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 Introduction  

    The C programming language was pioneered by Dennis Ritchie at AT&T Bell Laboratories in the 
early 1970s. It was not until the late 1970s, however, that this programming language began to 
gain widespread popularity and support. This was because until that time C compilers were not 
readily available for commercial use outside of Bell Laboratories. Initially, C’s growth in popu-
larity was also spurred on in part by the equal, if not faster, growth in popularity of the Unix 
operating system. This operating system, which was also developed at Bell Laboratories, had C 
as its “standard” programming language. In fact, well over  90% of the operating system itself 
was written in the C language!  

 The enormous success of the IBM PC and its look-alikes soon made MS-DOS the most popular 
environment for the C language. As C grew in popularity across different operating systems, 
more and more vendors hopped on the bandwagon and started marketing their own C compil-
ers. For the most part, their version of the C language was based on an appendix found in 
the first C programming text— The C Programming Language —by Brian Kernighan and Dennis 
Ritchie. Unfortunately, this appendix did not provide a complete and unambiguous definition 
of C, meaning that vendors were left to interpret some aspects of the language on  their own.  

 In the early 1980s, a need was seen to standardize the definition of the C language. The American 
National Standards Institute (ANSI) is the organization that handles such things, so in 1983 an 
ANSI C committee (called X3J11) was formed to standardize C. In 1989, the committee’s work 
was ratified, and in 1990, the first official ANSI standard definition of C was published.  

 Because C is used around the world, the International Standard Organization (ISO) soon got 
involved. They adopted the standard, where it was called ISO/IEC 9899:1990. Since that time, 
additional changes have been made to the C language. The most recent standard was adopted 
in 2011. It is known as ANSI C11, or ISO/IEC 9899:2011. It is this version of the language upon 
which this book is based.  

 C is a “higher-level language,” yet it provides capabilities that enable the user to “get in 
close” with the hardware and deal with the computer on a much lower level. This is because, 
although C is a general-purpose structured programming language, it was originally designed 
with systems programming applications in mind and, as such, provides the user with an enor-
mous amount of power and flexibility.  
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 This book proposes to teach you how to program in C. It assumes no previous exposure to the 
language and was designed to appeal to novice and experienced programmers alike. If you have 
previous programming experience, you will find that C has a unique way of doing things that 
probably differs from other languages you have used.  

 Every feature of the C language is treated in this text. As each new feature is presented, a small 
 complete  program example is usually provided to illustrate the feature. This reflects the overrid-
ing philosophy that has been used in writing this book: to teach by example. Just as a picture 
is worth a thousand words, so is a properly chosen program example. If you have access to a 
computer that supports the C programming language, you are strongly encouraged to down-
load and run each program presented in this book and to compare the results obtained on your 
system to those shown  in the text. By doing so, not only will you learn the language and its 
syntax, but you will also become familiar with the process of typing in, compiling, and running 
C programs.  

 You will find that program readability has been stressed throughout the book. This is because 
I strongly believe that programs should be written so that they can be easily read—either by 
the author or by somebody else. Through experience and common sense, you will find that 
such programs are almost always easier to write, debug, and modify. Furthermore, developing 
programs that are readable is a natural result of a true adherence to a structured programming 
discipline.  

 Because this book was written as a tutorial, the material covered in each chapter is based on 
previously presented material. Therefore, maximum benefit will be derived from this book by 
reading each chapter in succession, and you are highly discouraged from “skipping around.” 
You should also work through the exercises that are presented at the end of each chapter before 
proceeding on to the next chapter.  

  Chapter   1   , “Some Fundamentals,” which covers some fundamental terminology about higher-
level programming languages and the process of compiling programs, has been included to 
ensure that you understand the language used throughout the remainder of the text. From 
 Chapter   2   , “Compiling and Running Your First Program,” on, you will be slowly introduced to 
the C language. By the time  Chapter   15   , “Input and Output Operations in C,” rolls around, all 
the essential features of the language will have been covered.  Chapter   15    goes into more depth 
about I/O operations in C.  Chapter   16   , “Miscellaneous and Advanced Features,” includes those 
features of the  language that are of a more advanced or esoteric nature.  

  Chapter   17   , “Debugging Programs,” shows how you can use the C preprocessor to help debug 
your programs. It also introduces you to interactive debugging. The popular debugger  gdb  was 
chosen to illustrate this debugging technique.  

 Over the last decade, the programming world has been abuzz with the notion of object-
oriented programming, or OOP for short. C is not an OOP language; however, several other 
programming languages that are based on C are OOP languages.  Chapter   18   , “Object-oriented 
Programming,” gives a brief introduction to OOP and some of its terminology. It also gives a 
brief overview of three OOP languages that are based on C, namely C++, C#, and Objective-C.  
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  Appendix   A   , “C Language Summary,” provides a complete summary of the language and is 
provided for reference purposes.  

  Appendix   B   , “The Standard C Library,” provides a summary of many of the standard library 
routines that you will find on all systems that support C.  

  Appendix   C   , “Compiling Programs with  gcc ,” summarizes many of the commonly used 
options when compiling programs with GNU’s C compiler  gcc .  

 In  Appendix   D   , “Common Programming Mistakes,” you’ll find a list of common programming 
mistakes.  

 Finally,  Appendix   E   , “Resources,” provides a list of resources you can turn to for more informa-
tion about the C language and to further your studies.  

 This book makes no assumptions about a particular computer system or operating system on 
which the C language is implemented. The text makes brief mention of how to compile and 
execute programs using the popular GNU C compiler  gcc .   
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 3 
 Variables, Data Types, and 

Arithmetic Expressions  

    The true power of programs you create is their manipulation of data. In order to truly take 
advantage of this power, you need to better understand the different data types you can use, as 
well as how to create and name variables. C has a rich variety of math operators that you can 
use to manipulate your data. In this chapter you will cover:  

    ■   The  int ,  float ,  double ,  char , and  _Bool  data types   

   ■   Modifying data types with  short ,  long , and  long long    

   ■   The rules for naming variables   

   ■   Basic math operators and arithmetic expressions   

   ■   Type casting     

     Understanding Data Types and Constants  
 You have already been exposed to the C basic data type  int . As you will recall, a variable 
declared to be of type  int  can be used to contain integral values only—that is, values that do 
not contain decimal places.  

 The C programming language provides four other basic data types:  float ,  double ,  char , and 
 _Bool . A variable declared to be of type  float  can be used for storing floating-point numbers 
(values containing decimal places). The  double  type is the same as type  float , only with 
roughly twice the precision. The  char  data type can be used to store a single character, such as 
the letter ’a’, the digit character ’6’, or a semicolon (’;’) (more on this later). Finally, the  _Bool  
data type can be used to store just the values  0  or  1 . Variables of this type are used for indicat-
ing an on/off, yes/no,  or true/false situation. These one-or-the-other choices are also known as 
binary choices.  

 In C, any number, single character, or character string is known as a  constant . For example, 
the number 58 represents a constant integer value. The character string  "Programming in C 
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is fun.\n"  is an example of a constant character string. Expressions consisting entirely of 
constant values are called  constant expressions . So, the expression  

  128 + 7 - 17   

 is a constant expression because each of the terms of the expression is a constant value. But if  i  
were declared to be an integer variable, the expression  

  128 + 7 – i   

 would not represent a constant expression because its value would change based on the value 
of  i . If  i  is 10, the expression is equal to 125, but if  i  is 200, the expression is equal to −65.  

  The Integer Type  int   
 In C, an integer constant consists of a sequence of one or more digits. A minus sign preceding 
the sequence indicates that the value is negative. The values  158 ,  −10 , and  0  are all valid exam-
ples of integer constants. No embedded spaces are permitted between the digits, and values 
larger than  999  cannot be expressed using commas. (So, the value  12,000  is not a valid integer 
constant and must be written as  12000 .)  

 Two special formats in C enable integer constants to be expressed in a base other than decimal 
(base 10). If the first digit of the integer value is a  0 , the integer is taken as expressed in  octal  
notation—that is, in base 8. In that case, the remaining digits of the value must be valid base-8 
digits and, therefore, must be 0–7. So, to express the value  50  in base 8 in C, which is equiva-
lent to the value  40  in decimal, the notation  050  is used. Similarly, the octal constant  0177  
represents the decimal value  127  (1 × 64 + 7 × 8 + 7). An  integer value can be displayed at the 
terminal in octal notation by using the format characters  %o  in the format string of a  printf()  
statement. In such a case, the value is displayed in octal without a leading zero. The format 
character  %#o  does cause a leading zero to be displayed before an octal value.  

 If an integer constant is preceded by a zero and the letter  x  (either lowercase or uppercase), the 
value is taken as being expressed in hexadecimal (base 16) notation. Immediately following the 
letter  x  are the digits of the hexadecimal value, which can be composed of the digits 0–9 and 
the letters a–f (or A–F). The letters represent the values 10–15, respectively. So, to assign the 
hexadecimal value  FFEF0D  to an integer variable called  rgbColor , the statement  

  rgbColor = 0xFFEF0D;   

 can be used. The format characters  %x  display a value in hexadecimal format without the 
leading  0x , and using lowercase letters a–f for hexadecimal digits. To display the value with the 
leading  0x , you use the format characters  %#x , as in the following:  

  printf ("Color is %#x\n", rgbColor);   

 An uppercase x, as in  %X  or  %#X , can be used to display the leading  x  and the hexadecimal 
digits that follow using uppercase letters.  
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  Storage Sizes and Ranges  

 Every value, whether it’s a character, integer, or floating-point number, has a  range  of values 
associated with it. This range has to do with the amount of storage that is allocated to store 
a particular type of data. In general, that amount is not defined in the language. It typically 
depends on the computer you’re running, and is, therefore, called  implementation-  or  machine -
dependent. For example, an integer might take up 32 bits on your computer, or perhaps it 
might be stored in 64. You should never write programs that make any assumptions about the 
size of your data types. You are, however,  guaranteed that a minimum amount of storage will 
be set aside for each basic data type. For example, it’s guaranteed that an integer value will be 
stored in a minimum of 32 bits of storage, which is the size of a “word” on many computers.    

  The Floating Number Type  float   
 A variable declared to be of type  float  can be used for storing values containing decimal 
places. A floating-point constant is distinguished by the presence of a decimal point. You 
can omit digits before the decimal point or digits after the decimal point, but obviously you 
can’t omit both. The values  3. ,  125.8 , and  −.0001  are all valid examples of floating-point 
constants. To display a floating-point value at the terminal, the  printf  conversion characters 
 %f  are used.  

 Floating-point constants can also be expressed in  scientific notation . The value  1.7e4  is a 
floating-point value expressed in this notation and represents the value  1.7 × 10 4  . The value 
before the letter  e  is known as the  mantissa , whereas the value that follows is called the  expo-
nent . This exponent, which can be preceded by an optional plus or minus sign, represents the 
power of 10 by which the mantissa is to be multiplied. So, in the constant  2.25e−3 , the  2.25  
is the value of the mantissa and  −3  is the value of the exponent. This constant represents the 
value  2.25 × 10 −3  , or 0.00225.  Incidentally, the letter  e , which separates the mantissa from 
the exponent, can be written in either lowercase or uppercase.  

 To display a value in scientific notation, the format characters  %e  should be specified in the 
 printf()  format string. The  printf()  format characters  %g  can be used to let  printf()  
decide whether to display the floating-point value in normal floating-point notation or in 
scientific notation. This decision is based on the value of the exponent: If it’s less than −4 or 
greater than 5,  %e  (scientific notation) format is used; otherwise,  %f  format is used.  

 Use the  %g  format characters for displaying floating-point numbers—it produces the most 
aesthetically pleasing output.  

 A  hexadecimal  floating constant consists of a leading  0x  or  0X,  followed by one or more 
decimal or hexadecimal digits, followed by a  p  or  P , followed by an optionally signed binary 
exponent. For example,  0x0.3p10  represents the value  3/16 × 2 10  = 0.5 .   

  The Extended Precision Type  double   
 The  double  type is very similar to the  float  type, but it is used whenever the range provided 
by a  float  variable is not sufficient. Variables declared to be of type  double  can store roughly 
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twice as many significant digits as can a variable of type  float . Most computers represent 
 double  values using 64 bits.  

 Unless told otherwise, all floating-point constants are taken as  double  values by the C 
compiler. To explicitly express a  float  constant, append either an  f  or  F  to the end of the 
number, as follows:  

  12.5f   

 To display a  double  value, the format characters  %f ,  %e , or  %g , which are the same format char-
acters used to display a  float  value, can be used.   

  The Single Character Type  char   
 A  char  variable can be used to store a single character.  1   A character constant is formed by 
enclosing the character within a pair of single quotation marks. So  'a' ,  ';' , and  '0'  are all 
valid examples of character constants. The first constant represents the letter  a , the second is a 
semicolon, and the third is the character zero—which is not the same as the number zero. Do 
not confuse a character constant, which is a single character enclosed in single quotes, with a 
character string,  which is any number of characters enclosed in double quotes.  

 The character constant  '\n' —the newline character—is a valid character constant even though 
it seems to contradict the rule cited previously. This is because the backslash character is a 
special character in the C system and does not actually count as a character. In other words, 
the C compiler treats the character  '\n'  as a single character, even though it is actually formed 
by two characters. There are other special characters that are initiated with the backslash char-
acter. Consult  Appendix   A   , “C Language Summary,” for a complete list.  

 The format characters  %c  can be used in a  printf()  call to display the value of a  char  variable 
at the terminal.   

  The Boolean Data Type  _Bool   
 A  _Bool  variable is defined in the language to be large enough to store just the values  0  and  1 . 
The precise amount of memory that is used is unspecified.  _Bool  variables are used in programs 
that need to indicate a Boolean condition. For example, a variable of this type might be used to 
indicate whether all data has been read from a file.  

 By convention,  0  is used to indicate a false value, and  1  indicates a true value. When assigning 
a value to a  _Bool  variable, a value of  0  is stored as 0 inside the variable, whereas any nonzero 
value is stored as 1.  

 To make it easier to work with  _Bool  variables in your program, the standard header file 
 <stdbool.h>  defines the values  bool ,  true , and  false . An example of this is shown in 
 Program   5.10A    in  Chapter   5   , “Making Decisions.”  

  1.    Appendix   A    discusses methods for storing characters from extended character sets, through special 

escape sequences, universal characters, and wide characters.   
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 In  Program   3.1   , the basic C data types are used.  

  Program 3.1   Using the Basic Data Types  

 #include <stdio.h>
  
  int main (void)
  {
       int       integerVar = 100;
     float     floatingVar = 331.79;
       double    doubleVar = 8.44e+11;
       char      charVar = 'W';
  
       _Bool     boolVar = 0;
  
       printf ("integerVar = %i\n", integerVar);
     printf ("floatingVar = %f\n", floatingVar);
       printf ("doubleVar = %e\n", doubleVar);
       printf ("doubleVar = %g\n", doubleVar);
       printf ("charVar = %c\n", charVar);
  
       printf ("boolVar = %i\n", boolVar);
  
       return 0;
  }   

  Program 3.1   Output  

 integerVar = 100
  floatingVar = 331.790009
  doubleVar = 8.440000e+11
  doubleVar = 8.44e+11
  charVar = W
  boolVar = 0;   

 The first statement of  Program   3.1    declares the variable  integerVar  to be an integer variable 
and also assigns to it an initial value of  100 , as if the following two statements had been used 
instead:  

  int  integerVar;
  integerVar = 100;   

 In the second line of the program’s output, notice that the value of  331.79 , which is assigned 
to  floatingVar , is actually displayed as  331.790009 . In fact, the actual value displayed is 
dependent on the particular computer system you are using. The reason for this inaccuracy is 
the particular way in which numbers are internally represented inside the computer. You have 
probably come across the same type of inaccuracy when dealing with numbers on your pocket 
calculator. If you divide 1 by 3 on your calculator, you get the result .33333333, with perhaps 
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some additional 3s tacked on at the end.  The string of 3s is the calculator’s approximation to 
one third. Theoretically, there should be an infinite number of 3s. But the calculator can hold 
only so many digits, thus the inherent inaccuracy of the machine. The same type of inac-
curacy applies here: Certain floating-point values cannot be exactly represented inside the 
computer’s memory.  

 When displaying the values of  float  or  double  variables, you have the choice of three differ-
ent formats. The  %f  characters are used to display values in a standard manner. Unless told 
otherwise,  printf()  always displays a  float  or  double  value to six decimal places rounded. 
You see later in this chapter how to select the number of decimal places that are displayed.  

 The  %e  characters are used to display the value of a  float  or  double  variable in scientific nota-
tion. Once again, six decimal places are automatically displayed by the system.  

 With the  %g  characters,  printf()  chooses between  %f  and  %e  and also automatically removes 
from the display any trailing zeroes. If no digits follow the decimal point, it doesn’t display 
that either.  

 In the next-to-last  printf()  statement, the  %c  characters are used to display the single charac-
ter  'W'  that you assigned to  charVar  when the variable was declared. Remember that whereas 
a character string (such as the first argument to  printf() ) is enclosed within a pair of double 
quotes, a character constant must always be enclosed within a pair of single quotes.  

 The last  printf()  shows that a  _Bool  variable can have its value displayed using the integer 
format characters  %i .   

  Type Specifiers:  long ,  long long ,  short ,  unsigned , and  signed   
 If the specifier  long  is placed directly before the  int  declaration, the declared integer variable is 
of extended range on some computer systems. An example of a  long int  declaration might be  

  long int factorial;   

 This declares the variable  factorial  to be a  long  integer variable. As with  float s and 
 double s, the particular accuracy of a  long  variable depends on your particular computer 
system. On many systems, an  int  and a  long int  have the same range and either can be used 
to store integer values up to 32-bits wide ( 2  31   − 1 , or  2,147,483,647 ).  

 A constant value of type  long int  is formed by optionally appending the letter  L  (upper- or 
lowercase) onto the end of an integer constant. No spaces are permitted between the number 
and the  L . So, the declaration  

  long int numberOfPoints = 131071100L;   

 declares the variable  numberOfPoints  to be of type  long int  with an initial value of 
 131,071,100 .  

 To display the value of a  long int  using  printf() , the letter  l  is used as a modifier before the 
integer format characters  i ,  o , and  x . This means that the format characters  %li  can be used to 
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display the value of a  long int  in decimal format, the characters  %lo  can display the value in 
octal format, and the characters  %lx  can display the value in hexadecimal format.  

 There is also a  long long  integer data type, so  

  long long int maxAllowedStorage;   

 declares the indicated variable to be of the specified extended accuracy, which is guaranteed 
to be at least 64 bits wide. Instead of a single letter l, two ls are used in the  printf  string to 
display  long long  integers, as in  "%lli" .  

 The  long  specifier is also allowed in front of a  double  declaration, as follows:  

  long double US_deficit_2004;   

 A  long double  constant is written as a floating constant with the letter  l  or  L  immediately 
following, such as  

  1.234e+7L   

 To display a  long double , the  L  modifier is used. So,  %Lf  displays a  long double  value 
in floating-point notation,  %Le  displays the same value in scientific notation, and  %Lg  tells 
 printf()  to choose between  %Lf  and  %Le .  

 The specifier  short , when placed in front of the  int  declaration, tells the C compiler that the 
particular variable being declared is used to store fairly small integer values. The motivation for 
using  short  variables is primarily one of conserving memory space, which can be an issue in 
situations in which the program needs a lot of memory and the amount of available memory 
is limited.  

 On some machines, a  short int  takes up half the amount of storage as a regular  int  variable 
does. In any case, you are guaranteed that the amount of space allocated for a  short int  will 
not be less than 16 bits.  

 There is no way to explicitly write a constant of type  short int  in C. To display a  short int  
variable, place the letter  h  in front of any of the normal integer conversion characters:  %hi , 
 %ho , or  %hx . Alternatively, you can also use any of the integer conversion characters to display 
 short ints , due to the way they can be converted into integers when they are passed as argu-
ments to the  printf()  routine.  

 The final specifier that can be placed in front of an  int  variable is used when an integer vari-
able will be used to store only positive numbers. The declaration  

  unsigned int counter;   

 declares to the compiler that the variable  counter  is used to contain only positive values. By 
restricting the use of an integer variable to the exclusive storage of positive integers, the accu-
racy of the integer variable is extended.  

 An  unsigned int  constant is formed by placing the letter  u  (or  U ) after the constant, as follows:  

  0x00ffU   
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 You can combine the letters  u  (or  U ) and  l  (or  L ) when writing an integer constant, so  

  20000UL   

 tells the compiler to treat the constant 20000 as an  unsigned long .  

 An integer constant that’s not followed by any of the letters  u ,  U ,  l , or  L  and that is too large to 
fit into a normal-sized  int  is treated as an  unsigned int  by the compiler. If it’s too small to 
fit into an  unsigned int , the compiler treats it as a  long int . If it still can’t fit inside a  long 
int , the compiler makes it an  unsigned long int . If it doesn’t fit there, the compiler treats it 
as a  long long int  if it fits, and as an  unsigned long long int  otherwise.  

 When declaring variables to be of type  long long int ,  long int ,  short int , or  unsigned 
int , you can omit the keyword  int . Therefore, the  unsigned  variable  counter  could have 
been equivalently declared as follows:  

  unsigned counter;   

 You can also declare  char  variables to be  unsigned .  

 The  signed  qualifier can be used to explicitly tell the compiler that a particular variable is a 
signed quantity. Its use is primarily in front of the  char  declaration, and further discussion is 
deferred until  Chapter   13   , “More on Data Types.”  

 Don’t worry if the discussions of these specifiers seem a bit esoteric to you at this point. In later 
sections of this book, many of these different types are illustrated with actual program exam-
ples.  Chapter   13    goes into more detail about data types and conversions.  

  Table   3.1    summarizes the basic data types and qualifiers.  

  Table 3.1   Basic Data Types  

  Type     Constant Examples      printf chars    

  char     'a' ,  '\n'     %c   

  _Bool     0 ,  1     %i ,  %u   

  short int    —    %hi ,  %hx ,  %ho   

  unsigned short int    —    %hu ,  %hx ,  %ho   

  int     12 ,  -97 ,  0xFFE0 ,  0177     %i ,  %x ,  %o   

  unsigned int     12u ,  100U ,  0XFFu     %u ,  %x ,  %o   

  long int     12L ,  -2001 ,  0xffffL     %li ,  %lx ,  %lo   

  unsigned long int     12UL ,  100ul ,  0xffeeUL     %lu ,  %lx ,  %lo   

  long long int     0xe5e5e5e5LL ,  500ll     %lli ,  %llx ,  &llo   

  unsigned long long int     12ull ,  0xffeeULL     %llu ,  %llx ,  %llo   

  float     12.34f ,  3.1e-5f, 0x1.5p10,0x1P-1     %f ,  %e ,  %g, %a   
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  Type     Constant Examples      printf chars    

  double     12.34 ,  3.1e-5, 0x.1p3     %f ,  %e ,  %g, %a   

  long double     12.341 ,  3.1e-5l     %Lf ,  $Le ,  %Lg   

  Working with Variables  
 Early computer programmers had the onerous task of having to write their programs in the 
binary language of the machine they were programming. This meant that computer instruc-
tions had to be hand-coded into binary numbers by the programmer before they could be 
entered into the machine. Furthermore, the programmer had to explicitly assign and reference 
any storage locations inside the computer’s memory by a specific number or memory address.  

 Today’s programming languages allow you to concentrate more on solving the particular 
problem at hand than worrying about specific machine codes or memory locations. They 
enable you to assign symbolic names, known as  variable names , for storing program computa-
tions and results. A variable name can be chosen by you in a meaningful way to reflect the type 
of value that is to be stored in that variable.  

 In  Chapter   2   , “Compiling and Running Your First Program,” you used several variables to store 
integer values. For example, you used the variable  sum  in  Program   2.4    to store the result of the 
addition of the two integers 50 and 25.  

 The C language allows data types other than just integers to be stored in variables as well, 
provided the proper declaration for the variable is made  before  it is used in the program. 
Variables can be used to store floating-point numbers, characters, and even  pointers  to locations 
inside the computer’s memory.  

 The rules for forming variable names are quite simple: They must begin with a letter or under-
score ( _ ) and can be followed by any combination of letters (upper- or lowercase), underscores, 
or the digits 0–9. The following is a list of valid variable names.  

  sum
  pieceFlag
  i
  J5x7
  Number_of_moves
  _sysflag   

 On the other hand, the following variable names are not valid for the stated reasons:  

  sum$value    $ is not a valid character.  

  piece flag    Embedded spaces are not permitted.  

  3Spencer    Variable names cannot start with a number.  

  int     int  is a reserved word.  
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  int  cannot be used as a variable name because its use has a special meaning to the C compiler. 
This use is known as a reserved name or reserved word. In general, any name that has special 
significance to the C compiler cannot be used as a variable name. Appendix A provides a 
complete list of such reserved names.  

 You should always remember that upper- and lowercase letters are distinct in C. Therefore, the 
variable names  sum ,  Sum , and  SUM  each refer to a different variable.  

 Your variable names can be as long as you want, although only the first 63 characters might be 
significant, and in some special cases (as described in  Appendix   A   ), only the first 31 characters 
might be significant. It’s typically not practical to use variable names that are too long—just 
because of all the extra typing you have to do. For example, although the following line is valid  

  theAmountOfMoneyWeMadeThisYear = theAmountOfMoneyLeftAttheEndOfTheYear –
             theAmountOfMoneyAtTheStartOfTheYear;   

 this line  

  moneyMadeThisYear = moneyAtEnd – moneyAtStart;   

 conveys almost as much information in much less space.  

 When deciding on the choice of a variable name, keep one recommendation in mind—don’t 
be lazy. Pick names that reflect the intended use of the variable. The reasons are obvious. Just 
as with comments, meaningful variable names can dramatically increase the readability of a 
program and pay off in the debug and documentation phases. In fact, the documentation task 
is probably greatly reduced because the program is more self-explanatory.   

  Working with Arithmetic Expressions  
 In C, just as in virtually all programming languages, the plus sign ( + ) is used to add two values, 
the minus sign ( − ) is used to subtract two values, the asterisk ( * ) is used to multiply two values, 
and the slash ( / ) is used to divide two values. These operators are known as  binary  arithmetic 
operators because they operate on two values or terms.  

 You have seen how a simple operation such as addition can be performed in C.  Program   3.2    
further illustrates the operations of subtraction, multiplication, and division. The last two 
operations performed in the program introduce the notion that one operator can have a higher 
priority, or  precedence , over another operator. In fact, each operator in C has a precedence asso-
ciated with it. This precedence is used to determine how an expression that has more than one 
operator is evaluated: The operator with the higher precedence is evaluated first. Expressions 
containing operators of the same precedence are evaluated either from left to  right or from 
right to left, depending on the operator. This is known as the  associative  property of an opera-
tor.  Appendix   A    provides a complete list of operator precedences and their rules of association.  
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  Program 3.2   Using the Arithmetic Operators  

 // Illustrate the use of various arithmetic operators
  
  #include <stdio.h>
  
  int main (void)
  {
        int a = 100;
        int b = 2;
        int c = 25;
        int d = 4;
        int result;
  
        result = a - b;       // subtraction
        printf ("a - b = %i\n", result);
  
        result = b * c;       // multiplication
        printf ("b * c = %i\n", result);
  
        result = a / c;       // division
        printf ("a / c = %i\n", result);
  
        result = a + b * c;   // precedence
        printf ("a + b * c = %i\n", result);
  
        printf ("a * b + c * d = %i\n", a  * b + c * d);
  
        return 0;
  }   

  Program 3.2   Output  

 a - b = 98
  b * c = 50
  a / c = 4
  a + b * c = 150
  a * b + c * d = 300   

 After declaring the integer variables  a ,  b ,  c ,  d , and  result , the program assigns the result of 
subtracting  b  from  a  to  result  and then displays its value with an appropriate  printf()  call.  

 The next statement  

  result = b * c;   

 has the effect of multiplying the value of  b  by the value of  c  and storing the product in 
 result . The result of the multiplication is then displayed using a  printf()  call that should be 
familiar to you by now.  
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 The next program statement introduces the division operator—the slash. The result of 4, as 
obtained by dividing 100 by 25, is displayed by the  printf()  statement immediately following 
the division of  a  by  c .  

 On some computer systems, attempting to divide a number by zero results in abnormal 
termination of the program.  2   Even if the program does not terminate abnormally, the results 
obtained by such a division will be meaningless.  

 In  Chapter   5   , you see how you can check for division by zero before the division operation is 
performed. If it is determined that the divisor is zero, an appropriate action can be taken and 
the division operation can be averted.  

 The expression  

  a + b * c   

 does not produce the result of 2550 (102 × 25); rather, the result as displayed by the corre-
sponding  printf()  statement is shown as 150. This is because C, like most other programming 
languages, has rules for the order of evaluating multiple operations or terms in an expression. 
Evaluation of an expression generally proceeds from left to right. However, the operations of 
multiplication and division are given precedence over the operations of addition and subtrac-
tion. Therefore, the expression  

  a + b * c   

 is evaluated as  

  a + (b * c)   

 by the C programming language. (This is the same way this expression would be evaluated if 
you were to apply the basic rules of algebra.)  

 If you want to alter the order of evaluation of terms inside an expression, you can use paren-
theses. In fact, the expression listed previously is a perfectly valid C expression. Thus, the 
statement  

  result = a + (b * c);   

 could have been substituted in  Program   3.2    to achieve identical results. However, if the 
expression  

  result = (a + b) * c;   

 were used instead, the value assigned to  result  would be 2550 because the value of  a  ( 100 ) 
would be added to the value of  b  ( 2 ) before multiplication by the value of  c  ( 25 ) would take 
place. Parentheses can also be nested, in which case evaluation of the expression proceeds 
outward from the innermost set of parentheses. Just be certain you have as many closed paren-
theses as you have open ones.  

  2.   This happens using the  gcc  compiler under Windows. On Unix systems, the program might not termi-

nate abnormally, and might give 0 as the result of an integer division by zero and “Infinity” as the result of 

a  float  division by zero.   
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 You will notice from the last statement in  Program   3.2    that it is perfectly valid to give an 
expression as an argument to  printf()  without having to first assign the result of the expres-
sion evaluation to a variable. The expression  

  a * b + c * d   

 is evaluated according to the rules stated previously as  

  (a * b) + (c * d)   

 or  

  (100 * 2) + (25 * 4)   

 The result of  300  is handed to the  printf()  routine.  

  Integer Arithmetic and the Unary Minus Operator  
  Program   3.3    reinforces what you just learned and introduces the concept of integer arithmetic.  

  Program 3.3   More Examples with Arithmetic Operators  

 // More arithmetic expressions
  
  #include <stdio.h>
  
  int main (void)
  {
       int   a = 25;
       int   b = 2;
  
       float c = 25.0;
       float d = 2.0;
  
       printf ("6 + a / 5 * b = %i\n", 6 + a / 5 * b);
       printf ("a / b * b = %i\n", a / b * b);
       printf ("c / d * d = %f\n", c / d * d);
       printf ("-a = %i\n", -a);
  
       return 0;
  }   

  Program 3.3   Output  

 6 + a / 5 * b = 16
  a / b * b = 24
  c / d * d = 25.000000
  -a = -25   
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 Extra blank spaces are inserted between  int  and the declaration of  a ,  b ,  c , and  d  in the first 
four statements to align the declaration of each variable. This helps make the program more 
readable. You also might have noticed in each program presented thus far that a blank space 
was placed around each operator. This, too, is not required and is done solely for aesthetic 
reasons. In general, you can add extra blank spaces just about anywhere that a single blank 
space is allowed. A few extra presses of the spacebar prove worthwhile if the resulting program 
is easier to read.  

 The expression in the first  printf()  call of  Program   3.3    reinforces the notion of operator 
precedence. Evaluation of this expression proceeds as follows:  

    1.   Because division has higher precedence than addition, the value of  a  ( 25 ) is divided by 5 
first. This gives the intermediate result of 5.   

   2.   Because multiplication also has higher precedence than addition, the intermediate result 
of 5 is next multiplied by 2, the value of  b , giving a new intermediate result of 10.   

   3.   Finally, the addition of 6 and 10 is performed, giving a final result of 16.    

 The second  printf()  statement introduces a new twist. You would expect that dividing  a  by  b  
and then multiplying by  b  would return the value of  a , which has been set to 25. But this does 
not seem to be the case, as shown by the output display of 24. It might seem like the computer 
lost a bit somewhere along the way. The fact of the matter is that this expression was evaluated 
using integer arithmetic.  

 If you glance back at the declarations for the variables  a  and  b , you will recall that they were 
both declared to be of type  int . Whenever a term to be evaluated in an expression consists of 
two integers, the C system performs the operation using integer arithmetic. In such a case, all 
decimal portions of numbers are lost. Therefore, when the value of  a  is divided by the value of 
 b , or 25 is divided by 2, you get an intermediate result of 12 and  not  12.5 as you might expect. 
Multiplying this intermediate result by 2 gives the final result of  24, thus explaining the “lost” 
digit. Don’t forget that if you divide two integers, you always get an integer result. In addition, 
keep in mind that no rounding occurs, the decimal value is simply dropped, so integer division 
that ends up with 12.01, 12.5, or 12.99 will end up with the same value—12.  

 As you can see from the next-to-last  printf()  statement in  Program   3.3   , if you perform the 
same operation using floating-point values instead of integers, you obtain the expected result.  

 The decision of whether to use a  float  variable or an  int  variable should be made based on 
the variable’s intended use. If you don’t need any decimal places, use an integer variable. The 
resulting program is more efficient—that is, it executes more quickly on many computers. On 
the other hand, if you need the decimal place accuracy, the choice is clear. The only question 
you then must answer is whether to use a  float, double , or  long double . The answer to 
this question depends on the desired accuracy of the numbers you are dealing with, as well as 
their magnitude.  

 In the last  printf()  statement, the value of the variable  a  is negated by use of the unary 
minus operator. A  unary  operator is one that operates on a single value, as opposed to a binary 



35Working with Arithmetic Expressions

operator, which operates on two values. The minus sign actually has a dual role: As a binary 
operator, it is used for subtracting two values; as a unary operator, it is used to negate a value.  

 The unary minus operator has higher precedence than all other arithmetic operators, except for 
the unary plus operator ( + ), which has the same precedence. So the expression  

  c = -a * b;   

 results in the multiplication of  −a  by  b . Once again, in  Appendix   A    you will find a table 
summarizing the various operators and their precedences.  

  The Modulus Operator  

 A surprisingly valuable operator, one you may not have experience with, is the modulus opera-
tor, which is symbolized by the percent sign ( % ). Try to determine how this operator works by 
analyzing  Program   3.4   .  

  Program 3.4   Illustrating the Modulus Operator  

 // The modulus operator
  
  #include <stdio.h>
  
  int main (void)
  {
        int a = 25, b = 5, c = 10, d = 7;
  
        printf("a = %i, b = %i, c = %i, and d = %i\n", a, b, c, d);
        printf ("a %% b = %i\n", a % b);
        printf ("a %% c = %i\n", a % c);
        printf ("a %% d = %i\n", a % d);
        printf ("a / d * d + a %% d = %i\n",
                    a / d * d + a % d);
  
        return 0;
  }   

  Program 3.4   Output  

 a = 25, b = 5, c = 10, and d = 7
  a % b = 0
  a % c = 5
  a % d = 4
  a / d * d + a % d = 25   

 The first statement inside  main()  defines and initializes the variables  a ,  b ,  c , and  d  in a single 
statement.  
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 For a reminder, before a series of statements that use the modulus operator are printed, the first 
printf() statement prints the values of the four variables used in the program. It’s not crucial, 
but it’s a nice reminder to help someone follow along with your program. For the remain-
ing printf() lines, as you know,   printf()  uses the character that immediately follows the 
percent sign to determine how to print the next argument. However, if it is another percent 
sign that follows, the  printf()  routine takes this as an indication that you really intend to 
display a percent sign and inserts one at  the appropriate place in the program’s output.  

 You are correct if you concluded that the function of the modulus operator  %  is to give the 
remainder of the first value divided by the second value. In the first example, the remainder 
after 25 is divided by 5 and is displayed as 0. If you divide 25 by 10, you get a remainder of 5, 
as verified by the second line of output. Dividing 25 by 7 gives a remainder of 4, as shown in 
the third output line.  

 The last line of output in  Program   3.4    requires a bit of explanation. First, you will notice that 
the program statement has been written on two lines. This is perfectly valid in C. In fact, a 
program statement can be continued to the next line at any point at which a blank space could 
be used. (An exception to this occurs when dealing with character strings—a topic discussed 
in  Chapter   9   , “Character Strings.”) At times, it might not only be desirable, but perhaps even 
necessary, to continue a program statement onto the next line. The continuation of the 
 printf()  call in  Program    3.4    is indented to visually show that it is a continuation of the 
preceding program statement.  

 Turn your attention to the expression evaluated in the final statement. You will recall that any 
operations between two integer values in C are performed with integer arithmetic. Therefore, 
any remainder resulting from the division of two integer values is simply discarded. Dividing 
25 by 7, as indicated by the expression  a / d , gives an intermediate result of 3. Multiplying 
this value by the value of  d , which is 7, produces the intermediate result of 21. Finally, adding 
the remainder of dividing  a  by  d , as indicated by the expression  a % d , leads to the final result 
of 25. It  is no coincidence that this value is the same as the value of the variable  a . In general, 
the expression  

  a / b * b + a % b   

 will always equal the value of  a , assuming of course that  a  and  b  are both integer values. In 
fact, the modulus operator  %  is defined to work only with integer values.  

 As far as precedence is concerned, the modulus operator has equal precedence to the multipli-
cation and division operators. This implies, of course, that an expression such as  

  table + value % TABLE_SIZE   

 will be evaluated as  

  table + (value % TABLE_SIZE)    

  Integer and Floating-Point Conversions  

 To effectively develop C programs, you must understand the rules used for the implicit conver-
sion of floating-point and integer values in C.  Program   3.5    demonstrates some of the simple 
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conversions between numeric data types. You should note that some compilers might give 
warning messages to alert you of the fact that conversions are being performed.  

  Program 3.5   Converting Between Integers and Floats  

 // Basic conversions in C
  
  #include <stdio.h>
  
  int main (void)
  {
        float  f1 = 123.125, f2;
        int    i1, i2 = -150;
        char      c = 'a';
  
        i1 = f1;                 // floating to integer conversion
        printf ("%f assigned to an int produces %i\n", f1, i1);
  
        f1 = i2;                 // integer to floating conversion
        printf ("%i assigned to a float produces %f\n", i2, f1);
  
        f1 = i2 / 100;           // integer divided by integer
        printf ("%i divided by 100 produces %f\n", i2, f1);
  
        f2 = i2 / 100.0;           // integer divided by a float
        printf ("%i divided by 100.0 produces %f\n", i2, f2);
  
        f2 = (float)  i2 / 100;     // type cast operator
        printf ("(float) %i divided by 100 produces %f\n", i2, f2);
  
        return 0;
  }   

  Program 3.5   Output  

 123.125000 assigned to an int produces 123
  -150 assigned to a float produces -150.000000
  -150 divided by 100 produces -1.000000
  -150 divided by 100.0 produces -1.500000
  (float) -150 divided by 100 produces -1.500000   

 Whenever a floating-point value is assigned to an integer variable in C, the decimal portion of 
the number gets truncated. So, when the value of  f1  is assigned to  i1  in the previous program, 
the number 123.125 is  truncated , which means that only its integer portion, or 123, is stored in 
 i1 . The first line of the program’s output verifies that this is the case.  
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 Assigning an integer variable to a floating variable does not cause any change in the value 
of the number; the value is simply converted by the system and stored in the floating vari-
able. The second line of the program’s output verifies that the value of  i2  (−150) was correctly 
converted and stored in the  float  variable  f1 .  

 The next two lines of the program’s output illustrate two points that must be remembered 
when forming arithmetic expressions. The first has to do with integer arithmetic, which was 
previously discussed in this chapter. Whenever two operands in an expression are integers 
(and this applies to  short ,  unsigned ,  long , and  long long  integers as well), the operation is 
carried out under the rules of integer arithmetic. Therefore, any decimal portion resulting from 
a division operation is discarded, even if the result is assigned to a floating variable (as you did 
in the program). Therefore, when the integer variable  i2  is divided by  the integer constant  100 , 
the system performs the division as an integer division. The result of dividing −150 by 100, 
which is −1, is, therefore, the value that is stored in the  float  variable  f1 .  

 The next division performed in the previous listing involves an integer variable and a floating-
point constant. Any operation between two values in C is performed as a floating-point opera-
tion if either value is a floating-point variable or constant. Therefore, when the value of  i2  is 
divided by  100.0 , the system treats the division as a floating-point division and produces the 
result of −1.5, which is assigned to the  float  variable  f1 .   

  The Type Cast Operator   

 The last division operation from  Program   3.5    that reads  

  f2 = (float) i2 / 100;     // type cast operator   

 introduces the type cast operator. The type cast operator has the effect of converting the value 
of the variable  i2  to type  float  for purposes of evaluation of the expression. In no way does 
this operator permanently affect the value of the variable  i2 ; it is a unary operator that behaves 
like other unary operators. Because the expression  −a  has no permanent effect on the value of 
 a , neither does the expression  (float) a .  

 The type cast operator has a higher precedence than all the arithmetic operators except the 
unary minus and unary plus. Of course, if necessary, you can always use parentheses in an 
expression to force the terms to be evaluated in any desired order.  

 As another example of the use of the type cast operator, the expression  

  (int) 29.55 + (int) 21.99   

 is evaluated in C as  

  29 + 21   

 because the effect of casting a floating value to an integer is one of truncating the floating-
point value. The expression  

  (float) 6 / (float) 4   
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 produces a result of 1.5, as does the following expression:  

  (float) 6 / 4      

  Combining Operations with Assignment: The Assignment 
Operators  
 The C language permits you to join the arithmetic operators with the assignment operator 
using the following general format:  op=   

 In this format,   op   is any of the arithmetic operators, including  + ,  − ,  × ,  / , and  % . In addition,   op   
can be any of the bit operators for shifting and masking, which is discussed later.  

 Consider this statement:  

  count += 10;   

 The effect of the so-called “plus equals” operator  +=  is to add the expression on the right side of 
the operator to the expression on the left side of the operator and to store the result back into 
the variable on the left-hand side of the operator. So, the previous statement is equivalent to 
this statement:  

  count = count + 10;   

 The expression  

  counter -= 5   

 uses the “minus equals” assignment operator to subtract 5 from the value of  counter  and is 
equivalent to this expression:  

  counter = counter - 5   

 A slightly more involved expression is  

  a /= b + c   

 which divides  a  by whatever appears to the right of the equal sign—or by the sum of  b  and 
 c —and stores the result in  a . The addition is performed first because the addition operator has 
higher precedence than the assignment operator. In fact, all operators but the comma operator 
have higher precedence than the assignment operators, which all have the same precedence.  

 In this case, this expression is identical to the following:  

  a = a / (b + c)   

 The motivation for using assignment operators is threefold. First, the program statement 
becomes easier to write because what appears on the left side of the operator does not have 
to be repeated on the right side. Second, the resulting expression is usually easier to read. 
Third, the use of these operators can result in programs that execute more quickly because the 
compiler can sometimes generate less code to evaluate an expression.   
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  Types  _Complex  and  _Imaginary   
 Before leaving this chapter it is worthy to note two other types in the language called 
 _Complex  and  _Imaginary  for working with complex and imaginary numbers.  

 Support for  _Complex  and  _Imaginary  types has been part of the ANSI C standard since C99, 
although C11 does make it optional. The best way to know if your compiler supports these 
types is to examine the summary of data types in  Appendix   A   .    

     Exercises  
    1.    Type in and run the five programs presented in this chapter. Compare the output 

produced by each program with the output presented after each program in the text.    

   2.    Which of the following are invalid variable names? Why?  

  Int            char     6_05
  Calloc         Xx       alpha_beta_routine
  floating       _1312    z
  ReInitialize   _        A$     

   3.    Which of the following are invalid constants? Why?  

  123.456     0x10.5     0X0G1
  0001        0xFFFF     123L
  0Xab05      0L         -597.25
  123.5e2     .0001      +12
  98.6F       98.7U     17777s
  0996        -12E-12   07777
  1234uL      1.2Fe-7   15,000
  1.234L      197u      100U
  0XABCDEFL   0xabcu    +123     

   4.    Write a program that converts 27° from degrees Fahrenheit (F) to degrees Celsius (C) 
using the following formula:  

   C  = ( F  - 32) / 1.8     

   5.    What output would you expect from the following program?  

  #include <stdio.h>
  
  int main (void)
  {
       char c, d;
  
       c = 'd';
       d = c;
       printf ("d = %c\n", d);
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      return 0;
  }     

   6.    Write a program to evaluate the polynomial shown here:  

  3 x 3 - 5 x 2 + 6   

 for  x  = 2.55.    

   7.    Write a program that evaluates the following expression and displays the results 
(remember to use exponential format to display the result):  

  (3.31 x 10-8 x  2.01 x 10-7) / (7.16 x 10-6 + 2.01 x 10-8)     

   8.    To round off an integer  i  to the next largest even multiple of another integer  j , the 
following formula can be used:  

  Next_multiple = i + j - i % j   

 For example, to round off 256 days to the next largest number of days evenly divisible by 
a week, values of  i = 256  and  j = 7  can be substituted into the preceding formula as 
follows:  

  Next_multiple    = 256 + 7 - 256 % 7
                   = 256 + 7 - 4
                   = 259     

   9.    Write a program to find the next largest even multiple for the following values of  i  
and  j :  

 i   j  

 365   7  

 12,258   23  

 996   4  
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  listing and deleting breakpoints,   406  

  obtaining stack trace,   406 - 407  

  setting arrays and structures,   407 - 408  

  source file display,   401   

   general utility functions,   492 - 494   

   generating   

   Fibonacci numbers, arrays,   103 - 104   

   prime numbers, arrays,   104 - 106   

   getc() function,   364   

   getchar() function,   207 - 208 ,  346 ,  362   

   getNumberAndBase() function,   151   

   global variables, functions,   151 - 155   

   goto statement,   373 - 374 ,  461   

   grep command (Unix),   343 - 344    

grep command (Unix)



518518 Harbison, Samuel P. III

  H 
   Harbison, Samuel P. III,   505   

   header files,   471 - 473  

  using effectively,   339 - 340   

   help command (GDB),   408 - 409    

  I 
   identifiers,   428  

  predefined,   470   

   IDEs (Integrated Development 
Environments),   10 ,  506 - 507   

   if ( freopen ("inputData," "r", stdin) == 
NULL ) function,   479   

   if statements,   65 - 83 ,  461 - 462  

  compound relational tests,   72 - 74  

  else-if,   76 - 83  

  if-else,   69 - 72  

  nested,   74 - 76   

   if-else statement,   69 - 72   

   illustrating  

  arrays and structures,   186 - 187  

  pointers,   235  

  structures,   165   

   _Imaginary data type,   40   

   increment operators,   267 - 270 ,  448 - 449   

   indirection, pointers,   233 - 234   

   initializing  

  arrays,   106 - 108  

  character strings,   199 - 202  

  structures,   178 - 179   

   in-memory format conversion functions, 
  482 - 483   

   input, program,   51 - 56   

   inputting character strings,   204 - 206   

   instances, OOP (object-oriented program-
ming),   414 - 416   

   instruction set, computers,   5   

   int abs (n) function,   493   

   int atoi (s) function,   483   

   int atol (s) function,   483   

   int atoll (s) function,   483   

   int data type,   28 ,  433   

   int fclose (filePtr) function,   478   

   int ferror (filePtr) function,   478   

   int fflush (filePtr) function,   478   

   int fgetc (filePtr) function,   478   

   int fgetpos (filePtr, fpos) function,   478   

   int fpclassify (x) function,   485   

   int fprintf (filePtr, format, arg1, arg2, argn) 
function,   479   

   int fputc (c, filePtr) function,   479   

   int fputs (buffer, filePtr) function,   479   

   int fscanf (filePtr, format, arg1, arg2, argn) 
function,   480   

   int fseek (filePtr, offset, mode) function, 
  480   

   int fsetpos (filePtr, fpos) function,   480   

   int getc (filePtr) function,   480   

   int getchar (void) function,   480   

   int hypot (x, y) function,   488   

   int ilogb (x) function,   488   

   int isfin (x) function,   486   

   int isgreater (x, y) function,   486   

   int isgreaterequal (x, y) function,   486   

   int isinf (x) function,   486   

   int islessequal (x, y) function,   486   

   int islessgreater (x, y) function,   486   

   int isnan (x) function,   486   

   int isnormal (x) function,   486   

   int isunordered (x, y) function,   486   

   int printf (format, arg1, arg2, argn) 
function,   481   

   int putc (c, filePtr) function,   481   

   int putchar(c) function,   481   



519

   int puts (buffer) function,   481   

   int remove (fileName) function,   481   

   int rename (fileName1, fileName2) func-
tion,   481   

   int scanf (format, arg1, arg2, argn) 
function,   482   

   int signbit (x) function,   486   

   int strcmp (s1, s2) function,   474   

   int strncmp (s1, s2, n) function,   475   

   int system (s) function,   494   

   int tolower(c) function,   477   

   int toupper(c) function,   477   

   int ungetc (c, filePtr) function,   482   

   integer arithmetic,   33 - 39   

   integer constants,   22 ,  429 - 430   

   integer-point conversions,   36 - 38   

   integers  

  absolute values, calculating,   128 - 130  

  if statements,   66   

   base conversions,   109 - 111   

   Integrated Development Environments 
(IDEs),   10 ,  506 - 507   

   interpreters,   10   

      Introduction to Object-Oriented 
Programming, The,      507   

   I/O (input/output),   345  

  character,   346  

  exit() function,   369 - 370  

  fclose() function,   365 - 367  

  fgets() function,   367 - 368  

  FILE pointers,   368 - 369  

  fopen() function,   362 - 364  

  formatted,   346 - 358  

  printf() function,   346 - 353  

  fprintf() function,   367  

  fputs() function,   367 - 368  

  fscanf() function,   367  

  getc() function,   364  

  putc() function,   364  

  redirecting to files,   358 - 362  

  remove() function,   370 - 371  

  rename() function,   370   

   I/O (input/output) functions,   477 - 482   

   isLeapYear() function,   172    

  J-K 
   JavaScript,      

   Kernighan, Brian W.,   505   

   keywords  

  const,   442  

  pointers,   251 - 252  

  restrict,   442   

   Kochan, Stephen,   508    

  L 
   languages, programming,   5 - 6  

  interpreters,   10   

   left shift operator,   285 - 288   

   Liberty, Jesse,   507   

   linked lists, pointers,   243 - 251   

   Linux,   7   

   literals, compound,   454 - 455  

  initializing structures,   178 - 179   

   logical operators,   447   

   long double data type,   433   

   long double strtold (s, end) function,   484   

   long double_Complex data type,   433   

   long ftell (filePtr) function,   480   

   long int data type,   26 - 28 ,  433   

   long int labs (l) function,   493   

   long int lrint (x) function,   489   

   long int lround (x) function,   489   

   long int strtol (s, end, base) function,   484   

long int strtol (s, end, base) function



520520 long long int data type

   long long int data type,   27 - 28   

   long long int llabs (ll) function,   493   

   long long int llrint (x) function,   489   

   long long int llround (x) function,   489   

   long long int strtoll (s, end, base) 
function,   484   

   lookup() function,   221 - 226   

   loops, for  

  nested,   53 - 55  

  variants,   55 - 56    

  M 
   Mac OS X,   7   

   macros, DEBUG,   395 - 396   

   main() routine,   119 - 120 ,  126 ,  137   

   make utility,   341 - 342   

   Makefile,   341 - 342   

   math functions,   485 - 492   

   memory addresses, pointers,   273 - 275   

   memory allocation, dynamic,   384 - 389   

   memory functions,   475 - 476   

   methods, OOP (object-oriented 
programming),   414 - 416   

   Microsoft Windows,   7   

   MinGW (Minimalist GNU for Windows),   506   

   minimum() function,   138 - 141   

   mistakes, programming,   499 - 503   

   modifiers, type,   442   

   modular operator,   35 - 36   

   modules, communication between, 
  334 - 340   

   multibyte characters, character 
strings,   432   

   multidimensional arrays,   113 - 115 , 
 436 - 437   

   multidirectional arrays,   146 - 151   

   multiple expressions, for loops,   55    

  N 
   naming files,   7   

   nested if statements,   74 - 76   

   nested loops, for,   53 - 55   

   Newton-Raphson Iteration Technique, 
  131 - 133   

   null statement,   374 - 375 ,  462   

   null string,   211 - 214   

   numberOfDays() function,   169 - 172   

   numbers  

  Fibonacci, generating,   103 - 104  

  prime, generating,   104 - 106   

   numread = fread (text, sizeof (char), 80, 
in_file) function,   479    

  O 
   objects, OOP (object-oriented 

programming),   413 - 414   

   omitted variable,   456   

   omitting fields, for loops,   55   

   ones complement operator,   283 - 285   

   OOP (object-oriented programming)  

  defining   

  C# class to work with fractions, 
  424 - 426  

  C++ class,   421 - 424  

  objective-C class,   417 - 421   

   instances,   414 - 416  

  methods,   414 - 416  

  objects,   413 - 414  

  writing program to work with 
fractions,   416   

   OpenGroup.org,   506   

   opening files, fopen() function,   362 - 364   

   operating systems,   6 - 7   

   operations, pointers,   271 - 272   



521

   operators,   443 - 445  

  ##,  310   

  arithmetic,   31 ,  446 - 447  

  assignment,   39 ,  141 - 143 ,  449  

  bit,   278 - 291  

  Exclusive-OR,   282 - 283  

  left shift,   285 - 288  

  ones complement,   283 - 285  

  right shift,   286 - 288   

   bitwise,   448  

  AND,   279 - 281  

  Inclusive-OR,   281 - 282  

  comma,   378 ,  451  

  conditional,   90 - 92 ,  449 - 450  

  decrement,   267 - 270 ,  448 - 449  

  increment,   267 - 270 ,  448 - 449  

  logical,   447  

  modular,   35 - 36  

  relational,   46 - 50 ,  447 - 448  

  sizeof,   450 - 451  

  type cast,   38 - 39 ,  450  

  unary minus,   33 - 39   

   optimization, programs,   262   

   output, aligning,   50 - 51    

  P 
   perror() function,   371   

   Petzold, Charles,   507   

   Plauger, P. J.,   505   

   pointers,   233 ,  440  

  arrays,   258 - 270 ,  453 - 454  

  basic operations,   452 - 454  

  character strings,   264 - 266  

  constant,   266 - 267  

  expressions,   237 - 238  

  functions,   252 - 258 ,  272 - 273 ,  460  

  illustrating,   235  

  indirection,   233 - 234  

  keyword const,   251 - 252  

  linked lists,   243 - 251  

  memory addresses,   273 - 275  

  operations,   271 - 272  

  structures,   239 - 251 ,  453 - 454  

  variables, defining,   234 - 237   

   portability, programs, #define statement, 
  302 - 303   

   Prata, Stephen,   507   

   precision modifiers, printf() function,   347   

   predefined identifiers,   470   

   preprocessor,   297 ,  464  

  conditional compilation,   314 - 317  

  debugging programs,   391 - 397  

  directives,   465 - 470  

  #define,   465 - 467  

  #error,   467  

  #if,   467 - 468  

  #ifdef,   468  

  #ifndef,   468  

  #include,   468 - 469  

  #line,   469  

  #pragma,   469  

  #undef,   469 - 470  

  statements  

  #define statement,   297 - 311  

  #elif statement,   316 - 317  

  #else statement,   315  

  #endif,   316  

  #if statement,   316 - 317  

  #ifdef,   314 - 316  

  #include statement,   311 - 314  

  #undef statement,   317 -     

    trigraph sequences,   464   

   prime numbers, generating, arrays, 
  104 - 106   

prime numbers, generating, arrays



522522 print-list() function

   print_list() function,   252   

   printf() function,   13 - 17 ,  31 - 32 ,  119 ,  123 , 
 137 ,  269 ,  345 ,  358  

  conversion characters,   348  

  flags,   347  

  formatting data,   346 - 353  

  illustrating formats,   349 - 351  

  precision and width modifiers,   347  

  type modifiers,   347   

   printMessage() function,   120 - 121   

   process() function,   393 - 394   

   program looping,   43  

  do statement,   60 - 63  

  program input,   51 - 56  

  for statement,   44 - 51  

  triangular numbers,   43 - 44  

  while statement,   56 - 60   

   programming  

  common mistakes,   499 - 503  

  OOP (object-oriented 
programming),   413  

  defining C# class to work with 
fractions,   424 - 426  

  defining C++ class,   421 - 424  

  defining objective-C class,   417 - 421  

  instances,   414 - 416  

  methods,   414 - 416  

  writing program to work with 
fractions,   416  

  top-down,   137   

      Programming C# 3.0,      507   

      Programming in Objective-C,      508   

      Programming in the Key of C#,      507   

   programming languages,   5 - 6  

  interpreters,   10  

  OOP (object-oriented programming), 
objects,   413 - 414   

   programs,   5  

    building,   9  

  comments,   17 - 19 ,  429  

  compiling,   7 - 12    

  conditional compilation,   314 - 317  

  gcc command,   495 - 497  

  debugging,   391  

  gdb (GNU Debugger),   397 - 411  

  preprocessor,   391 - 397  

  dividing into multiple files,   331 - 334  

  executing,   9 - 10  

  extendibility, #define statement, 
  301 - 302  

  first, assessing,   13 - 15  

  forcing termination, exit() function, 
  369 - 370  

  optimization,   262  

  portability, #define statement,   302 - 303  

  running,   11 ,  12 - 13   

   prototype declaration, functions,   124   

   putc() function,   364   

   putchar() function,   346    

  Q-R 
   qualifiers, type,   379     

   ranges, integers,   23   

   reading character strings,   205   

   readLine() function,   208 - 210   

   recursive functions,   158 - 160   

   register qualifier,   379   

   register variable,   456   

   relational operators,   46 - 50 ,  447 - 448   

   remove() function,   370 - 371   

   rename() function,   370 - 371   

   renaming files, rename() function,   370 - 371   

   restrict keyword,   442   

   restrict qualifier,   379 - 380   

   results, functions, returning,   126 - 130   



523

   return statement,   462 - 463   

   return types, functions, declaring,   133 - 135   

   returning function results,   126 - 130   

   right shift operator,   286 - 288   

   Ritchie, Dennis M.,   505   

   rotate() function,   288 - 291 ,  314 - 315   

   rotating bits,   288 - 291   

   running programs,     11 - 13    

  S 
   scanf() function,   59 ,  119 ,  177 ,  204 - 206 , 

 358 ,  392  

  conversion characters,   353  

  conversion modifiers,   353  

  formatting data,   353 - 358   

   sed command (Unix),   343 - 344   

   shift functions,   286 - 288   

   short int data type,   27 - 28 ,  433   

   single-character input, character strings, 
  206 - 211   

   single-dimensional arrays,   435   

   size_t fread (buffer, size, n, filePtr) 
function,   479   

   size_t fwrite (buffer, size, n, filePtr) 
function,   480   

   size_t strcspn (s1, s2) function,   474   

   size_t strlen (s) function,   474   

   size_t strspn (s1, s2) function,   475   

   size_t strxfrm (s1, s2, n) function,   475   

   sizeof operator,   450 - 451   

   sort() function,   143     

   sorting arrays,   143     

   source file display, gdb (GNU 
Debugger),   401   

   source files, compiling multiple from 
command line,   332 - 334   

   specifiers, data types,   26 - 28   

   sprintf() function,   482 - 483   

   square roots, calculating,   130 - 133   

   squareRoot() function,   131 - 134 ,  137 , 
 155 - 156   

   sscanf() function,   482 - 483   

   stack traces, obtaining, gdb (GNU 
Debugger),   406 - 407   

   Standard C Library, The,   505   

   standard header files,   471 - 473   

   statements,   460  

  break,   62 ,  460  

  compound,   460  

  continue,   62 - 63 ,  460  

  debug, adding with preprocessor, 
  391 - 392  

  #define, preprocessor,   297 - 311  

  do,   60 - 63 ,  461  

  for,   44 - 51 ,  461  

  goto,   373 - 374 ,  461  

  if,   65 - 83 ,  461 - 462  

  compound relational tests,   72 - 74  

  else-if,   76 - 83  

  if-else,   69 - 72  

  nested,   74 - 76  

  #include, preprocessor,   311 - 314  

  null,   374 - 375 ,  462  

  preprocessor  

  #elif,   316 - 317  

  #else,   315  

  #endif,   316  

  #if,   316 - 317  

  #ifdef,   314 - 316  

  #ifndef,   314 - 316  

  #undef,   317  

  return,   462 - 463  

  switch,   83 - 86 ,  463 - 464  

  typedef,   441  

  extending data types,   323 - 325  

  while,   56 - 60 ,  464   

statements



524524 static variables

   static variables,   456  

  versus external,   337 - 339   

   stderr FILE pointer,   368 - 369   

   stdin FILE pointer,   368 - 369   

   stdout FILE pointer,   368 - 369   

   Steele, Guy L. Jr.,   505   

   storage classes,   456  

  functions,   456  

  variables,   456   

   storage sizes, integers,   23   

   storing dates, structures,   164 - 169   

   string functions,   474 - 475   

   stringLength() function,   198 ,  217   

   strings, character,   193 - 194  

  arrays,   218 - 226  

  arrays of characters,   194 - 196  

  character operations,   226 - 229  

  concatenating,   200 - 201  

  constant strings,   217 - 218  

  counting characters in,   198 - 199  

  displaying,   199 - 202  

  escape characters,   215 - 217  

  initializing,   199 - 202  

  inputting,   204 - 206  

  null string,   211 - 214  

  pointers,   264 - 267  

  reading,   205  

  single-character input,   206 - 211  

  structures,   218 - 226  

  testing for equality,   202 - 204  

  variable-length,   197 - 214   

   string-to-number routines,   483 - 484   

   Stroustrup, Bjarne,  421 ,   507   

   structures,   163 - 164 ,  437 - 439  

  arrays,   180 - 181 ,  185 - 186  

  basic operations,   452  

  character strings,   218 - 226  

  containing structures,   183 - 185  

  functions,   169 - 177  

  illustrating,   165 ,  186 - 187  

  initializing,   178 - 179  

  pointers,   239 - 251  

  setting, gdb (GNU Debugger),   407 - 408  

  storing dates,   164 - 169  

  storing time,   175 - 177  

  using in expressions,   166 - 169  

  variants,   189   

   switch statement,   83 - 86 ,  463 - 464   

   system ("mkdir /usr/tmp/data") 
function,   494   

   system include files,   313 - 314    

  T 
   tables, prime numbers, generating,   86 - 87   

   test() function,   254   

   testing character strings for equality, 
  202 - 204   

   tests, compound relational, if statements, 
  72 - 74   

   text editors,   7   

   top-down programming,   137   

   triangular numbers,   43 - 44   

   trigraph sequences, preprocessor,   464   

   type cast operator,   38 - 39 ,  450   

   type definitions,   319   

   type modifiers,   442  

  printf() function,   347   

   type qualifiers,   379 - 380   

   typedef statement,   441  

  extending data types,   323 - 325    

  U 
   unary minus operators,   33 - 39   

   unions,   375 - 378 ,  439 - 440   



525

   universal character names,   428   

   Unix,   7   

   Unix utilities,   343 - 344   

   unsigned char data type,   433   

   unsigned int constant,   27 - 28   

   unsigned int data type,   433   

   unsigned long int strtoul (s, end, base) 
function,   484   

   unsigned long long int strtoull (s, end, 
base) function,   484   

   unsigned specifier,   278   

   utilities  

  cvs,   343  

  make,   341 - 342  

  Unix,   343 - 344    

  V 
   values, variables, displaying,   15 - 17   

   variable-length arrays,   115 - 117 ,  436   

   variable-length character strings,   197 - 214   

   variables,   21 ,  29 - 30  

  auto,   456  

  automatic local,   124 - 126 ,  155 - 158  

  _Bool,   24 - 26   

   Boolean,   86 - 90  

  char,   24  

  declaring, for loops,   56  

  displaying values of,   15 - 17  

  extern,   456  

  external,   334 - 337  

  versus static,   337 - 339  

  global, functions,   151 - 155  

  omitted,   456  

  pointers, defining,   234 - 237  

  register,   456  

  static,   155 - 158 ,  456  

  versus external,   337 - 339  

  storage classes,   456  

  volatile,   442  

  working with, gdb (GNU Debugger), 
  400 - 401   

   variants  

  for loops,   55 - 56  

  structures,   189   

   vim text editor,   7   

   Visual Studio,   506   

   void *calloc (n, size) function,   484   

   void *malloc (size) function,   485   

   void *memchr (m1, c, n) function,   476   

   void *memcmp (m1, m2, n) function,   476   

   void *memcpy (m1, m2, n) function,   476   

   void *memmove (m1, m2, n) function,   476   

   void *memset (m1, c, n) function,   476   

   void *realloc (pointer, size) function,   485   

   void clearerr (filePtr) function,   477   

   void data type,   433   

   void exit (n) function,   493   

   void free (pointer) function,   485   

   void perror (message) function,   481   

   void qsort (arr, n, size, comp_fn) function, 
  493 - 494   

   void rewind (filePtr) function,   481   

   void srand (seed) function,   494   

   volatile qualifier,   379   

   volatile variable,   442    

  W-Z 
   while statement,   56 - 60 ,  464   

   wide character constants,   431   

   wide character string constants,   432   

   width modifiers, printf() function,   347   

   writing functions,   120     

writing functions


	Table of Contents
	Introduction
	3 Variables, Data Types, and Arithmetic Expressions
	Understanding Data Types and Constants
	The Integer Type int
	The Floating Number Type float
	The Extended Precision Type double
	The Single Character Type char
	The Boolean Data Type _Bool
	Type Specifiers: long, long long, short, unsigned, and signed

	Working with Variables
	Working with Arithmetic Expressions
	Integer Arithmetic and the Unary Minus Operator

	Combining Operations with Assignment: The Assignment Operators
	Types _Complex and _Imaginary
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-Z




