
WSDL and XSD namespace URIs,

194–195
WSDL names, 196–197
WSDL-specific schema location, 197–198
WSDLmessage names, 197–198

Naming standards
abstract services concept, 174–175
avoiding acronyms and abbreviations, 188
basing on business processes, 187
basing on domain concepts, 187
basing on enterprise identifiers, 187–188
in complex organizational structures,

206–209
defining routing strategies, 181–182
defining search strategies, 181

Brown_book.indb 462Brown_book.indb 462 6/28/12 10:21 AM6/28/12 10:21 AM

Index 463

deployment flexibility for HA and DR,
210–211

developing your own, 211–212
difficulty of changing names, 180
distinct WSDL namespace URI for each

interface, 190
distinguishing types from instances, 189
general-to-specific structure, 183–185
hierarchical naming authorities,

185–186
importance of, 180
interface major version numbers, 191
multi-word fields, 189–190
naming authorities, 206
objectives, 173–174
overview of, 174
relating abstract and WSDL-defined

services, 178–180
summary review, 212–213
technology constraints on, 205–206
things requiring, 182–183
using this chapter, 174
values for address location variables,

209–210
WSDL interface definitions, 176–178

Nested retrieval, 111
Network bandwidth limits, benchmark

results, 329–331, 337
Network interface cards (NICs), network

bandwidth limits, 331
Nonfunctional behavior

characterizing observable behavior,
116–117

service specification contents, 127
service specification documentation,

422–423
service specification example, 140–141
solution architecture documentation,

414–415
Nonfunctional requirements

service usage contract specifying, 144
solution architecture documentation,

412–413
Notification Router, Payment Manager

Composite, 296
Notifications

Hawk Event Service, 55
service specification documenting, 126

Nouveau Health Care, case study
objectives, 67–68
Payment Manager service specification,

73
Payment Manager specification, domain

model, 77–81
Payment Manager specification, inter-

faces, 82–83

Payment Manager specification, process
overview, 74–77

Payment Manager specification, pro-
cesses, 83–90

service-related documentation. See
Service-related documentation

solution architecture, 68–73
summary review, 91

Number scheme, OSGi versioning, 153–154

O
Object-Oriented Modeling and Design with

UML, Second Edition (Blaha and
Rumbaugh), 218

Observable architecture, 414
Observable behavior, defined, 96
Observable dependencies and behaviors

black box perspective, 96–97
composites not suitable for black box

characterization, 117–118
constraints, 115–116
context, 111–112
context summarizing, 124
coordination, 114–115
facets of, 97
nonfunctional behavior, 116–117
objectives, 95–96
observable state, 114
summary review, 119
triggered behaviors, 113–114
usage scenarios, 112–113

Observable dependencies and behaviors,
Sales Order Service example

avoiding caches with nested retrieval, 111
observable state and cached information,

108–111
observable state information, 104–108
order delivered, 104
order shipped, 102–103
placing order, 98–102

Observable dependencies, defined, 96
Observable state

cached information and, 108–111
information, 104–108
observable behavior characterized by, 114
orderShipped() operation, 102–103
service specification contents, 125–126
service specification documentation, 421
service specification example, 134–135
solution architecture documentation, 414

ObtainPayment() operation, case study, 99,
101–102, 113

ODS (Operational Data Store), 295–296
One-line description

defined, 122
service specification content, 124

Brown_book.indb 463Brown_book.indb 463 6/28/12 10:21 AM6/28/12 10:21 AM

Index464

One-line description, continued
service specification documentation, 419
service specification example, 128

One-way fire-and-forget messages, 268
Open Services Gateway initiative (OSGi)

Framework
dependencies on packages, 152–153
overview of, 151
version number scheme, 153–154

Operating capacity
determining, 316–317
interpreting benchmark results, 327–328
misleading benchmark results, 315
setting Max Jobs parameter in Active-

Matrix BusinessWorks, 366
Operation invocations, service specification

documenting, 126
Operation names, WSDL, 200
Operational Data Store (ODS), 295–296
Operational information, service interfaces,

106–107
Optional field, XML schema, 162–163
Orchestration design pattern, 297–298
Order Fulfillment interface, Sales Order

Service
coordination patterns, 115–116
orderDelivered() operation, 104
orderShipped() operation, 102–103
overview of, 100–101

Order status, deep data structure for,
220–222

Order-to-Delivery business process. See
Sales Order Service example

OrderDelivered() operation, case study,
104–105, 108, 115

OrderShipped() operation, case study,
102–103, 108, 115

Organizations
establishing naming standard for,

211–212
naming complications in complex,

205–209
service usage contract specifying

responsible, 142–143
Orthogonal states, 441–442
OSGi (Open Services Gateway initiative)

Framework
dependencies on packages, 152–153
overview of, 151
version number scheme, 153–154

Out-In architecture pattern, 34
Out-Only architecture pattern, 34
Output rates

determining operating capacity, 316–317
documenting test results, 322–324
identifying capacity limit, 327–328

identifying CPU utilization limits, 328–329
misleading benchmark results on, 314–316

Over-partitioning, JMS message load
between servers, 269

Overhead benchmarks, for complex
components, 325

Overruling, advanced Hawk rules, 50–52

P
Packages, version dependencies and,

152–153
Parameters

ActiveMatrix BusinessWorks tuning,
365–369

default SOAP/HTTP thread usage,
346–347

documenting test results, 322–324
documenting testing of experimental,

321–322
individual activity benchmark, 326
JMS process starters in ActiveMatrix

BusinessWorks, 360–361
overhead benchmark, 325
thread pools in ActiveMatrix nodes,

342–345
Tomcat thread pool, 357

Parenthetical () brackets, OSGi versioning,
155

Part-whole relationships, UML Class
Diagram notation for, 430–431

Partial order sequencing
load distribution patterns preserving,

278–280
overview of, 274–275

Partitioning, JMS message load between
servers, 267–269

Payer accounts, case study, 77–78
Payment domain model, case study, 80–81
Payment Manager composite

behavior management, 296–298
composite processes, 298–299
implementation, 307–308
overview of, 295–296

Payment Manager specification, case study
domain model, 77–81
interfaces, 82–83
process overview, 74–77
processes, 83–90
service-related documentation. See

Service-related documentation
service specification example. See Service

specification
usage context, 73

Performance
benchmarking. See Benchmarking
service usage contract specifying, 144

Brown_book.indb 464Brown_book.indb 464 6/28/12 10:21 AM6/28/12 10:21 AM

Index 465

solution architecture documenting, 412, 417
storage replication strategies and, 377–378
System-of-Record pattern limitations, 285
tuning. See Tuning
typical curve showing, 314–315

Performance targets, high availability, 373
Persisted message read times, EMS failover

strategy, 385
PERSISTENT mode, Deferred JMS Acknowl-

edgement Pattern, 374
Phone schema, WSDL Sales Order, 448
PlaceOrder() operation, case study

avoiding caches with nested retrieval, 111
coordination pattern, 115
overview of, 98–102

Platform Server, TIBCO Managed File
Transfer product portfolio, 56

Policy
hierarchical naming authorities manag-

ing, 186
intents, 45

Ports
name structure defining routing strate-

gies, 180–181
UML Class Diagram notation for, 436
WSDL type names for, 198–200

Priority parameter, named thread pools, 344
Process claim, case study

accounts and fund transfers, 77–81
basic concepts, 74–75
process coordination, 76–77
processing claims from providers, 74

Process coordinator, 44–45
Process manager

rule service as, 246–247
rule service assembling process definition,

248–249
rule service directing, 249–250
rule service separated from, 245–246

Process mapping
architecture pattern for incompatible

change, 166–167
composites, 21–22, 298–299, 303
deferred payment case study, 88
immediate payment case study, 83–86
service utilization, 19
settlement account case study, 90
simple test, 318–321
solution architecture, 14–16

Process models
as architecture view, 4–6
in hierarchy of architecture, 7–11
service utilization, 18–19

Process-pattern mapping
as architecture view, 6–7
in hierarchy of architecture, 7–11

showing usage scenarios with, 98, 113
solution architecture documenting, 411

Process starters
ActiveMatrix BusinessWorks internal

engine architecture, 358–359
JMS, 360–361

Processes
Payment Manager, 83–90
Payment Manager overview of, 74–77

Product portfolio. See TIBCO ActiveMatrix®
Product Portfolio

Product Query interface, 99–100
Product schema, WSDL Sales Order,

448–449
ProductChange() operation, Sales Order

Service, 110–111
Program-to-program interaction intent,

mainframes, 59
Promoted services, Service Bus load

distribution, 272–273
Protocols

BusinessConnect facilitating B2B, 63–64
external access interaction via non-

supported, 39
external access interaction via proprietary,

38
external access interaction via supported,

37–38
Provider account, case study, 77–78
Provider Settlement Record, 83–86

Q
Query operations, Microagent, 54
Queue message delivery semantic, 35
Queue Pattern, EMS client load distribution,

270–271, 393–396
Queues, JMS load distribution, 266

R
RAID arrays

identifying disk performance limits, 333
preventing data lost in data center, 377

Ranges, dependencies in OSGi versioning as,
154–155

Read requests, disk performance limits,
331–334

Recovery point objective (RPO), 372–374,
377–378

Recovery time objective (RTO), 372–373, 390
Recursive structure, UML notation, 433
Refactored architecture, 242–243
Reference architecture

documenting design pattern, 13
service utilization pattern as, 17–19, 24

Reference (or master) data, managing,
64–65

Brown_book.indb 465Brown_book.indb 465 6/28/12 10:21 AM6/28/12 10:21 AM

Index466

Referenced components, service specification
content, 421

Referenced interfaces
applying Threading Policy Sets to,

354–356
applying Virtualize Policy Set to, 351–352
deploying, 32, 36
service specification content, 125
service specification documentation, 423
service specification example, 132–134

Rejection Policy parameter, named thread
pools, 344

Relationships, data model, 216–218
Remote Domain Pattern, federation,

405–406
Rendezvous. See TIBCO Rendezvous®

Replicated-Data-with-Transactional-Update
pattern, 286–287

Repository issues, federation, 403
Representations

representing in data models, 224–227
XML schema design using, 228–229

Request-reply coordination pattern
Deferred JMS Acknowledgement Pattern,

373–374
overview of, 40–41
partitioning JMS message load, 268

Request-reply test scenario, documenting test
harness, 317–321

Results, benchmarking test
documenting, 322–324
identifying capacity limit, 327–328
identifying CPU utilization limits,

328–329
identifying disk performance limits,

331–334
identifying memory limits, 335–336
identifying network bandwidth limits,

329–331
identifying test harness limits, 336
misleading, 314–316
using, 326–327

Reusability
of data types in XML schema, 227–228
designing data structures and, 224

Risks, solution architecture documentation,
410

Rocket Stream® Accelerator, 56–57
Routing mediation pattern, 36–37
Routing strategies, 180
RPO (recovery point objective), 372–374,

377–378
RTO (recovery time objective), 372–373, 390
Rule service, process flow

acquiring data, 250–252
assembling process definition, 248–249

directing process manager, 249–250
hybrid rule-process approaches, 247–248
overview of, 244–245
as process manager, 246–247
rule client providing data, 250–251
separating from process manager, 245–246

Rulebase Editor, Hawk rules, 49–53
Rules

Hawk, 49–55
versioning WSDLs and XML schemas, 164

S
Sales Order Interface schema, WSDL, 450–451
Sales Order Service example

applying constraints, 115–116
avoiding caches with nested retrieval, 111
capturing coordination, 115–116
documenting nonfunctional behavior,

116–117
observable state and cached information,

108–111
observable state information, 104–108
order delivered, 104
order shipped, 102–103
overview of, 97–98
placing order, 98–102
Sales Order Interface schema, 450–451
Sales Order Interface WSDL, 443–444
Sales Order schema, 451–452
Sales Order schema, WSDL, 451–452
showing dependencies, 112
usage scenarios, 112–113
WSDLs and schemas. See WSDL (Web

Services Description Language) and
Schemas

Sales Order Status Interface
coordination patterns, 115
milestone-level status, 108
orderDelivered() operation, 104–105
orderShipped() operation, 102–103
showing dependencies, 112

SCA (Service Component Architecture)
design, 31–33, 183

Scalability, solution architecture document-
ing, 412

Scenario benchmarks, complex components,
326–327

Scheduling, with Hawk rules, 51–52
Schema shared data types, naming principles,

204–205
Schema types, naming principles, 203–204
Schemas

WSDL. See WSDL (Web Services Descrip-
tion Language) and schemas

XML. See XML schemas
XSD. See XSD (XML Schema Definition)

Brown_book.indb 466Brown_book.indb 466 6/28/12 10:21 AM6/28/12 10:21 AM

Index 467

Scope
data model schema and interfaces,

233–234
information model, 218–219

Search strategies, defined by name structure,
180

Secondary server startup time, EMS failover
strategy, 384–385

Security
solution architecture documenting,

412–413
specifying in service usage contract, 144

Selector property, JMS request-reply
interactions, 258–261

Sequence manager pattern, 276–278
Sequencing

load distribution and problem of, 273–275
patterns preserving partial order, 278–280
patterns preserving total, 275–278

Sequencing key, 279–280
Servers

EMS, 26
EMS failover strategy, 384–385

Service abstract, service specification
documenting, 420

Service architecture
building-block design patterns. See

Building-block design patterns
component life cycle and, 22–23
composite, 20–22
documenting, 144–149
overview of, 17
reasons for architectural distinctions, 12
service implementation architecture, 9, 11
service specification architecture, 9–10

Service Component Architecture (SCA)
design, 31–33, 183

Service consumers
component life cycle governance of, 22–23
service usage contract specifying, 143

Service context, service specification
documenting, 420

Service domains, standardizing technology, 407
Service Engine. See TIBCO ActiveMatrix

BusinessWorks™ Service Engine
Service federation

access control issues, 402–403
basic federation pattern, 403–405
concept of, 402
Distributed Federation Pattern, 406
objectives, 401
with Remote Domain Pattern, 405–406
repository issues, 403
standardizing service domain technology,

407
summary review, 407–408

Service interface specifications, documenting,
417, 423

Service names, WSDL, 198–200
Service one-line description, service

specification documenting, 419
Service providers, component life cycle

governance of, 22–23
Service-related documentation

objectives, 121–122
service abstract, 122–123
service architecture, 144–149
service one-line description, 122
service specification. See Service

specification
service usage contracts, 142–144
summary review, 149–150

Service specification
abstract, 124, 128
constraints, 127, 140–141
context, 124, 128–129
coordination, 126, 138, 140
deployment specifics, 127–128, 141–142
intended utilization scenarios, 125, 129
interface definitions, 125, 129–132
nonfunctional behavior, 127, 140–141
observable state, 125–126, 134–135
one-line description, 122, 124, 128
referenced interfaces, 125, 132–134
service abstract, 128
service context, 128–129
triggered behaviors, 126, 136–139

Service specification documentation
abstract, 420
appendices, 423
constraints, 422
context, 420
coordination, 422
deployment, 423
intended utilization scenarios,

420–421
interface definitions, 421
nonfunctional behavior, 422–423
observable state, 421
one-line description, 419
overview of, 124
referenced interfaces, 421
triggered behaviors, 422

Service usage contracts
basic federation pattern, 404
elements of, 142–144
overview of, 22

Service utilization pattern, 17–19
Services

building wrappers around back-end
systems, 243–244

composite, 303–304

Brown_book.indb 467Brown_book.indb 467 6/28/12 10:21 AM6/28/12 10:21 AM

Index468

Services, continued
defined, 17
implementing as composites, 20
monitoring status of. See TIBCO Hawk®

returning variant business responses,
252–257

solution architecture documentation,
413–416

Settle Deferred Payments, case study
behavior, 136, 138, 145–146, 149
composite mappings, 301
composite processes, 296
Manage Payments process, 75–76
process coordination, 76–77
process mapping, 299, 301
Service Implementation, 296
utilization scenario, 129–130

Settlement Accounts, case study
concepts, 79–80
defined, 77–78
immediate payment process overview,

83–86
overview of, 78–79
process overview, 85, 89–90

Settlement Service Implementation, 296
Shallow data structures, 223–224
Shipping of goods, example, 106–107
Simple type values, replacing with identical

simple type in XML, 161–162
Single-threaded design pattern, 275–276
Site disaster recovery. See also FT and HA

(fault tolerance and high availability)
service usage contract specifying, 144
solution architecture documentation, 412

Site failover patterns. See Generic site failover
SOAP action names

major version numbers in, 191
principles for, 203
version numbers in, 160
versioning, 168–169
WSDL interface definitions and, 176

SOAP address location, naming principles
for, 200–202

SOAP/HTTP call, thread usage, 345–349
SOAP interface addresses (endpoints)

major version numbers in names, 191
schema versioning rules, 164
versioning, 168–170
WSDL interface definitions and, 176–178

Solution architecture
case study, 68–73
in hierarchy of architecture, 8
overview of, 14–16
reasons for architectural distinctions, 11–12
service or component implementation

architecture, 9, 11

service or component specification
architecture, 9–10

views characterizing, 24
Solution architecture decisions

asynchronous JMS request-reply
interactions, 257–261

business exceptions, 252–257
rule service governing process flow,

244–250
rule services and data, 250–252
separating interface and business logic,

240–243
summary review, 262–264
supporting dual coordination patterns,

261–262
using services for back-end systems,

243–244
Solution architecture, documenting

addressing nonfunctional solution
requirements, 412–413

appendices, 417
architecture pattern, 411
business objectives and constraints,

409–410
business process inventory, 410
business processes, 411–412
components and services, 413–416
deployment, 416
domain model, 410–411
integration and testing requirements,

416–417
solution context, 410

Specification architecture
reasons for architectural distinctions, 11–12
service or component, 9–10, 17

Specification, composite, 294
Sponsored top-level domains, 186
Square brackets [], ranges in OSGi version-

ing, 155
SRDF (Symmetrix Remote Data Facility),

storage replication, 377
Standardized service domain technology,

service federation, 407
State machines, UML notation reference,

441–442
Step Count parameter, ActiveMatrix

BusinessWorks, 368–369
Storage replication strategies, 377–378
Straight-through mediation pattern, 36
Structure, UML Class Diagram notation

avoiding common editing mistakes,
434–435

Composite Structure Diagram, 432–434
execution environment, 435–436
swimlanes with, 440
UML Class Diagram notation for, 432

Brown_book.indb 468Brown_book.indb 468 6/28/12 10:21 AM6/28/12 10:21 AM

Index 469

Structured activity, UML activity diagrams,
438

Structured name design principles
avoiding acronyms and abbreviations, 188
basing on business processes, 187
basing on domain concepts, 187
basing on enterprise identifiers, 187–188
distinct WSDL namespace URI for each

interface, 190
distinguishing types from instances, 189
general-to-specific structure, 183–185
hierarchical naming authorities, 185–186
interface major version numbers, 191
planning for multi-word fields, 189–190

Subdomains, in structured names, 183–185
Subscriptions

Microagent, 55
Sales Order Service, 109–110

Subtrees, in structured names, 183–185
Swimlanes, in UML activity diagrams,

439–440
Symmetrix Remote Data Facility (SRDF),

storage replication, 377
Synchronous coordination patterns, 261–262
Synchronous request-reply coordination

pattern, 40–41, 268
Synchronous storage replication strategies,

generic site failover, 377–378
System-of-Record pattern, 108, 284–285
System-of-Record-with-Cached-Read-Only-

Copies pattern, 285–286

T
Technology constraints, naming standards,

205–206
Temporary destinations, for JMS replies,

257–258
Test design documentation

experimental parameters, 321–322
solution architecture documentation,

416–417
test harness architecture pattern, 317–318
test harness process mapping, 318–321
test results, 322–324

Test harnesses
documenting architecture pattern, 317–319
documenting parameters, 321
documenting process mapping, 318–321
interpreting benchmark results, 336
misleading results of, 316

Testing Hawk rules, 50–51
Thread pools, 342–345, 357–358
Thread usage, ActiveMatrix Service Bus nodes

default JMS, 347–349
default node-to-node communications,

349–351

default SOAP/HTTP, 345–347
with threading policy set, 353–356
with virtualize policy set, 351–353

Threading policy set, 353–356
TIBCO ActiveMatrix BusinessWorks™

architecture fundamentals of, 27–28
failover, 385–390
plug-in for Data Conversion, 60–61
preserving partial ordering in, 278–280
single-threaded solutions with, 275–276

TIBCO ActiveMatrix BusinessWorks™ Service
Engine

ActiveMatrix BusinessWorks internal
engine architecture, 358–359

ActiveMatrix BusinessWorks jobs
processing, 362–365

ActiveMatrix BusinessWorks tuning
parameters, 365–369

JMS process starters, 360–361
starting jobs from Service Bus, 361–362
summary review, 369–370
thread pools, 357–358

TIBCO ActiveMatrix® Adapters
architecture fundamentals of, 30–31
external system interaction via, 38–39
single-threaded solutions with, 276

TIBCO ActiveMatrix® Administrator
ActiveMatrix Service Bus providing, 27
managing ActiveMatrix BusinessWorks

processes, 29
managing ActiveMatrix Service Bus load

distribution, 272
TIBCO Administrator vs., 26

TIBCO ActiveMatrix® composite implementa-
tion, 307–308

TIBCO ActiveMatrix® Decisions, 246
TIBCO ActiveMatrix® failover, 390–391
TIBCO ActiveMatrix® Lifecycle Governance

Framework, 403, 407
TIBCO ActiveMatrix® Product Portfolio

ActiveMatrix BusinessWorks, 27–28
ActiveMatrix Adapters, 27–28
ActiveMatrix Service Bus, 27–28
ActiveMatrix Service Grid, 27–28
overview of, 27

TIBCO ActiveMatrix® Service Bus
ActiveMatrix BusinessWorks process

deployment with, 28–29
ActiveMatrix Service Grid including all

components for, 28–29
architecture fundamentals of, 27–28
implementing two-tier load distribution

preserving partial ordering, 279–280
initiating interaction via supported

protocol, 37–38
interaction design patterns used by, 33–34

Brown_book.indb 469Brown_book.indb 469 6/28/12 10:21 AM6/28/12 10:21 AM

Index470

TIBCO ActiveMatrix® Service Bus, continued
load distribution in, 271–273
mediation implementation type, 36–37
policies, 44–45
service federation access control with,

403
starting ActiveMatrix BusinessWorks

jobs from, 361–364
TIBCO ActiveMatrix® Service Bus nodes

default JMS thread usage, 347–349
default node-to-node communications

thread usage, 349–351
default SOAP/HTTP thread usage,

345–347
HTTP Connector thread pools, 344–345
JCA thread pool, 342–343
JMS Binding thread pool, 343
named thread pools, 343–344
overview of, 341–342
summary review, 369–370
thread usage with threading policy set,

353–356
thread usage with virtualize policy set,

351–353
virtualization thread pool, 343
worker thread assignments, 345

TIBCO ActiveMatrix® Service Grid, 27–29, 62
TIBCO ActiveSpaces®, 284, 306
TIBCO® Adapter

external system interaction via, 38–39
for Files, 62
for IBM i deployment, 59, 61–62

TIBCO Administrator™

“Classic” process management with, 29
EMS servers, 26
TIBCO ActiveMatrix® Adapters, 30–31

TIBCO architecture fundamentals
ActiveMatrix BusinessWorks, 28–30
ActiveMatrix Adapters, 30–31
ActiveMatrix deployment options, 31–33
ActiveMatrix Product Portfolio, 27
ActiveMatrix Service Bus, 27–28
ActiveMatrix Service Bus policies,

44–45
ActiveMatrix Service Grid, 28–29
design patterns, 33–44
Enterprise Message Service (EMS)

product, 26
overview of, 25
summary review, 46

TIBCO® Architecture Fundamentals book, 25
TIBCO Business Studio™

composite implementation, 307
configuring ActiveMatrix Adapters, 30
TIBCO Designer Add-in for, 28

TIBCO BusinessConnect™, 63–64, 66

TIBCO BusinessEvents®

combining process manager/rule service
roles, 247

rule service role of, 246
usage of, 252
using System-of-Record data manage-

ment pattern, 284
TIBCO BusinessWorks™ SmartMapper, 306
TIBCO “Classic,” 29
TIBCO Collaborative Information Manager™,

64–65, 289
TIBCO Designer™ Add-in TIBCO Business

Studio™, 28–31
TIBCO EMS Central Administration, 26
TIBCO Enterprise Message Service™ (EMS)

architecture fundamentals of, 26
availability environment example,

391–396
client connection load distribution,

269–271
distributing load with JMS queues, 266
event-driven interaction patterns used by,

35
failover, 381–385
Hawk Agent interaction with, 56
installing with ActiveMatrix Service Bus,

27
recovery point objectives for, 374
TIBCO Adapter for IBM i using, 61
TIBCO BusinessConnect using, 64
TIBCO Substation ES deployment using,

60
TIBCO Adapter for Files using, 62–63

TIBCO® Enterprise Message Service™ User’s
Guide, 270

TIBCO Hawk®

adapters, 56
creating rules, 49–53
Event Service, 55–56
Hawk Agent, 49
Hawk Display, 55
Hawk Microagent Adapter (HMA), 53–54
Microagent interfaces, 54–55
overview of, 48–49

TIBCO® Managed File Transfer product
portfolio, 56–58

TIBCO Mainframe Service Tracker™, 60–61
TIBCO products

mainframe and iSeries integration, 58–63
objectives, 47–48
summary review, 65–66
TIBCO BusinessConnect, 63–64
TIBCO Collaborative Information

Manager, 64–65
TIBCO Hawk. See TIBCO Hawk®

TIBCO Managed File Transfer, 56–58

Brown_book.indb 470Brown_book.indb 470 6/28/12 10:21 AM6/28/12 10:21 AM

Index 471

TIBCO Rendezvous®

Hawk Agent interaction with, 49, 56
TIBCO Adapter for IBM i using, 61
TIBCO BusinessConnect using, 64
TIBCO Substation ES deployment using, 60
TIBCO Adapter for Files using, 62–63

TIBCO Substation ES™, 60
Time-based events, service specification, 126
Tomcat thread pool, 357
Top-level domain names, naming authorities,

186
Topic message delivery semantic, event-

driven interaction pattern, 35
Topic pattern, EMS client load distribution,

269–271
Total sequencing, load distribution patterns

preserving, 275–278
Traffic, partitioning JMS message load, 268
Transactional Acknowledgement Mode, JMS

process starters, 360–361
Transfer rates, disk performance, 332
Transitions, states and, 441
Trees, general-to-specific structured name

design, 183–185
Triggered behaviors

capturing coordination when modeling, 115
characterizing observable behavior, 113–114
composite processes executing, 298–299
documenting service architecture, 145–149
mapping onto components of composites,

299–300
orderDelivered() operation, 105
orderShipped() operation, 102–103
placeOrder() operation, 100, 102
service specification contents, 126
service specification documentation, 422
service specification example, 136–139

Trivial processes, overhead benchmarks with,
325

Try … catch constructs, business variations,
253, 256–257

Tuning
ActiveMatrix Service Bus nodes. See

TIBCO ActiveMatrix® Service Bus
nodes

objectives, 341
Service Engine. See TIBCO ActiveMatrix

BusinessWorks™ Service Engine
summary review, 369–370

Two-threaded test harness mapping, 321
Two-tier load distribution pattern, 279–280

U
UML Class Diagram notation

associations, 429–430
classes, 427–428

common structure editing mistakes,
434–435

composite structure diagrams, 432–434
execution environments, 436–437
generalization, 431–432
interfaces, 428–429
part-whole relationship, 430–431
ports, 436
structure, 432

UML notation reference
activity diagrams, 437–440
Class Diagram. See UML Class Diagram

notation
collaborations, 440
state machines, 441–442

Unified Modeling Language Reference Manual
(Rumbaugh, Jacobsen, and Booch), 426

Unique names
basing on stable concepts, 187
establishing naming standard, 211–212
with hierarchical naming authorities,

185–186
importance of, 180
for WSDL names, 196

UNIX, TIBCO Adapter for IBM i, 61
Updates

Edit-Anywhere-Reconcile-Later pattern
and, 287

Microagent operations, 54
URIs (uniform resource identifier)

general-to-specific structured name
design, 184–185

name structure defining routing strate-
gies, 180–181

naming principles for WSDL and XSD,
194–196

SOAP location names, 200–202
uniqueness of WSDL name, 196
WSDL interfaces, 190
WSDL message names, 197–198

URLs (uniform resource locators)
general-to-specific structured name

design, 184–185
naming principles for WSDL and XSD,

195–196
uniqueness of WSDL name, 196

Usage scenarios
applying constraints, 115–116
characterizing observable behavior,

112–113
service specification contents, 125
service specification documentation,

420–421
service specification example, 129–130

<<use>> relationship, dependencies, 112
Utilization scenarios. See Usage scenarios

Brown_book.indb 471Brown_book.indb 471 6/28/12 10:21 AM6/28/12 10:21 AM

Index472

V
ValidateProductID() operation, case study,

99–100
Variant business responses, services, 252–257
Version number scheme

OSGi, 153–154
WSDLs and XML schemas, 159–160, 164

Versioning
architecture patterns for, 165–167
dependencies and compatibility, 152
determining number of versions, 169–170
incompatible changes, 163–164
objectives, 151–152
OSGi, 153–156
packages and, 152–153
SOAP interface addresses and, 168–169
summary review, 171–172
using major version numbers in names, 191

Versioning, WSDL and XML schemas
backwards-compatible, 160–163
overview of, 156–157
version number placement for, 159–160
WSDL scope, 157–158
XML schema scope, 158

Views
essential architecture, 4–7
TIBCO Collaborative Information

Manager, 65
Virtual machines, Intra-Site Cluster Failover

Pattern using, 376
Virtualization bindings, Service Bus load

distribution, 272
Virtualization thread pool, ActiveMatrix

nodes, 343
Virtualize policy set, thread usage with,

351–353

W
Windows, TIBCO Adapter for IBM i for, 61
Wiring, composite, 294
Worker thread assignments

ActiveMatrix nodes, 345
ActiveMatrix BusinessWorks Service

Engine thread usage, 361–364
default JMS thread usage, 347–349
default node-to-node communications

thread usage, 349–351
default SOAP/HTTP thread usage, 345–347
thread usage with threading policy set,

354–356
thread usage with virtualize policy set,

351–353
Write performance, disk limits, 331–334
WSDL (Web Services Description Language)

backwards-compatible, 161–163
incompatible changes in, 163–164

incorporating major version numbers in
names, 191

interface definitions, 176–178
limiting scope, 157–158
naming principles. See Naming

principles
organizing schema and interfaces for

data model, 233–234
rules for versioning, 164
things requiring names, 182
using distinct namespace URI for each

interface, 190
version number placement for,

159–160
versioning, 156–157

WSDL (Web Services Description
Language) and Schemas

address schema, 444–445
carrier schema, 445–446
customer schema, 446–447
manufacturer schema, 447–448
other fulfillment schema, 449–450
phone schema, 448
product schema, 448–449
Sales Order Interface schema, 450–451
Sales Order Interface WSDL, 443–444
Sales Order schema, 451–452

X
XML schemas

backwards-compatible, 160–163
incompatible changes in, 163
rules for versioning, 164
rules for WSDLs and schemas, 164
scope for imported, 158
version number placement for, 159–160
versioning, 156–157

XML schemas, designing
creating information model, 229–232
creating schema, 232
identifying required entities and

associations, 228–229
overview of, 227–228

XSD (XML Schema Definition)
creating XML schema, 232
incorporating major version numbers in

names, 191
naming principles for namespace URIs,

194–195
schema and interfaces for data model,

233–234
things requiring names, 183
WSDL interface definitions, 178

Z
Z/OS platforms, 60–63

Brown_book.indb 472Brown_book.indb 472 6/28/12 10:21 AM6/28/12 10:21 AM

	Contents
	Preface
	Acknowledgements
	About the Author
	Chapter 5: Observable Dependencies and Behaviors
	Chapter 8: Naming Standards
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

