
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321784124
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321784124
https://plusone.google.com/share?url=http://www.informit.com/title/9780321784124
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321784124
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321784124/Free-Sample-Chapter

 Test-Driven Database
Development

The Net Objectives Lean-Agile Series provides fully integrated Lean-Agile training, consulting,
and coaching solutions for businesses, management, teams, and individuals. Series editor

Alan Shalloway and the Net Objectives team strongly believe that it is not the software, but rather
the value that software contributes – to the business, to the consumer, to the user – that is most
important.

The best – and perhaps only – way to achieve effective product development across an organization is
a well-thought-out combination of Lean principles to guide the enterprise, agile practices to manage
teams, and core technical skills. The goal of The Net Objectives Lean-Agile Series is to establish
software development as a true profession while helping unite management and individuals in work
efforts that “optimize the whole,” including

• The whole organization: Unifying enterprises, teams, and individuals to best work together

• The whole product: Not just its development, but also its maintenance and integration

• The whole of time: Not just now, but in the future – resulting in a sustainable return on investment

The titles included in this series are written by expert members of Net Objectives. These books are
designed to help practitioners understand and implement the key concepts and principles that drive
the development of valuable software.

Visit informit.com/netobjectives for a complete list of available publications.

Net Objectives Lean-Agile Series
Alan Shalloway, Series Editor

Make sure to connect with us!
informit.com/socialconnect

 Test-Driven Database
Development
Unlocking Agility

 Max Guernsey, III

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
 New York • Toronto • Montreal • London • Munich • Paris • Madrid
 Cape Town • Sydney • Tokyo • Singapore • Mexico City

 Editor-in-Chief

Mark Taub

 Executive Editor

 Chris Guzikowski

 Senior Development

Editor

Chris Zahn

 Managing Editor

Kristy Hart

 Senior Project Editor

Lori Lyons

 Copy Editor

Paula Lowell

 Indexer

Tim Wright

 Proofreader

Sarah Kearns

 Editorial Assistant

Olivia Basegio

 Cover Designer

Chuti Prasertsith

 Compositor

Nonie Ratcliff

 Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

 The authorz and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

 The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

 U.S. Corporate and Government Sales
(800) 382-3419
 corpsales@pearsontechgroup.com

 For sales outside the United States, please contact:

 International Sales
 international@pearsoned.com

 Visit us on the Web: informit.com/aw

 Library of Congress Cataloging-in-Publication Data

 Guernsey, Max, 1978-
 Test-driven database development : unlocking agility / Max Guernsey.
 pages cm
 Includes bibliographical references and index.
 ISBN-13: 978-0-321-78412-4 (pbk. : alk. paper)
 ISBN-10: 0-321-78412-X (pbk. : alk. paper)
 1. Database design. 2. Agile software development. I. Title.
 QA76.9.D26G84 2013
 005.1--dc23
 2012047608

 Copyright © 2013 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

 ISBN-13: 978-0-32-178412-4
 ISBN-10: 0-32-178412-X

 Text printed in the United States on recycled paper at RR Donnelley and Sons in Crawfordsville,
Indiana.

 First printing, February 2013

 This book is dedicated to my wife, Amy Bingham,
who is largely responsible for my being the man I am today.

This page intentionally left blank

Contents at a Glance

 Foreword . xvii

 Preface .xix

Chapter 1 Why, Who, and What . 1

Chapter 2 Establishing a Class of Databases. 9

Chapter 3 A Little TDD . 19

Chapter 4 Safely Changing Design . 37

Chapter 5 Enforcing Interface. 63

Chapter 6 Defining Behaviors. 95

Chapter 7 Building for Maintainability . 115

Chapter 8 Error and Remediation . 137

Chapter 9 Design . 159

Chapter 10 Mocking. 191

Chapter 11 Refactoring . 213

Chapter 12 Legacy Databases . 227

Chapter 13 The Facade Pattern . 249

Chapter 14 Variations . 269

Chapter 15 Other Applications. 283

 Index . 301

Contents

 Foreword . xvii

 Preface . xix

 Acknowledgments . xxv

 About the Author . xxvii

 Chapter 1 Why, Who, and What . 1

Why . 1
Agility Progressively Invades Domains Every Day. 2
Agility Cannot Work Without TDD . 2
TDD in the Database World Is a Challenge 3

Who. 3
TDD and OOP . 4
Applications and Databases . 4

What . 4
Databases Are Objects . 5
TDD Works on Classes, Not Objects 5
We Need Classes of Databases . 6

Summary . 7

Chapter 2 Establishing a Class of Databases . 9

The Class’s Role in TDD . 9
A Reliable Instantiation Process . 10
Tests Check Objects . 10

Classes in Object-Oriented Programming Languages 11
Making Classes Is Easy: Just Make New Objects 11
One Path: Destroy If Necessary. 11

Classes of Databases . 12
Two Paths: Create or Change . 12
The Hard Part: Unifying the Two Paths 13
Real Database Growth . 13

Contents ix

How About Making Every Database Build Like Production
Databases?. 14

All DBs Would Follow the Exact Same Path. 15
Incremental Build. 15

Document Each Database Change. 15
Identify Current Version . 16
Apply Changes in Order as Needed 16

Implementation . 16
Requirements . 16
Pseudocode Database Instantiation Mechanism 17
Pseudocode Input . 17

Summary . 18

Chapter 3 A Little TDD . 19

The Test-First Technique . 19
Write the Test . 20
Stub Out Enough to See a Failure . 22
See the Test Pass . 22
Repeat . 23

Tests as Specifications . 24
“Tests Aren’t Tests, They Are Specifications” 24
“Tests Aren’t Specifications, They Are Tests” 25
Tests Are Executable Specifications. 26
Incremental Design . 27

Building Good Specifications . 28
Specify Behavior, Not Structure . 28
Drive Design In from Without, Not the Other

Way Around . 29
Defining the Design Inside Out . 30
Defining the Design Outside In . 32

Summary . 34

Chapter 4 Safely Changing Design . 37

What Is Safe? . 38
Breaking a Contract Is a Little Bad . 38
Losing Data Will Probably Get You Fired 39
Not Changing Design Is Also Dangerous 40

Contentsx

Solution: Transition Testing. 44
Test-Driving Instantiation . 44
Transition Testing Creation . 44
Transition Testing Addition . 47
Transition Testing Metamorphosis . 51
Why Not Use the Public Interface? . 56

Transition Safeguards. 56
Read/Read Transition Tests . 56
Run by the Class of Databases on Every Upgrade. 60
Backup and Rollback on Fail . 60
Making Transition Tests Leverage Transition Safeguards . . . 60

Summary . 61

Chapter 5 Enforcing Interface . 63

Interface Strength. 64
Stronger Coupling Languages . 64
Weaker Coupling Languages. 65
The Common Thread . 66
Coupling to Database Classes . 66
The Problem Is Duplication. 66

Client-Object-Like Enforcement. 67
Creating Demand for a DatabaseDesign Class 67
Specifying the DatabaseDesign Class 68
Getting Rid of Duplication with Multiple Client

Platforms . 70
What Happens When Coupling Goes Bad?. 71
Eliminating Duplication Between Database Build

and Client Code. 71
Decoupling Implementation from Design 72

Sticking Point: Change . 73
Designs Change Over Time. 74
Document All Versions of Design . 75
Couple to the Correct Version of the Design. 77

Sticking Point: Coupling . 78
Various Clients Couple to Various Versions 78
Having to Change Everything All the Time Is

Duplication, Too . 79

Contents xi

Introducing the Lens Concept . 83
Virtual Lenses . 85
The “Current” Lens . 89
The “New” Lens . 89

Summary . 93

Chapter 6 Defining Behaviors . 95

A New Group of Problems . 96
No Encapsulation . 96
Hide Everything . 97
Business Logic in the Database . 97

Knowledge, Information, and Behavior . 98
Information . 99
Knowledge . 102
Behavior . 102

Outside-In Development . 106
Defining the Test. 106
Growing Interface . 108
Growing Behavior and Structures . 109

Justification by Specification . 111
Work Against Present Requirements, Not Future 111
Build in Increments . 112
Limit Access to What Is Specified . 112

Summary . 113

Chapter 7 Building for Maintainability . 115

Never Worry About the Future . 116
Look for Opportunities in the Now 116
Design to Information . 117
Translate Info and Knowledge with Behavior 121

Guard Knowledge with Fervor and Zeal . 124
Not Changing Is the Most Dangerous Choice. 124
Keep Your Design Natural . 126

Deal with the Future When It Happens . 127
Define New Design . 128
Introduce Minimal Changes . 129

Contentsxii

Get Tests Passing. 131
Stop, Think, Refactor . 133

Summary . 136

Chapter 8 Error and Remediation . 137

Kinds of Errors . 137
Axis: Is the Error Good or Bad? . 138
Axis: Is the Error Released or Not?. 140

Dealing with Good Errors . 142
Just Fix It . 142
Document Behavior Now . 143
Trace Feature Back to Its Genesis . 145

Dealing with Bad Errors. 146
Unreleased Errors . 147
Released Errors . 150
Catastrophic Errors . 156

Summary . 157

Chapter 9 Design . 159

Structures Versus Design . 160
Structures: Execution Details. 160
Tests and Class Information . 162

What Is Design? . 163
Buckets of Concepts . 163
Mandatory Part of True TDD. 166

Composition and Aggregation . 167
Composition: One Thing with Multiple Parts 168
Aggregation: Connecting Distinct Things 172

Reuse . 175
Avoid Developing the Same Thing Twice 175
Reuse by Composition or Aggregation 177

Abstraction . 178
Identifying Opportunities for Abstraction 178
Encapsulating Behaviors . 179
Finding Ways to Allow Variation in Dependencies 185
Dealing with the Time Problem. 186

Summary . 190

Contents xiii

Chapter 10 Mocking . 191

Testing Individual Behaviors . 191
Why Encapsulate. 192
Tests Test Everything Not Under Their Control 193
Controlling Irrelevant Behaviors from Tests 194
Mocking Controls Behaviors. 194

Mocking in Object-Oriented Programming 195
Setup . 195
Decoupling . 199
Isolation . 202
Integration. 202

Mocking in Database Design . 203
Example Problem . 204
Example Solution . 205
Composition . 208
Aggregation. 210
Designing for Testability . 210

Summary . 210

Chapter 11 Refactoring . 213

What Refactoring Is . 214
Changing Design Without Changing Behavior 214
In the Context of Passing Tests . 215

Lower and Higher Risk Design Changes . 222
Lower Risk: Changing Class-Level Design 222
Medium Risk: Rearranging Behavior Logic. 223
Higher Risk: Altering Knowledge Containers 225
This Is Not an Invitation to Skip Testing 226

Summary . 226

Chapter 12 Legacy Databases. 227

Promoting to a Class . 228
Deducing Initial Version . 228
Pinning the Transition Behavior with Tests. 231

Controlling Coupling . 231
Identifying and Locking Down to Existing Uses 232
Encapsulating on Demand. 234

Contentsxiv

Controlling Change . 235
Test-Driving New Behaviors . 235
Pinning Construction on Demand . 237
Pinning Behavior on Demand . 238
Implementing New Behavior . 239

Finding Seams and Components . 240
Finding Seams . 240
Encapsulating Components . 243

Summary . 247

Chapter 13 The Façade Pattern . 249

Encapsulation with a Façade . 249
Explanation of Façade Pattern . 250
New Test-Driven Façade Database 254
Compositional Alternative. 261
To Encapsulate or Not . 261

Strangling the Old Interface . 262
Transferring Changing Behaviors to Façade 262
Removing Access and Features When No

Longer Needed . 263
Test-Driving Behaviors in the Façade Database 264

Exposing Legacy Behaviors . 265
Another Way to Do It . 265
New Behaviors . 266

Summary . 266

Chapter 14 Variations . 269

Having a Class Is Important—Implementation Is Not 270
Scenario: Skipping Steps. 270

Problem. 271
Solution. 272
The Right Amount of Work . 273

Scenario: Deviations. 274
Problem. 274
Solution. 275
Solution Applied . 277

Common Solution . 281
Summary . 281

Contents xv

Chapter 15 Other Applications . 283

XML . 284
Encapsulation . 284
XSD Schemas . 284
XSLT Transitions . 286
Transition Test XSLT Changes . 287

File Systems and Other Object Directories 288
Transition Test File System Manipulations 289
Shell Script Transitions . 291

Data Objects . 292
Class Definitions Are Schemas . 292
Transition Test the Ugrader Class 294
Code Transitions. 296

Summary and Send Off . 300

Index. 301

This page intentionally left blank

Foreword

I’ve been a Test-Driven Development practitioner for many years and have also
been writing, lecturing, and teaching courses on the subject as part of my duties
at Net Objectives. A question that often arises during classes or conference talks
is this: TDD seems ideal for business logic and other “middle-tier” concerns, but
what about the presentation (UI) tier and the persistence (database) tier?

My answer, typically, has been to point out that there are two issues in each
case:

1. How to manage the dependencies from the middle tier to the other two, so
as to make the middle tier behaviors more easily testable

2. How to test-drive the other layers themselves

For issue #1, this is a matter of interfaces and mock objects, design patterns,
and good separation of concerns in general. It is a matter of technique, and the
TDD community has a lot of mature, proven techniques for isolating business
logic from its dependencies. A lot of time is spent in my courses on these “tricks
of the trade.”

But when it comes to issue #2—test-driving the user interface and the data-
base themselves—I’ve always said that these are largely unsolved problems. Not
that we don’t know how to test these things, but rather that we don’t know how
to test drive them, to write the kind of isolated, fast, granular tests that good
TDD requires. We have to be satisfied with more traditional testing when it
comes to these other layers of the system; this has been my traditional answer.

As far as I know, this is still true for the UI. But when it comes to databases,
Max Guernsey has figured it out.

In my book Emergent Design, I talk a lot about the parallels between systems
design and evolutionary processes in nature. If you think of your source code as
the “DNA” of the system and the executable as the “individual organism,” it
really fits. The DNA is used to generate the individual. To make a change to the
species, the DNA changes first, and then the next individual generated is altered.
Nature does not evolve individuals; it makes changes to the species generation-
ally. This is much akin to the code/compile/run nature of software. We throw

Forewordxviii

away the .exe file, change the source code, and the compiler makes a new, differ-
ent, hopefully better executable. Because of this, the source is king. It’s the one
thing we cannot afford to lose.

Max’s insight began, at least in my conversations with him, with the notion
that databases are not like this. If the schema is akin to the DNA, and thus an
installed, running instance of the database (with all its critical enterprise data) is
an individual, we cannot take nature’s cavalier attitude toward it. The schema
is easy to re-create—you just run your DDL scripts or equivalent. But a given,
installed, “living” database contains information and knowledge that must be
preserved as its structure changes.

Because of this, the paradigm of evolution does not fit. In databases, the
individual is paramount. We cannot simply throw it away and re-create it from
altered DNA. Nature, again, does not evolve individuals. But there is a natural
paradigm that works. It is morphing. It is the way an individual creature transi-
tions from one life phase to another—tadpole to frog, for example. In examining
this insight and all of its ramifications, Max has developed a truly revolutionary
view about databases: how to create them and change them and, at long last,
how to test-drive them. His approach gives the database practitioner the funda-
mental clarity, safety, and leverage that a TDD practitioner enjoys.

This book is a ground-breaking work. Max has discovered the Rosetta stone
of database development here, and if you follow him carefully, you will leave
with a far more powerful way of doing your job when it comes to the persistence
tier of your system. You will have the knowledge, tools, and overall approach
that make this possible.

—Scott Bain
Senior Consultant, Net Objectives

Preface

 This book applies the concepts of test-driven development to database
development.

 Who Should Read This Book

 The short answer is “anyone who wants to learn how to do test-driven develop-
ment of a database and is willing to do the hard work to get there.” The long
answer follows.

 This book is aimed primarily at programmers who are in some way respon-
sible for the development of at least one database design. A secondary target is
people who think of themselves primarily as database developers who are inter-
ested in adding test-driven development to their process.

 That is not meant to in any way diminish the value of the second group of
people. The techniques in this book build on principals and methods that, at the
time of this writing, are gaining widespread acceptance among the former group
and still struggling to gain traction with the latter. That’s not to say that things
won’t change—I hope they will—but this book would have spun out of control
if I tried to take on all first principles from which it is derived.

 The goal of this book is to help people apply the process of test-driven devel-
opment to the new domain of database development, where the forces are dif-
ferent if only slightly.

 If you read the book and are able to sustainably drive development of your
database through test, it’s a win both for you and for me. If you start using the
principles to port over other techniques, such as pattern-oriented development,
then the win will be doubled. If you start porting what you learn there back into
any other domain where long-lived data is involved, such as the development of
your installers, then the win is greater still.

prefacexx

 What Needs to Be Done

 To serve this goal, I start by establishing why test-driven development works. I
then look at why it has so much trouble gaining traction in the database world.
Mind you, it’s not that I think database development is basically untested, but
my experience has shown me that it is not sustainably tested nor is it test driven.

 The main problem that makes database testing hard is the absence or mis-
placement of the concept of a class. Even the most “Wild-West-style” modern
language still supports the idea of having classes and instances.

 Database engines either pay lip service to this by having classes of data struc-
tures or do nothing whatsoever to establish truly testable classes. The reason for
this appears to me to be that people generally haven’t recognized what the true
first-class object of the database world is: the database itself. So the first step is
to establish a class of databases.

 Change is central to the test-driven development process. You are constantly
changing design to support new needs and to support the testability of an
expanding feature set. One of the forces that makes test-driven development
harder to adopt and to sustain is that change is seen as more dangerous in data-
base designs than in other kinds of design.

 If you mess up a design change in your middle tier, you might have to roll
back. If you mess up a design change in the data tier, you could erase valuable
knowledge stored therein. The solution is to test not only what your database
does but also how it is changed.

 Another problem that faces databases in regard to changing design is that
the coupling between a database and its clients is weakly enforced. The pos-
sibility exists to make a change to a database’s interface and not discover that
you’ve broken a downstream application for a very long time. That risk can be
mitigated by using your class of databases to harden the relationship between a
database design and its clients.

 Creating a strong class of databases with a controlled way of changing things
solves the basic problems in the database world that stand in the way of TDD.
That is, it gets developers up to the early ’90s in terms of support for modern
practices.

 To get into the twenty-first century, you have to go a bit further. To that
end, I help you understand that the scope of a test should be verification of a
behavior. I support that by defining what a behavior is in the context of data-
base development.

Preface xxi

 Enabling Emergent Design

 I also show you how to maximize long-term maintainability by limiting a data-
base’s scope to what you need right now and using the techniques in this book
to make it easy to add more features later. That is, I’ll help you give up the fear
you tend to associate with not planning a database’s design far in advance.

 No process is perfect and, even if it were, none of the people executing it
would be. Despite all your efforts to avoid them, mistakes will be made. If you
are doing true test-driven database development, most of the time a mistake will
come in the form of a behavior not expressed in your test suite. I’ll show you
how best to correct an error.

 Knowing how to develop and write tests for a class of databases while keeping
their designs as simple and problem-appropriate as possible will bring database
development into the twenty-first century—just one short era behind modern
object-oriented development.

 Modernizing Development

 The fi nal phase of modernizing database development to support a test-driven
process involves adopting and adapting what I call the “advanced” object-ori-
ented methodologies.

 Getting a grip on design at the class/database level is the first phase. If you
have a choice between one big database design and two smaller ones, you should
choose the pair of smaller ones. If the database technology isn’t in a place to
permit that, use composition to place two logical database instances inside one
physical database instance.

 Another important activity is refactoring. You need to keep a database’s
design problem-appropriate for its entire life. That means the design must start
out small, but it also means that it needs to change shape as you cover more and
more of the problem space. I’ll show you how to refactor database designs in the
context of a test-driven process.

 That will be everything you need to do test-driven database development for
a typical, new database design. The remainder of the book is dedicated to help-
ing you “wrangle” databases that were born in an untested context, deviating
from the process in a controlled and testable way, and adapting the process to
non-database applications.

Prefacexxii

 Doing test-driven database development will not be easy—not at first. If
you’ve already obtained a firm grip on “regular” test-driven development, this
should come as absolutely no surprise. No matter how quickly you pick up new
skills, TDD will take longer than anything else.

 It costs so much because it is worth so much. When you finish this book,
you’ll have a theoretical understanding of test-driven database development.
One, three, or even eighteen months later, you will have mastered it.

 After mastering it, you’ll be able to frequently, rapidly, and safely change
your database designs with confidence. You’ll be able to build just what you
need, just when you need it. As a result, database improvement can become a
fluid part of your software development process. In addition you’ll be able to
keep the design of your database clean, simple, and fast.

 Chapter-by-Chapter Breakdown

 Here’s a chapter-by-chapter breakdown of what this book covers.
 In Chapter 1 , “Why, Who, and What,” I explain why I wrote this book, who

should read it, and what the real roadblocks to TDD are in the context of data-
base design. I wrote this book because true test-driven development hasn’t really
gained any traction in the database world. I am targeting people who think of
themselves as software developers and also must work with database designs.
The biggest problem in the database development world is that there is no clear
concept of a class, which is a central element of traditional TDD efforts.

 To build a class of databases, you need to keep a permanent record of the
exact set of scripts that are run on a database and to have a clean way of tracking
which ones have already been run. A little infrastructure allows you to ensure
that every instance of a class of databases is built exactly the same way. In Chap-
ter 2 , “Establishing a Class of Databases,” I show you how to do exactly that.

 Many things go into having a sustainable TDD process for a database design.
The first step is to define a basic TDD process to which you can later add deeper,
more data-oriented activities. In Chapter 3 , “A Little TDD,” I show you how to
do some simple test-driven development against a class of databases.

 In Chapter 4 , “Safely Changing Design,” I show you how to overcome one of
the big obstacles: the risk associated with change. Introducing change frequently
frightens a lot of people. The root of that fear is that databases store a lot of
valuable stuff, and losing some of the data on account of a hastily made change
is unacceptable in most environments. The fear and the risk can both be van-
quished by testing not only the behavior of your database, but also the scripts
that build or modify it.

Preface xxiii

 Databases are the most depended-upon things in the software industry and
modifying one’s design can have unforeseen consequences. At the heart of this
problem is massive, infective duplication that many simply accept as “natural.”
In Chapter 5 , “Enforcing Interface,” I show you how to control the cost of a
rapidly evolving database design by eliminating that duplication.

 As far as the TDD process is concerned, tests specify behaviors in objects. The
question then becomes “What is a behavior in the context of a database?” In
 Chapter 6 , “Defining Behaviors,” I set a pretty good scope for a test by answer-
ing that question.

 Having the scope of a single test well defined gives you the freedom to explore
the larger topic of what kinds of database designs are conducive to change and
which ones are difficult to maintain. In Chapter 7 , “Building for Maintainabil-
ity,” I show you that keeping a database light, lean, and simple is a better path
to supporting future needs than attempting to predict now what you will need
months from now.

 “Sure, this is all great if you never mess up,” one might say, “but what hap-
pens when we do?” In Chapter 8 , “Error and Remediation,” I show you tech-
niques that allow you to deal with any unplanned changes that might find their
way into your database design.

 In Chapter 9 , “Design,” I make recommendations about how to design a
class of databases for maximum testability. I then go a little further and show
how to apply object-oriented design concepts to classes of databases.

 Tests are frequently plagued by unwanted coupling. Dependencies between
behaviors create ripple effects and single changes end up causing dozens of tests
to fail. In Chapter 10 , “Mocking,” I show you how to isolate behaviors from
one another by building on the design techniques shown in Chapter 9 .

 The better your test coverage and the more rapidly you can introduce change,
the more frequently you are going to modify design. In Chapter 11 , “Refactor-
ing,” I demonstrate how to alter the design of your database while preserving
behavior.

 No process is complete unless it includes a mechanism to ingest software
developed before its introduction. In Chapter 12 , “Legacy Databases,” I cover
one of two ways to take a database that was developed with databases that
weren’t developed using the practices in this book by gradually covering them
in tests.

 Chapter 13 , “The Façade Pattern,” covers the other option for dealing with a
legacy database. When employing the Façade pattern, you encapsulate a legacy
design behind a new, well-tested one and gradually transfer behaviors from the
old design to the new.

Prefacexxiv

 I would be crazy if I tried to sell this as a “one-size-fits-all” solution to the
problem of bringing TDD to the database development world. The practices
herein will work for a lot of people without modification. However, some peo-
ple operate under conditions to which the first thirteen chapters of this book do
not perfectly fit. In Chapter 14 , “Variations,” I cover some of the adaptations
I’ve seen people apply in the past.

 Finally, in Chapter 15 , “Other Applications,” I demonstrate a number of
ways that the various techniques in this book can apply to data persisted by
means other than a database. Some examples of these other storage mechanisms
are file systems, XML documents, and the dreaded serialized middle-tier object.

Downloadable Code

You can download the code used in this book by going to
http://maxthe3rd.com/test-driven-database-development/code.aspx

http://maxthe3rd.com/test-driven-database-development/code.aspx

 Acknowledgments

 There are numerous infl uences behind this book ranging back over nearly a
decade.

 First thanks go to my wife, Amy. She was a constant source of motivation
and validation in the course of developing this book and, in the 15 years we’ve
been together, has done at least one proofread of everything I’ve written.

 Bill Zietzke was around at the very beginning of the process. It was a conver-
sation I had with him while we were both contracting at an insurance company
in Bellevue, Washington, that got this whole thing started.

 Beau Bender helped discover the mechanism I prescribe for controlling the
coupling between databases and their clients. For that, I am grateful.

 My good friend and mentor, Scott L. Bain, is also deserving of thanks. It was
he who first pushed me to get published and it was his influence that helped
make it happen. He has also played an instrumental role in developing this
technique by contributing valuable questions, criticisms, and observations along
the way.

 Alan Shalloway has also been a friend and mentor to me throughout the
majority of my career. He helped me decide that my first idea—teaching every-
thing to everyone—was not the right one. I am certain that, without his very
constructive criticism, you would be reading a completely different book, prob-
ably written by a completely different author.

 Both Alan and Scott played pivotal roles in my recent development as a
professional software developer. Each nurtured the skills he already saw and
supplied me with skills that were missing in a format that circumvented the con-
siderable defenses that protect me from new things and ideas.

 Of equal, and possibly greater, value was their advice on how to deal with
people. At the time of this writing, I’m not exactly a beloved consensus builder,
but I am a lot better at persuasion than I was before I met Scott and Alan. With-
out that guidance, without showing me how important it is to share what we
know in an accessible format, I probably wouldn’t even have cared to write a
book in the first place.

 Some of my recently acquired friends and colleagues have served as guinea
pigs, reading early versions of various chapters of the book for me. This allowed
me to acquire feedback soon enough to act and helped me decide to put this

Acknowledgmentsxxvi

book through its second transformation. Without feedback from Seth McCarthy
and Michael Gordon Brown, I would have tried to release a much larger book
about “agile” database development instead of the focused, technical book you
are reading now.

 It goes without saying that my parents are in part responsible because, with-
out them, there would be no me. However, my father played a special role in my
development as a young programmer. Without his influence, I would probably
be something useless, like a mathematician or a Wall Street analyst.

 About the Author

 Max Guernsey is currently a Managing Member
at Hexagon Software LLC. He has 15 years of
experience as a professional software developer.
For nearly half that time, he has been blogging,
writing, and delivering lectures on the topic of
agile and test-driven database development.

 For much of Max’s professional career, he
has been a consultant, advising a variety of soft-
ware companies in many different industries
using multiple programming and database tech-
nologies. In most of these engagements, he spent
months or even years helping teams implement
cutting-edge techniques such as test-driven devel-
opment, object-oriented design, acceptance-test-
driven development, and agile planning.

Max has always been a “hands-on” consultant, working with teams for long
periods of time to help them build both software and skills. This series of diverse,
yet deep, engagements helped him gain a unique understanding of the database-
related testing and design problems that impede most agile teams. Since 2005,
he has been thinking, writing, blogging, lecturing, and creating developer-facing
software dedicated to resolving these issues.

Max can be reached via email at max@hexsw.com. He also posts regularly
on his Twitter account (@MaxGuernseyIII) and his blog (maxg3prog.blogspot.
com).

This page intentionally left blank

 Chapter 3

 A Little TDD

 This chapter gives you a crash course in test-driven development (TDD) in case
you are not familiar with the discipline.

 A staple of the TDD process is the test-fi rst technique. Many people who are
new to test-driven development actually confuse it with the test-fi rst technique,
but they are not the same thing. Test-fi rst is one tool in the TDD toolbelt, and a
very important one at that, but there is a lot more to TDD.

 The chapter then covers a test’s proper role in your organization. Tests are
best thought of as executable specifi cations. That is, they not only test some-
thing but they also document what that thing should do or how it should look.

 One very powerful benefi t of cyclically defi ning and satisfying executable
specifi cations is that it forces your design to emerge incrementally. Each new
test you write demands that you revisit and, if necessary, revise your design.

 Following that discussion, I cover what you actually want to specify and,
probably at least as important, what you do not want to specify. In a nutshell,
the rule is “specify behaviors only.” Deciding what a database’s behavior should
be can be a little diffi cult, and I cover that topic in Chapters 6 , “Defi ning Behav-
iors,” and 7 , “Building for Maintainability.” This chapter deals with the behav-
iors inherent in tables.

 Finally, an important piece of test-driven development is to drive behaviors
into a database from outside, not the other way around. Again, you can fi nd
a lot more advice on how a database should actually be structured later in the
book. This chapter deals only with traditional design concepts.

 The Test-First Technique

 If I were in an elevator, traveling to the top of a building with a software devel-
oper I would never see again who had never heard of TDD or the test-fi rst

19

Chapter 3 A Little TDD2020

technique, I would try to teach him the test-fi rst technique. I would choose that
because it is so easy to teach and it is so easy to get people to try. Also, if done
blindly, it creates problems that will force someone to teach himself test-driven
development.

 The technique is simple, and the following is often enough to teach it:

 1. Write a test.

 2. See it fail.

 3. Make it pass.

 4. Repeat.

 There’s nothing more to test-fi rst. There’s a lot more to test-driven develop-
ment, but test-fi rst really is that simple.

 Write the Test

 The fi rst step in the technique is to write your test. If you’ve never done this
before it might be a little bit uncomfortable at fi rst. You might be thinking
“How do I know what to test if there’s nothing there?” That’s a pretty normal
feeling that I want you to ball up really tightly and shove down into your gut
while you do this a few times. Later you will discover that the best way to deter-
mine what should be tested is to write the test for it, but convincing you of that
is hard; you’ll have to convince yourself by way of experience.

 Anyway, start out by writing a test. Let’s say that I want a database that can
store messages sent between users identifi ed by email addresses. The fi rst thing
I would do is write a test that requires that ability to be there in order to pass.
The test is going to need to create a database of the current version, connect to
it, and insert a record. This test is shown in the following listing as one would
write it using NUnit and .NET:

 [TestFixture]
 public class TestFirst {
 private Instantiator instantiator;
 private IDbConnection connection;

 [SetUp]
 public void EstablishConnectionAndRecycleDatabase() {
 instantiator = Instantiator.GetInstance(
 DatabaseDescriptor.LoadFromFile("TestFirstDatabase.xml"));
 connection = DatabaseProvisioning.CreateFreshDatabaseAndConnect();
 }

The Test-First Technique 21

 [TearDown]
 public void CloseConnection() {
 connection.Close();
 }

 [Test]
 public void TestTables() {
 instantiator.UpgradeToLatestVersion(connection);
 connection.ExecuteSql("
 INSERT INTO USERS VALUES(1, 'foo@bar.com')");
 connection.ExecuteSql(
 @"INSERT INTO MESSAGES " +
 "VALUES(1, 'Hey!', 'Just checking in to see how it''s going.')");
 }
 }

 That code, as is, won’t compile because I delegate to a little bit of infrastruc-
ture that has to be written. One such tool is the DatabaseProvisioning class,
which is responsible for creating, tearing down, and connecting to test data-
bases. This class is shown in the following example code, assuming I wanted to
test against a SQL Server database:

 public class DatabaseProvisioning {
 public static IDbConnection CreateFreshDatabaseAndConnect() {
 var connection = new SqlConnection(@"Data Source=.\sqlexpress;" +
 "Initial Catalog=master;Integrated Security=True");
 connection.Open();
 connection.ExecuteSql("ALTER DATABASE TDDD_Examples SET " +
 "SINGLE_USER WITH ROLLBACK IMMEDIATE");
 connection.ExecuteSql("DROP DATABASE TDDD_Examples");
 connection.ExecuteSql("CREATE DATABASE TDDD_Examples");
 connection.ExecuteSql("USE TDDD_Examples");

 return connection;
 }
 }

 The other piece of infrastructure (following) is a small extension class that
makes executing SQL statements—something I’m going to be doing a lot in
this book—a little easier. For those of you who aren’t C# programmers, what
this does is make it look like there is an ExecuteSql method for all instances of
 IDbConnection .

 public static class CommandUtilities {
 public static void ExecuteSql(
 this IDbConnection connection, string toExecute) {
 using (var command = connection.CreateCommand()) {
 command.CommandText = toExecute;

Chapter 3 A Little TDD22

 command.ExecuteNonQuery();
 }
 }
 }

 The next step is to see a failure.

 Stub Out Enough to See a Failure

 I like my failures to be interesting. It’s not strictly required, but there’s not a
really good reason to avoid it, so assume that making a failure meaningful is
implied in “see the test fail.” The main reason you want to see a test fail is
because you want to know that it isn’t giving you a false positive. A test that
can’t fail for a good reason is about as useful as a test that cannot fail for any
reason.

 The test I have would fail because there is no database to make, which isn’t a
very interesting reason to fail. So let’s create a database class and make it so that
the database gets created.

 <Database>
 <Version Number="1">
 </Version>
 </Database>

 With that change in place, my test would fail for an interesting reason: The
table into which I was trying to insert doesn’t exist. That’s a meaningful enough
failure for me.

 See the Test Pass

 Now that a test is giving me a worthwhile failure, it’s time to make it pass. I
do that by changing the class of databases to create the required table. If I had
committed the most recent version of the database class to production, I would
create a new version to preserve the integrity of my database class. As it stands,
because this new database class hasn’t ever been deployed in an irreversible way,
I’ll just update the most recent version to do what I want it to do.

 <Database>
 <Version Number="1">
 <Script>
 <![CDATA[
 CREATE TABLE Users(ID INT PRIMARY KEY, Email NVARCHAR(4000));

 CREATE TABLE Messages(
 UserID INT FOREIGN KEY REFERENCES Users(ID),
 Title NVARCHAR(256),
 Body TEXT);

The Test-First Technique 23

]]>
 </Script>
 </Version>
 </Database>

 That update causes my database class to create the message table in version 1.
When I rerun my test, the database gets rebuilt with the appropriate structures
required to make the test pass. Now I’m done with a test-fi rst programming
cycle.

 Repeat

 After the cycle is complete, there is an opportunity to start another cycle or to
do some other things, such as refactoring. I’m going to go through one cycle just
to show you how a design can emerge incrementally. After thinking about the
design I created, I decided I don’t like it. I don’t want the email addresses to be
duplicated.

 How should I handle that? I’ll start by adding a test.

 [Test]
 public void UsersCannotBeDuplicated() {
 instantiator.UpgradeToLatestVersion(connection);
 connection.ExecuteSql(
 @"INSERT INTO Users(Email) VALUES('foo@bar.com')");
 try {
 connection.ExecuteSql(
 @"INSERT INTO Users(Email) VALUES('foo@bar.com')");
 } catch {
 return;
 }

 Assert.Fail("Multiple copies of same email were allowed");
 }

 After I get that compiling, I’ll watch it fail. It will fail because I can have as
many records with a well-known email address as I want. That’s an interesting
failure, so I can go on to the next step: adding the constraint to the new version
of my database.

 <Database>
 <Version Number="1">
 <Script>
 <![CDATA[
 CREATE TABLE Users(ID INT PRIMARY KEY, Email NVARCHAR(4000));

 ALTER TABLE Users ADD CONSTRAINT OnlyOneEmail UNIQUE (Email);

 CREATE TABLE Messages(
 UserID INT FOREIGN KEY REFERENCES Users(ID),

Chapter 3 A Little TDD24

 Title NVARCHAR(256),
 Body TEXT);
]]>
 </Script>
 </Version>
 </Database>

 Recompiling and rerunning my test shows me that it passes. Had that new
behavior caused another test to fail, I would update that test to work with the
new design constraint, rerun my tests, and see everything pass. After I’ve done
that, I decide I’m done with this phase of updating my database class’s design
and move on to other activities.

 Tests as Specifi cations

 Another important thing to understand about test-driven development is this
simple fact: Tests are specifi cations. A lot of people make the argument that
tests aren’t really tests, but are specifi cations. Others argue that they aren’t really
specifi cations, but are tests as the name implies.

 My position is that both sides of that argument are half right. Tests are speci-
fi cations. Tests are also tests. The two are not contradictory or even complemen-
tary; they are synonymous. What really distinguishes an automated test from
other kinds of specifi cations and other kinds of tests is that it is the automation
itself.

 “Tests Aren’t Tests, They Are Specifi cations”

 A large group of people exists who frequently tell new developers that tests
aren’t really tests, or at least that they don’t start off that way. Tests are specifi -
cations and the fact that they also do some testing is just a side effect.

 You can get into all kinds of mental gymnastics to justify this argument, and
a lot of them have to do with defi nitions of the words test and specifi cation . The
best one I’ve heard is that tests cannot be tests without something to test, so a
test is a specifi cation until it passes; then it “falls” into the role of a test later in
its life.

 In my opinion, terminological correctness is just a device working in service
of another motivation. That motivation is that when people think of tests as
specifi cations, they write better tests. Another motivation is to circumvent any
preconceived notions a student might have attached to the word test . Both are
noble.

 The “shock and awe” school of andragogy pulls stunts like this all the time.
“To teach, I must fi rst dislodge my student from his mental resting place,”

Tests as Specifications 25

teachers say. “Otherwise, hysteresis will drag him back to where he started,”
they add.

 Consider the following code:

 [Test]
 public void BadSpecification() {
 var processor = new Processor();
 Assert.That(processor.Process(-2), Is.EqualTo(-1));
 Assert.That(processor.Process(-1), Is.EqualTo(0));
 Assert.That(processor.Process(0), Is.EqualTo(1));
 Assert.That(processor.Process(5), Is.EqualTo(216));
 Assert.That(processor.Process(25), Is.EqualTo(17576));
 }

 The people in this camp would argue that this test might be succeeding as
a test but failing as a specifi cation and, because being a specifi cation is what a
test should really do, it is a poorly written test. By contrast, they would argue
that the following test is vastly superior because a human reading it could easily
understand the rule:

 [Test]
 public void GoodSpecification() {
 var anyInput = 4;

 var processedResult = new Processor().Process(anyInput);

 Assert.That(
 processedResult,
 Is.EqualTo((anyInput + 1)*(anyInput + 1) * (anyInput + 1)));
 }

 Let’s hear from the other side of the argument.

 “Tests Aren’t Specifi cations, They Are Tests”

 When I fi rst heard someone say that tests aren’t really tests, my knee jerked and
I reacted quite badly. I can’t imagine how badly I would have reacted if I didn’t
consider that person a friend, but we probably wouldn’t have become friends if
that was his fi rst impression of me.

 Some people, when they hear something that they believe to be wrong, imme-
diately throw what they already think they know at the problem to see whether
it goes away—and that’s exactly what I did. “No way,” I thought. “Tests aren’t
specifi cations. They are obviously tests. That’s why we call them tests. That’s
why we see them fail.”

 The old me would have looked at the test with the formula and said it was a
bad test because making it pass without really implementing the right rule was

Chapter 3 A Little TDD26

easy. Old me also would have said the test with many examples and no explana-
tion of what the rule is was a good test because it forced my production code to
do what it really should do.

 Tests Are Executable Specifi cations

 The problem was that I was doing exactly what my teacher didn’t want. I was
clinging to a preconceived notion and not hearing what he was trying to tell me.
It was a reaction to something I knew was not right but it was still holding me
back.

 Each camp is half right.
 The kinds of tests you write in test-driven development are not distinct

because they are specifi cations. Nor are they distinct because they are tests. Pro-
grammers have been creating both of those artifacts for, literally, generations.
The interesting new bit about TDD is that it produces executable specifi cations .

 The process produces specifi cations that, by defi nition, must be precise enough
to be run frequently by a machine and, consequently, are forced to always stay
up to date. That’s what makes TDD so powerful and that is why, when you
have a suite of tests that hasn’t been run for any signifi cant amount of time, an
enormous amount of work typically has to be done to make it useful.

 Keep in mind that a test is a specifi cation and a test also provides guidance on
how to make better tests. If each side of the argument said that one of the two
tests I showed earlier was better than the other and each side is half right, then
what’s the right answer in the contest between those tests?

 The right answer is, “Both of those tests have good things about them but
neither is the better test.” Instead of choosing one, make a test that clearly speci-
fi es the rule but also cannot easily be cheated. One option is to randomly select
a number for the test that uses a formula.

 private int AnyInteger() {
 return new Random().Next(0, 1000);
 }

 [Test]
 public void GoodSpecification() {
 var anyInput = AnyInteger();

 var processedResult = new Processor().Process(anyInput);

 Assert.That(
 processedResult,
 Is.EqualTo((anyInput + 1)*(anyInput + 1) * (anyInput + 1)));
 }

Tests as Specifications 27

 Another option is to factor the formula test out into a method and then
execute that method with several concrete values.

 private void RunSpecification(int anyInput) {
 var processedResult = new Processor().Process(anyInput);

 Assert.That(
 processedResult,
 Is.EqualTo((anyInput + 1) * (anyInput + 1) * (anyInput + 1)));
 }

 [Test]
 public void GoodSpecificationWithExamples() {
 RunSpecification(-2);
 RunSpecification(-1);
 RunSpecification(0);
 RunSpecification(1);
 RunSpecification(5);
 RunSpecification(25);
 }

 I tend toward the former option and, when I’m doing middle-tier develop-
ment, I don’t much care which option a person chooses because they are both
alright and they are both better than the two earlier options offered by thinking
of tests exclusively as tests or as specifi cations.

 Incremental Design

 A side-effect of test-driven development is that it enables you to work in an
incremental fashion regardless of the kind of process you use to regulate work
in your organization (for example, Scrum or Waterfall).

 Every time you write a test, you extend the body of specifi cations defi ning
what your software should do a little bit. To make that test pass, you have to
change your product’s behavior or design slightly. Before you can start working
on the next tiny piece of your product, you have to make all your tests pass.

 As a result, test-driven development has the effect of focusing work, driving
you to extend your software a little bit at a time, while keeping all the exist-
ing features working. In short: It imposes a little bit of agility on your process
regardless of organizational constraints.

Chapter 3 A Little TDD28

 Advantages of TDD

 Numerous other benefi ts and aspects of test-driven development exist that
aren’t covered in this book. They are valuable and important for you to
learn, but outside the scope of this book. Numerous resources already
explore those advantages and, if you are interested, you should probably
use them to research the topic on your own.

 Building Good Specifi cations

 You could specify many different kinds of things with tests in any given software
development endeavor. You could specify structures, public interfaces or private
constructs, or what’s in a class. In database terms, you could specify tables,
views, and stored procedures.

 A test should specify behavior, but should not specify structure. The more
behavior-focused a test is, the better off you will be because structures tend
to change a lot more quickly than behaviors. This is true even in the database
world where, frankly, the pace of change is nigh unto glacial. If you object to
my use of the word quickly , you can think of it this way: Structures change a lot
less slowly than behaviors in a database design.

 However, tests have to couple to something in order to invoke the behaviors
they defi ne. In fact, many structure decisions are involved in making a test pass.
The key is to drive those design decisions into a class of databases from the out-
side, not the other way around.

 Specify Behavior, Not Structure

 The odds that you are not a software developer are extremely low. My suspicion
is that many of the readers of this book are accomplished computer program-
mers who also do database work and want to learn how to do what they already
know how to do in a database domain. You might also be someone who works
only or primarily on databases.

 The chance also exists that you are an extraterrestrial archeologist sifting
through the intellectual ruins of a species long-since turned to dust. If so, I hope
I just sent a shiver up whatever your equivalent of a spine is. Also: Hello, and
sorry we didn’t survive long enough for our paths to cross—unless you extermi-
nated us, in which case I’m sorry our paths crossed and I hope you caught some
horrible disease from us in the process.

Building Good Specifications 29

 Database programmers and application programmers are both still program-
mers. Both groups are responsible for writing software, which itself is an act of
prescribing behaviors and relationships. In the case of object-oriented program-
ming, what those things mean is pretty clear. At least, it is pretty clear now; it
might not have been decades ago.

 In the case of database development, it’s a little less intuitive what the behav-
iors being defi ned are. People often want to think of databases as collections of
tables and relationships. The good thing about that is the focus on a database’s
primary responsibility: storing stuff. Yet, it’s still a structure-oriented way of
considering design.

 A table is a bundle of related features tied to a kind of data. The two basic
behaviors a table supports are data manipulation and data querying. Other
structures carry with them other behaviors and certain platforms offer extra
behaviors with various structures.

 Those are what you should specify in tests. Don’t specify that there is a table.
Specify that you can store and retrieve data of an interesting sort. Don’t specify
that there is a view; specify that you can perform useful searches across bodies
of data. That decision might seem meaningless now, but as the book proceeds it
will become more and more valuable to you.

 Drive Design In from Without, Not the Other Way Around

 In the procedural days, entities were just data—purely passive things subject
to the whims of whatever function might have access to them. With the advent
of object-oriented design, they became reactive things that told the world what
they could do and then waited for instructions. Modern development practices
make classes of objects into servants, told what they should be able to do by
tests and then told to do it by other objects and, ultimately, by people.

 When you write a test, you want it to specify the behaviors that live in a class
of databases, but it’s going to have to talk to something to do that. An implica-
tion of specifying a behavior is that you must also specify the minimal amount
of public interface required to invoke that behavior. The key to discovering that
is to learn it from writing tests fi rst.

 Let’s consider a problem. Imagine I need to write an application that keeps
a database of streets and cross references them with other intersecting streets.
I could drive the requirements from tests, specifying behaviors and required
interface, or I could defi ne my design inside out—starting with capabilities, then
building an interface around it. I’ll try the latter fi rst.

Chapter 3 A Little TDD30

 Defi ning the Design Inside Out

 Well, the obvious thing I need is a table in which to store streets. So let’s start
there (see Figure 3.1).

Streets

PK ID

Name

 Figure 3.1 Simple design

 Of course, streets exist in cities, so I need a cities table. Maybe later I’ll need
a states table, too, but for now, I can live without it. Let’s add a cities table with
a state column so I can track which street I am dealing with (see Figure 3.2).

Streets

PK ID

FK1 CityID
Name

Cities

PK ID

Name
State

 Figure 3.2 Streets segregated by city

 Some streets span many cities, such as highways and interstate freeways. So I
need to account for those, too (see Figure 3.3).

 Now there’s the fact that I need to track the intersections, so let’s add that. It
seems like it should be a cross-reference table with the address on each street at
which the intersection takes place. Because streets sometimes cross in multiple
places, I need a primary key that is distinct from the foreign keys on that table
so I can support multiple links, as shown in Figure 3.4 .

Building Good Specifications 31

Streets

PK ID

Name

Intersections

PK ID

FK1 Street 1ID
Street 1Address

FK2 Street 2ID
Street 2Address

Cities

PK ID

Name
State

StreetToCityLinks

PK ID

FK 2 CityID
FK 1 StreetID

 Figure 3.4 Streets organized by city and cross-referenced by intersection

 From there, I can start hypothesizing how the data might be used, adding
views and stored procedures to support those needs. Then, I could write tests
for all the behaviors I developed. Eventually, I’ll think I have enough to start
writing an application.

 Of course, I won’t.
 For one thing, there is a distinct database for every city supported by the

application. So, every application is encumbered by adding noise structures. The
 Cities and StreetToCityLinks tables are completely unnecessary as are the con-
straints surrounding them.

 Also, the application doesn’t care where two streets connect, only that they
connect. So, the Street1Address and Street2Address fi elds of the Intersections

Streets

PK ID

Name

Cities

PK ID

Name
State

StreetToCityLinks

PK ID

FK2 CityID
FK1 StreetID

 Figure 3.3 A street going through multiple cities

Chapter 3 A Little TDD32

table serve no purpose but to waste the time of everyone who touches them or
reads about them.

 Defi ning the Design Outside In

 What if I try going the other direction? Suppose I want to start at the outside and
work my way inward. In that event, by the time I’m defi ning a database design,
I probably would have written the user interface and application logic already.

 Having done those things would provide me with context and understand-
ing as to what was really needed. If I work exclusively with the database, then
someone else would provide the context for me and I would have a very clear
idea of what the requirements are.

 Either way, that understanding would be something that could be translated
into tests as in the following:

 [Test]
 public void CreateAndFindStreet() {
 connection.ExecuteSql("INSERT INTO Streets VALUES(5, 'Fun St.')");

 var id = connection.ExecuteScalar(
 "SELECT ID FROM Streets WHERE NAME LIKE '%Fun%'");

 Assert.That(id, Is.EqualTo(5));
 }

 That test would drive me to build a database class as follows:

 <Database>
 <Version Number="1">
 <Script>
 <![CDATA[
 CREATE TABLE Streets(ID INT PRIMARY KEY, NAME NVARCHAR(4000))
 </Script>
 </Version>
 </Database>

 Knowing that I also needed the capability to fi nd related streets, I might write
another test as follows:

 [Test]
 public void CreateConnectedStreetsAndFindFewestIntersectionsConnected()
 {
 connection.ExecuteSql("INSERT INTO Streets VALUES(1, 'A St.')");
 connection.ExecuteSql("INSERT INTO Streets VALUES(2, 'B Dr.')");
 connection.ExecuteSql("INSERT INTO Streets VALUES(3, 'C Ave.')");
 connection.ExecuteSql("INSERT INTO Streets VALUES(4, 'D Ln.')");
 connection.ExecuteSql("INSERT INTO Streets VALUES(5, 'E Blvd.')");

Building Good Specifications 33

 connection.ExecuteSql("INSERT INTO Intersections VALUES(1)");
 connection.ExecuteSql("INSERT INTO IntersectionStreets VALUES(1, 1)");
 connection.ExecuteSql("INSERT INTO IntersectionStreets VALUES(1, 2)");

 connection.ExecuteSql("INSERT INTO Intersections VALUES(2)");
 connection.ExecuteSql("INSERT INTO IntersectionStreets VALUES(2, 1)");
 connection.ExecuteSql("INSERT INTO IntersectionStreets VALUES(2, 3)");

 connection.ExecuteSql("INSERT INTO Intersections VALUES(3)");
 connection.ExecuteSql("INSERT INTO IntersectionStreets VALUES(3, 3)");
 connection.ExecuteSql("INSERT INTO IntersectionStreets VALUES(3, 4)");
 var result = connection.ExecuteScalar(
 "SELECT Depth FROM Connections() WHERE StartID = 2 AND EndID = 4");

 Assert.That(result, Is.EqualTo(3));
 }

 That test would drive me to develop the design in the next snippet:

 <Database>
 <Version Number="1">
 <Script>
 <![CDATA[
 CREATE TABLE Streets(ID INT PRIMARY KEY, NAME NVARCHAR(4000))
 CREATE TABLE Intersections([ID] INT PRIMARY KEY)
 CREATE TABLE IntersectionStreets(
 [IntersectionID] INT FOREIGN KEY REFERENCES Intersections(ID),
 [StreetID] INT FOREIGN KEY REFERENCES Streets(ID))
]]>
 </Script>
 <Script>
 <![CDATA[
 CREATE VIEW ImmediateConnections AS
 SELECT s.StreetID AS StartID, e.StreetID AS EndID
 FROM IntersectionStreets AS s
 INNER JOIN IntersectionStreets AS e
 ON s.IntersectionID = e.IntersectionID and s.StreetID <> e.StreetID
]]>
 </Script>
 <Script>
 <![CDATA[
 CREATE FUNCTION Connections
 (
)
 RETURNS @Result TABLE (Depth INT, StartID INT, EndID INT)
 AS
 BEGIN
 DECLARE @Temp TABLE (StartID INT, EndID INT)
 DECLARE @Depth INT
 SET @Depth = 0

Chapter 3 A Little TDD34

 INSERT INTO @Temp SELECT ID AS StartID, ID AS EndID FROM Streets;

 WHILE EXISTS (SELECT TOP 1 * FROM @Temp)
 BEGIN
 INSERT INTO @Result SELECT @Depth, StartID, EndID FROM @Temp;
 DELETE @Temp;

 INSERT INTO @Temp SELECT r.StartID, ic.EndID FROM @Result AS r
 INNER JOIN ImmediateConnections AS ic ON r.EndID = ic.StartID

 DELETE @Temp FROM @Temp AS tc INNER JOIN @Result AS r
 ON tc.StartID = r.StartID AND tc.EndID = r.EndID

 SET @Depth = @Depth + 1
 END;
 RETURN
 END
]]>
 </Script>
 </Version>
 </Database>

 Note how narrow and focused the interface for the database that was
designed outside-in is compared to the one that was designed inside-out. Yet,
in certain areas such as the recursive view, the behavior is much deeper than
with the inside-out design. The two side-effects of driving design into a system
rather than designing a system and making clients fi nd a way to use it are that
you write something that can actually be used, and you spend more of your time
developing worthwhile functionality.

 Summary

 A distinction exists between test-fi rst programming and test-driven develop-
ment. The former is an easy practice to convey whereas the latter is a hard
discipline to learn. Test-fi rst is, however, a stepping stone that helps you get to
test-driven development.

 TDD is more than just getting good specifi cations in place that happen to be
tests. It is also more than just getting good tests in place that happen to be speci-
fi cations. It is about building executable specifi cations. That is, it is about creat-
ing documents that are both tests and specifi cations to such a degree of quality
that you don’t need any other documents to do either of those jobs.

 Test-driven development has a lot more to it, but this chapter should give
you the context you need to get started. Throughout the remainder of the book,

Summary 35

remember these things: Try to specify behaviors in tests before implementing
them, and grow your designs inward from the point at which a test couples to
what it tests.

 The next step is to put in place structures that allow you to change your
designs with great confi dence, especially with regard to the safety of production
data.

This page intentionally left blank

 Index

301

 A

 abstraction, 160

 composition type relationships,
 178 - 179

 database classes, linking, 178 - 179

 dependencies, allowing variation in,
 185 - 186

 implementation and interface,
synchronizing, 186 - 189

 low-risk refactoring operations,
222 - 223

 access to façade database, removing,
 263 - 264

 advantages of TDD, 27

 aggregation, 160 , 167 , 172 - 174

 mocking, 203 , 210

 reuse, 177

 allowing variation in dependencies,
 185 - 186

 applications, coupling to database
instances, 66

 applying

 changes to incremental builds, 16

 façade pattern to legacy databases,
 254 - 261

 old interface, strangling, 262 - 264

 patches, 274 - 281

 linear growth pattern of database
class, rejoining, 275 - 281

 resulting variation, limiting, 277

 transition testing, 277 - 281

 safeguards to upgrades, 60

 TDD

 to data objects, 292 - 300

 to databases, challenges in, 3

 to file systems, 288 - 291

 to XML, 284 - 288

 assembly language, suitability for
TDD, 160 - 162

 auditing current uses of legacy
databases, 232 - 233

 avoiding requirements forecasting,
 111 - 112

 B

 backups, importance of, 156

 bad errors

 released errors, 150 - 157

 documenting, 154 - 157

 unreleased errors, 147 - 150

 behaviors, 102 - 106

 controlling through mocking,
 194 - 195

 Index302302

 defining for outside-in development,
 109 - 110

 desirable errors, testing for,
143 - 145

 inside-out design, defining, 30 - 32

 irrelevant behaviors, isolating from
tests, 194

 knowledge, protecting integrity of,
 124 - 126

 in legacy databases

 legacy behaviors, exposing,
 265 - 266

 new behavior, implementing,
 239 - 240

 new behaviors, developing in
façade database, 266

 pinning, 237 - 239

 testing, 235 - 236

 transferring to façade database,
 262 - 263

 mapping by dependencies, 166 - 167

 outside-in design, defining, 32 - 34

 pinning, 49

 specifying, 28 - 29 , 193

 versus structures, 28

 table-supported, 29

Bain, Scott, xvii

 beneficial defects, tracing history
of, 145

 benefits of TDD, 3

 bottlenecks resulting from business
logic, 98

 building in increments, 112

 business logic, 97 - 98

 bottlenecks resulting from, 98

 needs interface, 97 - 98

 C

 capabilities interface, 97

 converting to needs interface via
façade pattern, 250 - 254

 hiding, 97

 catastrophic errors, importance of
backups in dealing with, 156

 challenges in applying TDD to
databases, 3

 change-management, effect on
maintainability, 124 - 126

 changing existing data structures,
51 - 56

 classes . See also linking through
abstraction, 178 - 179

 in OOP, 11

 role in TDD, 9 - 11

 separating

 via aggregation, 172 - 174

 via composition, 168 - 172

 code

 machine code, 159

 references, changing, 82

 reuse, 175 - 177

 committed bugs, destroying, 154 - 157

 comparing

 behaviors and structures, 28

 objects and classes, 10 - 11

 strong and weak coupling
languages, 66

 TDD and object-oriented
development, 2 , 4

 components

 encapsulating, 243 - 247

 locating, 242 - 243

Index 303

 composition, 160 , 167 - 172

 mocking, 203 , 208 - 210

 reuse, 177

 concepts, dividing into buckets, 163

 construction behaviors in legacy
databases, pinning, 237 - 238

 construction logic

 of data objects, testing, 294 - 296

 dividing into transitions, 163

 constructors, 10

 controlling

 behaviors through mocking,
194 - 195

 legacy database coupling

 encapsulating on demand, 234

 existing uses of, auditing,
 232 - 233

 permissions, locking down,
233 - 234

 converting

 capabilities interface to needs
interface via façade pattern,
 250 - 254

 legacy databases to a class, 229 - 230

 coupling

 applications to database
instances, 66

 enforcing, 68

 error handling, 71

 intermediate formats, creating for
multiple platform clients, 70

 to legacy databases, controlling,
 231 - 234

 encapsulating on demand, 234

 existing uses of, auditing,
 232 - 233

 permissions, locking down,
 233 - 234

 lens concept, 83 - 85

 virtual lenses, 85 - 89

 logical versions, 93 - 94

 to needs interface, 97

 seams, 227

 locating, 240 - 243

 validating, 63

 creating intermediate formats for
multiple platform clients, 70

 CRUD (create, read, update, and
delete), 97

 current database version,
identifying, 16

 D

 data objects, TDD applications,
 292 - 300

 class definitions, 292 - 293

 transition testing, 294 - 296

 transitions, coding, 296 - 300

 database classes

 comparing to objects, 10 - 11

 coupling classes

 documenting, 74

 version-specific, 77 - 78

 database coupling, 67 - 69

 DatabaseDesign class

 creating demand for, 67 - 68

 specifying, 68 - 69

 high-risk refactoring
operations, 225

 importance of, 270

 legacy databases, promoting to,
 228 - 231

 low-risk refactoring operations,
 222 - 223

Index304

 medium-risk refactoring operations,
 223 - 225

 modification, 12 - 13

 database development

 incremental builds

 changes, applying, 16

 changes, documenting, 15

 current version, identifying, 16

 versus object-oriented
development, 2

 DatabaseDesign class

 creating demand for, 67 - 68

 specifying, 68 - 69

 databases

 behaviors, 102 - 106 . See also
behaviors

 business logic, 97 - 98

 classes

 implementing, 16 - 17

 modification, 12 - 13

 constructors, 44 - 56

 coupling, 63

 to applications, 66

 enforcing, 68

 design of

 avoiding requirements
forecasting, 111 - 112

 change-management effect on,
 124 - 126

 CRUD-based, 100

 information-based, 117 - 120

 internal structures, hiding,
 112 - 113

 new features, building support
for, 128 - 129

 without encapsulation, 96

 IcecreamSales database, 41

 information, 99 - 101

 instantiation

 pseudocode input, 17

 pseudocode mechanism, 17

 requirements for, 16 - 17

 interfaces

 capabilities interface, 97

 duplication, 64

 needs interface, 97

 knowledge, 102

 knowledge samples, validating, 59

 legacy databases

 components, encapsulating,
 243 - 247

 components, locating, 242 - 243

 coupling, controlling, 231 - 234

 existing uses of, auditing,
 232 - 233

 façade databases, testing,
254 - 261

 façade pattern, 249

 interface, creating, 234

 permissions, locking down,
 233 - 234

 promoting to a class, 228 - 231

 seams, locating, 240 - 243

 as objects, 5

 production databases, 13 - 14

 proxies, testing, 6

 tables, 29

 TDD, difficulty in applying, 3

 transition safeguards, 56 - 61

 decoupling

 implementation from design, 72 - 73

 in OOP mocking, 199 - 202

Index 305

 defining

 external interface through
information, 100

 inside-out design, 30 - 32

 outside-in design, 32 - 34

 deleting unit tests, 154 - 157

 delivering features incrementally,
 116 - 117

 dependencies

 allowing variation in, 185 - 186

 isolating from behaviors, 202

 mapping behaviors by, 166 - 167

 design principles, 160

 abstraction, 178 - 189

 dependencies, allowing variation
in, 185 - 186

 implementation and interface,
synchronizing, 186 - 189

 aggregation, 167 , 172 - 174

 composition, 167 - 172

 encapsulation, 163

 applying to XML documents,
 284

 mapping behaviors by
dependencies, 166 - 167

 mocking, 203 - 210

 aggregation designs, 210

 composition designs, 208 - 210

 problem example, 204 - 205

 solution example, 205 - 208

 refactoring, 213

 high-risk refactoring
operations, 225

 low-risk refactoring
operations, 222 - 223

 medium-risk refactoring
operations, 223 - 225

 role of tests in, 215 - 222

 reuse, 175 - 177

 risks in changing design, 213

 designing to information, 117 - 120

 desirable errors, documenting,
143 - 145

 desirable errors, testing for, 145

 destroying committed bugs, 154 - 157

 developing new behaviors in façade
database, 266

 development

 inside-out, 30 - 32

 outside-in , 32-34

 defining the test, 106 - 107

 interface, adding, 108 - 109

 difficulty in applying TDD to
databases, 3

 dividing

 concepts into buckets, 163

 construction logic into
transitions, 163

 documenting

 changes in incremental builds, 15

 coupling classes for versions, 74

 desirable errors, 143 - 145

 released errors, 154 - 157

 duplication

 between database build and client
code, eliminating, 71 - 72

 lens concept, 83 - 85

 virtual lenses, 85 - 89

 medium-risk refactoring operations,
 223 - 225

 Shalloway’s Law, 82

 Index306

 E

 eliminating

 duplication between database build
and client code, 71 - 72

 unit tests, 154 - 157

 encapsulation

 aggregation, 160 , 167 , 172 - 174

 reuse, 177

 applying to XML documents, 284

 behaviors

 hiding via abstraction, 179 - 185

 mapping by dependencies,
166 - 167

 composition, 160 , 167 - 172

 reuse, 177

 in database design without
encapsulation, 96

 encapsulation of variation, 159

 via abstraction, 160

 façade pattern . See also façade
pattern

 capabilities interface, converting
to needs interface, 250 - 254

 old interface, strangling, 262 - 264

 legacy database components,
 243 - 247

 needs interface, 97

 encapsulation of variation, via
abstraction, 160

 enforcing

 database coupling, 68

 parity between first- and second-
class designs, 270 - 273

 error, types, 137

error handling

 backups, importance of, 156

 bad errors

 released errors, 150 - 157

 unreleased errors, 147 - 150

 good errors

 documenting, 143 - 145

 tracing history of, 145

 released errors, 150

documenting, 154 - 157

 establishing maintainability of legacy
databases, 231

 evolution of related classes,
synchronizing, 186 - 189

 executable specifications as tests,
 26 - 27

 existing data structures, changing,
 51 - 56

 exposing behaviors

 legacy behaviors in façade database,
 265 - 266

 with stored procedures, 121 - 124

 external interface, defining in terms of
information, 100

 F

 façade pattern, 249

 applying to legacy databases

 changing behaviors, transferring
to façade database, 262 - 263

 legacy behaviors, exposing,
265 - 266

 new behaviors, developing, 266

 old interface, strangling, 262 - 264

 permissions, removing, 263 - 264

 capabilities interface, converting to
needs interface, 250 - 254

testing, 254-261

Index 307

 failure, observing

 pinning, 49

 test-first technique, 22

 transition testing, 46 - 47

 features

 adding to legacy databases, 234

 building support for, 128 - 133

 delivering incrementally, 116 - 117

 including only current requirements,
 111 - 112

 removing from façade database,
 263 - 264

 testing independently, 166

 file systems, TDD applications,
 288 - 291

 shell script transitions, 291

 transition testing, 289 - 291

 finding seams, 240 - 243

 first-class designs, enforcing parity
with second-class designs, 270 - 273

 fixing

 released errors, 150 - 157

 unreleased errors, 147 - 150

 flexibility of design, achieving through
abstraction, 179 - 185

 Four Cs, 16 - 17

 functionality of stored procedures,
specifying, 131 - 132

 G

 Gang of Four, 117

 good errors , 142

 documenting, 143 - 145

 tracing history of, 145

 H

 handling coupling errors, 71

 hiding

 behaviors through abstraction,
179 - 185

 tables through stored procedures,
 119 - 120

 hiding internal structures, 112 - 113

 high-risk refactoring operations, 225

 history of good errors, tracing, 145

 I

 IcecreamSales database, 41 - 43

 identifying current database
version, 16

 implementation class, synchronizing
with interface class, 186 - 189

 implementing

 database instantiation,
requirements, 16 - 17

 new behavior in legacy databases,
 239 - 240

 importance of classes, 270

 incremental builds, 112

 changes, applying to, 16

 changes, documenting, 15

 current version, identifying, 16

 Infinite Insights into Kenpo
(Parker), 287

 information and knowledge,
translating between via behaviors,
 102 - 106

 information-based interface, 101

 inside-out design, defining, 30 - 32

 Index308

 integration testing, 202 - 203

 interfaces

 capabilities interface, 97

 converting to needs interface via
façade pattern, 250 - 254

 duplication, 64

 external interface, defining through
information, 100

 inside-out design, 30 - 32

 legacy database interface

 creating, 234

 old interface, strangling, 262 - 264

 needs interface, 97

 outside-in design, 32 - 34

 for outside-in development,
108 - 109

 synchronizing with implementation,
 186 - 189

 intermediate formats, creating, 70

 internal structures

 hiding, 112 - 113

 testing, 46 - 47

 irrelevant behaviors, isolating from
tests, 194

 isolating

 behaviors from dependencies, 202

 irrelevant behaviors from tests, 194

 J-K

 knowledge

 high-risk refactoring
operations, 225

 versus information, 102

 protecting integrity of, 124 - 126

 tables, 102

 L

 legacy databases

 behaviors

 legacy behaviors, exposing,
 265 - 266

 new behavior, implementing,
 239 - 240

 pinning, 237 - 239

 testing, 235 - 236

 components

 encapsulating, 243 - 247

 locating, 242 - 243

 coupling, controlling, 231 - 234

 decomposing into components, 227

 existing uses of, auditing, 232 - 233

 façade databases, 249

 features and permissions,
removing, 263 - 264

 testing, 254 - 261

 transferring changing behaviors
to, 262 - 263

 interface, creating, 234

 permissions, locking down, 233 - 234

 promoting to a class, 228 - 231

 seams, locating, 240 - 243

 lens concept, 83 - 85

 current version lens, 89

 new version lens, 89 - 93

 virtual lenses, 85 - 89

 leveraging transition safeguards, 60 - 61

 limiting variation from patches, 277

 line items, separating from
transactions in tables, 41 - 43

 linear growth pattern of database
class, rejoining patches to, 275 - 281

 Index 309

 linking database classes through
abstraction, 178 - 179

 locating

 components, 242 - 243

 seams, 240 - 243

 locking down legacy database
permissions, 233 - 234

 logical databases, composition,
168 - 172

 logical versions, coupling to, 93 - 94

 low-risk refactoring operations,
 222 - 223

 M

 machine code, 159

 maintainability, 115

 change-management effect on,
124 - 126

 designing to information, 117 - 120

 of legacy databases,
establishing, 231

 new features, building support for,
 128 - 129

 refactoring, 133 - 136

 through minimal database
design, 115

 translating information and
knowledge with behaviors,
 121 - 124

 mapping

 behaviors by dependencies, 166 - 167

 between need and capability, 97

 Martin, Robert, 214

 medium-risk refactoring operations,
223 - 225

 minimal database design, 115

 mocking

 behaviors

 controlling, 194 - 195

 encapsulation, 192

 irrelevant behaviors, isolating
from tests, 194

 specifying, 193

 in database design

 aggregation designs, 203 , 210

 composition designs, 203 ,
208 - 210

 problem example, 204 - 205

 solution example, 205 - 208

 in OOP, 195 - 203

 behaviors, isolating from their
dependencies, 202

 decoupling, 199 - 202

 integration testing, 202 - 203

 setup, 195 - 199

 modification of database classes, 12 - 13

 multiple client platforms, creating
intermediate formats, 70

 N

 naming conventions, importance
of, 133

 natural versus overdesigned
databases, 126 - 127

 needs interface, 97

 versus capabilities interface, 97

 coupling to, 97

 creating from capabilities interface
via façade pattern, 250 - 254

 Index310

 O

 objects

 comparing to classes, 10 - 11

 databases as, 5

 reuse, 175

 observing test-first technique outcomes

 failure, 22

 success, 22 - 23

 OOP (object-oriented programming)

 versus database development, 2

 mocking, 195 - 203

 behaviors, isolating from their
dependencies, 202

 decoupling, 199 - 202

 integration testing, 202 - 203

 setup, 195 - 199

 outside-in design

 behaviors, defining, 109 - 110

 defining, 32 - 34

 defining the test, 106 - 107

 interface, adding, 108 - 109

 structures, defining, 109 - 110

 overdesigning databases, 126 - 127

 P

 parity, enforcing between first- and
second-class designs, 270 - 273

 Parker, Ed, 287

 patches

 linear growth pattern of database
class, rejoining, 275 - 281

 resulting variation, limiting, 277

 transition testing, 277 - 281

 permissions

 locking down, 233 - 234

 removing from façade database,
263 - 264

 pinning, 49

 desirable errors, documenting,
143 - 145

 legacy database behaviors, 237 - 239

 released errors, fixing, 153 - 154

 political barriers to effective design,
124 - 126

 preserving database knowledge,
transition safeguards, 56 - 61

 production databases, 13 - 14

 as model for all databases, 14

 “Production Promote,” 39 - 40

 programming

 strong coupling languages, 64 - 65

 weak coupling languages, 65 - 66

 programming languages

 assembly language, 160

 suitability for TDD, 159

 promoting legacy databases to a class,
 228 - 231

 script, creating, 229 - 230

 transition behavior, pinning with
tests, 231

 proxies, testing, 6

 pseudocode input for database
instantiation, 17

 public interfaces

 duplication, 64

 separating from private
implementation, 102

Index 311

 Q-R

 read/read transition testing, 56 - 59

 refactoring, 133 - 136

 risks in changing database
design, 213

 high-risk refactoring
operations, 225

 low-risk operations, 222 - 223

 medium-risk refactoring
operations, 223 - 225

 role of tests in, 215 - 222

 relationships

 adding to transition tests, 50 - 51

 aggregation relationships, 173

 behaviors, mapping by
dependencies, 164 - 167

 components

 encapsulating, 243 - 247

 locating, 242 - 243

 defining, suitability of programming
languages in, 162

 released errors, 150 - 157

 documenting, 154 - 157

 removing

 permissions in façade database,
 263 - 264

 unit tests, 154 - 157

 repairing

 released errors, 150 - 157

 unreleased errors, 147 - 150

 requirements

 for database instantiation, 16 - 17

 forecasting, avoiding, 111 - 112

 reuse

of design and instances, 175

as primary benefit of object-
oriented development, 160

 rewriting design updates, 75 - 77,
261-262

 risk-free design, 38

 risks

 of breaking contracts, 38 - 39

 in changing database design, 213

 low-risk refactoring operations,
 222 - 223

 medium-risk refactoring
operations, 223 - 225

 of changing structures, 37

 role of classes in TDD, 9 - 11

 role of tests in refactoring, 215 - 222

 rollbacks, performing on fail, 60

 S

 safeguards

 adding to transition tests, 56 - 59

 applying to upgrades, 60

 sampling, 58

 knowledge samples, validating, 59

 scripts, transforming legacy databases
to a class, 229 - 230

 seams, 227

 locating, 240 - 243

 second-class designs, enforcing parity
with first-class designs, 270 - 273

 security, locking down permissions,
 233 - 234

 separating

 behaviors by commonality, 165 - 167

 database classes

 through aggregation, 172 - 174

 through composition, 168 - 172

 Index312

 line items from transactions in
tables, 41 - 43

 Shalloway’s Law, 82

 shell script transitions, 291

 software industry, testing in, 5 - 6

 specifications

 behaviors

 specifying, 28 - 29

 versus structures, 28

 incremental design, 27

 inside-out design, defining, 30 - 32

 outside-in design, defining, 32 - 34

 tests as, 24 - 27

 specifying

 behaviors, 193

 DatabaseDesign class, 68 - 69

 stored procedure functionality,
 131 - 132

 SQL Server

 promoting legacy databases to a
class, 229 - 230

 stored procedures

 behaviors, exposing, 121 - 124

 hiding tables through, 119 - 120

 needs interface, exposing, 97

 specifying functionality, 131 - 132

 updating for new versions, 134 - 135

 strangling legacy database interface,
 262 - 264

 strong coupling languages, 64 - 65

 structures

 versus behaviors, 28

 versus design, 160

 as cause for released errors,
eliminating, 154 - 157

 changing, risks of, 37

 defining for outside-in development,
 109 - 110

 internal structures

 hiding, 112 - 113

 testing, 46 - 47

 success, observing

 desirable errors, testing for,
144 - 145

 test-first technique, 22 - 23

 suitability of programming languages

 in defining relationships, 162

 for TDD, 159

 supporting new features, 128 - 129

 synchronizing

 designs through reuse, 175 - 176

 implementation and interface,
 186 - 189

 T

 tables, 29

 supported behavior, 29

 through stored procedures, 119 - 120

 transactions, separating from line
items, 41 - 43

 as unit of knowledge, 102

 target audience for this book, 3 - 4

 TDD (test-driven development)

 applying

 to data objects, 292 - 300

 to file systems, 289 - 291

 to XML, 284 - 288

 benefits of, 3

 classes, role in, 9 - 11

Index 313

 encapsulation

 aggregation, 160

 composition, 160

 encapsulation of variation, 159

 incremental design, 27

 versus object-oriented
development, 2

 suitability of programming
languages for, 159

 test-first technique, 19 - 24

 failure, observing, 22

 repeating the process, 23 - 24

 success, observing, 22 - 23

 writing the test, 20 - 22

 testing as executable specifications,
 26 - 27

 test-first technique, 19 - 24

 failure, observing, 22

 repeating the process, 23 - 24

 success, observing, 22 - 23

 writing the test, 20 - 22

 testing

 behaviors

 irrelevant behaviors, isolating
from tests, 194

 in legacy databases, 235 - 236

 specifying, 28 - 29

 for desirable errors, 143 - 145

 as executable specifications, 19 ,
 26 - 27

 façade databases, 254 - 261

 integration testing, 202 - 203

 internal structures, 46 - 47

 in outside-in development

 test, defining, 106 - 107

 proxies, 6

 role in refactoring, 215 - 222

 in software industry, 5 - 6

 as specifications, 24 - 27

 transition safeguards, 56 - 61

 rollbacks, 60

 transition testing, 37 , 44 - 56

 data objects, 294 - 296

 desirable errors, testing for, 145

 file systems, 289 - 291

 read/read transition testing,
 56 - 59

 relationships, adding, 50 - 51

 transition safeguards, leveraging,
 60 - 61

 XSLT changes, 287 - 288

 unit testing, 67 - 73

 DatabaseDesign class, 67 - 68

 decoupling implementation from
design, 72 - 73

 deleting tests on purpose,
154 - 157

 for unreleased errors, 147 - 150

 thedailywtf.com, 39 - 40

 tracing history of good errors, 145

 transactions, separating from line
items in tables, 41 - 43

 transferring changing behaviors to
façade database, 262 - 263

 transition safeguards, 56 - 61

 leveraging, 60 - 61

 rollbacks, 60

 sampling, 58

 transition testing, 37 , 44 - 56 . See also
transition safeguards

 data objects, 294 - 296

 desirable errors, testing for, 145

 existing data structures, changing,
 51 - 56

 Index314

 failure, observing, 46 - 47

 file systems, 289 - 291

 internal structures, testing, 46 - 47

 for patches, 277 - 281

 pinning, 49

 released errors, fixing, 153 - 154

 read/read transition testing, 56 - 59

 relationships, adding, 50 - 51

 sampling, 58

 XSLT changes, 287 - 288

 transitions, 214

 translating information and knowledge
with behaviors, 121 - 124

 U

 unit testing, 67 - 73

 DatabaseDesign class, creating
demand for, 67 - 68

 decoupling implementation from
design, 72 - 73

 deleting tests on purpose, 154 - 157

 pinning, documenting desirable
errors, 143 - 145

 unreleased errors, fixing, 147 - 150

 unnecessary structures, removing,
 154 - 157

 unreleased errors, 147 - 150

 updating

 for new design versions, 75 - 77

 new features, building support for,
 128 - 133

 with patches, 274 - 281

 linear growth pattern of database
class, rejoining, 275 - 281

 resulting variation, limiting, 277

 transition testing, 277 - 281

 rewrites, 261 - 262

 upgrades

 documenting, 75 - 77

 safeguards, applying, 60

 V-W

 validating

 coupling, 63

 knowledge samples, 59

 verifying refactors, 214

 versions

 coupling classes, documenting, 74

 current version lens, 89

 documenting, 75 - 77

 in incremental builds, 15

 enforcing parity between, 270 - 273

 implementation and interface,
synchronizing, 186 - 189

 logical versions, coupling to, 93 - 94

 new version lens, 89 - 93

 patches, applying to, 274 - 281

 stored procedures, updating,
134 - 135

 version-specific coupling classes, 77 - 78

 virtual lenses, 85 - 89

 weak coupling languages, 65 - 66

 writing the test (test-first technique),
20 - 22

Index 315

 X-Y-Z

 XML, TDD applications, 284 - 288

 encapsulation, 284

 XSD schemas, 284 - 286

 XSLT transformations, 286 - 288

 XSD schemas, applying TDD to XML,
 284 - 286

 XSLT transformations, 286 - 288

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 3 A Little TDD
	The Test-First Technique
	Write the Test
	Stub Out Enough to See a Failure
	See the Test Pass
	Repeat

	Tests as Specifications
	“Tests Aren’t Tests, They Are Specifications”
	“Tests Aren’t Specifications, They Are Tests”
	Tests Are Executable Specifications
	Incremental Design

	Building Good Specifications
	Specify Behavior, Not Structure
	Drive Design In from Without, Not the Other Way Around
	Defining the Design Inside Out
	Defining the Design Outside In

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V-W
	X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [720.000 864.000]
>> setpagedevice

