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Foreword  

I’ve been a Test-Driven Development practitioner for many years and have also 
been writing, lecturing, and teaching courses on the subject as part of my duties 
at Net Objectives. A question that often arises during classes or conference talks 
is this: TDD seems ideal for business logic and other “middle-tier” concerns, but 
what about the presentation (UI) tier and the persistence (database) tier?

My answer, typically, has been to point out that there are two issues in each 
case: 

1.  How to manage the dependencies from the middle tier to the other two, so 
as to make the middle tier behaviors more easily testable

2.  How to test-drive the other layers themselves

For issue #1, this is a matter of interfaces and mock objects, design patterns, 
and good separation of concerns in general. It is a matter of technique, and the 
TDD community has a lot of mature, proven techniques for isolating business 
logic from its dependencies. A lot of time is spent in my courses on these “tricks 
of the trade.”

But when it comes to issue #2—test-driving the user interface and the data-
base themselves—I’ve always said that these are largely unsolved problems. Not 
that we don’t know how to test these things, but rather that we don’t know how 
to test drive them, to write the kind of isolated, fast, granular tests that good 
TDD requires. We have to be satisfied with more traditional testing when it 
comes to these other layers of the system; this has been my traditional answer.

As far as I know, this is still true for the UI. But when it comes to databases, 
Max Guernsey has figured it out.

In my book Emergent Design, I talk a lot about the parallels between systems 
design and evolutionary processes in nature. If you think of your source code as 
the “DNA” of the system and the executable as the “individual organism,” it 
really fits. The DNA is used to generate the individual. To make a change to the 
species, the DNA changes first, and then the next individual generated is altered. 
Nature does not evolve individuals; it makes changes to the species generation-
ally. This is much akin to the code/compile/run nature of software. We throw 
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away the .exe file, change the source code, and the compiler makes a new, differ-
ent, hopefully better executable. Because of this, the source is king. It’s the one 
thing we cannot afford to lose.

Max’s insight began, at least in my conversations with him, with the notion 
that databases are not like this. If the schema is akin to the DNA, and thus an 
installed, running instance of the database (with all its critical enterprise data) is 
an individual, we cannot take nature’s cavalier attitude toward it. The schema 
is easy to re-create—you just run your DDL scripts or equivalent. But a given, 
installed, “living” database contains information and knowledge that must be 
preserved as its structure changes.

Because of this, the paradigm of evolution does not fit. In databases, the 
individual is paramount. We cannot simply throw it away and re-create it from 
altered DNA. Nature, again, does not evolve individuals. But there is a natural 
paradigm that works. It is morphing. It is the way an individual creature transi-
tions from one life phase to another—tadpole to frog, for example. In examining 
this insight and all of its ramifications, Max has developed a truly revolutionary 
view about databases: how to create them and change them and, at long last, 
how to test-drive them. His approach gives the database practitioner the funda-
mental clarity, safety, and leverage that a TDD practitioner enjoys.

This book is a ground-breaking work. Max has discovered the Rosetta stone 
of database development here, and if you follow him carefully, you will leave 
with a far more powerful way of doing your job when it comes to the persistence 
tier of your system. You will have the knowledge, tools, and overall approach 
that make this possible.

—Scott Bain
Senior Consultant, Net Objectives



Preface  

 This book applies the concepts of test-driven development to database 
development.  

  Who Should Read This Book  

 The short answer is “anyone who wants to learn how to do test-driven develop-
ment of a database and is willing to do the hard work to get there.” The long 
answer follows.  

 This book is aimed primarily at programmers who are in some way respon-
sible for the development of at least one database design. A secondary target is 
people who think of themselves primarily as database developers who are inter-
ested in adding test-driven development to their process.  

 That is not meant to in any way diminish the value of the second group of 
people. The techniques in this book build on principals and methods that, at the 
time of this writing, are gaining widespread acceptance among the former group 
and still struggling to gain traction with the latter. That’s not to say that things 
won’t change—I hope they will—but this book would have spun out of control 
if I tried to take on all first principles from which it is derived.  

 The goal of this book is to help people apply the process of test-driven devel-
opment to the new domain of database development, where the forces are dif-
ferent if only slightly.  

 If you read the book and are able to sustainably drive development of your 
database through test, it’s a win both for you and for me. If you start using the 
principles to port over other techniques, such as pattern-oriented development, 
then the win will be doubled. If you start porting what you learn there back into 
any other domain where long-lived data is involved, such as the development of 
your installers, then the win is greater still.   
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  What Needs to Be Done  

 To serve this goal, I start by establishing why test-driven development works. I 
then look at why it has so much trouble gaining traction in the database world. 
Mind you, it’s not that I think database development is basically untested, but 
my experience has shown me that it is not sustainably tested nor is it test driven.  

 The main problem that makes database testing hard is the absence or mis-
placement of the concept of a class. Even the most “Wild-West-style” modern 
language still supports the idea of having classes and instances.  

 Database engines either pay lip service to this by having classes of data struc-
tures or do nothing whatsoever to establish truly testable classes. The reason for 
this appears to me to be that people generally haven’t recognized what the true 
first-class object of the database world is: the database itself. So the first step is 
to establish a class of databases.  

 Change is central to the test-driven development process. You are constantly 
changing design to support new needs and to support the testability of an 
expanding feature set. One of the forces that makes test-driven development 
harder to adopt and to sustain is that change is seen as more dangerous in data-
base designs than in other kinds of design.  

 If you mess up a design change in your middle tier, you might have to roll 
back. If you mess up a design change in the data tier, you could erase valuable 
knowledge stored therein. The solution is to test not only what your database 
does but also how it is changed.  

 Another problem that faces databases in regard to changing design is that 
the coupling between a database and its clients is weakly enforced. The pos-
sibility exists to make a change to a database’s interface and not discover that 
you’ve broken a downstream application for a very long time. That risk can be 
mitigated by using your class of databases to harden the relationship between a 
database design and its clients.  

 Creating a strong class of databases with a controlled way of changing things 
solves the basic problems in the database world that stand in the way of TDD. 
That is, it gets developers up to the early ’90s in terms of support for modern 
practices.  

 To get into the twenty-first century, you have to go a bit further. To that 
end, I help you understand that the scope of a test should be verification of a 
behavior. I support that by defining what a behavior is in the context of data-
base development.   
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  Enabling Emergent Design  

 I also show you how to maximize long-term maintainability by limiting a data-
base’s scope to what you need right now and using the techniques in this book 
to make it easy to add more features later. That is, I’ll help you give up the fear 
you tend to associate with not planning a database’s design far in advance.  

 No process is perfect and, even if it were, none of the people executing it 
would be. Despite all your efforts to avoid them, mistakes will be made. If you 
are doing true test-driven database development, most of the time a mistake will 
come in the form of a behavior not expressed in your test suite. I’ll show you 
how best to correct an error.  

 Knowing how to develop and write tests for a class of databases while keeping 
their designs as simple and problem-appropriate as possible will bring database 
development into the twenty-first century—just one short era behind modern 
object-oriented development.   

  Modernizing Development  

 The fi nal phase of modernizing database development to support a test-driven 
process involves adopting and adapting what I call the “advanced” object-ori-
ented methodologies.  

 Getting a grip on design at the class/database level is the first phase. If you 
have a choice between one big database design and two smaller ones, you should 
choose the pair of smaller ones. If the database technology isn’t in a place to 
permit that, use composition to place two logical database instances inside one 
physical database instance.  

 Another important activity is refactoring. You need to keep a database’s 
design problem-appropriate for its entire life. That means the design must start 
out small, but it also means that it needs to change shape as you cover more and 
more of the problem space. I’ll show you how to refactor database designs in the 
context of a test-driven process.  

 That will be everything you need to do test-driven database development for 
a typical, new database design. The remainder of the book is dedicated to help-
ing you “wrangle” databases that were born in an untested context, deviating 
from the process in a controlled and testable way, and adapting the process to 
non-database applications.  
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 Doing test-driven database development will not be easy—not at first. If 
you’ve already obtained a firm grip on “regular” test-driven development, this 
should come as absolutely no surprise. No matter how quickly you pick up new 
skills, TDD will take longer than anything else.  

 It costs so much because it is worth so much. When you finish this book, 
you’ll have a theoretical understanding of test-driven database development. 
One, three, or even eighteen months later, you will have mastered it.  

 After mastering it, you’ll be able to frequently, rapidly, and safely change 
your database designs with confidence. You’ll be able to build just what you 
need, just when you need it. As a result, database improvement can become a 
fluid part of your software development process. In addition you’ll be able to 
keep the design of your database clean, simple, and fast.   

  Chapter-by-Chapter Breakdown  

 Here’s a chapter-by-chapter breakdown of what this book covers.  
 In  Chapter   1   , “Why, Who, and What,” I explain why I wrote this book, who 

should read it, and what the real roadblocks to TDD are in the context of data-
base design. I wrote this book because true test-driven development hasn’t really 
gained any traction in the database world. I am targeting people who think of 
themselves as software developers and also must work with database designs. 
The biggest problem in the database development world is that there is no clear 
concept of a class, which is a central element of traditional TDD efforts.  

 To build a class of databases, you need to keep a permanent record of the 
exact set of scripts that are run on a database and to have a clean way of tracking 
which ones have already been run. A little infrastructure allows you to ensure 
that every instance of a class of databases is built exactly the same way. In  Chap-
ter   2   , “Establishing a Class of Databases,” I show you how to do exactly that.  

 Many things go into having a sustainable TDD process for a database design. 
The first step is to define a basic TDD process to which you can later add deeper, 
more data-oriented activities. In  Chapter   3   , “A Little TDD,” I show you how to 
do some simple test-driven development against a class of databases.  

 In  Chapter   4   , “Safely Changing Design,” I show you how to overcome one of 
the big obstacles: the risk associated with change. Introducing change frequently 
frightens a lot of people. The root of that fear is that databases store a lot of 
valuable stuff, and losing some of the data on account of a hastily made change 
is unacceptable in most environments. The fear and the risk can both be van-
quished by testing not only the behavior of your database, but also the scripts 
that build or modify it.  
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 Databases are the most depended-upon things in the software industry and 
modifying one’s design can have unforeseen consequences. At the heart of this 
problem is massive, infective duplication that many simply accept as “natural.” 
In  Chapter   5   , “Enforcing Interface,” I show you how to control the cost of a 
rapidly evolving database design by eliminating that duplication.  

 As far as the TDD process is concerned, tests specify behaviors in objects. The 
question then becomes “What is a behavior in the context of a database?” In 
 Chapter   6   , “Defining Behaviors,” I set a pretty good scope for a test by answer-
ing that question.  

 Having the scope of a single test well defined gives you the freedom to explore 
the larger topic of what kinds of database designs are conducive to change and 
which ones are difficult to maintain. In  Chapter   7   , “Building for Maintainabil-
ity,” I show you that keeping a database light, lean, and simple is a better path 
to supporting future needs than attempting to predict now what you will need 
months from now.  

 “Sure, this is all great if you never mess up,” one might say, “but what hap-
pens when we do?” In  Chapter   8   , “Error and Remediation,” I show you tech-
niques that allow you to deal with any unplanned changes that might find their 
way into your database design.  

 In  Chapter   9   , “Design,” I make recommendations about how to design a 
class of databases for maximum testability. I then go a little further and show 
how to apply object-oriented design concepts to classes of databases.  

 Tests are frequently plagued by unwanted coupling. Dependencies between 
behaviors create ripple effects and single changes end up causing dozens of tests 
to fail. In  Chapter   10   , “Mocking,” I show you how to isolate behaviors from 
one another by building on the design techniques shown in  Chapter   9   .  

 The better your test coverage and the more rapidly you can introduce change, 
the more frequently you are going to modify design. In  Chapter   11   , “Refactor-
ing,” I demonstrate how to alter the design of your database while preserving 
behavior.  

 No process is complete unless it includes a mechanism to ingest software 
developed before its introduction. In  Chapter   12   , “Legacy Databases,” I cover 
one of two ways to take a database that was developed with databases that 
weren’t developed using the practices in this book by gradually covering them 
in tests.  

  Chapter   13   , “The Façade Pattern,” covers the other option for dealing with a 
legacy database. When employing the Façade pattern, you encapsulate a legacy 
design behind a new, well-tested one and gradually transfer behaviors from the 
old design to the new.  
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 I would be crazy if I tried to sell this as a “one-size-fits-all” solution to the 
problem of bringing TDD to the database development world. The practices 
herein will work for a lot of people without modification. However, some peo-
ple operate under conditions to which the first thirteen chapters of this book do 
not perfectly fit. In  Chapter   14   , “Variations,” I cover some of the adaptations 
I’ve seen people apply in the past.  

 Finally, in  Chapter   15   , “Other Applications,” I demonstrate a number of 
ways that the various techniques in this book can apply to data persisted by 
means other than a database. Some examples of these other storage mechanisms 
are file systems, XML documents, and the dreaded serialized middle-tier object.

Downloadable Code

You can download the code used in this book by going to 
http://maxthe3rd.com/test-driven-database-development/code.aspx     

http://maxthe3rd.com/test-driven-database-development/code.aspx


 Acknowledgments  

 There are numerous infl uences behind this book ranging back over nearly a 
decade.  

 First thanks go to my wife, Amy. She was a constant source of motivation 
and validation in the course of developing this book and, in the 15 years we’ve 
been together, has done at least one proofread of everything I’ve written.  

 Bill Zietzke was around at the very beginning of the process. It was a conver-
sation I had with him while we were both contracting at an insurance company 
in Bellevue, Washington, that got this whole thing started.  

 Beau Bender helped discover the mechanism I prescribe for controlling the 
coupling between databases and their clients. For that, I am grateful.  

 My good friend and mentor, Scott L. Bain, is also deserving of thanks. It was 
he who first pushed me to get published and it was his influence that helped 
make it happen. He has also played an instrumental role in developing this 
technique by contributing valuable questions, criticisms, and observations along 
the way.  

 Alan Shalloway has also been a friend and mentor to me throughout the 
majority of my career. He helped me decide that my first idea—teaching every-
thing to everyone—was not the right one. I am certain that, without his very 
constructive criticism, you would be reading a completely different book, prob-
ably written by a completely different author.  

 Both Alan and Scott played pivotal roles in my recent development as a 
professional software developer. Each nurtured the skills he already saw and 
supplied me with skills that were missing in a format that circumvented the con-
siderable defenses that protect me from new things and ideas.  

 Of equal, and possibly greater, value was their advice on how to deal with 
people. At the time of this writing, I’m not exactly a beloved consensus builder, 
but I am a lot better at persuasion than I was before I met Scott and Alan. With-
out that guidance, without showing me how important it is to share what we 
know in an accessible format, I probably wouldn’t even have cared to write a 
book in the first place.  

 Some of my recently acquired friends and colleagues have served as guinea 
pigs, reading early versions of various chapters of the book for me. This allowed 
me to acquire feedback soon enough to act and helped me decide to put this 
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  Chapter 3 

 A Little TDD  

    This chapter gives you a crash course in test-driven development (TDD) in case 
you are not familiar with the discipline.  

 A staple of the TDD process is the test-fi rst technique. Many people who are 
new to test-driven development actually confuse it with the test-fi rst technique, 
but they are not the same thing. Test-fi rst is one tool in the TDD toolbelt, and a 
very important one at that, but there is a lot more to TDD.  

 The chapter then covers a test’s proper role in your organization. Tests are 
best thought of as executable specifi cations. That is, they not only test some-
thing but they also document what that thing should do or how it should look.  

 One very powerful benefi t of cyclically defi ning and satisfying executable 
specifi cations is that it forces your design to emerge incrementally. Each new 
test you write demands that you revisit and, if necessary, revise your design.  

 Following that discussion, I cover what you actually want to specify and, 
probably at least as important, what you do not want to specify. In a nutshell, 
the rule is “specify behaviors only.” Deciding what a database’s behavior should 
be can be a little diffi cult, and I cover that topic in  Chapters   6   , “Defi ning Behav-
iors,” and    7   , “Building for Maintainability.” This chapter deals with the behav-
iors inherent in tables.  

 Finally, an important piece of test-driven development is to drive behaviors 
into a database from outside, not the other way around. Again, you can fi nd 
a lot more advice on how a database should actually be structured later in the 
book. This chapter deals only with traditional design concepts.   

     The Test-First Technique  

 If I were in an elevator, traveling to the top of a building with a software devel-
oper I would never see again who had never heard of TDD or the test-fi rst 
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technique, I would try to teach him the test-fi rst technique. I would choose that 
because it is so easy to teach and it is so easy to get people to try. Also, if done 
blindly, it creates problems that will force someone to teach himself test-driven 
development.  

 The technique is simple, and the following is often enough to teach it:  

   1.   Write a test.   

  2.   See it fail.   

  3.   Make it pass.   

  4.   Repeat.    

 There’s nothing more to test-fi rst. There’s a lot more to test-driven develop-
ment, but test-fi rst really is that simple.  

  Write the Test  

 The fi rst step in the technique is to write your test. If you’ve never done this 
before it might be a little bit uncomfortable at fi rst. You might be thinking 
“How do I know what to test if there’s nothing there?” That’s a pretty normal 
feeling that I want you to ball up really tightly and shove down into your gut 
while you do this a few times. Later you will discover that the best way to deter-
mine what should be tested is to write the test for it, but convincing you of that 
is hard; you’ll have to convince  yourself by way of experience.  

 Anyway, start out by writing a test. Let’s say that I want a database that can 
store messages sent between users identifi ed by email addresses. The fi rst thing 
I would do is write a test that requires that ability to be there in order to pass. 
The test is going to need to create a database of the current version, connect to 
it, and insert a record. This test is shown in the following listing as one would 
write it using NUnit and .NET:  

  [TestFixture]
  public class TestFirst {
    private Instantiator instantiator;
    private IDbConnection connection;
  
    [SetUp]
    public void EstablishConnectionAndRecycleDatabase() {
      instantiator = Instantiator.GetInstance(
        DatabaseDescriptor.LoadFromFile("TestFirstDatabase.xml"));
      connection = DatabaseProvisioning.CreateFreshDatabaseAndConnect();
    }
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    [TearDown]
    public void CloseConnection() {
      connection.Close();
    }
  
    [Test]
    public void TestTables() {
      instantiator.UpgradeToLatestVersion(connection);
      connection.ExecuteSql("
      INSERT INTO USERS VALUES(1, 'foo@bar.com')");
      connection.ExecuteSql(
        @"INSERT INTO MESSAGES " +
        "VALUES(1, 'Hey!', 'Just checking in to see how it''s going.')");
    }
  }   

 That code, as is, won’t compile because I delegate to a little bit of infrastruc-
ture that has to be written. One such tool is the  DatabaseProvisioning  class, 
which is responsible for creating, tearing down, and connecting to test data-
bases. This class is shown in the following example code, assuming I wanted to 
test against a SQL Server database:  

   public class DatabaseProvisioning {
    public static IDbConnection CreateFreshDatabaseAndConnect() {
      var connection = new SqlConnection(@"Data Source=.\sqlexpress;" +
        "Initial Catalog=master;Integrated Security=True");
      connection.Open();
      connection.ExecuteSql("ALTER DATABASE TDDD_Examples SET " +
        "SINGLE_USER WITH ROLLBACK IMMEDIATE");
      connection.ExecuteSql("DROP DATABASE TDDD_Examples");
      connection.ExecuteSql("CREATE DATABASE TDDD_Examples");
      connection.ExecuteSql("USE TDDD_Examples");
  
      return connection;
    }
  }   

 The other piece of infrastructure (following) is a small extension class that 
makes executing SQL statements—something I’m going to be doing a lot in 
this book—a little easier. For those of you who aren’t C# programmers, what 
this does is make it look like there is an  ExecuteSql  method for all instances of 
 IDbConnection .  

  public static class CommandUtilities {
    public static void ExecuteSql(
      this IDbConnection connection, string toExecute) {
      using (var command = connection.CreateCommand()) {
        command.CommandText = toExecute;
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        command.ExecuteNonQuery();
      }
    }
  }   

 The next step is to see a failure.   

  Stub Out Enough to See a Failure  

 I like my failures to be interesting. It’s not strictly required, but there’s not a 
really good reason to avoid it, so assume that making a failure meaningful is 
implied in “see the test fail.” The main reason you want to see a test fail is 
because you want to know that it isn’t giving you a false positive. A test that 
can’t fail for a good reason is about as useful as a test that cannot fail for any 
reason.  

 The test I have would fail because there is no database to make, which isn’t a 
very interesting reason to fail. So let’s create a database class and make it so that 
the database gets created.  

  <Database>
    <Version Number="1">
    </Version>
  </Database>   

 With that change in place, my test would fail for an interesting reason: The 
table into which I was trying to insert doesn’t exist. That’s a meaningful enough 
failure for me.   

  See the Test Pass  

 Now that a test is giving me a worthwhile failure, it’s time to make it pass. I 
do that by changing the class of databases to create the required table. If I had 
committed the most recent version of the database class to production, I would 
create a new version to preserve the integrity of my database class. As it stands, 
because this new database class hasn’t ever been deployed in an irreversible way, 
I’ll just update the most recent version to do what I want it to do.  

  <Database>
    <Version Number="1">
      <Script>
        <![CDATA[
  CREATE TABLE Users(ID INT PRIMARY KEY, Email NVARCHAR(4000));
  
  CREATE TABLE Messages(
    UserID INT FOREIGN KEY REFERENCES Users(ID),
    Title NVARCHAR(256),
    Body TEXT);
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  ]]>
      </Script>
    </Version>
  </Database>   

 That update causes my database class to create the message table in version 1. 
When I rerun my test, the database gets rebuilt with the appropriate structures 
required to make the test pass. Now I’m done with a test-fi rst programming 
cycle.   

  Repeat  

 After the cycle is complete, there is an opportunity to start another cycle or to 
do some other things, such as refactoring. I’m going to go through one cycle just 
to show you how a design can emerge incrementally. After thinking about the 
design I created, I decided I don’t like it. I don’t want the email addresses to be 
duplicated.  

 How should I handle that? I’ll start by adding a test.  

  [Test]
  public void UsersCannotBeDuplicated() {
    instantiator.UpgradeToLatestVersion(connection);
    connection.ExecuteSql(
    @"INSERT INTO Users(Email) VALUES('foo@bar.com')");
    try {
      connection.ExecuteSql(
        @"INSERT INTO Users(Email) VALUES('foo@bar.com')");
    } catch {
      return;
    }
  
    Assert.Fail("Multiple copies of same email were allowed");
  }   

 After I get that compiling, I’ll watch it fail. It will fail because I can have as 
many records with a well-known email address as I want. That’s an interesting 
failure, so I can go on to the next step: adding the constraint to the new version 
of my database.  

  <Database>
    <Version Number="1">
      <Script>
        <![CDATA[
  CREATE TABLE Users(ID INT PRIMARY KEY, Email NVARCHAR(4000));
  
  ALTER TABLE Users ADD CONSTRAINT OnlyOneEmail UNIQUE (Email);
  
  CREATE TABLE Messages(
    UserID INT FOREIGN KEY REFERENCES Users(ID),
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    Title NVARCHAR(256),
    Body TEXT);
  ]]>
      </Script>
    </Version>
  </Database>   

 Recompiling and rerunning my test shows me that it passes. Had that new 
behavior caused another test to fail, I would update that test to work with the 
new design constraint, rerun my tests, and see everything pass. After I’ve done 
that, I decide I’m done with this phase of updating my database class’s design 
and move on to other activities.    

  Tests as Specifi cations  

 Another important thing to understand about test-driven development is this 
simple fact: Tests are specifi cations. A lot of people make the argument that 
tests aren’t really tests, but are specifi cations. Others argue that they aren’t really 
specifi cations, but are tests as the name implies.  

 My position is that both sides of that argument are half right. Tests are speci-
fi cations. Tests are also tests. The two are not contradictory or even complemen-
tary; they are synonymous. What really distinguishes an automated test from 
other kinds of specifi cations and other kinds of tests is that it is the automation 
itself.  

  “Tests Aren’t Tests, They Are Specifi cations”  

 A large group of people exists who frequently tell new developers that tests 
aren’t really tests, or at least that they don’t start off that way. Tests are specifi -
cations and the fact that they also do some testing is just a side effect.  

 You can get into all kinds of mental gymnastics to justify this argument, and 
a lot of them have to do with defi nitions of the words  test  and  specifi cation . The 
best one I’ve heard is that tests cannot be tests without something to test, so a 
test is a specifi cation until it passes; then it “falls” into the role of a test later in 
its life.  

 In my opinion, terminological correctness is just a device working in service 
of another motivation. That motivation is that when people think of tests as 
specifi cations, they write better tests. Another motivation is to circumvent any 
preconceived notions a student might have attached to the word  test . Both are 
noble.  

 The “shock and awe” school of andragogy pulls stunts like this all the time. 
“To teach, I must fi rst dislodge my student from his mental resting place,” 
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teachers say. “Otherwise, hysteresis will drag him back to where he started,” 
they add.  

 Consider the following code:  

  [Test]
  public void BadSpecification() {
    var processor = new Processor();
    Assert.That(processor.Process(-2), Is.EqualTo(-1));
    Assert.That(processor.Process(-1), Is.EqualTo(0));
    Assert.That(processor.Process(0), Is.EqualTo(1));
    Assert.That(processor.Process(5), Is.EqualTo(216));
    Assert.That(processor.Process(25), Is.EqualTo(17576));
  }   

 The people in this camp would argue that this test might be succeeding as 
a test but failing as a specifi cation and, because being a specifi cation is what a 
test should really do, it is a poorly written test. By contrast, they would argue 
that the following test is vastly superior because a human reading it could easily 
understand the rule:  

  [Test]
  public void GoodSpecification() {
    var anyInput = 4;
  
    var processedResult = new Processor().Process(anyInput);
  
    Assert.That(
      processedResult,
      Is.EqualTo((anyInput + 1)*(anyInput + 1) * (anyInput + 1)));
  }   

 Let’s hear from the other side of the argument.   

  “Tests Aren’t Specifi cations, They Are Tests”  

 When I fi rst heard someone say that tests aren’t really tests, my knee jerked and 
I reacted quite badly. I can’t imagine how badly I would have reacted if I didn’t 
consider that person a friend, but we probably wouldn’t have become friends if 
that was his fi rst impression of me.  

 Some people, when they hear something that they believe to be wrong, imme-
diately throw what they already think they know at the problem to see whether 
it goes away—and that’s exactly what I did. “No way,” I thought. “Tests aren’t 
specifi cations. They are obviously tests. That’s why we call them tests. That’s 
why we see them fail.”  

 The old me would have looked at the test with the formula and said it was a 
bad test because making it pass without really implementing the right rule was 
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easy. Old me also would have said the test with many examples and no explana-
tion of what the rule is was a good test because it forced my production code to 
do what it really should do.   

  Tests Are Executable Specifi cations  

 The problem was that I was doing exactly what my teacher didn’t want. I was 
clinging to a preconceived notion and not hearing what he was trying to tell me. 
It was a reaction to something I knew was not right but it was still holding me 
back.  

 Each camp is half right.  
 The kinds of tests you write in test-driven development are not distinct 

because they are specifi cations. Nor are they distinct because they are tests. Pro-
grammers have been creating both of those artifacts for, literally, generations. 
The interesting new bit about TDD is that it produces  executable specifi cations .  

 The process produces specifi cations that, by defi nition, must be precise enough 
to be run frequently by a machine and, consequently, are forced to always stay 
up to date. That’s what makes TDD so powerful and that is why, when you 
have a suite of tests that hasn’t been run for any signifi cant amount of time, an 
enormous amount of work typically has to be done to make it useful.  

 Keep in mind that a test is a specifi cation and a test also provides guidance on 
how to make better tests. If each side of the argument said that one of the two 
tests I showed earlier was better than the other and each side is half right, then 
what’s the right answer in the contest between those tests?  

 The right answer is, “Both of those tests have good things about them but 
neither is the better test.” Instead of choosing one, make a test that clearly speci-
fi es the rule but also cannot easily be cheated. One option is to randomly select 
a number for the test that uses a formula.  

  private int AnyInteger() {
    return new Random().Next(0, 1000);
  }
  
  [Test]
  public void GoodSpecification() {
    var anyInput = AnyInteger();
  
    var processedResult = new Processor().Process(anyInput);
  
    Assert.That(
      processedResult,
      Is.EqualTo((anyInput + 1)*(anyInput + 1) * (anyInput + 1)));
  }   



Tests as Specifications 27

 Another option is to factor the formula test out into a method and then 
execute that method with several concrete values.  

  private void RunSpecification(int anyInput) {
    var processedResult = new Processor().Process(anyInput);
  
    Assert.That(
      processedResult,
      Is.EqualTo((anyInput + 1) * (anyInput + 1) * (anyInput + 1)));
  }
  
  [Test]
  public void GoodSpecificationWithExamples() {
    RunSpecification(-2);
    RunSpecification(-1);
    RunSpecification(0);
    RunSpecification(1);
    RunSpecification(5);
    RunSpecification(25);
  }   

 I tend toward the former option and, when I’m doing middle-tier develop-
ment, I don’t much care which option a person chooses because they are both 
alright and they are both better than the two earlier options offered by thinking 
of tests exclusively as tests or as specifi cations.   

  Incremental Design  

 A side-effect of test-driven development is that it enables you to work in an 
incremental fashion regardless of the kind of process you use to regulate work 
in your organization (for example, Scrum or Waterfall).  

 Every time you write a test, you extend the body of specifi cations defi ning 
what your software should do a little bit. To make that test pass, you have to 
change your product’s behavior or design slightly. Before you can start working 
on the next tiny piece of your product, you have to make all your tests pass.  

 As a result, test-driven development has the effect of focusing work, driving 
you to extend your software a little bit at a time, while keeping all the exist-
ing features working. In short: It imposes a little bit of agility on your process 
regardless of organizational constraints.    
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  Advantages of TDD  

 Numerous other benefi ts and aspects of test-driven development exist that 
aren’t covered in this book. They are valuable and important for you to 
learn, but outside the scope of this book. Numerous resources already 
explore those advantages and, if you are interested, you should probably 
use them to research the topic on your own.     

  Building Good Specifi cations  

 You could specify many different kinds of things with tests in any given software 
development endeavor. You could specify structures, public interfaces or private 
constructs, or what’s in a class. In database terms, you could specify tables, 
views, and stored procedures.  

 A test should specify behavior, but should not specify structure. The more 
behavior-focused a test is, the better off you will be because structures tend 
to change a lot more quickly than behaviors. This is true even in the database 
world where, frankly, the pace of change is nigh unto glacial. If you object to 
my use of the word  quickly , you can think of it this way: Structures change a lot 
less slowly than behaviors in a database design.  

 However, tests have to couple to something in order to invoke the behaviors 
they defi ne. In fact, many structure decisions are involved in making a test pass. 
The key is to drive those design decisions into a class of databases from the out-
side, not the other way around.  

  Specify Behavior, Not Structure  

 The odds that you are not a software developer are extremely low. My suspicion 
is that many of the readers of this book are accomplished computer program-
mers who also do database work and want to learn how to do what they already 
know how to do in a database domain. You might also be someone who works 
only or primarily on databases.  

 The chance also exists that you are an extraterrestrial archeologist sifting 
through the intellectual ruins of a species long-since turned to dust. If so, I hope 
I just sent a shiver up whatever your equivalent of a spine is. Also: Hello, and 
sorry we didn’t survive long enough for our paths to cross—unless you extermi-
nated us, in which case I’m sorry our paths crossed and I hope you caught some 
horrible disease from us in the process.  
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 Database programmers and application programmers are both still program-
mers. Both groups are responsible for writing software, which itself is an act of 
prescribing behaviors and relationships. In the case of object-oriented program-
ming, what those things mean is pretty clear. At least, it is pretty clear now; it 
might not have been decades ago.  

 In the case of database development, it’s a little less intuitive what the behav-
iors being defi ned are. People often want to think of databases as collections of 
tables and relationships. The good thing about that is the focus on a database’s 
primary responsibility: storing stuff. Yet, it’s still a structure-oriented way of 
considering design.  

 A table is a bundle of related features tied to a kind of data. The two basic 
behaviors a table supports are data manipulation and data querying. Other 
structures carry with them other behaviors and certain platforms offer extra 
behaviors with various structures.  

 Those are what you should specify in tests. Don’t specify that there is a table. 
Specify that you can store and retrieve data of an interesting sort. Don’t specify 
that there is a view; specify that you can perform useful searches across bodies 
of data. That decision might seem meaningless now, but as the book proceeds it 
will become more and more valuable to you.   

  Drive Design In from Without, Not the Other Way Around  

 In the procedural days, entities were just data—purely passive things subject 
to the whims of whatever function might have access to them. With the advent 
of object-oriented design, they became reactive things that told the world what 
they could do and then waited for instructions. Modern development practices 
make classes of objects into servants, told what they should be able to do by 
tests and then told to do it by other objects and, ultimately, by people.  

 When you write a test, you want it to specify the behaviors that live in a class 
of databases, but it’s going to have to talk to something to do that. An implica-
tion of specifying a behavior is that you must also specify the minimal amount 
of public interface required to invoke that behavior. The key to discovering that 
is to learn it from writing tests fi rst.  

 Let’s consider a problem. Imagine I need to write an application that keeps 
a database of streets and cross references them with other intersecting streets. 
I could drive the requirements from tests, specifying behaviors and required 
interface, or I could defi ne my design inside out—starting with capabilities, then 
building an interface around it. I’ll try the latter fi rst.   
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  Defi ning the Design Inside Out  

 Well, the obvious thing I need is a table in which to store streets. So let’s start 
there (see  Figure   3.1   ).  

 

Streets

PK ID

Name

 Figure 3.1   Simple design         

 Of course, streets exist in cities, so I need a cities table. Maybe later I’ll need 
a states table, too, but for now, I can live without it. Let’s add a cities table with 
a state column so I can track which street I am dealing with (see  Figure   3.2   ).  

 

Streets

PK ID

FK1 CityID
Name

Cities

PK ID

Name
State

 Figure 3.2   Streets segregated by city         

 Some streets span many cities, such as highways and interstate freeways. So I 
need to account for those, too (see  Figure   3.3   ).   

 Now there’s the fact that I need to track the intersections, so let’s add that. It 
seems like it should be a cross-reference table with the address on each street at 
which the intersection takes place. Because streets sometimes cross in multiple 
places, I need a primary key that is distinct from the foreign keys on that table 
so I can support multiple links, as shown in  Figure   3.4   .  
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Streets

PK ID

Name

Intersections

PK ID

FK1 Street 1ID
Street 1Address

FK2 Street 2ID
Street 2Address

Cities

PK ID

Name
State

StreetToCityLinks

PK ID

FK 2 CityID
FK 1 StreetID

 Figure 3.4   Streets organized by city and cross-referenced by intersection         

 From there, I can start hypothesizing how the data might be used, adding 
views and stored procedures to support those needs. Then, I could write tests 
for all the behaviors I developed. Eventually, I’ll think I have enough to start 
writing an application.  

 Of course, I won’t.  
 For one thing, there is a distinct database for every city supported by the 

application. So, every application is encumbered by adding noise structures. The 
 Cities  and  StreetToCityLinks  tables are completely unnecessary as are the con-
straints surrounding them.  

 Also, the application doesn’t care where two streets connect, only that they 
connect. So, the  Street1Address  and  Street2Address  fi elds of the  Intersections  

Streets

PK ID

Name

Cities

PK ID

Name
State

StreetToCityLinks

PK ID

FK2 CityID
FK1 StreetID

 Figure 3.3   A street going through multiple cities        
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table serve no purpose but to waste the time of everyone who touches them or 
reads about them.   

  Defi ning the Design Outside In  

 What if I try going the other direction? Suppose I want to start at the outside and 
work my way inward. In that event, by the time I’m defi ning a database design, 
I probably would have written the user interface and application logic already.  

 Having done those things would provide me with context and understand-
ing as to what was really needed. If I work exclusively with the database, then 
someone else would provide the context for me and I would have a very clear 
idea of what the requirements are.  

 Either way, that understanding would be something that could be translated 
into tests as in the following:  

  [Test]
  public void CreateAndFindStreet() {
    connection.ExecuteSql("INSERT INTO Streets VALUES(5, 'Fun St.')");
  
    var id = connection.ExecuteScalar(
      "SELECT ID FROM Streets WHERE NAME LIKE '%Fun%'");
  
    Assert.That(id, Is.EqualTo(5));
  }   

 That test would drive me to build a database class as follows:  

  <Database>
    <Version Number="1">
      <Script>
        <![CDATA[
  CREATE TABLE Streets(ID INT PRIMARY KEY, NAME NVARCHAR(4000))
      </Script>
    </Version>
  </Database>   

 Knowing that I also needed the capability to fi nd related streets, I might write 
another test as follows:  

  [Test]
  public void CreateConnectedStreetsAndFindFewestIntersectionsConnected()
  {
    connection.ExecuteSql("INSERT INTO Streets VALUES(1, 'A St.')");
    connection.ExecuteSql("INSERT INTO Streets VALUES(2, 'B Dr.')");
    connection.ExecuteSql("INSERT INTO Streets VALUES(3, 'C Ave.')");
    connection.ExecuteSql("INSERT INTO Streets VALUES(4, 'D Ln.')");
    connection.ExecuteSql("INSERT INTO Streets VALUES(5, 'E Blvd.')");
  



Building Good Specifications 33

    connection.ExecuteSql("INSERT INTO Intersections VALUES(1)");
    connection.ExecuteSql("INSERT INTO IntersectionStreets VALUES(1, 1)");
    connection.ExecuteSql("INSERT INTO IntersectionStreets VALUES(1, 2)");
  
    connection.ExecuteSql("INSERT INTO Intersections VALUES(2)");
    connection.ExecuteSql("INSERT INTO IntersectionStreets VALUES(2, 1)");
    connection.ExecuteSql("INSERT INTO IntersectionStreets VALUES(2, 3)");
  
    connection.ExecuteSql("INSERT INTO Intersections VALUES(3)");
    connection.ExecuteSql("INSERT INTO IntersectionStreets VALUES(3, 3)");
    connection.ExecuteSql("INSERT INTO IntersectionStreets VALUES(3, 4)");
    var result = connection.ExecuteScalar(
      "SELECT Depth FROM Connections() WHERE StartID = 2 AND EndID = 4");
  
    Assert.That(result, Is.EqualTo(3));
  }   

 That test would drive me to develop the design in the next snippet:  

  <Database>
    <Version Number="1">
      <Script>
        <![CDATA[
  CREATE TABLE Streets(ID INT PRIMARY KEY, NAME NVARCHAR(4000))
  CREATE TABLE Intersections([ID] INT PRIMARY KEY)
  CREATE TABLE IntersectionStreets(
    [IntersectionID] INT FOREIGN KEY REFERENCES Intersections(ID),
    [StreetID] INT FOREIGN KEY REFERENCES Streets(ID))
    ]]>
      </Script>
      <Script>
        <![CDATA[
  CREATE VIEW ImmediateConnections AS
  SELECT s.StreetID AS StartID, e.StreetID AS EndID
  FROM IntersectionStreets AS s
  INNER JOIN IntersectionStreets AS e
  ON s.IntersectionID = e.IntersectionID and s.StreetID <> e.StreetID
        ]]>
      </Script>
      <Script>
        <![CDATA[
  CREATE FUNCTION Connections
       (
       )
  RETURNS @Result TABLE (Depth INT, StartID INT, EndID INT)
  AS
  BEGIN
    DECLARE @Temp TABLE (StartID INT, EndID INT)
    DECLARE @Depth INT
    SET @Depth = 0
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    INSERT INTO @Temp SELECT ID AS StartID, ID AS EndID FROM Streets;
  
     WHILE EXISTS (SELECT TOP 1 * FROM @Temp)
    BEGIN
      INSERT INTO @Result SELECT @Depth, StartID, EndID FROM @Temp;
      DELETE @Temp;
  
      INSERT INTO @Temp SELECT r.StartID, ic.EndID FROM @Result AS r
        INNER JOIN ImmediateConnections AS ic ON r.EndID = ic.StartID
  
      DELETE @Temp FROM @Temp AS tc INNER JOIN @Result AS r
        ON tc.StartID = r.StartID AND tc.EndID = r.EndID
  
      SET @Depth = @Depth + 1
    END;
  RETURN
  END
        ]]>
      </Script>
    </Version>
  </Database>   

 Note how narrow and focused the interface for the database that was 
designed outside-in is compared to the one that was designed inside-out. Yet, 
in certain areas such as the recursive view, the behavior is much deeper than 
with the inside-out design. The two side-effects of driving design into a system 
rather than designing a system and making clients fi nd a way to use it are that 
you write something that can actually be used, and you spend more of your time 
developing worthwhile functionality.     

     Summary  

 A distinction exists between test-fi rst programming and test-driven develop-
ment. The former is an easy practice to convey whereas the latter is a hard 
discipline to learn. Test-fi rst is, however, a stepping stone that helps you get to 
test-driven development.  

 TDD is more than just getting good specifi cations in place that happen to be 
tests. It is also more than just getting good tests in place that happen to be speci-
fi cations. It is about building executable specifi cations. That is, it is about creat-
ing documents that are both tests and specifi cations to such a degree of quality 
that you don’t need any other documents to do either of those jobs.  

 Test-driven development has a lot more to it, but this chapter should give 
you the context you need to get started. Throughout the remainder of the book, 
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remember these things: Try to specify behaviors in tests before implementing 
them, and grow your designs inward from the point at which a test couples to 
what it tests.  

 The next step is to put in place structures that allow you to change your 
designs with great confi dence, especially with regard to the safety of production 
data.     
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