
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321776419
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321776419
https://plusone.google.com/share?url=http://www.informit.com/title/9780321776419
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321776419
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321776419/Free-Sample-Chapter

 Programming in C

Fourth Edition

informit.com/devlibrary

Developer’s
Library

Developer’s Library books are designed to provide practicing programmers with unique,
high-quality references and tutorials on the programming languages and technologies
they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners who
are especially skilled at organizing and presenting information in a way that’s useful
for other programmers.

Programming in Objective-C
Stephen G. Kochan
ISBN 978-0-321-96760-2

MySQL
Paul DuBois
ISBN-13: 978-0-321-83387-7

Linux Kernel Development
Robert Love
ISBN-13: 978-0-672-32946-3

Python Essential Reference
David Beazley
ISBN-13: 978-0-672-32978-4

PostgreSQL
Korry Douglas
ISBN-13: 978-0-672-32756-8

C++ Primer Plus
Stephen Prata
ISBN-13: 978-0-321-77640-2

Developer’s Library books are available in print and in electronic formats at most retail
and online bookstores, as well as by subscription from Safari Books Online at safari.

informit.com

ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library

Key titles include some of the best, most widely acclaimed books within their
topic areas:

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

 Programming in C

Fourth Edition

 Stephen G. Kochan

 Acquisitions
Editor
Mark Taber

 Managing Editor
Sandra Schroeder

 Project Editor
Mandie Frank

 Copy Editor
Charlotte Kughen

 Indexer
Brad Herriman

 Proofreader
Debbie Williams

 Technical Editor
Siddhartha Singh

 Editorial Assistant
Vanessa Evans

 Designer
Chuti Prasertsith

 Compositor
Mary Sudul

 Programming in C, Fourth Edition
 Copyright © 2015 by Pearson Education, Inc.

 All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher. No patent liability is assumed
with respect to the use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for damages resulting
from the use of the information contained herein.

 ISBN-13: 978-0-321-77641-9

 ISBN-10: 0-321-77641-0

 Library of Congress Control Number: 2014944082

 Printed in the United States of America

 First Printing: August 2014

 Trademarks
 All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. The publisher cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

 Warning and Disclaimer
 Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this
book.

 Special Sales
 For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

 For government sales inquiries, please contact governmentsales@pearsoned.com .

 For questions about sales outside the U.S., please contact international@pearsoned.com .

❖

 For my mother and father

❖

vi Contentsvi Contents

 Contents at a Glance

 Introduction 1

 1 Some Fundamentals 5

 2 Compiling and Running Your First Program 11

 3 Variables, Data Types, and Arithmetic Expressions 21

 4 Program Looping 43

 5 Making Decisions 65

 6 Working with Arrays 95

 7 Working with Functions 119

 8 Working with Structures 163

 9 Character Strings 193

 10 Pointers 233

 11 Operations on Bits 277

 12 The Preprocessor 297

 13 Extending Data Types with the Enumerated Data Type,
Type Definitions, and Data Type Conversions 319

 14 Working with Larger Programs 331

 15 Input and Output Operations in C 345

 16 Miscellaneous and Advanced Features 373

 17 Debugging Programs 391

 18 Object-Oriented Programming 413

viiContents viiContents

 A C Language Summary 427

 B The Standard C Library 471

 C Compiling Programs with gcc 495

 D Common Programming Mistakes 499

 E Resources 505

 Index 509

 Table of Contents

Introduction 1

 1 Some Fundamentals 5

Programming 5

Higher-Level Languages 5

Operating Systems 6

Compiling Programs 7

Integrated Development Environments 10

Language Interpreters 10

 2 Compiling and Running Your First Program 11

Compiling Your Program 12

Running Your Program 12

Understanding Your First Program 13

Displaying the Values of Variables 15

Comments 17

Exercises 19

 3 Variables, Data Types, and Arithmetic Expressions 21

Understanding Data Types and Constants 21

The Integer Type int 22

The Floating Number Type float 23

The Extended Precision Type double 23

The Single Character Type char 24

The Boolean Data Type _Bool 24

Type Specifiers: long, long long, short, unsigned, and signed 26

Working with Variables 29

Working with Arithmetic Expressions 30

Integer Arithmetic and the Unary Minus Operator 33

Combining Operations with Assignment: The Assignment Operators 39

Types _Complex and _Imaginary 40

Exercises 40

ixContents

 4 Program Looping 43

Triangular Numbers 43

The for Statement 44

Relational Operators 46

Aligning Output 50

Program Input 51

Nested for Loops 53

for Loop Variants 55

The while Statement 56

The do Statement 60

The break Statement 62

The continue Statement 62

Exercises 63

 5 Making Decisions 65

The if Statement 65

The if-else Construct 69

Compound Relational Tests 72

Nested if Statements 74

The else if Construct 76

The switch Statement 83

Boolean Variables 86

The Conditional Operator 90

Exercises 92

 6 Working with Arrays 95

Defining an Array 96

Using Array Elements as Counters 100

Generating Fibonacci Numbers 103

Using an Array to Generate Prime Numbers 104

Initializing Arrays 106

Character Arrays 108

Base Conversion Using Arrays 109

The const Qualifier 111

Multidimensional Arrays 113

Variable Length Arrays 115

Exercises 117

x Contents

 7 Working with Functions 119

Defining a Function 119

Arguments and Local Variables 123

Function Prototype Declaration 124

Automatic Local Variables 124

Returning Function Results 126

Functions Calling Functions Calling... 130

Declaring Return Types and Argument Types 133

Checking Function Arguments 135

Top-Down Programming 137

Functions and Arrays 137

Assignment Operators 141

Sorting Arrays 143

Multidimensional Arrays 146

Global Variables 151

Automatic and Static Variables 155

Recursive Functions 158

Exercises 161

 8 Working with Structures 163

The Basics of Structures 163

A Structure for Storing the Date 164

Using Structures in Expressions 166

Functions and Structures 169

A Structure for Storing the Time 175

Initializing Structures 178

Compound Literals 178

Arrays of Structures 180

Structures Containing Structures 183

Structures Containing Arrays 185

Structure Variants 189

Exercises 190

 9 Character Strings 193

Revisiting the Basics of Strings 193

Arrays of Characters 194

xiContents

Variable-Length Character Strings 197

Initializing and Displaying Character Strings 199

Testing Two Character Strings for Equality 202

Inputting Character Strings 204

Single-Character Input 206

The Null String 211

Escape Characters 215

More on Constant Strings 217

Character Strings, Structures, and Arrays 218

A Better Search Method 221

Character Operations 226

Exercises 229

 10 Pointers 233

Pointers and Indirection 233

Defining a Pointer Variable 234

Using Pointers in Expressions 237

Working with Pointers and Structures 239

Structures Containing Pointers 241

Linked Lists 243

The Keyword const and Pointers 251

Pointers and Functions 252

Pointers and Arrays 258

A Slight Digression About Program Optimization 262

Is It an Array or Is It a Pointer? 262

Pointers to Character Strings 264

Constant Character Strings and Pointers 266

The Increment and Decrement Operators Revisited 267

Operations on Pointers 271

Pointers to Functions 272

Pointers and Memory Addresses 273

Exercises 275

 11 Operations on Bits 277

The Basics of Bits 277

Bit Operators 278

The Bitwise AND Operator 279

xii Contents

The Bitwise Inclusive-OR Operator 281

The Bitwise Exclusive-OR Operator 282

The Ones Complement Operator 283

The Left Shift Operator 285

The Right Shift Operator 286

A Shift Function 286

Rotating Bits 288

Bit Fields 291

Exercises 295

 12 The Preprocessor 297

The #define Statement 297

Program Extendability 301

Program Portability 302

More Advanced Types of Definitions 304

The # Operator 309

The ## Operator 310

The #include Statement 311

System Include Files 313

Conditional Compilation 314

The #ifdef, #endif, #else, and #ifndef Statements 314

The #if and #elif Preprocessor Statements 316

The #undef Statement 317

Exercises 318

 13 Extending Data Types with the Enumerated Data Type, Type Definitions, and Data
Type Conversions 319

Enumerated Data Types 319

The typedef Statement 323

Data Type Conversions 325

Sign Extension 327

Argument Conversion 328

Exercises 329

 14 Working with Larger Programs 331

Dividing Your Program into Multiple Files 331

Compiling Multiple Source Files from the Command Line 332

xiiiContents

Communication Between Modules 334

External Variables 334

Static Versus Extern Variables and Functions 337

Using Header Files Effectively 339

Other Utilities for Working with Larger Programs 341

The make Utility 341

The cvs Utility 343

Unix Utilities: ar, grep, sed, and so on 343

 15 Input and Output Operations in C 345

Character I/O: getchar() and putchar() 346

Formatted I/O: printf() and scanf() 346

The printf() Function 346

The scanf() Function 353

Input and Output Operations with Files 358

Redirecting I/O to a File 358

End of File 361

Special Functions for Working with Files 362

The fopen Function 362

The getc() and putc() Functions 364

The fclose() Function 365

The feof Function 367

The fprintf() and fscanf() Functions 367

The fgets() and fputs() Functions 367

stdin, stdout, and stderr 368

The exit() Function 369

Renaming and Removing Files 370

Exercises 371

 16 Miscellaneous and Advanced Features 373

Miscellaneous Language Statements 373

The goto Statement 373

The null Statement 374

Working with Unions 375

The Comma Operator 378

Type Qualifiers 379

The register Qualifier 379

xiv Contents

The volatile Qualifier 379

The restrict Qualifier 379

Command-line Arguments 380

Dynamic Memory Allocation 384

The calloc() and malloc() Functions 385

The sizeof Operator 385

The free Function 387

Exercises 389

 17 Debugging Programs 391

Debugging with the Preprocessor 391

Debugging Programs with gdb 397

Working with Variables 400

Source File Display 401

Controlling Program Execution 402

Getting a Stack Trace 406

Calling Functions and Setting Arrays and Structures 407

Getting Help with gdb Commands 408

Odds and Ends 410

 18 Object-Oriented Programming 413

What Is an Object Anyway? 413

Instances and Methods 414

Writing a C Program to Work with Fractions 416

Defining an Objective-C Class to Work with Fractions 417

Defining a C++ Class to Work with Fractions 421

Defining a C# Class to Work with Fractions 424

 A C Language Summary 427

1.0 Digraphs and Identifiers 427

2.0 Comments 429

3.0 Constants 429

4.0 Data Types and Declarations 432

5.0 Expressions 442

6.0 Storage Classes and Scope 456

7.0 Functions 458

8.0 Statements 460

9.0 The Preprocessor 464

xvContents

 B The Standard C Library 471

Standard Header Files 471

String Functions 474

Memory Functions 475

Character Functions 476

I/O Functions 477

In-Memory Format Conversion Functions 482

String-to-Number Conversion 483

Dynamic Memory Allocation Functions 484

Math Functions 485

General Utility Functions 493

 C Compiling Programs with gcc 495

General Command Format 495

Command-Line Options 496

 D Common Programming Mistakes 499

 E Resources 505

The C Programming Language 505

C Compilers and Integrated Development Environments 506

Miscellaneous 507

 Index 509

 About the Author
 Stephen G. Kochan has been developing software with the C programming language for
more than 30 years. He is the author of several best-selling titles on the C language, including
 Programming in C , Programming in Objective-C , and Topics in C Programming . He has also written
extensively on Unix and is the author or coauthor of Exploring the Unix System and Unix Shell
Programming .

 Contributing Author, Fourth Edition
 Dean Miller is a writer and editor with more than 20 years of experience in both the
publishing and licensed consumer products businesses. He is coauthor of the most recent
editions of Sams Teach Yourself C in One Hour a Day, and Sams Teach Yourself Beginning
Programming in 24 Hours .

 Acknowledgments
 I wish to thank the following people for their help in the preparation of various versions of this
text: Douglas McCormick, Jim Scharf, Henry Tabickman, Dick Fritz, Steve Levy, Tony Ianinno,
and Ken Brown. I also want to thank Henry Mullish of New York University for teaching me so
much about writing and for getting me started in the publishing business.

 At Pearson, I’d like to thank Mark Taber and my project editor Mandie Frank. Thanks also to
my copy editor, Charlotte Kughen, and my technical editor, Siddhartha Singh. Finally, I’d like
to thank all the other people from Pearson who were involved on this project, even if I did not
work with them directly.

 We Want to Hear from You!
 As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

 We welcome your comments. You can email or write directly to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.

 Please note that we cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail we receive, we might not be able to reply to every message.

 When you write, please be sure to include this book’s title and author, as well as your name
and phone number or email address.

 Email: feedback@developers-library.info

 Mail: Reader Feedback
Addison-Wesley Developer’s Library
800 East 96th Street
Indianapolis, IN 46240 USA

 Reader Services
 Visit our website and register this book at www.informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

http://www.informit.com/register

 Introduction

 The C programming language was pioneered by Dennis Ritchie at AT&T Bell Laboratories in the
early 1970s. It was not until the late 1970s, however, that this programming language began to
gain widespread popularity and support. This was because until that time C compilers were not
readily available for commercial use outside of Bell Laboratories. Initially, C’s growth in popu-
larity was also spurred on in part by the equal, if not faster, growth in popularity of the Unix
operating system. This operating system, which was also developed at Bell Laboratories, had C
as its “standard” programming language. In fact, well over 90% of the operating system itself
was written in the C language!

 The enormous success of the IBM PC and its look-alikes soon made MS-DOS the most popular
environment for the C language. As C grew in popularity across different operating systems,
more and more vendors hopped on the bandwagon and started marketing their own C compil-
ers. For the most part, their version of the C language was based on an appendix found in
the first C programming text— The C Programming Language —by Brian Kernighan and Dennis
Ritchie. Unfortunately, this appendix did not provide a complete and unambiguous definition
of C, meaning that vendors were left to interpret some aspects of the language on their own.

 In the early 1980s, a need was seen to standardize the definition of the C language. The American
National Standards Institute (ANSI) is the organization that handles such things, so in 1983 an
ANSI C committee (called X3J11) was formed to standardize C. In 1989, the committee’s work
was ratified, and in 1990, the first official ANSI standard definition of C was published.

 Because C is used around the world, the International Standard Organization (ISO) soon got
involved. They adopted the standard, where it was called ISO/IEC 9899:1990. Since that time,
additional changes have been made to the C language. The most recent standard was adopted
in 2011. It is known as ANSI C11, or ISO/IEC 9899:2011. It is this version of the language upon
which this book is based.

 C is a “higher-level language,” yet it provides capabilities that enable the user to “get in
close” with the hardware and deal with the computer on a much lower level. This is because,
although C is a general-purpose structured programming language, it was originally designed
with systems programming applications in mind and, as such, provides the user with an enor-
mous amount of power and flexibility.

2 Introduction

 This book proposes to teach you how to program in C. It assumes no previous exposure to the
language and was designed to appeal to novice and experienced programmers alike. If you have
previous programming experience, you will find that C has a unique way of doing things that
probably differs from other languages you have used.

 Every feature of the C language is treated in this text. As each new feature is presented, a small
 complete program example is usually provided to illustrate the feature. This reflects the overrid-
ing philosophy that has been used in writing this book: to teach by example. Just as a picture
is worth a thousand words, so is a properly chosen program example. If you have access to a
computer that supports the C programming language, you are strongly encouraged to down-
load and run each program presented in this book and to compare the results obtained on your
system to those shown in the text. By doing so, not only will you learn the language and its
syntax, but you will also become familiar with the process of typing in, compiling, and running
C programs.

 You will find that program readability has been stressed throughout the book. This is because
I strongly believe that programs should be written so that they can be easily read—either by
the author or by somebody else. Through experience and common sense, you will find that
such programs are almost always easier to write, debug, and modify. Furthermore, developing
programs that are readable is a natural result of a true adherence to a structured programming
discipline.

 Because this book was written as a tutorial, the material covered in each chapter is based on
previously presented material. Therefore, maximum benefit will be derived from this book by
reading each chapter in succession, and you are highly discouraged from “skipping around.”
You should also work through the exercises that are presented at the end of each chapter before
proceeding on to the next chapter.

 Chapter 1 , “Some Fundamentals,” which covers some fundamental terminology about higher-
level programming languages and the process of compiling programs, has been included to
ensure that you understand the language used throughout the remainder of the text. From
 Chapter 2 , “Compiling and Running Your First Program,” on, you will be slowly introduced to
the C language. By the time Chapter 15 , “Input and Output Operations in C,” rolls around, all
the essential features of the language will have been covered. Chapter 15 goes into more depth
about I/O operations in C. Chapter 16 , “Miscellaneous and Advanced Features,” includes those
features of the language that are of a more advanced or esoteric nature.

 Chapter 17 , “Debugging Programs,” shows how you can use the C preprocessor to help debug
your programs. It also introduces you to interactive debugging. The popular debugger gdb was
chosen to illustrate this debugging technique.

 Over the last decade, the programming world has been abuzz with the notion of object-
oriented programming, or OOP for short. C is not an OOP language; however, several other
programming languages that are based on C are OOP languages. Chapter 18 , “Object-oriented
Programming,” gives a brief introduction to OOP and some of its terminology. It also gives a
brief overview of three OOP languages that are based on C, namely C++, C#, and Objective-C.

3Introduction

 Appendix A , “C Language Summary,” provides a complete summary of the language and is
provided for reference purposes.

 Appendix B , “The Standard C Library,” provides a summary of many of the standard library
routines that you will find on all systems that support C.

 Appendix C , “Compiling Programs with gcc ,” summarizes many of the commonly used
options when compiling programs with GNU’s C compiler gcc .

 In Appendix D , “Common Programming Mistakes,” you’ll find a list of common programming
mistakes.

 Finally, Appendix E , “Resources,” provides a list of resources you can turn to for more informa-
tion about the C language and to further your studies.

 This book makes no assumptions about a particular computer system or operating system on
which the C language is implemented. The text makes brief mention of how to compile and
execute programs using the popular GNU C compiler gcc .

This page intentionally left blank

 3
 Variables, Data Types, and

Arithmetic Expressions

 The true power of programs you create is their manipulation of data. In order to truly take
advantage of this power, you need to better understand the different data types you can use, as
well as how to create and name variables. C has a rich variety of math operators that you can
use to manipulate your data. In this chapter you will cover:

 ■ The int , float , double , char , and _Bool data types

 ■ Modifying data types with short , long , and long long

 ■ The rules for naming variables

 ■ Basic math operators and arithmetic expressions

 ■ Type casting

 Understanding Data Types and Constants
 You have already been exposed to the C basic data type int . As you will recall, a variable
declared to be of type int can be used to contain integral values only—that is, values that do
not contain decimal places.

 The C programming language provides four other basic data types: float , double , char , and
 _Bool . A variable declared to be of type float can be used for storing floating-point numbers
(values containing decimal places). The double type is the same as type float , only with
roughly twice the precision. The char data type can be used to store a single character, such as
the letter ’a’, the digit character ’6’, or a semicolon (’;’) (more on this later). Finally, the _Bool
data type can be used to store just the values 0 or 1 . Variables of this type are used for indicat-
ing an on/off, yes/no, or true/false situation. These one-or-the-other choices are also known as
binary choices.

 In C, any number, single character, or character string is known as a constant . For example,
the number 58 represents a constant integer value. The character string "Programming in C

22 Chapter 3 Variables, Data Types, and Arithmetic Expressions

is fun.\n" is an example of a constant character string. Expressions consisting entirely of
constant values are called constant expressions . So, the expression

 128 + 7 - 17

 is a constant expression because each of the terms of the expression is a constant value. But if i
were declared to be an integer variable, the expression

 128 + 7 – i

 would not represent a constant expression because its value would change based on the value
of i . If i is 10, the expression is equal to 125, but if i is 200, the expression is equal to −65.

 The Integer Type int
 In C, an integer constant consists of a sequence of one or more digits. A minus sign preceding
the sequence indicates that the value is negative. The values 158 , −10 , and 0 are all valid exam-
ples of integer constants. No embedded spaces are permitted between the digits, and values
larger than 999 cannot be expressed using commas. (So, the value 12,000 is not a valid integer
constant and must be written as 12000 .)

 Two special formats in C enable integer constants to be expressed in a base other than decimal
(base 10). If the first digit of the integer value is a 0 , the integer is taken as expressed in octal
notation—that is, in base 8. In that case, the remaining digits of the value must be valid base-8
digits and, therefore, must be 0–7. So, to express the value 50 in base 8 in C, which is equiva-
lent to the value 40 in decimal, the notation 050 is used. Similarly, the octal constant 0177
represents the decimal value 127 (1 × 64 + 7 × 8 + 7). An integer value can be displayed at the
terminal in octal notation by using the format characters %o in the format string of a printf()
statement. In such a case, the value is displayed in octal without a leading zero. The format
character %#o does cause a leading zero to be displayed before an octal value.

 If an integer constant is preceded by a zero and the letter x (either lowercase or uppercase), the
value is taken as being expressed in hexadecimal (base 16) notation. Immediately following the
letter x are the digits of the hexadecimal value, which can be composed of the digits 0–9 and
the letters a–f (or A–F). The letters represent the values 10–15, respectively. So, to assign the
hexadecimal value FFEF0D to an integer variable called rgbColor , the statement

 rgbColor = 0xFFEF0D;

 can be used. The format characters %x display a value in hexadecimal format without the
leading 0x , and using lowercase letters a–f for hexadecimal digits. To display the value with the
leading 0x , you use the format characters %#x , as in the following:

 printf ("Color is %#x\n", rgbColor);

 An uppercase x, as in %X or %#X , can be used to display the leading x and the hexadecimal
digits that follow using uppercase letters.

23Understanding Data Types and Constants

 Storage Sizes and Ranges

 Every value, whether it’s a character, integer, or floating-point number, has a range of values
associated with it. This range has to do with the amount of storage that is allocated to store
a particular type of data. In general, that amount is not defined in the language. It typically
depends on the computer you’re running, and is, therefore, called implementation- or machine -
dependent. For example, an integer might take up 32 bits on your computer, or perhaps it
might be stored in 64. You should never write programs that make any assumptions about the
size of your data types. You are, however, guaranteed that a minimum amount of storage will
be set aside for each basic data type. For example, it’s guaranteed that an integer value will be
stored in a minimum of 32 bits of storage, which is the size of a “word” on many computers.

 The Floating Number Type float
 A variable declared to be of type float can be used for storing values containing decimal
places. A floating-point constant is distinguished by the presence of a decimal point. You
can omit digits before the decimal point or digits after the decimal point, but obviously you
can’t omit both. The values 3. , 125.8 , and −.0001 are all valid examples of floating-point
constants. To display a floating-point value at the terminal, the printf conversion characters
 %f are used.

 Floating-point constants can also be expressed in scientific notation . The value 1.7e4 is a
floating-point value expressed in this notation and represents the value 1.7 × 10 4 . The value
before the letter e is known as the mantissa , whereas the value that follows is called the expo-
nent . This exponent, which can be preceded by an optional plus or minus sign, represents the
power of 10 by which the mantissa is to be multiplied. So, in the constant 2.25e−3 , the 2.25
is the value of the mantissa and −3 is the value of the exponent. This constant represents the
value 2.25 × 10 −3 , or 0.00225. Incidentally, the letter e , which separates the mantissa from
the exponent, can be written in either lowercase or uppercase.

 To display a value in scientific notation, the format characters %e should be specified in the
 printf() format string. The printf() format characters %g can be used to let printf()
decide whether to display the floating-point value in normal floating-point notation or in
scientific notation. This decision is based on the value of the exponent: If it’s less than −4 or
greater than 5, %e (scientific notation) format is used; otherwise, %f format is used.

 Use the %g format characters for displaying floating-point numbers—it produces the most
aesthetically pleasing output.

 A hexadecimal floating constant consists of a leading 0x or 0X, followed by one or more
decimal or hexadecimal digits, followed by a p or P , followed by an optionally signed binary
exponent. For example, 0x0.3p10 represents the value 3/16 × 2 10 = 0.5 .

 The Extended Precision Type double
 The double type is very similar to the float type, but it is used whenever the range provided
by a float variable is not sufficient. Variables declared to be of type double can store roughly

24 Chapter 3 Variables, Data Types, and Arithmetic Expressions

twice as many significant digits as can a variable of type float . Most computers represent
 double values using 64 bits.

 Unless told otherwise, all floating-point constants are taken as double values by the C
compiler. To explicitly express a float constant, append either an f or F to the end of the
number, as follows:

 12.5f

 To display a double value, the format characters %f , %e , or %g , which are the same format char-
acters used to display a float value, can be used.

 The Single Character Type char
 A char variable can be used to store a single character. 1 A character constant is formed by
enclosing the character within a pair of single quotation marks. So 'a' , ';' , and '0' are all
valid examples of character constants. The first constant represents the letter a , the second is a
semicolon, and the third is the character zero—which is not the same as the number zero. Do
not confuse a character constant, which is a single character enclosed in single quotes, with a
character string, which is any number of characters enclosed in double quotes.

 The character constant '\n' —the newline character—is a valid character constant even though
it seems to contradict the rule cited previously. This is because the backslash character is a
special character in the C system and does not actually count as a character. In other words,
the C compiler treats the character '\n' as a single character, even though it is actually formed
by two characters. There are other special characters that are initiated with the backslash char-
acter. Consult Appendix A , “C Language Summary,” for a complete list.

 The format characters %c can be used in a printf() call to display the value of a char variable
at the terminal.

 The Boolean Data Type _Bool
 A _Bool variable is defined in the language to be large enough to store just the values 0 and 1 .
The precise amount of memory that is used is unspecified. _Bool variables are used in programs
that need to indicate a Boolean condition. For example, a variable of this type might be used to
indicate whether all data has been read from a file.

 By convention, 0 is used to indicate a false value, and 1 indicates a true value. When assigning
a value to a _Bool variable, a value of 0 is stored as 0 inside the variable, whereas any nonzero
value is stored as 1.

 To make it easier to work with _Bool variables in your program, the standard header file
 <stdbool.h> defines the values bool , true , and false . An example of this is shown in
 Program 5.10A in Chapter 5 , “Making Decisions.”

 1. Appendix A discusses methods for storing characters from extended character sets, through special

escape sequences, universal characters, and wide characters.

25Understanding Data Types and Constants

 In Program 3.1 , the basic C data types are used.

 Program 3.1 Using the Basic Data Types

 #include <stdio.h>

 int main (void)
 {
 int integerVar = 100;
 float floatingVar = 331.79;
 double doubleVar = 8.44e+11;
 char charVar = 'W';

 _Bool boolVar = 0;

 printf ("integerVar = %i\n", integerVar);
 printf ("floatingVar = %f\n", floatingVar);
 printf ("doubleVar = %e\n", doubleVar);
 printf ("doubleVar = %g\n", doubleVar);
 printf ("charVar = %c\n", charVar);

 printf ("boolVar = %i\n", boolVar);

 return 0;
 }

 Program 3.1 Output

 integerVar = 100
 floatingVar = 331.790009
 doubleVar = 8.440000e+11
 doubleVar = 8.44e+11
 charVar = W
 boolVar = 0;

 The first statement of Program 3.1 declares the variable integerVar to be an integer variable
and also assigns to it an initial value of 100 , as if the following two statements had been used
instead:

 int integerVar;
 integerVar = 100;

 In the second line of the program’s output, notice that the value of 331.79 , which is assigned
to floatingVar , is actually displayed as 331.790009 . In fact, the actual value displayed is
dependent on the particular computer system you are using. The reason for this inaccuracy is
the particular way in which numbers are internally represented inside the computer. You have
probably come across the same type of inaccuracy when dealing with numbers on your pocket
calculator. If you divide 1 by 3 on your calculator, you get the result .33333333, with perhaps

26 Chapter 3 Variables, Data Types, and Arithmetic Expressions

some additional 3s tacked on at the end. The string of 3s is the calculator’s approximation to
one third. Theoretically, there should be an infinite number of 3s. But the calculator can hold
only so many digits, thus the inherent inaccuracy of the machine. The same type of inac-
curacy applies here: Certain floating-point values cannot be exactly represented inside the
computer’s memory.

 When displaying the values of float or double variables, you have the choice of three differ-
ent formats. The %f characters are used to display values in a standard manner. Unless told
otherwise, printf() always displays a float or double value to six decimal places rounded.
You see later in this chapter how to select the number of decimal places that are displayed.

 The %e characters are used to display the value of a float or double variable in scientific nota-
tion. Once again, six decimal places are automatically displayed by the system.

 With the %g characters, printf() chooses between %f and %e and also automatically removes
from the display any trailing zeroes. If no digits follow the decimal point, it doesn’t display
that either.

 In the next-to-last printf() statement, the %c characters are used to display the single charac-
ter 'W' that you assigned to charVar when the variable was declared. Remember that whereas
a character string (such as the first argument to printf()) is enclosed within a pair of double
quotes, a character constant must always be enclosed within a pair of single quotes.

 The last printf() shows that a _Bool variable can have its value displayed using the integer
format characters %i .

 Type Specifiers: long , long long , short , unsigned , and signed
 If the specifier long is placed directly before the int declaration, the declared integer variable is
of extended range on some computer systems. An example of a long int declaration might be

 long int factorial;

 This declares the variable factorial to be a long integer variable. As with float s and
 double s, the particular accuracy of a long variable depends on your particular computer
system. On many systems, an int and a long int have the same range and either can be used
to store integer values up to 32-bits wide (2 31 − 1 , or 2,147,483,647).

 A constant value of type long int is formed by optionally appending the letter L (upper- or
lowercase) onto the end of an integer constant. No spaces are permitted between the number
and the L . So, the declaration

 long int numberOfPoints = 131071100L;

 declares the variable numberOfPoints to be of type long int with an initial value of
 131,071,100 .

 To display the value of a long int using printf() , the letter l is used as a modifier before the
integer format characters i , o , and x . This means that the format characters %li can be used to

27Understanding Data Types and Constants

display the value of a long int in decimal format, the characters %lo can display the value in
octal format, and the characters %lx can display the value in hexadecimal format.

 There is also a long long integer data type, so

 long long int maxAllowedStorage;

 declares the indicated variable to be of the specified extended accuracy, which is guaranteed
to be at least 64 bits wide. Instead of a single letter l, two ls are used in the printf string to
display long long integers, as in "%lli" .

 The long specifier is also allowed in front of a double declaration, as follows:

 long double US_deficit_2004;

 A long double constant is written as a floating constant with the letter l or L immediately
following, such as

 1.234e+7L

 To display a long double , the L modifier is used. So, %Lf displays a long double value
in floating-point notation, %Le displays the same value in scientific notation, and %Lg tells
 printf() to choose between %Lf and %Le .

 The specifier short , when placed in front of the int declaration, tells the C compiler that the
particular variable being declared is used to store fairly small integer values. The motivation for
using short variables is primarily one of conserving memory space, which can be an issue in
situations in which the program needs a lot of memory and the amount of available memory
is limited.

 On some machines, a short int takes up half the amount of storage as a regular int variable
does. In any case, you are guaranteed that the amount of space allocated for a short int will
not be less than 16 bits.

 There is no way to explicitly write a constant of type short int in C. To display a short int
variable, place the letter h in front of any of the normal integer conversion characters: %hi ,
 %ho , or %hx . Alternatively, you can also use any of the integer conversion characters to display
 short ints , due to the way they can be converted into integers when they are passed as argu-
ments to the printf() routine.

 The final specifier that can be placed in front of an int variable is used when an integer vari-
able will be used to store only positive numbers. The declaration

 unsigned int counter;

 declares to the compiler that the variable counter is used to contain only positive values. By
restricting the use of an integer variable to the exclusive storage of positive integers, the accu-
racy of the integer variable is extended.

 An unsigned int constant is formed by placing the letter u (or U) after the constant, as follows:

 0x00ffU

28 Chapter 3 Variables, Data Types, and Arithmetic Expressions

 You can combine the letters u (or U) and l (or L) when writing an integer constant, so

 20000UL

 tells the compiler to treat the constant 20000 as an unsigned long .

 An integer constant that’s not followed by any of the letters u , U , l , or L and that is too large to
fit into a normal-sized int is treated as an unsigned int by the compiler. If it’s too small to
fit into an unsigned int , the compiler treats it as a long int . If it still can’t fit inside a long
int , the compiler makes it an unsigned long int . If it doesn’t fit there, the compiler treats it
as a long long int if it fits, and as an unsigned long long int otherwise.

 When declaring variables to be of type long long int , long int , short int , or unsigned
int , you can omit the keyword int . Therefore, the unsigned variable counter could have
been equivalently declared as follows:

 unsigned counter;

 You can also declare char variables to be unsigned .

 The signed qualifier can be used to explicitly tell the compiler that a particular variable is a
signed quantity. Its use is primarily in front of the char declaration, and further discussion is
deferred until Chapter 13 , “More on Data Types.”

 Don’t worry if the discussions of these specifiers seem a bit esoteric to you at this point. In later
sections of this book, many of these different types are illustrated with actual program exam-
ples. Chapter 13 goes into more detail about data types and conversions.

 Table 3.1 summarizes the basic data types and qualifiers.

 Table 3.1 Basic Data Types

 Type Constant Examples printf chars

 char 'a' , '\n' %c

 _Bool 0 , 1 %i , %u

 short int — %hi , %hx , %ho

 unsigned short int — %hu , %hx , %ho

 int 12 , -97 , 0xFFE0 , 0177 %i , %x , %o

 unsigned int 12u , 100U , 0XFFu %u , %x , %o

 long int 12L , -2001 , 0xffffL %li , %lx , %lo

 unsigned long int 12UL , 100ul , 0xffeeUL %lu , %lx , %lo

 long long int 0xe5e5e5e5LL , 500ll %lli , %llx , &llo

 unsigned long long int 12ull , 0xffeeULL %llu , %llx , %llo

 float 12.34f , 3.1e-5f, 0x1.5p10,0x1P-1 %f , %e , %g, %a

29Working with Variables

 Type Constant Examples printf chars

 double 12.34 , 3.1e-5, 0x.1p3 %f , %e , %g, %a

 long double 12.341 , 3.1e-5l %Lf , $Le , %Lg

 Working with Variables
 Early computer programmers had the onerous task of having to write their programs in the
binary language of the machine they were programming. This meant that computer instruc-
tions had to be hand-coded into binary numbers by the programmer before they could be
entered into the machine. Furthermore, the programmer had to explicitly assign and reference
any storage locations inside the computer’s memory by a specific number or memory address.

 Today’s programming languages allow you to concentrate more on solving the particular
problem at hand than worrying about specific machine codes or memory locations. They
enable you to assign symbolic names, known as variable names , for storing program computa-
tions and results. A variable name can be chosen by you in a meaningful way to reflect the type
of value that is to be stored in that variable.

 In Chapter 2 , “Compiling and Running Your First Program,” you used several variables to store
integer values. For example, you used the variable sum in Program 2.4 to store the result of the
addition of the two integers 50 and 25.

 The C language allows data types other than just integers to be stored in variables as well,
provided the proper declaration for the variable is made before it is used in the program.
Variables can be used to store floating-point numbers, characters, and even pointers to locations
inside the computer’s memory.

 The rules for forming variable names are quite simple: They must begin with a letter or under-
score (_) and can be followed by any combination of letters (upper- or lowercase), underscores,
or the digits 0–9. The following is a list of valid variable names.

 sum
 pieceFlag
 i
 J5x7
 Number_of_moves
 _sysflag

 On the other hand, the following variable names are not valid for the stated reasons:

 sum$value $ is not a valid character.

 piece flag Embedded spaces are not permitted.

 3Spencer Variable names cannot start with a number.

 int int is a reserved word.

30 Chapter 3 Variables, Data Types, and Arithmetic Expressions

 int cannot be used as a variable name because its use has a special meaning to the C compiler.
This use is known as a reserved name or reserved word. In general, any name that has special
significance to the C compiler cannot be used as a variable name. Appendix A provides a
complete list of such reserved names.

 You should always remember that upper- and lowercase letters are distinct in C. Therefore, the
variable names sum , Sum , and SUM each refer to a different variable.

 Your variable names can be as long as you want, although only the first 63 characters might be
significant, and in some special cases (as described in Appendix A), only the first 31 characters
might be significant. It’s typically not practical to use variable names that are too long—just
because of all the extra typing you have to do. For example, although the following line is valid

 theAmountOfMoneyWeMadeThisYear = theAmountOfMoneyLeftAttheEndOfTheYear –
 theAmountOfMoneyAtTheStartOfTheYear;

 this line

 moneyMadeThisYear = moneyAtEnd – moneyAtStart;

 conveys almost as much information in much less space.

 When deciding on the choice of a variable name, keep one recommendation in mind—don’t
be lazy. Pick names that reflect the intended use of the variable. The reasons are obvious. Just
as with comments, meaningful variable names can dramatically increase the readability of a
program and pay off in the debug and documentation phases. In fact, the documentation task
is probably greatly reduced because the program is more self-explanatory.

 Working with Arithmetic Expressions
 In C, just as in virtually all programming languages, the plus sign (+) is used to add two values,
the minus sign (−) is used to subtract two values, the asterisk (*) is used to multiply two values,
and the slash (/) is used to divide two values. These operators are known as binary arithmetic
operators because they operate on two values or terms.

 You have seen how a simple operation such as addition can be performed in C. Program 3.2
further illustrates the operations of subtraction, multiplication, and division. The last two
operations performed in the program introduce the notion that one operator can have a higher
priority, or precedence , over another operator. In fact, each operator in C has a precedence asso-
ciated with it. This precedence is used to determine how an expression that has more than one
operator is evaluated: The operator with the higher precedence is evaluated first. Expressions
containing operators of the same precedence are evaluated either from left to right or from
right to left, depending on the operator. This is known as the associative property of an opera-
tor. Appendix A provides a complete list of operator precedences and their rules of association.

31Working with Arithmetic Expressions

 Program 3.2 Using the Arithmetic Operators

 // Illustrate the use of various arithmetic operators

 #include <stdio.h>

 int main (void)
 {
 int a = 100;
 int b = 2;
 int c = 25;
 int d = 4;
 int result;

 result = a - b; // subtraction
 printf ("a - b = %i\n", result);

 result = b * c; // multiplication
 printf ("b * c = %i\n", result);

 result = a / c; // division
 printf ("a / c = %i\n", result);

 result = a + b * c; // precedence
 printf ("a + b * c = %i\n", result);

 printf ("a * b + c * d = %i\n", a * b + c * d);

 return 0;
 }

 Program 3.2 Output

 a - b = 98
 b * c = 50
 a / c = 4
 a + b * c = 150
 a * b + c * d = 300

 After declaring the integer variables a , b , c , d , and result , the program assigns the result of
subtracting b from a to result and then displays its value with an appropriate printf() call.

 The next statement

 result = b * c;

 has the effect of multiplying the value of b by the value of c and storing the product in
 result . The result of the multiplication is then displayed using a printf() call that should be
familiar to you by now.

32 Chapter 3 Variables, Data Types, and Arithmetic Expressions

 The next program statement introduces the division operator—the slash. The result of 4, as
obtained by dividing 100 by 25, is displayed by the printf() statement immediately following
the division of a by c .

 On some computer systems, attempting to divide a number by zero results in abnormal
termination of the program. 2 Even if the program does not terminate abnormally, the results
obtained by such a division will be meaningless.

 In Chapter 5 , you see how you can check for division by zero before the division operation is
performed. If it is determined that the divisor is zero, an appropriate action can be taken and
the division operation can be averted.

 The expression

 a + b * c

 does not produce the result of 2550 (102 × 25); rather, the result as displayed by the corre-
sponding printf() statement is shown as 150. This is because C, like most other programming
languages, has rules for the order of evaluating multiple operations or terms in an expression.
Evaluation of an expression generally proceeds from left to right. However, the operations of
multiplication and division are given precedence over the operations of addition and subtrac-
tion. Therefore, the expression

 a + b * c

 is evaluated as

 a + (b * c)

 by the C programming language. (This is the same way this expression would be evaluated if
you were to apply the basic rules of algebra.)

 If you want to alter the order of evaluation of terms inside an expression, you can use paren-
theses. In fact, the expression listed previously is a perfectly valid C expression. Thus, the
statement

 result = a + (b * c);

 could have been substituted in Program 3.2 to achieve identical results. However, if the
expression

 result = (a + b) * c;

 were used instead, the value assigned to result would be 2550 because the value of a (100)
would be added to the value of b (2) before multiplication by the value of c (25) would take
place. Parentheses can also be nested, in which case evaluation of the expression proceeds
outward from the innermost set of parentheses. Just be certain you have as many closed paren-
theses as you have open ones.

 2. This happens using the gcc compiler under Windows. On Unix systems, the program might not termi-

nate abnormally, and might give 0 as the result of an integer division by zero and “Infinity” as the result of

a float division by zero.

33Working with Arithmetic Expressions

 You will notice from the last statement in Program 3.2 that it is perfectly valid to give an
expression as an argument to printf() without having to first assign the result of the expres-
sion evaluation to a variable. The expression

 a * b + c * d

 is evaluated according to the rules stated previously as

 (a * b) + (c * d)

 or

 (100 * 2) + (25 * 4)

 The result of 300 is handed to the printf() routine.

 Integer Arithmetic and the Unary Minus Operator
 Program 3.3 reinforces what you just learned and introduces the concept of integer arithmetic.

 Program 3.3 More Examples with Arithmetic Operators

 // More arithmetic expressions

 #include <stdio.h>

 int main (void)
 {
 int a = 25;
 int b = 2;

 float c = 25.0;
 float d = 2.0;

 printf ("6 + a / 5 * b = %i\n", 6 + a / 5 * b);
 printf ("a / b * b = %i\n", a / b * b);
 printf ("c / d * d = %f\n", c / d * d);
 printf ("-a = %i\n", -a);

 return 0;
 }

 Program 3.3 Output

 6 + a / 5 * b = 16
 a / b * b = 24
 c / d * d = 25.000000
 -a = -25

34 Chapter 3 Variables, Data Types, and Arithmetic Expressions

 Extra blank spaces are inserted between int and the declaration of a , b , c , and d in the first
four statements to align the declaration of each variable. This helps make the program more
readable. You also might have noticed in each program presented thus far that a blank space
was placed around each operator. This, too, is not required and is done solely for aesthetic
reasons. In general, you can add extra blank spaces just about anywhere that a single blank
space is allowed. A few extra presses of the spacebar prove worthwhile if the resulting program
is easier to read.

 The expression in the first printf() call of Program 3.3 reinforces the notion of operator
precedence. Evaluation of this expression proceeds as follows:

 1. Because division has higher precedence than addition, the value of a (25) is divided by 5
first. This gives the intermediate result of 5.

 2. Because multiplication also has higher precedence than addition, the intermediate result
of 5 is next multiplied by 2, the value of b , giving a new intermediate result of 10.

 3. Finally, the addition of 6 and 10 is performed, giving a final result of 16.

 The second printf() statement introduces a new twist. You would expect that dividing a by b
and then multiplying by b would return the value of a , which has been set to 25. But this does
not seem to be the case, as shown by the output display of 24. It might seem like the computer
lost a bit somewhere along the way. The fact of the matter is that this expression was evaluated
using integer arithmetic.

 If you glance back at the declarations for the variables a and b , you will recall that they were
both declared to be of type int . Whenever a term to be evaluated in an expression consists of
two integers, the C system performs the operation using integer arithmetic. In such a case, all
decimal portions of numbers are lost. Therefore, when the value of a is divided by the value of
 b , or 25 is divided by 2, you get an intermediate result of 12 and not 12.5 as you might expect.
Multiplying this intermediate result by 2 gives the final result of 24, thus explaining the “lost”
digit. Don’t forget that if you divide two integers, you always get an integer result. In addition,
keep in mind that no rounding occurs, the decimal value is simply dropped, so integer division
that ends up with 12.01, 12.5, or 12.99 will end up with the same value—12.

 As you can see from the next-to-last printf() statement in Program 3.3 , if you perform the
same operation using floating-point values instead of integers, you obtain the expected result.

 The decision of whether to use a float variable or an int variable should be made based on
the variable’s intended use. If you don’t need any decimal places, use an integer variable. The
resulting program is more efficient—that is, it executes more quickly on many computers. On
the other hand, if you need the decimal place accuracy, the choice is clear. The only question
you then must answer is whether to use a float, double , or long double . The answer to
this question depends on the desired accuracy of the numbers you are dealing with, as well as
their magnitude.

 In the last printf() statement, the value of the variable a is negated by use of the unary
minus operator. A unary operator is one that operates on a single value, as opposed to a binary

35Working with Arithmetic Expressions

operator, which operates on two values. The minus sign actually has a dual role: As a binary
operator, it is used for subtracting two values; as a unary operator, it is used to negate a value.

 The unary minus operator has higher precedence than all other arithmetic operators, except for
the unary plus operator (+), which has the same precedence. So the expression

 c = -a * b;

 results in the multiplication of −a by b . Once again, in Appendix A you will find a table
summarizing the various operators and their precedences.

 The Modulus Operator

 A surprisingly valuable operator, one you may not have experience with, is the modulus opera-
tor, which is symbolized by the percent sign (%). Try to determine how this operator works by
analyzing Program 3.4 .

 Program 3.4 Illustrating the Modulus Operator

 // The modulus operator

 #include <stdio.h>

 int main (void)
 {
 int a = 25, b = 5, c = 10, d = 7;

 printf("a = %i, b = %i, c = %i, and d = %i\n", a, b, c, d);
 printf ("a %% b = %i\n", a % b);
 printf ("a %% c = %i\n", a % c);
 printf ("a %% d = %i\n", a % d);
 printf ("a / d * d + a %% d = %i\n",
 a / d * d + a % d);

 return 0;
 }

 Program 3.4 Output

 a = 25, b = 5, c = 10, and d = 7
 a % b = 0
 a % c = 5
 a % d = 4
 a / d * d + a % d = 25

 The first statement inside main() defines and initializes the variables a , b , c , and d in a single
statement.

36 Chapter 3 Variables, Data Types, and Arithmetic Expressions

 For a reminder, before a series of statements that use the modulus operator are printed, the first
printf() statement prints the values of the four variables used in the program. It’s not crucial,
but it’s a nice reminder to help someone follow along with your program. For the remain-
ing printf() lines, as you know, printf() uses the character that immediately follows the
percent sign to determine how to print the next argument. However, if it is another percent
sign that follows, the printf() routine takes this as an indication that you really intend to
display a percent sign and inserts one at the appropriate place in the program’s output.

 You are correct if you concluded that the function of the modulus operator % is to give the
remainder of the first value divided by the second value. In the first example, the remainder
after 25 is divided by 5 and is displayed as 0. If you divide 25 by 10, you get a remainder of 5,
as verified by the second line of output. Dividing 25 by 7 gives a remainder of 4, as shown in
the third output line.

 The last line of output in Program 3.4 requires a bit of explanation. First, you will notice that
the program statement has been written on two lines. This is perfectly valid in C. In fact, a
program statement can be continued to the next line at any point at which a blank space could
be used. (An exception to this occurs when dealing with character strings—a topic discussed
in Chapter 9 , “Character Strings.”) At times, it might not only be desirable, but perhaps even
necessary, to continue a program statement onto the next line. The continuation of the
 printf() call in Program 3.4 is indented to visually show that it is a continuation of the
preceding program statement.

 Turn your attention to the expression evaluated in the final statement. You will recall that any
operations between two integer values in C are performed with integer arithmetic. Therefore,
any remainder resulting from the division of two integer values is simply discarded. Dividing
25 by 7, as indicated by the expression a / d , gives an intermediate result of 3. Multiplying
this value by the value of d , which is 7, produces the intermediate result of 21. Finally, adding
the remainder of dividing a by d , as indicated by the expression a % d , leads to the final result
of 25. It is no coincidence that this value is the same as the value of the variable a . In general,
the expression

 a / b * b + a % b

 will always equal the value of a , assuming of course that a and b are both integer values. In
fact, the modulus operator % is defined to work only with integer values.

 As far as precedence is concerned, the modulus operator has equal precedence to the multipli-
cation and division operators. This implies, of course, that an expression such as

 table + value % TABLE_SIZE

 will be evaluated as

 table + (value % TABLE_SIZE)

 Integer and Floating-Point Conversions

 To effectively develop C programs, you must understand the rules used for the implicit conver-
sion of floating-point and integer values in C. Program 3.5 demonstrates some of the simple

37Working with Arithmetic Expressions

conversions between numeric data types. You should note that some compilers might give
warning messages to alert you of the fact that conversions are being performed.

 Program 3.5 Converting Between Integers and Floats

 // Basic conversions in C

 #include <stdio.h>

 int main (void)
 {
 float f1 = 123.125, f2;
 int i1, i2 = -150;
 char c = 'a';

 i1 = f1; // floating to integer conversion
 printf ("%f assigned to an int produces %i\n", f1, i1);

 f1 = i2; // integer to floating conversion
 printf ("%i assigned to a float produces %f\n", i2, f1);

 f1 = i2 / 100; // integer divided by integer
 printf ("%i divided by 100 produces %f\n", i2, f1);

 f2 = i2 / 100.0; // integer divided by a float
 printf ("%i divided by 100.0 produces %f\n", i2, f2);

 f2 = (float) i2 / 100; // type cast operator
 printf ("(float) %i divided by 100 produces %f\n", i2, f2);

 return 0;
 }

 Program 3.5 Output

 123.125000 assigned to an int produces 123
 -150 assigned to a float produces -150.000000
 -150 divided by 100 produces -1.000000
 -150 divided by 100.0 produces -1.500000
 (float) -150 divided by 100 produces -1.500000

 Whenever a floating-point value is assigned to an integer variable in C, the decimal portion of
the number gets truncated. So, when the value of f1 is assigned to i1 in the previous program,
the number 123.125 is truncated , which means that only its integer portion, or 123, is stored in
 i1 . The first line of the program’s output verifies that this is the case.

38 Chapter 3 Variables, Data Types, and Arithmetic Expressions

 Assigning an integer variable to a floating variable does not cause any change in the value
of the number; the value is simply converted by the system and stored in the floating vari-
able. The second line of the program’s output verifies that the value of i2 (−150) was correctly
converted and stored in the float variable f1 .

 The next two lines of the program’s output illustrate two points that must be remembered
when forming arithmetic expressions. The first has to do with integer arithmetic, which was
previously discussed in this chapter. Whenever two operands in an expression are integers
(and this applies to short , unsigned , long , and long long integers as well), the operation is
carried out under the rules of integer arithmetic. Therefore, any decimal portion resulting from
a division operation is discarded, even if the result is assigned to a floating variable (as you did
in the program). Therefore, when the integer variable i2 is divided by the integer constant 100 ,
the system performs the division as an integer division. The result of dividing −150 by 100,
which is −1, is, therefore, the value that is stored in the float variable f1 .

 The next division performed in the previous listing involves an integer variable and a floating-
point constant. Any operation between two values in C is performed as a floating-point opera-
tion if either value is a floating-point variable or constant. Therefore, when the value of i2 is
divided by 100.0 , the system treats the division as a floating-point division and produces the
result of −1.5, which is assigned to the float variable f1 .

 The Type Cast Operator

 The last division operation from Program 3.5 that reads

 f2 = (float) i2 / 100; // type cast operator

 introduces the type cast operator. The type cast operator has the effect of converting the value
of the variable i2 to type float for purposes of evaluation of the expression. In no way does
this operator permanently affect the value of the variable i2 ; it is a unary operator that behaves
like other unary operators. Because the expression −a has no permanent effect on the value of
 a , neither does the expression (float) a .

 The type cast operator has a higher precedence than all the arithmetic operators except the
unary minus and unary plus. Of course, if necessary, you can always use parentheses in an
expression to force the terms to be evaluated in any desired order.

 As another example of the use of the type cast operator, the expression

 (int) 29.55 + (int) 21.99

 is evaluated in C as

 29 + 21

 because the effect of casting a floating value to an integer is one of truncating the floating-
point value. The expression

 (float) 6 / (float) 4

39Combining Operations with Assignment: The Assignment Operators

 produces a result of 1.5, as does the following expression:

 (float) 6 / 4

 Combining Operations with Assignment: The Assignment
Operators
 The C language permits you to join the arithmetic operators with the assignment operator
using the following general format: op=

 In this format, op is any of the arithmetic operators, including + , − , × , / , and % . In addition, op
can be any of the bit operators for shifting and masking, which is discussed later.

 Consider this statement:

 count += 10;

 The effect of the so-called “plus equals” operator += is to add the expression on the right side of
the operator to the expression on the left side of the operator and to store the result back into
the variable on the left-hand side of the operator. So, the previous statement is equivalent to
this statement:

 count = count + 10;

 The expression

 counter -= 5

 uses the “minus equals” assignment operator to subtract 5 from the value of counter and is
equivalent to this expression:

 counter = counter - 5

 A slightly more involved expression is

 a /= b + c

 which divides a by whatever appears to the right of the equal sign—or by the sum of b and
 c —and stores the result in a . The addition is performed first because the addition operator has
higher precedence than the assignment operator. In fact, all operators but the comma operator
have higher precedence than the assignment operators, which all have the same precedence.

 In this case, this expression is identical to the following:

 a = a / (b + c)

 The motivation for using assignment operators is threefold. First, the program statement
becomes easier to write because what appears on the left side of the operator does not have
to be repeated on the right side. Second, the resulting expression is usually easier to read.
Third, the use of these operators can result in programs that execute more quickly because the
compiler can sometimes generate less code to evaluate an expression.

40 Chapter 3 Variables, Data Types, and Arithmetic Expressions

 Types _Complex and _Imaginary
 Before leaving this chapter it is worthy to note two other types in the language called
 _Complex and _Imaginary for working with complex and imaginary numbers.

 Support for _Complex and _Imaginary types has been part of the ANSI C standard since C99,
although C11 does make it optional. The best way to know if your compiler supports these
types is to examine the summary of data types in Appendix A .

 Exercises
 1. Type in and run the five programs presented in this chapter. Compare the output

produced by each program with the output presented after each program in the text.

 2. Which of the following are invalid variable names? Why?

 Int char 6_05
 Calloc Xx alpha_beta_routine
 floating _1312 z
 ReInitialize _ A$

 3. Which of the following are invalid constants? Why?

 123.456 0x10.5 0X0G1
 0001 0xFFFF 123L
 0Xab05 0L -597.25
 123.5e2 .0001 +12
 98.6F 98.7U 17777s
 0996 -12E-12 07777
 1234uL 1.2Fe-7 15,000
 1.234L 197u 100U
 0XABCDEFL 0xabcu +123

 4. Write a program that converts 27° from degrees Fahrenheit (F) to degrees Celsius (C)
using the following formula:

 C = (F - 32) / 1.8

 5. What output would you expect from the following program?

 #include <stdio.h>

 int main (void)
 {
 char c, d;

 c = 'd';
 d = c;
 printf ("d = %c\n", d);

41Exercises

 return 0;
 }

 6. Write a program to evaluate the polynomial shown here:

 3 x 3 - 5 x 2 + 6

 for x = 2.55.

 7. Write a program that evaluates the following expression and displays the results
(remember to use exponential format to display the result):

 (3.31 x 10-8 x 2.01 x 10-7) / (7.16 x 10-6 + 2.01 x 10-8)

 8. To round off an integer i to the next largest even multiple of another integer j , the
following formula can be used:

 Next_multiple = i + j - i % j

 For example, to round off 256 days to the next largest number of days evenly divisible by
a week, values of i = 256 and j = 7 can be substituted into the preceding formula as
follows:

 Next_multiple = 256 + 7 - 256 % 7
 = 256 + 7 - 4
 = 259

 9. Write a program to find the next largest even multiple for the following values of i
and j :

 i j

 365 7

 12,258 23

 996 4

This page intentionally left blank

 Index

 Numbers
 4 × 5 matrices, 113 - 114

 Symbols
 # preprocessor directive, 470

 ## operator, 310 - 311

 #define preprocessor directive, 465 - 467

 #define statement

 ## operator, 310 - 311

 preprocessor, 297 - 311

 program extendibility, 301 - 302

 program portability, 302 - 303

 #elif preprocessor statement, 316 - 317

 #else preprocessor statement, 315

 #endif preprocessor statement, 316

 #error preprocessor directive, 467

 #if preprocessor directive, 467 - 468

 #if preprocessor statement, 316 - 317

 #ifdef preprocessor directive, 468

 #ifdef preprocessor statement, 314 - 316

 #ifndef preprocessor directive, 468

 #ifndef preprocessor statement, 314 - 316

 #include preprocessor directive, 468 - 469

 #include preprocessor statement, 311 - 314

 #line preprocessor directive, 469

 #pragma preprocessor directive, 469

 #undef preprocessor directive, 469 - 470

 #undef preprocessor statement, 317

510510 absolute values, integers, calculating

 A
 absolute values, integers, calculating, 66 ,

 128 - 130

 absoluteValue() function, 128 - 134

 addEntry() function, 388

 Albahari, Joseph and Ben, 508

 algorithms, 5

 aligning output, 50 - 51

 alphabetic() function, 210

 AND bitwise operator, 279 - 281

 ANSI.org, 506

 ar command (Unix), 343 - 344

 arguments

 command-line, 380 - 384

 functions, 123 - 124

 checking, 133 - 137

 declaring type, 133 - 135

 arithmetic, integer, 33 - 39

 arithmetic expressions, 21 , 30 - 39

 arithmetic operators, 31 , 446 - 447

 arrays, 95 - 96

 base conversions, 109 - 111

 basic operations, 451

 character, 108 - 113 , 194 - 196

 character strings, 218 - 226

 defining, 96 - 106

 finding minimum value in, 138 - 141

 functions, 137 - 151

 changing elements in, 141 - 143

 generating Fibonacci numbers, 103 - 104

 illustrating, 186 - 187

 initializing, 106 - 108

 multidimensional, 113 - 115 , 436 - 437

 multidirectional, 146 - 151

 pointers, 258 - 270 , 453 - 454

 prime numbers, generating, 104 - 106

 setting, gdb (GNU Debugger), 407 - 408

 single-dimensional, 435

 sorting, 143

 structures, 180 - 181 , 185 - 186

 using elements as counters, 100 - 103

 variable-length, 115 - 117 , 436

 arraySum() function, 262 - 264

 ascending order, arrays, sorting into,
 144 - 145

 assembly language program, 9

 assignment operators, 39 , 449

 changing array elements in functions,
 141 - 143

 atoi() function, 393

 auto variable, 456

 automatic local variables, 124 - 126 ,
 155 - 158

 B
 base conversions, arrays, 109 - 111

 BASIC programming language, 10

 bits, 277 - 278

 fields, 291 - 295

 operators, 278 - 291

 Exclusive-OR, 282 - 283

 left shift, 285 - 288

 ones complement, 283 - 285

 right shift, 286 - 288

 rotating, 288 - 291

 bitwise operators, 448

 AND, 279 - 281

 Inclusive-OR, 281 - 282

 _Bool data type, 21 , 24 - 28 , 433

 Boolean variables, 86 - 90

 break statement, 62 , 460

 breakpoints, listing and deleting, gdb (GNU
Debugger), 406

511511commands

 Budd, Timothy, 507

 building programs, 9

 bytes, 277 - 278

 C
 C: A Reference Manual, 505

 C Programming Language, The, 505

 C# 5.0 in a Nutshell: The Definitive
Reference, 508

 C++ Primer Plus, 507

 C++ Programming Language, The, 507

 calculateTriangularNumber() function,
 124 - 125

 calculating

 absolute values, integers, 66 , 128 - 130

 square roots, 130 - 133

 calling functions, 121 - 122 , 130 - 137 , 459

 gdb (GNU Debugger), 407 - 408

 cc command, 7 , 12

 char *fgets (buffer, i, filePtr) function, 478

 char *getenv (s) function, 493

 char *gets (buffer) function, 480

 char *strcat (s1, s2) function, 474

 char *strchr (s, c) function, 474

 char *strcoll (s1, s2) function, 474

 char *strcpy (s1, s2) function, 474

 char *strerror (n) function, 474

 char *strncat (s1, s2, n) function, 474

 char *strncpy (s1, s2, n) function, 475

 char *strpbrk (s1, s2) function, 475

 char *strrchr (s, c) function, 475

 char *strstr (s1, s2) function, 475

 char *strtok (s1, s2) function, 475

 char data type, 21 , 28 , 433

 char variable, 24

 character arrays, 108 - 113

 character constants, 430 - 431

 character functions, 476 - 477

 character I/O (input/output), 346

 character strings, 16 , 193 - 194

 arrays, 194 - 196 , 218 - 226

 character operations, 226 - 229

 concatenating, 200 - 201

 concatenation, 431 - 432

 constants, 431 - 432

 pointers, 266 - 267

 strings, 217 - 218

 counting characters in, 198 - 199

 displaying, 199 - 202

 escape characters, 215 - 217

 initializing, 199 - 202

 inputting, 204 - 206

 null string, 211 - 214

 pointers, 264 - 266

 reading, 205

 single-character input, 206 - 211

 structures, 218 - 226

 testing for equality, 202 - 204

 variable-length, 197 - 214

 characters, diagraphs, 427

 classes, storage, 456

 closing files, fclose() function, 365 - 367

 code . See also programs

 Code::Blocks IDE, 507

 CodeWarrior, 507

 comma operator, 378 , 451

 command-line arguments, 380 - 384

 commands

 cc, 7 , 12

 gcc, 495 , 7 , 506

 command-line options, 496 - 497

 compiling programs, 495 - 497

 general format, 495

512512 commands

 gdb (GNU Debugger), 410 - 411

 Unix, 343 - 344

 comments, 17 - 19 , 429

 compilers, 6

 gcc command, 495 - 497

 errors, 8 - 9

 common mistakes, programming, 499 - 503

 communication, between modules,
 334 - 340

 compilers, 6 - 7 , 506 - 507

 compiling

 debug code, 393 - 394

 multiple source files from command
line, 332 - 334

 programs, 7 - 10 , 11 - 12

 conditional compilation, 314 - 317

 gcc command, 495 - 497

 _Complex data type, 40

 compound literals, 454 - 455

 initializing structures, 178 - 179

 compound relational tests, if statements,
 72 - 74

 compound statements, 460

 computers

 instruction set, 5

 operating systems, 6 - 7

 concat() function, 197 - 201

 concatenating character strings, 197 - 201 ,
 431 - 432

 conditional compilation, preprocessor,
 314 - 317

 conditional operators, 90 - 92 , 449 - 450

 const keyword, 442

 pointers, 251 - 252

 const variable, 111 - 113

 constant expressions, 445 - 446

 constants, 21 - 28

 character, 217 - 218 , 430 - 431

 character string, 431 - 432

 pointers, 266 - 267

 defined names, #define statement,
 297 - 311

 enumeration, 432

 floating-point, 430

 integer, 22 , 429 - 430

 wide character, 431

 continue statement, 62 - 63 , 460

 conversion characters

 printf() function, 348

 scanf() function, 353

 conversion modifiers, scanf() function, 353

 conversions

 data type, 319 , 325 - 328

 floating-point, 36 - 38

 integer-point, 36 - 38

 convertNumber() function, 152 - 154

 copying files, 365 - 366

 copyString() function, 264 - 266 , 269 - 270

 counters, arrays, using elements as,
 100 - 103

 countWords() function, 210 - 211

 Cox, Brad, 417

 cvs utility, 343

 CygWin, 506

 D
 data, formatting

 printf() function, 346 - 353

 scanf() function, 353 - 358

 data types, 21 - 28 , 433 - 434

 _Bool, 24 - 26 , 433

 char, 24 , 433

 _Complex, 40

513

 conversions, 319 , 325 - 328 , 455 - 456

 derived, 435 - 440

 double, 23 , 433

 double_Complex, 433

 enumerated, 319 , 441

 extending data types, 319 - 323

 extending, 319

 data type conversions, 325 - 328

 enumerated data types, 322

 typedef statement, 323 - 325

 float, 23 , 433

 float_Complex, 433

 _Imaginary, 40

 int, 433

 long double, 433

 long double_Complex, 433

 long int, 433

 short int, 433

 specifiers, 26 - 28

 type definitions, 319

 unsigned char, 433

 unsigned int, 433

 void, 433

 dates, storing, structures, 164 - 169

 debug code, compiling in, 393 - 394

 DEBUG macro, 395 - 396

 debugging programs, 391

 gdb (GNU Debugger), 397 - 411

 preprocessor, 391 - 397

 declarations, 432 - 435

 function calls, 459

 variables, for loops, 56

 decrement operators, 267 - 270 , 448 - 449

 defined names, constants, #define state-
ment, 297 - 311

 defining

 arrays, 96 - 106

 functions, 119 - 122 , 458

 header files, 471 - 473

 pointer variables, 234 - 237

 derived data types, 435 - 440

 multidimensional arrays, 436 - 437

 pointers, 440

 single-dimensional arrays, 435

 structures, 437 - 439

 unions, 439 - 440

 variable-length arrays, 436

 diagraphs, 427

 directives, preprocessor, 465 - 470

 #error, 467

 #if, 467 - 468

 #ifdef, 468

 #ifndef, 468

 #include, 468 - 469

 #line, 469

 #pragma, 469

 #undef, 469 - 470

 displayConvertedNumber() function, 152

 displaying

 character strings, 199 - 202

 variable values, 15 - 17

 do statement, 60 - 63 , 461

 double acos (x) function, 486

 double acosh (x) function, 487

 double asin (x) function, 487

 double asinh (x) function, 487

 double atan (x) function, 487

 double atan2 (y, x) function, 487

 double atanh (x) function, 487

 double atof (s) function, 483

 double carg (z) function, 491

 double ceil (x) function, 487

 double cimag (z) function, 492

double cimag (z) function

514514 double complex cabs (z) function

 double complex cabs (z) function, 491

 double complex cacos (z) function, 491

 double complex cacosh (z) function, 491

 double complex casin (z) function, 491

 double complex casinh (z) function, 491

 double complex catan (z) function, 491

 double complex catanh (z) function, 492

 double complex ccos (z) function, 492

 double complex ccosh (z) function, 492

 double complex cexp (z) function, 492

 double complex clog (z) function, 492

 double complex conj (z) function, 492

 double complex cpow (y, z) function, 492

 double complex cproj (z) function, 492

 double complex creal (z) function, 492

 double complex csin (z) function, 492

 double complex csinh (z) function, 492

 double complex csqrt (z) function, 492

 double complex ctan (z) function, 492

 double complex ctanh (z) function, 492

 double copysign (x, y) function, 487

 double cos (r) function, 487

 double cosh (x) function, 487

 double data type, 21 - 24 , 28 , 433

 double erf (x) function, 487

 double erfc (x) function, 487

 double exp (x) function, 487

 double expm1 (x) function, 487

 double fabs (x) function, 488

 double fdim (x, y) function, 488

 double floor (x) function, 488

 double fma (x, y, z) function, 488

 double fmax (x, y) function, 488

 double fmin (x, y) function, 488

 double fmod (x, y) function, 488

 double frexp (x, exp) function, 488

 double ldexp (x, n) function, 488

 double lgamma (x) function, 488

 double log (x) function, 488

 double log1p (x) function, 489

 double log2 (x) function, 489

 double log10 (x) function, 489

 double logb (x) function, 489

 double modf (x, ipart) function, 489

 double nan (s) function, 490

 double nearbyint (x) function, 490

 double nextafter (x, y) function, 490

 double nexttoward (x, ly) function, 490

 double pow (x, y) function, 490

 double remainder (x, y) function, 490

 double remquo (x, y, quo) function, 490

 double rint (x) function, 490

 double round (x) function, 490

 double scalbln (x, n) function, 490

 double scalbn (x, n) function, 490

 double sin (r) function, 490

 double sinh (x) function, 490

 double sqrt (x) function, 490

 double strtod (s, end) function, 483 - 484

 double tan (r) function, 490

 double tanh (x) function, 490

 double tgamma (x) function, 490

 double trunc (x) function, 490

 double_Complex data type, 433

 dynamic memory allocation, 384 - 389

 free() function, 387 - 389

 dynamic memory allocation functions,
 484 - 485

 E
 else-if statement, 76 - 83

 enumerated data types, 319 , 441

 extending data types, 319 - 323

515

 enumeration constants, 432

 equality, character strings, testing for,
 202 - 204

 equalStrings() function, 202 - 204 , 219

 errors, code, 8 - 9

 escape characters, character strings,
 215 - 217

 exchange() function, 254 - 255

 Exclusive-OR operator, 282 - 283

 executing, programs, 9 - 10

 exit() function, 369 - 370

 expressions, 442

 arithmetic, 21 , 30 - 39

 arrays, basic operations, 451

 compound literals, 454 - 455

 constant, 445 - 446

 data types, conversion of, 455 - 456

 for loops, multiple, 55

 operators, 443 - 445

 arithmetic, 446 - 447

 assignment, 449

 bitwise, 448

 comma, 451

 conditional, 449 - 450

 decrement, 448 - 449

 increment, 448 - 449

 logical, 447

 relational, 447 - 448

 sizeof, 450 - 451

 type cast, 450

 pointers, 237 - 238

 basic operations, 452 - 454

 structures

 basic operations, 452

 using in, 166 - 169

 extendibility, programs, #define statement,
 301 - 302

 extending data types, 319

 data type conversions, 325 - 328

 enumerated data types, 319 - 323

 external variables, 334 - 337 , 456

 versus static, 337 - 339

 F
 factorial() function, 158 - 159

 factorials, calculating recursively, 158 - 159

 fclose() function, 365 - 367

 fgets() function, 367 - 368

 Fibonacci numbers, generating, 103 - 104

 fields

 bits, 291 - 295

 for loops, omitting, 55

 FILE *fopen (fileName, accessMode) func-
tion, 478

 FILE *freopen (fileName, accessMode,
filePtr) function, 479

 FILE *tmpfile (void) function, 482

 FILE pointers, I/O (input/output), 368 - 369

 files

 closing, fclose() function, 365 - 367

 copying, 365 - 366

 header, 471 - 473

 using effectively, 339 - 340

 Makefile, 341 - 342

 naming, 7

 opening, 362 - 364

 programs, dividing into multiple,
 331 - 334

 reading and writing entire lines of data
from and to, 367 - 368

 reading single character from, 364

 redirecting I/O (input/output) to,
 358 - 362

 removing, 370 - 371

files

516516 files

 renaming, 370

 specifying lists and dependencies,
 341 - 342

 system include, 313 - 314

 findEntry() function, 257

 flags, printf(), 347

 float data type, 21 - 23 , 28 , 433

 float strtof (s, end) function, 484

 float_Complex data type, 433

 floating-point constants, 430

 floating-point conversions, 36 - 38

 fopen() function, 362 - 364

 for loops

 nested, 53 - 55

 variants, 55 - 56

 for statement, 44 - 51 , 461

 formatted I/O (input/output), 346 - 358

 printf() function, 346 - 353

 formatting data

 printf() function, 346 - 353

 scanf() function, 353 - 358

 FORTRAN (FORmula TRANslation) lan-
guage, 6

 fprintf() function, 367 , 392 , 482

 fputs() function, 367 - 368

 free() function, 387 - 389

 fscanf() function, 367 , 482

 functions, 119

 absoluteValue(), 128 - 134

 addEntry(), 388

 alphabetic(), 210

 arguments, 123 - 124

 checking, 133 - 137

 declaring type, 133 - 135

 arrays, 137 - 151

 changing elements in, 141 - 143

 multidirectional, 146 - 151

 arraySum(), 262 - 264

 atoi(), 393

 automatic local variables, 124 - 126

 calculateTriangularNumber(), 124 - 125

 calling, 121 - 122 , 130 - 137 , 459

 gdb (GNU Debugger), 407 - 408

 character, 476 - 477

 concat(), 197 - 201

 convertNumber(), 152 - 154

 copyString(), 264 - 266 , 269 - 270

 countWords(), 210 - 211

 defining, 119 - 122 , 458

 displayConvertedNumber(), 152

 dynamic memory allocation, 484 - 485

 equalStrings(), 202 - 204 , 219

 exchange(), 254 - 255

 exit(), 369 - 370

 external versus static, 337 - 339

 factorial(), 158 - 160

 fclose(), 365 - 367

 fgets(), 367 - 368

 findEntry(), 257

 fopen(), 362 - 364

 fprintf(), 367 , 392 , 482

 fputs(), 367 - 368

 free(), 387 - 389

 fscanf(), 367 , 482

 gcd(), 125 - 128

 general utility, 492 - 494

 getc(), 364

 getchar(), 207 - 208 , 346 , 362

 getNumberAndBase(), 151

 global variables, 151 - 155

 I/O (input/output), 477 - 482

 isLeapYear(), 172

517

 lookup(), 221 - 226

 main(), 13 , 119 - 120 , 126

 math, 485 - 492

 memory, 475 - 476

 in-memory format conversion, 482 - 483

 minimum(), 138 - 141

 numberOfDays(), 169 - 172

 perror(), 371

 pointers, 252 - 258 , 272 - 273 , 460

 print_list(), 252

 printf(), 13 - 17 , 31 - 32 , 119 , 123 , 137 ,
 269 , 345 , 358

 formatting data, 346 - 353

 printMessage(), 120 - 121

 process(), 393 - 394

 prototype declaration, 124

 putc(), 364

 putchar(), 346

 readLine(), 208 - 210

 recursive, 158 - 160

 remove(), 370 - 371

 return types, declaring, 133 - 135

 returning results, 126 - 130

 rotate(), 288 - 291 , 314 - 315

 scanf(), 59 , 119 , 177 , 204 - 206 , 358 , 392

 formatting data, 353 - 358

 shift, 286 - 288

 sort(), 143

 sprintf(), 482 - 483

 squareRoot(), 131 - 134 , 137 , 155 - 156

 sscanf(), 482 - 483

 static versus external, 337 - 339

 storage classes, 456

 string, 474 - 475

 stringLength(), 198 , 217

 string-to-number, 483 - 484

 structures, 169 - 177

 test(), 254

 top-down programming, 137

 variables

 automatic, 155 - 158

 static, 155 - 158

 writing, 120

 G
 gcc command, 7 , 495 , 506

 command-line options, 496 - 497

 compiling programs, 495 - 497

 general format, 495

 gcd() function, 125 - 128

 gdb (GNU Debugger)

 calling functions, 407 - 408

 commands, 410 - 411

 help, 408 - 409

 controlling program execution,
 402 - 406

 debugging programs, 397 - 411

 working with variables, 400 - 401

 listing and deleting breakpoints, 406

 obtaining stack trace, 406 - 407

 setting arrays and structures, 407 - 408

 source file display, 401

 general utility functions, 492 - 494

 generating

 Fibonacci numbers, arrays, 103 - 104

 prime numbers, arrays, 104 - 106

 getc() function, 364

 getchar() function, 207 - 208 , 346 , 362

 getNumberAndBase() function, 151

 global variables, functions, 151 - 155

 goto statement, 373 - 374 , 461

 grep command (Unix), 343 - 344

grep command (Unix)

518518 Harbison, Samuel P. III

 H
 Harbison, Samuel P. III, 505

 header files, 471 - 473

 using effectively, 339 - 340

 help command (GDB), 408 - 409

 I
 identifiers, 428

 predefined, 470

 IDEs (Integrated Development
Environments), 10 , 506 - 507

 if (freopen ("inputData," "r", stdin) ==
NULL) function, 479

 if statements, 65 - 83 , 461 - 462

 compound relational tests, 72 - 74

 else-if, 76 - 83

 if-else, 69 - 72

 nested, 74 - 76

 if-else statement, 69 - 72

 illustrating

 arrays and structures, 186 - 187

 pointers, 235

 structures, 165

 _Imaginary data type, 40

 increment operators, 267 - 270 , 448 - 449

 indirection, pointers, 233 - 234

 initializing

 arrays, 106 - 108

 character strings, 199 - 202

 structures, 178 - 179

 in-memory format conversion functions,
 482 - 483

 input, program, 51 - 56

 inputting character strings, 204 - 206

 instances, OOP (object-oriented program-
ming), 414 - 416

 instruction set, computers, 5

 int abs (n) function, 493

 int atoi (s) function, 483

 int atol (s) function, 483

 int atoll (s) function, 483

 int data type, 28 , 433

 int fclose (filePtr) function, 478

 int ferror (filePtr) function, 478

 int fflush (filePtr) function, 478

 int fgetc (filePtr) function, 478

 int fgetpos (filePtr, fpos) function, 478

 int fpclassify (x) function, 485

 int fprintf (filePtr, format, arg1, arg2, argn)
function, 479

 int fputc (c, filePtr) function, 479

 int fputs (buffer, filePtr) function, 479

 int fscanf (filePtr, format, arg1, arg2, argn)
function, 480

 int fseek (filePtr, offset, mode) function,
 480

 int fsetpos (filePtr, fpos) function, 480

 int getc (filePtr) function, 480

 int getchar (void) function, 480

 int hypot (x, y) function, 488

 int ilogb (x) function, 488

 int isfin (x) function, 486

 int isgreater (x, y) function, 486

 int isgreaterequal (x, y) function, 486

 int isinf (x) function, 486

 int islessequal (x, y) function, 486

 int islessgreater (x, y) function, 486

 int isnan (x) function, 486

 int isnormal (x) function, 486

 int isunordered (x, y) function, 486

 int printf (format, arg1, arg2, argn)
function, 481

 int putc (c, filePtr) function, 481

 int putchar(c) function, 481

519

 int puts (buffer) function, 481

 int remove (fileName) function, 481

 int rename (fileName1, fileName2) func-
tion, 481

 int scanf (format, arg1, arg2, argn)
function, 482

 int signbit (x) function, 486

 int strcmp (s1, s2) function, 474

 int strncmp (s1, s2, n) function, 475

 int system (s) function, 494

 int tolower(c) function, 477

 int toupper(c) function, 477

 int ungetc (c, filePtr) function, 482

 integer arithmetic, 33 - 39

 integer constants, 22 , 429 - 430

 integer-point conversions, 36 - 38

 integers

 absolute values, calculating, 128 - 130

 if statements, 66

 base conversions, 109 - 111

 Integrated Development Environments
(IDEs), 10 , 506 - 507

 interpreters, 10

 Introduction to Object-Oriented
Programming, The, 507

 I/O (input/output), 345

 character, 346

 exit() function, 369 - 370

 fclose() function, 365 - 367

 fgets() function, 367 - 368

 FILE pointers, 368 - 369

 fopen() function, 362 - 364

 formatted, 346 - 358

 printf() function, 346 - 353

 fprintf() function, 367

 fputs() function, 367 - 368

 fscanf() function, 367

 getc() function, 364

 putc() function, 364

 redirecting to files, 358 - 362

 remove() function, 370 - 371

 rename() function, 370

 I/O (input/output) functions, 477 - 482

 isLeapYear() function, 172

 J-K
 JavaScript,

 Kernighan, Brian W., 505

 keywords

 const, 442

 pointers, 251 - 252

 restrict, 442

 Kochan, Stephen, 508

 L
 languages, programming, 5 - 6

 interpreters, 10

 left shift operator, 285 - 288

 Liberty, Jesse, 507

 linked lists, pointers, 243 - 251

 Linux, 7

 literals, compound, 454 - 455

 initializing structures, 178 - 179

 logical operators, 447

 long double data type, 433

 long double strtold (s, end) function, 484

 long double_Complex data type, 433

 long ftell (filePtr) function, 480

 long int data type, 26 - 28 , 433

 long int labs (l) function, 493

 long int lrint (x) function, 489

 long int lround (x) function, 489

 long int strtol (s, end, base) function, 484

long int strtol (s, end, base) function

520520 long long int data type

 long long int data type, 27 - 28

 long long int llabs (ll) function, 493

 long long int llrint (x) function, 489

 long long int llround (x) function, 489

 long long int strtoll (s, end, base)
function, 484

 lookup() function, 221 - 226

 loops, for

 nested, 53 - 55

 variants, 55 - 56

 M
 Mac OS X, 7

 macros, DEBUG, 395 - 396

 main() routine, 119 - 120 , 126 , 137

 make utility, 341 - 342

 Makefile, 341 - 342

 math functions, 485 - 492

 memory addresses, pointers, 273 - 275

 memory allocation, dynamic, 384 - 389

 memory functions, 475 - 476

 methods, OOP (object-oriented
programming), 414 - 416

 Microsoft Windows, 7

 MinGW (Minimalist GNU for Windows), 506

 minimum() function, 138 - 141

 mistakes, programming, 499 - 503

 modifiers, type, 442

 modular operator, 35 - 36

 modules, communication between,
 334 - 340

 multibyte characters, character
strings, 432

 multidimensional arrays, 113 - 115 ,
 436 - 437

 multidirectional arrays, 146 - 151

 multiple expressions, for loops, 55

 N
 naming files, 7

 nested if statements, 74 - 76

 nested loops, for, 53 - 55

 Newton-Raphson Iteration Technique,
 131 - 133

 null statement, 374 - 375 , 462

 null string, 211 - 214

 numberOfDays() function, 169 - 172

 numbers

 Fibonacci, generating, 103 - 104

 prime, generating, 104 - 106

 numread = fread (text, sizeof (char), 80,
in_file) function, 479

 O
 objects, OOP (object-oriented

programming), 413 - 414

 omitted variable, 456

 omitting fields, for loops, 55

 ones complement operator, 283 - 285

 OOP (object-oriented programming)

 defining

 C# class to work with fractions,
 424 - 426

 C++ class, 421 - 424

 objective-C class, 417 - 421

 instances, 414 - 416

 methods, 414 - 416

 objects, 413 - 414

 writing program to work with
fractions, 416

 OpenGroup.org, 506

 opening files, fopen() function, 362 - 364

 operating systems, 6 - 7

 operations, pointers, 271 - 272

521

 operators, 443 - 445

 ##, 310

 arithmetic, 31 , 446 - 447

 assignment, 39 , 141 - 143 , 449

 bit, 278 - 291

 Exclusive-OR, 282 - 283

 left shift, 285 - 288

 ones complement, 283 - 285

 right shift, 286 - 288

 bitwise, 448

 AND, 279 - 281

 Inclusive-OR, 281 - 282

 comma, 378 , 451

 conditional, 90 - 92 , 449 - 450

 decrement, 267 - 270 , 448 - 449

 increment, 267 - 270 , 448 - 449

 logical, 447

 modular, 35 - 36

 relational, 46 - 50 , 447 - 448

 sizeof, 450 - 451

 type cast, 38 - 39 , 450

 unary minus, 33 - 39

 optimization, programs, 262

 output, aligning, 50 - 51

 P
 perror() function, 371

 Petzold, Charles, 507

 Plauger, P. J., 505

 pointers, 233 , 440

 arrays, 258 - 270 , 453 - 454

 basic operations, 452 - 454

 character strings, 264 - 266

 constant, 266 - 267

 expressions, 237 - 238

 functions, 252 - 258 , 272 - 273 , 460

 illustrating, 235

 indirection, 233 - 234

 keyword const, 251 - 252

 linked lists, 243 - 251

 memory addresses, 273 - 275

 operations, 271 - 272

 structures, 239 - 251 , 453 - 454

 variables, defining, 234 - 237

 portability, programs, #define statement,
 302 - 303

 Prata, Stephen, 507

 precision modifiers, printf() function, 347

 predefined identifiers, 470

 preprocessor, 297 , 464

 conditional compilation, 314 - 317

 debugging programs, 391 - 397

 directives, 465 - 470

 #define, 465 - 467

 #error, 467

 #if, 467 - 468

 #ifdef, 468

 #ifndef, 468

 #include, 468 - 469

 #line, 469

 #pragma, 469

 #undef, 469 - 470

 statements

 #define statement, 297 - 311

 #elif statement, 316 - 317

 #else statement, 315

 #endif, 316

 #if statement, 316 - 317

 #ifdef, 314 - 316

 #include statement, 311 - 314

 #undef statement, 317 -

 trigraph sequences, 464

 prime numbers, generating, arrays,
 104 - 106

prime numbers, generating, arrays

522522 print-list() function

 print_list() function, 252

 printf() function, 13 - 17 , 31 - 32 , 119 , 123 ,
 137 , 269 , 345 , 358

 conversion characters, 348

 flags, 347

 formatting data, 346 - 353

 illustrating formats, 349 - 351

 precision and width modifiers, 347

 type modifiers, 347

 printMessage() function, 120 - 121

 process() function, 393 - 394

 program looping, 43

 do statement, 60 - 63

 program input, 51 - 56

 for statement, 44 - 51

 triangular numbers, 43 - 44

 while statement, 56 - 60

 programming

 common mistakes, 499 - 503

 OOP (object-oriented
programming), 413

 defining C# class to work with
fractions, 424 - 426

 defining C++ class, 421 - 424

 defining objective-C class, 417 - 421

 instances, 414 - 416

 methods, 414 - 416

 writing program to work with
fractions, 416

 top-down, 137

 Programming C# 3.0, 507

 Programming in Objective-C, 508

 Programming in the Key of C#, 507

 programming languages, 5 - 6

 interpreters, 10

 OOP (object-oriented programming),
objects, 413 - 414

 programs, 5

 building, 9

 comments, 17 - 19 , 429

 compiling, 7 - 12

 conditional compilation, 314 - 317

 gcc command, 495 - 497

 debugging, 391

 gdb (GNU Debugger), 397 - 411

 preprocessor, 391 - 397

 dividing into multiple files, 331 - 334

 executing, 9 - 10

 extendibility, #define statement,
 301 - 302

 first, assessing, 13 - 15

 forcing termination, exit() function,
 369 - 370

 optimization, 262

 portability, #define statement, 302 - 303

 running, 11 , 12 - 13

 prototype declaration, functions, 124

 putc() function, 364

 putchar() function, 346

 Q-R
 qualifiers, type, 379

 ranges, integers, 23

 reading character strings, 205

 readLine() function, 208 - 210

 recursive functions, 158 - 160

 register qualifier, 379

 register variable, 456

 relational operators, 46 - 50 , 447 - 448

 remove() function, 370 - 371

 rename() function, 370 - 371

 renaming files, rename() function, 370 - 371

 restrict keyword, 442

 restrict qualifier, 379 - 380

 results, functions, returning, 126 - 130

523

 return statement, 462 - 463

 return types, functions, declaring, 133 - 135

 returning function results, 126 - 130

 right shift operator, 286 - 288

 Ritchie, Dennis M., 505

 rotate() function, 288 - 291 , 314 - 315

 rotating bits, 288 - 291

 running programs, 11 - 13

 S
 scanf() function, 59 , 119 , 177 , 204 - 206 ,

 358 , 392

 conversion characters, 353

 conversion modifiers, 353

 formatting data, 353 - 358

 sed command (Unix), 343 - 344

 shift functions, 286 - 288

 short int data type, 27 - 28 , 433

 single-character input, character strings,
 206 - 211

 single-dimensional arrays, 435

 size_t fread (buffer, size, n, filePtr)
function, 479

 size_t fwrite (buffer, size, n, filePtr)
function, 480

 size_t strcspn (s1, s2) function, 474

 size_t strlen (s) function, 474

 size_t strspn (s1, s2) function, 475

 size_t strxfrm (s1, s2, n) function, 475

 sizeof operator, 450 - 451

 sort() function, 143

 sorting arrays, 143

 source file display, gdb (GNU
Debugger), 401

 source files, compiling multiple from
command line, 332 - 334

 specifiers, data types, 26 - 28

 sprintf() function, 482 - 483

 square roots, calculating, 130 - 133

 squareRoot() function, 131 - 134 , 137 ,
 155 - 156

 sscanf() function, 482 - 483

 stack traces, obtaining, gdb (GNU
Debugger), 406 - 407

 Standard C Library, The, 505

 standard header files, 471 - 473

 statements, 460

 break, 62 , 460

 compound, 460

 continue, 62 - 63 , 460

 debug, adding with preprocessor,
 391 - 392

 #define, preprocessor, 297 - 311

 do, 60 - 63 , 461

 for, 44 - 51 , 461

 goto, 373 - 374 , 461

 if, 65 - 83 , 461 - 462

 compound relational tests, 72 - 74

 else-if, 76 - 83

 if-else, 69 - 72

 nested, 74 - 76

 #include, preprocessor, 311 - 314

 null, 374 - 375 , 462

 preprocessor

 #elif, 316 - 317

 #else, 315

 #endif, 316

 #if, 316 - 317

 #ifdef, 314 - 316

 #ifndef, 314 - 316

 #undef, 317

 return, 462 - 463

 switch, 83 - 86 , 463 - 464

 typedef, 441

 extending data types, 323 - 325

 while, 56 - 60 , 464

statements

524524 static variables

 static variables, 456

 versus external, 337 - 339

 stderr FILE pointer, 368 - 369

 stdin FILE pointer, 368 - 369

 stdout FILE pointer, 368 - 369

 Steele, Guy L. Jr., 505

 storage classes, 456

 functions, 456

 variables, 456

 storage sizes, integers, 23

 storing dates, structures, 164 - 169

 string functions, 474 - 475

 stringLength() function, 198 , 217

 strings, character, 193 - 194

 arrays, 218 - 226

 arrays of characters, 194 - 196

 character operations, 226 - 229

 concatenating, 200 - 201

 constant strings, 217 - 218

 counting characters in, 198 - 199

 displaying, 199 - 202

 escape characters, 215 - 217

 initializing, 199 - 202

 inputting, 204 - 206

 null string, 211 - 214

 pointers, 264 - 267

 reading, 205

 single-character input, 206 - 211

 structures, 218 - 226

 testing for equality, 202 - 204

 variable-length, 197 - 214

 string-to-number routines, 483 - 484

 Stroustrup, Bjarne, 421 , 507

 structures, 163 - 164 , 437 - 439

 arrays, 180 - 181 , 185 - 186

 basic operations, 452

 character strings, 218 - 226

 containing structures, 183 - 185

 functions, 169 - 177

 illustrating, 165 , 186 - 187

 initializing, 178 - 179

 pointers, 239 - 251

 setting, gdb (GNU Debugger), 407 - 408

 storing dates, 164 - 169

 storing time, 175 - 177

 using in expressions, 166 - 169

 variants, 189

 switch statement, 83 - 86 , 463 - 464

 system ("mkdir /usr/tmp/data")
function, 494

 system include files, 313 - 314

 T
 tables, prime numbers, generating, 86 - 87

 test() function, 254

 testing character strings for equality,
 202 - 204

 tests, compound relational, if statements,
 72 - 74

 text editors, 7

 top-down programming, 137

 triangular numbers, 43 - 44

 trigraph sequences, preprocessor, 464

 type cast operator, 38 - 39 , 450

 type definitions, 319

 type modifiers, 442

 printf() function, 347

 type qualifiers, 379 - 380

 typedef statement, 441

 extending data types, 323 - 325

 U
 unary minus operators, 33 - 39

 unions, 375 - 378 , 439 - 440

525

 universal character names, 428

 Unix, 7

 Unix utilities, 343 - 344

 unsigned char data type, 433

 unsigned int constant, 27 - 28

 unsigned int data type, 433

 unsigned long int strtoul (s, end, base)
function, 484

 unsigned long long int strtoull (s, end,
base) function, 484

 unsigned specifier, 278

 utilities

 cvs, 343

 make, 341 - 342

 Unix, 343 - 344

 V
 values, variables, displaying, 15 - 17

 variable-length arrays, 115 - 117 , 436

 variable-length character strings, 197 - 214

 variables, 21 , 29 - 30

 auto, 456

 automatic local, 124 - 126 , 155 - 158

 _Bool, 24 - 26

 Boolean, 86 - 90

 char, 24

 declaring, for loops, 56

 displaying values of, 15 - 17

 extern, 456

 external, 334 - 337

 versus static, 337 - 339

 global, functions, 151 - 155

 omitted, 456

 pointers, defining, 234 - 237

 register, 456

 static, 155 - 158 , 456

 versus external, 337 - 339

 storage classes, 456

 volatile, 442

 working with, gdb (GNU Debugger),
 400 - 401

 variants

 for loops, 55 - 56

 structures, 189

 vim text editor, 7

 Visual Studio, 506

 void *calloc (n, size) function, 484

 void *malloc (size) function, 485

 void *memchr (m1, c, n) function, 476

 void *memcmp (m1, m2, n) function, 476

 void *memcpy (m1, m2, n) function, 476

 void *memmove (m1, m2, n) function, 476

 void *memset (m1, c, n) function, 476

 void *realloc (pointer, size) function, 485

 void clearerr (filePtr) function, 477

 void data type, 433

 void exit (n) function, 493

 void free (pointer) function, 485

 void perror (message) function, 481

 void qsort (arr, n, size, comp_fn) function,
 493 - 494

 void rewind (filePtr) function, 481

 void srand (seed) function, 494

 volatile qualifier, 379

 volatile variable, 442

 W-Z
 while statement, 56 - 60 , 464

 wide character constants, 431

 wide character string constants, 432

 width modifiers, printf() function, 347

 writing functions, 120

writing functions

	Table of Contents
	Introduction
	3 Variables, Data Types, and Arithmetic Expressions
	Understanding Data Types and Constants
	The Integer Type int
	The Floating Number Type float
	The Extended Precision Type double
	The Single Character Type char
	The Boolean Data Type _Bool
	Type Specifiers: long, long long, short, unsigned, and signed

	Working with Variables
	Working with Arithmetic Expressions
	Integer Arithmetic and the Unary Minus Operator

	Combining Operations with Assignment: The Assignment Operators
	Types _Complex and _Imaginary
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-Z

