Stephen Prata Sixth Edition

C++

Primer Plus

Developer’s Library

C++ Primer Plus

Sixth Edition

’ -
Developer’s Library
ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library books are designed to provide practicing programmers with
unique, high-quality references and tutorials on the programming languages and
technologies they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners
who are especially skilled at organizing and presenting information in a way that’s
useful for other programmers.

Key titles include some of the best, most widely acclaimed books within their
topic areas:

PHP & MySQL Web Development Python Essential Reference
Luke Welling & Laura Thomson David Beazley

ISBN-13: 978-0-672-32916-6 ISBN-13: 978-0-672-32862-6
MySQL PostgreSQL

Paul DuBois Korry Douglas

ISBN-13: 978-0-672-32938-8 ISBN-13: 978-0-672-32756-8
Linux Kernel Development C++ Primer Plus

Robert Love Stephen Prata

ISBN-13: 978-0-672-32946-3 ISBN-13: 978-0-321-77640-2

Developer’s Library books are available at most retail and online bookstores, as well
as by subscription from Safari Books Online at safari.informit.com.

Developer’s
Library

informit.com/devlibrary

C++ Primer Plus

Sixth Edition

Stephen Prata

vvAddison-Wesley

Upper Saddle River, NJ ¢ Boston ¢ Indianapolis ¢ San Francisco
New York * Toronto * Montreal * London * Munich ¢ Paris « Madrid
Cape Town ¢ Sydney * Tokyo ¢ Singapore ¢ Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw.
Library of Congress Cataloging-in-Publication data is on file.
Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. To obtain permission to use materi-
al from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your
request to (201) 236-3290.

ISBN-13: 978-0-321-77640-2
ISBN-10: 0-321-77640-2

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville,
Indiana.

First printing: October 2011

Acquisitions Editor
Mark Taber
Development
Editor

Michael Thurston

Managing Editor
Kristy Hart

Project Editors
Samantha
Sinkhorn
Jovana Shirley

Copy Editor
Bart Reed

Indexer
Lisa Stumpf

Proofreader
Language
Logistics, LLC
Technical Reviewer
David Horvath
Publishing
Coordinator
Vanessa Evans

Cover Designer
Gary Adair

Compositor
Nonie Ratcliff

0,
0‘0

To my parents, with love.

0,
0.0

Contents at a Glance

10

11

12

13

14

15

16

17

18

Introduction 1

Getting Started with C++ 9

Setting Out to C++ 27

Dealing with Data 65

Compound Types 115

Loops and Relational Expressions 195
Branching Statements and Logical Operators 253
Functions: C++’s Programming Modules 305
Adventures in Functions 379

Memory Models and Namespaces 447
Objects and Classes 505

Working with Classes 563

Classes and Dynamic Memory Allocation 627
Class Inheritance 707

Reusing Code in C++ 785

Friends, Exceptions, and More 877

The string Class and the Standard
Template Library 951

Input, Output, and Files 1061

Visiting with the New C++ Standard 1153

Appendixes

A

Number Bases 1215

C++ Reserved Words 1221

The ASCII Character Set 1225
Operator Precedence 1231
Other Operators 1235

The string Template Class 1249

The Standard Template Library Methods and
Functions 1271

Selected Readings and Internet Resources 1323
Converting to ISO Standard C++ 1327
Answers to Chapter Reviews 1335

Index 1367

Table of Contents

Introduction 1

1 Getting Started with C++ 9
Learning C++: What Lies Before You 10
The Origins of C++: A Little History 10
Portability and Standards 15
The Mechanics of Creating a Program 18
Summary 25

2 Setting Out to C++ 27
C++ Initiation 27
C++ Statements 41
More C++ Statements 45
Functions 48
Summary 61
Chapter Review 62
Programming Exercises 62

3 Dealing with Data 65
Simple Variables 66
The const Qualifier 90
Floating-Point Numbers 92
C++ Arithmetic Operators 97
Summary 109
Chapter Review 110
Programming Exercises 111

4 Compound Types 115
Introducing Arrays 116
Strings 120
Introducing the string Class 131
Introducing Structures 140
Unions 149
Enumerations 150
Pointers and the Free Store 153
Pointers, Arrays, and Pointer Arithmetic 167
Combinations of Types 184
Array Alternatives 186
Summary 190
Chapter Review 191
Programming Exercises 192

Contents

5 Loops and Relational Expressions 195

Introducing for Loops 196

The while Loop 224

The do while Loop 231

The Range-Based for Loop (C++11) 233
Loops and Text Input 234

Nested Loops and Two-Dimensional Arrays 244
Summary 249

Chapter Review 250

Programming Exercises 251

Branching Statements and Logical Operators 253
The if Statement 254

Logical Expressions 260

The cctype Library of Character Functions 270
The ?: Operator 273

The switch Statement 274

The break and continue Statements 280
Number-Reading Loops 283

Simple File Input/Output 287

Summary 298

Chapter Review 298

Programming Exercises 301

Functions: C++’s Programming Modules 305
Function Review 306

Function Arguments and Passing by Value 313
Functions and Arrays 320

Functions and Two-Dimensional Arrays 337
Functions and C-Style Strings 339

Functions and Structures 343

Functions and string Class Objects 353
Functions and array Objects 355

Recursion 357

Pointers to Functions 361

Summary 371

Chapter Review 372

Programming Exercises 374

Adventures in Functions 379
C++ Inline Functions 379
Reference Variables 383
Default Arguments 409
Function Overloading 412
Function Templates 419

Contents

Summary 442
Chapter Review 443
Programming Exercises 444

9 Memory Models and Namespaces 447
Separate Compilation 447
Storage Duration, Scope, and Linkage 453
Namespaces 482
Summary 497
Chapter Review 498
Programming Exercises 501

10 Objects and Classes 505
Procedural and Object-Oriented Programming 506
Abstraction and Classes 507
Class Constructors and Destructors 524
Knowing Your Objects: The this Pointer 539
An Array of Objects 546
Class Scope 549
Abstract Data Types 552
Summary 557
Chapter Review 558
Programming Exercises 559

11 Working with Classes 563
Operator Overloading 564
Time on Our Hands: Developing an Operator
Overloading Example 565
Introducing Friends 578
Overloaded Operators: Member Versus Nonmember
Functions 587
More Overloading: A Vector Class 588
Automatic Conversions and Type Casts for Classes 606
Summary 621
Chapter Review 623
Programming Exercises 623

12 Classes and Dynamic Memory Allocation 627
Dynamic Memory and Classes 628
The New, Improved String Class 647
Things to Remember When Using new
in Constructors 659
Observations About Returning Objects 662
Using Pointers to Objects 665
Reviewing Techniques 676
A Queue Simulation 678

13

14

15

16

Contents

Summary 699
Chapter Review 700
Programming Exercises 702

Class Inheritance 707

Beginning with a Simple Base Class 708
Inheritance: An Is-a Relationship 720
Polymorphic Public Inheritance 722
Static and Dynamic Binding 737

Access Control: protected 745
Abstract Base Classes 746

Inheritance and Dynamic Memory Allocation 757
Class Design Review 766

Summary 778

Chapter Review 779

Programming Exercises 780

Reusing Code in C++ 785
Classes with Object Members 786
Private Inheritance 797

Multiple Inheritance 808

Class Templates 830

Summary 866

Chapter Review 869

Programming Exercises 871

Friends, Exceptions, and More 877
Friends 877

Nested Classes 889

Exceptions 896

Runtime Type Identification 933

Type Cast Operators 943

Summary 947

Chapter Review 947

Programming Exercises 949

The string Class and the Standard

Template Library 951

The string Class 952

Smart Pointer Template Classes 968
The Standard Template Library 978
Generic Programming 992

Function Objects (a.k.a. Functors) 1026
Algorithms 1035

Other Libraries 1045

xi

Xii Contents

17

18

Summary 1054
Chapter Review 1056
Programming Exercises 1057

Input, Output, and Files 1061

An Overview of C++ Input and Output 1062
Output with cout 1069

Input with cin 1093

File Input and Output 1114

Incore Formatting 1142

Summary 1145

Chapter Review 1146

Programming Exercises 1148

Visiting with the New C++ Standard 1153
C++11 Features Revisited 1153

Move Semantics and the Rvalue Reference 1164
New Class Features 1178

Lambda Functions 1184

Wrappers 1191

Variadic Templates 1197

More C++11 Features 1202

Language Change 1205

What Now? 1207

Summary 1208

Chapter Review 1209

Programming Exercises 1212

Appendixes

@ m m O O W »

Number Bases 1215

C++ Reserved Words 1221

The ASCII Character Set 1225
Operator Precedence 1231
Other Operators 1235

The string Template Class 1249

The Standard Template Library Methods and
Functions 1271

Selected Readings and Internet Resources 1323
Converting to ISO Standard C++ 1327

Answers to Chapter Reviews 1335

Index 1367

Acknowledgments

Acknowledgments for the Sixth Edition

I'd like to thank Mark Taber and Samantha Sinkhorn of Pearson for guiding and manag-
ing this project and David Horvath for providing technical review and editing.

Acknowledgments for the Fifth Edition

I'd like to thank Loretta Yates and Songlin Qiu of Sams Publishing for guiding and man-
aging this project. Thanks to my colleague Fred Schmitt for several useful suggestions.
Once again, I'd like to thank Ron Liechty of Metrowerks for his helpfulness.

Acknowledgments for the Fourth Edition

Several editors from Pearson and from Sams helped originate and maintain this project;
thanks to Linda Sharp, Karen Wachs, and Laurie McGuire. Thanks, too, to Michael
Maddox, Bill Craun, Chris Maunder, and Phillipe Bruno for providing technical review
and editing. And thanks again to Michael Maddox and Bill Craun for supplying the
material for the Real World Notes. Finally, I'd like to thank Ron Liechty of Metrowerks
and Greg Comeau of Comeau Computing for their aid with C++ compilers.

Acknowledgments for the Third Edition

I'd like to thank the editors from Macmillan and The Waite Group for the roles they
played in putting this book together: Tracy Dunkelberger, Susan Walton, and Andrea
Rosenberg. Thanks, too, to Russ Jacobs for his content and technical editing. From
Metrowerks, I'd like to thank Dave Mark, Alex Harper, and especially Ron Liechty, for
their help and cooperation.

Acknowledgments for the Second Edition

I'd like to thank Mitchell Waite and Scott Calamar for supporting a second edition and
Joel Fugazzotto and Joanne Miller for guiding the project to completion. Thanks to
Michael Marcotty of Metrowerks for dealing with my questions about their beta version
CodeWarrior compiler. I'd also like to thank the following instructors for taking the
time to give us feedback on the first edition: Jeff Buckwalter, Earl Brynner, Mike
Holland, Andy Yao, Larry Sanders, Shahin Momtazi, and Don Stephens. Finally, I wish to
thank Heidi Brumbaugh for her helpful content editing of new and revised material.

Acknowledgments for the First Edition

Many people have contributed to this book. In particular, I wish to thank Mitch Waite
for his work in developing, shaping, and reshaping this book, and for reviewing the man-
uscript. I appreciate Harry Henderson’s work in reviewing the last few chapters and in

testing programs with the Zortech C++ compiler. Thanks to David Gerrold for review-
ing the entire manuscript and for championing the needs of less-experienced readers.
Also thanks to Hank Shiftman for testing programs using Sun C++ and to Kent
Williams for testing programs with AT&T cfront and with G++.Thanks to Nan
Borreson of Borland International for her responsive and cheerful assistance with Turbo
C++ and Borland C++.Thank you, Ruth Myers and Christine Bush, for handling the
relentless paper flow involved with this kind of project. Finally, thanks to Scott Calamar
for keeping everything on track.

About the Author

Stephen Prata taught astronomy, physics, and computer science at the College of
Marin in Kentfield, California. He received his B.S. from the California Institute of
Technology and his Ph.D. from the University of California, Berkeley. He has authored
or coauthored more than a dozen books on programming topics including New C Primer
Plus, which received the Computer Press Association’s 1990 Best How-to Computer
Book Award, and C++ Primer Plus, nominated for the Computer Press Association’s Best
How-to Computer Book Award in 1991.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to
pass our way.

You can email or write directly to let us know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail we receive, we might not be able to reply to every message.

‘When you write, please be sure to include this book’ title and author as well as your
name, email address, and phone number.

Email: feedback@developers-library.info
Mail: Reader Feedback
Addison-Wesley Developer’s Library
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.informit.com/register for convenient
access to any updates, downloads, or errata that might be available for this book.

www.informit.com/register

Introduction

Learning C++ is an adventure of discovery, particularly because the language accom-
modates several programming paradigms, including object-oriented programming,
generic programming, and the traditional procedural programming. The fifth edition of
this book described the language as set forth in the ISO C++ standards, informally
known as C++99 and C++03, or, sometimes as C++99/03. (The 2003 version was
largely a technical correction to the 1999 standard and didn’t add any new features.)
Since then, C++ continues to evolve. As this book is written, the international C++
Standards Committee has just approved a new version of the standard. This standard had
the informal name of C++0x while in development, and now it will be known as
C++11. Most contemporary compilers support C++99/03 quite well, and most of the
examples in this book comply with that standard. But many features of the new standard
already have appeared in some implementations, and this edition of C++ Primer Plus
explores these new features.

C++ Primer Plus discusses the basic C language and presents C++ features, making
this book self-contained. It presents C++ fundamentals and illustrates them with short,
to-the-point programs that are easy to copy and experiment with.You learn about
input/output (I/0), how to make programs perform repetitive tasks and make choices,
the many ways to handle data, and how to use functions.You learn about the many
features C++ has added to C, including the following:

= Classes and objects

= Inheritance

= Polymorphism, virtual functions, and runtime type identification (RTTTI)
= Function overloading

= Reference variables

= Generic, or type-independent, programming, as provided by templates and the
Standard Template Library (STL)

= The exception mechanism for handling error conditions

= Namespaces for managing names of functions, classes, and variables

Introduction

The Primer Approach

C++ Primer Plus brings several virtues to the task of presenting all this material. It builds
on the primer tradition begun by C Primer Plus nearly two decades ago and embraces its
successful philosophy:

= A primer should be an easy-to-use, friendly guide.

= A primer doesn’t assume that you are already familiar with all relevant program-
ming concepts.

= A primer emphasizes hands-on learning with brief, easily typed examples that
develop your understanding, a concept or two at a time.

= A primer clarifies concepts with illustrations.

= A primer provides questions and exercises to let you test your understanding, mak-
ing the book suitable for self-learning or for the classroom.

Following these principles, the book helps you understand this rich language and how
to use it. For example

= It provides conceptual guidance about when to use particular features, such as using
public inheritance to model what are known as is-a relationships.

= [t illustrates common C++ programming idioms and techniques.

= It provides a variety of sidebars, including tips, cautions, things to remember, com-
patibility notes, and real-world notes.

The author and editors of this book do our best to keep the presentation to-the-point,
simple, and fun. Our goal is that by the end of the book, you’ll be able to write solid,
effective programs and enjoy yourself doing so.

Sample Code Used in This Book

This book provides an abundance of sample code, most of it in the form of complete
programs. Like the previous editions, this book practices generic C++ so that it is not
tied to any particular kind of computer, operating system, or compiler. Thus, the examples
were tested on a Windows 7 system, a Macintosh OS X system, and a Linux system.
Those programs using C++11 features require compilers supporting those features, but
the remaining programs should work with any C++99/03-compliant system.

The sample code for the complete programs described in this book is available on this
book’s website. See the registration link given on the back cover for more information.

How This Book Is Organized

This book is divided into 18 chapters and 10 appendixes, summarized here:

= Chapter 1: Getting Started with C++—Chapter 1 relates how Bjarne Stroustrup
created the C++ programming language by adding object-oriented programming

How This Book Is Organized

support to the C language.You’ll learn the distinctions between procedural lan-
guages, such as C, and object-oriented languages, such as C++.You’ll read about
the joint ANSI/ISO work to develop a C++ standard. This chapter discusses the
mechanics of creating a C++ program, outlining the approach for several current
C++ compilers. Finally, it describes the conventions used in this book.

Chapter 2: Setting Out to C++
creating simple C++ programs.You'll learn about the role of the main () function

Chapter 2 guides you through the process of

and about some of the kinds of statements that C++ programs use.You’'ll use the
predefined cout and cin objects for program output and input, and you’ll learn
about creating and using variables. Finally, you’ll be introduced to functions, C++s
programming modules.

Chapter 3: Dealing with Data—C++ provides built-in types for storing two
kinds of data: integers (numbers with no fractional parts) and floating-point num-
bers (numbers with fractional parts). To meet the diverse requirements of program-
mers, C++ offers several types in each category. Chapter 3 discusses those types,
including creating variables and writing constants of various types.You’ll also learn
how C++ handles implicit and explicit conversions from one type to another.

Chapter 4: Compound Types—C++ lets you construct more elaborate types from
the basic built-in types. The most advanced form is the class, discussed in Chapters
9 through 13. Chapter 4 discusses other forms, including arrays, which hold several
values of a single type; structures, which hold several values of unlike types; and
pointers, which identify locations in memory.You’ll also learn how to create and
store text strings and to handle text I/O by using C-style character arrays and the
C++ string class. Finally, you’ll learn some of the ways C++ handles memory
allocation, including using the new and delete operators for managing memory
explicitly.

Chapter 5: Loops and Relational Expressions—Programs often must perform
repetitive actions, and C++ provides three looping structures for that purpose: the
for loop, the while loop, and the do while loop. Such loops must know when
they should terminate, and the C++ relational operators enable you to create tests
to guide such loops. In Chapter 5 you learn how to create loops that read and
process input character-by-character. Finally, you’ll learn how to create two-dimen-
sional arrays and how to use nested loops to process them.

Chapter 6: Branching Statements and Logical Operators—Programs can behave
intelligently if they can tailor their behavior to circumstances. In Chapter 6 you’ll
learn how to control program flow by using the if, if else,and switch state-
ments and the conditional operator.You’ll learn how to use logical operators to
help express decision-making tests. Also, you'll meet the cctype library of functions
for evaluating character relations, such as testing whether a character is a digit or a
nonprinting character. Finally, you’ll get an introductory view of file I/O.

Introduction

= Chapter 7: Functions: C++’s Programming Modules—Functions are the basic

building blocks of C++ programming. Chapter 7 concentrates on features that
C++ functions share with C functions. In particular, you’ll review the general for-
mat of a function definition and examine how function prototypes increase the
reliability of programs. Also, you’ll investigate how to write functions to process
arrays, character strings, and structures. Next, you’ll learn about recursion, which is
when a function calls itself, and see how it can be used to implement a divide-and-
conquer strategy. Finally, you’ll meet pointers to functions, which enable you to use
a function argument to tell one function to use a second function.

= Chapter 8: Adventures in Functions—Chapter 8 explores the new features C++
adds to functions.You’ll learn about inline functions, which can speed program exe-
cution at the cost of additional program size.You’ll work with reference variables,
which provide an alternative way to pass information to functions. Default argu-
ments let a function automatically supply values for function arguments that you
omit from a function call. Function overloading lets you create functions having the
same name but taking different argument lists. All these features have frequent use
in class design. Also you’ll learn about function templates, which allow you to spec-
ify the design of a family of related functions.

= Chapter 9: Memory Models and Namespaces—Chapter 9 discusses putting
together multifile programs. It examines the choices in allocating memory, looking
at different methods of managing memory and at scope, linkage, and namespaces,
which determine what parts of a program know about a variable.

= Chapter 10: Objects and Classes—A class is a user-defined type, and an object
(such as a variable) is an instance of a class. Chapter 10 introduces you to object-
oriented programming and to class design. A class declaration describes the infor-
mation stored in a class object and also the operations (class methods) allowed for
class objects. Some parts of an object are visible to the outside world (the public
portion), and some are hidden (the private portion). Special class methods (con-
structors and destructors) come into play when objects are created and destroyed.
You will learn about all this and other class details in this chapter, and you’ll see
how classes can be used to implement ADTs, such as a stack.

= Chapter 11: Working with Classes—In Chapter 11 you’ll further your under-
standing of classes. First, you’ll learn about operator overloading, which lets you
define how operators such as + will work with class objects.You’ll learn about
friend functions, which can access class data that’s inaccessible to the world at large.
You’ll see how certain constructors and overloaded operator member functions can
be used to manage conversion to and from class types.

= Chapter 12: Classes and Dynamic Memory Allocation—Often it’s useful to
have a class member point to dynamically allocated memory. If you use new in a
class constructor to allocate dynamic memory, you incur the responsibilities of pro-
viding an appropriate destructor, of defining an explicit copy constructor, and of

How This Book Is Organized

defining an explicit assignment operator. Chapter 12 shows you how and discusses
the behavior of the member functions generated implicitly if you fail to provide
explicit definitions.You'll also expand your experience with classes by using point-
ers to objects and studying a queue simulation problem.

Chapter 13: Class Inheritance—One of the most powerful features of object-ori-
ented programming is inheritance, by which a derived class inherits the features of a
base class, enabling you to reuse the base class code. Chapter 13 discusses public
inheritance, which models is-a relationships, meaning that a derived object is a spe-
cial case of a base object. For example, a physicist is a special case of a scientist.
Some inheritance relationships are polymorphic, meaning you can write code using
a mixture of related classes for which the same method name may invoke behavior
that depends on the object type. Implementing this kind of behavior necessitates
using a new kind of member function called a virtual function. Sometimes using
abstract base classes is the best approach to inheritance relationships. This chapter
discusses these matters, pointing out when public inheritance is appropriate and
when it is not.

Chapter 14: Reusing Code in C++—Public inheritance is just one way to reuse
code. Chapter 14 looks at several other ways. Containment is when one class con-
tains members that are objects of another class. It can be used to model has-a rela-
tionships, in which one class has components of another class. For example, an
automobile has a motor.You also can use private and protected inheritance to
model such relationships. This chapter shows you how and points out the difter-
ences among the different approaches. Also, you’ll learn about class templates, which
let you define a class in terms of some unspecified generic type, and then use the
template to create specific classes in terms of specific types. For example, a stack
template enables you to create a stack of integers or a stack of strings. Finally, you’ll
learn about multiple public inheritance, whereby a class can derive from more than
one class.

Chapter 15: Friends, Exceptions, and More—Chapter 15 extends the discussion
of friends to include friend classes and friend member functions. Then it presents
several new developments in C++, beginning with exceptions, which provide a
mechanism for dealing with unusual program occurrences, such an inappropriate
function argument values and running out of memory. Then you’ll learn about
RTTI, a mechanism for identifying object types. Finally, you’ll learn about the safer
alternatives to unrestricted typecasting.

Chapter 16: The string Class and the Standard Template Library—Chapter 16
discusses some useful class libraries recently added to the language. The string class
is a convenient and powerful alternative to traditional C-style strings. The auto_ptr
class helps manage dynamically allocated memory. The STL provides several generic
containers, including template representations of arrays, queues, lists, sets, and maps.

[t also provides an efficient library of generic algorithms that can be used with STL

Introduction

containers and also with ordinary arrays. The valarray template class provides sup-
port for numeric arrays.

= Chapter 17: Input, Output, and Files—Chapter 17 reviews C++ I/O and dis-
cusses how to format output.You’ll learn how to use class methods to determine
the state of an input or output stream and to see, for example, whether there has
been a type mismatch on input or whether the end-of-file has been detected. C++
uses inheritance to derive classes for managing file input and output.You'll learn
how to open files for input and output, how to append data to a file, how to use
binary files, and how to get random access to a file. Finally, you’ll learn how to
apply standard I/O methods to read from and write to strings.

= Chapter 18:Visiting with the New C++ Standard—Chapter 18 begins by
reviewing several C++11 features introduced in earlier chapters, including new
types, uniform initialization syntax, automatic type deduction, new smart pointers,
and scoped enumerations. The chapter then discusses the new rvalue reference type
and how it’s used to implement a new feature called move semantics. Next, the chap-
ter covers new class features, lambda expressions, and variadic templates. Finally, the
chapter outlines many new features not covered in earlier chapters of the book.

= Appendix A: Number Bases—Appendix A discusses octal, hexadecimal, and
binary numbers.

= Appendix B: C++ Reserved Words—Appendix B lists C++ keywords.

= Appendix C:The ASCII Character Set—Appendix C lists the ASCII character
set, along with decimal, octal, hexadecimal, and binary representations.

= Appendix D: Operator Precedence—Appendix D lists the C++ operators in
order of decreasing precedence.

= Appendix E: Other Operators—Appendix E summarizes the C++ operators,
such as the bitwise operators, not covered in the main body of the text.

= Appendix F:The string Template Class—Appendix F summarizes string

class methods and functions.

= Appendix G:The Standard Template Library Methods and Functions—
Appendix G summarizes the STL container methods and the general STL
algorithm functions.

= Appendix H: Selected Readings and Internet Resources—Appendix H lists
some books that can further your understanding of C++.

= Appendix I: Converting to ISO Standard C++—Appendix I provides guidelines
for moving from C and older C++ implementations to ANSI/ISO C++.

= Appendix J: Answers to Chapter Review—Appendix | contains the answers to
the review questions posed at the end of each chapter.

Note to Instructors

Note to Instructors

One of the goals of this edition of C++ Primer Plus is to provide a book that can be used
as either a teach-yourself book or as a textbook. Here are some of the features that sup-
port using C++ Primer Plus, Sixth Edition, as a textbook:

= This book describes generic C++, so it isn’t dependent on a particular implemen-
tation.

= The contents track the ISO/ANSI C++ standards committee’s work and include
discussions of templates, the STL, the string class, exceptions, RTTI, and name-
spaces.

» It doesn’t assume prior knowledge of C, so it can be used without a C prerequisite.
(Some programming background is desirable, however.)

» Topics are arranged so that the early chapters can be covered rapidly as review
chapters for courses that do have a C prerequisite.

» Chapters include review questions and programming exercises. Appendix] provides
the answers to the review questions.

» The book introduces several topics that are appropriate for computer science
courses, including abstract data types (ADTs), stacks, queues, simple lists, simula-
tions, generic programming, and using recursion to implement a divide-and-con-
quer strategy.

= Most chapters are short enough to cover in a week or less.

= The book discusses when to use certain features as well as how to use them. For
example, it links public inheritance to is-a relationships and composition and pri-
vate inheritance to has-a relationships, and it discusses when to use virtual functions
and when not to.

Conventions Used in This Book

This book uses several typographic conventions to distinguish among various kinds of text:

= Code lines, commands, statements, variables, filenames, and program output appear
in a computer typeface:

#include <iostream>

int main()
using namespace std;
cout << "What’s up, Doc!\n";
return 0;

Introduction

= Program input that you should type appears in bold computer typeface:

Please enter your name:
Plato

= Placeholders in syntax descriptions appear in an italic computer typeface.You
should replace a placeholder with the actual filename, parameter, or whatever ele-
ment it represents.

= [talic type is used for new terms.

Sidebar

A sidebar provides a deeper discussion or additional background to help illuminate a topic.

Tip
Tips present short, helpful guides to particular programming situations.

Caution
A caution alerts you to potential pitfalls.

Note

The notes provide a catch-all category for comments that don’t fall into one of the other
categories.

Systems Used to Develop This Book’s
Programming Examples

For the record, the C++11 examples in this book were developed using Microsoft Visual
C++ 2010 and Cygwin with Gnu g++ 4.5.0, both running under 64-bit Windows 7.
The remaining examples were tested with these systems, as well as on an iMac using g++
4.2.1 under OS X 10.6.8 and on an Ubuntu Linux system using g++ 4.4.1. Most of the
pre-C++11 examples were originally developed using Microsoft Visual C++ 2003 and
Metrowerks CodeWarrior Development Studio 9 running under Windows XP Profes-
sional and checked using the Borland C++ 5.5 command-line compiler and GNU gpp
3.3.3 on the same system, using Comeau 4.3.3 and GNU g++ 3.3.1 under SuSE 9.0
Linux, and using Metrowerks Development Studio 9 on a Macintosh G4 under OS 10.3.
C++ ofters a lot to the programmer; learn and enjoy!

2

Setting Out to C++

In this chapter you’ll learn about the following:

= Creating a C++ program

= The general format for a C++ program

= The #include directive

= The main () function

= Using the cout object for output

= Placing comments in a C++ program

= How and when to use endl

= Declaring and using variables

= Using the cin object for input

= Defining and using simple functions

When you construct a simple home, you begin with the foundation and the frame-
work. If you don’t have a solid structure from the beginning, you’ll have trouble later fill-
ing in the details, such as windows, door frames, observatory domes, and parquet
ballrooms. Similarly, when you learn a computer language, you should begin by learning
the basic structure for a program. Only then can you move on to the details, such as loops
and objects. This chapter gives you an overview of the essential structure of a C++ pro-
gram and previews some topics—notably functions and classes—covered in much greater

detail in later chapters. (The idea is to introduce at least some of the basic concepts grad-
ually en route to the great awakenings that come later.)

C++ Initiation

Let’s begin with a simple C++ program that displays a message. Listing 2.1 uses the C++
cout (pronounced “see-out”) facility to produce character output. The source code
includes several comments to the reader; these lines begin with //, and the compiler
ignores them. C++ is case sensitive; that 1s, it discriminates between uppercase characters

Chapter 2 Setting Out to C++

and lowercase characters. This means you must be careful to use the same case as in the
examples. For example, this program uses cout, and if you substitute Cout or couT, the
compiler rejects your offering and accuses you of using unknown identifiers. (The com-
piler is also spelling sensitive, so don't try kout or coot, either.) The cpp filename exten-
sion is a common way to indicate a C++ program; you might need to use a different
extension, as described in Chapter 1, “Getting Started with C++.

Listing 2.1 myfirst.cpp

// myfirst.cpp -- displays a message

#include <iostreams> // a PREPROCESSOR directive
int main() // function header
{ // start of function body
using namespace std; // make definitions visible
cout << "Come up and C++ me some time."; // message
cout << endl; // start a new line
cout << "You won't regret it!" << endl; // more output
return 0; // terminate main/()
} // end of function body

Program Adjustments

You might find that you must alter the examples in this book to run on your system. The
most common reason is a matter of the programming environment. Some windowing envi-
ronments run the program in a separate window and then automatically close the window
when the program finishes. As discussed in Chapter 1, you can make the window stay open
until you strike a key by adding the following line of code before the return statement:

cin.get () ;

For some programs you must add two of these lines to keep the window open until you
press a key. You'll learn more about cin.get () in Chapter 4, “Compound Types.”

If you have a very old system, it may not support features introduced by the C++98 standard.

Some programs require a compiler with some level of support for the C++11 standard. They
will be clearly identified and, if possible, alternative non-C++11 code will be suggested.

After you use your editor of choice to copy this program (or else use the source code
files available online from this book’s web page—check the registration link on the back
cover for more information), you can use your C++ compiler to create the executable
code, as Chapter 1 outlines. Here is the output from running the compiled program in
Listing 2.1:

Come up and C++ me some time.
You won’t regret it!

C++ Initiation

C Input and Output

If you're used to programming in C, seeing cout instead of the printf () function might
come as a minor shock. C++ can, in fact, use printf (), scanf (), and all the other stan-
dard C input and output functions, provided that you include the usual C stdio.h file. But
this is a C++ book, so it uses C++’s input facilities, which improve in many ways upon the C
versions.

You construct C++ programs from building blocks called functions. Typically, you
organize a program into major tasks and then design separate functions to handle those
tasks. The example shown in Listing 2.1 is simple enough to consist of a single function
named main (). The myfirst.cpp example has the following elements:

= Comments, indicated by the // prefix

= A preprocessor #include directive

= A function header: int main()

= A using namespace directive

= A function body, delimited by { and }

= Statements that uses the C++ cout facility to display a message
= A return statement to terminate the main () function

Let’s look at these various elements in greater detail. The main () function is a good
place to start because some of the features that precede main (), such as the preprocessor
directive, are simpler to understand after you see what main () does.

Features of the main () Function

Stripped of the trimmings, the sample program shown in Listing 2.1 has the following
fundamental structure:

int main()

{

statements
return 0;

These lines state that there is a function called main (), and they describe how the
function behaves. Together they constitute a function definition. This definition has two
parts: the first line, int main (), which is called the function header, and the portion
enclosed in braces ({ and }), which is the function body. (A quick search on the Web reveals
braces also go by other names, including “curly brackets,” “flower brackets,” “fancy brack-
ets,” and “chicken lips.” However, the ISO Standard uses the term “braces.”’) Figure 2.1
shows the main () function.The function header is a capsule summary of the function’s
interface with the rest of the program, and the function body represents instructions to
the computer about what the function should do. In C++ each complete instruction is
called a statement.You must terminate each statement with a semicolon, so don’t omit the
semicolons when you type the examples.

29

30

Chapter 2 Setting Out to C++

function name

int main() } function header

({
function
definition

A

return 0

statements
-} function body

} terminates funcuon
|-

Statements are C++ expressions terminated by a semicolon.

Figure 2.1 The main () function.

The final statement in main (), called a return statement, terminates the function.You’ll
learn more about the return statement as you read through this chapter.

Statements and Semicolons

A statement represents an action to be taken. To understand your source code, a compiler
needs to know when one statement ends and another begins. Some languages use a state-
ment separator. FORTRAN, for example, uses the end of the line to separate one statement
from the next. Pascal uses a semicolon to separate one statement from the next. In Pascal
you can omit the semicolon in certain cases, such as after a statement just before an END,
when you aren’t actually separating two statements. (Pragmatists and minimalists will dis-
agree about whether can implies should.) But C++, like C, uses a semicolon as a terminator
rather than as a separator. The difference is that a semicolon acting as a terminator is part
of the statement rather than a marker between statements. The practical upshot is that in
C++ you should never omit the semicolon.

The Function Header as an Interface

Right now the main point to remember is that C++ syntax requires you to begin the
definition of the main () function with this header: int main().This chapter discusses the
function header syntax in more detail later, in the section “Functions,” but for those who
can’t put their curiosity on hold, here’s a preview.

In general, a C++ function is activated, or called, by another function, and the function
header describes the interface between a function and the function that calls it. The part
preceding the function name is called the function return type; it describes information flow
from a function back to the function that calls it. The part within the parentheses follow-
ing the function name is called the argument list or parameter list; it describes information
flow from the calling function to the called function. This general description is a bit con-
fusing when you apply it to main () because you normally don’t call main () from other
parts of your program. Typically, however, main () is called by startup code that the com-
piler adds to your program to mediate between the program and the operating system

C++ Initiation

(Unix, Windows 7, Linux, or whatever). In effect, the function header describes the inter-
face between main () and the operating system.

Consider the interface description for main (), beginning with the int part. A C++
function called by another function can return a value to the activating (calling) function.
That value is called a return value. In this case, main () can return an integer value, as indi-
cated by the keyword int. Next, note the empty parentheses. In general, a C++ function
can pass information to another function when it calls that function. The portion of the
function header enclosed in parentheses describes that information. In this case, the empty
parentheses mean that the main () function takes no information, or in the usual termi-
nology, main () takes no arguments. (To say that main () takes no arguments doesn’t mean
that main () is an unreasonable, authoritarian function. Instead, argument is the term com-
puter buffs use to refer to information passed from one function to another.)

In short, the following function header states that the main () function returns an inte-
ger value to the function that calls it and that main () takes no information from the func-
tion that calls it:

int main()

Many existing programs use the classic C function header instead:

main () // original C style

Under classic C, omitting the return type is the same as saying that the function is type
int. However, C++ has phased out that usage.
You can also use this variant:

int main(void) // very explicit style

Using the keyword void in the parentheses is an explicit way of saying that the func-
tion takes no arguments. Under C++ (but not C), leaving the parentheses empty is the
same as using void in the parentheses. (In C, leaving the parentheses empty means you are
remaining silent about whether there are arguments.)

Some programmers use this header and omit the return statement:

void main()

This is logically consistent because a void return type means the function doesn’t
return a value. However, although this variant works on some systems, it’s not part of the
C++ Standard. Thus, on other systems it fails. So you should avoid this form and use the
C++ Standard form; it doesn’t require that much more effort to do it right.

Finally, the ISO C++ Standard makes a concession to those who complain about the
tiresome necessity of having to place a return statement at the end of main (). If the com-
piler reaches the end of main () without encountering a return statement, the effect will
be the same as if you ended main () with this statement:

return 0;

This implicit return is provided only for main () and not for any other function.

31

32

Chapter 2 Setting Out to C++

Why main () by Any Other Name Is Not the Same

There’s an extremely compelling reason to name the function in the myfirst.cpp pro-
gram main () :You must do so. Ordinarily, a C++ program requires a function called

main (). (And not, by the way, Main () or MAIN() or mane (). Remember, case and spelling
count.) Because the myfirst.cpp program has only one function, that function must bear
the responsibility of being main (). When you run a C++ program, execution always
begins at the beginning of the main () function. Therefore, if you don’t have main (), you
don’t have a complete program, and the compiler points out that you haven’t defined a
main () function.

There are exceptions. For example, in Windows programming you can write a dynamic
link library (DLL) module. This is code that other Windows programs can use. Because a
DLL module is not a standalone program, it doesn’t need a main (). Programs for special-
ized environments, such as for a controller chip in a robot, might not need a main ().
Some programming environments provide a skeleton program calling some nonstandard
function, such as _tmain ();in that case there is a hidden main () that calls tmain().But
your ordinary standalone program does need a main () ; this books discusses that sort of
program.

C++ Comments

The double slash (//) introduces a C++ comment. A comment is a remark from the pro-
grammer to the reader that usually identifies a section of a program or explains some
aspect of the code. The compiler ignores comments. After all, it knows C++ at least as
well as you do, and, in any case, it’s incapable of understanding comments. As far as the
compiler is concerned, Listing 2.1 looks as if it were written without comments, like this:

#include <iostream>
int main()

{
using namespace std;
cout << "Come up and C++ me some time.";
cout << endl;
cout << "You won’t regret it!" << endl;
return 0;

C++ comments run from the // to the end of the line. A comment can be on its own
line, or it can be on the same line as code. Incidentally, note the first line in Listing 2.1:

// myfirst.cpp -- displays a message

In this book all programs begin with a comment that gives the filename for the source
code and a brief program summary. As mentioned in Chapter 1, the filename extension
for source code depends on your C++ system. Other systems might use myfirst.cC or
myfirst.cxx for names.

C++ Initiation

Tip

You should use comments to document your programs. The more complex the program, the
more valuable comments are. Not only do they help others to understand what you have
done, but also they help you understand what you’'ve done, especially if you haven’t looked
at the program for a while.

C-Style Comments
C++ also recognizes C comments, which are enclosed between /* and */ symbols:

#include <iostreams> /* a C-style comment */

Because the C-style comment is terminated by */ rather than by the end of a line, you can
spread it over more than one line. You can use either or both styles in your programs. How-
ever, try sticking to the C++ style. Because it doesn’t involve remembering to correctly pair
an end symbol with a begin symbol, it’s less likely to cause problems. Indeed, C99 has
added the // comment to the C language.

The C++ Preprocessor and the iostream File

Here’s the short version of what you need to know. If your program is to use the usual
C++ input or output facilities, you provide these two lines:

#include <iostreams
using namespace std;

There are some alternatives to using the second line, but let’s keep things simple for
now. (If your compiler doesn’t like these lines, it’s not C++98 compatible, and it will have
many other problems with the examples in this book.) That’s all you really must know to
make your programs work, but now let’s take a more in-depth look.

C++,like C, uses a preprocessor. This is a program that processes a source file before the
main compilation takes place. (Some C++ implementations, as you might recall from
Chapter 1, use a translator program to convert a C++ program to C.Although the transla-
tor is also a form of preprocessor, we’re not discussing that preprocessor; instead, we’re dis-
cussing the one that handles directives whose names begin with #.) You don’t have to do
anything special to invoke this preprocessor. It automatically operates when you compile
the program.

Listing 2.1 uses the #include directive:

#include <iostream> // a PREPROCESSOR directive

This directive causes the preprocessor to add the contents of the iostrean file to your
program. This is a typical preprocessor action: adding or replacing text in the source code
before it’s compiled.

This raises the question of why you should add the contents of the iostream file to
the program. The answer concerns communication between the program and the outside
world. The io in iostream refers to input, which is information brought into the pro-
gram, and to output, which is information sent out from the program. C++’ input/output
scheme involves several definitions found in the iostrean file.Your first program needs

33

34

Chapter 2 Setting Out to C++

these definitions to use the cout facility to display a message. The #include directive
causes the contents of the iostream file to be sent along with the contents of your file to
the compiler. In essence, the contents of the iostream file replace the #include
<iostreams line in the program.Your original file is not altered, but a composite file
formed from your file and iostream goes on to the next stage of compilation.

Note
Programs that use cin and cout for input and output must include the iostream file.

Header Filenames

Files such as iostream are called include files (because they are included in other files) or
header files (because they are included at the beginning of a file). C++ compilers come
with many header files, each supporting a particular family of facilities. The C tradition
has been to use the h extension with header files as a simple way to identify the type of
file by its name. For example, the C math.h header file supports various C math functions.
Initially, C++ did the same. For instance, the header file supporting input and output was
named iostream.h. But C++ usage has changed. Now the h extension is reserved for the
old C header files (which C++ programs can still use), whereas C++ header files have no
extension. There are also C header files that have been converted to C++ header files.
These files have been renamed by dropping the h extension (making it a C++-style
name) and prefixing the filename with a ¢ (indicating that it comes from C). For example,
the C++ version of math.h is the cmath header file. Sometimes the C and C++ versions
of C header files are identical, whereas in other cases the new version might have a few
changes. For purely C++ header files such as iostream, dropping the h is more than a
cosmetic change, for the h-free header files also incorporate namespaces, the next topic in
this chapter. Table 2.1 summarizes the naming conventions for header files.

Table 2.1 Header File Naming Conventions

Kind of Header Convention Example Comments

C++ old style Ends in .h iostream.h Usable by C++ programs

C old style Endsin .h math.h Usable by C and C++ programs

C++ new style No extension iostream Usable by C++ programs, uses
namespace std

Converted C c prefix, no cmath Usable by C++ programs, might use

extension non-C features, such as namespace

std

In view of the C tradition of using different filename extensions to indicate different
file types, it appears reasonable to have some special extension, such as .hpp or . hxx, to
indicate C++ header files. The ANSI/ISO committee felt so, too. The problem was agree-
ing on which extension to use, so eventually they agreed on nothing.

C++ Initiation

Namespaces

If you use iostream instead of iostream.h, you should use the following namespace
directive to make the definitions in iostream available to your program:

using namespace std;

This is called a using directive. The simplest thing to do is to accept this for now and
worry about it later (for example, in Chapter 9,“Memory Models and Namespaces”). But
so you won'’t be left completely in the dark, here’s an overview of what’s happening.

Namespace support is a C++ feature designed to simplify the writing of large pro-
grams and of programs that combine pre-existing code from several vendors and to help
organize programs. One potential problem is that you might use two prepackaged prod-
ucts that both have, say, a function called wanda () . If you then use the wanda () function,
the compiler won’t know which version you mean. The namespace facility lets a vendor
package its wares in a unit called a namespace so that you can use the name of a namespace
to indicate which vendor’s product you want. So Microflop Industries could place its defi-
nitions in a namespace called Microflop.Then Microflop: :wanda () would become the
full name for its wanda () function. Similarly, Piscine: :wanda () could denote Piscine
Corporation’s version of wanda () . Thus, your program could now use the namespaces to
discriminate between various versions:

Microflop::wanda ("go dancing?"); // use Microflop namespace version
Piscine::wanda("a fish named Desire"); // use Piscine namespace version

In this spirit, the classes, functions, and variables that are a standard component of C++
compilers are now placed in a namespace called std.This takes place in the h-free header
files. This means, for example, that the cout variable used for output and defined in
iostream is really called std: :cout and that endl is really std: :endl. Thus, you can omit
the using directive and, instead, code in the following style:

std::cout << "Come up and C++ me some time.";
std::cout << std::endl;

However, many users don't feel like converting pre-namespace code, which uses
iostream.h and cout, to namespace code, which uses iostream and std: : cout, unless
they can do so without a lot of hassle. This is where the using directive comes in.The fol-
lowing line means you can use names defined in the std namespace without using the
std: : prefix:

using namespace std;

This using directive makes all the names in the std namespace available. Modern prac-
tice regards this as a bit lazy and potentially a problem in large projects. The preferred
approaches are to use the std: : qualifier or to use something called a using declaration
to make just particular names available:
using std::cout; // make cout available

using std::endl; // make endl available
using std::cin; // make cin available

35

36

Chapter 2 Setting Out to C++

If you use these directives instead of the following, you can use cin and cout without
attaching std: : to them:

using namespace std; // lazy approach, all names available

But if you need to use other names from iostream, you have to add them to the
using list individually. This book initially uses the lazy approach for a couple reasons. First,
for simple programs, it’s not really a big issue which namespace management technique
you use. Second, I'd rather emphasize the more basic aspects about learning C++. Later,
the book uses the other namespace techniques.

C++ Output with cout

Now let’s look at how to display a message. The myfirst.cpp program uses the following
C++ statement:

cout << "Come up and C++ me some time.";

The part enclosed within the double quotation marks is the message to print. In C++,
any series of characters enclosed in double quotation marks is called a character string, pre-
sumably because it consists of several characters strung together into a larger unit. The <<
notation indicates that the statement is sending the string to cout; the symbols point the
way the information flows. And what is cout? It’s a predefined object that knows how to
display a variety of things, including strings, numbers, and individual characters. (An object,
as you might remember from Chapter 1, is a particular instance of a class, and a class
defines how data is stored and used.)

Well, using objects so soon is a bit awkward because you won't learn about objects for
several more chapters. Actually, this reveals one of the strengths of objects.You don’t have
to know the innards of an object in order to use it. All you must know is its interface—
that is, how to use it. The cout object has a simple interface. If string represents a string,
you can do the following to display it:

cout << string;

This is all you must know to display a string, but now take a look at how the C++
conceptual view represents the process. In this view, the output is a stream—that is, a series
of characters flowing from the program.The cout object, whose properties are defined in
the iostream file, represents that stream. The object properties for cout include an inser-
tion operator (<<) that inserts the information on its right into the stream. Consider the
following statement (note the terminating semicolon):

cout << "Come up and C++ me some time.";
It inserts the string “Come up and C++ me some time.” into the output stream. Thus,

rather than say that your program displays a message, you can say that it inserts a string
into the output stream. Somehow, that sounds more impressive (see Figure 2.2).

C++ Initiation

the insertion
the cout object operator a string

~
cout << "C++ RULES"

| string inserted into output stream

...and then she said\nC++ RULES

Figure 2.2 Using cout to display a string.

A First Look at Operator Overloading

If you’re coming to C++ from C, you probably noticed that the insertion operator (<<) looks
just like the bitwise left-shift operator (<<). This is an example of operator overloading, by
which the same operator symbol can have different meanings. The compiler uses the con-
text to figure out which meaning is intended. C itself has some operator overloading. For
example, the & symbol represents both the address operator and the bitwise AND operator.
The * symbol represents both multiplication and dereferencing a pointer. The important
point here is not the exact function of these operators but that the same symbol can have
more than one meaning, with the compiler determining the proper meaning from the context.
(You do much the same when you determine the meaning of “sound” in “sound card” versus
“sound financial basis.”) C++ extends the operator overloading concept by letting you rede-
fine operator meanings for the user-defined types called classes.

The Manipulator endl
Now let’s examine an odd-looking notation that appears in the second output statement
in Listing 2.1:
cout << endl;
endl is a special C++ notation that represents the important concept of beginning a

new line. Inserting endl into the output stream causes the screen cursor to move to the
beginning of the next line. Special notations like end1 that have particular meanings to

37

38

Chapter 2 Setting Out to C++

cout are dubbed manipulators. Like cout, endl is defined in the iostream header file and
is part of the std namespace.

Note that the cout facility does not move automatically to the next line when it prints
a string, so the first cout statement in Listing 2.1 leaves the cursor positioned just after the
period at the end of the output string. The output for each cout statement begins where
the last output ended, so omitting endl would result in this output for Listing 2.1:

Come up and C++ me some time.You won’t regret it!

Note that the Y immediately follows the period. Let’s look at another example. Sup-
pose you try this code:
cout << "The Good, the";
cout << "Bad, ";
cout << "and the Ukulele";
cout << endl;

It produces the following output:
The Good, theBad, and the Ukulele

Again, note that the beginning of one string comes immediately after the end of the
preceding string. If you want a space where two strings join, you must include it in one of

the strings. (Remember that to try out these output examples, you have to place them in a
complete program, with a main () function header and opening and closing braces.)

The Newline Character

C++ has another, more ancient, way to indicate a new line in output—the C notation \n:
cout << "What’s next?\n"; // \n means start a new line
The \n combination is considered to be a single character called the newline character.

If you are displaying a string, you need less typing to include the newline as part of the
string than to tag an endl onto the end:

cout << "Pluto is a dwarf planet.\n"; // show text, go to next line
cout << "Pluto is a dwarf planet." << endl; // show text, go to next line

On the other hand, if you want to generate a newline by itself, both approaches take
the same amount of typing, but most people find the keystrokes for endl to be more

comfortable:
cout << "\n"; // start a new line
cout << endl; // start a new line

Typically, this book uses an embedded newline character (\n) when displaying quoted
strings and the endl manipulator otherwise. One difference is that endl guarantees the
output will be flushed (in, this case, immediately displayed onscreen) before the program
moves on.You don’t get that guarantee with "\n", which means that it is possible on some

C++ Initiation

systems in some circumstances a prompt might not be displayed until after you enter the
information being prompted for.

The newline character is one example of special keystroke combinations termed
“escape sequences”’; they are further discussed in Chapter 3,“Dealing with Data.”

C++ Source Code Formatting

Some languages, such as FORTR AN, are line-oriented, with one statement to a line. For
these languages, the carriage return (generated by pressing the Enter key or the Return
key) serves to separate statements. In C++, however, the semicolon marks the end of each
statement. This leaves C++ free to treat the carriage return in the same way as a space or a
tab. That is, in C++ you normally can use a space where you would use a carriage return
and vice versa. This means you can spread a single statement over several lines or place
several statements on one line. For example, you could reformat myfirst . cpp as follows:

#include <iostream>
int
main
() { |using
namespace
std; cout
<<
"Come up and C++ me some time."
; cout <<
endl; cout <<
"You won’'t regret it!" <<
endl;return 0; }

This is visually ugly but valid code.You do have to observe some rules. In particular, in
C and C++ you can’t put a space, tab, or carriage return in the middle of an element such
as a name, nor can you place a carriage return in the middle of a string. Here are examples
of what you can’t do:

int ma in() // INVALID -- space in name
re
turn 0; // INVALID -- carriage return in word

cout << "Behold the Beans
of Beauty!"; // INVALID -- carriage return in string

(However, the raw string, added by C++11 and discussed briefly in Chapter 4, does
allow including a carriage return in a string.)

Tokens and White Space in Source Code

The indivisible elements in a line of code are called fokens (see Figure 2.3). Generally, you
must separate one token from the next with a space, tab, or carriage return, which collec-
tively are termed white space. Some single characters, such as parentheses and commas, are

39

40 Chapter 2 Setting Out to C++

tokens that need not be set off by white space. Here are some examples that illustrate
when white space can be used and when it can be omitted:

tokens

——l1
main()
| white space (newline)
‘ white space (space)
token

T
=}
~+

Spaces and carriage returns can be used interchangeably.

token
int white space (newline)
white space (space)
L1

tokens

Figure 2.3 Tokens and white space.

returno; // INVALID, must be return 0;
return(0) ; // VALID, white space omitted

return (0); // VALID, white space used

intmain () ; // INVALID, white space omitted

int main() // VALID, white space omitted in ()
int main () // ALSO VALID, white space used in ()

C++ Source Code Style
Although C++ gives you much formatting freedom, your programs will be easier to read
if you follow a sensible style. Having valid but ugly code should leave you unsatisfied.
Most programmers use styles similar to that of Listing 2.1, which observes these rules:
= One statement per line
= An opening brace and a closing brace for a function, each of which is on its own line
= Statements in a function indented from the braces
= No whitespace around the parentheses associated with a function name
The first three rules have the simple intent of keeping the code clean and readable. The

fourth helps to differentiate functions from some built-in C++ structures, such as loops,
that also use parentheses. This book alerts you to other guidelines as they come up.

C++ Statements

C++ Statements

A C++ program is a collection of functions, and each function is a collection of state-
ments. C++ has several kinds of statements, so let’s look at some of the possibilities. Listing
2.2 provides two new kinds of statements. First, a declaration statement creates a variable.
Second, an assignment statement provides a value for that variable. Also the program shows a
new capability for cout.

Listing 2.2 carrots.cpp

// carrots.cpp -- food processing program
// uses and displays a variable

#include <iostream>

int main()

{

using namespace std;
int carrots; // declare an integer variable

carrots = 25; // assign a value to the variable

cout << "I have ";

cout << carrots; // display the value of the variable

cout << " carrots.";

cout << endl;

carrots = carrots - 1; // modify the variable

cout << "Crunch, crunch. Now I have " << carrots << " carrots." << endl;
return 0;

A blank line separates the declaration from the rest of the program.This practice is the
usual C convention, but it’s somewhat less common in C++. Here is the program output
for Listing 2.2:

I have 25 carrots.
Crunch, crunch. Now I have 24 carrots.

The next few pages examine this program.

Declaration Statements and Variables

Computers are precise, orderly machines. To store an item of information in a computer,
you must identify both the storage location and how much memory storage space the
information requires. One relatively painless way to do this in C++ is to use a declaration
statement to indicate the type of storage and to provide a label for the location. For exam-
ple, the program in Listing 2.2 has this declaration statement (note the semicolon):

int carrots;

41

42

Chapter 2 Setting Out to C++

This statement provides two kinds of information: the type of memory storage needed
and a label to attach to that storage. In particular, the statement declares that the program
requires enough storage to hold an integer, for which C++ uses the label int.The com-
piler takes care of the details of allocating and labeling memory for that task. C++ can
handle several kinds, or types, of data, and the int is the most basic data type. It corre-
sponds to an integer, a number with no fractional part. The C++ int type can be positive
or negative, but the size range depends on the implementation. Chapter 3 provides the
details on int and the other basic types.

Naming the storage is the second task achieved. In this case, the declaration statement
declares that henceforth the program will use the name carrots to identify the value
stored at that location. carrots is called a variable because you can change its value. In
C++ you must declare all variables. If you were to omit the declaration in carrots.cpp,
the compiler would report an error when the program attempts to use carrots further
on. (In fact, you might want to try omitting the declaration just to see how your compiler
responds. Then if you see that response in the future, you’ll know to check for omitted
declarations.)

Why Must Variables Be Declared?

Some languages, notably BASIC, create a new variable whenever you use a new name, with-
out the aid of explicit declarations. That might seem friendlier to the user, and it is—in the
short term. The problem is that if you misspell the name of a variable, you inadvertently can
create a new variable without realizing it. That is, in BASIC, you can do something like the
following:

CastleDark = 34

CastleDank = CastleDark + MoreGhosts

PRINT CastleDark

Because CastleDank is misspelled (the r was typed as an n), the changes you make to it
leave CcastleDark unchanged. This kind of error can be hard to trace because it breaks no
rules in BASIC. However, in C++, CastleDark would be declared while the misspelled
CastleDank would not be declared. Therefore, the equivalent C++ code breaks the rule
about the need to declare a variable for you to use it, so the compiler catches the error and
stomps the potential bug.

In general, then, a declaration indicates the type of data to be stored and the name the
program will use for the data that’s stored there. In this particular case, the program creates
a variable called carrots in which it can store an integer (see Figure 2.4).

The declaration statement in the program is called a defining declaration statement, or
definition, for short. This means that its presence causes the compiler to allocate memory
space for the variable. In more complex situations, you can also have reference declarations.
These tell the computer to use a variable that has already been defined elsewhere. In gen-
eral, a declaration need not be a definition, but in this example it is.

C++ Statements

int carrots;
T 7T

type of name of

data to variable

be stored semicolon
marks end of
statement

Figure 2.4 A variable declaration.

If you’re familiar with C or Pascal, you're already familiar with variable declarations.
You also might have a modest surprise in store for you. In C and Pascal, all variable decla-
rations normally come at the very beginning of a function or procedure. But C++ has no
such restriction. Indeed, the usual C++ style is to declare a variable just before it is first
used. That way, you don’t have to rummage back through a program to see what the type
is.You’ll see an example of this later in this chapter. This style does have the disadvantage
of not gathering all your variable names in one place; thus, you can’t tell at a glance what
variables a function uses. (Incidentally, C99 now makes the rules for C declarations much
the same as for C++.)

Tip

The C++ style for declaring variables is to declare a variable as close to its first use as
possible.

Assighment Statements

An assignment statement assigns a value to a storage location. For example, the following
statement assigns the integer 25 to the location represented by the variable carrots:

carrots = 25;

The = symbol is called the assignment operator. One unusual feature of C++ (and C) is
that you can use the assignment operator serially. For example, the following is valid code:
int steinway;
int baldwin;
int yamaha;
yamaha = baldwin = steinway = 88;

The assignment works from right to left. First, 88 is assigned to steinway; then the
value of steinway, which is now 88, is assigned to baldwin; then baldwin’s value of 88 is
assigned to yamaha. (C++ follows C’s penchant for allowing weird-appearing code.)

The second assignment statement in Listing 2.2 demonstrates that you can change the
value of a variable:

carrots = carrots - 1; // modify the variable

43

44

Chapter 2 Setting Out to C++

The expression to the right of the assignment operator (carrots - 1) is an example of
an arithmetic expression. The computer will subtract 1 from 25, the value of carrots,
obtaining 24.The assignment operator then stores this new value in the carrots location.

A New Trick for cout

Up until now, the examples in this chapter have given cout strings to print. Listing 2.2
also gives cout a variable whose value is an integer:

cout << carrots;

The program doesn’t print the word carrots; instead, it prints the integer value stored
in carrots, which is 25. Actually, this is two tricks in one. First, cout replaces carrots
with its current numeric value of 25. Second, it translates the value to the proper output
characters.

As you can see, cout works with both strings and integers. This might not seem partic-
ularly remarkable to you, but keep in mind that the integer 25 is something quite different
from the string "25".The string holds the characters with which you write the number
(that is, a 2 character and a 5 character). The program internally stores the numeric codes
for the 2 character and the 5 character. To print the string, cout simply prints each charac-
ter in the string. But the integer 25 is stored as a numeric value. Rather than store each
digit separately, the computer stores 25 as a binary number. (Appendix A, “Number
Bases,” discusses this representation.) The main point here is that cout must translate a
number in integer form into character form before it can print it. Furthermore, cout is
smart enough to recognize that carrots is an integer that requires conversion.

Perhaps the contrast with old C will indicate how clever cout is. To print the string
n25" and the integer 25 in C, you could use C’s multipurpose output function printf ():
printf ("Printing a string: %s\n", "25");
printf ("Printing an integer: %d\n", 25);

Without going into the intricacies of printf (), note that you must use special codes
(%s and %d) to indicate whether you are going to print a string or an integer. And if you
tell printf () to print a string but give it an integer by mistake, print£ () is too unsophis-
ticated to notice your mistake. It just goes ahead and displays garbage.

The intelligent way in which cout behaves stems from C++’s object-oriented features.
In essence, the C++ insertion operator (<<) adjusts its behavior to fit the type of data that
follows it. This is an example of operator overloading. In later chapters, when you take up
function overloading and operator overloading, you’ll learn how to implement such smart
designs yourself.

cout and printf ()

If you are used to C and printf (), you might think cout looks odd. You might even prefer
to cling to your hard-won mastery of printf (). But cout actually is no stranger in appear-
ance than printf (), with all its conversion specifications. More importantly, cout has sig-
nificant advantages. Its capability to recognize types reflects a more intelligent and foolproof

More C++ Statements

design. Also, it is extensible. That is, you can redefine the << operator so that cout can rec-
ognize and display new data types you develop. And if you relish the fine control printf ()
provides, you can accomplish the same effects with more advanced uses of cout (see
Chapter 17, “Input, Output, and Files”).

More C++ Statements

Let’s look at a couple more examples of statements. The program in Listing 2.3 expands
on the preceding example by allowing you to enter a value while the program is running.
To do so, it uses cin (pronounced “see-in”), the input counterpart to cout.Also the pro-
gram shows yet another way to use that master of versatility, the cout object.

Listing 2.3 getinfo.cpp

// getinfo.cpp -- input and output
#include <iostream>

int main()

{

using namespace std;
int carrots;

cout << "How many carrots do you have?" << endl;
cin >> carrots; // C++ input
cout << "Here are two more. ";
carrots = carrots + 2;
// the next line concatenates output
cout << "Now you have " << carrots << " carrots." << endl;
return 0;

Program Adjustments

If you found that you had to add a cin.get () statement in the earlier listings, you will need
to add two cin.get () statements to this listing to keep the program output visible
onscreen. The first one will read the newline generated when you press the Enter or Return
key after typing a number, and the second will cause the program to pause until you hit
Return or Enter again.

Here is an example of output from the program in Listing 2.3:

How many carrots do you have?
12
Here are two more. Now you have 14 carrots.

The program has two new features: using cin to read keyboard input and combining
four output statements into one. Let’s take a look.

45

46

Chapter 2 Setting Out to C++

Using cin
As the output from Listing 2.3 demonstrates, the value typed from the keyboard (12) is
eventually assigned to the variable carrots.The following statement performs that wonder:

cin >> carrots;

Looking at this statement, you can practically see information flowing from cin into
carrots. Naturally, there is a slightly more formal description of this process. Just as C++
considers output to be a stream of characters flowing out of the program, it considers
input to be a stream of characters flowing into the program.The iostream file defines cin
as an object that represents this stream. For output, the << operator inserts characters into
the output stream. For input, cin uses the >> operator to extract characters from the input
stream. Typically, you provide a variable to the right of the operator to receive the
extracted information. (The symbols << and >> were chosen to visually suggest the direc-
tion in which information flows.)

Like cout, cin is a smart object. It converts input, which is just a series of characters
typed from the keyboard, into a form acceptable to the variable receiving the information.
In this case, the program declares carrots to be an integer variable, so the input is con-
verted to the numeric form the computer uses to store integers.

Concatenating with cout

The second new feature of getinfo.cpp is combining four output statements into one.
The iostream file defines the << operator so that you can combine (that is, concatenate)
output as follows:

cout << "Now you have " << carrots << " carrots." << endl;

This allows you to combine string output and integer output in a single statement. The
resulting output is the same as what the following code produces:

cout << "Now you have ";
cout << carrots;

cout << " carrots";

cout << endl;

While you’re still in the mood for cout advice, you can also rewrite the concatenated
version this way, spreading the single statement over four lines:
cout << "Now you have "
<< carrots
<< " carrots."

<< endl;

That’s because C++7s free format rules treat newlines and spaces between tokens inter-
changeably. This last technique is convenient when the line width cramps your style.
Another point to note is that

Now you have 14 carrots.

More C++ Statements

appears on the same line as

Here are two more.

That’s because, as noted before, the output of one cout statement immediately follows
the output of the preceding cout statement. This is true even if there are other statements
in between.

cin and cout: A Touch of Class

You’ve seen enough of cin and cout to justify your exposure to a little object lore. In
particular, in this section you’ll learn more about the notion of classes. As Chapter 1 out-
lined briefly, classes are one of the core concepts for object-oriented programming
(OOP) in C++.

A class is a data type the user defines. To define a class, you describe what sort of infor-
mation it can represent and what sort of actions you can perform with that data. A class
bears the same relationship to an object that a type does to a variable. That is, a class defi-
nition describes a data form and how it can be used, whereas an object is an entity created
according to the data form specification. Or, in noncomputer terms, if a class is analogous
to a category such as famous actors, then an object is analogous to a particular example of
that category, such as Kermit the Frog.To extend the analogy, a class representation of
actors would include definitions of possible actions relating to the class, such as Reading
for a Part, Expressing Sorrow, Projecting Menace, Accepting an Award, and the like. If
you’ve been exposed to different OOP terminology, it might help to know that the C++
class corresponds to what some languages term an object type, and the C++ object corre-
sponds to an object instance or instance variable.

Now let’s get a little more specific. Recall the following declaration of a variable:

int carrots;

This creates a particular variable (carrots) that has the properties of the int type.That
is, carrots can store an integer and can be used in particular ways—for addition and sub-
traction, for example. Now consider cout. It is an object created to have the properties of
the ostream class. The ostream class definition (another inhabitant of the iostream file)
describes the sort of data an ostream object represents and the operations you can per-
form with and to it, such as inserting a number or string into an output stream. Similarly,
cin is an object created with the properties of the istream class, also defined in

iostream.

Note

The class describes all the properties of a data type, including actions that can be per-
formed with it, and an object is an entity created according to that description.

You have learned that classes are user-defined types, but as a user, you certainly didn’t
design the ostream and istream classes. Just as functions can come in function libraries,
classes can come in class libraries. That’s the case for the ostream and istream classes.
Technically, they are not built in to the C++ language; instead, they are examples of classes

47

48

Chapter 2 Setting Out to C++

that the language standard specifies. The class definitions are laid out in the iostream file
and are not built into the compiler.You can even modify these class definitions if you like,
although that’s not a good idea. (More precisely, it is a truly dreadful idea.) The iostream
family of classes and the related fstream (or file I/O) family are the only sets of class defi-
nitions that came with all early implementations of C++. However, the ANSI/ISO C++
committee added a few more class libraries to the Standard. Also most implementations
provide additional class definitions as part of the package. Indeed, much of the current
appeal of C++ is the existence of extensive and useful class libraries that support Unix,
Macintosh, and Windows programming.

The class description specifies all the operations that can be performed on objects of
that class. To perform such an allowed action on a particular object, you send a message to
the object. For example, if you want the cout object to display a string, you send it a mes-
sage that says, in effect, “Object! Display this!” C++ provides a couple ways to send mes-
sages. One way, using a class method, is essentially a function call like the ones you'll see
soon. The other way, which is the one used with cin and cout, is to redefine an operator.
Thus, the following statement uses the redefined << operator to send the “display mes-
sage” to cout:

cout << "I am not a crook."

In this case, the message comes with an argument, which is the string to be displayed.
(See Figure 2.5 for a similar example.)

#include <iostream>
using namespace std;
int main() .
print message

message argument
cout << "Trust me";

) ——> Trust me
cout object
object displays argument

Figure 2.5 Sending a message to an object.

Functions

Because functions are the modules from which C++ programs are built and because they
are essential to C++ OOP definitions, you should become thoroughly familiar with
them. Some aspects of functions are advanced topics, so the main discussion of functions
comes later, in Chapter 7, “Functions: C++’s Programming Modules,” and Chapter 8,

Functions

“Adventures in Functions.” However, if we deal now with some basic characteristics of
functions, you’ll be more at ease and more practiced with functions later. The rest of this
chapter introduces you to these function basics.

C++ functions come in two varieties: those with return values and those without
them.You can find examples of each kind in the standard C++ library of functions, and
you can create your own functions of each type. Let’s look at a library function that has a
return value and then examine how you can write your own simple functions.

Using a Function That Has a Return Value

A function that has a return value produces a value that you can assign to a variable or use
in some other expression. For example, the standard C/C++ library includes a function
called sqrt () that returns the square root of a number. Suppose you want to calculate the
square root of 6.25 and assign it to the variable x.You can use the following statement in
your program:

X = sqrt(6.25); // returns the value 2.5 and assigns it to x

The expression sqrt (6.25) invokes, or calls, the sqrt () function. The expression
sqgrt (6.25) is termed a function call, the invoked function is termed the called function, and
the function containing the function call is termed the calling function (see Figure 2.6).

Calling Function Called Function

int main() code for sqgrt()

{

o
X = sqrt(6.25); 8
I

ing function

Figure 2.6 Calling a function.

The value in the parentheses (6.25, in this example) is information that is sent to the
function; it is said to be passed to the function. A value that is sent to a function this way is
called an argument or parameter (see Figure 2.7). The sqrt () function calculates the answer
to be 2.5 and sends that value back to the calling function; the value sent back is termed
the return value of the function. Think of the return value as what is substituted for the
function call in the statement after the function finishes its job. Thus, this example assigns
the return value to the variable x. In short, an argument is information sent to the func-
tion, and the return value is a value sent back from the function.

49

50

Chapter 2 Setting Out to C++

argument -
information
passed to

function

function
name

l semicolon marks
X = sqrt(6.25) ;«— end of

T statement

opening
parenthesis

function return closing
value assigned parenthesis
to X

Figure 2.7 Function call syntax.

That’s practically all there is to it, except that before the C++ compiler uses a function,
it must know what kind of arguments the function uses and what kind of return value it
has. That is, does the function return an integer? a character? a number with a decimal
fraction? a guilty verdict? or something else? If it lacks this information, the compiler
won’t know how to interpret the return value. The C++ way to convey this information
is to use a function prototype statement.

Note

A C++ program should provide a prototype for each function used in the program.

A function prototype does for functions what a variable declaration does for variables:
It tells what types are involved. For example, the C++ library defines the sqrt () function
to take a number with (potentially) a fractional part (like 6.25) as an argument and to
return a number of the same type. Some languages refer to such numbers as real numbers,
but the name C++ uses for this type is double. (You’'ll see more of double in Chapter 3.)
The function prototype for sqgrt () looks like this:

double sqgrt (double) ; // function prototype

The initial double means sqrt () returns a type double value.The double in the
parentheses means sqgrt () requires a double argument. So this prototype describes
sqrt () exactly as used in the following code:

double x; // declare x as a type double variable
X = sqrt(6.25);

The terminating semicolon in the prototype identifies it as a statement and thus makes
it a prototype instead of a function header. If you omit the semicolon, the compiler inter-
prets the line as a function header and expects you to follow it with a function body that
defines the function.

Functions

When you use sqrt () in a program, you must also provide the prototype.You can do
this in either of two ways:

= You can type the function prototype into your source code file yourself.

= You can include the cmath (math.h on older systems) header file, which has the
prototype in it.

The second way is better because the header file is even more likely than you to get
the prototype right. Every function in the C++ library has a prototype in one or more
header files. Just check the function description in your manual or with online help, if you
have it, and the description tells you which header file to use. For example, the description
of the sqgrt () function should tell you to use the cmath header file. (Again, you might
have to use the older math.h header file, which works for both C and C++ programs.)

Don’t confuse the function prototype with the function definition. The prototype, as
you've seen, only describes the function interface. That is, it describes the information sent
to the function and the information sent back.The definition, however, includes the code
for the function’s workings—for example, the code for calculating the square root of a
number. C and C++ divide these two features—prototype and definition—for library
functions. The library files contain the compiled code for the functions, whereas the
header files contain the prototypes.

You should place a function prototype ahead of where you first use the function. The
usual practice is to place prototypes just before the definition of the main () function.
Listing 2.4 demonstrates the use of the library function sqrt () ; it provides a prototype by
including the cmath file.

Listing 2.4 sqgrt.cpp

// sgrt.cpp -- using the sqgrt() function

#include <iostream>
#include <cmaths> // or math.h

int main()

{

using namespace std;

double area;
cout << "Enter the floor area, in square feet, of your home: ";
cin >> area;
double side;
side = sqgrt(area);
cout << "That’s the equivalent of a square " << side
<< " feet to the side." << endl;
cout << "How fascinating!" << endl;
return 0;

51

52

Chapter 2 Setting Out to C++

Using Library Functions

C++ library functions are stored in library files. When the compiler compiles a program, it
must search the library files for the functions you’ve used. Compilers differ on which library
files they search automatically. If you try to run Listing 2.4 and get a message that _sqgrt is
an undefined external (sounds like a condition to avoid!), chances are that your compiler
doesn’t automatically search the math library. (Compilers like to add an underscore prefix to
function names—another subtle reminder that they have the last say about your program.) If

you get such a message, check your compiler documentation to see how to have the com-
piler search the correct library. If you get such a complaint on a Unix implementation, for
example, it may require that you use the -1m option (for library math) at the end of the com-
mand line:

CC sqgrt.C -1m
Some versions of the Gnu compiler under Linux behave similarly:
g++ sqgrt.C -1m

Merely including the cmath header file provides the prototype but does not necessarily
cause the compiler to search the correct library file.

Here’s a sample run of the program in Listing 2.4:

Enter the floor area, in square feet, of your home: 1536
That’s the equivalent of a square 39.1918 feet to the side.
How fascinating!

Because sqrt () works with type double values, the example makes the variables that
type. Note that you declare a type double variable by using the same form, or syntax, as
when you declare a type int variable:

type-name variable-name;

Type double allows the variables area and side to hold values with decimal fractions,
such as 1536.0 and 39.1918. An apparent integer, such as 1536, is stored as a real value
with a decimal fraction part of .0 when stored in a type double variable. As you’ll see in
Chapter 3, type double encompasses a much greater range of values than type int.

C++ allows you to declare new variables anywhere in a program, so sqrt . cpp didn’t
declare side until just before using it. C++ also allows you to assign a value to a variable
when you create it, so you could also have done this:

double side = sqgrt(area);

You’ll learn more about this process, called initialization, in Chapter 3.

Note that cin knows how to convert information from the input stream to type
double, and cout knows how to insert type double into the output stream. As noted ear-
lier, these objects are smart.

Functions

Function Variations

Some functions require more than one item of information. These functions use multiple
arguments separated by commas. For example, the math function pow () takes two argu-
ments and returns a value equal to the first argument raised to the power given by the
second argument. It has this prototype:

double pow(double, double); // prototype of a function with two arguments

If, say, you wanted to find 5° (5 to the eighth power), you would use the function like this:

answer = pow (5.0, 8.0); // function call with a list of arguments

Other functions take no arguments. For example, one of the C libraries (the one asso-
ciated with the cstdlib or the stdlib.h header file) has a rand () function that has no
arguments and that returns a random integer. Its prototype looks like this:

int rand(void) ; // prototype of a function that takes no arguments

The keyword void explicitly indicates that the function takes no arguments. If you
omit void and leave the parentheses empty, C++ interprets this as an implicit declaration
that there are no arguments. You could use the function this way:

myGuess = rand () ; // function call with no arguments

Note that unlike some computer languages, in C++ you must use the parentheses in
the function call even if there are no arguments.

There also are functions that have no return value. For example, suppose you wrote a
function that displayed a number in dollars-and-cents format.You could send to it an
argument of, say, 23.5, and it would display $23.50 onscreen. Because this function sends a
value to the screen instead of to the calling program, it doesn’t require a return value.You
indicate this in the prototype by using the keyword void for the return type:

void bucks (double); // prototype for function with no return value

Because bucks () doesn’t return a value, you can't use this function as part of an
assignment statement or of some other expression. Instead, you have a pure function call
statement:

bucks (1234.56) ; // function call, no return value

Some languages reserve the term function for functions with return values and use the
terms procedure or subroutine for those without return values, but C++, like C, uses the
term function for both variations.

User-Defined Functions

The standard C library provides more than 140 predefined functions. If one fits your
needs, by all means use it. But often you have to write your own, particularly when you
design classes. Anyway, it’s fun to design your own functions, so now let’s examine that
process.You've already used several user-defined functions, and they have all been named
main (). Every C++ program must have a main () function, which the user must define.

53

54

Chapter 2 Setting Out to C++

Suppose you want to add a second user-defined function. Just as with a library function,
you can call a user-defined function by using its name. And, as with a library function, you
must provide a function prototype before using the function, which you typically do by
placing the prototype above the main () definition. But now you, not the library vendor,
must provide source code for the new function. The simplest way is to place the code in
the same file after the code for main (). Listing 2.5 illustrates these elements.

Listing 2.5 ourfunc.cpp

// ourfunc.cpp -- defining your own function
#include <iostreams>

void simon(int) ; // function prototype for simon()
int main()

{

using namespace std;

simon (3) ; // call the simon() function
cout << "Pick an integer: ";

int count;

cin >> count;

simon (count) ; // call it again

cout << "Done!" << endl;

return 0;

void simon (int n) // define the simon() function

using namespace std;

cout << "Simon says touch your toes " << n << " times." << endl;
} // void functions don’t need return statements

The main () function calls the simon () function twice, once with an argument of 3
and once with a variable argument count. In between, the user enters an integer that’s
used to set the value of count. The example doesn’t use a newline character in the cout
prompting message. This results in the user input appearing on the same line as the
prompt. Here is a sample run of the program in Listing 2.5:

Simon says touch your toes 3 times.
Pick an integer: 512

Simon says touch your toes 512 times.
Done!

Function Form

The definition for the simon () function in Listing 2.5 follows the same general form as
the definition for main (). First, there is a function header. Then, enclosed in braces, comes
the function body. You can generalize the form for a function definition as follows:

Functions

type functionname(argumentlist)

{

statements

Note that the source code that defines simon () follows the closing brace of main ().
Like C, and unlike Pascal, C++ does not allow you to embed one function definition
inside another. Each function definition stands separately from all others; all functions are
created equal (see Figure 2.8).

#include <iostream>
using namespace std;

function
prototypes

void simon(int);
double taxes(double);

1nt main()

function #1 r‘etur‘n 0;

function #2

double taxes(double t)

function #3
return 2 * t;

{vom simon(int n)

Figure 2.8 Function definitions occur
sequentially in a file.

Function Headers
The simon () function in Listing 2.5 has this header:

void simon (int n)
The initial void means that simon () has no return value. So calling simon () doesn’t

produce a number that you can assign to a variable in main (). Thus, the first function call
looks like this:

simon (3) ; // ok for void functions

Because poor simon () lacks a return value, you can’t use it this way:

simple = simon(3); // not allowed for void functions

The int n within the parentheses means that you are expected to use simon () with a
single argument of type int.The n is a new variable assigned the value passed during a

55

56

Chapter 2 Setting Out to C++

function call. Thus, the following function call assigns the value 3 to the n variable defined
in the simon () header:

simon(3) ;

When the cout statement in the function body uses n, it uses the value passed in the
function call. That’s why simon (3) displays a 3 in its output. The call to simon (count) in
the sample run causes the function to display 512 because that was the value entered for
count. In short, the header for simon () tells you that this function takes a single type int
argument and that it doesn’t have a return value.

Let’s review main ()’s function header:

int main()

The initial int means that main () returns an integer value. The empty parentheses
(which optionally could contain void) means that main () has no arguments. Functions
that have return values should use the keyword return to provide the return value and to
terminate the function. That’s why you’ve been using the following statement at the end
of main():

return 0;

This is logically consistent: main () is supposed to return a type int value, and you have
it return the integer 0. But, you might wonder, to what are you returning a value? After
all, nowhere in any of your programs have you seen anything calling main ():

squeeze = main(); // absent from our programs

The answer is that you can think of your computer’s operating system (Unix, say, or
Windows) as calling your program. So main () s return value is returned not to another
part of the program but to the operating system. Many operating systems can use the pro-
gram’s return value. For example, Unix shell scripts and Window’s command-line interface
batch files can be designed to run programs and test their return values, usually called exit
values. The normal convention is that an exit value of zero means the program ran success-
fully, whereas a nonzero value means there was a problem. Thus, you can design a C++
program to return a nonzero value if, say, it fails to open a file.You can then design a shell
script or batch file to run that program and to take some alternative action if the program
signals failure.

Keywords

Keywords are the vocabulary of a computer language. This chapter has used four C++ key-
words: int, void, return, and double. Because these keywords are special to C++, you
can’t use them for other purposes. That is, you can’t use return as the name for a variable
or double as the name of a function. But you can use them as part of a name, as in
painter (with its hidden int) or return_aces. Appendix B, “C++ Reserved Words,” pro-
vides a complete list of C++ keywords. Incidentally, main is not a keyword because it's not
part of the language. Instead, it is the name of a required function. You can use main as a
variable name. (That can cause a problem in circumstances too esoteric to describe here,
and because it is confusing in any case, you'd best not.) Similarly, other function names and

Functions

object names are not keywords. However, using the same name, say cout, for both an
object and a variable in a program confuses the compiler. That is, you can use cout as a
variable name in a function that doesn’t use the cout object for output, but you can’t use
cout both ways in the same function.

Using a User-Defined Function That Has a Return Value

Let’s go one step further and write a function that uses the return statement. The main ()
function already illustrates the plan for a function with a return value: Give the return
type in the function header and use return at the end of the function body.You can use
this form to solve a weighty problem for those visiting the United Kingdom. In the
United Kingdom, many bathroom scales are calibrated in stone instead of in U.S. pounds
or international kilograms. The word stone is both singular and plural in this context. (The
English language does lack the internal consistency of, say, C++.) One stone is 14 pounds,
and the program in Listing 2.6 uses a function to make this conversion.

Listing 2.6 convert.cpp

// convert.cpp -- converts stone to pounds
#include <iostream>

int stonetolb(int); // function prototype
int main()

{

using namespace std;

int stone;

cout << "Enter the weight in stone: ";
cin >> stone;

int pounds = stonetolb (stone) ;

cout << stone << " stone = ";

cout << pounds << " pounds." << endl;
return 0;

int stonetolb(int sts)

{

return 14 * sts;

Here’s a sample run of the program in Listing 2.6:

Enter the weight in stone: 15
15 stone = 210 pounds.

In main (), the program uses cin to provide a value for the integer variable stone.This
value is passed to the stonetolb() function as an argument and is assigned to the variable
sts in that function. stonetolb () then uses the return keyword to return the value of
14 * sts to main().This illustrates that you aren’t limited to following return with a
simple number. Here, by using a more complex expression, you avoid the bother of having

57

58

Chapter 2 Setting Out to C++

to create a new variable to which to assign the value before returning it. The program cal-
culates the value of that expression (210 in this example) and returns the resulting value. If
returning the value of an expression bothers you, you can take the longer route:

int stonetolb (int sts)

int pounds = 14 * sts;
return pounds;

Both versions produce the same result. The second version, because it separates the
computation process from the return process, is easier to read and modify.

In general, you can use a function with a return value wherever you would use a sim-
ple constant of the same type. For example, stonetolb () returns a type int value. This
means you can use the function in the following ways:
int aunt = stonetolb(20);
int aunts = aunt + stonetolb(10);
cout << "Ferdie weighs " << stonetolb(16) << " pounds." << endl;

In each case, the program calculates the return value and then uses that number in
these statements.

As these examples show, the function prototype describes the function interface—that
is, how the function interacts with the rest of the program.The argument list shows what
sort of information goes into the function, and the function type shows the type of value
returned. Programmers sometimes describe functions as black boxes (a term from electron-
ics) specified by the flow of information into and out of them.The function prototype
perfectly portrays that point of view (see Figure 2.9).

int stonetolb(int);

196 stonetolb()

Figure 2.9 The function prototype and the
function as a black box.

The stonetolb () function is short and simple, yet it embodies a full range of func-
tional features:

= It has a header and a body.

= It accepts an argument.

Functions

= It returns a value.

= It requires a prototype.

Consider stonetolb () as a standard form for function design.You’ll further explore
functions in Chapters 7 and 8. In the meantime, the material in this chapter should give
you a good feel for how functions work and how they fit into C++.

Placing the using Directive in Multifunction Programs
Notice that Listing 2.5 places a using directive in each of the two functions:

using namespace std;

This is because each function uses cout and thus needs access to the cout definition
from the std namespace.

There’s another way to make the std namespace available to both functions in Listing
2.5, and that’s to place the directive outside and above both functions:

// ourfuncl.cpp -- repositioning the using directive

#include <iostreams

using namespace std; // affects all function definitions in this file
void simon (int) ;

int main()

{
simon (3) ;
cout << "Pick an integer: ";
int count;
cin >> count;
simon (count) ;
cout << "Done!" << endl;
return 0;

void simon (int n)

{

cout << "Simon says touch your toes " << n << " times." << endl;

The current prevalent philosophy is that it’s preferable to be more discriminating and
limit access to the std namespace to only those functions that need access. For example,
in Listing 2.6, only main () uses cout, so there is no need to make the std namespace
available to the stonetolb() function.Thus, the using directive is placed inside the
main() function only, limiting std namespace access to just that function.

59

60

Chapter 2 Setting Out to C++

In summary, you have several choices for making std namespace elements available to a

program. Here are some:

= You can place the following above the function definitions in a file, making all the
contents of the std namespace available to every function in the file:

using namespace std;

= You can place the following in a specific function definition, making all the con-
tents of the std namespace available to that specific function:

using namespace std;

= Instead of using

using namespace std;

you can place using declarations like the following in a specific function definition
and make a particular element, such as cout, available to that function:

using std::cout;

= You can omit the using directives and declarations entirely and use the std: : pre-
fix whenever you use elements from the std namespace:

std::cout << "I'm using cout and endl from the std namespace" << std::endl;

Naming Conventions

C++ programmers are blessed (or cursed) with myriad options when naming functions,
classes, and variables. Programmers have strong and varied opinions about style, and
these often surface as holy wars in public forums. Starting with the same basic idea for a
function name, a programmer might select any of the following:

MyFunction()
myfunction()
myFunction()
my function()
my funct ()

The choice will depend on the development team, the idiosyncrasies of the technologies or
libraries used, and the tastes and preferences of the individual programmer. Rest assured
that any style consistent with the C++ rules presented in Chapter 3 is correct as far as the
C++ language is concerned, and it can be used based on your own judgment.

Language allowances aside, it is worth noting that a personal naming style—one that aids
you through consistency and precision—is well worth pursuing. A precise, recognizable per-
sonal naming convention is a hallmark of good software engineering, and it will aid you
throughout your programming career.

Summary

Summary

A C++ program consists of one or more modules called functions. Programs begin exe-
cuting at the beginning of the function called main () (all lowercase), so you should
always have a function by this name. A function, in turn, consists of a header and a body.
The function header tells you what kind of return value, if any, the function produces and
what sort of information it expects arguments to pass to it. The function body consists of
a series of C++ statements enclosed in paired braces ({}).

C++ statement types include the following;:

= Declaration statement—A declaration statement announces the name and the
type of a variable used in a function.

= Assignment statement—An assignment statement uses the assighment operator (=)
to assign a value to a variable.

= Message statement—A message statement sends a message to an object, initiating
some sort of action.

» Function call—A function call activates a function. When the called function ter-
minates, the program returns to the statement in the calling function immediately
following the function call.

» Function prototype—A function prototype declares the return type for a function,
along with the number and type of arguments the function expects.

= Return statement—A return statement sends a value from a called function back
to the calling function.

A class is a user-defined specification for a data type. This specification details how
information is to be represented and also the operations that can be performed with the
data. An object is an entity created according to a class prescription, just as a simple vari-
able is an entity created according to a data type description.

C++ provides two predefined objects (cin and cout) for handling input and output.
They are examples of the istream and ostream classes, which are defined in the
iostream file. These classes view input and output as streams of characters. The insertion
operator (<<), which is defined for the ostream class, lets you insert data into the output
stream, and the extraction operator (>>), which is defined for the istream class, lets you
extract information from the input stream. Both cin and cout are smart objects, capable
of automatically converting information from one form to another according to the pro-
gram context.

C++ can use the extensive set of C library functions.To use a library function, you
should include the header file that provides the prototype for the function.

Now that you have an overall view of simple C++ programs, you can go on in the
next chapters to fill in details and expand horizons.

61

62

Chapter 2 Setting Out to C++

Chapter Review

You can find the answers to the chapter review at the end of each chapter in Appendix J,
“Answers to Chapter Review.”

1.
2.

What are the modules of C++ programs called?

‘What does the following preprocessor directive do?

#include <iostream>

What does the following statement do?

using namespace std;

. What statement would you use to print the phrase “Hello, world” and then start a

new line?

What statement would you use to create an integer variable with the name

cheeses?

6. What statement would you use to assign the value 32 to the variable cheeses?

7. What statement would you use to read a value from keyboard input into the vari-

10.
11.

able cheeses?
What statement would you use to print “We have X varieties of cheese,” where the
current value of the cheeses variable replaces x?

What do the following function prototypes tell you about the functions?

int froop (double t);
void rattle(int n);
int prune (void) ;

When do you not have to use the keyword return when you define a function?

Suppose your main () function has the following line:

cout << “Please enter your PIN: “;

And suppose the compiler complains that cout is an unknown identifier. What is
the likely cause of this complaint, and what are three ways to fix the problem?

Programming Exercises

1.

2.

Write a C++ program that displays your name and address (or if you value your
privacy, a fictitious name and address).

Write a C++ program that asks for a distance in furlongs and converts it to yards.

(One furlong 1s 220 yards.)

Programming Exercises

Write a C++ program that uses three user-defined functions (counting main () as
one) and produces the following output:

Three blind mice

Three blind mice

See how they run

See how they run

One function, called two times, should produce the first two lines, and the remain-
ing function, also called twice, should produce the remaining output.

Write a program that asks the user to enter his or her age. The program then should
display the age in months:

Enter your age: 29

Your age in months is 384.

Write a program that has main () call a user-defined function that takes a Celsius
temperature value as an argument and then returns the equivalent Fahrenheit value.
The program should request the Celsius value as input from the user and display
the result, as shown in the following code:

Please enter a Celsius value: 20
20 degrees Celsius is 68 degrees Fahrenheit.

For reference, here is the formula for making the conversion:
Fahrenheit = 1.8 X degrees Celsius + 32.0

Write a program that has main () call a user-defined function that takes a distance
in light years as an argument and then returns the distance in astronomical units.
The program should request the light year value as input from the user and display
the result, as shown in the following code:

Enter the number of light years: 4.2

4.2 light years = 265608 astronomical units.

An astronomical unit is the average distance from the earth to the sun (about
150,000,000 km or 93,000,000 miles), and a light year is the distance light travels in
a year (about 10 trillion kilometers or 6 trillion miles). (The nearest star after the
sun is about 4.2 light years away.) Use type double (as in Listing 2.4) and this con-
version factor:

1 light year = 63,240 astronomical units

Write a program that asks the user to enter an hour value and a minute value. The
main () function should then pass these two values to a type void function that dis-
plays the two values in the format shown in the following sample run:

Enter the number of hours: 9

Enter the number of minutes: 28

Time: 9:28

63

Symbols

<=, 217
+ (addition operator), overloading, 569-572
-= (assignment operator), 212
*= (assignment operator), 212
+= (assignment operator), 211
%= (assignment operator), 212
/= (assighment operator), 212
= (assighment operator), 43-44, 644,
767-768, 772-775
compared to equality operator,
218-220
custom definitions, 645-646
enumerator values, setting, 152
overloading, 652- 658
sayings1l.cpp, 656
stringl.cpp, 653-656
string1.h, 652-653
potential problems, 645
strings, 133-134
structures, 145-146
when to use, 644
& (bitwise AND operator), 1239-1240
~ (bitwise negation operator), 1237
| (bitwise OR operator), 1237-1238
A (bitwise XOR operator), 1238
{} (braces), 258
[1 (brackets), 649-651
, (comma operator), 214-217
example, 214-216
precedence, 217
/*...*/ comment notation, 33
// comment notation, 27, 32
+ (concatenation operator), strings, 133-134
?: (conditional operator), 273-274
-- (decrement operator), 207-208
pointers, 210-211
postfixing, 209-210
prefixing, 209-210

Index

* (dereferencing operator), 155-159
pointers, 171-172
/ (division operator), 100-101
== (equality operator), 217
compared to assignment operator,
218-220
++ (increment operator), 197, 207-208
pointers, 210-211
postfixing, 209-210
prefixing, 209-210
I= (inequality operator), 217
&& (logical AND operator), 262
alternative representations, 270
example, 263-265
precedence, 269-270
ranges, 265-267
! (logical NOT operator), 267-269
alternative representations, 270
precedence, 269
|| (logical OR operator), 260-262
alternative representations, 270
example, 261-262
-1* (member dereferencing operator),
1243-1246
.* (member dereferencing operator),
1243-1246
% (modulus operator), 101-102
* (multiplication operator), overloading,
574578
\n newline character, 38-39
< operator, 217
. (period), 255
(pound sign), 234
“ (quotation marks), 36
& (reference operator), 383-386
1= (right shift and assign operator), 1237
11}(right shift operator), 1236
:: (scope resolution operator), 467,
514, 1332,
; (semicolon), 29-30

1368

- (subtraction operator), overloading

- (subtraction operator), overloading,
574578

~ (tilde), 529

_ (underscore), 1222

A

ABCs (abstract base classes), 746-749
ABC philosophy, 756
AcctABC example, 749-751, 754-755
enforcing interface rules with, 757
abort() function, 897-898, 928-930
abstract data types (ADTs), 552
abstraction, 507. See also classes
access control, 892
access control (classes), 511-513
accessing
content of template and parameter
packs, 1198-1199
strings, 1259
AcctABC class, 749-751, 754-755
acctabc.cpp, 751
acctabc.h, 750
accumulate() function, 1320
acquire() function, 516
actual arguments, 314
adaptable binary functions, 1035
adaptable binary predicate, 1035
adaptable functors, 1032
adaptable generators, 1035
adaptable predicate, 1035
adaptable unary functions, 1035
adapters, 1002
adding vectors, 590
addition operator (+), overloading, 569-572
addpntrs.cpp, 167
address.cpp, 154
addresses
addresses of functions, obtaining, 362
of arrays, 170
structure addresses, passing, 351-353
adjacent_difference() function, 1321-1322
adjacent_find() function, 1287, 1290
ADTs (abstract data types), 552-557
algorithms, 1035
copying, 1036
groups, 1035-1036
in-place, 1036
properties, 1036-1037

aliases
creating, 230
declarations, 1157
namespaces, 491
align.cpp, 1246
alignof() operator, 1204
allocating memory, 968
bad_alloc exceptions, 921
dynamic memory allocation, 757
derived class does use new,
758-760
derived class doesn’t use new,
757-758
example, 761-766
new operator, 160-162
allocators, 979
alternative tokens, table of, 1222
American National Standards Institute
(ANSI), C++ standard, 16
American Standard Code for Information
Interchange. See ASCII character set
ampersand (&), 1239-1240
logical AND operator (&&), 262
alternative representations, 270
example, 263-265
precedence, 269-270
ranges, 265-267
reference operator (&), 383-386
AND operators
bitwise AND (&), 1239-1240
logical AND (&&), 262
alternative representations, 270
example, 263-265
precedence, 269-270
ranges, 265-267
and.cpp, 263-264
angle brackets, 1162
anonymous unions, 150
ANSI (American National Standards
Institute), C++ standard, 16
ANSI C Standard Input/Output, 1062
append() method, 1265
append.cpp, 1125
appending
data to files, 1125-1127
strings, 133-134, 1265-1266
applications. See also compilers
creating, 18-19

portability, 15, 17-18
ANSI/ISO standard, 16
limitations, 16
source code, 19
file extensions, 20
apply() method, 1046
Area() method, 748
args, 1198
argument lists, 30
arguments, 31
arrays, 322-325
C-style strings, 339-341
command-line, 1119-1120
default arguments, 409-412
formal/actual, 314
multiple, 314-320
n_chars() example, 314-317
probability() example, 318-320
parameters, 314
passing by reference, 386, 389-390
passing by value, 313-314
reference arguments, 392-394, 408-409
two-dimensional arrays, 337-339
type conversions, 106
arguments (functions), 49, 53
arith.cpp, 98
arithmetic, pointers, 167-172
arithmetic operators, 97-99
associativity, 99-100
division (/), 100-101
functor equivalents, 1031-1032
modulus (%), 101-102
order of precedence, 99-100
overloading
addition operator (+), 569-572
multiplication operator (¥),
574-578, 600
subtraction operator (-), 574-578
vector class, 599-600
array notation, 173
array objects, 355
fill function, 357
versus arrays, 188-189
versus vector objects, 188-189
array template class, 187
ArrayDb class, 791
arraynew.cpp, 166
arrayone.cpp, 117

arrstruc.cpp 1369

arrays
addresses, 170
array notation, 173
arrays of objects, 546-549
declaring, 546
example, 547-549
initializing, 546
as function arguments, 322-325
const keyword, 327-328
declaring, 116-119
defined, 77, 116
design decisions, 325-326
displaying contents of, 327-328
dynamic arrays, 172-173
creating, 164-165
sample program, 165-167
examples, 328-331
filling, 326-327
function idioms, 331
functions and, 320-321
indexes, 117
initializing, 117-120
in C++11, 120
modifying, 328
naming, 172
one-dimensional arrays, 244
pointer arithmetic, 167-172
pointers, 321-322
ranges, 332-334
static binding, 172
strings, 123-124
initializing, 121
structures, 147-148
subscripts, 117
templates, non-type arguments,
843-845
two-dimensional arrays, 244-249,
337-339
declaring, 244-246
initializing, 246-249
variable arrays, 1329
versus vector objects, 188-189
arraytp.h, 843-844
arrfuni.cpp, 321
arrfun2.cpp, 323
arrfun3.cpp, 328
arrfun4.cpp, 332
arrstruc.cpp, 147-148

1370

ASCII character set, table of

ASCII character set, table of, 1225-1229
assert, 1204
assgn_st.cpp, 145
assign() method, 1266, 1278
assignable objects, 1008
assigning
strings, 1266
values to pointers, 171
values to variables, 43
variable values, 43
assignment
string class, 133-134
type conversions, 103-104
assignment methods, 1260
assignment operator (=), 43-44, 644,
767-768, 772-775
compared to equality operator,
218-220
custom definitions, 645-646
enumerator values, setting, 152
enumerators, value ranges, 153
overloading, 652-658
sayings1l.cpp, 656
stringl.cpp, 653-656
string1.h, 652-653
potential problems, 645
strings, 133-134
structures, 145-146
when to use, 644
assignment operators, combination
assignment operators, 211-212
assignment statements, 43-44
assignments, 1172-1173
associative containers, 1018, 1026
methods, 1281-1284
multimap, 1023-1025
set, 1019-1022
associativity, arithmetic operators, 99-100
associativity of operators, 1231
examples, 1234
table of, 1232-1234
asterisk (*), dereferencing operator
(*)155, 159
pointers171-172
at() method, 1259
atan() function, 348
atan2() function, 348

ATM queue simulation
bank.cpp simulation, 695
Customer class, 694
Queue class
class declaration, 691
public interface, 679
ATM queue simulation, 678
bank.cpp simulation, 694-698
Customer class, 690-691
Queue class
class declaration, 694
design, 679
implementation, 680-682
methods, 682-690
public interface, 680
auto, 370
declarations, 1155
auto declarations, 109
auto keyword, 472
auto ptr, 1158
auto.cpp, 456-457
automatic memory storage, 182
automatic sizing (strings), 966-967
automatic teller machine simulation. See
ATM queue simulation
automatic type conversion. See type
conversion
automatic variables, 182, 314, 453-457
example, 455-457
initializing, 458
stacks, 458-459
autoptr template, 1333
auto_ptr class, 969, 973-975
versus unique_ptr, 975-977
average() function, 800

B

back insert iterators, 1005-1007

bad() method, 296

bad() stream state method, 1098-1102
badbit stream state, 1097-1102
bad_alloc exceptions, 921

Balance() function, 731

bank.cpp, 695-697

bank.cpp simulation, 694-698

Base 10 notation, 1215

Base 16 notation, 1216
binary equivalents, 1217-1218
Base 2 notation, 1217
hexadecimal equivalents, 1217-1218
Base 8 notation, 1215-1216
base classes
ABCs (abstract base classes), 746-749
ABC philosophy, 756
AcctABC example, 749-751,
754-755
enforcing interface rules with, 757
components, initializing, 798-799
friends, accessing, 801-804
methods, accessing, 800-801
objects, accessing, 801
relationships with derived classes,
718-720
TableTennisPlayer example, 708-710
using declarations, 807-808
virtual, methods, 826
virtual base classes, 815-817
combining with nonvirtual base
classes, 828
constructors, 817-818
dominance, 828-829
methods, 818-828
base-class functions, 777
begin() method, 981-984, 1251-1252, 1275
best matches, 432-434
bidirectional iterators, 998
Big Endian, 1218
bigstep.cpp, 205
binary files, 1127-1133
binary functions, 1027-1030
binary numbers, 1217
hexadecimal equivalents, 1217-1218
binary operators, 601, 1234
binary predicates, 1027, 1030
binary search operations
binary_search() function, 1304, 1310
equal_range() function, 1304, 1309
lower_bound() function, 1304, 1309
upper_bound() function, 1304, 1309
binary searching
binary_search() function, 1304, 1310
equal_range() function, 1304, 1309
lower_bound() function, 1304, 1309
upper_bound() function, 1304, 1309

branching statements

binary.cpp, 1131
binary_search() function, 1304, 1310
binding
dynamic binding, 173, 737, 739-740
static binding, 172, 737, 740
bit fields, 148
bit values, represented by constants, 1085
bitmask data type, 1085
bits, 68-69
clearing, 1086
testing, 1241-1242
toggling, 1241
turning oft, 1241
turning on, 1241
bitwise AND operator (&), 1239-1240
bitwise negation operator (~), 1237
bitwise operators, 1235
alternative representations, 1240
logical bitwise operators, 1237-1240
shift operators, 1235-1237
overloading, 581-587
testing bit values, 1241-1242
toggling, 1241
turning bits off, 1241
turning bits on, 1241
bitwise OR operator (|), 1237-1238
bitwise XOR operator (*), 1238
block scope, 454
block.cpp, 212
blocks, 212-214
body (function), 29
for loops, 196-197
bondini.cpp, 86
books, 1323-1324
bool data type, 90
boolalpha manipulator, 21090
Boost project, 1205-1207
bottom-up programming, 13, 331
bound template friend functions, 861-864
braces {}, 258
bracket notation, 649-651
brackets, angle brackets, 1162
branching statements
if, 254
bug prevention, 260
example, 255
syntax, 254

1371

branching statements

if else
example, 256-257
formatting, 257-258
if else if else construction, 258-260
syntax, 255
switch, 274
enumerators as labels, 278-280
example, 275-278
syntax, 275
Brass class
class declaration, 723-727, 730-733
virtual destructors, 737
virtual method behavior, 734-736
brass.cpp, 727
brass.h, 724
BrassPlus class
class declaration, 723-726
class implementation, 727, 730-731
class objects, 732-733
virtual destructors, 737
virtual method behavior, 734-736
break statement, 280-282
bucks() function, 53
buffers, 1063-1064, 1067
flushing, 1063
Build All option (compiler), 24
buildstr() function, 341
buy() function, 516
bytes, 69

C language
ANSI C, 17
classic C, 17
development history, 11
programming philosophy, 11-13
C++, Macintosh, 25
C++ FAQ Lite, 1325
C++ FAQs, Second Edition, 1323
The C++ Programming Language, Third
Edition, 1324
The C++ Standard Library: A Tutorial and
Reference, 1323-1324
C++ Templates: The Complete Guide, 1324
C++11
arrays, initializing, 120
auto declarations, 109

basic assignments, 1260
constructors
initialization list, 1258
Ruvalue reference, 1256
container requirements, 1010
containers, unordered associative
containers, 1283
exception specifications, 908
initializer_list template, 1051-1053
libraries, 1203
list initialization, 537
noexcept, 1248
range-based loops, 233-234
scoped enumerations, 551-552
STL, 1271
containers, 1271-1273
structure initialization, 144
template aliases, 866
C-style strings, 120-122
in arrays, 123-124
combining with numeric input,
130-131
concatenating, 122
empty lines, 130
failbits, 130
null characters, 121
passing as arguments, 339-341
pointers, 173-178
returning from functions, 341-343
string input, entering, 124-126
string input, reading with get(),
127-130
string input, reading with getline(),
126-127
C-style strings, comparing, 220-223
call signatures, 1194
calling
class member functions, 523
constructors, 526-527
functions, 309-311
pointers, 363-364
calling functions, 30, 49
calling.cpp, 306
callmel() function, 636
callme2() function, 636
capacity() method, 966, 1251, 1279
caret ("), 1238
carrots.cpp, 41

case sensitivity, 27, 32
casting, 1330-1331
downcasting, 738
upcasting, 738
implicit upcasting, 807
casting data types, 606-610, 612
casting types, 107-109
catch keyword, 900
catching exceptions, 900, 916-917
CC compiler (UNIX), 21-22
cctype library, 270-273
cctypes.cpp, 271-272
cerr object, 1067
cfront translator, 21
char data type, 80-87, 1064
escape sequences, 84-87
signed char, 88-89
universal character names, 87-88
unsigned char, 88-89
wchar_t, 89
character strings, 36
characters
ASCII character set, table of, 1225-1229
fill, 1081-1082
chartype.cpp, 81
CHAR_BIT constant, 72
CHAR_MAX constant, 72
char_type type, 1250
check_it.cpp, 1096
cheers() function, 307-309
choices.cpp, 188
choosing integer types, 76-77
cin, cin.get() function, 235-237, 241-244
cin object, 1067, 1093-1095
get() function, 128-130
getline() function, 126-127
loops, 234-235
operator overloading, 1095-1097
stream states, 1097-1098
effects, 1100-1102
exceptions, 1099-1100
setting, 1098
cin statement, 46
cin.get() function, 235-237, 241-244, 317
cin.get() member function, 1103-1105
cin.get(ch) function, 317
cinexcp.cpp, 1099
cinfish.cpp, 283-284

classes

cingolf.cpp, 285-286
class declaration, 511-513
class inheritance, private inheritance, 797
base-class components, initializing,
798-799
base-class friends, accessing, 801-804
base-class methods, accessing, 800-801
base-class objects, accessing, 801
compared to containment, 806
Student class example, 798, 804-805
class keyword, 831
class member functions, operator
overloading, 587-588
class scope, 454, 514, 549-551
class templates, 830-837
arrays, non-type arguments, 843-845
complex, 1045
explicit instantiations, 850
explicit specializations, 850-851
friend classes, 858
bound template friend functions,
861-864
non-template friend functions,
858-861
unbound template friend functions,
864-865
implicit instantiations, 850
member templates, 854-855
parameters, 855-858
partial specializations, 851-852
pointers, stacks of pointers, 837-843
versatility, 845-846
default type parameters, 849
multiple type parameters, 847
recursive use, 846-847
classes, 47-48, 508, 520, 1159
ABCs (abstract base classes), 746-749
ABC philosophy, 756
AcctABC example, 749-751,
754-755
enforcing interface rules with, 757
abstraction, 507
access control, 511-513
AcctABC, 749-751, 754-755
ADTs (abstract data types), 552-557
array template class, 187
ArrayDb, 791
auto_ptr, 969, 973-975

1373

classes

bad_alloc, 921
base classes
components, initializing, 798-799
friends, accessing, 801-804
methods, accessing, 800-801
objects, accessing, 801
using declarations, 807-808
virtual base classes, 815-829
Brass
class declaration, 723-726

class implementation, 727, 730-731

class objects, 732-733

virtual destructors, 737

virtual method behavior, 734-736
BrassPlus

class declaration, 723-726

class implementation, 727, 730-731

class objects, 732-733
virtual destructors, 737
virtual method behavior, 734-736
class scope, 549-551
client files, 533-536
compared to structures, 514
constructors, 524, 538-539, 768
calling, 526-527
conversion, 769-770
copy constructors, 639-644, 767
declaring, 525-526
default constructors, 527-528,
638-639, 766-767
defining, 525-526
delegating, 1180-1181
inheriting, 1181-1183
new operator, 659-661, 677-678
converting class type, 677
Customer, 690-691, 694
data hiding, 511-513, 523
data types, 507-508
declarations, 509-511, 522
defaulted and deleted methods,
1179-1180
defined, 36, 47, 508
defining, 47
definition of, 13
derived classes, 405
destructors, 524, 528-529,
538-539, 768
encapsulation, 512, 523

exception, 917
explicit conversion operators,
1159-1160
friend classes, 578-580, 877, 880-883,
886-888
compared to class member
functions, 886
templates, 858-865
Tv class example, 878-883
header files, 530
ifstream, 1116-1119
implementation files, 530
inheritance
assignment operators, 772-775
base classes, 708-710, 718-720
constructors, 713-715
derived classes, 711-712, 716-720
exceptions, 922-927
has-a relationships, 721
is-a relationships, 720-722, 772
multiple, 814, 826
what’s not inherited, 772
10s, 1065
jostream, 1065
ios_base, 1065
constants representing bit
values, 1085
istream, 47, 1065
data types recognized, 1093-1095
input methods, 1109-1114
single-character input, 1102-1106
string input, 1106-1108
member functions
const member functions, 537
const objects, 662-665
constructors, 524-528, 538-539,
638-639, 659-661, 677-678
copy constructors, 639-644
definitions, 509, 514-516, 523
destructors, 528-529, 538-539
friend member functions, 883-886,
888-889

implicit member functions, 637-638

inline functions, 517-518
invoking, 523

non-const objects, 663
object membership, 518
objects, returning, 662-665

private, 513
properties, 777-778
public, 513
qualified names, 514
this pointer, 539-546
unqualified names, 514
member in-class initialization, 1160
nested classes, 682, 889-891
access control, 892
scope, 891-892
templates, 892-896
objects, 786-788
contained objects, 791-795
subobjects, 797
ofstream, 1115-1119
ostream, 47, 1065
ostringstream, 1142, 1144-1145
pointers, member dereferencing
operators, 1242-1246
private inheritance
base-class components, initializing,
798-799
base-class friends, accessing,
801-802, 804
base-class methods, accessing,
800-801
base-class objects, accessing, 801
Student class example, 798
protected classes, 745-746, 775
Queue
class declaration, 691-694
design, 679
implementation, 680-682
methods, 682-690
public interface, 679-680
Sales
sales.cpp, 924
sales.h, 922
use_sales.cpp, 925-927
sample program, 518-520
special member functions, 1178-1179
Stack, 831-836
pointers, 837-843
static class members, 628-637
stdexcept exception classes, 918-920
Stock, 511
streambuf, 1065

string, 131-133, 353-354, 647, 952, 960,

965-966, 1333

classes

appending, 133-134
assignment, 133-134
assignment operator, overloading,
652-658
automatic sizing, 966-967
bracket notation, 649-651
comparing, 960
comparison members, 648-649
complex operations, 135-136
concatenation, 133-134
constructors, 952-956
default constructor, 647-648
finding size of, 960
Hangman sample program, 962-965
input, 957-960
reading line by line, 136-140
searching, 960-961
static class member functions,
651-652
STL interface, 1038-1039
string comparisons, 223-224
structures, 144-145
StringBad, 628
constructors, 632-633
destructor, 633
strngbad.cpp, 630-631
strngbad.h, 628-629
vegnews.cpp sample program,
633-637
Student
contained objects interfaces,
792-795
contained objects, initializing, 791
design, 787-788
methods, 793-795
private inheritance, 798-805
sample program, 795-797
studentc.h, 789-790
TableTennisPlayer, 708
tabtennO.cpp, 709
tabtenn0.h, 708
usettO.cpp, 710
this pointer, 539-546
Tv, 878-879, 883
tv.cpp, 880-882
tv.h, 879-880
tvfin.h, 885-886
use_tv.cpp, 882

1375

classes

type casts, 606-612
type conversions, 606-612
applying automatically, 616-618
conversion functions, 612-616
friends, 618-621
implicit conversion, 609
type info, 939-944
valarray, 786-787, 1045-1046,
1049-1051
vector, 120, 588-590, 600, 979-991,
1045-1046, 1049-1051
adding elements to, 982-983
adding vectors, 590
declaring, 591-592
displacement vectors, 589
implementation comments, 602
member functions, 592, 597
multiple representations, 599
overloaded arithmetic operators,
599-600
overloading overloaded
operators, 601
past-the-end iterators, 981-982
Random Walk sample program, 602,
605-606
removing ranges of, 982
shuffling elements in, 987
sorting, 987
state members, 597-599
vectl.cpp example, 980-981
vect2.cpp sample program, 984-986
vect3.cpp sample program, 988-991
vector template class, 186-187
virtual methods
final, 1183-1184
override, 1183-1184
Worker, 810-814
classic C, 17
classifying data types, 97
clear() method, 1258, 1278, 1283
clear() stream state method, 1098-1102
clearing bits, 1086
client files, creating, 533-536
client/server model, 520
climits header file, 71-73
clock() function, 229
clog object, 1067
close() method, 292

code formatting, 39
source code style, 40
tokens, 39
white space, 39

code listings
acctabe.cpp, 751
acctabe.h, 750
addpntrs.cpp, 167
address.cpp, 154
align.cpp, 1246
and.cpp, 263-264
append.cpp, 1125
arith.cpp, 98
arraynew.cpp, 166
arrayone.cpp, 117
arraytp.h, 843-844
arrfunl.cpp, 321
arrfun2.cpp, 323
arrfun3.cpp, 328, 332
arrstruc.cpp, 147-148
assgn st.cpp, 145
auto.cpp, 456-457
bank.cpp, 695-697
bigstep.cpp, 205
binary.cpp, 1131
block.cpp, 212
bondini.cpp, 86
brass.cpp, 727
brass.h, 724
callable.cpp, 1192
calling.cpp, 306
carrots.cpp, 41
cctypes.cpp, 271-272
chartype.cpp, 81
check_it.cpp, 1096
choices.cpp, 188
cinexcp.cpp, 1099
cinfish.cpp, 283-284
cingolf.cpp, 285-286
compstrl.cpp, 221
compstr2.cpp, 223
condit.cpp, 273
constcast.cpp, 944
conversion functions, stonel.cpp, 616
convert.cpp, 57
coordin.h, 449-450
copyit.cpp, 1004
count.cpp, 1121

cubes.cpp, 390

defaults.cpp, 1077

delete.cpp, 181, 185
divide.cpp, 100

dma.cpp, 762-764

dma.h, 761-762

dowhile.cpp, 232

enum.cpp, 279

equal.cpp, 219

errorl.cpp, 897-898
error2.cpp, 899

error3.cpp, 901

error4.cpp, 906-907
error5.cpp, 910, 913
exceed.cpp, 75

exceptions, newexcp.cpp, 920
exc_mean.cpp, 905-906
express.cpp, 200

external.cpp, 465

file1.cpp, 451

file2.cpp, 452

filefunc.cpp, 406-407
fileio.cpp, 1117

fill.cpp, 1082

firstref.cpp, 383
floatnum.cpp, 95

fltadd.cpp, 96

forloop.cpp, 196
formore.cpp, 203-204
forstrl.cpp, 206

forstr2.cpp, 215

fowl.cpp, 973

frnd2tmp.cpp, 860-861

fun ptr.cpp, 364, 368
funadap.cpp, 1034-1035
function overloading, leftover.cpp, 418
functions, tempover.cpp, 434-437
functions, arguments, twoarg.cpp, 316
functions, recursion, recur.cpp, 359
functor.cpp, 1028
funtemp.cpp, 420
getinfo.cpp, 45

get_fun.cpp, 1107
hangman.cpp, 962-965
hexoct2.cpp, 79

if/ cpp, 255

ifelse.cpp, 257

ifelseif.cpp, 259

ilist.cpp, 1053

code listings 1377

init ptr.cpp, 158
inline functions.cpp, 381
inserts.cpp, 1006
instrl.cpp, 125
instr2.cpp, 127
instr3.cpp, 129
iomanip.cpp, 1092
jump.cpp, 280-281
lambda0.cpp, 1186
lambdal.cpp, 1190
left.cpp, 410-411
leftover.cpp, 416-417
lexcast.cpp, 1206
limits.cpp, 70
list.cpp, 1015
listrmv.cpp, 1039-1040
lotto.cpp, 319
manip.cpp, 1079
manyfrnd.cpp, 865
memb_pt.cpp, 1244-1245
modulus.cpp, 102
morechar.cpp, 82
more_and.cpp, 266
multmap.cpp, 1024-1025
myfirst.cpp, 28
mytime0.h, 566
mytimel.cpp, 569-570
mytimel.h, 569
mytime2.cpp, 575
mytime2.h, 575
namesp.cpp, 493-494
namesp.h, 493
namespaces, static.cpp, 479
nested.cpp, 247, 895-896
newstrct.cpp, 179-180
not.cpp, 267-268
numstr.cpp, 130
num_test.cpp, 198
operator overloading
mytime0.cpp, 566
mytime3.cpp, 585
mytime3.h, 584
usetimeO.cpp, 568
usetime3.cpp, 587
or.cpp, 261
ourfunc.cpp, 54
outfile.cpp, 290-291
pairs.cpp, 848
peeker.cpp, 1111

code listings

placenew1.cpp, 671-673
placenew?2.cpp, 674-675
plus_one.cpp, 207
pointer.cpp, 155
precise.cpp, 1082
protos.cpp, 310
ptrstr.cpp, 174-175
queue.cpp, 692-694
queue.h, 691-692
queuetp.h, 893-895
random.cpp, 1138-1139
randwalk.cpp, 603
recur.cpp, 355, 358
reference variables as function
parameters, swaps.cpp, 389
rttil.cpp, 936-938
rtti2.cpp, 939-941
ruler.cpp, 360
rvref.cpp, 1163
sales.cpp, 924
sales.h, 922
sayings1.cpp, 656
sayings2.cpp, 665
secref.cpp, 385
setf.cpp, 1085
setf2.cpp, 1088
setops.cpp, 1021-1022
showpt.cpp, 1084
somedefs.h, 1192
sqrt.cpp, 51
stack.cpp, 554-555
stack.h, 553-554
stacker.cpp, 555-557
stacktem.cpp, 835-836
stacktp.h, 833-834
static.cpp, 470-471
stcktpl.cpp, 841-842
stcktp1.h, 839-840
stdmove.cpp, 1174
stock00.h, 510
stock1.cpp, 531
stock1.h, 530
stock2.cpp, 543
stock2.h, 543
stocks.cpp, class member functions, 515
stonel.cpp, 615
stone.cpp, 610
stonewt.cpp, 608

stonewt.h, 607
stonewtl.cpp, 614-615
stonewt1.h, 613
strl.cpp, 953
str2.cpp, 966-967, 971
strctfun.cpp, 348
strctptr.cpp, 352-353
strfile.cpp, 958-959
strgfun.cpp, 340
strgstl.cpp, 1038-1039
strin.cpp, 1144
stringl.cpp, 653-656
string1.h, 653
strings, numeric input,
numstr.cpp, 135

strings, returning, strgback.cpp, 341

strings.cpp, 123
strngbad.cpp, 630-631
strngbad.h, 629
strout.cpp, 1143
strquote.cpp, 402-403
strtref.cpp, 395
strtypel.cpp, 132
strtype2.cpp, 134
strtype4.cpp, 137
structur.cpp, 142
studentc.cpp, 793
studentc.h, 789-790
studenti.cpp, 802-803
studenti.h, 799
sumafile.cpp, 294-295
swaps.cpp, 387-388
switch.cpp, 276-277
tabtenn0.cpp, 709
tabtenn0.h, 708
tabtennl.cpp, 717
tabtennl.h, 716
tempmemb.cpp, 852
tempparm.cpp, 856-857
textinl.cpp, 234
textin2.cpp, 236
textin3.cpp, 239
textin4.cpp, 242
tmp2tmp.cpp, 862-864
topfive.cpp, 353
travel.cpp, 344-345
truncate.cpp, 1113
tv.cpp, 880-882

tv.h, 879-880
tviim.h, 885-886
twoarg.cpp, 316
twod.cpp, 846-847
twofilel.cpp, 469
twofile2.cpp, 469
twoswap.cpp, 427-428
twotemps.cpp, 422
typecast.cpp, 108
use new.cpp, 161
usealgo.cpp, 1043-1044
usebrass1.cpp, 732-733
usebrass2.cpp, 734
usedma.cpp, 765
useless.cpp, 1165
usenmsp.cpp, 494-495
usesstok2.cpp, 547
usestok1.cpp, 533
usetimel.cpp, 571-572
usetime2.cpp, 577
usettO.cpp, 710
usettl.cpp, 717-718
use_sales.cpp, 925-927
use_stuc.cpp, 795-797
use_stui.cpp, 804-805
use_tv.cpp, 882
usestok0.cpp, 519
valvect.cpp, 1048
variadicl.cpp, 1199
vect.cpp, 593
vect.h, 591
vectl.cpp, 980
vect2.cpp, 984-985
vect3.cpp, 988
vegnews.cpp, 634
vslice.cpp, 1049-1050
waiting.cpp, 229
while.cpp, 225
width.cpp, 1080
Worker0.cpp, 811-812
Worker(.h, 810-811
workermi.cpp, 823-825
workermi.h, 821-822
workmi.cpp, 826-827
worktest.cpp, 813
write.cpp, 1073-1074

code style, 40

colon (), scope-resolution operator (::), 514

combination assignment operators, 211-212

compound types 1379

comma operator, 214-217
example, 214-216
precedence, 217
command-line processing, 1119-1120
comments, 27, 33
/*...*/ notation, 33
// notation, 32
compare() method, 1264-1265
comparing
arrays, vector objects, and array objects,
188-189
strings, 960, 1263-1265
C-style strings, comparing, 220-223
string class strings, comparing,
223-224
comparison members (String class),
648-649
compile time, 155
compile time complexity, 1009-1010
compilers, 21
CC (UNIX), 21-22
definition of, 11
g++ (Linux), 22
gpp, 22
troubleshooting, 24
Windows, 23-24
compiling files separately, 447-449, 453
complex class template, 1045
composition, 785
compound statements (blocks), 212-214
compound types, 115-116
enumerations, 150-152
enumerators, 150-151
value ranges, 153
values, setting, 152
pointers, 153
assigning values to, 171
C++ philosophy, 155
cautions, 159
compared to pointed-to values, 172
declaring, 155-159, 171
deferencing, 171-172
delete operator, 163-164
example, 154
initializing, 157-159
integers, 160
new operator, 160-162
pointer arithmetic, 167-172
pointer notation, 173

compound types

pointers to objects, 665-670
strings, 173-178
structures, 140-142
arrays, 147-148
assignment, 145-146
bit fields, 148
dynamic structures, 178-180
example, 142-144
members, 141
string class members, 144-145
unions, 149
anonymous unions, 150
declaring, 149
compstrl.cpp, 221
compstr2.cpp, 223
concatenating strings, 122, 128, 1266
concatenating output, 46-47
concatenation
output, 1071-1072
string class, 133-134
concatenation operator (+), strings, 133-134
concepts
containers, 1007
container methods compared to
functions, 1039-1041
properties, 1008-1010
sequence requirements, 1011-1012
functors, 1027-1030
iterators, models, 1000-1001
concurrent programming, 1202-1203
condit.cpp, 273
conditional operator (?::), 273-274
const, reference returns, 400
const keyword, 90-92, 473-474, 771-772
arrays, 327-328
pointers, 334-336
reference variables, 401
temporary variables, 392-394
const member functions, 537
const modifier as alternative to #define,
1327-1329
const objects, returning references to,
662-665
constant time, 1009
constant time complexity, 1009-1010
constants, 78-80. See also strings
char constants. See char data type

const keyword, 90-92

file modes, 1122-1123
floating-point constants, 96
representing bit values, 1085
size_type, 1251
symbolic constants, 72
symbolic names, 90-92
constcast.cpp, 944
constructors, 524, 742, 768
calling, 526-527
class, 524
conversion, 769-770
copy constructors, 639, 767
deep copying, 642-644
limitations, 640-642
shallow copying, 640
when to use, 639-640
declaring, 525-526
default constructors, 527-528, 638-639,
766-767
defining, 525-526
delegating, 1180-1181
inheritance, 713-715
initialization list, C++11, 1258
new operator, 659-661, 677-678
Ruvalue reference, C++11, 1256
string class, 1253
constructors that use arrays, 1254
constructors that use n copies of
character, 1257
constructors that use parts of arrays,
1254-1255
constructors that use ranges, 1257
copy constructors, 1255-1256
default constructors, 1254
String(), 647-648, 952-956
virtual base classes, 817-818
const_cast operator, 944
const_iterator type, 1273
const_reference type, 1273
contained objects
compared to private inheritance, 806
initializing, 791
interfaces, 792-795
container classes, 830
container concepts, 1007
container methods compared to
functions, 1039-1041
properties, 1008-1010
sequence requirements, 1011-1012

container methods, compared to functions,
1039-1041
container requirements, C++11, 1010
container types
deque, 1013
list, 1014-1017
member functions, 1014-1016
priority_queue, 1017-1018
queue, 1017
stack, 1018
vector, 1012-1013
containers, 553
associative, 1018, 1026
multimap, 1023-1025
set, 1019-1022
C++11, unordered associative
containers, 1283
deques, methods, 1278-1280
lists, methods, 1278-1280
maps, methods, 1281-1284
methods, 1275-1277
sets, methods, 1281-1284
stacks, 557
STL (Standard Template Library), 1161
CH++11, 1271-1273
vectors, methods, 1278-1280
containment, 785
continue statement, 280-282
conversion constructors, 769-770
conversion operators, explicity, 1159-1160
convert.cpp, 57
converting
class type, 677
rectangular coordinates to polar
coordinates, 348-351
to standard C++, 1327
autoptr template, 1333
C++ features, 1331
const instead of #define,
1327-1329
function prototypes, 1330
header files, 1331
inline instead of #define,
1329-1330
namespaces, 1331-1333
STL (Standard Template
Library), 1334
string class, 1333
type casts, 1330-1331

cout statement 1381

converting data types, 102, 606-612
applying automatically, 616-618
conversion functions, 612-616
conversion in arguments, 106
conversion in expressions, 105-106
conversion on assignment, 103-104
friends, 618-621
implicit conversion, 609
type casts, 107-109, 606-612

coordin.h, 449-450

coordinates
converting, 348-351
polar coordinates, 347
rectangular coordinates, 346

copy constructable objects, 1008

copy constructors, 639, 767
deep copying, 642-644
limitations, 640-642
shallow copying, 640
when to use, 639-640

copy() function, 1293-1296
iterators, 1001-1002

copy() method, 1269

copying
deep copying, 642-644
shallow copying, 640
strings, 135, 1269

copying algorithms, 1036

copyit.cpp, 1004

copy_backward() function, 1294-1297

count() function, 862, 1042, 1287, 1291

count() method, 1283

count.cpp, 1121

count_if() function, 1287, 1291

counts() function, 862

cout object, 1067-1069
buffers, flushing, 1075-1076
concatenation, 1071-1072
field width display, 1080-1081
fill characters, 1081-1082
floating-point display precision,

1082-1083
formatting data types, 1076-1078
methods, 1071-1075
number base display, 1078-1079
printing trailing zeros/decimal points,
1083-1090

cout statement, 36

concatenated output, 46-47

1382

cout statement

cout.put() function, 83
endl manipulator, 37-38
integer values, displaying, 44-45
\n newline character, 38-39
cout.put() function, 83-84
covariance of return type, 744
cpp filename extension, 28
CRC cards, 1207
cstring header file, 123-124
ctime header file, 229
cube() function, 309, 312-313, 391
cubes.cpp, 390
cumulative totals, calculating, 1320
Customer class, 690-691, 694
cv-qualifiers, 472-473
const, 473-474
volatile, 473
c_in_str() function, 340-341
c_str() method, 1252

D

data hiding, 511-513, 523
data methods, 1251-1253
data objects, pointers, 161
data types, 507-508
ADTs (abstract data types), 552-557
aliases, creating, 230
bool, 90
classifying, 97
compound types, 116
double, 50
floating-point numbers, 92
advantages/disadvantages, 96-97
constants, 96
decimal-point notation, 92
double, 94-96
E notation, 92-93
float, 94-96
long double, 94-96
integers, 68
char, 80-89
choosing integer types, 76-77
climits header file, 71-73
constants, 78-80, 90-92
initializing, 73
int, 68-70
long, 68-70

short, 68-70
sizeof operator, 71-73
unsigned, 74-76
width of, 68
recognized by, 1093-1095
type casts, 606-612
type conversion, 606-612
applying automatically, 616-618
conversion functions, 612-616
friends, 618-621
implicit conversion, 609
type conversions, 102
conversion in arguments, 106
conversion in expressions, 105-106
conversion on assignment, 103-104
type casts, 107-109
data types, 140. See also compound types
Data() function, 820
data() method, 1251-1252
Dawes, Beman, 1205
dec manipulator, 1090-1091
dec manipulators, 1078-1079
decimal numbers, 1215
decimal points, trailing, 1083-1087, 1090
decision making, 253
declaration statements, 41-43
declaration-statement expressions, 202
declarations, 463
aliases, 1157
auto, 109, 1155
decltype, 1156
external, 143
return types, 1157
declarative region, 483
declaring
arrays, 116-119
arrays of objects, 546
classes, 509-513, 522
constructors, 525-526
function pointers, 362-363
example, 364
invoking functions with, 363-364
pointers, 155-159, 171
two-dimensional arrays, 244-246
unions, 149
variables, 41-43
static, 183
vector class, 591-592

decltype, 439
declarations, 1156
decorating names, 418
decrement operator (--), 207-208
pointers, 210-211
postfixing, 209-210
prefixing, 209-210
deep copying, 642-644
default arguments, 409-412
default class constructors, 527-528
default constructors, 638-639, 766-767
default type template parameters, 849
defaulted methods, classes, 1179-1180
defaults.cpp, 1077
deferencing operator (*), pointers, 171-172
#define directive, converting to standard
C++
const instead of #define, 1327-1329
inline instead of #define, 1329-1330
defining
class member functions, 514-516
classes, 47
constructors, 525-526
functions, 306-309
defining declarations, 463
definitions, 463
delegating constructors, 1180-1181
delete operator, 163-164, 180-183, 400,
454,476-477, 668
delete.cpp, 181
deleted methods, classes, 1179-1180
deque class templates, 1013
deque containers, 1013
deques, methods, 1278-1280
dequeue() method, 689
dereferencing (*) operator, 155-159
dereferencing operators, 1242-1246
derived classes, 405
constructors, 713-715
creating, 711-712
header files, 716
method definitions, 716
objects, creating, 717-718
relationships with base classes, 718-720
derived types, 116
design
bottom-up, 13
top-down, 12

dynamic variables

The Design and Evolution of C++, 775, 1324
destructors, 524, 528-529, 538-539, 768
class, 524
virtual destructors, 737, 742-743,776
difference_type type, 1250, 1273
directives
#define, converting to standard C++,
1327-1330
#ifndef, 451
#include, 33
using, 35-36, 59-60, 487-490
displacement vectors, 589
divide-and-conquer strategy, 360-361
divide.cpp, 100
division operator (/), 100-101
dma.cpp, 762-764
dma.h, 761-762
do while loops, 231-233
dominance, virtual base classes, 828-829
double data type, 50, 94-96
double-ended queue, 1013
dowhile.cpp, 232
downcasting, 738
Draw() function, 818
dribble() function, 414
dynamic storage duration, 454
dynamic arrays, 172-173
creating, 164-165
new operator, 164
sample program, 165-167
dynamic binding, 164, 172-173, 737-740
dynamic cast operator, 934, 941-943
dynamic cast operators, 934-939
dynamic memory, 476-479, 482
dynamic memory allocation, 757
auto_ptr class, 969, 973-975
derived class does use new, 758-760
derived class doesn’t use new, 757-758
example, 761-766
dma.cpp, 762-764
dma.h, 761-762
usedma.cpp, 765
dynamic structures, creating, 178-180
dynamic_cast operator, 943
dynamic variables, 454

1383

1384

early binding

E

early binding, 737
Effective C++: 50 Specific Ways to Improve
Your Programs and Designs, Second
Edition, 1324
Effective STL: 50 Specific Ways to Improve
Your Use of the Standard Template
Library, 1324
empty lines in strings, 130
empty() method, 1258, 1275
encapsulation, 512, 523
end() method, 981-984, 1251, 1275
end-of-file conditions, 237-241
endl manipulator, 37-38
enqueue() function, 890
entry-condition loops, 198
enum statement, 278-280
enum variables, 150-152
enumerators, 150-151
value ranges, 153
values, setting, 152
enum.cpp, 279
enumerations, 150-152
enumerators, 150-151
scoped, 1158
C++11,551-552
value ranges, 153
values, setting, 152
enumerators, 150-151
as labels, 278-280
EOF (end-of-file) conditions, 237-241
eof() function, 238
eof() method, 296
eof() stream state methods, 1097-1102
eofbit stream state, 1097-1102
equal sign (=)
assignment operator (=), 644,
767-768, 772-775
custom definitions, 645-646
enumerator values, setting, 152
overloading, 652-658
potential problems, 645
strings, 133-134
structures, 145-146
when to use, 644
equality operator (==), compared to
assignment operator, 218-220
equal() function, 1288-1292

equal.cpp, 219
equality operator (==), 217
compared to assignment operator,
218-220
equal_range() function, 1024, 1304, 1309
equal_range() method, 1283, 1285-1286
erase() method, 982-984, 1267, 1278, 1282
erasing strings, 1267-1268
error codes, returning, 898-900
error handling. See handling exceptions
errorl.cpp, 897-898
error2.cpp, 899
error3.cpp, 901
error4d.cpp, 906-907
error5.cpp, 910, 913
escape sequences, 84-85
estimate() function, 362-364
eternal loops, 232
exact matches, 432-434
exceed.cpp, 75
exception class, 917
exception handlers, 900, 933
exception handling, 896-897, 900, 933
abort() function, 897-898
bad_alloc exceptions, 921
catching exceptions, 900, 916-917
cautions, 931-932
error codes, returning, 898-900
exception class, 917
exception handlers, 900
inheritance, 922-927
sales.cpp, 924
sales.h, 922
use_sales.cpp, 925-927
invalid_argument exceptions, 919
length_error exceptions, 919
logic_error exceptions, 918
objects as exceptions, 903-908
out_of_bounds exceptions, 919
range_error exceptions, 919
real-world note, 933
runtime_error exceptions, 919
stdexcept exception classes, 918-920
throwing exceptions, 900, 915-916
try blocks, 901-903
uncaught exceptions, 928-931
unexpected exceptions, 928-931
unwinding the stack, 909-910,
913-914

exception specifications, C++11, 908
exceptions, 1158
exceptions() stream state method,
1098-1102
exclamation point (!), logical NOT operator,
267-269
alternative representations, 270
precedence, 269
exc_mean.cpp, 905-906
executable code, 18
exit() function, 930
explicit, 1159-1160
explicit instantiations, 428-430, 850
explicit keyword, 610
explicit specializations, 425, 850-851
example, 426-428
third-generation specialization, 425-426
exporting, templates, 1162
express.cpp, 200
expression arguments, 844
expressions, 97, 200-202
combining with comma operator, 214
compared to statements, 201
conditional operator (?::), 273-274
declaration-statement expressions, 202
logical AND (&&), 262
alternative representations, 270
example, 263-265
precedence, 269-270
ranges, 265-267
logical NOT (1), 267-269
alternative representations, 270
precedence, 269
logical OR (] |), 260-262
alternative representations, 270
example, 261-262
precedence, 269
relational operators, 217-218, 220
C-style strings, comparing,
220-223
equality operator (==), 218-220
string class strings, comparing,
223-224
table of, 217
sequence points, 208-209
side eftects, 201, 208-209
type conversions, 105-106
extern keyword, 467-472
functions, 474

files

external declarations, 143
external linkage, 454

external variables, 463, 466-467
external.cpp, 465
ext_permutation() algorithm, 1038

F

factorials, calculating, 203-205
fail() method, 296, 1101
fail() stream state method, 1098-1102
failbit stream state, 1097-1102
failbits, 130
fields
bit fields, 148
width, 1080-1081
file extensions, 20
file /0, 1114
checking stream states, 1118-1119
command-line processing, 1119-1120
file modes, 1122
appending data to files, 1125-1127
binary, 1127-1133
constants, 1122-1123
opening files, 1124-1125
text, 1129
files, random access, 1133-1142
opening multiple files, 1119
reading, 1116-1118
writing, 1115-1118
file scope, 454
filel.cpp, 451
file2.cpp, 452
filefunc.cpp, 406-407
fileio.cpp, 1117
files, 1129
associating objects with, 289
client files, creating, 533-536
climits, 71-73
compiling separately, 447-449, 453
cpp filename extension, 28
ctime, 229
EOF (end-of-file) conditions, 237-240
header filenames, 34
header files, 448-449
converting to standard C++, 1331
creating, 530
cstring, 123-124
managing, 451

1385

files

implementation files, creating, 530
include files, 96
iostream, 33-34, 289, 1064, 1067
text files, 287-288
reading, 292-298
writing to, 288-292
file_it() function, 408
fill characters, 1081-1082
fill() function, 1081, 1294, 1299
array objects, 357
fill.cpp, 1082
filling arrays, 326-327
fill_array() function, 325-327, 331
fill_n() function, 1294, 1299
fin.clear() function, 1121
final, 1183-1184
find() function, 1287-1289
find() method, 960-961, 965, 1260-1261,
1283
finding, 1260
find_arr() function, 994
find_end() function, 1287-1290
find_first_not_of() method, 961, 1262-1263
find_first_of() function, 1287, 1290
find_first_of() method, 961, 1262
find_if() function, 1287-1289
find_last_not_of() method, 1263
find_last_of() method, 961, 1262
firstref.cpp, 383
fixed manipulator, 1091
flags, 1084
flags, setting, 1083
float data type, 94-96
floating points, display precision,
1082-1087, 1090
floating-point data types, default
behavior, 1076
floating-point numbers, 92
advantages/disadvantages, 96-97
constants, 96
decimal-point notation, 92
double data type, 94-96
E notation, 92-93
float data type, 94-96
long double data type, 94-96
floathum.cpp, 95
fltadd.cpp, 96

flush() function, 1076
flushing buffers, 1063
for loops
blocks, 212-214
body, 196-197
combination assighment operators,
211-212
comma operator, 214-217
example, 214-216
precedence, 217
compared to while loops, 227-228
decrement operator (--), 207-208
pointers, 210-211
postfixing, 209-210
prefixing, 209-210
example, 196-197
expressions, 200-202
compared to statements, 201
declaration-statement
expressions, 202
factorials, calculating, 203-205
increment operator (++), 207-208
pointers, 210-211
postfixing, 209-210
prefixing, 209-210
initialization, 196-197
loop test, 196-197
loop updates, 196-198, 205-206
nested loops, 244-249
nonexpressions, 202
range-based, 1161
sequence points, 208-209
side effects, 201, 208-209
step size, 205-206
strings, 206-207
syntax, 197-199
for statements, declaration-statement
expressions, 203
for-init-statement, 203
forcing moves, 1173-1174, 1177-1178
forever loops, 232
forloop.cpp, 196
formal arguments, 314
formatted input functions, 1094
formatting
if else statement, 257-258
incore, 1142-1145

source code, 39
source code style, 40
tokens, 39
white space, 39
with cout, 1076-1077
field width display, 1080-1081
fill characters, 1081-1082
floating-point display precision,
1082-1083
manipulators, 1090-1091
number base display, 1078-1079
trailing zeros/decimal points,
1083-1090
with iomanip header file
manipulators, 1091
formore.cpp, 203-204
forstrd.cpp, 206
forstr2.cpp, 215
forward declaration, 884
forward iterators, 998
for_each() function, 987-988, 1287-1289
for_each() STL function, 991
fowl.cpp, 973
free memory storage, 182
free store, 454
free store (memory), 182-183
freeing memory, delete operator, 163-164
friend classes, 578-580, 877-888
base-class friends, accessing, 801-804
compared to class member
functions, 886
templates, 858
bound template friend functions,
861-864
non-template friend functions,
858-861
unbound template friend functions,
864-865
Tv class example, 878-879, 883
tv.cpp, 880-882
tv.h, 879-880
tvfm.h, 885-886
use_tv.cpp, 882
friend functions, 578-580
creating, 579-580
type conversion, 618-621
friend keyword, 579-580

functions 1387

friend member functions, 578-580, 883
compared to friend classes, 886
example, 885-886
forward declaration, 884
shared friends, 888-889

frnd2tmp.cpp, 860-861

front insert iterators, 1005-1007

front() method, 1278

funadap.cpp, 1034-1035

function idioms, arrays, 331

function objects, 1026

function parameter packs, 1197-1198
unpacking, 1198-1199

function parameters, reference variables,

386-390

function pointers, 1184-1188
variations on, 365-370

function polymorphism, 412

function prototype scope, 454

function prototypes, 309-311, 1330
benefits, 312-313
C++ compared to ANSI C, 312
syntax, 311-312

function wrapper
fixing problems, 1194-1196
options for, 1196-1197
template inefficiences, 1191-1194

functional polymorphism, 564

functions, 18, 29, 48-49. See also names of

specific functions
adaptable binary, 1035
adaptable unary, 1035
algorithms, 1035
groups, 1035-1036
properties, 1036-1037
arguments, 31, 49, 53
arrays, 322-325
multiple, 314-320
passing by value, 313-314
two-dimensional arrays, 337-339
arrays, 320-321
as arguments, 322-325
const keyword, 327-328
design decisions, 325-326
displaying contents of, 327-328
examples, 328-331
filling, 326-327
modifying, 328

functions

pointers, 321-322
ranges, 332-334
two-dimensional arrays, 337-339

binary, 1027, 1030

body, 29

C-style strings
passing as arguments, 339-341
returning, 341-343

calling, 30, 49, 309, 311

case sensitivity, 27, 32

cin.get(), 317

cin.get(ch), 317

class member functions
const member functions, 537
constructors, 524-528, 538-539,

638-639, 659-661, 677-678

copy constructors, 639-644
definitions, 509, 514-516, 523
destructors, 528-529, 538-539
friend member functions, 883-889
implicit member functions, 637-638
inline functions, 517-518
invoking, 523
object membership, 518
private, 513
properties, 777-778
public, 513
qualified names, 514
this pointer, 539-546
unqualified names, 514

compared to container methods,

1039-1041

conversion functions, 677

defining, 306-309

definitions, 29

formatted input, 1094

friend functions, 578-580
creating, 579-580
type conversion, 618-621

function prototypes, 1330

headers, 29-31

inline functions, 379-382
compared to macros, 382
square(), 381-382

input, unformatted, 1102

lambda functions, 1184

language linking, 475-476

library functions, 52
linkage properties, 474-475
non-member, 986-988, 991
objects, returning, 662-664
const objects, 662-665
non-const objects, 663
operator overloading, 587-588
overloading, 237, 412-414, 564
example, 415-418
function signatures, 413
name decoration, 418
overload resolution, 431-438
when to use, 418
pf()364
pointers, 361-362
addresses of functions, obtaining, 362
const keyword, 334-336
declaring, 362-363
example, 364
invoking functions with, 363-364
pointers to pointers, 335
prototypes, 50-52
qualified names, 514
recursion, 357
multiple recursive calls, 359-361
single recursive call, 358-359
return addresses, 909
return types, 30
return values, 49
set_union(), 1020
signatures, 413
string class objects, 353-354
structures, 343-346
passing/returning, 344-351
polar coordinates, 347
rectangular coordinates, 346
structure addresses, passing,
351-353
templates, 419, 422
explicit instantiation, 428-430
explicit specializations, 425-428
implicit instantiation, 428-430
overload resolution, 431-438
overloading, 422-424
transform(), 1031
unary, 1027, 1030
unqualified names, 514

user-defined functions
example, 53-54
function form, 54-55
function headers, 55-56
return values, 57-59
using directive, 59-60
virtual functions, pure virtual
functions, 748
void, 307
functor.cpp, 1028
functors, 1026-1027, 1184-1188
adaptable, 1032
concepts, 1027-1030
predefined, 1030-1032
equivalents for operators, 1032
funtemp.cpp, 420
fun_ptr.cpp, 364, 368

G

g++ compiler, 22
geount() member function, 1109-1114
generate() function, 1294, 1299
generate_n() function, 1294, 1299
generators, 1027
generic programming, 14, 419, 951,
978, 992
associative containers, 1018-1026
multimap, 1023-1025
set, 1019-1022
container concepts, 1007
container methods compared to
functions, 1039-1041
properties, 1008-1010
sequence requirements, 1011-1012
container types
deque, 1013
list, 1014-1017
priority_queue, 1017-1018
queue, 1017
stack, 1018
vector, 1012-1013
iterators, 992-997
back insert, 1005-1007
bidirectional, 998
concepts, 1000-1001
copy() function, 1001-1002
forward, 998
front insert, 1005-1007

header files

hierarchy, 999-1000
importance of, 992-996
input, 997-998
insert, 1005-1007
istream iterator template, 1003
ostream iterator template, 1002-1003
output, 998
pointers, 1001
random access, 999
reverse, 1003-1005
types, 997
get() function, 127-130
get() function (cin), 235-237, 241-244
get() member function, 1102-1108
Get() method, 821
getinfo.cpp, 45
getline() function, 126-127, 957-960
getline() member function, 1106-1108
getline() method, 509, 1270
getname() function, 180-182
get_allocator() method, 1252
get_fun.cpp, 1107
global namespaces, 484
global scope, 454
global variables, compared to local
variables, 467
good() method, 294
good() stream state method, 1097-1102
goodbit stream state, 1097-1102
gpp compiler, 22
greater than () operator, 217
greater than or equal to () operator, 217

H

handling exceptions, 896
hangman.cpp, 962-965
hardware, program portability, 16
harmonic mean, 896
harpo() function, 410
has-a relationships, 721, 788
header files, 448-449

climits, 71-73

converting to standard C++, 1331

creating, 530

cstring, 123-124

ctime, 229

iomanip, manipulators, 1091

iostream, 289

managing, 451

1389

1390

headers, filenames

headers, filenames, 34
headers (function), 29-31, 55-56
heap operations
make_heap() function, 1305, 1314
pop_heap() function, 1305, 1314
push_heap() function, 1305, 1314
sort_heap() function, 1305, 1315
heaping
popping values off, 1314
pushing values onto, 1314
heaps
creating, 1314
defined, 1314
heap operations
make_heap() function, 1305, 1314
pop_heap() function, 1305, 1314
push_heap() function, 1305, 1314
sort_heap() function, 1305, 1315
sorting, 1315
heaps (memory), 182
hex manipulator, 1090-1091
hex manipulators, 1078-1079
hexadecimal numbers, 1216
binary equivalents, 1217-1218
hexoct2.cpp, 79
hierarchy, iterators, 999-1000
high-level languages, 11
history of C++, 10-15
C language
development history, 11
programming philosophy, 11-13
generic programming, 14
OOP, 13-14
hmean() function, 898-905

1/0 (input/output), 1062, 1270
buffers, 1063-1067
redirecting, 1067-1068
streams, 1063-1067
text files, 287-288
reading, 292-298
writing to, 288-292
identifiers, special meanings, 1223
IDEs (integrated development
environments), 19

if else statement, 255
example, 256-257
formatting, 257-258
if else if else construction, 258-260
syntax, 255
if statement, 254
bug prevention, 260
example, 255
syntax, 254
if.cpp, 255
ifelse.cpp, 257
ifelseif.cpp, 259
#ifndef directive, 451
ifstream objects, 1116-1119
ignore() member function, 1106-1108
ilist.cpp, 1053
imbuing, 1/0 with styles, 1077
implementation, changing, 521-522
implementation files, creating, 530
implicit conversion, 609
implicit instantiation, 428-430
implicit instantiations, 850
implicit keyword, 610
implicit member functions, 637-638
implicit upcasting, 807
in-class initialization, 1160
in-place algorithms, 1036
include (#include) directive, 33
include files, 96
includes() function, 1305, 1311
incore formatting, 1142-1145
increment operator (++), 197, 207-208
pointers, 210-211
postfixing, 209-210
prefixing, 209-210
indeterminate values, 73
indexes, 117
indirect values, 155
inequality operator (I=), 217
inheritance
dynamic memory allocation, 757
derived class does use new,
758-760
derived class doesn’t use new,
757-758
example, 761-766
exceptions, 922-927
sales.cpp, 924

sales.h, 922
use_sales.cpp, 925-927
references, 405-408
inheritance (class), 708
ABCs (abstract base classes), 746-749
ABC philosophy, 756
AcctABC example, 749-755
enforcing interface rules with, 757
assignment operators, 772-775
base classes
relationships with derived classes,
718-720
TableTennisPlayer example, 708-710
Constructors, 713-715
derived classes
creating, 711-712
header files, 716
method definitions, 716
objects, creating, 717-718
relationships with base classes,
718-720
has-a relationships, 721
is-a relationships, 720-722, 772
multiple inheritance, 798, 808-830
virtual base classes, 815-829
Worker class example, 810-814
polymorphic public inheritance,
722-723
base-class functions, 777
Brass class declaration, 723-726
Brass class implementation, 727-731
Brass class objects, 732-733
BrassPlus class declaration, 723-726
BrassPlus class implementation,
727-731
BrassPlus class objects, 732-733
constructors, 742
dynamic binding, 737-740
pointer compatibility, 737-739
reference type compatibility,
737-739
static binding, 737-740
virtual destructors, 737,
742-743,776
virtual functions, 734-736,
739-745, 775-776

inplace_merge() function

private inheritance, 797
base-class components, initializing,
798-799
base-class friends, accessing,
801-804
base-class methods, accessing,
800-801
base-class objects, accessing, 801
compared to containment, 806
Student class example, 798-805
protected classes, 745-746, 775
protected inheritance, 806-807
public, 806
multiple, 826
what’s not inherited, 772
inheriting
constructors, 1181-1183
delegating, 1181-1183
initialization, 70
arrays, 117-120
arrays of objects, 546
automatic variables, 458
base-class components, 798-799
contained objects, 791
for loops, 196-197
pointers, 157-159
reference variables, 385
strings, 121
two-dimensional arrays, 246-249
initialization lists, 119
constructors, C++11, 1258
initializer_list, 1053-1054
uniform initialization, 1155
initializer_list template, C++11, 1051-1053
initializing
arrays, C++11, 120
variables, 52, 73
init_ptr.cpp, 158
inline functions, 379, 517-518
compared to macros, 382
square(), 381-382
inline modifier as alternative to #define,
1329-1330
inline qualifier, 517
inline.cpp, 381
inner_product() function, 1320-1321
inplace_merge() function, 1305, 1311

1391

input

input, 46
cin object, 1093-1095
operator overloading, 1095-1097
stream states, 1097-1102
cin statement, 46
classes, string, 957-960
istream class, methods, 1109-1114
single-character, 1102-1106
strings, 1106-1108
input functions
formatted, 1094
unformatted, 1102
input iterators, 997-998
input/output, strings, 287, 1269-1270
insert iterators, 1005-1007
insert() method, 983-984, 1015-1016,
1267,1277, 1282
inserting strings, 1267
inserts.cpp, 1006
instances, 511
instantiation, 832-836
instantiation
explicit, 428-430, 850
implicit, 428-430, 850
instrl.cpp, 125
instr2.cpp, 127
instr3.cpp, 129
int data type, 68-70
int main() function header, 30-31
integer values, displaying with cout, 44-45
integers, 68
bool, 90
char, 80-87
escape sequences, 84-87
signed char, 88-89
universal character names, 87-88
unsigned char, 88-89
wchar_t, 89
choosing integer types, 76-77
climits header file, 71-73
constants, 78-80
const keyword, 90-92
symbolic names, 90-92
initializing, 73
int, 68-70
long, 68-70
pointers, 160
short, 68-70

sizeof operator, 71-73
unsigned, 74-76
width of, 68
integrated development environments, 19
interfaces
contained objects, 792-795
defined, 509-510
public interfaces, 509
internal linkage, 454
internal manipulator, 1091
internal variables, 467-470
International Standards Organization (1SO),
C++ standard, 16
Internet resources, 1325
INT_MAX constant, 72
INT_MIN constant, 72
invalid_argument exception, 919
invoking, 526
iomanip.cpp, 1092
ios class, 1065
iostream class, 1065
iostream file, 33-34, 1064, 1067
iostream header file, 289
ios_base class, 1065
constants representing bit values, 1085
is-a relationships, 720-722, 772, 808
isalnum() function, 272
isalpha() function, 272
isblank() function, 272
iscntrl() function, 272
isdigit() function, 272
isempty() function, 685
isfull() function, 685
isgraph() function, 272
islower() function, 272
ISO (International Standards Organization),
C++ standard, 16
1ISO 10646, 88
isprint() function, 272
ispunct() function, 272
isspace() function, 272, 1101
istream class, 47, 1065
data types recognized, 1093-1095
input
methods, 1109-1114
single-character, 1102-1106
strings, 1106-1108
istream iterator template, 1003
isupper() function, 272

isxdigit() function, 273
is_open() method, 294, 1118-1119,
1125-1127

iterator type, 1273

iterators, 981-982, 992, 997
back insert, 1005-1007
bidirectional, 998
concepts, models, 1000-1001
copy() function, 1001-1002
forward, 998
front insert, 1005-1007
hierarchy, 999-1000
importance of, 992-996
input, 997-998
insert, 1005-1007
istream iterator template, 1003
ostream iterator template, 1002-1003
output, 998
pointers, 1001
random access, 999
reverse, 1003-1005
types, 997

iter_swap() function, 1294

J-K

jump.cpp, 280-281

K&R (Kernighan and Ritchie) C standard, 17
keywords, 56. See also statements
auto, 472
catch, 900
class, 831
const, 90-92, 473-474,771-772,
1327-1329
arrays, 327-328
pointers, 334-336
reference variables, 401
temporary variables, 392-394
decltype, 439
explicit, 610
extern, 467-472
functions, 474
friend, 579-580
implicit, 610
inline, 517, 1329-1330
mutable, 472-473
namespace, 483-486

lessthansignlessthansign (left shift operator)

private, 511-513, 798

protected, 745-746, 775, 806

public, 511-513

register, 472

static, 183, 472

functions, 475

struct, 140

table of, 1221

template, 831

throw, 900

try, 901

typedef, 230

typename, 831

using, 486-490, 807-808, 1332

virtual, 742

volatile, 473
key_comp() method, 1282-1285
key_compare type, 1281-1284
key_type type, 1281-1284

L

labels, enumerators as, 278-280
lambda functions, 1184-1188
reasons for, 1188-1191
language divergence, 16
language linking, 475-476
languages, evolution of, 1205
Boost, 1205-1207
Technical Report, 1206
last in-first out (LIFO) stacks, 459
late binding, 737
layering, 785
leaks (memory), 183
Lee, Meng, 978
left manipulator, 1091
left shift operator (<), 1235
overloading, 581-587, 676
left() function, 409-410, 415-418
left.cpp, 410-411
leftover.cpp, 416-417
length() functions, 960
length() method, 1249-1251
length_error exception, 919
lessthanlessthan (left shift operator),
overloading, 581-587, 676
lessthansignlessthansign (left shift
operator), 1236

1393

1394

lessthansignlessthansignequalsign (left shift and assign) operator

lessthansignlessthansignequalsign (left shift

and assign) operator, 1236
lexicographical_compare() function,
1306, 1318
libraries, 18, 378
C++11, 1203
cctype, 270-273
multiple library linking, 453
STL (Standard Template
Library), 1334
library functions, 52
LIFO (last in-first out) stacks, 459
limits.cpp, 70
linear time, 1009
linear time complexity, 1009-1010
linkage
external, 454
functions, 474-475
internal, 454
language linking, 475-476
static variables
external linkage, 463-467
internal linkage, 467-470
no linkage, 470-472
linked lists, 680
linking multiple libraries, 453
Linux, g++ compiler, 22
list class templates, 1014-1017
member functions, 1014-1016
list containers, 1014-1017
member functions, 1014-1016
list initialization, C++11, 537
list.cpp, 1015-1016
listrmv.cpp, 1039-1040
lists
linked lists, 680
methods, 1278-1280
literal operators, 1204
Little Endian, 1218
local scope, 454
variables, 455-457
local variables, 314-315
compared to global variables, 467
logical AND operator (&&), 262
alternative representations, 270
example, 263-265
precedence, 269-270
ranges, 265-267

logical bitwise operators, 1237-1240
logical NOT operator (!), 267-269
alternative representations, 270
precedence, 269
logical operators, 260
alternative representations, 270
AND (&&), 262
example, 263-265
precedence, 269-270
ranges, 265-267
functor equivalents, 1031-1032
NOT (1), 267-269
OR (|]), 260-262
Example, 261-262
logical OR operator (| |), 260-262
alternative representations, 270
example, 261-262
precedence, 269
logic_error exception, 918
long data type, 68-70
long double data type, 94-96
long long type, 1153
LONG_MAX constant, 72
LONG_MIN constant, 72
loops, 195
break statement, 280-282
continue statement, 280-282
do while, 231-233
entry-condition loops, 198
for loops
blocks, 212-214
body, 196-197
combination assighment operators,
211-212
comma operator, 214-217
compared to while loops, 227-228
decrement operator (—), 207-211
example, 196-197
expressions, 200-202
factorials, calculating, 203-205
increment operator (++), 207-211
initialization, 196-197
loop test, 196-197
loop updates, 196-198, 205-206
nonexpressions, 202
sequence points, 208-209
side eftects, 201, 208-209
step size, 205-206

strings, 206-207
syntax, 197-199
forever loops, 232
nested loops, 244-249
number-reading loops, 283-286
range-based, C++11, 233-234
text input234, cin object, 234-235
cin.get() function, 235-237, 241-244
end-of-file conditions, 237-241
sentinel characters, 234
while loops, 224-227
compared to for loops, 227-228
example, 225-226
syntax, 224
time-delay loops, 229-230
lotto probabilities, calculating, 317-320
lotto.cpp, 319
low-level languages, 11
low-level programming, 1203-1204
lower_bound() function, 1024, 1304, 1309
lower_bound() method, 1021, 1283
Ivalue reference, 1162

M

machine language, definition of, 18
Macintosh, C++, 25
macros, compared to inline functions, 382
magval() method, 602
main() function, 29-30
calling, 30
importance of, 32
int main() header, 30-31
make_heap() function, 1305, 1314
malloc() function, 160
mangling names, 418
manip.cpp, 1079
manipulators, 38, 1090-1091
endl, 37-38
iomanip header file, 1091
number base display, 1078-1079
mantissas, 93
manyfrnd.cpp, 865
mapped_type type, 1281, 1284
maps, methods, 1281-1284
math operators, 97. See also arithmetic
operators
max() function, 1305, 1316

memberwise assignment

max() method, 787, 1046
maxsize() method, 1275
max_element() function, 1305, 1317
max_size() method, 1251
mean, harmonic, 896
means() function, 909-914
member dereferencing operators,
1242-1246
member functions. See also constructors
const member functions, 537
constructors, 524, 538-539
calling, 526-527
declaring, 525-526
default constructors, 527-528,
638-639
defining, 525-526
new operator, 659-661, 677-678
copy constructors, 639
deep copying, 642-644
limitations, 640-642
shallow copying, 640
when to use, 639-640
definitions, 509, 514, 516, 523
destructors, 528-529, 538-539
friend member functions, 578-580, 883
compared to friend classes, 886
example, 885-886
forward declaration, 884
shared friends, 888-889
implicit member functions, 637-638
inline functions, 517-518
invoking, 523
object membership, 518
objects, returning, 662-664
const objects, 662-665
non-const objects, 663
private, 513
properties, 777-778
public, 513
qualified names, 514
template classes, list, 1014-1016
this pointer, 539-546
unqualified names, 514
member in-class initialization, 1160
member initializer lists, 683, 715
member templates, 854-855
members, structures, 141
memberwise assignment, 145

1395

1396

memberwise copying

memberwise copying, 640
memb_pt.cpp, 1244-1245
memory. See also buffers
allocating
bad_alloc exceptions, 921
new operator, 160-162
automatic storage, 182
cv-qualifiers, 472-474
dynamic, 476-482
dynamic memory allocation, 757
derived class does use new, 758-760
derived class doesn’t use new,
757-758
example, 761-766
free store, 182-183
freezing delete operator, 163-164
function linkage, 474-475
language linking, 475-476
leaks, 183
memory-related methods, 1258
multifile programs, compiling separately,
447-453
named, 160
stack, 458-459
unwinding, 909-914
static storage, 183
storage class specifiers, 472-473
storage duration, 453-454
automatic variables, 455-459
scope and linkage, 454
static variables, 459-463, 466-472
storage methods, 182
memory allocation, dynamic (auto_ptr
class), 969, 973975
memory leaks, 163
merge() function, 1305, 1310-1311
merge() method, 1016-1017, 1280
merging
inplace_merge() function, 1305, 1311
merge() function, 1305, 1310-1311
methods. See also specific methods
base-class methods, accessing, 800-801
defaulted and deleted methods, classes,
1179-1180
end(), 984
inheritance, multiple, 826
insert(), 1015-1016
STL, 1161
virtual base classes, 818-828

MI (multiple inheritance), 798
min() function, 1305, 1316
min() method, 787, 1046
minimum values
finding1316-1317
minus sign (-), decrement operator (—),
207-208
pointers, 210-211
postfixing, 209-210
prefixing, 209-210
min_element() function, 1305, 1317
mismatch() function, 1288, 1291
mixtypes.cpp, 185
models, concepts of iterators, 1000-1001
modifiers
const, as alternative to #define,
1327-1329
inline, as alternative to #define,
1329-1330
modulus operator (%), 101-102
modulus.cpp, 102
morechar.cpp, 82
more_and.cpp, 266
move assignment operator, 1173
move constructors, 1165
move semantics, 1164-1171
observations, 1171-1172
Move() method, 748
moves, forcing, 1173-1178
MS-DOS, gpp compiler, 22
multifile programs, compiling separately,
447-453
multimap associative containers, 1023-1025
multiple arguments, 314-320
n_chars() example, 314-317
probability() example, 318-320
multiple class representations, 599
multiple inheritance, 798, 808-809, 829-830
virtual base classes, 815-817
combining with nonvirtual base
classes, 828
constructors, 817-818
dominance, 828-829
methods, 818-828
Worker class example, 810-814
multiple library linking, 453
multiple public inheritance, methods, 826
multiple type parameters, 847

multiplication operator (*), overloading,
574-578
multisets, set operations
includes() function, 1311
set_difference() function, 1313
set_intersection() function, 1312
set_union() function, 1312
multmap.cpp, 1024-1025
mutable keyword, 472-473
mutating sequence operations
copy() function, 1293-1296
copy_backward() function, 1294-1297
fill() function, 1294, 1299
fill_n() function, 1294, 1299
generate() function, 1294, 1299
generate_n() function, 1294, 1299
iter_swap() function, 1294
partition() function, 1295, 1302-1303
random_shuffle() function, 1295, 1302
remove() function, 1295, 1299
remove_copy() function, 1295, 1300
remove_copy_if() function,
1295, 1300
remove_if{) function, 1295, 1300
replace() function, 1294, 1298, 1302
replace_copy() function, 1294, 1298
replace_copy_if() function, 1294, 1298
replace_if() function, 1294, 1298
reverse() function, 1295
reverse_copy() function, 1295, 1301
rotate() function, 1295, 1301
rotate_copy() function, 1295, 1302
stable_partition() function, 1295, 1303
swap() function, 1294, 1297
swap_ranges() function, 1294, 1297
transform() function, 1294, 1297
unique() function, 1295, 1300
unique_copy() function, 1295, 1301
myfirst.cpp program, 27-29
comments, 32-33
header filenames, 34
iostream file, 33-34
main() function, 29-30
calling, 30
importance of, 32
int main() header, 30-31
namespaces, 35-36

namespaces

output, displaying with cout, 36
endl manipulator, 37-38
\n newline character, 38-39
source code formatting, 39
source code style, 40
tokens, 39
white space, 39
mytime0.h, 566
mytimel.cpp, 569-570
mytimel.h, 569
mytime2.cpp, 575
mytime2.h, 575

N

name decoration, 418
name mangling, 418
named memory, 160
names
aliases, creating, 230
array names, 172
function qualified names, 514
function unqualified names, 514
name decoration, 418
namespace aliases, 491
reserved names, 1222-1223
namesp.cpp, 493-494
namesp.h, 493
namespace keyword, 483-486
namespace scope, 454
namespaces, 35-36, 482-483, 1331-1333
aliases, 491
creating, 483-486
declarative region, 483
example, 492-496
namesp.cpp, 493-494
namesp.h, 493
usenmsp.cpp, 494-495
global, 484
guidelines, 496-497
nesting, 490-491
open, 485
potential scope, 483
std, 59
unnamed, 491-492
using declaration, 486-490
using directive, 487-490
using-declaration, 491
using-directive, 491

1397

1398

naming conventions

naming conventions, 60
header files, 34
source files, 20
symbolic names, 90-92
universal character names, 87-88
variables, 66-68
narrowing uniform initialization, 1154
navigating files, 133-1141
temporary files, 1141-1142
nested classes, 682, 889-891
access control, 892
scope, 891-892
templates, 892-896
nested loops, 244-249
nested structures, 682
nested.cpp, 247, 895-896
nesting namespaces, 490-491
new, 921
new operator, 180-182, 454, 476-479,
482, 668
bad_alloc exceptions, 921
constructors, 659-661, 677-678
dynamic arrays, 164-167
dynamic structures, 178-180
free store, 183
memory allocation, 160-162
placement new, 671-676
reference variables, 400
newline character (\n), 38-39
newstrct.cpp, 179-180
next_permutation() algorithm, 1039
next_permutation() function, 1306, 1319
noboolalpha manipulator, 1090
noexcept, C++11, 1248
non-const objects, returning
references to, 663
non-member functions, 986-991
non-type arguents (arrays), 843-845
nonexpressions, for loops, 202
nonmodifying sequence operations, 1286
adjacent_find() function, 1287, 1290
count() function, 1287, 1291
count_if{) function, 1287, 1291
equal() function, 1288, 1291-1292
find() function, 1287-1289
find_end() function, 1287-1290
find_first_of{) function, 1287, 1290
find_if() function, 1287-1289

for_each() function, 1287-1289
mismatch() function, 1288, 1291
search() function, 1288, 1292-1293
search_n() function, 1288, 1293
noshowbase manipulator, 1090
noshowpoint manipulator, 1091
noshowpos manipulator, 1091
NOT operators, logical NOT (!), 267-269
alternative representations, 270
precedence, 269
not.cpp, 267-268
nouppercase manipulator, 1091
nth_element() function, 1304, 1308, 1315
null characters, 121
null pointers, 163
nullptr, 1158
number base display, 1078-1079
number-reading loops, 283-286
numbers, 1215
ASCII character set, table of, 1225-1229
Big Endian/Little Endian, 1218
binary numbers, 1217
hexadecimal equivalents, 1217-1218
decimal numbers, 1215
factorials, calculating, 203-205
floating-point numbers, 92
advantages/disadvantages, 96-97
constants, 96
decimal-point notation, 92
double data type, 94-96
E notation, 92-93
float data type, 94-96
long double data type, 94-96
harmonic mean, 896
hexadecimal numbers, 1216
binary equivalents, 1217-1218
integers, 68
bool, 90
char, 80-89
choosing integer types, 76-77
climits header file, 71-73
constants, 78-80, 90-92
initializing, 73
int, 68-70
long, 68-70
short, 68-70
sizeof operator, 71-73
unsigned, 74-76
width of, 68

number-reading loops, 283-286
octal numbers, 1215-1216
pointers, 160
pseudorandom numbers, 605
numeric operations, 1319-1320
accumulate() function, 1320
adjacent_difference() function,
1321-1322
inner_product() function, 1320-1321
partial_sum() function, 1321
numstr.cpp, 130
num_test.cpp, 198
n_chars() function, 314-317

0

object code, definition of, 18
object types, 47

Object-Oriented Analysis and Design, Second

Edition, 1323
object-oriented programming. See OOP
(object-oriented programming)
objects, 511, 786
arrays, 355, 546-549
declaring, 546
example, 547-549
fill function, 357
initializing, 546
as exceptions, 903-908
assignable, 1008
associating with files, 289
base-class objects, accessing, 801
cerr, 1067
cin, 1067, 1093-1095

cin.get() function, 235-237, 241-244

get() function, 128-130
getline() function, 126-127
loops, 234-235
operator overloading, 1095-1097
stream states, 1097-1102

class, 788

one-dimensional arrays

copy constructable, 1008

cout, 1067-1069
concatenation, 1071-1072
field width display, 1080-1081
fill characters, 1081-1082
floating-point display precision,

1082-1083
flushing bufters, 1075-1076
formatting data types, 1076-1078
methods, 1071-1075
number base display, 1078-1079
printing trailing zeros/decimal
points, 1083-1090

creating, 523

defined, 13, 36

functions. See function objects

ifstream, 1116-1119

ofstream, 1115-1119

ostringstream, 1142-1145

passing by reference, 770

passing by value, 770

pointers, 665-670

reference variables, 401-405

returning, 662-664, 770-771
const objects, 662-665
non-const objects, 663

stream, 1067

string, 965

subobjects, 797

this pointer, 539-546

valarray, 1045-1051

vector, 979-991, 1045-1051
adding elements to, 982-983
past-the-end iterators, 981-982
removing ranges of, 982
shuffling elements in, 987
sorting, 987
vectl.cpp example, 980-981
vect2.cpp sample program, 984-986
vect3.cpp sample program,

988-991

1399

clog, 1067

contained objects
compared to private inheritance, 806
initializing, 791
interfaces, 792-795

oct manipulators, 1078-1079, 1090-1091
octal numbers, 1215-1216

ofstream objects, 290, 1115-1119

one definition rule, 475

one-dimensional arrays, 244

1400

OOP (object-oriented programming)

OOP (object-oriented programming), 13,
506-507, 512, 1207
classes, 47-48
client/server model, 520
overview, 13-14
open namespaces, 485
open() method, 291-293, 967, 1119,
1122-1125
opening files, 1124-1125
multiple, 1119
operands, 97
operator functions, 565
operator overloading, 37, 564-566
addition operator (+), 569-572
cin object input, 1095-1097
example, 565-569
mytime0.cpp, 566
mytime0.h, 566
usetime(.cpp, 568-569
left shift operator (<), 581-587
member versus nonmember functions,
587-588
multiplication operator (*), 574-578
operator functions, 565
operator*®(), 574-578
operator+(), 569-572
operator-(), 574-578
operator<<(), 581-585, 587
restrictions, 573-574
subtraction operator (-), 574-578
vector class, 588-590, 600
adding vectors, 590
declaring, 591-592
displacement vectors, 589
implementation comments, 602
member functions, 592, 597
multiple representations, 599
overloaded arithmetic operators,
599-600
overloading overloaded operators,
601
Random Walk sample program, 602,
605-606
state members, 597-599
with classes, string, 965
operator*() function, 574-578
operator+() function, 569-572
operator+() method, 1266
operator-() function, 574-578

operators, 1235
addition operator (+), overloading,
569-572
alternative tokens, 1222
arithmetic operators, 97-99
associativity, 99-100
division (/), 100-101
modulus (%), 101-102
order of precedence, 99-100
assignment (=), 43-44, 644, 767-768,
772-775
custom definitions, 645-646
enumerator value ranges, 153
enumerator values, setting, 152
overloading, 652-658
potental problems, 645
strings, 133-134
structures, 145-146
when to use, 644
associativity, 1231
examples, 1234
table of, 1232-1234
binary operators, 601, 1234
bitwise operators, 1235
alternative representations, 1240
logical bitwise operators, 1237-1240
shift operators, 1235-1237
testing bit values, 1241-1242
toggling, 1241
turning bits off, 1241
turning bits on, 1241
combination assignment operators,
211-212
comma, 214-217
example, 214-216
precedence, 217
concatenation (+), strings, 133-134
conditional (?::), 273-274
const_cast, 944
decrement (—), 207-208
pointers, 210-211
postfixing, 209-210
prefixing, 209-210
deferencing (*), pointers, 171-172
defined, 70
delete, 163-164, 180-183, 400, 454,
476-477, 668
dereferencing (*), 155-159
dynamic cast, 934-943

functor equivalents for arithmetic,
logical, and relational operators,
1031-1032
increment (++), 197, 207-208
pointers, 210-211
postfixing, 209-210
prefixing, 209-210
left shift operator (<<)
overloading, 581-587, 676
literal operators, 1204
member dereferencing operators,
1242-1246
multiplication operator (*), overloading,
574-578
new, 180-182, 454, 476-482, 668
bad_alloc exceptions, 921
constructors, 659-661, 677-678
dynamic arrays, 164-167
dynamic structures, 178-180
free store, 183
memory allocation, 160-162
placement new, 671-676
reference variables, 400
operator functions, 565
operator®(), 574-578
operator+(), 569-572
operator-(), 574-578
operator<<(), 581-587
overloading, 101, 564-565
addition operator (+), 569-572
assignment operator, 652-658
example, 565-569
left shift operator (<<),
581-587, 676
member versus nonmember
functions, 587-588
multiplication operator (*), 574-578
operator functions, 565
overloading overloaded
operators, 601
restrictions, 573-574
subtraction operator (-), 574-578
precedence, 1231
examples, 1234
table of, 1232-1234
reference operator (&), 383-386
reinterpret_cast, 946

output

relational operators, 217-220
C-style strings, comparing,
220-223
equality operator (==), 218-220
string class strings, comparing,
223-224
table of, 217
scope resolution (::), 467
scope-resolution (::), 514
scope-resolution operator, 1332
sizeof, 71-73
static_cast, 945-946
subtraction operator (-), overloading,
574-578
type cast, 943-944
type info structure, 934
typeid, 934, 939-944
unary minus, 601
unary operators, 601, 1234
operator[]() method, 787, 1259, 1283-1286
OR operators
bitwise OR (), 1237-1238
logical OR (] |), 260-262
alternative representations, 270
example, 261-262
precedence, 269
or.cpp, 261
ordering
strict weak, 988
total, 988
ostream class, 47, 1065
ostream iterator template, 1002-1003
ostream methods, 1071-1075
ostringstream class, 1142-1145
ourfunc.cpp, 54
outfile.cpp, 290-291
output
buffers, flushing, 1075-1076
classes, ostream, 1070-1075
concatenating, 46-47, 1071-1072
cout
field width display, 1080-1081
fill characters, 1081-1082
floating-point display precision,
1082-1083
formatting data types, 1076-1078
number base display, 1078-1079
printing trailing zeros/decimal
points, 1083-1090

1401

1402 output

cout object, 1069
displaying with cout, 36
concatenated output, 46-47
endl manipulator, 37-38
integer values, 44-45
\n newline character, 38-39
output iterators, 998
out_of_bounds exception, 919
overload resolution, 431-432
best matches, 432-434
exact matches, 432-434
multiple arguments, 438
partial ordering rules, 434-436
overloading
functions, 237, 412-414, 564
example, 415-418
function signatures, 413
name decoration, 418
overload resolution, 431-438
when to use, 418
operators, 101, 564-565
addition operator (+), 569-572
assignment operator, 652-658
example, 565-569
left shift operator (<<),
581-587, 676
member versus nonmember
functions, 587-588
multiplication operator (¥),
574-578
operator functions, 565
restrictions, 573-574
subtraction operator (-), 574-578
vector class, 588-590
reference parameters, 415
templates, 422-424
overload resolution, 431-438
override, 1183-1184
ownership, 973

pairs.cpp, 848
palindromes, 1057

pam() function, 362-363
parameter lists, 30
parameterized types, 419

parameters, 314
templates, 855-858
type, 834
partial ordering rules, 434-436
partial specializations, 851-852
partial_sort() function, 1304, 1307
partial_sort_copy() function, 1304,
1307-1308
partial_sum() function, 1321
partition() function, 1295, 1302-1303
passing
structure addresses, 351-353
structures, 344-351
passing by reference, 386, 389-390
passing objects
by reference, 770
by value, 770
past-the-end iterators, 981-982
peek() member function, 1109-1114
peeker.cpp, 1111
period (.), 255
permutations, 1038
defined, 1318
functions
next_permutation(), 1306, 1319
prev_permutation(), 1319
pf() function, 364
pipe character (|), 1237-1238
logical OR operator (| |), 260-262
alternative representations, 270
example, 261-262
precedence, 269
placement new operator, 478-482, 671-676
placenewl.cpp, 671-673
placenew2.cpp, 674-675
plus sign (+)
addition operator (+), overloading,
569-572
concatenation operator (+), strings,
133-134
increment operator (++), 207-208
pointers, 210-211
postfixing, 209-210
prefixing, 209-210
plus_one.cpp, 207
pointed-to values, 172
pointer arithmetic, 167-172

pointer.cpp, 155
pointers, 153, 321-322, 837

assigning values to, 171

auto_ptr, 969, 973-975

C++ philosophy, 155

cautions, 159

compared to pointed-to values, 172

const keyword, 334-336

declaring, 155-159, 171

deferencing, 171-172

delete operator, 163-164

example, 154

function pointers, 361-362

addresses of functions,
obtaining, 362
declaring, 362-363

increment/decrement operators,
210-211

inheritance, 737-739

initializing, 157-159

integers, 160

iterators, 1001

member dereferencing operators,
1242-1246

new operator, 160-162

passing variables, 386-390

pointer arithmetic, 167-172

pointer notation, 173

pointers to objects, 665-670

pointers to pointers, 335

stacks of pointers, 837-843

strings, 173-178

this, 539-546

polar coordinates, 347
converting rectangular coordinates to,

348-351

polymorphic public inheritance, 722-723

base-class functions, 777

Brass class declaration, 723-726
Brass class implementation, 727-731
Brass class objects, 732-733
BrassPlus class declaration, 723-726

BrassPlus class implementation, 727-731

BrassPlus class objects, 732-733
constructors, 742

dynamic binding, 737-740
pointer compatibility, 737-739

private inheritance

reference type compatibility, 737-739
static binding, 737, 740
virtual destructors, 737, 742-743,776
virtual functions, 739-742, 775-776
behavior, 734-736
friends, 743, 776
memory and execution speed, 742
redefinition, 743-745
virtual function tables, 740
pop() method, 837
popping values off heap, 1314
pop_heap() function, 1305
portability of C++, 15-18
ANSI/ISO standard, 16
limitations, 16
postfixing, 209-210
potential scope, 483
pound sign (#), 234
pow() function, 53
precedence
comma operator, 217
logical operators, 269-270
precedence of operators, 1231
examples, 1234
table of, 1232-1234
precise.cpp, 1082
precision() function, 1082-1083
precision() method, 408
predefined functors, 1030-1032
equivalents for operators, 1032
predicates
adaptable, 1035
binary, 1027-1030
adaptable, 1035
unary, 1027, 1030
prefixing, 209-210
preprocessors, 33-34
prev_permutation() function, 1319
print() functions, 413
printf() function, 29, 44
priority_queue class templates, 1017-1018
priority_queue containers, 1017-1018
private inheritance, 797
base-class components, initializing,
798-799
base-class friends, accessing, 801-804
base-class methods, accessing, 800-801

1403

1404

private inheritance

base-class objects, accessing, 801
compared to containment, 806
Student class example, 798, 804-805
private keyword, 511-513, 798
private member functions, 513
probability() function, 318-320
problem domains, 1207
procedural languages, 11-12
procedural programming, 506-507
procedures. See functions
programming
concurrent programming, 1202-1203
low-level programming, 1203-1204
programming, generic, 992
associative containers, 1018-1026
multimap, 1023-1025
set, 1019-1022
container concepts, 1007-1012
container methods compared to
functions, 1039-1041
properties, 1008-1009
sequence requirements, 1011-1012
container types, 1013, 1017-1018
deque, 1013
list, 1014-1017
priority_queue, 1017-1018
queue, 1017
stack, 1018
vector, 1012-1013
iterators, 992, 997-1005
back insert iterators, 1005-1007
bidirectional iterators, 998
concepts, 1000
copy() function, 1001-1002
forward iterators, 998
front insert iterators, 1005-1007
hierarchy, 999-1000
importance of, 992-996
input iterators, 997-998
insert iterators, 1005-1007
istream iterator template, 1003
models, 1001
ostream iterator template, 1002
output iterators, 998
pointers, 1001
random access iterators, 999
reverse iterators, 1003-1005
types, 997

programming exercises
chapter 2, 62-63
chapter 3, 111-113
chapter 4, 192-193
chapter 5, 251-252
chapter 6, 301-303
chapter 7, 374-377
chapter 8, 444-446
chapter 9, 501-503
chapter 10, 559-562
chapter 11, 623-624
chapter 12, 702-705
chapter 13, 780-783
chapter 14, 871-876
chapter 15, 949
chapter 16, 1057-1058
chapter 17, 1148-1151
chapter 18, 1212-1213
programs
comments, 33
/*...*/ notation, 33
// notation, 32
creating main() function, 31
header filenames, 34
iostream file, 33-34
main() function, 29-30
calling, 30
importance of, 32
int main() header, 30-31
myfirst.cpp example, 27-29
comments, 32-33
header filenames, 34
iostream file, 33-34
main() function, 29-32
namespaces, 35-36
output, displaying with cout, 36-39
source code formatting, 39-40
namespaces, 35-36
output, displaying with cout, 36
concatenated output, 46-47
endl notation, 37-38
integer values, 44-45
\n newline character, 38-39
source code formatting, 39
tokens, 39-40
white space, 39
properties
algorithms, 1036-1037

class member functions, 777-778

containers, 1008-1010
reference variables, 390-391
protected classes, 745-746, 775
protected inheritance, 806-807
protected keyword, 745-746, 775, 806
protos.cpp, 310
prototypes (functions), 50-52, 309-311
benefits, 312-313
C++ compared to ANSI C, 312
function prototypes, 1330
syntax, 311-312
pseudorandom numbers, 605
ptrstr.cpp, 174-175
public derivation, 711
public inheritance, 806, 808, 829. See also
MI (multiple inheritance)
multiple inheritance, methods, 826
public inheritance (polymorphic), 722-723
base-class functions, 777
Brass class declaration, 723-726
Brass class implementation, 727,
730-731
Brass class objects, 732-733
BrassPlus class declaration, 723-726
BrassPlus class implementation, 727,
730-731
BrassPlus class objects, 732-733
constructors, 742
dynamic binding, 737-740
pointer compatibility, 737-739
reference type compatibility, 737-739
static binding, 737, 740
virtual destructors, 737, 742-743, 776
virtual functions, 739-742, 775-776
behavior, 734-736
friends, 743, 776
memory and execution speed, 742
redefinition, 743-745
virtual function tables, 740
public interfaces, 509
public keyword, 511-513
public member functions, 513
pure virtual functions, 748
push_back() function, 1041
push back() method, 982-984
push_heap() function, 1305
pushing values onto heap, 1314
put() method, 1071-1075
putback() member function, 1109-1114

range-based for loop

Q

qualified, inline, 517
qualified names, 486
qualified names (functions), 514
qualifiers
cv-qualifiers, 472-473
const, 473-474
volatile, 473
keywords, 473
Queue class
class declaration, 691, 694
design, 679
implementation, 680-682
methods, 682-690
public interface, 679-680
queue class templates, 1017
queue containers, 1017
Queue() function, 683
queue simulation, 678
bank.cpp simulation, 694-698
Customer class, 690-691, 694
Queue class
class declaration, 691, 694
design, 679
implementation, 680-682
methods, 6s82-690
public interface, 679-680
queue.cpp, 692-694
queue.h, 691-692
queuecount() function, 685
queuetp.h, 893-895
quotation marks (), 36

R

rand() function, 53, 605
random access, files, 1133-1141
temporary files, 1141-1142
random access iterators, 999
Random Walk sample program, 603
random.cpp, 1138-1139
random_shuffle() function, 987-988,
1295, 1302
random_shuffle() STL function, 991
randwalk.cpp, 603
range-based for loop
C++11,233-234
templates, 1161

1405

1406

range_error exception

range_error exception, 919
ranges, logical AND operator (&&), 265-267
ranges (arrays), 332-334
RatedPlayer class, 711-712
header files, 716
method definitions, 716
RatedPlayer object, 717-718
Rating() method, 719
rbegin() method, 1251, 1275
rdstate() stream state method, 1098-1102
read() member function, 1109-1114,
1130-1133
reading
C-style strings
get(), 127-130
getline(), 126-127
from files, 1116-1118
string class strings, 136-140
text files, 292-298
text with loops, 234
cin.get() function, 235-237, 241-244
cin object, 234-235
end-of-file conditions, 237-241
sentinel characters, 234
real numbers, 50
recommended reading, 1323-1324
rect_to_polar() function, 348-349
rectangular coordinates, 346
converting to polar coordinates,
348-351
recur.cpp, 355, 358
recurs() function, 357-359
recursion, 357
multiple recursive calls, 359-361
single recursive call, 358-359
variadic template functions,
1199-1202
recursive use of templates, 846-847
redefining virtual functions, 743-745
redirecting 1/0, 1067-1068
redirection, 238
refcube() function, 391-393
reference, passing by, 343, 386,
389-390, 770
reference arguments, 392-394, 408-409
reference counting, 973
reference operator (&), 383-386
reference parameters, overloading, 415

reference returns, const, 400
reference type, 1273
reference variables, 383

arguments, 408-409

class objects, 401-405

creating, 383-386

function parameters, 386, 389-390

inheritance, 405-408

initialization, 385

properties, 390-391

structures, 394, 397-399

const keyword, 401
return references, 399-400

references

inheritance, 737-739

returning, 399, 770-771
referencing declarations, 463
refinement, 1001
register keyword, 472
reinterpret_cast operators, 946
relational operators, 217-220

C-style strings, comparing, 220-223

equality operator (==), 218-220

functor equivalents, 1031-1032

string class strings, comparing, 223-224

table of, 217
relationships

has-a, 721, 788

is-a, 720-722,772, 808
remodel() function, 971
remote_access() function, 468
remove_copy() function, 1295, 1300
remove_copy_if() function, 1295, 1300
remove() function, 1295, 1299
remove_if() function, 1295, 1300
remove_if() method, 1280
remove() method, 1280
rend() method, 1251-1252, 1275
replace_copy() function, 1294, 1298
replace_copy_if() function, 1294, 1298
replace() function, 1294, 1298, 1302
replace_if() function, 1294, 1298
replace() method, 1268-1269
replacing strings, 1268-1269
report() function, 859
reserve() method, 966, 1258, 1279
reserved names, 1222-1223

reserved words, 1221

alternative tokens, table of, 1222

keywords, table of, 1221

reserved names, 1222-1223
ResetRanking() method, 718
resize() method, 1047, 1258, 1278
return addresses, 909
return statements, 30
return types, declarations, 1157
return types (functions), 30
return values, 31
return values (functions), 49, 57-59
returning

C-style strings, 341-343

references, 399

structures, 344-345, 348-351
returning objects, 662-664

const objects, 662-665

non-const objects, 663
reverse_copy() function, 1295, 1301
reverse() function, 1295
reverse iterators, 1003-1005
reverse() method, 1252, 1280
reversible containers

associative, multimap, 1023-1025

list, 1014, 1017

member functions, 1014-1016

vector, 1012-1013
review questions

chapter 2, 62

chapter 3, 110-111

chapter 4, 191-192

chapter 5, 250

chapter 6, 298-300

chapter 7, 372-373

chapter 8, 443-444

chapter 9, 498-501

chapter 10, 558-559

chapter 11, 623

chapter 12, 700-702

chapter 13, 779-780

chapter 14, 869-870

chapter 15, 947-949

chapter 16, 1056-1057

chapter 17, 1146-1147

chapter 18, 1209-1212
rewrite rule, 517
rfind() method, 961, 1261
right manipulator, 1091

search() function

right shift and assign operator ([]=), 1237
right shift operator ([]), 1236
Ritchie, Dennis, 11
rotate_copy() function, 1295, 1302
rotate() function, 1295, 1301
RTTI (runtime type information), 933-934
incorrect usage, 941-943
operators
dynamic cast, 934-939
typeid, 934, 939, 941, 944
type info class, 939-941, 944
type info structure, 934
rttil.cpp, 936-938
rtti2.cpp, 939-941
ruler.cpp, 360
runtime, 155
runtime_error exception, 919
runtime type information, 933
rvalue reference, 1162-1164
constructors, C++11, 1256
rvalues, 400

S

Sales class
sales.cpp, 924
sales.h, 922
use_sales.cpp, 925-927
sales.cpp, 924
sales.h, 922
sayingsi.cpp, 656
sayings2.cpp, 665
SCHAR_MAX constant, 72
SCHAR_MIN constant, 72
scientific manipulator, 1091
scope, 454, 483
class, 454, 514
class scope, 549-551
function prototype, 454
global, 454
local, 454-457
namespace, 454
nested classes, 891-892
potential, 483
scope-resolution operator (::), 467, 514,
1332
scoped enumerations, 1158
C++11,551-552
search() function, 1288, 1292-1293

1407

1408

search_n() function

search_n() function, 1288, 1293
searching strings, 960-961, 1260
find_first_not_of{) method,
1262-1263
find_first_of() method, 1262
find_last_not_of() method, 1263
find_last_of{) method, 1262
find() method, 1260-1261
rfind() method, 1261
secref.cpp, 385
seekg() method, 1134-1136
seekp() method, 1134-1136
selecting smart pointers, 977-978
sell() function, 516
semantics, move semantics, 1164-1165,
1168-1171
observations, 1171-1172
semicolon (), 29-30
sending messages, OOP, 518
sentinel characters, 234
separate compilation, 447-449, 453
sequence points, 208-209
sequence requirements, container concepts,
1011-1012
sequences
mutating sequence operations
copy_backward() function,
1294-1297
copy() function, 1293-1296
fill() function, 1294, 1299
fill_n() function, 1294, 1299
generate() function, 1294, 1299
generate_n() function, 1294, 1299
iter_swap() function, 1294
partition() function, 1295, 1302-1303
random_shuffle() function,
1295, 1302
remove_copy() function,1295, 1300
remove_copy_if() function,
1295, 1300
remove_if() function, 1295, 1300
remove() function, 1295, 1299
replace_copy() function, 1294, 1298
replace_copy_if() function,
1294, 1298
replace() function, 1294, 1298, 1302
replace_if() function, 1294, 1298
reverse_copy() function, 1295, 1301

reverse() function, 1295
rotate_copy() function, 1295, 1302
rotate() function, 1295, 1301
stable_partition() function,
1295, 1303
swap() function, 1294, 1297
swap_ranges() function, 1294, 1297
transform() function, 1294, 1297
unique_copy() function,
1295, 1301
unique() function, 1295, 1300
nonmodifying sequence operations
adjacent_find() function,
1287, 1290
count() function, 1287, 1291
count_if() function, 1287, 1291
equal() function, 1288, 1291-1292
find_end() function, 1287-1290
find_first_of() function, 1287, 1290
find() function, 1287-1289
find_if{() function, 1287-1289
for_each() function, 1287-1289
mismatch() function, 1288, 1291
search() function, 1288, 1292-1293
search_n() function, 1288, 1293
set associative containers, 1019-1022
set flag. See setf() function
set_difference() function, 1021, 1305, 1313
set_intersection() function, 1021,
1305, 1312
set() method, 596, 820
set operations
includes() function, 1305, 1311
set_difference() function, 1305, 1313
set_intersection() function, 1305, 1312
set_symmetric_difference() function,
1305, 1313
set_union() function, 1305, 1312
set_symmetric_difference() function,
1305, 1313
set_terminate() function, 928
set_tot() function, 517-518
set_unexpected() function, 929
set_union() function, 1020-1021,
1305, 1312
setf.cpp, 1085
setf2.cpp, 1088

setf() function, 1083-1087, 1090
arguments, 1087-1089
manipulators, 1090-1091

setf() method, 408

setfill() function, 1091

setops.cpp, 1021-1022

setprecision() function, 1091

sets
methods, 1281-1284
set operations

includes() function, 1305, 1311
set_difference() function, 1305, 1313
set_intersection() function,
1305, 1312
set_symmetric_difference() function,
1305, 1313
set_union() function, 1305, 1312

setstate() stream state method, 1098-1102

setw() function, 1091

shallow copying, 640

shared friends, 888-889

shift operators, 1235-1237
overloading, 581-587

short data type, 68-70

show(), array objects, 357

show_array() function, 327-328

Show() function, 818-820

show() method, 514, 537

show_polar() function, 347, 351

show_time() function, 344-345

showbase manipulator, 1090

showperks() function, 744

showpoint manipulator, 1091

showpos manipulator, 1091

showpt.cpp, 1084

SHRT_MAX constant, 72

SHRT_MIN constant, 72

side effects of expressions, 201, 208-209

signatures (functions), 413

signed char data type, 88-89

singly linked lists, 680

size, string size
finding, 960
automatic sizing feature, 966-967

size() function, 136, 960

size() method, 509, 787, 981, 984,

1251-1252, 1275

size_type constant, 1251

size_type type, 1250, 1273

stacktem.cpp 1409

sizeof operator, 71-73
smart pointers, 1158
selecting, 977-978
sort() function, 987-988, 1041, 1304, 1307
sort_heap() function, 1305
sort() method, 1016-1017, 1280
sort() STL function, 991
sorting
heaps, 1315
nth_element() function, 1304,
1308, 1315
partial_sort_copy() function, 1304,
1307-1308
partial_sort() function, 1304, 1307
sort() function, 1304, 1307
stable_sort() function, 1304, 1307
vectors, 987
source code, 19
definition of, 18
file extensions, 20
special meanings, identifiers, 1223
special member functions, 1178-1179
specializations
explicit, 425, 850-851
example, 426-428
third-generation specialization,
425-426
explicit instantiations, 850
implicit instantiations, 850
partial specializations, 851-852
specifiers
storage class, 472-473
splice() method, 1016, 1280
sqrt.cpp, 51
sqrt() function, 50-52
square() function, 381-382
stable_partition() function, 1295, 1303
stable_sort() function, 1304, 1307
stack, unwinding, 909-910, 913-914
stack class, 831-836
pointers, 837-843
templates, 1018
stack containers, 1018
stack.cpp, 554-555
stack.h, 553-554
stacker.cpp, 556-557
stacks, 553-557
automatic variables, 458-459
stacktem.cpp, 835-836

stacktp.h

stacktp.h, 834
standard C++, converting to, 1327
autoptr template, 1333
C++ features, 1331
const instead of #define, 1327-1329
function prototypes, 1330
header files, 1331
inline instead of #define, 1329-1330
namespaces, 1331-1333
STL (Standard Template Library), 1334
string class, 1333
type casts, 1330-1331
Standard Input/Output, ANSI C, 1062
Standard Template Library. See STL
state members, 597-599
statements, 41
assignment statements, 43-44
blocks, 212-214
break, 280-282
cin, 46
loops, 234-235
compared to expressions, 201
continue, 280-282
cout, 36
concatenated output, 46-47
cout.put() function, 83-84
endl manipulator, 37-38
integer values, displaying, 44-45
\n newline character, 38-39
declaration statements, 41-43
defined, 29-30
enum, 278-280
examples, 41, 45
for, declaration-statement expressions,
203
if, 254
bug prevention, 260
example, 255
syntax, 254
if else, 255
example, 256-257
formatting, 257-258
if else if else construction, 258-260
syntax, 255
return statements, 30
switch, 274-278
enumerators as labels, 278-280
example, 275-278
syntax, 275

terminators, 30
void, 53
static assert, 1204
static binding, 164, 172-173, 737, 740
static_cast operator, 945-946
static class members, 628-637
static keyword, 183, 472
functions, 475
static memory storage, 182-183
static storage duration, 453
static type checking, 313
static variables, 453, 459-462, 466
external, 466
external linkage, 463, 466-467
internal linkage, 467-470
no linkage, 470-472
static.cpp, 470-471
stcktpl.h, 839-840
std namespace, 59
stdexcept exception classes, 918-920
Stepanov, Alexander, 978, 1205
stkoptrd.cpp, 841-842
STL (Standard Template Library), 978, 1041,
1044, 1271, 1334
algorithms, 1035
groups, 1035-1036
properties, 1036-1037
associative containers, 1018, 1026
multimap, 1023-1025
set, 1019-1022
binary search operations
binary_search() function,
1304, 1310
equal_range() function, 1304, 1309
lower_bound() function, 1304, 1309
upper_bound() function, 1304, 1309
C++11,1271
containers, 1271-1273
container concepts, 1007
container methods compared to
functions, 1039-1041
properties, 1008-1010
sequence requirements, 1011-1012
container methods, 1275-1277
container types
deque, 1013
list, 1014-1017
priority_queue, 1017-1018
queue, 1017

STL (Standard Template Library) 1411

stack, 1018 heap operations

vector, 1012-1013 make_heap() function, 1305, 1314
containers, 1161 pop_heap() function, 1305, 1314
deque methods, 1278-1280 push_heap() function, 1305, 1314
functions, 1286 sort_heap() function, 1305, 1315

adjacent_find(), 1287, 1290
copy(), 1293-1296
copy_backward(), 1294-1297
count(), 1287, 1291
count_if(), 1287, 1291
equal(), 1288, 1291-1292
fill(), 1294, 1299

fill_n(), 1294, 1299

find(), 1287-1289
find_end(), 1287-1290
find_first_of{), 1287, 1290
find_if(), 1287-1289
for_each(), 1287-1289
generate(), 1294, 1299
generate_n(), 1294, 1299
iter_swap(), 1294
mismatch(), 1288, 1291
partition(), 1295, 1302-1303
random_shuffle(), 1295, 1302
remove(), 1295, 1299
remove_copy(), 1295, 1300
remove_copy_if(), 1295, 1300
remove_if{), 1295, 1300
replace(), 1294, 1298, 1302
replace_copy(), 1294, 1298
replace_copy_if{), 1294, 1298
replace_if(), 1294, 1298
reverse(), 1295
reverse_copy(), 1295, 1301
rotate(), 1295, 1301
rotate_copy(), 1295, 1302
search(), 1288, 1292-1293
search_n(), 1288, 1293
stable_partition(), 1295, 1303
swap(), 1294, 1297
swap_ranges(), 1294, 1297
transform(), 1294, 1297
unique(), 1295, 1300
unique_copy(), 1295, 1301

functors, 1026-1027

adaptable, 1032
concepts, 1027-1028, 1030
predefined, 1030-1032

generic programming, 992

iterators, 997
concepts, 1001
pointers, 1001
list methods, 1278-1280
map methods, 1281-1284
merge operations
inplace_merge() function, 1305, 1311
merge() function, 1305, 1310-1311
methods, 1161
minimum/maximum value operations
lexicographical_compare() function,
1306, 1318
max_element() function,
1305, 1317
max() function, 1305, 1316
min_element() function, 1305, 1317
min() function, 1305, 1316
numeric operations, 1319-1320
accumulate() function, 1320
adjacent_difterence() function,
1321-1322
inner_product() function, 1320-1321
partial_sum() function, 1321
permutation operations
next_permutation() function,
1306, 1319
prev_permutation() function, 1319
set methods, 1281-1284
set operations
includes() function, 1305, 1311
set_difference() function, 1305, 1313
set_intersection() function,
1305, 1312
set_symmetric_difference() function,
1305, 1313
set_union() function, 1305, 1312
sorting operations
nth_element() function, 1304,
1308, 1315
partial_sort() function, 1304, 1307
partial_sort_copy() function, 1304,
1307-1308
sort() function, 1304, 1307
stable_sort() function, 1304, 1307

1412

STL (Standard Template Library)

string class, 1038-1039
types, 1273-1274
usealgo.cpp sample program, 1042-1044
using, 1041
vector methods, 1278-1280
Stock class, 511
stock00.h, 510
stock1.cpp, 531
stock1.h, 530
stocks.cpp, class member function, 515
stone.cpp, 610
stonel.cpp, 615
stonetolb() function, 58
stonewt.cpp, 608
stonewt.h, 607
stonewtl.cpp, 614-615
stonewtl1.h, 613
storage class qualifiers, 473
storage class specifiers, 472-473
storage duration, 453-454
automatic variables, 455-457
example, 455-457
initializing, 458
stacks, 458-459
scope and linkage, 454
static variables, 459-462
external linkage, 463, 466-467
internal linkage, 467-470
no linkage, 470-472
strd.cpp, 953
str2.cpp, 966-967, 971
strcat() function, 136
stremp() function, 221-222, 648
strcpy() function, 177-178, 633
strctfun.cpp, 348
strctptr.cpp, 352-353
stream objects, 1067
stream states, 1097-1098
effects, 1100-1102
exceptions, 1099-1100
file 70, 1118-1119
get() and getline() input effects, 1108
setting, 1098
streambuf class, 1065
streams, 1063-1064, 1067
istream class, 47
ostream class, 47
strfile.cpp, 958-959
strgfun.cpp, 340

strgstl.cpp, 1038-1039
strict weak ordering, 988
strin.cpp, 1144
string class, 131-133, 353-354, 647, 952,
960, 965-966, 1249-1250, 1333
append methods, 1265-1266
assignment, 133-134
assignment methods, 1260, 1266
assignment operator, overloading,
652-658
sayings1l.cpp, 656
string1.cpp, 653-656
string1.h, 652-653
automatic sizing, 966-967
bracket notation, 649-651
comparing, 960
comparison members, 648-649
comparison methods, 1263-1265
complex operations, 135-136
concatenation, 133-134
concatenation methods, 1266
constants, 1251
constructors, 952-956, 1253
copy constructors, 1255-1256
default constructors, 1254
that use arrays, 1254
that use n copies of characters, 1257
that use parts of arrays, 1254-1255
that use ranges, 1257
copy methods, 1269
data methods, 1251-1253
default constructor, 647-648
erase methods, 1267-1268
finding size of, 960
Hangman sample program, 962-965
input, 957-960
input/output, 1269-1270
insertion methods, 1267
memory-related methods, 1258
reading line by line, 136-140
replacement methods, 1268-1269
search methods, 1260
find(), 1260-1261
find_first_not_of{), 1262-1263
find_first_of(), 1262
find_last_not_of(), 1263
find_last_of(), 1262
rfind(), 1261

searching, 960-961
static class member functions, 651-652
STL interface, 1038-1039
string access methods, 1259
string comparisons, 223-224
structures, 144-145
template definition, 1249
types, 1250-1251
string() constructors, 952-956, 1253
copy constructors, 1255-1256
default constructors, 1254
that use arrays, 1254
that use n copies of character, 1257
that use parts of arrays, 1254-1255
that use ranges, 1257
stringl1.cpp, 653-656
string1.h, 653
StringBad class, 628
constructors, 632-633
destructor, 633
strngbad.cpp, 630-631
strngbad.h, 628-629
vegnews.cpp sample program, 633-637
strings
accessing, 1259
accessing with for loops, 206-207
appending, 1265-1266
assigning, 1266
C-style, 120-122
combining with numeric input,
130-131
concatenating, 122
empty lines, 130
failbits, 130
in arrays, 123-124
null characters, 121
passing as arguments, 339-341
pointers, 173-178
returning from functions, 341-343
string input, entering, 124-126
string input, reading with get(),
127-130
string input, reading with getline(),
126-127
comparing, 1263-1265
C-style strings, 220-223
string class strings, 223-224
concatenating, 128, 1266

strings 1413

copying, 1269
erasing, 1267-1268
initializing, 121
input, 1106-1108
input/output, 1269-1270
inserting, 1267
palindromes, 1057
replacing, 1268-1269
searching, 1260
find_first_not_of() method,
1262-1263
find_first_of{) method, 1262
find_last_not_of() method, 1263
find_last_of() method, 1262
find() method, 1260-1261
rfind() method, 1261
string access methods, 1259
string class, 131-133, 647, 960, 966,
1249-1250, 1333
append methods, 1265-1266
appending, 133-134
assignment, 133-134
assignment methods, 1260, 1266
assignment operator, overloading,
652-658
automatic sizing, 966-967
bracket notation, 649-651
comparing, 960
comparison members, 648-649
comparison methods, 1263-1265
complex operations, 135-136
concatenation, 133-134
concatenation methods, 1266
constants, 1251
constructors, 952-956, 1253-1257
copy methods, 1269
data methods, 1251-1253
default constructor, 647-648
erase methods, 1267-1268
finding size of, 960
Hangman sample program, 962-965
input, 957-960
input/output, 1269-1270
insertion methods, 1267
memory-related methods, 1258
reading line by line, 136-140
replacement methods, 1268-1269
search methods, 1260-1263

strings

searching, 960-961
static class member functions,
651-652
STL interface, 1038-1039
string access methods, 1259
structures, 144-145
template definition, 1249
types, 1250-1251
string class objects, 353-354
StringBad class, 628
constructors, 632-633
destructor, 633
strngbad.cpp, 630-631
strngbad.h, 628-629
vegnews.cpp sample program,
633-637
swapping, 1269
strings.cpp, 123
strlen() function, 123-124, 136, 177,
306, 632
strngbad.cpp, 630-631
strngbad.h, 629
Stroustrup, Bjarne, 14-15
strout.cpp, 1143
strquote.cpp, 402-403
strtref.cpp, 395
strtypel.cpp, 132
strtype2.cpp, 134
strtype4.cpp, 137
struct keyword, 140
structur.cpp, 142
structure initialization, C++11, 144
structure members, 141
structured programming, 12
structures, 140-142, 343, 346
addresses, passing, 351-353
arrays, 147-148
assignment, 145-146
bit fields, 148
compared to classes, 514
dynamic structures, new operator,
178-180
example, 142-144
nested structures, 682

passing/returning structures, 344-345,

348-351
polar coordinates, 347
rectangular coordinates, 346

reference variables, 394, 397-399
const keyword, 401
return references, 399-400
string class members, 144-145
Student class
contained object interfaces, 792-795
contained objects, initializing, 791
design, 787-788
methods, 793-795
private inheritance, 798, 804-805

base-class components, initializing,

798-799

base-class friends, accessing, 801-804

base-class methods, accessing,
800-801
base-class objects, accessing, 801
sample program, 795-797
studentc.h, 789-790
studentc.cpp, 793
studentc.h, 789-790
studenti.cpp, 802-803
studenti.h, 799
subdivide() function, 360-361
sube() function, 311
subobjects, 797
subroutines. See functions
subscripts, 117
substrings, finding, 1260

find_first_not_of{) method, 1262-1263

find_first_of() method, 1262
find_last_not_of() method, 1263
find_last_of() method, 1262
find() method, 1260-1261
rfind() method, 1261
subtraction operator (-), overloading,
574-578
sum_arr() function, 320-322, 325
sum() function, 344-345, 565-567
sum() method, 787, 807, 1046
sumafile.cpp, 294-295
Swap() function, 420-421, 1294, 1297
swap() method, 981, 1269, 1276
swap_ranges() function, 1294, 1297
swapp() function, 389
swapping strings, 1269
swapr() function, 389
swaps.cpp, 387-388
swapv() function, 389

switch.cpp, 276-277

switch statement, 274-278
compared to if else statement, 279-280
enumerators as labels, 278-279
example, 275-278
syntax, 275

symbolic constants, 72

symbolic names, 90-92

T

TableTennisPlayer class, 708-710
tabtenn0.cpp, 709
tabtennO.h, 708
usettO.cpp, 710
tabtennO.cpp, 709
tabtennO.h, 708
tabtenni.cpp, 717
tabtenni.h, 716
tags, 140
Technical Report 1 (TR1), 1206
template aliases, C++11, 866
template classes, 830-837
arrays, non-type arguments, 843-845
auto_ptr, 969, 973-975
complex, 1045
deque, 1013
explicit instantiations, 850
explicit specializations, 850-851
implicit instantiations, 850
list, 1014-1017
member functions, 1014-1016
members, 854-855
partial specializations, 851-852
pointers, stacks of pointers, 837-843
priority_queue, 1017-1018
queue, 1017
stack, 1018
valarray, 1045-1046, 1049-1051
vector, 979-991, 1012-1013, 1045-1046,
1049-1051
adding elements to, 982-983
past-the-end iterators, 981-982
removing ranges of, 982
shuftling elements in, 987
sorting, 987
vectl.cpp example, 980-981
vect2.cpp sample program, 984-986
vect3.cpp sample program, 988-991

templates 1415

versatility, 845-846
default type parameters, 849
multiple type parameters, 847
recursive use, 846-847
template functions, 438
alternative function syntax, 441
decltype, 439
type, 439
template keyword, 831
template parameter packs, 1197-1198
unpacking, 1198-1199
templates. See also STL (Standard Template
Library)
angle brackets, 1162
autoptr, 1333
export, 1162
friend classes, 858
bound template friend functions,
861-864
non-template friend functions,
858-861
unbound template friend functions,
864-865
function templates, 419, 422
explicit instantiation, 428-430
explicit specializations, 425-428
implicit instantiation, 428-430
overload resolution, 431-438
overloading, 422-424
inefficiences, function wrapper,
1191-1194
initializer_list, C++11, 1051-1053
istream iterator, 1003
nested classes, 892-896
ostream iterator, 1002-1003
parameters, 855-858
range-based for loop, 1161
STL (Standard Template Library), 1334
string template class, 1249-1250
append methods, 1265-1266
assignment methods, 1260, 1266
comparison methods, 1263-1265
concatenation methods, 1266
constants, 1251
constructors, 1253-1257
copy methods, 1269
data methods, 1251-1253
erase methods, 1267-1268
input/output, 1269-1270

1416 templates

insertion methods, 1267 topval() method, 543
memory-related methods, 1258 total ordering, 988
replacement methods, 1268-1269 totals, calculating cumulative totals, 1320
search methods, 1260-1263 toupper() function, 273
string access methods, 1259 trailing zeros/decimal points, printing,
template definition, 1249 1083-1087, 1090
types, 1250-1251 traits type, 1250
valarray, 1162 transform() function, 1030-1031, 1041,
variadic templates, 866, 1197 1294, 1297
recursion, 1199-1202 translation units, compiling separately,
template and function parameter 447-449, 453
packs, 1197-1198 translator (cfront), 21
unpacking the packs, 1198-1199 travel.cpp, 344-345
tempmemb.cpp, 852 trivial conversations for exact matches, 432
temporary files, random access, 1141-1142 troubleshooting compilers, 24
temporary variables, 392-394 truncate.cpp, 1113
tempover.cpp, 434-437 try blocks, 901-903
tempparm.cpp, 856-857 try keyword, 901
terminate() function, 928-930 turning off bits, 1241
terminators, 30 turning on bits, 1241
testing bit values, 1241-1242 Tv class, 878-879, 883
tests, loop tests, 196-197 tv.cpp, 880-882
text, reading with loops, 234 tv.h, 879-880
cin.get() function, 235-237, 241-244 tvfm.h, 885-886
cin object, 234-235 use_tv.cpp, 882
end-of-file conditions, 237-241 tv.cpp, 880-882
sentinel characters, 234 tv.h, 879-880
text files, 287-288, 1129 tvfm.h, 885-886
reading, 292-298 two-dimensional arrays, 244-249
writing to, 288-292 declaring, 244-246
textinl.cpp, 234 initializing, 246-249
textin2.cpp, 236 twoarg.cpp, 316
textin3.cpp, 239 twod.cpp, 846-847
textind.cpp, 242 twofile2.cpp, 469
third-generation specialization, 425-426 twoswap.cpp, 427-428
this pointer, 539 twotemps.cpp, 422
throw keyword, 900 type cast operators, 943-944
throwing exceptions, 900, 915-916 type casts, 606-612, 1330-1331
tilde, 529, 1237 type conversion, 606-612
time, 1009 applying automatically, 616-618
time-delay loops, 229-230 conversion functions, 612-616
tmp2tmp.cpp, 862-864 friends, 618-621
toggling bits, 1241 implicit conversion, 609
tokens, 39 type info class, 939-941, 944
alternative tokens, table of, 1222 type info structure, 934
tolower() function, 273, 1041 type parameters, 834
top-down design, 12 type of template functions, 439
top-down programming, 331 typecast.cpp, 108

topfive.cpp, 353

typedef, 371

typedef keyword, 230

typeid operators, 934, 939-944

typename keyword, 831

types
char_type, 1250
const_iterator, 1273
const_reference, 1273
difference_type, 1250, 1273
iterators, 997, 1273
key_compare, 1281, 1284
key_type, 1281, 1284
mapped_type, 1281, 1284
reference, 1273
size_type, 1250, 1273
traits, 1250
type casts, 1330-1331
value_compare, 1281, 1284
value_type, 1273

U

UCHAR_MAX constant, 72
UINT_MAX constant, 72
ULONG_MAX constant, 72
UML (Unified Modeling Language), 08
unary functions, 1027, 1030
unary minus operator, 601
unary operators, 601, 1234
unbound template friend functions, 864-865
uncaught exceptions, 928-931
underscore (_), 1222
unexpected exceptions, 928-931
unexpected() function, 929
unformatted input functions, 1102
Unicode, 88
Unified Modeling Language (UML), 1208
Unified Modeling Language User
Guide, 1323
uniform initialization, 1154
initializer_list, 1155
narrowing, 1154
unions, 149
anonymous unions, 150
declaring, 149
unique_copy() function, 1295, 1301
unique() function, 1041, 1295, 1300
unique() method, 1016-1017, 1280
unique_ptr versus auto_ptr, 975-977

using keyword

universal character names, 87-88
UNIX, CC compiler, 21-22
unnamed namespaces, 491-492
unordered associative containers,
C++11, 1283
unqualified names (functions), 486, 514
unsetf() function, 1090
unsigned char data type, 88-89
unsigned integers, 74-76
unsigned long long type, 1153
unwinding the stack, 909-910, 913-914
upcasting, 738, 944
implicit upcasting, 807
update() function, 466, 514
updates, loop updates, 196-198, 205-206
uppercase manipulator, 1091
upper_bound() functions, 1024, 1304, 1309
upper_bound() method, 1021, 1283
use-case analysis, 1207
use() function, 394, 397-399
usealgo.cpp, 1043-1044
usebrassi.cpp, 732-733
usebrass2.cpp, 734
usedma.cpp, 765
usenmsp.cpp, 494-495
user-defined functions
example, 53-54
function form, 54-55
function headers, 55-56
return values, 57-59
using directive, 59-60
usestokO.cpp, 519
usestokl.cpp, 533
usestok2.cp, 547
usetimel.cpp, 571-572
usetime2.cpp, 577
usettO.cpp, 710
usettd.cpp, 717-718
use_new.cpp, 161
use_ptr() method, 1244
use_sales.cpp, 925-927
use_stuc.cpp, 795-797
use_stui.cpp, 804-805
use_tv.cpp, 882
USHRT_MAX constant, 72
using-declaration, 491
using directive, 35-36, 59-60
using keyword, 486-490, 807-808, 1332

1417

1418

valarray class

\Y

valarray class, 786-787, 1045-1046,
1049-1051
templates, 1162
value, passing by, 313-314, 770
value_comp() method, 1282
value_compare type, 1281, 1284
value_type type, 1273
values
assigning to pointers, 171
indirect, 155
valvect.cpp, 1048
variable arrays, 1329
variables, 66
assigning values to, 43
automatic, 182, 453-457
example, 455-457
initializing, 458
stacks, 458-459
automatic variables, 314
declaring, 41-43
dynamic, 454
dynamic memory, 476-479, 482
enum, 150-152
enumerators, 150-151
value ranges, 153
values, setting, 152
floating-point numbers, 92

advantages/disadvantages, 96-97

constants, 96
decimal-point notation, 92
double data type, 94-96
E notation, 92-93
float data type, 94-96
long double data type, 94-96
global, compared to local
variables, 467
indeterminate values, 73
initializing, 52, 73
integers, 68
bool, 90

int, 68-70

long, 68-70

short, 68-70

sizeof operator, 71-73
unsigned, 74-76
width of, 68

keywords, static, 183
local variables, 314-315

compared to global variables, 467

naming conventions, 66-68
pointers, 153

assigning values to, 171
C++ philosophy, 155
cautions, 159

compared to pointed-to values, 172
declaring, 155-159, 171
deferencing, 171-172

delete operator, 163-164
example, 154

initializing, 157-159
integers, 160

new operator, 160-162
pointer arithmetic, 167-172
pointer notation, 173

strings, 173-178

reference variables, 383

arguments, 408-409

class objects, 401-405

creating, 383-386

function parameters, 386, 389-390
inheritance, 405-408

properties, 390-391

structures, 394, 397-401

scope, 454

global, 454
local, 454-457
namespace, 454

static, 453, 459-462

external, 466

external linkage, 463, 466-467
internal linkage, 467-470

no linkage, 470-472

char, 80-89 temporary variables, 392-394

choosing integer types, 76-77 type conversions, 102

climits header file, 71-73 in arguments, 106

constants, 78-80, 90-92 in expressions, 105-106

initializing, 73 on assignment, 103-104
type casts, 107-109

variadic templates, 866, 1197
recursion, 1199-1202
template and function parameter
packs, 1197-1198
unpacking the packs, 1198-1199
variadic2.cpp, 1201
variations on function pointers, 365-370
vect.cpp, 593
vect.h, 591
vectl.cpp, 980
vect2.cpp, 984-985
vect3.cpp, 988
vector class, 588-590, 600, 979-988, 991,
1045-1046, 1049-1051
adding elements to, 982-983
adding vectors, 590
declaring, 591-592
displacement vectors, 589
implementation comments, 602
member functions, 592, 597
multiple representations, 599
overloaded arithmetic operators,
599-600
overloading overloaded operators, 601
past-the-end iterators, 981-982
Random Walk sample program, 602,
605-606
removing ranges of, 982
shuftling elements in, 987
sorting, 987
state members, 597-599
vectl.cpp example, 980-981
vect2.cpp sample program, 984-986
vect3.cpp sample program, 988-991
vector class templates, 1012-1013
vector containers, 1012-1013
vector objects versus arrays, 188-189
vector template class, 120, 186-187
vectors, methods, 1278-1280
vegnews.cpp, 634
versatility of templates, 845-846
versioni() function, 403
version2() function, 404
version3() function, 405
ViewAcct() function, 725-726, 730
virtual base classes, 815-817
combining with nonvirtual base
classes, 828
constructors, 817-818

wrapped.cpp

dominance, 828-829
methods, 818-828
virtual destructors, 737, 742-743, 776
virtual function tables (vtbl), 740
virtual functions, 739-742, 775-776
behavior, 734-736
friends, 743, 776
memory and execution speed, 742
pure virtual functions, 748
redefinition, 743-745
virtual function tables, 740
virtual keyword, 742
virtual methods, 1183-1184
void functions, 307
void statement, 53
volatile keyword, 473
vslice.cpp, 1049-1050
vtbl (virtual function table), 740

W

waiting.cpp, 229
wchar_t data type, 89, 1064
wdith of integers, 68
Web resources, 1325
what() function, 917
while loops, 224-227
compared to for loops, 227-228
example, 225-226
syntax, 224
time-delay loops, 229-230
while.cpp, 225
white space, 39
width() method, 1080-1081
width.cpp, 1080
Windows, compilers, 23-24
Withdraw() method, 731, 745
Worker class, 810-814
WorkerO.cpp, 811-812
Worker0.h, 810-811
workermi.cpp, 823-825
workermi.h, 821-822
workmi.cpp, 826-827
worktest.cpp, 813
WorseThan() function, 988
wow() function, 409
wrapped.cpp, 1195

1419

1420

wrappers

wrappers, 1191
function wrapper
fixing problems, 1194-1196
options for, 1196-1197
template inefficiencies, 1191-1194
write.cpp, 1073-1074
write() member function, 1130-1133
write() method, 1071-1075
writing
to files, 1115-1118
to text files, 288-292

X—Z

XOR operator, bitwise XOR (*), 1238

zeros, trailing, 1083-1087, 1090

	Table of Contents
	Introduction
	2 Setting Out to C++
	C++ Initiation
	C++ Statements
	More C++ Statements
	Functions
	Summary
	Chapter Review
	Programming Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Z

