Fundamentals of

ActionScript 3.0

DEVELOP AND DESIGN

Doug Winnie

Fundamentals of

ActionScript 3.0

DEVELOP AND DESIGN

Doug Winnie

Peachpit
Pres's,

Fundamentals of ActionScript 3.0: Develop and Design
Doug Winnie

Peachpit Press

1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com

To report errors, please send a note to errata@peachpit.com
Peachpit Press is a division of Pearson Education

Copyright © 2012 by R. Douglas Winnie

Editor: Nancy Peterson

Production editor: Myrna Vladic
Development editor: Robyn G. Thomas
Copyeditor: Liz Merfeld

Technical Editor: Christopher Coudron
Cover design: Aren Straiger

Cover production: Mimi Heft

Interior design: Mimi Heft
Compositor: Danielle Foster

Indexer: Jack Lewis

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks

ActionScript and Flash are trademarks of Adobe Systems Inc., registered in the United States and other
countries. Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Peachpit Press was aware of a
trademark claim, the designations appear as requested by the owner of the trademark. All other product
names and services identified throughout this book are used in editorial fashion only and for the benefit
of such companies with no intention of infringement of the trademark. No such use, or the use of any
trade name, is intended to convey endorsement or other affiliation with this book.

ISBN 13: 978-0-321-77702-7
ISBN 10: 0-321-77702-6

987654321

Printed and bound in the United States of America

www.peachpit.com

This book is dedicated to Hoover. Hoover was a big part of my life,

and was always by my side while doing “tech-no” things. I miss you Hoover!

This book is also dedicated to my husband, Mike.

While not always into my “tech-no” things, he is my inspiration for doing

great things—*“tech-no” or not. Thanks, Groovy Dude!

ACKNOWLEDGEMENTS

With too many people to mention individually, I'm going to do a group acknowl-
edgement of all of the members of the Adobe Flash Professional, Flash Player, AIR,
and Flex teams that have inspired me to create great things, and to a platform that
overcomes amazing obstacles to give creative and web professionals the ability to
express themselves wherever they go.

I also want to acknowledge Chris Coudron, my tech reviewer and friend, for
his effort to make me look good in code and for reminding me that there is not a
NOR operator in ActionScript. D’oh!

IV FUNDAMENTALS OF ACTIONSCRIPT 3.0: DEVELOP AND DESIGN

CONTENTS

Introduction xiii
Welcome to ActionScript 3.0 XVi
BN rART 1 GETTING THE FUNDAMENTALS
CHAPTER 1 ACCESSING AND MANIPULATING OBJECTS 2
Creating a New Project for ActionScript 3.0 4
Accessing Objects on the Stage 5
Sending Messages to the Output Panel 8
Working with Object Parameters 12
Wrapping Up 19
CHAPTER 2 DYNAMICALLY ADDING OBJECTS TO THE STAGE 20
Creating Named Library Assets 22
Introducing the Display Stack 25
Creating New Objects on the Stage 25
Messing with the Display Stack 29
Assigning Properties to Dynamically Created Instances 30
Working with Comments 31
Creating Comments 31
Working with Spaces 32
Wrapping Up 33
CHAPTER 3 WORKING WITH FUNCTIONS 34
Fundamentals of Functions 36
Accepting Values in Functions 39
Possible Errors when Working with Functions 42
Required Parameter Error 42
Type Mismatch Error 43
Returning Values from Functions 44
More about Parentheses (and Curly Braces) 46
Wrapping Up 47
cHapTER 4 ACTIONSCRIPT AND MATH 48
Mathematical Operators 50
Addition and Subtraction 50

CONTENTS V

Addition or Concatenation? 51

Multiplication and Division 53
Modulo, the Operator Formerly Known as Long Division
with Remainders 53
Variables and Combined Assignment Operators 55
Variables 56
Combined Assignment Operators 57
Increment and Decrement Operators 58
Order of Operations 60
Using Parentheses to Force Order 62
Summing up Math Operations 64
Wrapping Up 65
CHAPTER § CREATING EVENTS 66
Events: Explained 68
Creating a Mouse Event Handler 70
Adding Other Events 74
Wrapping Up 76
CHAPTER 6 USING TIMELINE SCRIPTING WITH MOUSE EVENTS 78
Explaining the Project 80
Controlling Timeline Playback 81
Stopping Playback 81
Seeking to a Specific Frame 83
Working with MovieClip Timelines 85
Using the Event Callback Object and Handling Scope 87
The Event Callback Object 87
Using the Event Callback Object 89
Shortcuts for gotoAndStop() 92
The Finished Example 92
Another e Example 94
Working with Simple Callback Functions 96
Wrapping Up 97
CHAPTER 7 CREATING TIMER AND FRAME EVENTS 98
Using the Timer Event 100
Stopping the Timer 102

VI FUNDAMENTALS OF ACTIONSCRIPT 3.0: DEVELOP AND DESIGN

Using the Enter Frame Event 104
Removing Event Listeners 106
When to Use Frame vs. Timer Events 108
Wrapping Up 111
PROJECT 1 COUNTDOWN CLOCK 12
Project Specification: Countdown Clock 114
Visual Design Review 115
Kick-Off Meeting Notes: Countdown Clock 116
Solution and Walkthrough: Countdown Clock 117
Project Setup in Flash Professional 117
ActionScript Setup 119
Auto-Generated Imports 121
Display Objects 122
Event Listener for the Start Button 123
Timer and Timer Event Listeners 124
Callback Function for Starting the Timer 124
Callback Functions for Timer Events 125
Wrapping Up 127
BN rART 2 EXPLORING THE BASICS OF CLASSES
CHAPTER 8 WHAT IS A CLASS? 130
Overview of a Class 132
Variables Revealed 133
Creating a Class 134
Wrapping Up 138
CHAPTER 9 BUILDING OUT THE CLASS 140
Parts of a Class 142
Package Statement 142
Import Statement 142
Class Statement 143
Class Constructor 143
Creating a Class Instance 144

CONTENTS VII

Vil

Adding Constructor Parameters 146
Customizing the Button Label 146
Customizing Multiple Properties 148
Making Constructor Parameters Optional 150
Creating Methods 152
Accessing Methods from Outside the Class 153
Wrapping Up 154
cHapter 10 DOING MORE WITH CLASSES 156
What is the public Keyword for? 158
Restricting Access with private 161
Using Best Practices for Naming Private Members 163
Getters and Setters: Keeping Things Polite 164
Creating Getter and Setter Methods 165
Using the get and set Statements 166
Going Frame-Script-Free: Creating a Document Class 169
Creating an Initialization Method 171
Wrapping Up 173
cHapTER 11 ORGANIZING YOUR CLASSES 174
Your Package Has Been Delivered 176
Creating a Package Folder 176
Referring to All Classes in a Package 180
Creating Nested Packages 182
Changing the Source Path 183
Wrapping Up 187
I PART 3 RESPONDING TO CONDITIONS AND WORKING
WITH LOGIC
cauapter 12 CONDITIONALS 190
Boolean Variables and Equality 192
Testing for Equality 194
Testing for Inequality 195
Demonstrating Equality and Inequality 196

FUNDAMENTALS OF ACTIONSCRIPT 3.0: DEVELOP AND DESIGN

CHAPTER 13

CHAPTER 14

CHAPTER 15

Building Drag and Drop for the Mouse
Adding Feedback

Testing Conditions

The if Statement

The if...else Statement

The if...else if statement

Wrapping Up

ADVANCED BOOLEAN LOGIC AND RANDOM NUMBERS

Using Logic Operators

The AND Operator

The OR Operator

The NOT Operator

Building Complex Conditionals
Generating Random Numbers

Wrapping Up

WORKING WITH TEXT AND THE KEYBOARD
Working with Text Fields

Customizing the Text Style

Making Changes to Style Later on

Creating Your Own ActionScript Fonts

Creating the Quiz Layout

Working with Escape Sequences

Creating the KeyboardEvent Handler

Differences between Code Types: Key Codes versus
Character Codes

Recognizing Special Keys
Wrapping Up

CREATING GROUPS OF OBJECTS AND REPEATING
ACTIONS USING LOOPS

What Are Loops?

Using the for Loop

Controlling the Flow of Loops with break and continue
Nesting Loops

Another Style of Loops, the do Loop

198
200
202
204
206
209

213

214
216
217
218
218
219
221
225

226
228
231
233
234
238
241
246

250
251
254

256
258
258
261
262
264

CONTENTS

IX

X

Creating Groups of Items with Arrays 265
Modifying an Array 266
Using Loops to Create Arrays 269
Looping through an Array 274
Wrapping Up 277
PROJECT 2 DICEOUT! 278
Project Specification: DiceOut 280
Visual Design Review: DiceOut 281
Kick-Off Meeting Notes: DiceOut 283
Solution and Walkthrough: DiceOut 284
Overview of the Document Class 284
Walkthrough of the Document Class 288
Wrapping Up 297
I rART 4 GETTING CREATIVE WITH ACTIONSCRIPT
cHapTER 16 DRAWING WITH ACTIONSCRIPT 300
Drawing and Code 302
Sprites: MovieClips without Timelines 302
Your First Shape 303
Extending the Sprite Class 305
Drawing Lines and Working with Strokes 307
Drawing Ahead of the Curve 312
Drawing Shapes 315
Using Fills 318
Building Gradients 321
Looping with the Drawing API 326
Wrapping Up 330
cHapTER 17 ANIMATION USING ACTIONSCRIPT 332
ActionScript Animation = Location + Time 334
Moving an Object Using a Timer 336
Creating Random Animations 338
Animating Multiple Objects with Loops 343

FUNDAMENTALS OF ACTIONSCRIPT 3.0: DEVELOP AND DESIGN

Fine-Tuning Animations 348
Wrapping Up 366
cHapTER 18 WORKING WITH EXTERNAL MEDIA 368
Using Images 370
Playing Audio from the Web 373
Playing Video from the Web 376
Altering the Playback of Video 379
Pausing Video 382
Rewind and Seek 384
Wrapping Up 389
I rART 5 CREATING MULTI-SCREEN PROJECTS
cuapter 19 DESKTOP APPLICATIONS WITH ADOBE AIR 392
Getting Started 394
Working with Desktop Events 397
Minimize 397
Maximize 398
Drag 401
Close 404
Resize 406
Creating a Resizable Layout 411
Configuring Your AIR Project 419
Icons 419
Certificate 420
Publish and Install 422
Wrapping Up 425
cHapTer 20 MOBILE APPLICATIONS WITH ADOBE AIR 426
Getting Started 428
Setting Up Your Testing Devices 429
Creating a Mobile Project 431
Your First Android Application 431
Your First iOS Application 434

CONTENTS Xl

Creating Interactions for Devices 439

Tip, Tap—Basic Touch Interactions 439
Simple Dragging with Touch 442
Taking Your Time with Long Touches 445
Working with Gesture Events 450
Pinch to Zoom 450
Rotate 455
Debugging over USB 458
Debugging on Android 458
Debugging on iOS 460
Optimizing Content 463
Wrapping Up 465
PROJECT 3 FLIPR 466
Project Specification: Flipr 468
Visual Design Review: Flipr 469
Kick-Off Meeting Notes: Flipr 470
Solution and Walkthrough: Flipr 471
Review of the Flash Professional Project 471
Review of the Document Class 475
Display the Splash Screen 479
Display the Main Controls 480
Create the Game Logic 482
Create the Game Board 491
Set Up the Score and Timer Displays 493
Set Up the Player Controls and Game Rules 494
Wrapping Up 501
appenpix A CONFIGURING YOUR MOBILE ENVIRONMENT 502
Setting Up an Android Device for Testing 504
Setting Up an iOS Device for Testing 506
Index 512

XIl FUNDAMENTALS OF ACTIONSCRIPT 3.0: DEVELOP AND DESIGN

INTRODUCTION

Welcome to ActionScript. Over the next several chapters, you'll be introduced to
one of the most versatile programming languages to create web applications for the
browser, desktop applications, and mobile apps for multiple platforms. For years
the Flash Platform has provided people with the most powerful set of technolo-
gies to creatively express themselves across multiple screens and platforms with
its combination of the Flash Player and AIR runtimes, tools like Flash Professional
CSs.5 and Flash Builder 4.5, and languages and frameworks like ActionScript 3.0
and Flex 4.5.

Over the last several years, I have taught people how to make their projects
interactive and how to captivate and engage users. During that time at San Francisco
State University, my series on Adobe TV, and conference appearances, have appre-
ciated the difficulty of learning scripting and coding. Learning programming is a
steep task, and there are many ways to teach it. What I have found is that combining
programming basics, simple examples, problem solving, and real-world projects has
been very effective, and it is what you have in your hands (or on your screen) now.

WHO THIS BOOK IS FOR

This book is crafted for people who are familiar with Flash Professional, the ani-
mation and interactive design tool from Adobe Systems that is part of Creative
Suite. The lessons and projects here assume that you have a basic understanding
of the Flash Professional product. This book is designed for people who are new
to coding or are struggling with the migration from ActionScript 2.0 to 3.0. Here
are some examples of what you should know and be able to do before attempting
to start with this book:

= Import graphical assets from Creative Suite design tools
= (Create timeline animations using tweens using keyframes
= (Create symbols using the Library panel

= Organize and rename timelines in the Timeline panel and symbols in the
Library panel

= Publish and build animations for the web browser

INTRODUCTION X1

XIv

With these basic skills, you can create very interesting web animations; however,
without ActionScript, the animations lacked any interaction with the user, and
there is no way to bring them to other platforms including mobile devices. That
is exactly what this book will teach you—how to make these projects interactive
and take them further.

The latest edition, Flash Professional CS5.5, has added a significant number of
new features to support mobile app creation that are covered at the end of the book.

WHO THIS BOOK IS NOT FOR

If you are already an intermediate or advanced coder, this book may be too basic
for your needs. There are a significant number of books that focus on advanced
ActionScript 3.0 concepts, including the adoption of best practices and code design
patterns that will make you a better and more proficient coder.

In addition, if you have never worked with Flash Professional, I recommend
you learn how to use the basic product before tackling the contents here. There are
excellent books available to help you learn how to get started with Flash Profes-
sional to create animations and how to master design workflows when working
with Creative Suite design applications like Photoshop, Illustrator, and Fireworks.

HOW YOU WILL LEARN

This book has a specific methodology for how the concepts are introduced. First
are the fundamentals of how to interact and work with objects that are on the
Stage. The examples that are in the book are simple—and this is intentional, to
help you understand how ActionScript works without getting into the weeds of
your project’s design or assets. You can adapt and expand these simple examples
for your own projects.

After you gather a sizable amount of new ActionScript know-how, it is time
to put it to work. There are three major projects in the book that pose real-world
situations for you to solve using the skills you have learned. The projects present
you with a programming challenge and ask you to solve it. You can compare your
finished projects with the examples in the book to discover how your approach
matches or differs.

FUNDAMENTALS OF ACTIONSCRIPT 3.0: DEVELOP AND DESIGN

WHAT YOU WILL LEARN

This book is divided into five major parts.

PART 1: GETTING THE FUNDAMENTALS

You’'ll learn general ActionScript concepts that you can use to make ActionScript
interact with objects on the Stage and in the Library of your project. You'll build
on this, understanding how to flow your code through reusable modules called
functions, and then how to respond to user interaction with event handlers.

PART 2: EXPLORING THE BASICS OF CLASSES

You'll jump into the basics of what is called object-oriented programming (OOP),
which is what separates the coders from the scripters. Through OOP you can unlock
alot of flexibility in how you create projects, learning how to make reusable objects
and containers that can extend the sophistication of your projects.

PART 3: RESPONDING TO CONDITIONALS AND WORKING WITH LOGIC
Adapting your project based on certain conditions then is the focus of the next
section, where through the use of conditionals, your project can adapt to different
interactions from the user or even to random events to begin introducing gaming
concepts to your project.

PART 4: GETTING CREATIVE WITH ACTIONSCRIPT

Although ActionScript is a programming language, it has its creative side. This is
covered in the fourth section, where you will learn how to draw, animate, and work
with external assets in your projects.

PART 5: CREATING MULTI-SCREEN PROJECTS

After you have mastered all the previous topics, it is time to take your projects
out of the browser and take advantage of the Flash Platform to create desktop
applications for Windows and Mac OS X operating systems and mobile apps for
the popular Android and iOS platforms.

You'll cover alot, but at the end, you’ll have a solid foundation on how Action-
Script works and the power that you have at your fingertips to express yourself
across screens and platforms.

So let’s get started!

INTRODUCTION XV

WELCOME TO ACTIONSCRIPT 3.0

ActionScript 3.0 is the programming language of the Adobe Flash Platform, a multi-screen

and mutli-device development platform for creating interactive and expressive content.

With the latest generation of the Adobe runtimes, Flash Player and AIR, you can take your

ideas and creative vision to the browser, desktop, mobile phones, tablets, and Internet-

enabled televisions. Let’s review some of the tools that you’ll be working with.

XVI

THE TOOLS AND RUNTIMES

In the course of this book, there are three main tools and runtimes that you’ll be

working with:

FLASH
PROFESSIONAL CS5.5

The latest generation

of the Flash authoring
tool combines powerful
animation capabilities,
library management, and
an integrated coding
environment designed for
ActionScript 3.0 coding.
Part of Creative Suite 5.5,
Flash Professional CSs.5
adds new support to work
with the latest generation
of Adobe AIR and Flash
Player 10.2 to create con-
tent and applications for
the popular Android and
iOS mobile platforms.

FUNDAMENTALS OF ACTIONSCRIPT 3.0: DEVELOP AND DESIGN

FLASH PLAYER 10.2

Flash Player is what
brings the web to life. It
is the Internet plug-in for
your desktop or mobile
phone that allows you to
play interactive content,
video, and games. The
latest version includes
enhanced support for
hardware acceleration,
better video playback, and
memory and processor

performance optimization.

ADOBE AIR 2.6

The Adobe AIR runtime is
what allows interactive
designers and developers
to take their applica-
tions outside the browser
and bring them to the
Windows and Mac OS X
operating systems as
desktop applications, or
to the Android and iOS
platforms as installable
mobile applications.

OTHER HELPFUL TOOLS

Although not part of this book, there are other tools that are helpful for working with
the Flash Platform, including:

ADOBE FLASH
BUILDER 4.5

Flash Builder is the profes-
sional coding IDE for the
Flash Platform. It includes
advanced programming
functionality to optimize
projects, and it makes
working with larger
projects and coordinat-
ing projects with teams
easier. Flash Builder also
supports working with
Flash Professional projects
and using the Adobe Flex
framework.

ADOBE FLEX 4.5

The Flex framework is
used specifically to create
data-driven applications
for the browser, desk-
top, and mobile devices.
Incorporating skinnable
components, declarative
layout, ActionScript logic,
and support for a growing
set of platforms, it is the
fastest way to create a
robust application for
multiple screens and
devices.

ADOBE FLASH
CATALYST CS5.5

Flash Catalyst is designed
to work in a team
environment when a
designer and a developer
are building an Internet
application using the

Flex framework. Interac-
tion designers can create
skins for Flex components
and craft the overall user
interface of a Flex appli-
cation as a wireframe,
prototype, or a finished
application. Flash Catalyst
CSs.5 introduces round-
trip functionality with
Flash Builder 4.5 to allow
designers and developers
to work collaboratively.

WELCOME TO ACTIONSCRIPT 3.0

XV

This page intentionally left blank

4

ACTIONSCRIPT
AND MATH

ActionScript has tons of mathematical opera-
tors built in to the language to help you evaluate
mathematical equations. Now, I wouldn’t throw away your
handheld calculator just yet. ActionScript has a lot of power,
but it’s designed to help with your applications, not for general
use. In addition to these mathematical operators, there are some
functions that can help with common mathematical tasks like

rounding numbers.

In this section, you’ll learn all the basic arithmetic operators that
you’ll use in ActionScript. Also, there are some convenient short-

cuts to make working with math easier that you’ll cover as well.

49

50

MAT

HEMATICAL OPERATORS

In ActionScript, you can use simple math operators to perform arithmetic functions
with your numbers or variables. The math functions that are part of ActionScript
are nearly identical to basic math functions that you already know. Some of the
symbols and names are different, but the principles are the same.

ADDITION AND SUBTRACTION

Let’s get started with adding and subtracting numbers.

1.

CHAPTER 4 ACTIONSCRIPT AND MATH

Create a new ActionScript 3.0 project in Flash Professional CS5.5 and enter
the following code into the timeline:

// Math operators: addition and subtraction
trace (2 + 3);

trace (13 -2);
Run the project and look at the Output panel; you'll see the following:

5
1

This shouldn’t be surprising, since you are adding and subtracting the
numbers. You use the + and - operators to indicate that you are adding or
subtracting. One thing to note is the white-space characters used in the
example. Notice the spaces between the operators and the numbers. This is
for readability and doesn’t affect the execution of the code. You can remove
the spaces if you want, for example:

trace (2 + 3);

trace (2+3);

These two lines perform exactly the same function and will generate the
same result.

ADDITION OR CONCATENATION?

In the previous chapter, you used the + sign, but it wasn’t a mathematical opera-
tor. You can use the + operator to do two things. When working with strings, the +
operator is called the concatenation operator and takes two strings and combines
them together, in essence gluing the end of one string to the beginning of the next.
When working with numbers, the + operator is the addition mathematical operator,
adding two numeric values together and generating a new numeric result.

Look at the following example.

1. Remove the existing code and enter the following code:

// Addition vs. Concatenation
trace (2 + 2); // addition
trace ("two" + "two"); // concatenation

trace ("2" + "2"); // concatenation
2. Run this code; you'll see the following displayed in the Output panel:

4
twotwo

22

The first line of code in the example is pretty simple; you are adding the
numbers 2 and 2 using the addition operator, resulting in a value of 4.

The second line of code has two strings, denoted by quotation marks, that
are being “glued” together, creating a single string using the string concat-
enation operator. The result is “twotwo.”

The last line uses the number 2 on both sides of the operator. Notice that
the numbers are surrounded by quotation marks, which means that it is
no longer a number value, but instead the character 2. When you force the
number 2 to be a string using quotation marks, the + operator concatenates
the strings, “gluing” them together forming the string, 22.

MATHEMATICAL OPERATORS 51

52

CHAPTER 4 ACTIONSCRIPT AND MATH

What makes this confusing is that the Output panel doesn’t distinguish
between strings and numbers. So, when you see 22 in the Output panel, is
it a number or a string? There is a way to find out the type of a value and
display it: by using the typeof statement.

To see how typeof works, update the previous example as follows:

// Addition vs. Concatenation
trace (typeof(2 + 2)); // addition
trace (typeof("two" + "two")); // concatenation

trace (typeof("2" + "2")); // concatenation

Run this updated example; you'll see the following in the Output panel:
number

string

string

What is happening is that the operation (either addition or concatenation)

is taking place, and the typeof statement is determining the type of the
result and then sending that to the Output panel via the trace statement.

Now for one final twist. If you mix up the number and string types, what
happens?

Replace the existing code with the following:

trace (2 + "2");

Wow. Now you have a number on the left side, and a string on the right
side. Who wins?

Run the project.

The answer is that the string wins. The result is the string, “22”. In this case
the operator converts the number 2 to the string “2” and then “glues” it to
the right “2” creating the string “22”. It seems confusing at first, but after
you work with it a while, it will become second nature to you—promise!

MULTIPLICATION AND DIVISION
Now, look at the * and / operators for multiplication and division.
1. Replace the code in the timeline with the following:

// Math operators: Multiplication and Division
trace (2 * 3);

trace (5/2);

The first statement uses the multiplication operator, which is an asterisk, *.

The division operator is a forward slash, /, and the order of the division is
that it divides the value on the left by the value on the right.

2. Run the project; you'll see the following in the Qutput panel:
6
2.5

Again, pretty simple stuff—but the next one will probably be new to you.
MODULO, THE OPERATOR FORMERLY KNOWN
AS LONG DIVISION WITH REMAINDERS

The modulo operator finds the remainder after a division operation. The modulo
is quite helpful in many situations, including determining if a number is odd or
even. Take a look at how it works.

1. Replace the code you have with the following, and take a look at the output:

// Math operators: Modulo
trace (5% 2);

2. Run the project; you'll see the following displayed in the Output panel:

1

The % symbol invokes the modulo operator, finding the remainder after

attempting a division of the value on the left with the value on the right.

In this example, it divides 5 by 2, resulting in 2 and a remainder of 1. To see
this written out in long division format, check out Figure 4.1.

2 rl
255
-4

1

FIGURE 4.1 5 divided by 2

written in long division format,

showing the remainder, or
modulo.

MATHEMATICAL OPERATORS

53

54

WHAT ON EARTH IS MODULO USED FOR?

That is a great question, and one that has a great answer as well. One of the
most common uses is to determine if a value is a multiple of another. For
example, to find out if a value is an even multiple of 3, you can use some-
thing like this:

myValue % 3;

If the result is o, that means there are no remainders, and the number is an
even multiple of 3.

Another common use is to determine if a number is even or odd. Even num-
bers are evenly divisible by 2, so by that definition you could use this:

myValue % 2;

If the result is o, the number is evenly divisible by 2, making it even. If it isn’t,
then the number is odd.

CHAPTER 4 ACTIONSCRIPT AND MATH

VARIABLES AND COMBINED
ASSIGNMENT OPERATORS

You’'ll commonly want to complete a math function and assign the resulting value
back to some named object, called a variable. ActionScript makes this easier by
letting you combine arithmetic and assignment operators together. Take a look at
an assignment operator example:

1. Create a new ActionScript 3.0 project and enter in the following code for
the project:
// Assignment Operators
var myValue:Number = 2;
myValue = myValue + 2;
trace(myValue);
var myOtherValue:Number = 2;
myOtherValue += 2;
trace(myOtherValue);

2. Run the project. You'll get the following in the Output panel:

4
4

Let’s walk through the code and explain how you get this result and what role
variables and combined assignment operators play.

VARIABLES AND COMBINED ASSIGNMENT OPERATORS 55

56

VARIABLES

You haven’t really seen much about the var statement yet, so let’s reveal a little bit
more about it. You have used it in the past to create named object containers that
you have then assigned MovieClip symbols to using the new statement. You can
also use var to create variables; in fact, variables is what var stands for. Variables
are named objects that can contain variable values.

Take a look at the second line of the assignment operators example:

var myValue:Number = 2;

The var statement is creating a variable called myValue. See that :Number after
the variable name? You have to tell ActionScript what type of data your variable
can hold, similar to how you did when using the function statement. In this case,
you are saying that myValue will contain a number. When you create the variable,
it is empty, but when you assign the numeric value 2 to it, you can refer to that
value using the name myValue.

myValue = myValue + 2;

trace(myValue);

On the second line above, you are accessing the myValue object and are assign-
ing a new value to it. Notice that you are not using the var statement here, because
var is only used to create a new variable. You don’t need to use it again if you are
referring to a variable that has already been created. Before you assign the value,
you need to complete the evaluation on the right side of the assignment operator.
In this case, you are taking the existing value of myValue, 2, and adding the value
2 to it. This value is then assigned back to myValue, overwriting the existing value.
In the last line of the first block, you send that value to the Output panel using the
trace statement, which displays 4.

This completes the analysis of the first part of the code.

CHAPTER 4 ACTIONSCRIPT AND MATH

COMBINED ASSIGNMENT OPERATORS

Take a look at the second block of code. This section of code works identically to
the first block, with two exceptions. In this section, you are creating a new variable
called myOtherValue:

var myOtherValue:Number = 2;
myOtherValue += 2;
trace(myOtherValue);

In the first line, you need to use the var statement since you have not created
that variable before. You then assign the numeric value 2 to it.

On the next line, you come across the first combined assignment operator, +=.
This operator is combining addition with assignment. In this case it is taking the
existing value of myOtherValue and is adding 2 to it and automatically assigning it
back to the myOtherValue variable. Always put the arithmetic operator before the
assignment operator. You can use this shortcut with any of the basic arithmetic
operators:

// All combined assignment operators
var myValue:Number = 100;

myValue += 50; // 100+50 = 150
myValue -= 125 // 150-125 = 25

myValue *= 3 // 25*3 = 75
myValue /=5 // 75/5 = 15
myValue %= 4 // 15%4 = 3

trace (myValue);

Programmers often use these combined assignment operators as shortcuts
since they are nice time savers. Hopefully, you'll find they are too!

VARIABLES AND COMBINED ASSIGNMENT OPERATORS 57

58

INCREMENT AND
DECREMENT OPERATORS

When you work with ActionScript a lot, you'll commonly be adding or removing
1 from variables and properties.

To make this process easier, there is a shortcut called the increment and decre-
ment operators. Take a look at the following code.

1.

CHAPTER 4 ACTIONSCRIPT AND MATH

Create a new ActionScript 3.0 project and enter in the following code for
the project:

// Increment and Decrement

var myValue:Number = 5;

trace(myValue);

myValue++;

trace(myValue);

myValue--;

trace(myValue);

. Run this project. You'll see the following in the Output panel:

5
6

5

In the increment and decrement example, the value of myValue is initially
set at 5 and is sent to the Output panel. The number is then increased by 1
and sent again, resulting in 6.

When you add a double minus, - -, to the end, it decrements the value by 1.
The value of myValue is already 6 based on the previous function, and is
then decremented to be 5 again.

IT IS ALL A MATTER OF STYLE

When you add a double plus, ++, to the end of a variable name, you incre-
ment it by 1. As a result, the following three lines of code do the exact
same thing:

myValue = myValue + 1;

myValue += 1;

myValue++;

The following three lines of code do the same thing, similarly to the example
earlier for the increment operator:

myValue = myValue - 1;
myValue -= 1;

myValue--;

INCREMENT AND DECREMENT OPERATORS

59

ORDER OF OPERATIONS

LEFT TO RIGHT EVALUATION

FIGURE 4.2 Incorrect left-to- 2 +3*%2/4-1
right order of operations

5%2/4-1

10/ 4 -1

2-5 - 1

105

By default, mathematical functions do not run from left to right, but follow a specific
order of operations. You may recall from math classes that certain mathematical
functions are calculated before others, regardless of their left-to-right order.

1. Create a new ActionScript 3.0 project and enter in the following code for
the project:

// Order of Operations
var answer:Number = 2 + 3 ¥ 2 / 4 - 1;

trace(answer);

In this example, you have a number of math functions that are running
from left to right. If you don’t follow the order of operations and evaluate
it from left to right, you get 1.5, as shown in Figure 4.2.

2. Run the code. You'll see what might seem unexpected: 2.5. Why? Because
certain math functions are executed before others. In fact, this is the order:

1. Multiplication, Division, and Modulo

2. Addition and Subtraction

60 CHAPTER 4 ACTIONSCRIPT AND MATH

ORDER OF OPERATIONS EVALUATION

FIGURE 4.3 Correct order of
*
2 + 3 2 / 4 -1 o operations for the evaluation
2+6/4-1@
-1

3.5 -1 @)
2.5 @

All the multiplication, division,and modulo operations are processed from
left to right to the end. Then calculation starts again from the left and pro-
cesses addition and subtraction. Look at Figure 4.3 to see how this works.

When the Flash runtime looks at the ActionScript, it starts from the left, evalu-
ating the expression:

= Itignores the 2 + 3, since the rules dictate processing only multiplication,
division, and modulo at this point.

= 3x2=60@
" 6/4=150@

Since there are no more multiplication, division, or modulo operations, it
returns to the beginning and processes addition and subtraction.

= 2+15=350
" 35-1=250

You have the final result, 2.5 @, which is then sent to the Output panel.

You can alter the order of operation by using parentheses. This will force Flash
to adopt a specific path of calculating the results. You'll learn about overriding the
order of operation rules in the next section.

ORDER OF OPERATIONS

61

FIGURE 4.4 Forcing the order
with parentheses using order
of operations

USING PARENTHESES
TO FORCE ORDER

(2 +3)*2/ 4
5%2/4

2.5 -
1.

®0000Q

1
[T N N

You can force the earlier example to follow the order of operation that results in the
value of 1.5. You can use parentheses to group calculations together. In the order
of operations, math operations that are grouped within a pair of parentheses are
always calculated first.

You can adjust the example to get the 1.5 that you originally calculated by
performing the calculations from left to right:
// Order of Operations
var answer:Number = (2 + 3) * 2 / 4 - 1;
trace(answer);

Now instead of skipping the first addition action, the Flash runtime calculates
what is inside the parentheses first and then continues across, as shown in Figure 4.4.

When the Flash runtime looks at the ActionScript, it starts with the first set
of parentheses it finds:

= 2+ 3=5,whichis the only set of parentheses @

It then starts back at the beginning with multiplication, division, and modulo:
B 5x2=100

" 10/4=250©

Now that it is finished with multiplication, division, and modulo, it starts back
on the left and evaluates addition and subtraction:

= 25-1=150

62 CHAPTER4 ACTIONSCRIPT AND MATH

You end up with 1.5 @, which is then sent to the Output panel.

You can nest parentheses within each other, but just make sure that every
opening parenthesis has a matching closing parenthesis. This is one of the most
common bugs you'll find in your programs, unmatched parentheses and braces.

USING PARENTHESES TO FORCE ORDER 63

SUMMING UP MATH OPERATIONS

You have covered a lot of math in this chapter, but more importantly, you were
able to expand your knowledge of working with numbers and variables and start
doing some calculations with them. Table 4.1 will serve as a handy reference for
the operations that were covered in this chapter:

TABLE 4.1 Mathematical Operators

64

OPERATOR DEFINITION EXAMPLE

+ Addition 4 +5resultsing

- Subtraction 5—4resultsini

* Multiplication 2*3resultsin 6

/ Division 5/ 2resultsin 2.5

% Modulo 5/2resultsin1

+= Addition assignment if xis 5, x += 3 changes x to 8
-= Subtraction assignment if x is 5, x -= 2 changes x to 3
*= Multiplication assignment if x is 5, x *= 3 changes x to 15
/= Division assignment if x is 5,x /= 2 changes x to 2.5
%= Modulo assignment if xis 5,x %= 2 changes x to 1
++ Increment if x is 5, x++ changes x to 6
-- Decrement if x is 5, x-- changes x to 4

CHAPTER 4 ACTIONSCRIPT AND MATH

WRAPPING UP

In this chapter, you learned the basics of working with variables and how to change
numeric values using arithmetic operators in ActionScript. You also learned some
of the common shortcuts advanced programmers use to save time when working
with math operators, including working with combined assignment operators and
the increment and decrement operators.

When working with operators in ActionScript, keep the following in mind to
avoid common pitfalls and errors:

= When creating a variable and referring to it the first time, you need to
use the var statement to create it. You can then refer to it without the var
statement afterwards.

= When using the + operator, be sure to not inadvertently mix up strings and
numbers, as strings will concatenate and ignore the numeric values.

= The modulo operator calculates the remainder after attempting to complete
an even division.

= If you are working with a combination of multiplicative (multiplication,
division, or modulo) functions and summation (addition or subtraction)
functions, remember that ActionScript will evaluate your equation using
mathematical order of operations.

= To quickly modify an existing value based on a function, you can use com-
bined assignment operators to save time.

= Ifyouare adding or subtracting 1to or from a value, you can use increment
or decrement operators, using ++ or - - as a quick shortcut.

= To force the order of operations to do something specific, you can use
parentheses to group evaluations you want to process first.

WRAPPING UP 65

INDEX

SYMBOLS

— operator, 50

|= statement, 195

| | operator, 218

++ operator, 59

+ operator, 44—45, 50-52
= operator, 14-15

== statement, 194

! prefix, 218

&3 operator, 217-218
* operator, 53

% modulo operator

NUMBERS

1049 error, 417
1084 error, 46

A

accepting values in functions, 39-43
access
Keychain, 434435, 510-511
to methods from outside classes, 153
to objects. See access to objects
passwords granting. See passwords
private statement restricting, 161-162
to values of properties, 164
access to objects
introduction to, 3
sending messages to output panel, 8—11
on Stage, 5~7
summary of, 19
Actions panel
accepting values in functions, 39—42
code completion assistance in, 153
creating new objects in, 25-26
disabled, 135
display stacks in, 29-30
dynamically adding objects to Stage, 26
graphics without timelines vs., 302
in mouse event handler creation, 71
parameters of objects in, 15-16
in timeline scripting with mouse
events, 86
writing ActionScript using,
introduction to, 9—11
ActionScript overview. See also specific
topics
accessing and manipulating objects, 3
Actions panel, 9-10
ActionScript 3.0, defined, xvi
of advanced Boolean logic, 215

INDEX

of animation, 333
of building out classes, 141
of classes, generally, 131
of classes in streamlined interfaces, 157
of conditionals, 191
converting objects to MovieClips for,
5-7
of desktop applications, 393
of drawing, 301
dynamically adding objects from
Library, 21
of event creation, 67
of external media, 369
of frame events, 99
of functions, 35
of groups of objects, 257
instance names in, 7
interactivity for items on Stage, 3
introduction to, xiii
of keyboards, working with, 227
of mathematical operators, 49
methodology for learning, xiv
of mobile applications, 427
MovieClip properties, 14-19
new project for, 4-10
of organizing classes, 175
Output panel, 10
prerequisites for using, xiii-xvi
of random numbers, 215
of repeating actions, 257
setup, 119-121
summary of, xv
of text, working with, 227
of timeline scripting with mouse
events, 79
of timer events, 99
versions of, 4
addChild statement, 29—30
addEventlistener, 71, 75
addition operator, 50-52
Adobe AIR 2.6, defined. See also Adobe
AIR for desktop applications;
Adobe AIR for mobile applications,
xvi
Adobe AIR 2.7, defined, 438
Adobe AIR for desktop applications
certificates in, 420—422
close method in, 404—406
configuring projects in, generally, 419
drag APl in, 401-403
events in, generally, 397
icons in, 419—420
installing applications in, 422—424

introduction to, 393—-394
maximize control in, 398—401
minimize control in, 397-398
publishing projects in, 422
resizable layouts in, 411-418
resizing windows in, 406—410
as runtime. See AIR runtime
starting projects in, 394-396
summary of, 425
Adobe AIR for mobile applications
Android applications, creating first,
431-434
debugging, on Android, 458—459
debugging, on iOS, 460-462
debugging, over USB generally, 458
dragging with touch in, 442-444
gesture events, generally, 450
interactions for devices, generally, 439
introduction to, 427
i0S applications, creating first, 434—438
long press events in, 445-449
optimizing content, 463—464
pinch to zoom gestures, 450—455
projects, creating new, 431-438
projects, setup for, 428—430
rotate gestures in, 455—457
as runtime. See AIR runtime
summary of, 465
tap interactions in, 439—442
testing devices in, 429-430
touch interactions in, 439—442
Adobe Fireworks, 419—420, 471
Adobe Flash Builder 4.5, xvii
Adobe Flash Catalyst CS5.5, xvii
Adobe Flash Platform
Adobe Flash Builder 4.5 for working
with, xvii
Adobe Flash Catalyst CS5.5, xvii
Adobe Flex 4.5 for working with, xvii
AIR for mobile applications on, 427
defined, xvi
resources for publishing AIR
applications on, 423
runtime of. See Flash runtime
tools of, xvi
Adobe Flash Player
defined, xvi
object parameters in, 16
Times New Roman font in, 231
trace statements not appearing in, 10
visible property in, 18
Adobe Flex 4.5, xvii
advanced Boolean logic. See Boolean logic,
advanced

AIR runtime. See also Adobe AIR for
desktop applications; Adobe AIR for
mobile applications

of AIR 2.7, 438
creating desktop applications with,
generally, 393, 425
creating mobile applications with,
generally, 427, 465
downloading, 394, 423
introduction to, xvi
i0S vs. Android in, 428
align property, 406
alpha property
of fills, 320
of gradients, 321, 323
in starfield project, 352—354, 365
of strokes, 308

analog clock appearance, 114-115

AND operator, 217—218

Android 2.2, 427, 429

Android 3.x (Honeycomb), 427

Android devices, 430, 504-505

Android Package files (.APK), 428

Android platform

applications for, generally, 428

creating first application for, 431-434

debugging on, 458-459

Flipr game on. See Flipr game project

introduction to, 427

testing applications for, 504-505

touch interactions in, generally, 439

website publishing Air for, 503

animation

adding more visual elements to,
358-361

brightness adjustments for, 352—355

fluidity of, 355-358

intervals for, 355-358

introduction to, 333

location on screen and rate of change
in, 348-351

location + time as, generally, 334-335

of multiple objects with loops, 343—-348

random, 338—342

rate of change of, 348351, 355—358

scaling size of visual elements in,
361-365

summary of, 366

timer-based, 110111, 336—338

APIs (application programming interfaces)

drag, 401-403

for dragging windows in AIR, 401403

FLVPlayback, 376—382

for graphics. See graphics API
(application programming
interface)
for mobile applications in AIR, 439
.APK files (for Android Packages), 428
Apple Devices Application files (.IPA), 428
Apple Mac OS X
AIR applications for, 424
Applications folder in, 420
desktop applications for, 394
Snow Leopard, 504
Apple mobile devices
introduction to, 427—429
resolution for, 434
testing applications on, 506
application programming interfaces (APIs).
See APIs (application programming
interfaces)
arithmetic functions. See mathematical
operators
arrays
animation in, 342—345
creating groups of items with, generally,
265266
creating with loops, 269—273
defined, 257
for game board creation, 489
introduction to, 257
looping through, 274-276
loops for, 258
modifying, 266—269
removing items from, 268—269
summary of, 277
values of Flipr tiles in, 489
arrow keys, 251-253
artwork in projects. See drawing
.as file extension, 144, 154
assignment operator
assigning new objects to named objects
with, 33
defined, 14
on Output panel, 55
audio, 373-375
authortime, 21
auto-generated imports, 121

B

Basic Latin character range, 235
beginFill method, 318-320
beginGradientFill method, 321
bitmaps, 463, 475

Bondini font, 472

Boolean conditional tests, 258

Boolean logic, advanced. See also Boolean
variables
complex conditionals, building, 219220
introduction to, 215
logic operators, using, 216—218
NOT operator, 218
AND operator, 217218
OR operator, 218
random numbers, generating, 221-224
summary of, 225
Boolean variables. See also Boolean logic,
advanced
adding feedback, 200201
defined, 18
drag and drop for mouse, 198—200
equality, demonstrating, 196—-198
equality, testing for, 194
inequality, demonstrating, 196—-198
inequality, testing for, 195-196
introduction to, 192-193
break statement, 261—262
brightness adjustments, 352—355
Brimelow, Lee, 508
broadcast-listener relationships. See also
event listeners, 68
building out classes. See classes
buttons
for AIR desktop applications, 395-396
close windows, 404—406
drag windows, 401-403
endGameButton, 472, 474, 484
event callback objects for, 87-88
for Flipr, 472, 480—481
forwardButton, 83, 90
goBackButton, 472, 481
graphics API and, 374, 380, 396
hoverButton, 87—94
instructionsButton, 472, 481
internal timeline for special effects of,
85—-86
labels for, 382—384
layer of Stage, 97
layout of, 411—418
maximize, 398—401
minimize, 397398
object type, 22
padding around, 413
playButton, 85-86, 87-93
resize windows, 406—410
start, 123
startGameButton, 472, 474
stopButton, 81-82,90-93
toggle, 382384
video playback, 382—-384
x and y coordinates of, 412—413

INDEX

513

514

C

Cache as Bitmap object setting, 475
cacheAsBitmap property, 463
callback functions
_endSplash, 480
arrays and, 272-273, 276
circleClick,71-73
e event callback objects, 89—-95
endTouch, 449
hoverButton, 87-94
introduction to, 69
keyboardEvent handler and, 246-249
in minimize window controls, 398
playVideo, 381-382
seeking to specific frames with, 83—84
simple, 96
for starting timers, 124-125
stopping playback with, 83-84
for timer events, 125-126
TimerEvent.TIMER for, 336—338
for touch interactions in mobile
applications, 444
callouts, 3738, 41
camel case, 7
capitalization, 10
Captivate, 429
ceil method, 224
cell-based animation, 334
cell phones, 429—-430
centering objects, 451-452
Certificate field, 434435
Certificate Signature Settings window, 420
Certificate Signing Requests, 509
certificates
code-signing, 422—423
Development, 510-511
self-signed, 420423, 432
character codes, 250—251
characters in fonts, 234-235
Charge Only mode, 505
chrome
for desktop events, generally, 397
dragging windows with, 401
introduction to, 395-396
native vs. custom, 425
circleClick callback function, 71-73
circles, 318
circular geometry, 325
class-based scripts, defined, 8
class constructors. See also classes
button label customizing with, 146-147
class instance creation using, 144-145

INDEX

introduction to, 143

multiple properties, customizing with,
148-149

parameters of, adding, 146—149

parameters of, generally, 146

parameters of, making optional,
150-151

classes

building out, generally, 141, 154

constructor parameters in,
generally, 146

constructors of, generally, 143

containers for, 133

creating, 134-137

customizing button labels with,
146147

customizing multiple properties with,
146147

definition warning, 24

Document. See Document class

extending functionality of, 305-307

finding definitions for, 137

flash.text.TextField, 229

flash.text.TextFormat, 231

f1.video class package, 378

GameBoard, 482—488

getter methods in, creating, 165-166

getter methods in, generally, 164

getter methods in, using, 166-168

instances of, creating, 144-145

introduction to, 131

Math, 221-224

methods in, accessing from outside
classes, 153

methods in, creating generally, 152

optional constructor parameters in,
150-151

organizing, generally, 175, 187

overview of, 132

package folders of, creating, 176—-180

packages for, changing source paths of,
183-186

packages for, creating nested, 182-183

packages for, referring to all classes in,
180-182

parts of, 142

politeness of, 164

private, best practices for naming, 163

private, generally, 161-162

ProLoader class, 370371, 389

properties of, customizing multiple,
148-149

public, best practices, 164
public, generally, 158-160
setter methods in, creating, 165-166
setter methods in, generally, 164
setter methods in, using, 166—168
Sound class, 374—375, 389
Sprite, 302307
in streamlining interfaces, generally,
157,173
summary of, 138
TextFormat, 231—232
TouchGestures Document class, 450
variables in, generally, 133
VideoButton class, 382—384
clickedTile property, 500
_clickTile method, 499
close method, 404—406
close window control, 411—-413
code-signing certificates, 422—423
color
of Flipr tiles, 468-469, 500
hexadecimal numbers for, 231-232
of lines, 308
combined assignment operators, 55, 57
commenting out, 29
commercial code-signing certificates,
422—423
Compiler Errors panel, 43
complex conditionals, 219—-220
complex logic patterns. See Boolean logic,
advanced
complex vectors, 463
Components panel, 376
concatenation, 44—45, 51-52
conditionals
adding feedback with, 200-201
for animation, 345—348
Boolean variables as, generally, 192-193
drag and drop with, 198-200
equality, demonstrating, 196—-198
equality, testing for, 194
if statements, 204—206
if.else if statements, 209—212
if.else statements, 206—208
inequality, demonstrating, 196—198
inequality, testing for, 195-196
introduction to, 191
summary of, 213
testing conditions with, generally,
202-204
conditions, testing. See testing conditions

confirmation messages
AIR application publication, 422
in array creation, 273
trace statement generating, 170
const statement, 413—417
constant values, 413—417
constructor parameters. See also class
constructors
customizing button labels with,
146-147
customizing multiple properties with,
148-149
making optional, 150-151
constructors. See class constructors
containers
for classes, 133, 138
for objects, 470
variables as, 13
continue statement, 261-262
controls
close window, 404—406, 411-413
drag window, 401-403, 411, 413
Flipr main, 480—482
Flipr player, 494-500
location of buttons for window, 411—413
maximize window, 398—401, 411-412
minimize window, 397-398, 411, 418
native window, 395-397, 401, 409
resizable layout of window, 415—417
resize window, 406—410
values in window, 413—-417
y coordinate of window, 412—-413
Convert to Symbol dialog box, 5, 23
countdown clock project
ActionScript setup in, 119—121
auto-generated imports in, 121
display objects in, 122123
event listeners for start buttons in, 123
Flash Professional, setup in, 117-118
kick-off meeting notes for, 116
solution and walkthrough of, 117-126
specifications for, 114
summary of, 127
timers, callback functions for events
in, 125-126
timers, callback functions for starting,
124-125
timers, timer event listeners for, 124
visual design review of, 115
createGradientBox method, 324
curly brace locations, 38, 46
currentCount property, 470
curves, 312-315
curveTo method, 312317

D

data types, 40
debugging
on Android, 458—459
on i0S, 460—462
over USB, generally, 458
decimals, 221—225
decrement operators, 58
defaultTextFormat property, 233
defining variables, 159
degrees, 325
Dell mobile devices
applications for, generally, 428
testing applications with, 429, 505
Deployment Settings, for iOS, 434435
desktop applications
AIR for, introduction to, 393—-394
certificates for, 420—422
close method in, 404—406
configuring projects for, generally, 419
desktop events in, generally, 397
drag APl in, 401-403
icons in, 419—420
installing, 422424
maximize control in, 398—401
minimize control in, 397-398
publishing projects in, 422
resizable layouts in, 411418
resizing windows in, 406-410
starting projects in, 394-396
summary of, 425
desktop events. See also desktop
applications
close, 404—406
drag, 401-403
introduction to, 397
maximize, 398—401
minimize, 397-398
resizing windows in, 406—410
Developer Member Center of iOS, 507
Developer Program for iOS, 506
Development Certificates, 510-511
DiceOut game project
Document class overview, 284—288
Document class walkthrough, code for
rolling dice, 292—295

Document class walkthrough, contents

before constructor, 288—290
Document class walkthrough, ending
game, 296
Document class walkthrough, event
listeners, 200—292

Document class walkthrough,
scores, 296
introduction to, 279
kick-off meeting notes on, 283
solution and walkthrough,
generally, 284
specifications for, 280
summary of, 297
visual design review of, 281-282
display objects, 122-123
Display section of Properties panel, 463
display stacks
defined, 25
instances in, assigning properties to, 30
objects in, creating new, 25—-28
objects in, dynamically adding to Stage,
29-30
_displayInstructions method, 481
displayState property, 401
displayTile method, 498
division operator, 53—54
do loop, 264
Document class
for AIR desktop applications,
starting, 396
for animation. See animation
arrays in, 265
Booleans, 192-193, 197-209
creating, 169—171
in DiceOut game project, overview,
284—288
in DiceOut game project, walkthrough,
288296
in Flipr game project, 475—478
for loop for, 259
in game board creation, 488-489
initialization methods in, 171-172
for i0OS applications, 440—449
for minimize control, 397
nested packages for, 182-183
newGame method in, 494—496
packages for, creating, 176—180
packages for, referring to all classes in,
180-182
for pausing video, 382—383
PlayAudio project and, 373-375
for playing video from Web, 377-378
ProLoader class and, 370—-372
RandomNumber, 221224
for seeking in videos, 385—-387
source path for, 183-186
sprites. See sprites
TextFields, creating, 228—230

INDEX

515

Document class (continued)
TextFields, creating KeyboardEvent
handler in, 246
TextFields, customizing style with,
231237
TextFields, layout with, 238—245
TouchGestures, 450-456
for video playback alteration, 380—381
dot notation, 15
drag and drop
for desktop applications, 401-403
drag window control for, 411, 413
for mobile applications, 442—444, 447
testing for, 218
testing location of objects, 196—-198
touch interactions for, 442—444
using mouse, 198—200
drawCircle method, 318
drawEllipse method, 318
drawing
circles, 318
code for, generally, 302
curves, 312-315
degrees in, 325
ellipses, 318
fills, 318-320
gradients, 321-326
introduction to, 301
lines, drawing, 307-312
loops and, 326—329
rectangles, 317
rounded rectangles, 317-318
shapes, first, 303-304
shapes, generally, 315-317
Sprite class, extending, 305—-307
Sprite class, generally, 302-303
strokes for, 307-312
summary of, 330
drawRect method, 317
drawRoundRect method, 317
Droid, 429
drop and drag. See drag and drop
dropDrag method, 200
dynamic text labels, 146
dynamically adding objects to Stage
comments, creating, 31-32
display stacks, assigning properties to
instances, 30
display stacks, creating new objects
for, 2528
display stacks, defined, 25
display stacks, working with, 29—-30
introduction to, 21

INDEX

named library assets in, 22—-25
spaces for, 32
summary of, 31
dynamically created instances, 30
dynamically created instances, assigning
properties to, 30
dynamically loading images, 370

E

e event object, 73, 89-95
editing-in-place, 85
ellipses, 318

embedded fonts, 234-237
embedded video, 376
emulators, 430

endFill method, 320
endGameButton, 472, 474

_endSplash callback method, 480

endTouch callback function, 449
ENTER_FRAME event, 104—107
equality, 194, 196—198
errors
1049 error, 417
1084 error, 46
class definition warning, 24
required parameter, 42—43
type mismatch, 43
e.target, 92-94
event callback objects
finished example of, 92—94
introduction to, 87—-88
using, 89—92
event handlers. See also interfaces
for desktop application buttons, 410
dynamic, 85, 94—95
function definitions as, 96
for keyboard events, 246—253
for mouse events, 69, 70-73
for seeking to specific frames, 84
for sprites, 302
event listeners
addEventListener, 71,75
in countdown clock project, 123
for dragging windows, 403
for Flipr main controls, 480—481
for Flipr score and timer displays, 493
introduction to, 69
in keyboardEvent handlers, 246-249
in MouseEvent handlers, 69—73
parentheses in, 71
removing, 106—-107
for resizable layout of window controls,
415-417

for resizing windows, 408-410, 425
seeking to specific frames with, 83—84
simple callback functions in, 96
for splash screen timers, 479—480
for start buttons, 123
stopping playback using, 82—84
in timers, 124
for touch interactions in mobile
applications, 444
event objects
e,73,89-95
in mobile applications, 470
event target data example, 94-95
event types, 73, 75
Event.RESIZE event, 410
events
adding, 75
close, 404-406
desktop. See desktop events
drag, 401-403
frame. See frame events
gesture, 450-457
handlers for. See event handlers
introduction to, 68—69
listeners for. See event listeners
maximize, 398—401
minimize, 397-398
mouse. See mouse events
objects for. See event objects
resizing window, 406—410
summary of, 76
timer. See timer events
Export as Bitmap object setting, 475
external media
audio from Web, playing, 373-375
images, 370-372
introduction to working with, 369
summary of, 389
video from Web, playing, 376378
video playback, altering, 379—382
video playback, pausing, 382—-384
video playback, rewinding and seeking,
384-388

F

false value
for loop testing for, 258
introduction to, 17
NOT operator testing for, 218
AND operator testing for, 217-218
feedback, 200201
fills, 318—320

Fireworks, 419—420, 471
FLA project files. See also Flash
Professional CS5.5
classes in packages, referring to,
180-182
Document class in, creating, 169-171
Document class linking to, 302
equality and inequality in, 196-198
fonts in, 234
getName method for, 160
nested packages for, 182—-183
package folders for, 176—-180
publishing AIR applications and, 422
resizing windows in, 418
self-signed certificates in, 420—421
source path for, 183-186
Flash Platform. See Adobe Flash Platform
Flash Platform from Start to Finish, 423
Flash Player 10.2, defined. See also Adobe
Flash Player, xvi
Flash Professional CS5.5. See also Adobe
Flash Platform
Actions panel in, generally, 9—-11
AIR projects in, creating, 394-396
AIR projects in, using, 424-425, 438
Android applications in, debugging,
458-459
Android applications in, generally,
431-434
Android applications in, testing, 504
Boolean variables in. See Boolean
variables
Components panel in, 376
Convert to Symbol dialog box in, 5
countdown clock project in, 117-118
creating classes in, generally, 158—-160
creating Document classes in,
169-171, 173
defined, xvi
drawing with ActionScript and, 302
FLA files for. See FLA project files
Format Embedding dialog box, 234
frame rate property in, 108110
i0S applications in, creating generally,
434,437
i0S applications in, debugging, 460
looping with drawing API in, 326—328
mobile device applications in. See
mobile applications
nested packages in, 182183
New Project dialog box in, 4
preview mode in, 470
project review in, 471-475
random number generator in, 221224

runtime of. See Flash runtime
text fields in, 228
timeline scripting in, generally, 80
video delivery in, 376
Flash runtime. See also Flash
Professional CS5.5
animation in, 333
API for artwork in, 302
default location of objects in, 16
display stack contents in, 28
displaying object locations, 16
evaluating order of operations, 61-62
introduction to, xiii, xvi
pixel hinting in, 318
text fields in, 228
triggering frame events, 99, 104
flash.display.Sprite class, 303
flash.text.TextField class, 229
flash.text.TextFormat class, 231
flattened files, 506—511
Flipr game project
Document class review in, 475-478
Flash Professional project review in,
471-475
game board, creating, 491492
game logic, creating, 482—490
game rules, setting up, 494—-500
introduction to, 467
kick-off meeting notes for, 470
main controls, displaying, 480—482
player controls, setting up, 494-500
score displays, setting up, 493-494
solution and walkthrough of,
generally, 471
specifications for, 468
splash screen, displaying, 479
summary of, 501
timer displays, setting up, 493—-494
visual design review of, 469
floor method, 222223
f1.video class package, 378
FLVPlayback
adding to projects, 376—378
altering video playback with, 379—-382
rewinding video with, 384—397
seeking video with, 384-387
summary of, 388—389
folders. See also packages, 176—180, 420
Font Embedding dialog box, 235
fonts
Bondini, 472
changing later, 233—234
creating custom, 234—237
formatting, 231232

for loop
drawing API and, 326—328
for Flipr game board, 491
introduction to, 257260
for puzzle solutions, 497
Format Embedding dialog box, 234
formatting text, 231-232
forwardButton instance, 83, 90
FPS (frame rate property), 108-110
frame events
ENTER_FRAME, 104-107
introduction to, 99
removing event listeners, 106—107
summary of, 111
timer events vs., 108-110
frame labels, 90
frame rate property (FPS), 108-110
frame scripts, defined, 8
frames, seeking to specific, 83—-84
Froyo, 427, 505
fully qualified package names, 178
function statement, 37
functions
accepting values in, 39—43
errors when running, 42—43
fundamentals of, 36—38
introduction to, 35
for methods, 152
returning values from, 44-46
summary of, 47

G

game boards. See also Flipr game project,
491-492
game logic, 482-490
“Game Over” screen
absence of, 469
appearance of, 474
specifications for, 468
timer triggering, 494
game rules, 494—500
gameBoard, 472
GameBoard class, 482—-488
gamelLevelText text field, 472
_gameOver method, 494
gameTimer, 472, 493-494
generic objects, 159
geometry, 325, 338
gesture events. See also touch interactions
introduction to working with, 450
pinch to zoom, 450-455
rotate, 455—457

INDEX

517

518

GESTURE mode, 441, 450, 454
GESTURE_ROTATION event type, 455456
getter methods
creating, 165-166
politeness of, 164
using, 166—168
GIF files, 370
Gingerbread, 504-505
glyphs, 234-235
goBackButton, 472, 481
Google, 428
gotoAndPlay() function, 84, 90
gotoAndStop() function, 84, 90-92
gotoAndStop method call, 303
gradients, 321-326
Graphic object type, 22
graphics API (application programming
interface)
drawing curves with, 312-315
drawing desktop application buttons
with, 396
drawing lines with, 307-312
drawing play audio buttons with, 374
drawing play video buttons with, 380
drawing shapes with, 315-318
introduction to, 301-302
looping with, 326-329
shape creation using, 303-304
graphics property
extending class functionality in,
305-307
introduction to, 303
lineStyle method of, 307-308
with statement for, 311—312
groups of items. See arrays
groups of objects. See arrays

H

handling scope, 87

handsets, 428

hexadecimal numbers, 231232, 308
Honeycomb, 427

hoverButton callback function, 87—94
HTC mobile devices, 428

icons, 419—420

idNo of clicked items, 499

if statements, 204—206

if.else if statements, 209-212

if.else statements, 206—208

Illegal assignment to variable
specified as constant error, 417

INDEX

images, 370-372
import flash.events.MouseEvent;, 83
import statement
for packages, 180-182
for sprites, 303
for text fields, 229
increment operators, 58-59
index element selector, 266—267
index numbers, 266—268, 491-492
inequality
demonstrating, 196198
equality vs. See equality
testing for, 195-196
infinite loops, 259
infinitely running timers, 102, 111
init(), 171-172
_init, 230
initialization method
creating, 171-172
for Flipr user interfaces, 490
loops running in, 272
for splash screens, 479
for text fields, 230
instance names
in arrays, 273
assigning unique, 12, 22
on Buttons layer of Stage, 97
camel case for, 7
in classes, accessing, 154
in classes, creating, 134
in constructor parameters, adding, 146
for creating objects, 2728
dot notation and, 15
in Flipr user interfaces, 472
of game buttons, 472
introduction to, 3-7, 19
mouse event handlers and, 70
name attribute for, 95
in objects on Stage, creating new, 28
parent property after, 470
prefixing playback commands with, 97
in timeline scripts with mouse events,
80,95
instances
creating, 144-145
defined, 6
naming. See instance names
of objects, creating, 27
var statement for, 133
Instructions screen for Flipr
contents of, 472—473
in Document class, 477
introduction to, 469
instructionsButton, 472, 481

interactions for mobile devices. See also
interfaces
creating, generally, 439
dragging with touch, 442-444
gesture events for, generally, 450
long press events, 445-449
pinch to zoom gestures, 450—455
rotate gestures, 455—457
tap, 439-442
touch, 439-442
interfaces. See also events
application programming. See APIs
(application programming
interfaces)
defined, 67
Flipr user, 471—472
for mobile devices. See interactions for
mobile devices
streamlining. See classes
INTERNET option, 439
intervals
in animation, 355-358
currentCount property for, 470
in timers, 100-102, 111
iOS platform
configuring devices for, 430
creating first application for, 434438
debugging applications for, 460—-462
testing applications for, 506—511
touch interactions on, 439
website packaging applications for, 503
IP addresses, 461
IPA files (for Apple Devices Applications),
428, 435
iPad
introduction to, 427
on iOS platform, 428
resolution for, 434
as testing device, 429
iPhone
introduction to, 427
on iOS platform, 428
resolution for, 434
iPod touch
on iOS platform, 428
resolution for, 434
as testing device, 429
_isCorrect, 192-194
iterators
in controlling flow of loops, 261
in for loop, 258-260
in nested loops, 263
iTunes, 436, 505

J

JPEG files, 370-372, 469

K

keeping classes polite, 164
key codes
character codes vs., 250—251
constants containing, 253
defined, 249
in keyboard shortcuts, 251-253
KeyboardEvent handler
introduction to, 246—249
key vs. character codes in, 250-251
special key recognition in, 251-253
keyboards, 227
Keychain Access, 434—435, 510-511
keyframes, 8, 85-86
kick-off meeting notes
countdown clock project, 116
on DiceOut game project, 283
Flipr game project, 470
kuler, 308

L

layers in timeline, 8
layouts
of buttons, 411418
in desktop applications, 411418
manually sketching, 240
of text. See layouts for text
of window controls in AIR, 411-418
layouts for text
escape sequences in, 241-245
introduction to, 238—240
Text Layout Framework, 228
left to right evaluation, 60
length property, 274
Library
Flipr user interfaces in, 472
FLVPlayback, adding, 376—378, 389
importing images into, 370
objects in. See Library objects
Library objects
adding dynamically, 21
classes of, 132, 135, 137
in countdown clock project, 117, 122
display stacks for, 2728
displaying, 122
dynamic event handlers for, 94
ENTER_FRAME event and, 104
equality and inequality of, 197

Font, 234235
introduction to, 5-6
loops creating arrays for, 269
on MovieClip timelines, 85
named assets, creating, 22—25
in Project setup of Flash
Professional, 117
tween-based animation of, 80
values in functions of, accepting, 39—40
lines, drawing, 307-312
lineStyle method
for curves, 313314
for extending Sprite class, 305
for gradients, 321-322
for lines, 307-311
for looping, 326328
for rectangles, 317319
for shapes, 304, 315-316
with statement and, 312
for strokes, 307-311
lineTo method, 310-311, 315-317
Linkage class names, 137-138
listeners. See event listeners
_loadImage method, 371372
location
of curly braces, 38, 46
of objects, testing, 46, 196-198
rate of change and, 348-351
time and, 334-335
of window control buttons, 411413, 418
x coordinates for. See x coordinates
y coordinates for. Seey coordinates
logic operators, 216—218
logos, 472
long division with remainders, 53—-54
long press events, 445—449
loops
animation of multiple objects with,
343-348
arrays and, generally, 265-266
break statement controlling, 261-262
continue statement controlling,
261-262
creating arrays with, 269-273
do loop, 264
in drawing with ActionScript, 326—329
for. See for loop
introduction to, 257258
modifying arrays and, 266—269
nesting, 262—263
for objects already in arrays, 274—276
summary of, 277

M

Mac OSX
AIR applications for, 424
Applications folder in, 420
desktop applications for, 394
Snow Leopard, 504
testing mobile applications for, 506
main controls in Flipr, 480-482
manipulating objects. See also objects
introduction to, 3
parameters for, 8—18
summary of, 19
manually sketching layouts. See also
layouts, 240, 411-413
mastheads, 472
Math class, 221-224
mathematical operators
addition, 50-52
combined assignment, 55, 57
concatenation, 51-52
decrement, 58
division, 53-54
increment, 58—59
introduction to, 49-50
left to right evaluation by, 60
long division with remainders, 53—-54
modulo, 53
multiplication, 53
order of operations by, evaluating, 61
order of operations by, forcing, 62—-63
order of operations by, generally, 60
parentheses forcing order of, 62—-63
subtraction, 50
summary of, 64—65
variables and, 55—57
Math.random method
in animation, 340—341
in drawing with ActionScript, 328
generating random numbers with,
221-225
matrix parameter, 324
maximize window control, 398—401,
411412
Menu commands, 11
menu for Flipr, 469
messages
broadcasting mouse events, 68—69
buttons displaying, 70
“Click!” 75
confirmation, in array creation, 273
confirmation, of AIR application
publication, 422

INDEX

519

messages (continued)

confirmation, trace statement
generating, 170

debugging, on Android, 458-459

debugging, on iOS, 460

error, in named library asset creation, 24

functions generating, 44—46

greeting, functions generating, 44—45

MOUSE_OVER, 68-69

object instances broadcasting, 68

sending to Output panel, 8—11

testing application, 504

for timeline playback, 82, 95

methods

_clickTile, 499

_displayInstructions, 481

_endSplash callback, 480

_gameOver, 494

_loadImage, 371-372

_positionControls, 410, 417

_quit, 481

_scoreGame, 498

_setupControls, 480—481

accessing from outside classes, 153

beginFill, 318-320

beginGradientFill, 321

ceil, 224

close, 404—406

createGradientBox, 324

creating, 152

curveTo, 312—317

displayTile, 498

drawCircle, 318

drawEllipse, 318

drawRect, 317

drawRoundRect, 317

dropDrag, 200

endFill, 320

floor, 222-223

getter, 164-168

gotoAndStop method call, 303

of graphics property, 307—308

initialization. See initialization method

introduction to, 131

lineStyle. SeelineStyle method

lineTo, 310-311, 315-317

Math.random, 221—225, 328, 340—341

moveTo, 310—311

new_configurelWindow, 409—410

newGame, 494—496

play method of FLVP1ayback,
381-382, 389

INDEX

private _setupGame, 496
public newGame, 496
public statement for, 152
push(), 267268, 272
resetTimer, 494
round, 224
seekPercent, 384—385
setlabel, 382—384
setter, 164—168
setTextFormat, 233—234
setTimer, 494
splice(),268-269
startDrag, 198, 200, 213
startMove, 403
startTouchDrag, 444, 447
stopDrag, 198, 213
stopTouchDrag, 444
for TOUCH_POINT, 479
minimize window control
for desktop applications, 397-398
location of, 418
in resizable layouts, 411
mobile applications
on Android, creating first, 431-434
configuring environment for.
See mobile environment
configuration
debugging, on Android, 458-459
debugging, on iOS, 460-462
debugging, over USB generally, 458
dragging with touch, 442-444
gesture events for, generally, 450
interactions for, generally, 439
introduction to, 427
on iOS, creating first, 434—438
long press events in, 445-449
optimizing, 463—464
pinch to zoom gestures in, 450—455
rotate gestures for, 455—457
summary of, 465
tap interactions in, 439—442
test project for, 431-438
testing devices for, 429—430
touch interactions for, 439—442
mobile environment configuration. See
also mobile applications
Android devices, setting up for testing,
504-505
introduction to, 503
iOS devices, setting up for testing,
506-511

modulo operator
%, 53—54
defined, 53
for Flipr game board, 491-492
motion. See animation
Motorola mobile devices, 428—429
mouse event handlers, 70-73
mouse events
adding to existing timeline scripts,
generally, 80
callback objects, 87-94
common, 75
controlling timeline playback with, 81
drag and drop, 198-200
event target data example and, 94-95
gotoAndStop(), 92
for handling scope, 87
hovering, 74-75
in mobile applications, 442
MOUSE_OVER, 75
for MovieClips, generally, 85-86
for playback, stopping at specific
frames, 83—84
for playback, stopping generally, 81-83
simple callback functions and, 96
timeline scripting with, generally, 79, 97
touch events vs., 470
MouseEvent.CLICK, 481
MouseEvent.CLICK event, 398
MouseEvent.CLICK event type, 381, 384
MOUSE_OVER events, 68—69
moveTo method, 310—311
MovieClips
accepting values in functions in, 39—42
Boolean variables in. See Boolean
variables
class constructors for, 143-151
class statement for, 143
classes in, creating generally, 134-137
complex conditionals for, 219
converting visual objects to, 5-7
in countdown clock project, 118
customizing button labels for, 146-147
customizing multiple properties in, 148
Document class in, creating, 169—171
drag and drop for, 213
ENTER_FRAME and, 104-107
Flipr user interfaces in, 471
for loop for, 259
flow of loops in, 261
frame scripts for, 8-11
game board creation in, 489

gameTimer, 472, 493—494
graphics property in, 303-304
graphics vs., 22
import statement for, 142
looping through arrays for, 274
loops creating arrays for, 269—271
in mobile applications, 470
mouse event handlers for, 69—73
naming instances in, 7
object parameters in, 12—18
packages for. See packages
perComplete, 472—474
properties of, 17
random number generator for, 221-224
sprites for, 302—303
symbol properties for, 134137
Tile, 498
in timeline scripting with mouse
events, 85-86
TimerExpired, 118
TimerStart, 118
without timelines, 302—303
MP3 files, 373374
multi-screen projects on desktops. See
Adobe AIR for desktop applications
multi-screen projects on mobile
devices. See Adobe AIR for mobile
applications
multiplication operator, 53
Multitouch.inputMode property, 441,
450—456

N

named Library assets. See also Library
objects, 22—25
names
fully qualified package, 178
instance. See instance names
Linkage class, 137-138
native installers, 394
native window controls
in AIR, generally, 395-398
drag, 401-403
resize, 409—410
nativeWindow object, 403
nativeWindow property of Stage, 397398
NativeWindowDisplayState, 401, 407409
nesting
condition statements, 216—217
loops, 262—263
packages, 182-183
New Project dialog box, 4

new statement, 28—30, 33
new_configureWindow method, 409—410
newGame method, 494—496
nextFrame(), 92—93
Nexus One

configuring devices, 431

testing Android applications on,

504-505

as testing devices, 429
NOT operator, 218
number of intervals in timers, 100, 111
:Number statement, 43
numbers

hexadecimal, 308

index, 266—268, 491492

random, 215, 221-224

var statement for, 133

0

Object-Oriented Programming (OOP). See
also interfaces, 131, 157
objects
accessing. See access to objects
already in arrays, loops for, 274-276
animating multiple, loops for, 343-348
bitmap settings for, 475
centering, 451-452
containers for, 470
countdown clock, 117, 122
creating new, 25—28
dynamically adding. See dynamically
adding objects to Stage
event, 73, 89—95, 470
event callback, 87-94
generic, 159
Graphic object type, 22
groups of. See arrays
manipulating. See manipulating objects
moving with timers, 336-338
nativeWindow, 403
in new project creation, 4
parameters for, 12-18
sending messages to Output panel, 8-11
on Stage, 5-7
testing location of, 46, 196-198
width property of, 413
OOP (Object-Oriented Programming). See
also interfaces, 131, 157
optimization of mobile applications,
463-464
OR operator, 218

order of operations
evaluating, 61
forcing, 62—63
introduction to, 60

Output panel
_getCodesmethod in, 250
1084: Syntax error in, 46
addition operator on, 50-52
array modification in, 268—269
assignment operator on, 55
class display screen on, 144-145
combined assignment operators in, 55
concatenation operator on, 51-52
decrement operator on, 58
display stacks and, 28-29
division operator on, 53
from for loop, 260
“The function runMe was executed,” 36
getter method display in, 166, 170
if statement results on, 206
increment operator on, 58
loop code sending iterator values to, 260
looping through arrays in, 276
mathematical operators in, 50-53
mouse click events in, 72—73, 75
multiplication operator on, 53
nesting loops in, 263
AND operator in, 217
OR operation in, 218
playback, stopping, 82
random numbers in, 221
returning values from functions in,

4446
sending messages to, 8—11
setter method display in, 166, 170
subtraction operator in, 50-52
“Tick!” displays on, 101-103
timers in, 101-103
trace statement and, 28—29, 177, 180
true value and equality statement
on, 194

x coordinate on, 1213, 16, 200
y coordinate on, 12-13, 16, 200

P

.p12 files, 434-435, 511

packages
folders for, creating, 176—180
nested, 182183
referring to all classes in, 180-182
source paths of, 183-186

INDEX

521

padding around buttons, 413 clickedTile, 500 in conditionals, 213

parameters currentCount, 470 indicating text, 10, 19
of class constructors, 146-151 customizing multiple, 148-149 in private variables, 193
of objects, 12-18 defaultTextFormat, 233
of timer events, 100 displayState, 401 R
parent property, 470, 499 frame rate, 108-110 .)
parentheses graphics. Seegraphics property radial gradients, 326
in event listeners, 71 length, 274 random animation, 338-342
forcing order of operations, 62—63 of MovieClips, 14-19 random number generator, 340-341, 349
location of, 46 Multitouch.inputMode, 441, 450456 random numbers, 215, 221-224
passwords nativeWindow, 307398 rate of change’: 348-351, 355358
for AIR applications, 421 parent, 470, 499 ready to run,” 505
AIR for Android, 432433 scaleMode, 406409 rectangles, 317
AIR for i0S, 435 scaleX and scaleY, 447 remote debugglng, 458, 460461
for keychain access, 511 StageAlign, 411 _removelnstructions, 481
pausing video, 382-384 stageWidth and stageHeight, 328, 349 repeating actions. Seeloops
pen, virtual, 310-315 symbol, 135-136, 138 repo.s1t10n () function, 39-43
perComplete, 472474 target, 89-92 required parameter error, 42-43
phones. See also iPhone, 429-430, of text, 231237 resetTimer method, 494
504-505 values of, 17, 217218, 258 resizable layouts of window controls,
pinch to zoom gestures, 450-455 width of objects, 413 | Au-a18
pipes, 218 Properties panel resize Wmdpw controls, 406—410
pixel hinting, 318 in AIR, 395 resuming video playback, 384
play method of FLVPlayback, 381-382, 389 Display section of, 463 return statement, 44-46
playback frame rate property (FPS) in, 108-110 returning values from functions, 44-46
controlling, generally, 81 introduction to, 12-14 rewinding video, 384-388
FLVPlayback. See FLVPlayback Provisioning portal of i0S, 507-510 R,IM platform, 425
messages, 95 public rise over run, 338
stopping, 81-83 best practices for, 164 rotate gestures, 455-457
stopping at specific frames, 83-84 classes, 143 rotating gradient boxes, 325-326
playButton, 85-93 for classes, 158 round method, 224
player controls, 494-500 introduction to, 158-160 rounded rectangles, 317-318
Player drop-down list, 394-395 methods, 152
PNG files, 370 public newGame method, 496 S
polite classes, 164 Publish preview, 11 Safari, 506
_positionControls method, 410, 417 Publish Settings window, 185 Samsung mobile devices, 428429
prevFrame(), 9294 publishing AIR applications, 395, 422 scaleMode property, 406-409
preview mode, 470 push() method, 267268, 272 scaleX and scaleY properties, 365, 447
private scaling size of visual elements, 361-365
best practices for, 163 Q scope of code, 87-88
classes, 160, 173 score displays, 493-494, 498

_quit method, 481

introduction to, 161-162 scoreGame method, 498

restricting access with, 161-162 quiz project P . seeking to specific frames, 83-84
private _setupGame method, 496 escapezsélelcgigces or responses in, seeking video, 384-388

private variables, 192-199
progressive video, 376
ProLoader class, 370-371, 389

seekPercent method, 384—385
self-signed certificates, 420—423, 432
semicolons, 15, 46

keyboardEvent handler in, 246
questions, creating text fields for,

properties questiirzlg_::ﬁ)erties of text for, setlabel method, 382-384
accessing values of, 164 4 4
i g 231237 setter methods
align, 406 classes, 164

responses in layout of, 238240
text fields for answers in, 242—-245
quotation marks

alpha. See alpha property
assigning to instances, 30
cacheAsBitmap, 463

creating, 165-166
using, 166—168
setTextFormat method, 233234

522 INDEX

setTimer method, 494
Settings Window in AIR
configuring projects in, 395-396
Create Self-Signed Digital Certificate
window in, 421
Icons tab in, 419—420
introduction to, 419
foriOS, 461
self-signed certificates and, 432
_setupControls method, 480—481
@sfdesigner, 501
shapes, 303-304, 315-317
ShockWave Flash (SWF), 370-372, 389
shortcuts on keyboards, 251253
simple callback functions, 96
single quotes, 96
size of images, 370
sketching layouts manually, 240, 411413
slope of animation
rise over run in, 338
stageWidth and stageHeight in, 349
summary of, 366
solutions and walkthroughs
ActionScript setup for countdown
clock, 119-121
auto-generated imports for countdown
clock, 121
contents before constructor in DiceOut,
288-290
for countdown clock, generally, 117
of countdown clock, generally, 127
for DiceOut game project, generally,
284,297
display objects of countdown clock,
122123
Document class in DiceOut, generally,
284—288
Document class in Flipr, 475—478
ending game in DiceOut, 296
event listeners in DiceOut, 290-292
Flash project review in Flipr, 471475
for Flipr game project, generally, 471
game board in Flipr, 491-492
game logic in Flipr, 482—490
game rules in Flipr, 494-500
main controls in Flipr, 480—482
player controls in Flipr, 494-500
Project setup for countdown clock,
117-118
rolldie method in DiceOut Document
class, 292-295
score displays in Flipr, 493-494
scores in DiceOut Document class, 296

splash screen in Flipr, 479
start button event listeners in
countdown clock, 123
starting timer in countdown clock,
124-125
timer and timer event listeners in
countdown clock, 124
timer displays in Flipr, 493-494
timer events in countdown clock,
125-126
Sound class, 374-375, 389
speaker-listener relationships. See also
event listeners, 68
special key recognition, 251253
specifications
for countdown clock project, 114
for DiceOut game project, 280
for Flipr game project, 468
speed of startup, 370
splash screens
displaying, 479
in Document class, 476
game logos on, 472
introduction to, 469, 471
splice() method, 268-269
Sprite class, 302307
sprites
class of, generally, 302—-303
defined, 302
extending classes of, 305-307
in Flipr user interfaces, 471-472
stacks in Library. See also display stacks;
Library objects, 23
Stage
accepting values in functions on, 39-40
accessing objects on, 5-7
animation on. See animation
comments on, creating, 31-32
countdown clock on, 122123
display objects on, 122
display properties of mobile
applications on, 463
display stacks, assigning properties to
instances, 30
display stacks, creating new objects
for, 25—28
display stacks, defined, 25
display stacks, working with, 29-30
dynamic event handlers for objects
on, 85
dynamically adding objects to. See
dynamically adding objects
to Stage

editing-in-place on, 85
mouse event handlers on, 70
named library assets in, 22—-25
parameters of objects on, 12—18
playButton instance on, 85-86
scaleMode property of, 406—409
spaces, working with, 32
summary of, 31
tween-based animation on, 80
StageAlign property, 411
StageScaleMode, 406—409
stageWidth and stageHeight properties,
328,349
starfield project. See animation
startDrag method
Boolean variables and, 198, 200
summary of, 213
startGameButton, 472—474, 482
startMove method, 403
startTouchDrag method, 444, 447
startup times, 370
stop()
in timeline playback, 82
in timeline scripting, 97
in timer intervals, 111
for timers, 102-103
stopButton instance, 81-82, 90-93
stopDrag method, 198, 213
stops, gradient, 321
stopTouchDrag method, 444
Streak, 429, 505
streaming video, 376, 388
string concatenation, 44—45, 51-52
strings
constructor parameters optional
with, 150
customizing multiple properties
with, 148
defined, 10
defining variables for, 164
getter method for, 165-167
of lines, 310-311
in method creation, 152
private, 161, 163
setter method for, 165-167
text as, 10
text field labels with, defining, 146
var statement for, 133
variables for, defining, 159
strokes, 307-312
Stucki, Ben, 464
style of lines, 307-308

INDEX

523

style of text
changing later, 233-234
customizing, generally, 231-232
fonts, creating custom, 234—-237
subtraction operator, 50
SWF (ShockWave Flash), 370-372, 389
Symantec, 422
Symbol properties window, 135-136, 138
Syntax errors, 46
System Chrome
custom vs., 425
dragging windows with, 401
introduction to, 395—396

T

t operator, 53
tablets, 428-429
tap interactions. See also touch
interactions, 439—442
target property, 89—92
testing
Android applications, 504-505
Boolean conditional, 258
conditions. See testing conditions
drag and drop, 218
for equality, 194
for false value, 217218, 258
for loop for, 258
for inequality, 195196
i0S applications, 506—511
location of objects, 46,196—198
mobile applications, 431438, 465
mobile devices for, 429—430
NOT operator for, 218
AND operator for, 217-220
OR operator for, 218
trace statement for, 202
for true value, 217-218, 258
x coordinate locations. See x coordinates
y coordinate locations. See y coordinates
testing conditions. See also Boolean logic,
advanced
generally, 202—204
if statements, 204—206
if.else if statements,209—212
if.else statements, 206—208
loops for, 258
text
in button labels, 146
fields of, 228-230, 242—245
KeyboardEvent handler in TextFields,
246253

524 INDEX

layout of, escape sequences in, 241-245
layout of, generally, 238—240
style of, changing later, 233—234
style of, creating custom fonts, 234—237
style of, customizing generally, 231—232
summary of, 251-253
working with, generally, 227
Text Layout Framework (TLF), 228
TextFormat class, 231232
thermometers, 469, 474
ticking
example of, 101-102
generally, 100, 111
stopping timers and, 102—-103
Tile MovieClip, 498
tilePuzzleArray, 496—497
tiles
arrays for values of, 489
grid for, 469, 490-491
specifications for, 468
tileVariety variable, 496—497
time-based animation
introduction to, 334
summary of, 366
TimerEvent.TIMER for, 336—338
time + location, 334-335
timeline
accepting values in functions on, 39
animating thermometers with, 474
class instances in, 144
constructor parameters optional on, 150
ENTER_FRAME event in, 104
Flipr user interfaces on, 472
frame scripts on, 8-10
functions on, 36
introduction to, 5
layers of, 8
mathematical operators in, 50, 53
mouse event handlers in, 71
in multiple property customizing,
148-149
new scripts, 2526
playback, 82
scripting. See timeline scripting with
mouse events
Timeline panel, 8, 26
timeline scripting with mouse events
event callback objects in, finished
example of, 92-94
event callback objects in, generally,
87-88
event callback objects in, using, 89—92
event target data example, 94-95

gotoAndStop () shortcuts for, 92
handling scope in, 87
introduction to, 79
in MovieClips, 85—-86
playback, controlling generally, 81
playback, stopping, 81-83
playback, stopping at specific frames,
83-84
project for (ball moving across screen),
introducing, 80
simple callback functions in, 96
summary of, 97
Timer, defined, 100
TIMER event, 493
timer events
callback functions for, 125-126
frame events vs., 108—-110
introduction to, 99
parameters of, 100
stopping, 102-103
summary of, 111
using, 100-102
TIMER_COMPLETE event, 100—102
TimerEvent, 100
TimerEvent.TIMER, 336—338, 445
timers
_timerSecond for game displays, 493
in animation, 336—338
displaying, 493—494
event listeners for, 124
events in. See timer events
“Game Over” screen triggered by, 494
gameTimer, 493—494
intervals in, 355—-358
in mobile applications, 470
resetTimer method for, 494
setTimer method for, 494
for splash screens, 479-480
starting with callback functions,
124-125
ticking of, 100-103, 111
TIMER event for game displays, 493
_timerSecond, 493
Times New Roman, 231
times, startup, 370
TLF (Text Layout Framework), 228
toggle buttons, 218, 382—384
totalRight variable, 496, 498-499
touch interactions. See also gesture events
creating, 439—442
mouse events vs., 470
splash screens and, 479
TOUCH_BEGIN event type, 443—448

TOUCH_END event type, 443—449
TouchEvent.TOUCH_TAP, 481
TouchGestures Document class, 450
TOUCH_INPUT interaction type, 442
TOUCH_POINT method, 441, 479
touchPointID, 444
trace statement
arrays and, 266
calling functions with, 44—47
for conditionals testing, 202
debugging on i0OS with, 462
defined, 10-12
in timeline scripting, 89
TransformGestureEvent, 450—456
transparency, 308, 323
true value
for loop testing for, 258
introduction to, 17
AND operator testing for, 217-218
OR operator testing for, 218
tween-based animation, 80, 334
tweens, 80, 82
Twitter, 501
type mismatch error, 43
typeof statement, 52

U

UDID, 506

uint (unsigned integer), 259
URLs, 371-372, 378

'USB debugging, 458, 504
user experience, 382, 389
user interfaces, 471472

\"

values
accepting in functions, 39-43
Boolean. See Boolean variables
false. See false value
of properties, 164
returning from functions, 44—46
true. See true value
in window controls, 413—417

var statement
for class variables, generally, 133
in for loop, 259
for mathematical operators, 56
text fields, creating with, 228, 230

variables
Boolean. See Boolean variables
of classes, generally, 133
defining, 159
introduction to, 12
of mathematical operators, 55-57
private, 192-199
specified as constant, 417
tileVariety, 496—497
totalRight, 496, 498-499
var statement for, see var statement

vectors, 463

Verdana font, 234

VeriSign, 422

video from Web, 376—378

video playback
altering generally, 379—382
pausing, 382—384
rewinding, 384—388
seeking, 384—388

VideoButton class, 382—384

virtual pen, 310-315

visibility settings, 18

visual design review
of countdown clock project, 115
of DiceOut game project, 281-282
of Flipr game project, 469

W

walkthroughs. See solutions and
walkthroughs
while statement, 264
whitespace characters, 32, 38
width property of Stage objects, 413
WiFi, 460—461
window controls
close, 404-406
drag, 401-403
maximize, 398—401
minimize, 397-398
native, 395-397
resizable layouts of, 411—418
resize, 406—410
Windows
AIR applications for, 424
desktop applications for, 394
Start Menu in, 420, 424
testing Android devices in, 504
testing iOS applications and, 508
wireframes, 114-115

with statement, 311-312, 328
workspace for ActionScript development,

X

136-137

x coordinates

Y

in adding animation elements, 358—361

in animation brightness, 352—355

in animation fine-tuning, generally, 349

in animation fluidity and rate of
change, 355-358

curveTo method and, 312-315

feedback identifying, 200—201

for Flipr game board, 491

if statement testing, 204—206

if.else if statement testing, 209—212

if.else statement testing, 206—208

introduction to, 12-15

in loops animating multiple objects,
343-348

AND operators testing, 219—220

in random animation, 339—-342

in scaling size of animation elements,
361-365

testing for, 196-200, 202—203

window control buttons on, 412—413

y coordinates

in adding animation elements, 358—361

in animation brightness, 352—355

in animation fine-tuning, generally, 349

in animation fluidity and rate of
change, 355-358

curveTo method and, 312-315

feedback identifying, 200—201

for Flipr game board, 492

if statement testing, 204—206

if.else if statement testing, 209—212

if.else statement testing, 206—208

introduction to, 12-15

in loops animating multiple objects,
343-348

AND operators testing, 219—220

in random animation, 339—-342

in scaling size of animation elements,
361-365

testing for, 196-200, 202—203

window control buttons on, 412—413

INDEX 525

	Contents
	Introduction
	Welcome to ActionScript 3.0
	CHAPTER 4 ACTIONSCRIPT AND MATH
	Mathematical Operators
	Variables and Combined Assignment Operators
	Increment and Decrement Operators
	Order of Operations
	Using Parentheses to Force Order
	Summing up Math Operations
	Wrapping Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

