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Foreword
by Kent Beck

There is a curious symmetry to the way this book presents Acceptance Test-
Driven Development and the way software is developed with ATDD. Just as there
is an art to picking the specific examples of program behavior that will elicit the
correct general behavior for the system, there is an art to picking specific examples
of a programming technique like ATDD to give you, the reader, a chance to learn
the technique for yourself. Markus has done an admirable job in selecting and
presenting examples.

To read this book you will need to read code. If you follow along, you will
have the opportunity to learn the shift in thinking that is required to succeed with
ATDD. That shift is, in short, to quickly go from, ‘‘Here’s a feature I’d like,” to
‘‘How are we going to test that? Here’s an example.” Reading the examples, you
will see, over and over, what that transition looks like in various contexts.

What I like about this code-centric presentation is the trust it shows in your
powers of learning. This isn’t ‘‘12 Simple Rules for Testing Your Web App” printed
on intellectual tissue paper that falls apart at first contact with the moisture of
reality. Here you will read about concrete decisions made in concrete contexts,
decisions that you could (and that, if you want to get the most out of this book, you
will) disagree with, debate, and decide for yourself.

The latter portions of the book do draw general conclusions, summarizing the
principles at work in the examples. If you are someone who learns more efficiently
when you are familiar with general concepts, that will be a good place to start.
Regardless, what you get out of this book is directly proportional to the investment
you are willing to make in following the examples.

One of the weaknesses of TDD as originally described is that it can devolve into
a programmer’s technique used to meet a programmer’s needs. Some programmers
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xii Foreword

take a broader view of TDD, facilely shifting between levels of abstraction for
their tests. However, with ATDD there is no ambiguity---this is a technique for
enhancing communication with people for whom programming languages are
foreign. The quality of our relationships, and the communication that underlies
those relationships, encourages effective software development. ATDD can be used
to take a step in the direction of clearer communication, and ATDD by Example is
a thorough, approachable introduction.

---Kent Beck



Foreword
by Dale Emery

Too many software projects fail to deliver what their customers request. Over
the years, I’ve heard scores of project customers explain the failures: The developers
don’t pay attention to what we ask them to build. And I’ve heard hundreds of
developers explain the failures: The customers don’t tell us what they want. Most of
the time they don’t even know what they want.

I’ve observed enough projects to come to a different conclusion: Describing
a software system’s responsibilities is hard. It requires speaking and listening
with precision that is rare---and rarely so necessary---in normal human interactions.
Writing good software is hard. Testing software well is hard. But the hardest job in
software is communicating clearly about what we want the system to do.

Acceptance Test-Driven Development (ATDD) helps with the challenge. Using
ATDD, the whole team collaborates to gain clarity and shared understanding
before development begins. At the heart of ATDD are two key practices: Before
implementing each feature, team members collaborate to create concrete examples
of the feature in action. Then the team translates these examples into automated
acceptance tests. These examples and tests become a prominent part of the team’s
shared, precise description of ‘‘done’’ for each feature.

What is shared understanding worth? One developer at an ATDD workshop
explained it this way: ‘‘Once we started to work together to create examples, I
started to care about the work we were doing. I finally understood what we were
building and why. Even more importantly, I knew that the whole team understood
what we were trying to accomplish. Suddenly we all had the same goal---we were all
on the same team.’’

ATDD helps us not only to know when we’re done, but also to know when
we’re making progress. As we automate each test and write the software that passes

xiii



xiv Foreword

the test (and all of the previous tests), the examples serve as signposts along the
road to completion. And because each example describes a responsibility that
customers value, we can have confidence that not only are we making progress,
we’re making progress that matters.

Okay, I’ve listed a few of ATDD’s key features and a few of its key benefits.
That’s the easy part. As for the heavy lifting: How do you actually do this stuff
so that it works in the real world? I’ll leave that to Markus Gärtner. In ATDD by
Example, Markus rolls up his sleeves and not only tells you but shows you how
ATDD works in practice. He lets you peek over the shoulders and into the minds
of testers, programmers, and business experts as they apply the principles and
practices of ATDD.

I offer one caveat as you read this book: The first few chapters---in which we
follow business expert Bill, tester Tony, and programmers Phyllis and Alex as they
describe and implement a small software system---may seem at first glance to be
overly simple, or even simplistic. Don’t be fooled by that appearance. There is a
lot going on in these chapters. This is a skilled team, and some of their skills are
subtle. Notice, for example, that in the requirements workshop the team members
avoid any mention of technology. They focus entirely on the system’s business
responsibilities. And notice that as Alex and Tony automate the first few tests,
Tony makes good use of his lack of programming experience. Whenever he is
confused by some technical detail, he asks Alex to explain, and then works with
Alex to edit the code so that the code explains itself. And notice how frequently
Alex insists on checking the tests into the source control system---but only when
the code is working. If you’re new to ATDD, these skills may not be obvious, but
they’re essential to success.

Fortunately, all you need to do to learn about these subtle skills is to keep
reading. Markus pauses frequently to explain what the team is doing and why.
At the end of each chapter he summarizes how the team worked together, what
they were thinking, and the practices they applied. And in the final portion of the
book, Markus brings it all together by describing in detail the principles that make
ATDD work.

ATDD by Example is a great introduction to Acceptance Test-Driven Develop-
ment. It also offers a fresh perspective for people like me who have been practicing
ATDD for a while. Finally, it is a book that rewards multiple readings. So read,
practice, and read again. You’ll learn something new and useful each time.

---Dale Emery



Preface

In this book I give an entry-level introduction to the practice that has become
known as Acceptance Test-Driven Development---or ATDD. When I first came
across the term ATDD in 2008, I assumed that it was artificial and unnecessary. It
seemed superfluous to me as I had learned test-driven development in 2008 and
found it sufficient. In the end, why would I need to test for acceptance criteria?

‘‘Time wounds all heels” [Wei86]. So, four years later I find myself writing
a book on what has become known as Acceptance Test-Driven Development.
Throughout 2009 I ran into Gojko Adzic, who had just finished his book Bridging
the Communication Gap [Adz09]. He gave me a copy of that book, and I
immediately started to read it on my way back from London. Once I had finished
it, I had a good understanding about what ATDD is and why we should avoid that
name.

But why did I still use the name ATDD by Example for the paper stack you
hold in your hands?1

On the Name
ATDD has been around for some time now. It is known by different terms. Here
is an incomplete list:

• Acceptance Test-Driven Development

• Behavior-Driven Development (BDD)

• Specification by Example

• Agile Acceptance Testing

• Story Testing

1. Or, why did I use the particular arrangement of 1s and 0s that displays as ‘‘ATDD by Example’’
on your electronic device?
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From my perspective, any of these names comes with a drawback. Acceptance
Test-Driven Development creates the notion that we are finished with the iteration
once the acceptance tests pass. This is not true, because with any selection of tests,
the coverage is incomplete. There are gaps in the net of tests. In the testing world,
this is well known as the impossibility to test everything. Instead we know exactly
we are not finished when an acceptance test fails---as Michael Bolton put it.

Despite arguing for one name or another, I decided to put a selection of
possible alternatives here and have the readers decide which fits best their need.
In the end it does not matter to me what you call it, as long as it’s working for
you. The world of software development is full of misleading terms and probably
will stay so for some more years. Software engineering, test automation, test-driven
development are all misleading in one way or another. As with any abstraction,
don’t confuse the name for the thing. The expert knows the limitations of the name
of the approach.

But why have there been different names for a similar approach? The practices
you use may very well differ. Having visited and consulted multiple teams in
multiple companies on ATDD, they all have one thing in common: Each team is
different from the others. While one practice might work for your team in your
current company, it might fail dramatically in another. Have you ever wondered
about the answer ‘‘it depends” from a consultant? This is the source of it.

For his book Specification by Example [Adz11], Gojko Adzic interviewed more
than fifty teams that apply ATDD in one form or another. What he found is a
variety of practices accompanying the ATDD approach. All of the teams that apply
ATDD successfully start with a basic approach, then revisit it after some time,
and adapt some changes in order to fit their particular context. Starting with a
lightweight process and adapting new things as you find problems is a very agile
way of implementing any approach. As you apply ATDD, keep in mind that your
first set of practices is unlikely to solve all your problems. Over time you will adapt
the solution process as you gain more and more experience.

Why Another Book on ATDD?
While Gojko describes many patterns of successful ATDD implementations, I
found there is a major gap in the books on ATDD up until now. There is a
considerable difference between advanced adopters of a skill or approach and
entry-level demands for the same skill or approach.

When going through the literature on ATDD, I found several books that
explain ATDD on an advanced level by referring to principles. For an advanced
learner, it is easy to apply principles in their particular context. However, this does
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not hold for a novice on the same topic. A novice needs more concrete directions
in order to get started. Once a person gains experience with the basics, he or she
can start to break free from the hard constraints of the approach.

Novices learn best by following a recipe, but by no means is this book a
cookbook on ATDD. With the examples in this book, I provide two working
approaches to ATDD and expose the thought processes of the people involved.
The novice learner can use these to get started with ATDD on her team. As we go
along, I provide pointers to more in-depth material.

The basic idea is taken from Kent Beck’s Test-Driven Development: By Example
[Bec02]. Beck provides two working examples on Test-Driven Development and
explains some of the principles behind it in the end. It is intended as an entry-level
description of TDD and provides the novice with enough learning material to get
started---assuming that through reflection and practice TDD can be learned. The
same holds true to some degree for this book as well.

Vocabulary
Throughout the book I will use several terms from the Agile software development
world. Realizing that not everyone knows about Agile software development, a
brief introduction of some terms is in place.

Product Owner In the Agile method Scrum three roles are defined: the develop-
ment team, the ScrumMaster, and the Product Owner. The Product Owner
is responsible for the success of the product that the team will build. He or
she sets priorities for the features that the team will be implementing and
works together with other stakeholders to derive them. He or she is also
the customer representative for the team and decides about details in that
function---and has to negotiate with the other stakeholders about this.

Iteration, or Sprint Agile development relies on a regular cycle called the iteration
or Sprint in Scrum. These are short bursts where the team implements a
single product increment that is potentially shippable. Common iteration
lengths vary between one and four weeks.

User Story A user story is a limited set of functionality that the team feels com-
fortable implementing over the course of a single iteration. These are tiny
slices through the functionality. Usually a team strives to implement several
user stories in one iteration. The business representative or product owner
is responsible for defining these stories.

Taskboard Most Agile teams plan their work on a board visually accessible to
anyone. They use cards to indicate what they are working on. The taskboard
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usually has several columns, at least ToDo, Doing, and Done. As the work
proceeds, the team updates the taskboard to reflect this.

Story Card User stories are usually written on real cards. During the iteration, the
cards are put onto the team’s taskboard.

Standup Meeting, Daily Scrum At least once per day team members update them-
selves on the current state of the iteration. The team gets together for 15
minutes and discusses how they can finish currently open tasks until the end
of the iteration.

Product Backlog, Sprint Backlog The Product Owner in Scrum organizes unim-
plemented stories in a product backlog. He or she is responsible for updating
the backlog whenever new requirements enter. When the team gets together
to plan the next sprint, the team members identify a backlog for the next
sprint length. This is called the Sprint Backlog. The selected stories from
the Product Backlog automatically become part of the Sprint Backlog. The
Sprint Backlog is most often organized on the taskboard after the planning
meeting.

Refactoring Refactoring is changing the structure of the source code without
changing what it does. Usually I refactor code before introducing changes.
By refactoring my code I make the task of implementing the upcoming
changes more easy.

Test-Driven Development (TDD) In test-driven development you write one single
test that fails, write just enough code that makes this failing test pass (and
all the other passing tests still pass), and then refactor your code to prepare
it for the next tiny step. TDD is a design approach, and it helps users write
better code, because testable code is written by default.

Continuous Integration (CI) In Continuous Integration you integrate the changes
in the source code often. A build server then builds the whole branch,
executes all unit tests and all acceptance tests, and spreads the information
about this build to your colleagues. CI relies on an automated build, and
it helps teams to see problems with the current state of the branch very
early---not just one hour before the release shall be shipped.

How to Read This Book
In this book I provide a mixture of concrete practices alongside some of the
principles that I found useful. There are multiple ways to read this book---depending
on your experience level you may pick any of them.
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You may read this book cover to cover. You will get to know more about
Cucumber, Behavior-Driven Development and how to test webpages using an
ATDD tool. The first example is also based on a team that differentiates between
testing experts and programming experts. You will find collaboaration as one key
success factor there.

In the second part I will pair up with you. By pairing up we can compensate
for any missing testing or programming knowledge at this point. We will drive
our application code using ATDD in a practical way. We will deal with FitNesse,
a wiki-based acceptance test framework. The examples in the second part are
covered in Java.

In the third part you will find some guidance on how to get started with the
approach. I give pointers to further readings as well as hints on how to get started,
what worked well, and what did not work so well for other teams.

In the appendixes you will find the two tools used in this book and even a third
one explained in some depth to get you started. If you haven’t run into Cucumber
or FitNesse, you may want to start there.

An advanced-level reader might skip the first two parts initially and directly
start with the principles I explain in the third part. Maybe you want to provide
some background to your colleagues later. The examples in Parts I and II serve
this purpose.

You may also read the first two examples, and then head back to work to start
a basic implementation. Once you reach a dead end, you may come back to read
further material in Part III---although I wouldn’t necessarily recommend reading
this book in this order.

If you already have an ATDD implementation in place on your team, you may
want to dig deeper in Part II where I explain how to drive the domain code from
your examples.

These are some ways in which I can imagine reading this book. If you’re like me,
you’re probably thinking of following the examples by implementing the provided
code on your own. I set up a github repository for each of the code examples. These
allowed me to acceptance test the code examples on my own. If you find yourself
stuck, you can have a peek there as well. You will find the examples for the first
part at http://github.com/mgaertne/airport, and the sources for the second part at
http://github.com/mgaertne/trafficlights.

http://github.com/mgaertne/airport
http://github.com/mgaertne/trafficlights
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Chapter 4

Wish and Collaborate

After this short iteration we will take a step back and reflect briefly. The
functionality of the airport parking lot calculator was developed. Before the
iteration started, the team discussed the requirements for the application that they
should build. The format they used was a specification workshop [Adz09, Adz11].
The team identified different parking lots, and in that conversation they noted
examples for different parking durations and the costs respectively.

After the examples were clear to the team, they started to work on the
functionality. This particular team seems to work in parallel on coding and testing
tasks. The tester wrote down the first example for the automation. After that he
worked his way through the framework until he got stuck with the automation. You
may recall that Tony started with a happy path example. When automating your
examples, this is essential because it forces you to get the implementation correct
right from the start before fiddling with too many details and corner conditions.
The first example will provide insights about the necessary user interface for the
end user. Starting from this basis, you can extend the examples in multiple
directions. It does not really matter which happy path example you start with, if
you apply responsive design techniques and object-oriented design. In this example
there wasn’t much magic happening to the automation code, but there are some
possible evolution points for this code. For one example all the dates seem to
cluster around one particular date. In a future version of the automation code you
may want to vary this, maybe leaving the calculation of particular durations to a
helper class like a DurationFactory, which calculates randomized starting dates.

One important thing happened when Tony got up and walked over to a
programmer, maybe the most important thing about successful test automation. A
tester and a programmer collaborating in order to achieve the team goal of test
automation provides great value when introducing the ATDD approach. Despite
leaving Tony alone with the task to automate the tests, Alex offers him full support
for the first test. Tony learned from Alex some of the underlying design principles
and how to treat code to keep it readable and maintainable. Over time Tony got
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more and more familiar with test automation code. This enabled him to proceed
with the automation code.

Let’s take a look at each of the three elements we saw here: specification
workshops, wishful thinking, and collaboration.

Specification Workshops
In specification workshops teams discuss the stories for upcoming iterations. At first
specification workshops appeared to me as a waterfall approach to requirements.
Programmers and testers get together with some business representative to nail
down requirements. But there are more benefits for agile teams to hold these
workshops.

Getting everyone involved helps build a common language for the project. Eric
Evans calls this language the ubiquitous language [Eva03]. When programmers,
testers, and business people get their heads together to reach a common under-
standing about the project, they can sort out many misunderstandings before these
blow up the whole project.

A workshop can help the whole team reach that shared understanding. There
are some things you will have to keep in mind in order to make these workshops a
success for everyone---regardless of whether they may be participating.

First of all, you should not waste the time of your business representatives. If
you invite an expert user to your specification workshop, everyone in the room
should respect the precious time of this person. A business representative could be
a ProductOwner, a real user, or a subject matter expert for the application domain.
If your team starts to discuss the latest technology at such a workshop, the business
representative is probably going to reject your invitation the next time. At that
point you will have lost crucial information for your application.

Pre-select some stories from your backlog. If you know which stories you will
most likely implement in the near future, you can sort them out. If you end up with
a list of stories that is probably too large to discuss in your allotted time for the
workshop, then you have to cut it further.

For stories where the business flow seems obvious or straightforward to you,
you can prepare data and bring those to the workshop. The business representative
will value your engagement in the project and the easier stories. By preparing
examples, you will also help keep the businessperson engaged and seeing the
advantages of these workshops.

During the workshop it is crucial to ask clarifying questions. You can prepare
yourself by going through the stories with your team and collecting open questions
for the moment. Over time you may gain experience to come up more spontaneously
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with clarifying questions, but initially you may need full team feedback for the
stories.

Finally, one element I consider mandatory for any meeting or workshop is
visualization. Rather than leaving the discussion abstract, note down what you
understand and ask for agreement based on your notes. You can do this publicly
on a flipchart, or take notes on paper and share them around the table. For larger
meetings I prefer flipcharts, while in a setting of three participants as in this first
example, a piece of paper will suffice.

If your customer is located in a completely different country or timezone,
you may want to try a different multimedia setting. With instant messaging and
screen-sharing tools around, you can easily collaborate even if you are not in the
same room with the whole team. However, you should set some preparation time
aside to get these tools set up before the meeting.

Wishful Thinking
A vital implementation of acceptance test-driven development includes at least two
spoonfuls of wishful thinking. In the example at the Major International Airport
Corp. we saw Tony implementing the tests without any previous knowledge about
details of the parking cost calculator.

Instead, Tony applied wishful thinking in order to automate the examples
that the team had identified in the workshop. Tony avoided considering the
available user interface. Instead, he used the interface he wished he would have.
The examples clearly stated that there are different durations to be considered for
different parking costs. The entry and exit dates did not play a role when writing
down the examples with the business expert. Tony didn’t clutter up his examples
with these unnecessary details.

Instead of programming against a real user interface, abstract from the GUI
to the business cases behind your examples. As Tony demonstrated, consider that
you could have any interface for your tests. Dale Emery recommended writing your
tests as if you already have the interface you wish you had. Use the most readable
interface to automate your examples. If you hook your automation code to the
application under test, you may find out that you have to write a lot of code to
get the application automated. If you listen to your tests [FP09], you will find that
your application needs a different interface---at least for your automated tests.

Wishful thinking is especially powerful if you can apply it before any code is
written. At the time you start implementing your production code, you can discover
the interface your application needs in order to be testable. In our example, we saw
that Tony and Alex started their work in parallel. The interface that Alex designed



50 Chapter 4 Wish and Collaborate

is sufficient for the discussed examples, but the lack of input parking durations
directly forces the need for more test automation code.

The translation between parking durations and entry and exit dates and times
is simple in this example. You may have noticed that all the examples start on the
same date. Most testers and programmers faced with these hard-coded values feel
uneasy about it. While it takes little effort to generate parking duration on the fly
while the tests execute, the amount and complexity of support code would rise. As
a software developer, I would love to write unit tests for this complex code and
drive the implementation of the support code using test-driven development.

The translation between durations, entry and exit dates and times is an early
sign that something might be wrong. Maybe the user interface is wrong. But as a
customer at an airport, I would probably like to input my departure and arrival
dates and times. So, the user interface seems to be correct based on the goal of the
potential customers.

Another option could be that the tests point to a missing separation of concerns.
Currently, the calculator calculates the parking duration first, and after that the
parking costs. The cost calculation could be extracted from the code, so that it
becomes testable separately without the need to drive the examples through the
user interface.

In the end, your tests make suggestions for your interface design. This applies
to unit tests as well as acceptance tests. When testers and programmers work in
isolation, a more problematic interface for test automation can manifest itself than
when both programmers and testers work together on that problem.

Collaboration
In the story of the Major International Airport Corp. we saw collaboration
on multiple levels. Tony, the tester, joined the workshop together with Bill, the
business expert, and Phyllis, the programmer. Later, while automating the examples
they had identified in the workshop, Tony worked together with Alex.

Collaboration is another key ingredient to a successful ATDD approach.
Consider what would happen if Tony worked out the examples by himself. He
probably could have caught many problems within the software. These defects
would have been bounced back and forth between Tony and the programmers---
eventually getting both upset. In the end, when the product finally was delivered, the
customer would have been unhappy about the misinterpreted corner conditions.

If this sounds familiar to you, consider a project that starts with a workshop.
In this workshop most ambiguities would be settled between the programmers and
the testers. The remaining questions would get answered before the team starts
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to work on the implementation. Since the examples express the requirements for
the software, the team knows exactly when it has finished the implementation.
There is some back and forth between testers and programmers. The programmers
eventually find out about the value the automated examples bring them if they
execute them before checking in their code to the version control system. In the
end, the project delivers on time and with no problems.

To most teams new to acceptance test-driven development this may sound like
a fairy tale. But there are many success stories of successful software delivery using
an approach like ATDD in combination with other agile practices like refactoring,
test-driven development (TDD), continuous integration, and the whole team
approach. The combination of technical excellence on one hand and teamwork on
the other hand seems to be a magic ingredient.

I also apply collaboration when automating tests. After all, test automation
is software development and therefore, I want to apply all the practices and
techniques that I also apply to production code. Most of the time I even take more
care implementing support code for my tests than I take care for the production
code. This means that I apply test-driven development, refactoring, and continuous
integration to the support code as well.

Tony worked with Cucumber before he could get started with the support
code. But he clearly did not have the expertise to finish the test automation code all
on his own. When he noticed that he was stuck, he stopped work, and approached
that team member that could help him and had the expertise with programming.
Most teams new to ATDD confuse the collaboration aspect with the need for every
tester to code. It makes the life of testers easier if they can work independently
from programmers on tests and test automation, though. That’s why over time
testers start to learn more and more tricks to automate their tests, but this is not a
precondition. It is rather an outcome and a side effect in the long term.

Once I taught the approach to testers at a medical supplier. The testers were
former nurses and had no technical education at all. Up to that point they tested the
application manually. The programmers pushed forward for more test automation,
but lacked the domain expertise the testers had. They agreed on an approach where
the testers would get started with the examples, and the programmers would write
most of the support code to get the examples automated.

Lack of programming knowledge does not mean that you cannot get started
with the approach. Besides pen and paper, Tony didn’t need anything at all to get the
examples down and use them as a communication device. In fact, most teams should
start with such an approach, not automating the examples at all. The enhanced
communication already improves the development process. You won’t get the full
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benefits of applying the whole approach, but the improved communication and
collaboration will get you started. This comes in handy especially if you deal with a
legacy code base that is not (yet) prepared to deal with automation code.

Summary
Specification workshops, wishful thinking, and collaboration add so much to your
overall testing concert. First, to make sure that your team builds the right thing,
you talk to your customer. By working closely together on the acceptance criteria
you form a ubiquitous understanding in your team.

Starting from the business user goals, you apply wishful thinking to form
the API that you wished your application had. You build your automated tests
then against this API that will support all the testability functions that you will
need. Your application becomes testable with automated tests by definition and at
the same time you make sure that your tests don’t get too coupled to the actual
implementation of the user interface.

Finally, a thing we all need to remember from time to time is we are not alone
in software development. That means that we may work together with others for
support when our work gets tough. This especially holds true when you work on
a team that is new to agile development and consists of many specialists. In order
to perform on a higher level, you will need to work with your teammates to learn
some of their special skills. Over time you will be able to compensate for vacation
times and sick leaves if you can replace each other.
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