

Adobe® Flex® 4.5 Fundamentals

Training from the Source

Michael Labriola
Jeff Tapper
Matthew Boles
Foreword by Adam Lehman, Adobe Flash Builder Product Manager

Adobe® Flex® 4.5 Fundamentals: Training from the Source
Michael Labriola/Jeff Tapper/Matthew Boles

 This Adobe Press book is published by Peachpit.
For information on Adobe Press books, contact:
Peachpit
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

For the latest on Adobe Press books, go to www.adobepress.com
To report errors, please send a note to errata@peachpit.com
Copyright © 2012 by Michael Labriola and Jeffrey Tapper

Adobe Press Editor: Victor Gavenda
Project Editor: Nancy Peterson
Development Editor: Robyn G. Thomas
Technical Editor: Steve Lund
Production Coordinator: Becky Winter
Copy Editor: Jessica Grogan
Compositor: Danielle Foster
Indexer: Emily Glossbrenner
Cover Design: Peachpit Press

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For infor-
mation on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of the book, neither the authors, Adobe Systems, Inc., nor the publisher shall have any lia-
bility to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Flash, ColdFusion, and Adobe are registered trademarks of Adobe Systems, Inc. Flex is a trademark of Adobe
Systems, Inc.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Peachpit was aware of a trademark claim, the designations
appear as requested by the owner of the trademark. All other product names and services identified throughout this
book are used in editorial fashion only and for the benefit of such companies with no intention of infringement of
the trademark. No such use, or the use of any trade name, is intended to convey endorsement or other affiliation
with this book.

Printed and bound in the United States of America
ISBN 13: 978-0-321-77712-6
ISBN 10: 0-321-77712-3
9 8 7 6 5 4 3 2 1

www.adobepress.com

To my wife, Laura, and my daughter, Lilia;
you make life much less quiet, but so much more worthwhile.

—Michael Labriola

My efforts on this book are dedicated to my wife, Lisa, and children,
Kaliope and Kagan. Without you to inspire me, this just wouldn’t be possible.

—Jeff Tapper

To Sandra, my wife, who has made the last 25 years together a joy.
And to Scrappy, my furry fishing buddy.

—Matthew Boles

Bios
Michael Labriola is a Founding Partner and Senior Consultant at Digital Primates. He has
been developing Internet applications since 1995 and has been working with Flex since its 1.0
beta program. Michael is a Flex SDK contributor, architect of both the open source FlexUnit
and Spoon Framework projects, and international speaker on Flex and AIR topics who has
consulted for many of the world’s most recognized brands.

Jeff Tapper is a Founding Partner and Senior Consultant at Digital Primates, a company that
provides expert guidance on rich Internet application development and empowers clients
through mentoring. He has been developing Internet-based applications since 1995 for a
myriad of clients, including Major League Baseball, ESPN, Morgan Stanley, Conde Nast, IBM,
Dow Jones, American Express, Verizon, and many others. He has been developing Flex appli-
cations since the earliest days of Flex 1. As an instructor, Jeff is certified to teach all of Adobe’s
courses on Flex, AIR, Flash, and ColdFusion development. He is also a frequent speaker at
Adobe Development Conferences and user groups.

Matthew Boles is a Technical Training Specialist for the Adobe Enterprise Training group,
and has been developing and teaching courses on Flex since the 1.0 release. Matthew has a
diverse background in web development, computer networking, and teaching. He is coauthor
of previous versions of this book, as well as a contributing author of the Adobe authorized
Flex courseware.

Acknowledgments
Thanks to Robyn, Steve, Jeff, and Matt for their work and dedication to this book. Thanks to
my clients and colleagues for the motivation to keep learning new technologies. Thanks to my
family for the unwavering support and love. Most importantly, thanks to those who inspire
me every day with their words, caring, and wisdom; I promise to always keep trying.
 —Michael Labriola

I would like to thank Mike, Matt, Steve, and Robyn for all their hard work, which has helped
shape this book. Thanks to Chris Gieger for providing some design love for our application—
Chris, sorry we couldn’t fully implement your excellent design. Special thanks go to the team
at Adobe who has made this all possible. Thanks to the editorial staff at Adobe Press, who was
faced with the Herculean task of making our writing intelligible.
 —Jeff Tapper

Thanks to Jeff, Mike, and Robyn for making this the easiest book revision I’ve ever worked on!
 —Matthew Boles

Contents

 Foreword x

 Introduction xii

Lesson 1 Understanding Rich Internet Applications 3
The Evolution of Computer Applications . 4
The Break from Page-Based Architecture . 6
The Advantages of Rich Internet Applications 7
RIA Technologies . 8
What You Have Learned . .15

Lesson 2 Getting Started 17
Getting Started with Flex Application Development 18
Creating a Project and an MXML Application 18
Understanding the Flash Builder Workbench 24
Running Your Application .28
Exploring the Flash Builder Debugger .34
Getting Ready for the Next Lessons .41
What You Have Learned . .43

Lesson 3 Laying Out the Interface 45
Learning About Layouts .46
Laying Out the E-Commerce Application . .50
Working with Constraint-Based Layouts .58
Working with View States .63
Refactoring . .71
What You Have Learned . .76

Lesson 4 Using Simple Controls 79
Introducing Simple Controls . .80
Displaying Images .81
Building a Detail View . .85

viiTraining from the Source

Using Data Binding to Link a Data Structure to a Simple Control 88
Using a Form Layout Container to Lay Out Simple Controls 89
What You Have Learned . .92

Lesson 5 Handling Events 95
Understanding Event Handling . .96
Handling System Events . 107
What You Have Learned . . 111

Lesson 6 Using Remote XML Data 113
Using Embedded XML . . 114
Using XML Loaded at Runtime . 119
Retrieving XML Data via HTTPService . 124
Searching XML with E4X . 127
Using Dynamic XML Data . 133
Using the XMLListCollection in a Flex Control 137
What You Have Learned . . 139

Lesson 7 Creating Classes 141
Building a Custom ActionScript Class . 142
Building a Value Object . 143
Building a Method to Create an Object . 150
Building Shopping Cart Classes . . 154
Manipulating Shopping Cart Data . 159
What You Have Learned . . 167

Lesson 8 Using Data Binding and Collections 169
Examining Data Binding . 170
Being the Compiler . 176
Understanding Bindable Implications . . 183
Using ArrayCollections . 184
Refactoring ShoppingCartItem . 204
What You Have Learned . . 205

Lesson 9 Breaking the Application into Components 207
Introducing MXML Components . 208
Splitting Off the ShoppingView Component 213
Breaking Out a ProductItem Component . 221
Creating Components to Manage Loading the Data 230
What You Have Learned . . 238

viii Contents

Lesson 10 Using DataGroups and Lists 241
Using Lists . 242
Using DataGroups . 245
Virtualization with Lists . 255
Displaying Grocery Products Based on Category Selection 257
What You Have Learned . . 259

Lesson 11 Creating and Dispatching Events 261
Understanding the Benefits of Loose Coupling 262
Dispatching Events . . 263
Declaring Events for a Component . . 267
Identifying the Need for Custom Event Classes 269
Building and Using the UserAcknowledgeEvent 270
Understanding Event Flow and Event Bubbling 274
Creating and Using the ProductEvent Class 280
What You Have Learned . . 289

Lesson 12 Using the Flex DataGrid 291
Introducing DataGrids and Item Renderers 292
Displaying the ShoppingCart with a DataGrid 292
What You Have Learned . . 309

Lesson 13 Using Drag and Drop 311
Introducing the Drag and Drop Manager . 312
Enhanced Dragging and Dropping Between Two Lists 313
Standard Dragging and Dropping Between a

DataGrid and a List . 315
Using a Non-Drag-Enabled Component in a

Drag-and-Drop Operation . 321
Dragging a Grocery Item to the Shopping Cart 326
What You Have Learned . . 331

Lesson 14 Implementing the Checkout Process 333
Introducing Navigation with States . 334
Introducing Two-Way Bindings . 334
Creating the OrderInfo valueObject . 335
Creating CheckoutView . 337
Creating CreditCardInfo . . 345
Creating Review . 350
Completing the Order . 355
What You Have Learned . . 358

ixTraining from the Source

Lesson 15 Using Formatters and Validators 361
Introducing Formatters and Validators . 362
Using Formatter Classes . 364
Examining a Second Locale . 368
Using Validator Classes . 369
What You Have Learned . . 372

Lesson 16 Customizing a Flex Application with Styles 375
Applying a Design with Styles and Skins . 376
Cleaning Up the Appearance . 376
Applying Styles . 377
Changing CSS at Runtime . 395
What You Have Learned . . 397

Lesson 17 Customizing a Flex Application with Skins 399
Understanding the Role of Skins in a Spark Component 400
Understanding the Relationship between Skins and States 404
Creating a Skin for the Application . . 413
What You Have Learned . . 417

Lesson 18 Creating Custom ActionScript Components 419
Introducing Components with ActionScript 3 .0 420
Building Components Can Be Complex . . 420
Understanding Flex Components . 421
Why Make Components? . 422
Defining a Component . 424
Creating the Visuals . 432
Adding Functionality to the Component . 439
Creating a Renderer for the Skin . 450
What You Have Learned . . 452

Appendix Setup Instructions 455
Software Installation . . 455
Importing Projects . 458

 Index 462

Foreword
Over a decade ago, Adobe (then Macromedia) coined the term rich Internet application,
or RIA, to describe the future of browser-based applications. This new breed of application
supplemented existing server-based applications with an enhanced client-side user experience.
As Internet users became increasingly sophisticated, demand for improved user experiences
grew. At the center of this paradigm shift was Adobe Flex, a simple and light-weight frame-
work for developing applications.

Once a novelty, Internet usage on phones and tablets has exploded. Users can now access the
Internet more from mobile devices than from personal computers. As such, user demand for
browser-based applications is shifting to applications installed on devices. Yet again, the Flex
framework can be found leading the charge. With the release of the Flex 4.5 SDK, Flex applica-
tions can now be deployed as native applications to Android, Apple iOS, and Blackberry devices.
With this book, you hold in your hands all the knowledge and best practices necessary to deliver
killer applications for not just one of the leading mobile platforms…but all of them!

Adobe Flex is composed of a number of elements. It uses a declarative markup language called
MXML to help structure your application and ActionScript, a highly productive scripting
language, to glue all the pieces together. The framework also has built-in support for CSS and
a simple but comprehensive skinning model. These complimentary languages will probably
look familiar to those with HTML and JavaScript experience. In addition to the languages
that power Flex, the framework provides layout containers, form controls, validators, effects,
state management frameworks, a multipurpose animation library, and much more to help you
rapidly build the next generation of web applications.

Of course, what good is a slick interface if you can’t connect it to live data and services?
Fortunately, Flex offers a multitude of ways to connect to nearly any backend service, whether
it is raw XML over HTTP, SOAP web services, or the blazingly fast remoting protocol called
Action Message Format (AMF). If you’re looking for an enterprise-grade data management
solution to share data with multiple users simultaneously, Flex offers tight integration with the
Adobe Digital Enterprise Platform and Adobe LiveCycle DataServices.

xiTraining from the Source

Most of the improvements in Flex 4.5 are focused around mobile and device development.
Rather than introducing a separate mobile version of Flex, we upgraded the existing frame-
work for mobile development. You can now use the same tools and languages to build a Flex
mobile application that you do to build a Flex application for the browser of the desktop.
Built on the foundation of Spark, the next generation component model introduced in Flex 4,
Flex 4.5 continues to add new components and capabilities. The Flex compiler has also under-
gone numerous improvements to ensure applications run faster with even less memory.

Flex is open source and free. Outside this book, you don’t have to purchase anything else to
develop rich Internet applications for the browser, desktop, or mobile devices. You can just
open your favorite text editor, write some code, and compile your application at the com-
mand line. But if you’re like me, you’ll probably want some better tooling support. This book
uses Adobe Flash Builder 4.5, the premiere IDE for Flex and ActionScript development. Flash
Builder 4.5’s rock-solid code editor and intuitive features, like Quick Assist, will make you
fall in love with ActionScript coding. If that isn’t enough, Flash Builder 4.5 supports the new
mobile workflow, from the creation of a new mobile project to debugging your application
live on a connected device. Additionally, there is a large and vast ecosystem of third-party
tools, libraries, and extensions (some written by your authors!) to enhance productivity and
aid in the development of your applications.

There is a wealth of reference information on Flex freely available on the Internet, but to build
the next killer app, you need to know how to put all the pieces together. Adobe Flex 4.5: Training
from the Source draws from the expertise of its authors to present lessons that not only introduce
you to the Flex framework but also teach you the best practices you need to be successful.

Times are changing. Whether its browser, desktop, or mobile devices, the Flex SDK and
Adobe Flash Builder provides the tools you need to build a better Internet. The next fabulous
app is just a few clicks away.

Adam Lehman
Senior Product Manager
Adobe Systems, Inc.

Introduction
Macromedia introduced Flex in 2004 so that developers could write web applications for the
nearly ubiquitous Flash platform. These applications benefited from the improved design,
usability, and portability that Flex made possible, dramatically changing the user experience.
These features are a cornerstone of Web 2.0, a new generation of Internet applications focused
on creativity and collaboration.

Since the introduction of Flex, Macromedia—and now Adobe—has released versions 1.5, 2, 3,
4, and 4.5 of Flex. With each subsequent version, creating rich, compelling, intuitive applica-
tions has gotten easier, and the bar has been raised on users’ expectations of web applications.
Countless organizations have discovered the benefits of Flex and have built and deployed
applications that run on the Flash platform.

But Flex 1 and 1.5 were most definitely not mass-market products. The pricing, lack of IDE,
limited deployment options, and other factors meant that those early versions of Flex were tar-
geted specifically for large and complex applications as well as for sophisticated developers and
development. However, with the new releases of the Flex product line, all this has changed.

Flex 2 was released in 2006 and made Flex development a possibility for many more people,
as it included a free software development kit (SDK). With the open sourcing of Flex 3, and
the announcement of free versions of Flash Builder for students, Flex development is within
the grasp of any developer with enough foresight to reach for it. The release of Flex 4 made it
even easier to build rich, efficient, cutting-edge applications, and streamlined the workflow
between designer and developer, greatly easing the process of bringing intuitive, compel-
ling designs to even more Flex applications. In this latest release, Flex 4.5, Adobe has further
extended the reach of Flex, making it possible to deploy applications not only to browsers and
desktops, but to phones, tablets, televisions, and other connected devices.

Getting started with Flex is easy. Flex itself is composed of two languages: MXML, an XML-
based markup language, and ActionScript, the language of Flash Player. MXML tags are easy
to learn (especially when Flash Builder writes them for you). ActionScript has a steeper learn-
ing curve, but developers with prior programming and scripting experience will pick it up
easily. Still, there’s more to Flex development than MXML and ActionScript.

xiiiTraining from the Source

To be a successful Flex developer, you’ll need to understand a number of concepts, including
the following:

•	 How Flex applications should be built (and how they should not)

•	 What the relationships between MXML and ActionScript are, and when to use each

•	 How to load data into a Flex application

•	 How to use the Flex components, and how to write your own

•	 What the performance implications are of the code you write

•	 Which practices you should employ to write code that is scalable, manageable,
and reusable

Developing these skills is where this book comes in. As the authors, we have distilled our
hard-earned Flex expertise into a series of lessons that will jump-start your own Flex develop-
ment. Starting with the basics, and then incrementally introducing additional functionality
and know-how, the author team guides your journey into the exciting world of RIAs, ensuring
success every step of the way.

Flex is powerful, highly capable, fun, and incredibly addictive. And Adobe Flex 4.5:
Training from the Source is the ideal tour guide on your journey to the next generation
of application development.

Adobe Flex 4.5: Training from the Source is an update to the popular Adobe Flex 4: Training
from the Source. It is our sincere intention that readers of the earlier book, as well those who
are first exploring Flex with this book, will find this content compelling. Since the release of
our previous book, the Flex SDK has been improved, with features that include:

•	 Support for internationalization of Flex applications

•	 Additional components, such as the DataGrid, added to the Spark component set

•	 Support for deploying applications to desktops, browsers, phones, tablets, and other
connected devices

•	 And much more

It’s an incredible time to be an RIA developer, and we hope that this book provides you with
all the tools you need to get started with Flex.

xiv Introduction

Prerequisites
To make the most of this book, you should at the very least understand web terminology. This
book isn’t designed to teach you anything more than Flex, so the better your understanding
of the World Wide Web, the better off you’ll be. This book is written assuming that you’re
comfortable working with programming languages and that you’re working with a server-
side language such as Java, .NET, PHP, or ColdFusion. Although knowledge of server-side
technologies is not required to succeed with this book, we invoke many comparisons and
analogies to server-side web programming. This book is not intended as an introduction to
programming or as an introduction to object-oriented programming (OOP). Experience with
OOP is not required, although if you have no programming experience at all, you might find
the materials too advanced.

Outline
As you’ll soon discover, this book mirrors real-world practices as much as possible. Where
certain sections of the book depart from what would be considered a real-world practice,
every attempt has been made to inform you. The exercises are designed to get you using the
tools and the interface quickly so that you can begin to work on projects of your own with as
smooth a transition as possible.

This curriculum should take approximately 28–35 hours to complete and includes the
following lessons:

Lesson 1: Understanding Rich Internet Applications

Lesson 2: Getting Started

Lesson 3: Laying Out the Interface

Lesson 4: Using Simple Controls

Lesson 5: Handling Events

Lesson 6: Using Remote XML Data

Lesson 7: Creating Classes

Lesson 8: Using Data Binding and Collections

Lesson 9: Breaking the Application into Components

xvTraining from the Source

Lesson 10: Using DataGroups and Lists

Lesson 11: Creating and Dispatching Events

Lesson 12: Using the Flex DataGrid

Lesson 13: Using Drag and Drop

Lesson 14: Implementing the Checkout Process

Lesson 15: Using Formatters and Validators

Lesson 16: Customizing a Flex Application with Styles

Lesson 17: Customizing a Flex Application with Skins

Lesson 18: Creating Custom ActionScript Components

Who Is This Book For?
All the content of this book should work well for users of Flash Builder on any of its supported
platforms. The earlier “Prerequisites” section details what a reader should know prior to read-
ing this, in order to get the most out of this book.

The Project Application
Adobe Flex 4.5: Training from the Source includes many comprehensive tutorials designed to
show you how to create a complete application using Flex. The application that you’ll create is
an online grocery store that displays data and images and takes a user through the checkout
process, ending just before the data would be submitted to a server.

By the end of the book, you’ll have built the entire application using Flex. You’ll begin by learn-
ing the fundamentals of Flex and understanding how you can use Flash Builder in developing
the application. In the early lessons, you’ll use Design mode to begin laying out the application,
but as you progress through the book and become more comfortable with the languages used
by Flex, you’ll spend more and more time working in Source mode, which gives you the full
freedom and flexibility of directly working with code. By the end of the book, you should be
fully comfortable working with the Flex languages and may even be able to work without Flash
Builder by using the open source Flex SDK and its command-line compiler.

xvi Introduction

Errata
Although we have made every effort to create a flawless application and book, occasionally we
or our readers find problems. The errata for the book will be posted at www.flexgrocer.com.

Standard Elements in the Book
Each lesson in this book begins by outlining the major focus of the lesson at hand and intro-
ducing new features. Learning objectives and the approximate time needed to complete all the
exercises are also listed at the beginning of each lesson. The projects are divided into exercises
that demonstrate the importance of each skill. Every lesson builds on the concepts and tech-
niques learned in the previous lessons.

The following are some consistent elements and styles you’ll encounter throughout the book:

 Tip: An alternative way to perform a task or a suggestion to consider when applying the skills

you are learning .

 NoTe: Additional background information to expand your knowledge, or advanced techniques

you can explore to further develop your skills .

 cauTioN! Information warning you of a situation you might encounter that could cause errors,

problems, or unexpected results .

Boldface text: Words that appear in boldface are terms that you must type while working
through the steps in the lessons.

Boldface code: Lines of code that appear in boldface within code blocks help you easily iden-
tify changes in the block to be made in a specific exercise step.

<mx:HorizontalList dataProvider=”{dp}”
 labelFunction=”multiDisplay”
 columnWidth=”130”
 width=”850”/>

Code in text: Code or keywords appear slightly different from the rest of the text so you can
identify them easily.

www.flexgrocer.com

xviiTraining from the Source

Code block: To help you easily identify ActionScript, XML, and HTML code within the book,
the code has been styled in a special font that’s different from the rest of the text. Single lines
of ActionScript code that are longer than the margins of the page are wrapped to the next line.
They are designated by an arrow at the beginning of the continuation of a broken line and are
indented under the line from which they continue. For example:

public function Product (_catID:Number, _prodName:String,
➥ _unitID:Number,_cost:Number, _listPrice:Number,
➥ _description:String,_isOrganic:Boolean,_isLowFat:Boolean,
➥ _imageName:String)

Italicized text: Italics are used to show emphasis or to introduce new vocabulary.

Italics are also used for placeholders, which indicate that a name or entry may change depend-
ing on your situation. For example, in the path driveroot:/flex4tfs/flexgrocer, you would
substitute the actual name of your root drive for the placeholder.

Menu commands and keyboard shortcuts: There are often multiple ways to perform the
same task in Flash Builder. The different options will be pointed out in each lesson. Menu
commands are shown with angle brackets between the menu names and commands:
Menu > Command > Subcommand. Keyboard shortcuts are shown with a plus sign between
the names of keys to indicate that you should press the keys simultaneously; for example,
Shift+Tab means that you should press the Shift and Tab keys at the same time.

CD-ROM: The CD-ROM included with this book includes all the media files, starting files,
and completed projects for each lesson in the book. These files are located in the start and
complete directories. Lesson 1, “Understanding Rich Internet Applications,” does not include
exercises. If you need to return to the original source material at any point, you can restore
the FlexGrocer project. Some lessons include an intermediate directory that contains files in
various stages of development in the lesson. Other lessons may include an independent direc-
tory that is used for small projects intended to illustrate a specific point or exercise without
impacting the FlexGrocer project directly.

Anytime you want to reference one of the files being built in a lesson to verify that you are cor-
rectly executing the steps in the exercises, you will find the files organized on the CD-ROM
under the corresponding lesson. For example, the files for Lesson 4 are located on the
CD-ROM in the Lesson04 folder, in a project named FlexGrocer.fxp.

xviii Introduction

The directory structure of the lessons you’ll be working with is as follows:

Directory structure

Adobe Training from the Source
The Adobe Training from the Source and Adobe Advanced Training from the Source series are
developed in association with Adobe and reviewed by the product support teams. Ideal for
active learners, the books in the Training from the Source series offer hands-on instruction
designed to provide you with a solid grounding in the program’s fundamentals. If you learn
best by doing, this is the series for you. Each Training from the Source title contains hours of
instruction on Adobe software products. They are designed to teach the techniques that you
need to create sophisticated professional-level projects. Each book includes a CD-ROM that
contains all the files used in the lessons, completed projects for comparison, and more.

What You Will Learn
You will develop the skills you need to create and maintain your own Flex applications as you
work through these lessons.

By the end of the book, you will be able to:
•	 Use Flash Builder to build Flex applications.

•	 Understand MXML, ActionScript 3.0, and the interactions of the two.

•	 Work with complex sets of data.

xixTraining from the Source

•	 Load data using XML.

•	 Handle events to allow interactivity in an application.

•	 Create your own event classes.

•	 Create your own components, either in MXML or ActionScript 3.0.

•	 Apply styles and skins to customize the look and feel of an application.

•	 And much more.

Minimum System Requirements
Windows
•	 2 GHz or faster processor

•	 1 GB of RAM (2 GB recommended)

•	 Microsoft Windows XP with Service Pack 3, Windows Vista Ultimate or Enterprise (32
or 64 bit running in 32-bit mode), Windows Server 2008 (32 bit), or Windows 7 (32 or 64
bit running in 32-bit mode)

•	 1 GB of available hard-disk space

•	 Java Virtual Machine (32 bit): IBM JRE 1.6, or Sun JRE 1.6

•	 1024x768 display (1280x800 recommended) with 16-bit video card

•	 Flash Player 10.2 or later

Macintosh
•	 Intel processor based Mac

•	 OS X 10.6 (Snow Leopard)

•	 1 GB of RAM (2 GB recommended)

•	 1.5 GB of available hard-disk space

•	 Java Virtual Machine (32 bit): JRE 1.6

•	 1024x768 display (1280x800 recommended) with 16-bit video card

•	 Flash Player 10.2 or later

The Flex line of products is extremely exciting, and we’re waiting to be amazed by what you
will do with it. With a strong foundation in Flex, you can expand your set of skills quickly.

xx Introduction

Flex is not difficult to use for anyone with programming experience. With a little bit of initia-
tive and effort, you can fly through the following lessons and be building your own custom
applications and sites in no time.

Additional Resources
Flex Community Help
Flex Community Help brings together active Flex users, Adobe product team members,
authors, and experts to give you the most useful, relevant, and up-to-date information about
Flex. Whether you’re looking for a code sample, an answer to a problem or question about the
software, or want to share a useful tip or recipe, you’ll benefit from Community Help. Search
results will show you not only content from Adobe, but also from the community.

With Adobe Community Help you can:

•	 Fine-tune your search results with filters that let you narrow your results to just
Adobe content, community content, just the ActionScript Language Reference, or
even code samples.

•	 Download core Adobe Help and ActionScript Language Reference content for offline
viewing via the new Community Help AIR application.

•	 See what the community thinks is the best, most valuable content via ratings and
comments.

•	 Share your expertise with others and find out what experts have to say about using your
favorite Adobe products.

If you have installed Flash Builder 4.5 or any Adobe CS5 product, then you already have the
Community Help application. This companion application lets you search and browse Adobe
and community content, plus you can comment and rate any article just like you would in the
browser. However, you can also download Adobe Help and reference content for use offline.
You can also subscribe to new content updates (which can be downloaded automatically) so
that you’ll always have the most up-to-date content for your Adobe product at all times. You
can download the application from http://www.adobe.com/support/chc/index.html.

http://www.adobe.com/support/chc/index.html

xxiTraining from the Source

Community Participation
Adobe content is updated based on community feedback and contributions: You can contrib-
ute content to Community Help in several ways: add comments to content or forums, includ-
ing links to web content; publish your own content via the Community Publishing System; or
contribute Cookbook Recipes. Find out how to contribute at
www.adobe.com/community/publishing/download.html.

Community Moderation and Rewards
More than 150 community experts moderate comments and reward other users for helpful
contributions. Contributors get points: 5 points for small stuff like finding typos or awkward
wording, up to 200 points for more significant contributions like long tutorials, examples,
cookbook recipes, or Developer Center articles. A user’s cumulative points are posted to
their Adobe profile page and top contributors are called out on leader boards on the Help and
Support pages, Cookbooks, and Forums. Find out more at
www.adobe.com/community/publishing/community_help.html.

Frequently Asked Questions
You might find the following resources helpful for providing additional instruction:

For answers to frequently asked questions about Community Help see
http://community.adobe.com/help/profile/faq.html.

Adobe Flex and Flash Builder Help and Support www.adobe.com/support/flex/ is where
you can find and browse Help and Support content on adobe.com.

Adobe TV http://tv.adobe.com is an online video resource for expert instruction and inspira-
tion about Adobe products, including a How To channel to get you started with your product.

Adobe Developer Connection www.adobe.com/devnet is your source for technical articles,
code samples, and how-to videos that cover Adobe developer products and technologies.

Cookbooks http://cookbooks.adobe.com/home is where you can find and share code recipes
for Flex, ActionScript, AIR, and other developer products.

Resources for educators www.adobe.com/education includes three free curriculums that use
an integrated approach to teaching Adobe software and can be used to prepare for the Adobe
Certified Associate exams.

www.adobe.com/community/publishing/download.html
www.adobe.com/community/publishing/community_help.html
www.adobe.com/support/flex/
www.adobe.com/devnet
www.adobe.com/education
http://community.adobe.com/help/profile/faq.html
http://tv.adobe.com
http://cookbooks.adobe.com/home

xxii Introduction

Also check out these useful links:

Adobe Forums http://forums.adobe.com lets you tap into peer-to-peer discussions, questions,
and answers on Adobe products.

Adobe Marketplace & Exchange www.adobe.com/cfusion/exchange is a central resource for
finding tools, services, extensions, code samples, and more to supplement and extend your
Adobe products.

Adobe Flex product home page www.adobe.com/products/flex is the official home page from
Adobe for Flex related products.

Adobe Labs http://labs.adobe.com gives you access to early builds of cutting-edge technology,
as well as forums where you can interact with both the Adobe development teams building
that technology and other like-minded members of the community.

Adobe Certification
The Adobe Certified program is designed to help Adobe customers and trainers improve and
promote their product-proficiency skills. There are four levels of certification:

•	 Adobe Certified Associate (ACA)

•	 Adobe Certified Expert (ACE)

•	 Adobe Certified Instructor (ACI)

•	 Adobe Authorized Training Center (AATC)

The Adobe Certified Associate (ACA) credential certifies that individuals have the entry-level
skills to plan, design, build, and maintain effective communications using different forms of
digital media.

The Adobe Certified Expert (ACE) program is a way for expert users to upgrade their creden-
tials. You can use Adobe certification as a catalyst for getting a raise, finding a job, or promot-
ing your expertise.

If you are an ACE-level instructor, the Adobe Certified Instructor (ACI) program takes your
skills to the next level and gives you access to a wide range of Adobe resources.

Adobe Authorized Training Centers offer instructor-led courses and training on Adobe
products, employing only Adobe Certified Instructors. A directory of AATCs is available at
http://partners.adobe.com.

For information on the Adobe Certified program, visit
www.adobe.com/support/certification/main.html.

www.adobe.com/cfusion/exchange
www.adobe.com/products/flex
www.adobe.com/support/certification/main.html
http://forums.adobe.com
http://labs.adobe.com
http://partners.adobe.com

This page intentionally left blank

Le
ss

o
n

 4 What You Will Learn
In this lesson, you will:

•	 Define	the	user	interface	(UI)	for	the	e-commerce	FlexGrocer	application	

•	 Use	simple	controls	such	as	the	Image	control,	text	controls,	and	
CheckBox control

•	 Define	the	UI	for	the	checkout	screens

•	 Use	the	Form	container	to	lay	out	simple	controls

•	 Use	data	binding	to	connect	controls	to	a	data	model

Approximate Time
This	lesson	takes	approximately	45	minutes	to	complete.

79

Lesson 4

Using Simple Controls
In this lesson, you will add user interface elements to enable the customer to find more details
about the grocery items and begin the checkout process. An important part of any appli-
cation is the user interface, and Adobe Flex contains elements such as buttons, text fields,
and radio buttons that make building interfaces easier. Simple controls can display text and
images and also gather information from users. You can tie simple controls to an underlying
data structure, and they will reflect changes in that data structure in real time through data
binding. You’re ready to start learning about the APIs (application programming interfaces) of
specific controls, which are available in both MXML and ActionScript. The APIs are fully docu-
mented in the ActionScript Language Reference, often referred to as ASDoc, which is available
at http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html.

The Flex framework has many tools that make laying out simple controls easier. All controls
are placed within containers (see Lesson 3, “Laying Out the Interface”). In this lesson, you’ll
become familiar with simple controls by building the basic user interface of the application
that you will develop throughout this book. You’ll also learn about timesaving functionality
built into the framework, such as data binding and capabilities of the Form layout container.

FlexGrocer with Image and text controls bound to a data structure

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html

80 Lesson 4: Using Simple Controls

Introducing Simple Controls
Simple	controls	are	provided	as	part	of	the	Flex	framework	and	help	make	rich	Internet	appli-
cation	development	easy.	Using	controls,	you	can	define	the	look	and	feel	of	your	buttons,	
text,	combo	boxes,	and	much	more.	Later	in	this	book,	you’ll	learn	how	to	customize	controls	
to	create	your	own	unique	look	and	feel.	Controls	provide	a	standards-based	methodology	
that	makes	learning	how	to	use	them	easy.	Controls	are	the	foundation	of	any	RIA.

The	Flex	SDK	includes	an	extensive	class	library	for	both	simple	and	complex	controls.	All	
these	classes	can	be	instantiated	via	an	MXML	tag	or	as	a	standard	ActionScript	class,	and	
their	APIs	are	accessible	in	both	MXML	and	ActionScript.	The	class	hierarchy	comprises	
nonvisual	classes	as	well,	such	as	those	that	define	the	event	model,	and	it	includes	the	display	
attributes	that	all	simple	controls	share.

You	place	the	visual	components	of	your	Flex	application	inside	containers,	which	establish	
the	size	and	positioning	of	text,	controls,	images,	and	other	media	elements	(you	learned	
about	containers	in	the	previous	lesson).	All	simple	controls	have	events	that	can	be	used	to	
respond	to	user	actions,	such	as	clicking	a	button,	or	system	events,	such	as	another	compo-
nent	being	drawn	(events	will	be	covered	in	detail	in	the	next	lesson).	You	will	learn	in	later	
lessons	how	to	build	your	own	events.	Fundamentally,	events	are	used	to	build	easily	main-
tainable	applications	that	reduce	the	risk	that	a	change	to	one	portion	of	the	application	will	
force	a	change	in	another.	This	is	often	referred	to	as	building	a	“loosely	coupled”	application.

Most	applications	need	to	display	some	sort	of	text,	whether	it	be	static	or	dynamically	driven	
from	an	outside	source	like	an	XML	file	or	a	database.	Flex	has	a	number	of	text	controls	that	
can	be	used	to	display	editable	or	noneditable	text:

•	 Label:	You	have	already	used	the	Label	control	to	display	text.	The	Label	control	cannot	
be	edited	by	an	end	user;	if	you	need	that	functionality,	you	can	use	a	TextInput	control.	

•	 TextInput:	The	TextInput	control	is	used	for	data	input.	It	is	limited	to	a	single	line	of	text.	

•	 RichText:	The	RichText	control	is	used	to	display	multiple	lines	of	text,	but	is	not	editable	
and	does	not	display	scroll	bars	if	the	text	exceeds	the	available	screen	space.	

•	 TextArea:	The	TextArea	component	is	useful	for	displaying	multiple	lines	of	text,	
either editable	or	noneditable,	with	scroll	bars	if	the	available	text	exceeds	the	available	
screen	space.	

All	text	controls	support	HTML	1.0	and	a	variety	of	text	and	font	styles.

81Displaying Images

 Note: All four text controls mentioned here support Adobe’s Flash Text engine and some of

the controls (RichText and RicheditableText) support even more advanced layout using the Text

Layout Framework (TLF). While you will not be using TLF as part of the application in this book,

many new and interesting features are available with TLF. You can learn about TLF on Adobe’s

open source site: http://opensource.adobe.com/wiki/display/tlf/Text+Layout+Framework.

To	populate	text	fields	at	runtime,	you	must	assign	an	ID	to	the	control.	Once	you	have	done	
that,	you	can	access	the	control’s	properties;	for	example,	all	the	text	controls	previously	men-
tioned	have	a	text	property.	This	property	enables	you	to	populate	the	control	with	plain	text	
using	either	an	ActionScript	function	or	inline	data	binding.	The	following	code	demonstrates	
assigning	an	ID	to	the	label,	which	enables	you	to	reference	the	Label	control	in	ActionScript:

<s:Label id=”myLabel”/>

You	can	populate	any	text	control	at	runtime	using	data	binding,	which	is	denoted	by	curly	
bracket	syntax	in	MXML.	The	following	code	will	cause	the	yourLabel	control	to	display	the	
same	text	as	the	myLabel	control	in	the	previous	example:

<s:Label id="yourLabel" text="{myLabel.text}"/>

Also,	you	can	use	data	binding	to	bind	a	simple	control	to	underlying	data	structures.	For	
example,	if	you	have	XML	data,	which	might	come	from	a	server-side	dataset,	you	can	use	
data	binding	to	connect	a	simple	control	to	the	data	structure.	When	the	underlying	data	
changes,	the	controls	are	automatically	updated	to	reflect	the	new	data.	This	provides	a	power-
ful	tool	for	the	application	developer.

The	Flex	framework	also	provides	a	powerful	container	for	building	the	forms	that	we	will	cover	
in	this	lesson.	The	Form	container	allows	developers	to	create	efficient,	good-looking	forms	with	
minimal	effort.	Flex	handles	the	heading,	spacing,	and	arrangement	of	form	items	automatically.

Displaying Images
In	this	exercise,	you	will	display	images	of	grocery	products.	To	do	this,	you	must	use	the	Image	
control	to	load	images	dynamically.	The	Image	control	can	load	JPG,	GIF,	SWF,	and	PNG	files	
at	runtime.	If	you	are	developing	an	offline	application	that	will	not	access	the	Internet,	you	can	
use	the	@Embed	directive	to	include	the	Image	control	in	the	completed	SWF	file.

 1 Open	the	FlexGrocer.mxml	file	that	you	created	in	the	previous	lesson.

If	you	didn’t	complete	the	previous	lesson,	you	can	import	the	Lesson04/start	files.	Please	
refer	to	the	appendix	for	complete	instructions	on	importing	a	project	should	you	skip	a	
lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

http://opensource.adobe.com/wiki/display/tlf/Text+Layout+Framework

82 Lesson 4: Using Simple Controls

 2 Switch	Flash	Builder	to	Design	view	by	clicking	the	Design	View	button.

 3 Be	sure	that	the	Components	view	is	open.	If	it’s	not,	choose	Window	>	Components.

 4 Select	the	Image	control	from	the	Controls	folder	and	drag	the	control	between	the	Milk	
and	1.99	Label	controls	you	already	added.

When	you	drag	the	Image	control	from	the	Components	view	to	the	container,	Flash	
Builder	automatically	adds	the	MXML	to	place	the	Image	control	on	the	screen	and	posi-
tions	it	where	you	drop	it.

 5 Be	sure	that	the	Flex	Properties	view	is	open.	If	it’s	not,	choose	Window	>	Properties.

83Displaying Images

The	Flex	Properties	view	shows	important	attributes	of	the	selected	component—	
in	this	case,	the	Image	control.	You	can	see	the	Source	property,	which	specifies	the	
path to	the	Image	file.	The	ID	of	the	Image	control	references	the	instance	created	from	
the	<s:Image>	tag	or	Image	class	in	ActionScript.

 6 Click	the	Source	folder	icon	and	navigate	to	the	assets	directory.	Select	the	dairy_milk.jpg	
image	and	click	Open.	

The	image	you	selected	is	displayed	in	Design	view.	The	source	property	is	also	added	to	
the	MXML	tag.

 7 Click	the	Scale	Mode	drop-down	menu	and	change	the	value	to	letterbox.

In	an	ideal	world,	all	the	images	that	you	use	in	the	application	would	be	a	perfect	size,	but	
this	is	not	always	the	case.	Flex	can	scale	the	images	in	two	ways.	You	can	choose	letterbox	
to	keep	the	aspect	ratio	of	the	original	images	correct	even	as	their	size	is	adjusted,	or	you	
can	choose	stretch	to	distort	the	images	to	make	them	fit	into	any	given	width	and	height.

84 Lesson 4: Using Simple Controls

 8 Switch	back	to	Source	view	and	notice	that	Flash	Builder	has	added	an	<s:Image>	tag	as	
well	as	the	attributes	you	specified	in	the	Flex	Properties	window.

 Note: letterbox is the default selection if you don’t choose a scale Mode. so, if you didn’t

explicitly choose it from the drop-down list and instead left it as the default, you may not see it

in your code. Feel free to add it or just understand that difference going forward.

As	you	can	see,	it	is	easy	to	switch	between	Source	view	and	Design	view,	and	each	one	
has	its	advantages.	Notice	as	you	switch	back	to	Source	view	that	the	Image	tag	you	were	
working	on	is	now	highlighted.	

 9 In	the	<s:Image>	tag	that	you	added,	insert	an	@Embed	directive	to	the	Image	control.
<s:Image includeIn=”State1” scaleMode=”letterbox”
➥ source=”@Embed(‘assets/dairy_milk.jpg’)”/>

The	@Embed	directive	causes	the	compiler	to	transcode	and	include	the	JPG	in	the	SWF	
file	at	compile	time.	This	technique	has	a	couple	advantages	over	the	default	of	loading	
the	image	at	runtime.	First,	the	image	is	loaded	at	the	start	of	the	application,	so	the	user	
doesn’t	have	to	wait	for	the	image	to	load	before	displaying	when	it	is	needed.	Also,	this	
technique	can	be	useful	if	you	are	building	offline	applications	that	do	not	need	to	access	
the	Internet	because	the	appropriate	images	are	included	in	the	SWF	file	and	will	be	
correctly	displayed	when	needed.	Remember,	though,	that	using	this	technique	greatly	
increases	the	size	of	your	SWF	file.

 10 Save,	compile,	and	run	the	application.

You	should	see	that	the	Image	and	Label	controls	and	button	fit	neatly	into	the	layout	container.

85Building a Detail View

Building a Detail View
In	this	exercise,	you	will	use	a	rollover	event	to	display	a	detailed	state	of	the	application.	You	
will	explore	different	simple	controls	to	display	text	and	review	how	application	states	work.

 1 Be	sure	that	you	are	still	in	Source	view	in	Flash	Builder.	Near	the	top	of	the	file,	locate	
the	<s:states>	block,	which	contains	definitions	for	the	State1	and	cartView	states.	Add	a	
new	state	definition	named	expanded.
<s:State name=”expanded”/>

You	will	define	this	third	state	for	the	application	to	show	details	of	a	product.

 2 Switch	to	Design	view,	set	the	state	selector	to	expanded,	and	drag	a	VGroup	from	the	
Layout	folder	of	the	Components	view	into	the	application.	(To	position	this	correctly,	
you	should	drag	the	VGroup	into	the	gray	area	below	the	existing	white	background.)	In	
the	Properties	view,	verify	that	the	In	state’s	value	is	expanded,	the	X	value	is	200,	and	the	
Width	value	is	100	percent.	Remove	the	Y	and	Height	values	so	that	the	fields	are	blank.

This	new	VGroup	needs	to	be	a	child	of	the	main	application.	Sometimes,	positioning	
items	correctly	can	be	difficult	in	Design	view,	so	switch	to	Source	view	and	ensure	the	
VGroup	is	positioned	correctly.	It	should	be	just	above	the	closing	</s:Application>	tag,	
so	the	end	of	the	file	reads	like	this:
 </s:VGroup>
 </s:HGroup>
 <s:VGroup includeIn=”expanded” width=”100%” x=”200”>
 </s:VGroup>

</s:Application>

 3 Switch	back	to	Design	view.	Ensure	that	the	expanded	state	is	selected	in	the	States	view.	
Drag	an	instance	of	the	RichText	control	from	the	Controls	folder	of	the	Components	
view	into	the	new	VGroup	you	created	in	the	previous	step.

86 Lesson 4: Using Simple Controls

The	RichText	control	enables	you	to	display	multiple	lines	of	text,	which	you	will	need	
when	you	display	the	product	description	that	will	ultimately	come	from	an	XML	file.	
You	will	use	data	binding	in	the	next	section	to	make	this	RichText	control	functional.	
For	now,	you	are	just	setting	up	the	layout.	

 4 Drag	an	instance	of	the	Label	control	from	the	Components	view	to	the	bottom	part	of	the	
VGroup	container	you	created.	Populate	the	text	property	with	the	words	Certified Organic.

Later	on,	you	will	modify	the	visible	property	of	this	component	so	the	contents	of	the	
text	property	are	displayed	only	when	a	grocery	item	is	certified	organic.

 5 Drag	another	instance	of	the	Label	control	from	the	Components	view	to	the	bottom	part	
of	the	VGroup	container	you	created.	Populate	the	text	property	with	the	words	Low Fat.

Later,	you	will	set	the	visible	property	of	this	label	to	true	if	the	grocery	item	is	low	fat,	
or	false	if	it	is	not.

 6 Switch	back	to	Source	view.	Notice	that	Flash	Builder	has	added	the	RichText	and	the	two	
Label	controls	you	added	in	Design	view.

Note	that	all	the	code	created	in	Design	view	is	displayed	in	Source	view.

 7 Locate	the	<s:RichText>	tag	in	the	expanded	state	and	set	the	width	property	to	50%.
<s:RichText text=”RichText” width=”50%”/>

87Building a Detail View

 8 Find	the	<s:Image>	tag	that	is	displaying	the	milk	image.	Add	a	mouseOver	event	to	the	tag	
that	will	change	the	currentState	to	expanded.	Remove	the	includeIn	attribute.
<s:Image scaleMode=”letterbox”
 source=”@Embed(‘assets/dairy_milk.jpg’)”
 mouseOver=”this.currentState=’expanded’”/>

mouseOver	simply	means	that	when	the	user	rolls	the	mouse	anywhere	over	the	dairy_
milk.jpg	Image	tag,	the	ActionScript	will	execute.	In	this	ActionScript,	you	are referring	
to	the	expanded	state,	which	you	created	earlier	in	this	lesson.		

If	you	had	left	the	includeIn	attribute	in	the	image	tag,	the	milk	image	would	appear	
only	in	the	initial	state	of	State1.	Therefore,	when	you	mouse	over	the	image	and	switch	
it	to	the	expanded	state,	the	milk	bottle	image	will	disappear.	By	removing	the	includeIn	
attribute,	you	are	instructing	the	application	to	allow	this	image	to	be	used	in	all	states.

 9 In	the	same	<s:Image>	tag,	add	a	mouseOut	event	that	will	change	the	currentState	back	
to	the	initial	State1	state.	
<s:Image scaleMode=”letterbox”
 source=”@Embed(‘assets/dairy_milk.jpg’)”
 mouseOver=”this.currentState=’expanded’”
 mouseOut=”this.currentState=’State1’”/>

When	the	user	moves	the	mouse	away	from	the	dairy_milk.jpg	image,	the	detailed	state	
no	longer	displays,	and	by	default	the	application	displays	only	the	images	and	labels	for	
the	control,	which	is	expressed	with	an	empty	string.

 10 Save	and	run	the	application.

When	you	roll	the	cursor	over	the	milk	bottle	image,	you	see	the	RichText	and	Label	controls	
you	created	in	the	expanded	state.

88 Lesson 4: Using Simple Controls

Using Data Binding to Link a Data Structure to a Simple Control
Data	binding	enables	you	to	connect	controls,	such	as	the	text	controls	that	you	have	already	
worked	with,	to	an	underlying	data	structure.	Data	binding	is	incredibly	powerful	because	if	
the	underlying	data	changes,	the	control	reflects	the	changes.	For	example,	suppose	you	create	
a	text	control	that	displays	the	latest	sports	scores;	also	suppose	it	is	connected	to	a	data	struc-
ture	in	Flex.	When	a	score	changes	in	that	data	structure,	the	control	that	the	end	user	views	
reflects	the	change.	In	this	exercise,	you	will	connect	a	basic	data	structure	in	an	<fx:Model>	
tag	to	simple	UI	controls	to	display	the	name,	image,	and	price	for	each	grocery	item.	Later	in	
the	book,	you	will	learn	more	about	data	models,	the	effective	use	of	a	model-view-controller	
architecture	on	the	client,	and	how	to	connect	these	data	structures	with	server-side	data.

 1 Be	sure	that	FlexGrocer.mxml	is	open,	and	add	an	<fx:Model>	tag	after	the	comment	in	
the	<fx:Declarations>	tag	pair	at	the	top	of	the	page.

The	<fx:Model>	tag	allows	you	to	build	a	client-side	data	model.	This	tag	converts	an	
XML	data	structure	into	a	format	that	Flex	can	use.

 2 Directly	below	the	opening	<fx:Model>	tag	and	before	the	closing	<fx:Model>	tag,	add	the	
following	XML	data	structure.	Your	<fx:Model>	tag	should	look	as	shown:
<fx:Model>
 <groceries>
 <catName>Dairy</catName>
 <prodName>Milk</prodName>
 <imageName>assets/dairy_milk.jpg</imageName>
 <cost>1.20</cost>
 <listPrice>1.99</listPrice>
 <isOrganic>true</isOrganic>
 <isLowFat>true</isLowFat>
 <description>Direct from California where cows are happiest!</description>
 </groceries>
</fx:Model>

You	have	defined	a	very	simple	data	structure	inline	inside	an	<fx:Model>	tag.

 3 Assign	the	<fx:Model>	tag	an	ID	of	groceryInventory.	The	first	line	of	your	<fx:Model>	
tag	should	look	as	shown:
<fx:Model id=”groceryInventory”>

By	assigning	an	ID	to	the	<fx:Model>	tag,	you	can	reference	the	data	with	dot	syntax.	For	
example,	to	access	the	list	price	of	the	item,	you	could	use	groceryInventory.listPrice.	
In	this	case,	that	would	resolve	to	1.99.

89Using a Form Layout Container to Lay Out Simple Controls

 4 Switch	Flash	Builder	to	Design	view.

You	can	set	up	bindings	between	elements	just	as	easily	in	Design	view	as	you	can	in	
Source	view.

 5 Select	the	RichText	control	in	the	expanded	state	and	be	sure	that	the	Flex	Properties	
view	is	open.	Modify	the	text	property	to	{groceryInventory.description}.

Data	binding	is	indicated	by	the	curly	brackets	{}.	Whenever	the	curly	brackets	are	used,	
you	use	ActionScript	instead	of	simple	strings.	Effective	use	of	data	binding	will	become	
increasingly	important	as	you	begin	to	work	with	server-side	data.

 6 Save	and	run	the	application.

You	should	see	the	description	you	entered	in	the	data	model	when	you	roll	the	cursor	over	
the	grocery	item.

Using a Form Layout Container to Lay Out Simple Controls
Forms	are	important	in	most	applications	that	collect	information	from	users.	You	will	be	
using	the	Form	container	to	enable	shoppers	to	check	out	their	products	from	the	grocery	
store.	The	Form	container	in	Flex	will	handle	the	layout	of	the	controls	in	this	form,	automat-
ing	much	of	the	routine	work.	With	a	Form	container,	you	can	designate	fields	as	required	
or	optional,	handle	error	messages,	and	perform	data	checking	and	validation	to	be	sure	the	
administrator	follows	designated	guidelines.	A	Form	container	uses	three	tags:	an	<s:Form>	
tag,	an	<s:FormHeading>	tag,	and	an	<s:FormItem>	tag	for	each	item	on	the	form.	To	start,	the	
checkout	form	will	be	built	into	a	separate	application,	but	later	in	the	book,	it	will	be	moved	
into	the	main	application	as	a	custom	component.

90 Lesson 4: Using Simple Controls

 1 Create	a	new	MXML	application	in	your	current	project	by	choosing	File	>	New	
>	MXML	Application.	Name	the	application	Checkout,	and	choose	spark.layouts.
BasicLayout	as	the	Layout	for	the	new	application.	Then	click	Finish.

 2 Switch	to	Design	view,	and	drag	a	Form	from	the	Layout	folder	of	the	Components	view	
to	the	top	left	of	the	window.	A	dialog	box	will	appear	asking	for	the	Width	and	Height	of	
the	form.	Leave	the	default	values	and	click	OK.

91Using a Form Layout Container to Lay Out Simple Controls

 3 Drag	a	FormHeading	component	from	the	Layout	folder	in	the	Components	view	into	
the	newly	created	form.	Double-click	the	FormHeading,	and	change	it	to	Customer	
Information.

A	FormHeading	is	just	a	specialized	label	for	Forms.

 4 Drag	a	TextInput	control	from	the	Controls	folder	of	the	Components	view	and	drop	it	
just	below	the	FormHeading.	The	TextInput	and	a	label	to	the	right	of	the	TextInput	both	
appear.	Double-click	the	label	and	change	it	to	Customer Name.

When	adding	controls	to	a	form	in	Design	view,	Flash	Builder	automatically	surrounds	
the	control	in	a	FormItem,	which	is	why	a	label	is	appearing	to	the	left	of	the	control.	If	
you	switch	to	Source	view,	you	can	see	the	FormItem	surrounding	the	TextInput.	Back	in	
Design	view,	notice	how	the	left	edge	of	the	text	input’s	label	is	aligned	with	the	left	edge	
of	the	FormHeading.	As	noted	earlier,	this	is	a	feature	of	the	Form	and	FormHeading	
classes,	and	it	allows	these	items	to	always	maintain	the	left	alignment,	regardless	of	the	
size	of	the	FormItem	labels.

 5 Drag	four	more	TextInputs	to	the	form	from	the	Components	view.	Change	the	labels	of	
these	to	Address,	City,	State,	and	Zip.	Drag	a	button	below	the	last	TextInput,	and	set	its	
label	to	be	an	empty	string	(simply	remove	the	default	text).	Click	the	button	and	change	
the	button’s	text	to	Continue.	

92 Lesson 4: Using Simple Controls

Due	to	the	Form	layout,	selecting	a	discrete	control	such	as	the	Button	can	be	difficult.	In	
this	case,	it	is	easiest	if	you	attempt	to	click	the	very	left	side	of	the	button.	Remember,	if	you	
can’t	accomplish	the	desired	effect	in	Design	view,	you	can	always	do	so	in	Source	view.

Each	control	is	surrounded	in	its	own	FormItem	and	has	its	own	label.	Since	you	don’t	
need	a	label	next	to	the	Continue	button,	you	simply	clear	the	text	from	the	label	on	that	
form	item.

 6 Save	and	run	the	application.

What You Have Learned
In this lesson, you have:

•	 Learned	how	to	load	images	at	runtime	with	the	Image	control	(pages	81–84)

•	 Learned	how	to	display	blocks	of	text	(pages	85–87)

•	 Learned	how	to	link	simple	controls	to	an	underlying	data	structure	with	data	binding	
(pages	88–89)

•	 Learned	how	to	build	user	forms	with	a	minimum	of	effort	using	the	Form	container	
(pages	89–92)

This page intentionally left blank

462

Index
@ (attribute) operator, 131

{} (braces), 81, 89, 98, 176–177

: (colon), 23

= (equal sign), 23

> (greater-than sign), 30

? (question mark), 146

“ (quotation marks), 68, 97

/ (slash), 30, 31

_ (underscore), 177

" (escape code), 68

.. (descendant) operator, 132

. (dot) operator, 130

A
AATC (Adobe Authorized Training

Center), xxii

absolute positioning, 58, 59

ACA (Adobe Certified Associate), xxii

acceptDragDrop() method, 322

ACE (Adobe Certified Expert), xxii

ACI (Adobe Certified Instructor), xxii

action item controls, 303

ActionScript

Array instances, 184–185

classes, 142, 143, 427–429

components (See ActionScript
components)

dispatching events in, 178–179

Drawing API, 404

event handling with, 98–99

and Flash Platform, 12, 13

for loops, 162

power of, 12

purpose of, 13

triggering validation from, 363

XML support, 127

ActionScript components, 419–452

adding functionality to, 439–450

choosing base class for, 426

complexity of building, 420

creating visuals for, 432–438

defining, 424–431

overview, 420–422

reasons for making, 422–424

specifying skin requirements for,
432–434

types of, 421

ActionScript Virtual Machine
(AVM), 13

addData() method, 322

addEventListener() method,
275

addInts() method, 40

addItem() method, 157, 158, 160,
166–167

Add To Cart button, 158, 161, 167

addToTextArea event handler,
108

Adobe

certification levels, xxii

Certified Associate exams, xxi

Community Help, xx–xxii

Creative Suite, 14

Developer Connection, xxi

Flash (See Flash)

Flex (See Flex)

Labs, xxii

Marketplace & Exchange, xxii

open source site, 81

TV, xxi

Adobe Advanced Training series,
xviii

Adobe Flex 4.5 MXML and
ActionScript Language
Reference (ASDoc), 41, 79,
208, 378

Adobe Integrated Runtime (AIR), 12

Adobe Training from the Source
series, xviii

AIR (Adobe Integrated Runtime), 12

AJAX (Asynchronous JavaScript
and XML), 8, 9–10

anchors, layout, 59

animation tools, 12

API (application programming
interface), 79

Application container, 46

application files. See also
applications

basic elements of, 22

comparing versions of, 31–32

creating, 21–22

naming, 21

organizing, 18–24

saving, 31

viewing, 18, 21–22

viewing errors in, 32–33

application programming interface
(API), 79

applications. See also application
files

building detail view of, 85–87

changing internal structure of,
73–75

controlling view states for,
68–70

customizing with skins, 399–417
(See also skins)

customizing with styles,
375–397 (See also styles)

debugging, 34–41

desktop, 4–5, 311

displaying images in, 81–84

displaying/managing data for,
144–150, 292

dividing into modules, 207

embedding fonts in, 388, 390

enterprise server, 10

evolution of, 3, 4–6

improving architecture of,
213–221

laying out interface for, 50–58

mainframe, 4

maintainability of, 5, 8

463Index

minimum height/width for, 24

refactoring, 71–75, 101–103

rich Internet (See RIAs)

running, 28–33

saving, 187

tightly coupled, 262

viewing hierarchy of, 57

web (See web applications)

Web 2.0, xii

working with view states for,
63–70

Application tag, 22–23, 31

architecture

client-side, 95

loosely coupled, 262–263

model-view-controller (MVC),
88, 212–213

page-based, 4, 6–7, 8

service-oriented, 5

arguments, 147

ArrayCollection, 184–203

and cursors, 198

and data binding, 184–185

filtering items in, 202–203

populating, 185–192

sorting items in, 194–198

using data from, 192–193

vs. ArrayList, 246

ArrayList, 185, 246

Array notation, 192

arrays. See also ArrayCollection

and data binding, 183–184

determining number of items in,
202–203

for shopping cart items,
159–167

sorting items in, 194–198

using items in, 192–193

AS3 Drawing API, 404

ASDoc (Adobe Flex 4.5 MXML
and ActionScript Language
Reference), 41, 79, 208, 378

aspect ratio, 83

asynchronous component model,
439

Asynchronous JavaScript and XML
(AJAX), 8, 9–10

attribute (@) operator, 131

attributes, 23, 30, 98

Auto-Generation, 181–183

AVM (ActionScript Virtual
Machine), 13

B
base class, 426

BasicLayout object, 47, 58, 90

[Bindable] metadata tag,
135–136, 145, 149, 157, 173,
176–177

bindings, 98. See also data binding

BitMapFill class, 408

boldface text/code, xvi

Boolean values, 151–152, 163

BorderContainer, 46

braces ({}), 81, 89, 98, 176–177

Breakpoint Properties view, 40

breakpoints

enabling conditional, 40

removing, 39, 107

setting, 34, 35, 104, 187

turning on/off, 39

Breakpoints view, 36

browsers, web, 4, 5

bubbling, event, 274–279

Build Automatically option, 28

buildProduct() method, 151,
152, 199

business applications

evolution of, 4–6

maintainability of, 5, 8

role of computers in, 3

button_clickHandler()
method, 35, 37

Button control, 57

buttons

creating skin for, 400–404

customizing for different states,
407–413

C
calculateSubtotal() method,

156, 204

calculateTotal() method,
164–165

camel case syntax, 382

capture phase, event flow, 275

CartGrid component, 295–296

Cascading Style Sheets. See CSS

case-sensitivity, 21, 50, 68

categories, filtering products by,
257–259

categories property, 231

CDATA (character data) blocks, 99,
102, 110

CD-ROM, xvii, xviii

centralized data processing, 4

change events, 258, 287–288, 442

change flags, 440

character data (CDATA) blocks, 99,
102, 110

Checkout application, 89–92

Checkout button, 56, 59, 345

checkout form, 89–92

checkout process, 335–358

adding billing info page to,
345–350

creating OrderEvent object for,
355–358

creating OrderInfo object for,
335–336

creating review page for,
350–355

creating user views for, 337–345

overview, 335

validating postal codes during,
369–372

CheckoutView component,
337–345

children, 46, 57, 128

child tags, 49

classes, 141–167. See also specific
classes

and ActionScript, 142, 143

basics of building, 143

as blueprint for objects, 141

categories of, 274

464 Index

classes (continued)

constructors of, 143

creating, 141, 154, 427–429

custom, 429–431

defining, 49–50, 143

naming, 143

properties of, 143, 147

reference document for, 41

vs. properties, 49–50

class hierarchy, 208–209

class instances, 49

class keyword, 145

class selectors, 382, 383, 384

clickHandler() function, 99, 100

client/server applications, 3, 4–5, 7

client-side architecture, 95

clone() method, 271

code blocks, xvii

code completion, 109, 110, 150

code hinting, 29, 30, 98

code line numbers, 27

ColdFusion, xiv

CollectionEvent class, 287–288

collections

examples of, 194

filtering items in, 202–203

sorting items in, 194–198

using cursors in, 198–199

colon (:), 23

color

background, 376, 382, 393,
394, 404

highlight, 375, 402

label, 391, 392, 393

logo, 54

rollover, 379–381, 382, 383

text, 378

colorName label, 171

columns

in DataGrid, 292, 294, 297, 299

in layout objects, 46

commitProperties() method,
440, 441, 443

Community Help application,
xx–xxii

compiler, 176–183

compiler arguments, 142

compile-time errors, 33, 150

components, 207–238. See also
specific components

ActionScript (See ActionScript
components)

advantages of, 212

applying styles to, 379–381

broadcasting events from, 263

changing look of, 400–404,
432–438

complexity of building, 420

creating, 105, 209–212, 230–238

creating directory of reusable,
221–230

declaring events for, 267–269

defining, 46, 424–431

drag-and-drop, 313

facilitating use of, 212

generic, 425

hierarchy of, 208–209

list-based, 321

to manage loading data, 230–238

and MVC architecture, 212–213

MXML, 208–213, 420

non-visual, 230–238

positioning, 46, 55

purpose of, 207

specifying skin requirements for,
432–434

types of, 421

visual, 213–230, 274

Components view, 54

composed containers, 72–73

computer applications. See
applications

conditional breakpoints, 40

configuration files, 23

constraint-based layouts, 55, 58–63

ConstraintLayout object, 47

constructors, 143, 147, 148,
155–156

containers

combining layout objects and, 48

composed, 72–73

finding, 65

positioning elements in, 58–59

purpose of, 46

size considerations, 62

types of, 46–47

control bars, 51, 53, 57

controllers, 212

controls

accessing properties for, 81

APIs for, 79

assigning IDs to, 81

positioning, 64

simple (See simple controls)

Cookbooks, xxi

cookies, 7

copyright label, 60

createCursor() method, 199

creationComplete event,
107–111

Creative Commons License, 388

CreditCartInfo component,
345–350

cross-domain policy files, 122

CSS (Cascading Style Sheets)

how namespaces are defined
by, 389

inheritance, 381

standards, 384

styling with, 377–378, 382

CSS files

creating SWF files from, 395–396

setting styles via, 386–394

sharing between applications,
386

curly brackets ({}). See braces

CurrencyFormatter class, 362–363,
364–368, 443

currentState property, 68

cursors

defined, 198

general steps for using, 198–199

refactoring to search with,
198–201

removing items with, 201–202

custom classes, 429–431

465Index

custom components. See also
components

advantages of, 212

example, 210–211

facilitating use of, 212

and MVC architecture, 212–213

steps for creating, 209–210

ways of using, 207, 282

custom event classes, 269–270

D
data. See also datasets

allowing users to interact with,
292

in ArrayCollections, 192–193

creating components to
manage loading, 230–238

debugging, 149

from event objects, 100–103

externalizing, 114–116

filtering, 202–203

manipulating shopping cart,
159–167

modifying, 109–111

nodes vs. attributes, 186

passing, when calling event
handler, 99–100

passing, with events, 269–270

retrieving, 108, 120, 126

security issues, 122–123

data binding, 169–205

and arrays, 183–184

binding simple controls using, 81

breaking complex, 173–176

breaking simple, 170–173

curly bracket syntax for, 81, 89
(See also braces)

as events, 179–181

and Flex formatters, 362, 363

implications of, 183–184

importance of, 170

linking data structure to simple
control using, 88–89

populating text controls using, 81

proxying strategy, 184–185

purpose of, 88

two-way, 334

dataChanged event, 249

dataForFormat() method, 322

DataGrid, 291–309

adding, 65–67

considerations, 292

default behavior of, 299

displaying shopping cart with,
292–308

dragging/dropping between
List and, 315–321

purpose of, 292

DataGroup, 245–255

creating custom renderer for,
450–452

creating ProductList from,
282–285

enabling virtualization for,
254–255

implementing itemRenderer,
246–251

purpose of, 242

simple example, 245–246

using in ShoppingView,
251–253

vs. Group class, 245

data models, 88

data nodes, 186

data persistence, 15

dataProvider property, 242

DataRenderer class, 251, 256, 450

datasets

defined, 241

populating List control with,
242–245

using DataGroup with, 245–246

virtualization of, 254

data structures, 81

data transfer objects (DTOs), 143

debugger, 34–41, 104

debugging. See also breakpoints;
errors

data binding, 171–172, 175

data structures, 149

example, 34–41

and Local History feature, 31–32

rolling back to previous
versions, 31–32

Debug perspective, 105

Debug view, 35, 38–39

Declarations tag, 29

DefaultItemRenderer class, 246

default state, 63

descendant (..) operator, 132

descendant selectors, 382,
390–391

Design button, 22

Design view, 25, 53–56

desktop applications, 4–5, 311

detail view, 85–87

DHTML (Dynamic HTML), 5, 9

dispatchEvent() method, 263,
270

dispatching events, 178–179, 183,
263–267

display list, 274

DisplayObjects, 274

Document Object Model (DOM), 5

doDrag() method, 322

DOM (Document Object Model), 5

dot-com boom, 7

dot operator, 130

double quotes (“), 97

Drag and Drop Manager, 311,
312–313

dragComplete event, 315

dragDrop event, 316

drag/drop operations, 311–331

between DataGrid and List,
315–321

and HTML, 4–5

phases, 312

in shopping cart, 326–331

terminology, 312

between two lists, 313–315

using non-drag-enabled
component in, 321–326

dragEnabled property, 313, 314,
315

dragEnter event, 316

DragEvents, 101

466 Index

dragExit event, 316

drag initiator, 312, 315

DragManager class methods, 322

dragOver event, 316

drag proxy, 312

drag source, 312

DragSource class, 312, 314, 315, 322

Drawing API, AS3, 404

drawRect() method, 406

dropEnabled property, 313, 315

drop target, 312, 316

DTOs (data transfer objects), 143

dumb terminals, 4

Dynamic HTML (DHTML), 5, 9

dynamic interfaces, 71

dynamic XML data, 133–137

E
E4X (ECMAScript for XML),

127–133

Eclipse platform, 14, 17, 36

Eclipse project, 10, 14

ECMAScript for XML (E4X),
127–133

ECMA standard, 127

e-commerce application. See also
FlexGrocer application

laying out, 50–58

using drag and drop in, 311–331

working with view states in,
63–70

editors

defined, 24

example, 22

expanding, 25

inline, 296–299

opening/closing, 24

showing code line numbers
in, 27

viewing errors in, 32–33

element selectors, 382

embedded fonts, 388, 390

embedded XML, 114–119

@Embed directive, 84

end users, 8

enterprise server applications, 10

equal sign (=), 23

error messages, 89

errors. See also debugging

and Build Automatically option,
28

how Flash Builder reports, 27

viewing, 32–33

escape code ("), 68

event-based programming model,
95, 96–97

event bubbling, 274–279

Event class, 100, 269–270

event dispatchers, 96. See also
dispatching events

event flow, 275

event handlers

defined, 96

naming, 104, 285

passing data when calling,
99–100

sending event objects to,
101–103

for system events, 107–111

event handling

with ActionScript, 98–99

example, 97–98

overview, 96–97

EventLab application, 274

event listeners, 96, 179, 275, 288

event objects. See also events

generic, 101

inspecting, 104–107

using data from, 100–103

events, 100–107. See also event
handling; event objects

communicating with, 445–448

data binding as, 179–181

declaring, 267–269

defined, 100

dispatching, 178–179, 183,
263–267

drag initiator, 315

drop target, 316

inspecting, 104–107

interpreting, 212

listening to, 96, 179

passing data with, 269–270

purpose of, 80

types of, 96, 107

using data from, 100–103

event subclasses, 270–274, 280

event targets, 275

eventText parameter, 108

event variable, 105

expressions

E4X, 129, 133

and loose coupling, 262

maintaining, 262

watch, 36, 117, 119, 136, 172, 191

Expressions panel, 173, 191

Expression Studio, 11

Expressions view, 36, 118, 137, 191

Extensible Application Markup
Language (XAML), 11

F
factory methods, 150

false/true values, 151–152, 163

FAQs (frequently asked questions),
xxi

FedEx shipment tracking
application, 8

fill property, 408

filterCollection() method,
258

filtering, 202–203

filterOrganic() method, 203

findAny() method, 200

findFirst() method, 199–200

findLast() method, 200

Flash Builder

adjusting layout of views in, 26

basic vocabulary for, 18

creating projects in, 18–24

debugger, 34–41

deleting projects in, 41–42

displaying code line numbers
in, 27

enabling conditional
breakpoints in, 40

help/support, xxi

467Index

importing projects into, 41

laying out interface in, 45

naming projects in, 18–19

and object-oriented best
practices, 95

purpose of, 14, 17

using Auto-Generation with,
181–183

versions, 14

viewing/correcting errors in,
32–33, 34–41

workbench, 24–27

Flash Catalyst, 14

Flash Debug perspective, 26

Flash Platform, 12–15

Flash Player

and AIR, 12

and application height/width, 24

compilation process, 14

evolution of, 12

how it works internally, 439

popularity of, 12

and runtime-loaded CSS files, 395

sandboxes, 122–123

as single-threaded virtual
machine, 439

versions, 13–14

Flash Professional, 12–13

Flash Text Engine, 81

Flex

application architecture,
212–213

application development, 18–24

applications (See applications)

basic vocabulary for, 18

Community Help, xx–xxii

compiler, 176–183

as component-based
development model, 207

components, 421–422

event-based programming
model, 95, 96–97

getting started with, xii–xiii,
17–43

home page, xxii

key technologies, 13–14

language tags, 23

and object-oriented
programming, 41

positioning of components in, 46

purpose of, xii, 13

resources, xx–xxii

Spark components, 23

versions, xii, 13

working with view states in,
63–70

FlexGrocer application

adding events to, 95

building checkout process for,
335–358

controlling view states for,
68–70

creating list of products for,
185–191

creating/organizing files for,
18–24

customizing with skins, 399–417
(See also skins)

customizing with styles,
375–397 (See also styles)

defining product section for,
57–58

displaying images in, 81–84

displaying/managing data for,
144–150

externalizing data in, 114–116

formatting currency for prices
in, 364–369

implementing checkout process
for, 333–358

implementing drag/drop in,
326–331

improving architecture for,
213–221

laying out interface for, 50–58

manipulating shopping cart
data for, 159–167

modifying, 30–33

overview, xv

Product data structure for, 141

providing product/category
information for, 230–238

refactoring, 73–75, 101–103

running, 28–29

validating postal codes for,
369–372

visual shopping cart for, 169
(See also shopping carts)

website for, xvi

working with view states for,
63–70

flexgrocer.com, xvi

Flex Properties view, 82–83

Flex SDK, xii, xiii, 14, 19, 23, 80

flow-driven programming model, 96

fonts, embedded, 388, 390

for loops, 162–163, 164–165

Formatter classes, 364–368

formatters

for displaying currency,
364–368, 443

examples of, 362–363

purpose of, 361, 363

Form container, 47, 81, 89–92

form fields, 89

FormHeading component, 91

FormItem component, 90

FormLayout object, 47

forms, 89, 91

Forums, Adobe, xxii

FreeBSD, 11

frequently asked questions (FAQs),
xxi

functions. See also specific functions

parameters vs. arguments for, 147

private vs. protected, 267

scope of, 102

vs. methods, 144

</fx:Declarations> tag, 29

FXG Graphics, 404–405

FXG specification, 407

<fx:Metadata> tag, 267–268

<fx:Model> tag, 88

fx namespace, 23

FXP files, 34, 41

<fx:Script> block, 99

<fx:Style> tag, 382–383

<fx:XML> tag, 149, 151

468 Index

G
Generate Getter/Setter dialog box,

182, 249, 428

getItemAt() method, 192–193

getItemInCart() method, 163

getters/setters, 177–178, 181–183,
249, 428

Google Maps, 10

“go to definition” shortcut, 171

graphical elements, 46, 404–405

graphics editing programs,
404–405

graphics property, 404–405

greater-than sign (>), 30

GridColumn class, 296–299

Group container, 46, 245

Group tag, 48–49

H
handleCreationComplete()

method, 109, 149, 152

handleViewCartClick()
method, 102, 103, 104

hasFormat() method, 322

HGroup container, 72–73

HorizontalLayout object, 47

HostComponent metadata, 433

HTML (Hypertext Markup
Language)

and drag/drop operations, 5

latest version of, 10

limitations of, 4–5, 10

as page-based architecture, 4

HTML 5 specification, 10

HTTP (Hypertext Transport
Protocol), 5, 7

HTTPServices

accessing data retrieved from,
121–122

creating, 120, 230–231

retrieving XML data via,
124–126

Hypertext Markup Language.
See HTML

Hypertext Transport Protocol
(HTTP), 5, 7

I
IDataRenderer interface, 246, 247

IDE (integrated development
environment), 14

ID selectors, 382, 392

IFill interface, 408

IFormatter interface, 362

IFrames, 9

Image control, 81–84

images

displaying, 81–84

editing, 404–405

loading at runtime, 81

loading at start of application, 84

scaling, 83

implicit getters/setters, 177–178,
181–183

importing

classes, 109–110, 215

projects, 41, 68

import statements, 110, 157, 304

includeIn property, 67, 87, 334

inheritable style properties, 381

inheritance

hierarchy, 263

and invalidateProperties()
method, 440

and protected functions, 267

style, 376, 381, 384

inline editors, 296–299

inline item renderers, 303–304

inline styles, 379–381

instance methods, 151

instances

Array, 184, 194

bindable, 194

DataGroup, 242

event, 276, 277

Label, 193

List, 242, 313

Object, 184

ObjectProxy, 118, 135

validator, 371

vs. properties, 49

XML, 184

integers, unsigned, 155

integrated development
environment (IDE), 14

interactivity, 5, 63

interfaces, 199. See also UI

Internet

applications (See web
applications)

dot-com boom, 7

explosive growth of, 4

security issues, 122–123

invalidateProperties()
method, 440

isItemInCart() method, 163

italics, xvii

itemEditor property, 297

item editors, 296–299

itemRenderer class, 246–251, 256

item renderers

for displaying products,
299–302

how they work, 246

implementing, 246–251

inline, 296–299, 303–304

items. See also products

adding to shopping cart,
159–161

displaying based on category,
257–258

dragging to shopping cart, 311,
326–331

finding in shopping cart,
161–163

updating quantity of, 161,
164–166

IT organizations, 8

IValidator interface, 363

IViewCursor interface, 198, 199

J
Java, xiv

Java applets, 9

JavaFX, 10

JavaScript, 5, 9

Java Virtual Machine, 10

just-in-time (JIT) compilation, 14

469Index

K
keyboard shortcuts, xvii

L
Label component, 378

Label controls, 57, 60, 80

labelFunction property

displaying subtotal with,
305–308

purpose of, 242

using with lists, 242–245

label property, 49

Label tag, 29

lastResult property, 121–122

layout anchors, 59

layout objects, 46, 47–48

layout property, 48

layouts, 45–63. See also containers

adding elements in Design view,
53–56

combining containers and, 48

constraint-based, 55, 58–63

for e-commerce application,
50–58

purpose of, 46

starting in Source view, 51–53

lessons

directory structure for, xviii

list of, xiv–xv

minimum system requirements,
xix

standard elements used in,
xvi–xvii

letterbox scale mode, 83, 84

Linear Gradient class, 408–409

line breaks, 31

Linux, 11

list-based components, 321

List controls. See also lists

displaying category data with,
137–139

dragging/dropping between,
313–315

dragging/dropping between
DataGrid and, 315–321

populating with dataset,
242–245

using labelFunction with,
242–245

lists. See also List controls

formatting data in, 244–245

responding to user’s choice
from, 257–259

virtualization with, 255–257

Local History feature, 31–32

loops, 162–163, 164–165

loosely coupled architecture,
262–263

M
Mac OS-based systems

manifest files for, 23

and Silverlight, 11

system requirements, xix

Macromedia, xii, 12, 13

mainframes, 4

Major League Baseball application, 8

manifest files, 23

menu commands, xvii

messaging, 15

metadata tags, 267

methods. See also specific methods

creating objects with, 150–153

defining, 143

DragManager class, 322

DragSource class, 322

factory, 150

instance, 151

overriding, 271

parameters vs. arguments for, 147

static, 151

vs. functions, 144

microcomputers, 4

Microsoft

Expression Studio, 11

Silverlight, 11

minHeight attribute, 31

minWidth attribute, 31

MLB.TV Media Player, 8

models, 212

model-view-controller (MVC)
architecture, 88, 212–213

Moonlight, 11

mouseDown event, 315

MouseEvent properties, 104–107

mouseMove event, 315

mouseOut event, 87

mouseOver event, 87

multiDisplay() function, 244

MVC (model-view-controller)
architecture, 88, 212–213

mx components, 20

mx.formatters package, 362

MXML

case-sensitivity of, 21

class instances vs. properties in,
49–50

compiling, 149

components, 208–213, 420
(See also components)

creating applications in, 18–24

creating classes in, 149

decoding tags in, 49–50

formatting rules/standards, 30

item renderers, 303–304

purpose of, 13

MXMLC compiler, 395

MXML Component dialog box, 214

mx.validators package, 363–364

N
name collision, 147, 148

@namespace declaration, 389

namespaces

fx namespace, 23

how CSS defines, 389

s namespace, 23

Spark, 23, 387, 389

styles and, 383–384

navigation system

importance of, 333

and loose coupling, 262–263

using states as basis for, 334,
337–345

nested quotes, 97, 99

470 Index

.NET, xiv, 11

new keyword, 151

New Package command, 221

New State icon, 64

newTotal variable, 164, 165

nodes, 128, 186

non-visual components, 230–238

O
object-oriented programming

(OOP), xiv, 41, 95, 102, 141, 215

ObjectProxy, 184

objects

building method to create,
150–153

classes as blueprint for, 141

converting XML to, 117–119, 133

data transfer, 143

event (See event objects)

OOP. See object-oriented
programming

Open Font Library, 388

Open Perspective button, 22, 26

Open Perspective icon, 107

open source site, 81

OrderEvent object, 355–358

OrderInfo object, 335–336, 355

Outline view, 57, 65

P
Package Explorer, 22, 25, 41, 145

package keyword, 145

packages, 143, 145, 221

page-based architecture, 4, 6–7, 8

Panel container, 46

parameters, 147

partAdded() method, 445–448

partRemoved() method, 445,
448–449

PC manifest files, 23

personal computers, 4

perspectives, 26, 36, 107

PHP, xiv

postal-code validator, 369–372

prefix, 23

prepare method, 300, 301

private functions, 267

private keyword, 158

Problems view, 22, 32

ProductEvent class, 280–286,
304–305

ProductItem components

breaking out, 221–230

cleaning up appearance of,
376–377

creating instances of, 228

productivity, 8

ProductList component

creating, 282–284, 426

styling labels in, 391

using, 284–285

product nodes, 186

products. See also items

adding/removing from
shopping cart, 284–286,
304–305

creating, 189

displaying names of, 148–149

filtering based on category,
257–259

keeping track of shopping cart,
154–159

product section, 57–58

programmatic graphics, 404–405

programming languages, xiv

Project menu, 28

projects. See also applications

creating, 18–24

deleting, 41–42

importing, 41, 68

naming, 18–19, 41

overwriting, 41

viewing, 21–22

viewing errors in, 32–33

properties. See also specific
properties

creating, 215

declaring, 143

vs. class instances, 49

Properties panel, 53, 57

protected functions, 267

proxies

array, 184–185

drag, 312

pseudo-selectors, 382, 393–394

public properties, 146–147

Q
question mark (?), 146

Quick Fix tool, 146, 180

quotation marks (“), 68, 97

R
RadialGradient class, 408

redundancy, 71

refactoring, 71–75

applications, 73–75, 101–103

benefits of, 71–72

defined, 71

to search with cursor, 198–201

ShoppingCart class, 287–288

ShoppingCartItem class,
204–205

remote XML data, 110–139

dynamic, 133–137

embedded XML, 114–116

searching with E4X, 127–133

security issues, 122–123

XMLListCollection, 137–139

XML loaded at runtime, 119–123

Remove button, 303–304

removeItem() method, 304

Reset Perspective command, 53

ResultEvents, 101

result handler, 122

Resume button, 38

return types, 99, 102

RIAs (rich Internet applications),
3–15

advantages of, 7–8

and drag/drop technique, 311

examples of excellent, 8

functions of, 5–6

goals of, 6–7

471Index

technology choices, 8–14

vs. traditional web applications,
6–7

RichEditableText control, 81

rich Internet applications. See RIAs

RichText control, 80, 81, 86, 109

rollover event, 85–87

root nodes, 128–129

Run button, 22, 28, 29

runtime

changing CSS at, 395–397

changing skins at, 448

loading images at, 81, 84

styling at, 395–397

XML loaded at, 119–123

S
sandboxes, 122–123

<s:Application> tag, 22–23, 31

satellite navigation system,
262–263

<s:BasicLayout/> tag, 52

scalar values, 98

Scale Mode menu, 83, 84

scope, 102

Script blocks, 99, 102

scroll bars, 24

Scroller tag, 48–49

scrolling content, 48–49

SDK (software development kit),
xii, xiii, 14, 19, 23, 80

searches

array, 246

with cursor, 198–201

descendant, 190

XML (with E4X), 127–133

security issues, 122–123

security sandboxes, 122–123

selectability, 255

selectedIndex property, 255

selectedItem property, 255

self-closing tags, 31, 51

send() method, 120, 126

servers, 4. See also client/server
applications

server-side languages, xiv

server-side objects, 6

server technologies, 15

service-oriented architecture
(SOA), 5

setStyle() method, 381

setters/getters, 177–178, 181–183,
249, 428

<s:FormHeading> tag, 89

<s:FormItem> tag, 89

<s:Form> tag, 89

shipment tracking application, 8

ShoppingCart class. See also
shopping carts

building, 154–159

refactoring, 287–288

replacing Array in, 194

ShoppingCartItem class, 154–159,
204–205

shopping carts

adding items to, 63, 159–161,
284–286

displaying with DataGrid, 291,
292–308

dragging items to, 311, 326–331

finding items in, 161–163

formatting list data for, 244–245

keeping track of items in,
154–159

manipulating data in, 157,
159–167

removing items from, 201–202,
284–286

updating quantity of items in,
164–166

updating totals in, 287–288

ShoppingList component, 425–452

adding functionality to, 439–450

checking functionality of,
429–431

choosing base class for, 426

creating class for, 427–429

creating custom renderer for,
450–452

creating skin for, 434–438

defining interface for, 425

specifying skin requirements for,
432–434

ShoppingView class, 251–253

Show Line Numbers command, 27

Show View command, 25

Silverlight, 11

simple controls, 79–92

linking data structure to, 88–89

overview, 80–81

purpose of, 80

tools for laying out, 79

using Form container to lay out,
89–92

ways of using, 79, 80

SkinnableComponent class,
421–422, 445

SkinnableContainer, 46

SkinnableDataContainer, 47

skinning, 46, 432

SkinPart metadata, 432

skin parts, 401, 434

skins, 399–417

changing at runtime, 448

creating, for Application
component, 413–416,
434–438

creating, for FlexGrocer button,
400–404

creating, for ShoppingList
component, 434–438

creating renderer for, 450–452

customizing button states with,
407–413

errors, 401

purpose of, 376

relationship between states and,
404–413

role of, in Spark components,
400–404

vs. styles, 376

SkinState metadata, 432–433

<s:Label> tag, 29

slash (/), 30, 31

<s:List> control, 137–138

s namespace, 23

SOA (service-oriented
architecture), 5

software development kit (SDK),
xii, xiii, 14, 19, 23, 80

472 Index

software upgrades, 4

SolidColor class, 408

someColor property, 171–172

SortField objects, 194–197

Source button, 22

Source view, 25, 51–53

Spark classes, 23

Spark components

and embedded fonts, 390

namespace for, 23, 387, 389

role of skins in, 400–404, 413

vs. MX components, 20

spark.formatters package, 362

Spark namespace, 23, 387, 389

spark.validators package, 363–364

<s:states> tag, 337

stateless protocols, 7

states

controlling, 68–70

creating, 64

creating navigation structure
using, 334, 337–345

maintaining, 7

naming, 68

relationship between skins and,
404–413

setting properties for, 67

state selectors, 393–394

static methods, 151

Step Into button, 37, 40

Step Over button, 37, 40

stretch scale mode, 83

style inheritance, 381

StyleManager, 396–397

styleName property, 383

style properties, 379, 381

styles, 375–397. See also skins

assigning multiple, 382, 397

complete list of, 378

CSS inheritance for, 381

overriding, 397

purpose of, 376

at runtime, 395–397

setting with CSS files, 386–394

setting with <fx:Style> tag,
382–383

setting with setStyle()
method, 381

setting with tag attributes,
379–381

vs. skins, 376

ways of applying, 377–378

subclasses, 270–274, 280

subtotals, 156, 204, 305–308

Support pages, xxi

SWF files, 29, 395–396

system events, 96, 107–111

system requirements, xix

T
tag attributes, setting styles via,

379–381

tags

choosing attributes for, 30

Form container, 89

selecting, 30

self-closing, 31, 51

target phase, event flow, 275

target property, 100, 105

targets, event, 275

text

controls, 80–81

displaying blocks of, 85–87

styles for manipulating, 378–379

TextArea component, 80, 108

TextInput control, 80, 91, 247

Text Layout Framework (TLF), 81

this keyword, 105, 147

tight coupling, 262

TileLayout object, 47

timestamp property, 270–274

timestamps, 269

TLF (Text Layout Framework), 81

toString() method, 148–149,
150, 151, 156, 160

total property, 165, 166

trace() method, 149, 150, 153, 156

training centers, Adobe, xxii

Training from the Source series, xviii

transfer objects, 143

true/false values, 151–152, 163

tutorials, xxi

two-way bindings, 334

type property, 100

type selectors, 382, 383–385

U
UI (user interface), 45–76

arranging elements in, 58

drag-and-drop technique,
311 (See also drag/drop
operations)

dynamic, 71

for e-commerce application, 45

HTML limitations, 4–5

laying out, 50–58

tools for creating, 11

UIComponent class, 208, 263, 421

underscore (_), 177

unique identifier (UUID), 41

unitRPCResult() handler, 122

Universal Resource Identifier (URI),
23

unsigned integers, 155

updateItem() method, 164

URI (Universal Resource Identifier),
23

URLs, 23, 120

UserAcknowledgeEvent class,
270–274

user events, 96, 97, 107

user frustration level, 8

user input forms, 334

user interface. See UI

users, collecting information from,
89

UUID (unique identifier), 41

473Index

V
Validator classes, 363, 364,

369–372

validators

for checking postal codes,
369–372

examples of, 363–364

purpose of, 361, 363

value objects, 143–150, 153

values

attribute, 98

Boolean, 151–152, 163

scalar, 98

setting/reading, 177

true/false, 151–152, 163

variables

controlling, 363

integer, 35

name collision among, 147

naming, 147

in RIAs, 7

showing current state of, 36

Variables view, 36, 37–38, 105

vector graphics, 404–405

VerticalLayout object, 47, 57

VGroup container, 72–73, 85

video publishing, 15

View Cart buttons, 101–103

views

adjusting layout of, 26

displaying list of, 25

grouping, 36

in MVC architecture, 212, 213
(See also specific views)

opening/closing, 25

view states, 63–70

controlling, 68–70

creating, 63–67

defined, 63

naming, 68

virtualization

implementing, 254–255

with List class, 255–257

power of, 255

purpose of, 253–254

visual components, 213–230, 274

void return type, 99, 102

W
WarningDialog application,

264–267

watch expressions, 36, 117, 119,
136, 172, 191

Web 2.0, xii

web applications. See also
applications

connectivity issues, 6

and drag/drop technique, 311

and event-based programming,
95

evolution of, 4–6

flow for traditional, 6–7

inefficiencies of, 6

maintaining state in, 7

web browsers, 4, 5

Web Services, 6

Window menu, 25

Windows-based systems

manifest files for, 23

and Silverlight, 11

system requirements, xix

Windows Presentation Foundation
(WPF), 11

workbench, 24–27

workflow engines, 15

World Wide Web, xiv. See also
Internet

WPF (Windows Presentation
Foundation), 11

X
XAML (Extensible Application

Markup Language), 11

XML

ActionScript support for, 127

and AJAX, 9

and code completion, 150

converting to objects, 117–119,
133

embedded, 114–119

and Flex, 13

formatting rules/standards, 30

loaded at runtime, 119–123

namespaces, 23

nomenclature, 23

terminating tags in, 31

vs. XMLList, 128

XML class, 127

XML data

accessing returned, 121–122

dynamic, 133–137

remote (See remote XML data)

retrieving via HTTPService,
124–126

security issues, 122–123

XMLDocument class, 127

XMLHttpRequest, 9

XMLList, 128

XMLListCollection, 133, 135,
137–139

Z
zip-code validator, 369–372

ZipCodeValidator class, 369–372

	Contents
	Foreword
	Introduction
	Lesson 4 Using Simple Controls
	Introducing Simple Controls
	Displaying Images
	Building a Detail View
	Using Data Binding to Link a Data Structure to a Simple Control
	Using a Form Layout Container to Lay Out Simple Controls
	What You Have Learned

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

