


ATDD by Example



The Addison-Wesley Signature Series provides readers with practical and 

authoritative information on the latest trends in modern technology for computer 

professionals. The series is based on one simple premise: Great books come 

from great authors. Titles in the series are personally chosen by expert advisors, 

world-class authors in their own right. These experts are proud to put their 

signatures on the covers, and their signatures ensure that these thought leaders 

have worked closely with authors to defi ne topic coverage, book scope, critical 

content, and overall uniqueness. The expert signatures also symbolize a promise 

to our readers: You are reading a future classic.

Visit informit.com/awss for a complete list of available products.

The Addison-Wesley Signature Series
Kent Beck, Mike Cohn, and Martin Fowler, Consulting Editors

Make sure to connect with us!
informit.com/socialconnect



ATDD by Example

A Practical Guide to Acceptance
Test-Driven Development

Markus Gärtner

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City



Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Gärtner, Markus, 1979-
ATDD by example / Markus Gärtner.

p. cm.
Includes bibliographical references and index.
ISBN-10: 0-321-78415-4 (pbk. : alk. paper)
ISBN-13: 978-0-321-78415-5 (pbk. : alk. paper)
1. Agile software development -- Case studies. 2. Automation. 3. Systems engineering. I. Title.
QA76.76.D47G374 2013
005.1---dc23 2012016163

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-78415-5
ISBN-10: 0-321-78415-4
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, July 2012



To my wife Jennifer, my pet-son Leon, and our daughter Katrin,
who allowed me to spend way too little time

with them while writing this.



This page intentionally left blank 



Contents

Foreword by Kent Beck xi

Foreword by Dale Emery xiii

Preface xv

Acknowledgments xxi

About the Author xxiii

Part I Airport Parking Lot 1

1 Parking Cost Calculator Workshop 3
Valet Parking 3

Short-Term Parking 5

Economy and Long-Term Parking 6

Essential Examples 9

Summary 12

2 Valet Parking Automation 17
The First Example 18

Pairing for the First Test 25
Initializers 26
Checking the Results 31

Tabulated Tests 36

Summary 39

3 Automating the Remaining Parking Lots 41
Short-Term Parking Lot 41

Economy Parking Lot 44

Summary 46 vii



viii Contents

4 Wish and Collaborate 47
Specification Workshops 48

Wishful Thinking 49

Collaboration 50

Summary 52

Part II Traffic Light Software System 53

5 Getting Started 55
Traffic Lights 55

FitNesse 58

Supporting Code 59

Summary 60

6 Light States 61
State Specifications 61

The First Test 62

Diving into the Code 66

Refactoring 70
Packages 71
The LightState Enum 71
Editing LightStates 78

Summary 90

7 First Crossing 93
Controller Specifications 93

Driving the Controller 94
Refactoring 103

Summary 118

8 Discover and Explore 119
Discover the Domain 120

Drive the Production Code 121

Test Your Glue Code 122



Contents ix

Value Your Glue Code 124

Summary 125

Part III Principles of Acceptance Test-Driven Development 127

9 Use Examples 129
Use a Proper Format 130

Behavior-Driven Development 132
Tabulated Formats 133
Keyword-Driven Automation 137
Glue Code and Support Code 139
The Right Format 140

Refine the Examples 142
Domain Testing 143
Boundary Values 144
Pairwise Testing 145

Cut Examples 146

Consider Gaps 149
Build Your Testing Orchestra 150

Summary 151

10 Specify Collaboratively 153
Meet the Power of Three 153

Hold Workshops 155
Participants 156
Goal of the Workshop 156
Frequency and Duration 157

Trawl Requirements 158

Summary 159

11 Automate Literally 161
Use Friendly Automation 162

Collaborate on Automation 164

Discover the Domain 166

Summary 167



x Contents

12 Test Cleanly 169
Develop Test Automation 170

Listen to the Tests 172

Refactor Tests 176
Extract Variable 178
Extract Keyword 179

Summary 180

13 Successful ATDD 183

Appendix A Cucumber 187
Feature Files 187

Step Definitions 188

Production Code 189

Appendix B FitNesse 191
Wiki Structure 191

SLiM Tables 192

Support Code 193

Appendix C Robot Framework 195
Sections 195

Library Code 199

References 201

Index 205



Foreword
by Kent Beck

There is a curious symmetry to the way this book presents Acceptance Test-
Driven Development and the way software is developed with ATDD. Just as there
is an art to picking the specific examples of program behavior that will elicit the
correct general behavior for the system, there is an art to picking specific examples
of a programming technique like ATDD to give you, the reader, a chance to learn
the technique for yourself. Markus has done an admirable job in selecting and
presenting examples.

To read this book you will need to read code. If you follow along, you will
have the opportunity to learn the shift in thinking that is required to succeed with
ATDD. That shift is, in short, to quickly go from, ‘‘Here’s a feature I’d like,” to
‘‘How are we going to test that? Here’s an example.” Reading the examples, you
will see, over and over, what that transition looks like in various contexts.

What I like about this code-centric presentation is the trust it shows in your
powers of learning. This isn’t ‘‘12 Simple Rules for Testing Your Web App” printed
on intellectual tissue paper that falls apart at first contact with the moisture of
reality. Here you will read about concrete decisions made in concrete contexts,
decisions that you could (and that, if you want to get the most out of this book, you
will) disagree with, debate, and decide for yourself.

The latter portions of the book do draw general conclusions, summarizing the
principles at work in the examples. If you are someone who learns more efficiently
when you are familiar with general concepts, that will be a good place to start.
Regardless, what you get out of this book is directly proportional to the investment
you are willing to make in following the examples.

One of the weaknesses of TDD as originally described is that it can devolve into
a programmer’s technique used to meet a programmer’s needs. Some programmers

xi



xii Foreword

take a broader view of TDD, facilely shifting between levels of abstraction for
their tests. However, with ATDD there is no ambiguity---this is a technique for
enhancing communication with people for whom programming languages are
foreign. The quality of our relationships, and the communication that underlies
those relationships, encourages effective software development. ATDD can be used
to take a step in the direction of clearer communication, and ATDD by Example is
a thorough, approachable introduction.

---Kent Beck



Foreword
by Dale Emery

Too many software projects fail to deliver what their customers request. Over
the years, I’ve heard scores of project customers explain the failures: The developers
don’t pay attention to what we ask them to build. And I’ve heard hundreds of
developers explain the failures: The customers don’t tell us what they want. Most of
the time they don’t even know what they want.

I’ve observed enough projects to come to a different conclusion: Describing
a software system’s responsibilities is hard. It requires speaking and listening
with precision that is rare---and rarely so necessary---in normal human interactions.
Writing good software is hard. Testing software well is hard. But the hardest job in
software is communicating clearly about what we want the system to do.

Acceptance Test-Driven Development (ATDD) helps with the challenge. Using
ATDD, the whole team collaborates to gain clarity and shared understanding
before development begins. At the heart of ATDD are two key practices: Before
implementing each feature, team members collaborate to create concrete examples
of the feature in action. Then the team translates these examples into automated
acceptance tests. These examples and tests become a prominent part of the team’s
shared, precise description of ‘‘done’’ for each feature.

What is shared understanding worth? One developer at an ATDD workshop
explained it this way: ‘‘Once we started to work together to create examples, I
started to care about the work we were doing. I finally understood what we were
building and why. Even more importantly, I knew that the whole team understood
what we were trying to accomplish. Suddenly we all had the same goal---we were all
on the same team.’’

ATDD helps us not only to know when we’re done, but also to know when
we’re making progress. As we automate each test and write the software that passes

xiii



xiv Foreword

the test (and all of the previous tests), the examples serve as signposts along the
road to completion. And because each example describes a responsibility that
customers value, we can have confidence that not only are we making progress,
we’re making progress that matters.

Okay, I’ve listed a few of ATDD’s key features and a few of its key benefits.
That’s the easy part. As for the heavy lifting: How do you actually do this stuff
so that it works in the real world? I’ll leave that to Markus Gärtner. In ATDD by
Example, Markus rolls up his sleeves and not only tells you but shows you how
ATDD works in practice. He lets you peek over the shoulders and into the minds
of testers, programmers, and business experts as they apply the principles and
practices of ATDD.

I offer one caveat as you read this book: The first few chapters---in which we
follow business expert Bill, tester Tony, and programmers Phyllis and Alex as they
describe and implement a small software system---may seem at first glance to be
overly simple, or even simplistic. Don’t be fooled by that appearance. There is a
lot going on in these chapters. This is a skilled team, and some of their skills are
subtle. Notice, for example, that in the requirements workshop the team members
avoid any mention of technology. They focus entirely on the system’s business
responsibilities. And notice that as Alex and Tony automate the first few tests,
Tony makes good use of his lack of programming experience. Whenever he is
confused by some technical detail, he asks Alex to explain, and then works with
Alex to edit the code so that the code explains itself. And notice how frequently
Alex insists on checking the tests into the source control system---but only when
the code is working. If you’re new to ATDD, these skills may not be obvious, but
they’re essential to success.

Fortunately, all you need to do to learn about these subtle skills is to keep
reading. Markus pauses frequently to explain what the team is doing and why.
At the end of each chapter he summarizes how the team worked together, what
they were thinking, and the practices they applied. And in the final portion of the
book, Markus brings it all together by describing in detail the principles that make
ATDD work.

ATDD by Example is a great introduction to Acceptance Test-Driven Develop-
ment. It also offers a fresh perspective for people like me who have been practicing
ATDD for a while. Finally, it is a book that rewards multiple readings. So read,
practice, and read again. You’ll learn something new and useful each time.

---Dale Emery



Preface

In this book I give an entry-level introduction to the practice that has become
known as Acceptance Test-Driven Development---or ATDD. When I first came
across the term ATDD in 2008, I assumed that it was artificial and unnecessary. It
seemed superfluous to me as I had learned test-driven development in 2008 and
found it sufficient. In the end, why would I need to test for acceptance criteria?

‘‘Time wounds all heels” [Wei86]. So, four years later I find myself writing
a book on what has become known as Acceptance Test-Driven Development.
Throughout 2009 I ran into Gojko Adzic, who had just finished his book Bridging
the Communication Gap [Adz09]. He gave me a copy of that book, and I
immediately started to read it on my way back from London. Once I had finished
it, I had a good understanding about what ATDD is and why we should avoid that
name.

But why did I still use the name ATDD by Example for the paper stack you
hold in your hands?1

On the Name
ATDD has been around for some time now. It is known by different terms. Here
is an incomplete list:

• Acceptance Test-Driven Development

• Behavior-Driven Development (BDD)

• Specification by Example

• Agile Acceptance Testing

• Story Testing

1. Or, why did I use the particular arrangement of 1s and 0s that displays as ‘‘ATDD by Example’’
on your electronic device?

xv



xvi Preface

From my perspective, any of these names comes with a drawback. Acceptance
Test-Driven Development creates the notion that we are finished with the iteration
once the acceptance tests pass. This is not true, because with any selection of tests,
the coverage is incomplete. There are gaps in the net of tests. In the testing world,
this is well known as the impossibility to test everything. Instead we know exactly
we are not finished when an acceptance test fails---as Michael Bolton put it.

Despite arguing for one name or another, I decided to put a selection of
possible alternatives here and have the readers decide which fits best their need.
In the end it does not matter to me what you call it, as long as it’s working for
you. The world of software development is full of misleading terms and probably
will stay so for some more years. Software engineering, test automation, test-driven
development are all misleading in one way or another. As with any abstraction,
don’t confuse the name for the thing. The expert knows the limitations of the name
of the approach.

But why have there been different names for a similar approach? The practices
you use may very well differ. Having visited and consulted multiple teams in
multiple companies on ATDD, they all have one thing in common: Each team is
different from the others. While one practice might work for your team in your
current company, it might fail dramatically in another. Have you ever wondered
about the answer ‘‘it depends” from a consultant? This is the source of it.

For his book Specification by Example [Adz11], Gojko Adzic interviewed more
than fifty teams that apply ATDD in one form or another. What he found is a
variety of practices accompanying the ATDD approach. All of the teams that apply
ATDD successfully start with a basic approach, then revisit it after some time,
and adapt some changes in order to fit their particular context. Starting with a
lightweight process and adapting new things as you find problems is a very agile
way of implementing any approach. As you apply ATDD, keep in mind that your
first set of practices is unlikely to solve all your problems. Over time you will adapt
the solution process as you gain more and more experience.

Why Another Book on ATDD?
While Gojko describes many patterns of successful ATDD implementations, I
found there is a major gap in the books on ATDD up until now. There is a
considerable difference between advanced adopters of a skill or approach and
entry-level demands for the same skill or approach.

When going through the literature on ATDD, I found several books that
explain ATDD on an advanced level by referring to principles. For an advanced
learner, it is easy to apply principles in their particular context. However, this does



Preface xvii

not hold for a novice on the same topic. A novice needs more concrete directions
in order to get started. Once a person gains experience with the basics, he or she
can start to break free from the hard constraints of the approach.

Novices learn best by following a recipe, but by no means is this book a
cookbook on ATDD. With the examples in this book, I provide two working
approaches to ATDD and expose the thought processes of the people involved.
The novice learner can use these to get started with ATDD on her team. As we go
along, I provide pointers to more in-depth material.

The basic idea is taken from Kent Beck’s Test-Driven Development: By Example
[Bec02]. Beck provides two working examples on Test-Driven Development and
explains some of the principles behind it in the end. It is intended as an entry-level
description of TDD and provides the novice with enough learning material to get
started---assuming that through reflection and practice TDD can be learned. The
same holds true to some degree for this book as well.

Vocabulary
Throughout the book I will use several terms from the Agile software development
world. Realizing that not everyone knows about Agile software development, a
brief introduction of some terms is in place.

Product Owner In the Agile method Scrum three roles are defined: the develop-
ment team, the ScrumMaster, and the Product Owner. The Product Owner
is responsible for the success of the product that the team will build. He or
she sets priorities for the features that the team will be implementing and
works together with other stakeholders to derive them. He or she is also
the customer representative for the team and decides about details in that
function---and has to negotiate with the other stakeholders about this.

Iteration, or Sprint Agile development relies on a regular cycle called the iteration
or Sprint in Scrum. These are short bursts where the team implements a
single product increment that is potentially shippable. Common iteration
lengths vary between one and four weeks.

User Story A user story is a limited set of functionality that the team feels com-
fortable implementing over the course of a single iteration. These are tiny
slices through the functionality. Usually a team strives to implement several
user stories in one iteration. The business representative or product owner
is responsible for defining these stories.

Taskboard Most Agile teams plan their work on a board visually accessible to
anyone. They use cards to indicate what they are working on. The taskboard



xviii Preface

usually has several columns, at least ToDo, Doing, and Done. As the work
proceeds, the team updates the taskboard to reflect this.

Story Card User stories are usually written on real cards. During the iteration, the
cards are put onto the team’s taskboard.

Standup Meeting, Daily Scrum At least once per day team members update them-
selves on the current state of the iteration. The team gets together for 15
minutes and discusses how they can finish currently open tasks until the end
of the iteration.

Product Backlog, Sprint Backlog The Product Owner in Scrum organizes unim-
plemented stories in a product backlog. He or she is responsible for updating
the backlog whenever new requirements enter. When the team gets together
to plan the next sprint, the team members identify a backlog for the next
sprint length. This is called the Sprint Backlog. The selected stories from
the Product Backlog automatically become part of the Sprint Backlog. The
Sprint Backlog is most often organized on the taskboard after the planning
meeting.

Refactoring Refactoring is changing the structure of the source code without
changing what it does. Usually I refactor code before introducing changes.
By refactoring my code I make the task of implementing the upcoming
changes more easy.

Test-Driven Development (TDD) In test-driven development you write one single
test that fails, write just enough code that makes this failing test pass (and
all the other passing tests still pass), and then refactor your code to prepare
it for the next tiny step. TDD is a design approach, and it helps users write
better code, because testable code is written by default.

Continuous Integration (CI) In Continuous Integration you integrate the changes
in the source code often. A build server then builds the whole branch,
executes all unit tests and all acceptance tests, and spreads the information
about this build to your colleagues. CI relies on an automated build, and
it helps teams to see problems with the current state of the branch very
early---not just one hour before the release shall be shipped.

How to Read This Book
In this book I provide a mixture of concrete practices alongside some of the
principles that I found useful. There are multiple ways to read this book---depending
on your experience level you may pick any of them.



Preface xix

You may read this book cover to cover. You will get to know more about
Cucumber, Behavior-Driven Development and how to test webpages using an
ATDD tool. The first example is also based on a team that differentiates between
testing experts and programming experts. You will find collaboaration as one key
success factor there.

In the second part I will pair up with you. By pairing up we can compensate
for any missing testing or programming knowledge at this point. We will drive
our application code using ATDD in a practical way. We will deal with FitNesse,
a wiki-based acceptance test framework. The examples in the second part are
covered in Java.

In the third part you will find some guidance on how to get started with the
approach. I give pointers to further readings as well as hints on how to get started,
what worked well, and what did not work so well for other teams.

In the appendixes you will find the two tools used in this book and even a third
one explained in some depth to get you started. If you haven’t run into Cucumber
or FitNesse, you may want to start there.

An advanced-level reader might skip the first two parts initially and directly
start with the principles I explain in the third part. Maybe you want to provide
some background to your colleagues later. The examples in Parts I and II serve
this purpose.

You may also read the first two examples, and then head back to work to start
a basic implementation. Once you reach a dead end, you may come back to read
further material in Part III---although I wouldn’t necessarily recommend reading
this book in this order.

If you already have an ATDD implementation in place on your team, you may
want to dig deeper in Part II where I explain how to drive the domain code from
your examples.

These are some ways in which I can imagine reading this book. If you’re like me,
you’re probably thinking of following the examples by implementing the provided
code on your own. I set up a github repository for each of the code examples. These
allowed me to acceptance test the code examples on my own. If you find yourself
stuck, you can have a peek there as well. You will find the examples for the first
part at http://github.com/mgaertne/airport, and the sources for the second part at
http://github.com/mgaertne/trafficlights.

http://github.com/mgaertne/airport
http://github.com/mgaertne/trafficlights


This page intentionally left blank 



Acknowledgments

A project such as this book would not be possible without the support of so
many helpers. First of all, I would like to thank Dale Emery, who provided me
great comments on my writing style. Being a non-native English writer, I really
appreciated the feedback I got from Dale.

A special thank you goes to Kent Beck. In August 2010 I approached him
on the topic of writing a book on ATDD following the approach he used in
TDD by Example. He also introduced me to Addison-Wesley and to Christopher
Guzikowski, who provided me all the support to get this book published.

Several people have provided me feedback on early drafts. For this feedback I
thank Lisa Crispin, Matt Heusser, Elisabeth Hendrickson, Brett Schuchert, Gojko
Adzic, George Dinwiddie, Kevin Bodie, Olaf Lewitz, Manuel Küblböck, Andreas
Havenstein, Sebastian Sanitz, Meike Mertsch, Gregor Gramlich, and Stephan
Kämper.

Last, but not least, I would like to thank my wife Jennifer and our children
Katrin and Leon for their support while writing this book. I hope to be able to
return the time you had to deal without a husband or a dad in the years to come.

xxi



This page intentionally left blank 



About the Author

Markus Gärtner works as an Agile tester, trainer,
coach, and consultant with it-agile GmbH, Ham-
burg, Germany. Markus, a student of the work
of Jerry Weinberg, founded the German Agile
Testing and Exploratory workshop in 2011 and
is one of the founders of the European chapter of
Weekend Testing. He is a black-belt instructor
in the Miagi-Do school of Software Testing and
contributes to the Agile Alliance FTT-Patterns
writing community, as well as the Software Crafts-
manship movement. Markus regularly presents at
Agile and testing conferences all over the globe, as
well as dedicating himself to writing about testing,
foremost in an Agile context. He maintains a per-
sonal blog at shino.de/blog. He teaches ATDD

and context-driven testing to customers in the Agile world. He has taught ATDD
to testers with a nontechnical background, as well as to several programmers.

xxiii



This page intentionally left blank 



Chapter 4

Wish and Collaborate

After this short iteration we will take a step back and reflect briefly. The
functionality of the airport parking lot calculator was developed. Before the
iteration started, the team discussed the requirements for the application that they
should build. The format they used was a specification workshop [Adz09, Adz11].
The team identified different parking lots, and in that conversation they noted
examples for different parking durations and the costs respectively.

After the examples were clear to the team, they started to work on the
functionality. This particular team seems to work in parallel on coding and testing
tasks. The tester wrote down the first example for the automation. After that he
worked his way through the framework until he got stuck with the automation. You
may recall that Tony started with a happy path example. When automating your
examples, this is essential because it forces you to get the implementation correct
right from the start before fiddling with too many details and corner conditions.
The first example will provide insights about the necessary user interface for the
end user. Starting from this basis, you can extend the examples in multiple
directions. It does not really matter which happy path example you start with, if
you apply responsive design techniques and object-oriented design. In this example
there wasn’t much magic happening to the automation code, but there are some
possible evolution points for this code. For one example all the dates seem to
cluster around one particular date. In a future version of the automation code you
may want to vary this, maybe leaving the calculation of particular durations to a
helper class like a DurationFactory, which calculates randomized starting dates.

One important thing happened when Tony got up and walked over to a
programmer, maybe the most important thing about successful test automation. A
tester and a programmer collaborating in order to achieve the team goal of test
automation provides great value when introducing the ATDD approach. Despite
leaving Tony alone with the task to automate the tests, Alex offers him full support
for the first test. Tony learned from Alex some of the underlying design principles
and how to treat code to keep it readable and maintainable. Over time Tony got

47



48 Chapter 4 Wish and Collaborate

more and more familiar with test automation code. This enabled him to proceed
with the automation code.

Let’s take a look at each of the three elements we saw here: specification
workshops, wishful thinking, and collaboration.

Specification Workshops
In specification workshops teams discuss the stories for upcoming iterations. At first
specification workshops appeared to me as a waterfall approach to requirements.
Programmers and testers get together with some business representative to nail
down requirements. But there are more benefits for agile teams to hold these
workshops.

Getting everyone involved helps build a common language for the project. Eric
Evans calls this language the ubiquitous language [Eva03]. When programmers,
testers, and business people get their heads together to reach a common under-
standing about the project, they can sort out many misunderstandings before these
blow up the whole project.

A workshop can help the whole team reach that shared understanding. There
are some things you will have to keep in mind in order to make these workshops a
success for everyone---regardless of whether they may be participating.

First of all, you should not waste the time of your business representatives. If
you invite an expert user to your specification workshop, everyone in the room
should respect the precious time of this person. A business representative could be
a ProductOwner, a real user, or a subject matter expert for the application domain.
If your team starts to discuss the latest technology at such a workshop, the business
representative is probably going to reject your invitation the next time. At that
point you will have lost crucial information for your application.

Pre-select some stories from your backlog. If you know which stories you will
most likely implement in the near future, you can sort them out. If you end up with
a list of stories that is probably too large to discuss in your allotted time for the
workshop, then you have to cut it further.

For stories where the business flow seems obvious or straightforward to you,
you can prepare data and bring those to the workshop. The business representative
will value your engagement in the project and the easier stories. By preparing
examples, you will also help keep the businessperson engaged and seeing the
advantages of these workshops.

During the workshop it is crucial to ask clarifying questions. You can prepare
yourself by going through the stories with your team and collecting open questions
for the moment. Over time you may gain experience to come up more spontaneously



Wishful Thinking 49

with clarifying questions, but initially you may need full team feedback for the
stories.

Finally, one element I consider mandatory for any meeting or workshop is
visualization. Rather than leaving the discussion abstract, note down what you
understand and ask for agreement based on your notes. You can do this publicly
on a flipchart, or take notes on paper and share them around the table. For larger
meetings I prefer flipcharts, while in a setting of three participants as in this first
example, a piece of paper will suffice.

If your customer is located in a completely different country or timezone,
you may want to try a different multimedia setting. With instant messaging and
screen-sharing tools around, you can easily collaborate even if you are not in the
same room with the whole team. However, you should set some preparation time
aside to get these tools set up before the meeting.

Wishful Thinking
A vital implementation of acceptance test-driven development includes at least two
spoonfuls of wishful thinking. In the example at the Major International Airport
Corp. we saw Tony implementing the tests without any previous knowledge about
details of the parking cost calculator.

Instead, Tony applied wishful thinking in order to automate the examples
that the team had identified in the workshop. Tony avoided considering the
available user interface. Instead, he used the interface he wished he would have.
The examples clearly stated that there are different durations to be considered for
different parking costs. The entry and exit dates did not play a role when writing
down the examples with the business expert. Tony didn’t clutter up his examples
with these unnecessary details.

Instead of programming against a real user interface, abstract from the GUI
to the business cases behind your examples. As Tony demonstrated, consider that
you could have any interface for your tests. Dale Emery recommended writing your
tests as if you already have the interface you wish you had. Use the most readable
interface to automate your examples. If you hook your automation code to the
application under test, you may find out that you have to write a lot of code to
get the application automated. If you listen to your tests [FP09], you will find that
your application needs a different interface---at least for your automated tests.

Wishful thinking is especially powerful if you can apply it before any code is
written. At the time you start implementing your production code, you can discover
the interface your application needs in order to be testable. In our example, we saw
that Tony and Alex started their work in parallel. The interface that Alex designed



50 Chapter 4 Wish and Collaborate

is sufficient for the discussed examples, but the lack of input parking durations
directly forces the need for more test automation code.

The translation between parking durations and entry and exit dates and times
is simple in this example. You may have noticed that all the examples start on the
same date. Most testers and programmers faced with these hard-coded values feel
uneasy about it. While it takes little effort to generate parking duration on the fly
while the tests execute, the amount and complexity of support code would rise. As
a software developer, I would love to write unit tests for this complex code and
drive the implementation of the support code using test-driven development.

The translation between durations, entry and exit dates and times is an early
sign that something might be wrong. Maybe the user interface is wrong. But as a
customer at an airport, I would probably like to input my departure and arrival
dates and times. So, the user interface seems to be correct based on the goal of the
potential customers.

Another option could be that the tests point to a missing separation of concerns.
Currently, the calculator calculates the parking duration first, and after that the
parking costs. The cost calculation could be extracted from the code, so that it
becomes testable separately without the need to drive the examples through the
user interface.

In the end, your tests make suggestions for your interface design. This applies
to unit tests as well as acceptance tests. When testers and programmers work in
isolation, a more problematic interface for test automation can manifest itself than
when both programmers and testers work together on that problem.

Collaboration
In the story of the Major International Airport Corp. we saw collaboration
on multiple levels. Tony, the tester, joined the workshop together with Bill, the
business expert, and Phyllis, the programmer. Later, while automating the examples
they had identified in the workshop, Tony worked together with Alex.

Collaboration is another key ingredient to a successful ATDD approach.
Consider what would happen if Tony worked out the examples by himself. He
probably could have caught many problems within the software. These defects
would have been bounced back and forth between Tony and the programmers---
eventually getting both upset. In the end, when the product finally was delivered, the
customer would have been unhappy about the misinterpreted corner conditions.

If this sounds familiar to you, consider a project that starts with a workshop.
In this workshop most ambiguities would be settled between the programmers and
the testers. The remaining questions would get answered before the team starts



Collaboration 51

to work on the implementation. Since the examples express the requirements for
the software, the team knows exactly when it has finished the implementation.
There is some back and forth between testers and programmers. The programmers
eventually find out about the value the automated examples bring them if they
execute them before checking in their code to the version control system. In the
end, the project delivers on time and with no problems.

To most teams new to acceptance test-driven development this may sound like
a fairy tale. But there are many success stories of successful software delivery using
an approach like ATDD in combination with other agile practices like refactoring,
test-driven development (TDD), continuous integration, and the whole team
approach. The combination of technical excellence on one hand and teamwork on
the other hand seems to be a magic ingredient.

I also apply collaboration when automating tests. After all, test automation
is software development and therefore, I want to apply all the practices and
techniques that I also apply to production code. Most of the time I even take more
care implementing support code for my tests than I take care for the production
code. This means that I apply test-driven development, refactoring, and continuous
integration to the support code as well.

Tony worked with Cucumber before he could get started with the support
code. But he clearly did not have the expertise to finish the test automation code all
on his own. When he noticed that he was stuck, he stopped work, and approached
that team member that could help him and had the expertise with programming.
Most teams new to ATDD confuse the collaboration aspect with the need for every
tester to code. It makes the life of testers easier if they can work independently
from programmers on tests and test automation, though. That’s why over time
testers start to learn more and more tricks to automate their tests, but this is not a
precondition. It is rather an outcome and a side effect in the long term.

Once I taught the approach to testers at a medical supplier. The testers were
former nurses and had no technical education at all. Up to that point they tested the
application manually. The programmers pushed forward for more test automation,
but lacked the domain expertise the testers had. They agreed on an approach where
the testers would get started with the examples, and the programmers would write
most of the support code to get the examples automated.

Lack of programming knowledge does not mean that you cannot get started
with the approach. Besides pen and paper, Tony didn’t need anything at all to get the
examples down and use them as a communication device. In fact, most teams should
start with such an approach, not automating the examples at all. The enhanced
communication already improves the development process. You won’t get the full



52 Chapter 4 Wish and Collaborate

benefits of applying the whole approach, but the improved communication and
collaboration will get you started. This comes in handy especially if you deal with a
legacy code base that is not (yet) prepared to deal with automation code.

Summary
Specification workshops, wishful thinking, and collaboration add so much to your
overall testing concert. First, to make sure that your team builds the right thing,
you talk to your customer. By working closely together on the acceptance criteria
you form a ubiquitous understanding in your team.

Starting from the business user goals, you apply wishful thinking to form
the API that you wished your application had. You build your automated tests
then against this API that will support all the testability functions that you will
need. Your application becomes testable with automated tests by definition and at
the same time you make sure that your tests don’t get too coupled to the actual
implementation of the user interface.

Finally, a thing we all need to remember from time to time is we are not alone
in software development. That means that we may work together with others for
support when our work gets tough. This especially holds true when you work on
a team that is new to agile development and consists of many specialists. In order
to perform on a higher level, you will need to work with your teammates to learn
some of their special skills. Over time you will be able to compensate for vacation
times and sick leaves if you can replace each other.



Index

Acceptance test-driven development
(ATDD)

collaboration in, 51
in friendly test automation, 162--66
gaps in, 149
successful, 183--85
support codes and, 49--50, 59--60, 70
vs. TDD, 118
test automation and, 162--66

Acceptance test suite, 111--12, 147
Adzic, Gojko, 121, 148, 154--55, 163, 187
Agile-friendly automation, 156, 161, 163,

177, 178, 193
Agile Software Development ---- Patterns,

Principles, and Practices (Martin), 124
Agile Testing (Crispin and Gregory), 150
Airport Parking Lot test cases. See also

individual headings
Automating Remaining Parking Lots test

case, 41--46
Parking Cost Calculator Workshop test

case, 3--15
Valet Parking Automation test case,

17--39
Alice’s Adventures in Wonderland

(Carroll), 147
Alpha tests, 150, 151
Appelo, Jurgen, 150
Arrange-Act-Assert format, 136
ArrayFixture, 135
Automating Remaining Parking Lots test

case, 41--46
durationMap for, 43--44
economy parking lot, 44--45
economy parking lot examples, 44--45
short-term parking lot, 41--44
short-term parking lot examples, 41--42

step definitions after generalizing, 42
summary, 46

Automation, 161--68
collaboration on, 164--66
domain discovery, 166--67
domain-specific test language in, 162
keyword-driven, 137--39
summary, 167--68
test, developing, 170--72
user-friendly, 162--64

Behavior-driven development (BDD), 131,
132--33, 187

Beta tests, 150, 151
Boundary conditions, 142--43
Boundary values, 144--45
Business-facing tests, 150, 152

CalculateFixture, 134
Camel-casing, 137, 139, 191, 194, 199
Carroll, Lewis, 147
Clean Code (Martin), 170
Clojure, 163
Code. See also individual codes

library, 199
production, 121--22
refactoring, 176
supporting, 59--60

Code in Light States test case, developing,
66--70

deciding which one to return based on
previous state, 69

final test table for car states, 69
first example passes, 68
first flow after implementing light

configurations, 70
first support code class, 66

205



206 Index

Code in Light States test case, developing
(continued)

FitNesse result after creating class, 67
FitNesse test turns from yellow to red, 67
folder layout in, 66
hard-coded return value of nextState

method, 68
second test expressing state transition from

red and yellow to green, 69
support code class with empty method

bodies, 67
Cohn, Mike, 158
Collaboration, 50--52, 153--59

in ATDD, 51
on automation, 164--66
Power of Three, 153--55
summary, 159
trawl requirements, 158--59
workshops, 155--57

ColumnFixture, 134
Command/Query-Separation, 98
Concordion Framework, 163
Continuous integration (CI)

in domain discovery, 121
plug-ins for, 184
in software delivery, 51
test automation code and, 139
test failure in, 147
in Value Parking Automation

test case, 18
Controller, driving. See Driving controller in

First Crossing test case
Controller specifications in First Crossing

test case, 93--94
happy path scenario for controller state

transitions, 94
state transitions to consider, 94

Copeland, Lee, 143
Crispin, Lisa, 147, 150, 155
Cucumber, 163, 187--89

feature files, 187--88
production code, 189
Ruby and, 17, 163, 187, 188
step definitions, 188--89

Decision tables, 134--35, 192
FitNess SLiM, example of, 192
function of, 58
query tables combined with, 136, 193

in refactoring, 104
setup table preparing three different

accounts, 134
support code for, 194
in test cases, 61, 65, 94, 98, 104
valet parking tests expressed as, in SLiM,

58, 134
De Florinier, Annette, 163, 187
De Florinier, David, 163, 187
Domain, discover, 120--21
Domain discovery, 166--67
Domain partitioning, 143
Domain-specific test language, 162
Domain testing, 143--44
Driving controller, 94--118
Driving controller in First Crossing test case,

94--118
body for controller glue code class that

switches state, 96--97
first empty body for controller glue code

class, 95--96
first invalid configuration, 99
first LightState changed in execute

method, 99
first test for, 94
happy path tests for controller that

switches first light only, 96
permutated invalid configurations put into

table, 102
second light state stored in field, 97--98
setting of warning configuration extracted

from if body, 101
UNKNOWN light stats supported, 103
validation method extracted from if clause,

100--101
validation step added to controller before

switching light states, 100

Equivalence classes, 143--46
Evans, Eric, 48, 142
Examples, 129--52

cutting, 146--48
format of, 130--42
gaps, 149--51
refining, 142--46
summary, 151--52

Exploratory tests, 136, 149, 150, 151, 152
Extract Superclass, 176



Index 207

Feature, 17
Feature files in Cucumber, 187--88
First Crossing test case, 93--118

controller specifications, 93--94
driving controller, 94--118
refactoring, 103--18
summary, 118

Fishnet scenario, 158
FitLibrary, 134, 135, 137, 163

CalculateFixture in, 134
FitNesse and, 163

FitNesse, 191--94
architecture, 192
in First Crossing test case, 93--118
FIT and, 163, 191, 192
introduction to, 55, 58--59
in Light States test case, 61--91
link added to front page, 63
shell output from starting for first time, 62
SLiM tables and, 58--59, 163, 191--93
support code, 193--94
welcome screen when starting for first

time, 62
wiki structure, 58, 191--92

Folder layout
in Light States test case, 66
in Valet Parking Automation test case, 21

Format, 130--42
behavior-driven development, 131, 132--33
glue code and support code, 139--40
Internet search, basic, 132
keywords or data-driven tests, 131, 137--39
right, 140--42
tabulated formats, 131, 133--37

Framework for Integrated Tests
(FIT), 58, 133

ActionFixture in, 137
ColumnFixture in, 134
FitLibrary and, 134, 135, 137, 163
FitNesse and, 163, 191, 192
GPLv2 model and, 58, 191
RowFixture in, 135

Freeman, Steve, 176

Gaps, 149--51
Getting Started test case

FitNesse, 58--59
refactoring of traffic lights, 56, 57
summary, 60

supporting code, 59--60
traffic lights, 55--56
unit test in Java, example of, 59
Valet Parking tests expressed as decision

table in SLiM, 58--59
Given-When-Then format

alternative to, 136
in BDD, 131, 132
in Cucumber, 163, 187
script tables and, 140, 193

Glue code
in First Crossing test case, 95--118
format, 131, 139--40
implementing for test automation, 95--118
in refactoring, 107--18
signature of EJB2 service executor for

Needle Eye pattern, 124
summary, 126
test, 122--24
in Valet Parking Automation test case,

17--18, 20, 21
value, 124--25

GPLv2 model, 58, 191
Green Pepper Framework, 163
Gregory, Janet, 150, 155
Groovy, 163
Growing Object-oriented Software Guided by

Tests (Freeman and Pryce), 176

Happy path scenario, 47, 93--94, 96, 103
Headless Selenium server, 18

Initializers in Valet Parking Automation test
case, 26--31

duration map in, 26--27
extracted method for filling in parking

durations, 28--30
final version of ParkCalcPage for

initialization steps, 30--31
leaving date and time, 28--29
leaving date and time filled into form

fields, 28--29
selecting right parking lot entry from

dropdowns, 26
starting date and time filled into form

fields, 27
Integrated development environments

(IDEs)
in domain discovery, 121



208 Index

Integrated development environments
(IDEs) (continued)

Java, 66
in keyword-driven automation, 139
packages in, 71
in refactoring glue code, 109, 111
refactoring support and, 139, 176--78
setting up and configuring, 66

Intent-revealing tests, 123, 141
Intermodule integration tests, 150

Java, 193
in Cucumber, 163
FitNesse in, 163
in Robot Framework, 195
unit test in, example of, 59
for writing support code for SLiM

tables, 193--94
JBehave Framework, 163
JUnit, 59--60, 72--74, 79, 112
Just-in-time requirements trawling, 159
Jython, 195

Kaner, Cem, 143
Kerievsky, Joshua, 170
Keywords

in automation, 137--39
extracting, 179--80
format, 131, 137--39
in integrated development environments,

139
in Robot Framework, to define test cases,

193, 196
scenario tables as, 137--38, 184
in test automation code, 138
Then, 19, 187
When, 19, 187

Library code, 199
Light States test case, 61--91. See also

individual headings
code, developing, 66--70
FitNesse in, 61--91
refactoring, 70--90
state specifications, 61--62
summary, 90--91

Light States test case, first test in, 62--66
expressing state transition from red to red

and yellow, 65
FitNesse result from, 66

FitNesse welcome screen when starting, 62
root suite of traffic light examples, 64
shell output from starting FitNesse, 62
TrafficLightStates suite, contents of, 65

Listening to test, 172--76
economy parking lot automated examples,

174
setup table preparing account hierarchies

with hidden tariffs and products, 175
verbose example for parking lot calculator,

173--74

Marick, Brian, 150
Martin, Robert C.

Agile Software Development ---- Patterns,
Principles, and Practices, 124

Clean Code, 170
Simple List Invocation Method (SLiM),

133, 191
Meszaros, Gerard, 170

Nonfunctional requirements, 155
North, Dan, 132
.NET, 163, 193

Page objects, 184, 189
Pairing, 25--35

checking results, 31--35
initializers, 26--31

Pairwise testing, 145--46
Parallel component, 70
Parameterized tests, 59, 73--74, 112, 116
Parking Cost Calculator Workshop test case,

3--15
economy parking, 6--8
economy parking examples, 7, 11
essential examples, 9--12
long-term parking, 6--8
long-term parking examples, 8, 9--10, 11
short-term parking, 5
short-term parking examples, 5, 12
summary, 12--15
valet parking, 3--4
valet parking examples, 4, 13

Parking lot calculator. See also Parking Cost
Calculator Workshop test case

business rules for, 3
extended durationMap, 38, 43
final version for first test, 34--35
final version for initialization steps, 30--31



Index 209

library for, 22
mockup of, 25
page, 28, 38, 151
Robot Framework and, 196--98
support code for, 18
test executed by, 32
verbose example for, 173--74

PHP, 163, 193
Power of Three, 153--55

business perspective, 153
introduction to, 153--55
mediation between perspectives, 153, 154
technical perspective, 153

Practitioner’s Guide to Software Test Design,
A (Copeland), 143, 152

Production code, 121--22
collaboration in, 51
in Cucumber, 189
developing, 189
in domain discovery, 120--21
driving, 121--22
TDD used for, 71
value in, vs. glue code, 124

Production code, drive, 121--22
Pryce, Nat, 176
Python, 163, 193, 195, 199

Quadrants, testing, 150--51
Query tables, 135--36, 193

checking existence of previously set up
data, 135--36

FitNesse SLiM, example of, 193
script tables used to combined with

decision tables, 136, 193

Refactoring, 103--18. See also Refactor tests
code, 176
in editing LightStates, 78--90
in LightState enum, 71--78
in Light States test case, 70--90
packages, 71
support code in, 70--90
traffic light calling for, 56, 57

Refactoring in First Crossing test case
adapted validation function, 116
corrected validation function, 114--15
examples, 103
final unit tests for validator, 117
function refactoring into own class, 107
glue, 107--18

new empty validator class, 108
redundant information eliminated from

invalid combinations, 104--5
retrofitted unit tests for validator class,

112--13
scenario table references transparent

operation, 106--7
scenario table results in collapsible section,

105
scenario table to remove redundant

information from invalid
combinations, 103

second validation added after light was
switched, 114

tests up to failing configuration point, 115
validation function after adding check for

blinking second light, 116
validation function after introducing two

parameters, 108
validator after moving validation function,

109--10
validator makes parameter to validation

function to move method, 109
validator method after rename, 111
validator turned into field within controller

class, 110--11
Refactoring in Light States test case, 70--90

all light states covered, 75--78
changed implementation of editor class, 87
code for getAsText method in

LightStateEditor, 86
code for LightState enumeration after

implementing first method on editor,
85--86

conditional to rescue for red and yellow
state, 80

duplication indicates the refactoring
potential, 81

editing LightStates, 78--90
extracted body from LightStateEditor as

valueFor on LightState class, 87
final example page after, 71
final TrafficLights implementation making

use of domain concept of LightState,
90

first and second unit test expressed as
data-driven test using JUnit
Parameterized runner, 72--74

first code base for new traffic light enum,
72--73



210 Index

Refactoring in Light States test case
(continued)

first implementation for LightState
transition from red to red and yellow,
73

first implementation of LightStateEditor,
79

first unit test driving domain concept of
LightState, 72

iterating over all values in LightState
checking for matching description, 82

LightStateEditor code after driving
implementation for setAsText, 85

in LightState enum, 71--78
LightState takes String parameter for

description in constructor, 81
new unit test class for valueFor method,

88--89
packages, 71
property editor in shortest form, 83
red state makes use of description field, 83
second transition captured, 75
second unit test using data driven format,

79--80
unit test for editor with defaulting

behavior unit test removed, 88
unit test for getAsText function in

LightStateEditor, 86
unit test for setting value to red, 79
unit tests for editor after finishing

implementation for setAsText, 84
Refactoring to Patterns (Kerievsky), 170
Refactor tests, 176--80

extract keyword, 179--80
extract variable, 178--79

Refining examples, 142--46
boundary values, 144--45
domain testing, 143--44
pairwise testing, 145--46

Regression test suite, 147, 148
Robot Framework, 163, 195--99

formats, 140
keywords section used for parking lot

calculator, 197--98
keywords used to define test cases, 193,

196
library code, 199
sections, 195--99
Selenium library in, 173
settings used for parking lot calculator, 196

test case section used for parking lot
calculator, 196--97

test libraries in, 137
test using keyword template for

data-driven tests, 199
Variables section used for parking lot

calculator, 198
RowFixture, 135
RSpec book, The (Chelimsky et al.), 187
Ruby, 17, 163, 187, 188
Rule of Three Interpretations, 155, 167. See

also Power of Three

Scala, 163
Scenario tables

function of, 59
Given-When-Then-format and, 193
as keyword, 137--38, 184
in refactoring, 103--6
in test cases, 58--59, 103--6
used with script tables, 104, 193

Script tables, 136--37
decision tables combined with query

tables, 136, 193
in FIT and FitLibrary, 137
Given-When-Then format and, 140, 193
scenario tables used with, 104, 193
support code and, 194
with whole flow through system, 136

Secret Ninja Cucumber Scrolls, The (de
Florinier, Adzic, and de Florinier),
163, 187

Selenium, 18--22, 173--74, 197
headless, 18
library, 22, 173

SetFixture, 135
Setup table, 134, 175, 193
Shell output

from starting FitNesse for the first time,
62

from Valet Parking Automation test case,
19--20, 32, 36

Simple List Invocation Method (SLiM). See
also individual tables

decision tables in, 134--35
FitNesse and, 58--59, 163, 191, 192
introduction of, 133
query tables in, 135--36
script tables in, 136--37
support code for tables in, 193--94



Index 211

Software specifications, 153--59
Power of Three, 153--55
summary, 159
trawl requirements, 158--59
workshops, 155--57

Specification by Example (Adzic), 154--55
Specifications, 93--94
Specification workshops, 48--49
Stable Dependencies Principle, 124
State pattern, 72, 119, 120
State Pattern, 72
State specifications in Light States test case,

61--62
all light states for cars, 62
valid light states for cars, 61

Step definitions
in BDD, 133
Cucumber, 188--89
Short-Term Parking lot test case, 42
in Valet Parking Automation test case,

17--39
SubsetFixture, 135
Successful ATDD, 183--85
Support code

collaboration in, 51
developing, 66--90
for FitNesse SLiM tables, 193--94
format, 139--40
in Light States test case, 66--90
refactoring, 70--90
for setting up Selenium client, 22
in Valet Parking Automation test case,

17--18, 20, 21--22
SWT applications, 152, 183
SWTBot, 152, 183

Tab-ordering, 149
Tabulated formats, 131, 133--37

decision tables, 134--35
query tables, 135--36
script tables, 136--37
script tables with whole flow through

system, 136
Tabulated tests in Valet Parking Automation

test case, 36--38
examples from workshop filled into

table, 37
first test converted to tabulated format, 36
ParkCalcPage class with extended dura-

tionMap for Valet Parking tests, 38

shell output with first test in tabulated
format, 36--37

Technical Debt, 150
Technical tests, 150
Test, 169--81. See also Test suite

automation, developing, 170--72
code (See Code)
failing, 115--17
gaps, 150--51
intent-revealing, 123, 141
intermodule integration, 150
keyword, extracting, 179--80
language, 124--25, 131, 162
libraries in Robot Framework, 137
listening to, 172--76
parameterized, 59, 73--74, 112, 116
quadrants, 150--52
refactor, 176--80
retrofitted, 91, 112--13, 122, 173, 183
smell, 135
summary, 180--81
tabulated, 36--38
test automation, 170--72
unit, 150, 172
variable, extracting, 178--79

Test automation. See also Test automation
code; Test automation tools

architecture, 17
ATDD approach to, 47--48
collaboration in, 47, 164--66
developing, 170--72
listening to tests and, 172--76
pairing on, 164
refactoring in, 176--78
in Valet Parking Automation test case,

17--39
Test automation code. See also Glue code;

Support code
flexibility of, 171
format, 131
keywords in, 138
support code and, 70, 139--40
TDD used to implement, 119, 140, 176
testing, 170

Test automation tools
Agile-friendly, 156, 161, 163, 177,

178, 193
ATDD-friendly, 162--66
Cucumber, 187--89
Robot Framework, 193



212 Index

Test-driven development (TDD). See also
Test automation code

vs. ATDD, 118
collaboration in, 51
in domain discovery, 120--21
enum class implemented using, 71--78

Testing Computer Software (Kaner), 143
Test suite

acceptance test, 111--12, 147
benefits of, 122
cutting examples, 146--48
defined, 62
maintenance of, 136
regression, 147, 148
36-hour, 148

Then-keyword, 19, 187
36-hour test suite, 148
Titanic Effect, 150
Traffic Light Software System test cases. See

also individual headings
First Crossing test case, 93--118
Getting Started test case, 55--60
Light States test case, 61--91
refactoring, 56, 57
supporting code, 59--60
traffic lights, 55--57

Trawl requirements, 158--59
Twist Framework, 163

Unit test, 150, 172
in Java, example of, 59
retrofitted, 91, 112--13, 122, 173, 183

Unknown-Unknowns Fallacy, 150
Usability tests, 150, 151, 152
User acceptance tests, 150, 151

Valet Parking Automation test case, 17--39.
See also Parking lot calculator

initializers, 26--31
mockup for airline parking lot calculator,

25
pairing for first test, 25
summary, 39
tabulated tests, 36--38

Valet Parking Automation test case, first
example, 18--25

duration map in, 26--27
empty implementation of parking cost

calculation step, 25

empty implementations added to
ParkCalcPage class, 24

first Valet Parking
test, 18

folder layout, 21
initial ParkCalc class, 22
initial step definitions for, 20
initial wishful implementation of first

keyword, 23, 24
shell output from first Valet Parking

test, 19--20
shell output from first Valet Parking test

with step definitions, 21
support code for setting up Selenium

client, 22
Valet Parking Automation test case results,

checking, 31--35
check after factoring out two functions for

individual steps, 33
final version of ParkCalcPage class for

first test, 34--35
final version of steps for first

test, 34
final version of Valet Parking steps for

first test, 34
initial version of check, 32
shell output from first Valet Parking

test, 32
Variables

extracting, 178--79
for parking lot calculator in Robot

Framework, 198

Warning configuration, 101
Weinberg, Jerry

Rule of Three interpretations, 167
Titanic Effect, 150

When-keyword, 19, 187
Wiki pages, 58, 66, 191--92
Wiki server, 58, 62
Wiki structure, 191--92
Wiki system, 58
Wishful thinking, 49--50
Workshops, 155--57

frequency and duration, 157
goals of, 156--57
participants, 156

XUnit Test Patterns (Meszaros), 170


	Contents
	Foreword
	Foreword
	Preface
	Acknowledgments
	About the Author
	4 Wish and Collaborate
	Specification Workshops
	Wishful Thinking
	Collaboration
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W
	X




