
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321774095
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321774095
https://plusone.google.com/share?url=http://www.informit.com/title/9780321774095
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321774095
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321774095/Free-Sample-Chapter


Operators

• Infix notation x op y is x.op(y), postfix notation x op is x.op()

• Only + - ! ~ can be prefix—define method unary_op

• Assignment x op= y is x = x op y unless defined separately
• Precedence depends on first character, except for assignments

Lowest:
Assignments

Not operator
char

|^&!

=

<

>

:+

-

* /

%

Highest: Other
operator char

• Right associative if last character is a colon :
• x(i) = x(j) is x.update(i, x.apply(j))
• There is no ++ or -- for numbers. Use x += 1; y -= 1
• Use x == y to compare objects—it calls equals

Functions

def triple(x: Int) = 3 * x // Parameter name: Type
val f = (x: Int) => 3 * x // Anonymous function
(1 to 10).map(3 * _) // Function with anonymous parameter
def greet(x: Int) { // Without =, return type is Unit
  println("Hello, " + x) }
def greet(x: Int, salutation: String = "Hello") { // Default argument
  println(salutation + ", " + x) } 
// Call as greet(42), greet(42, "Hi"), greet(salutation = "Hi", x = 42)
def sum(xs: Int*) = { // * denotes varargs
  var r = 0; for (x <- xs) r += x // Semicolon separates statements on same line
r // No return. Last expression is value of block

}
def sum(xs: Int*): Int = // Return type required for recursive functions
  if (xs.length == 0) 0 else xs.head + sum(xs.tail : _*) // Sequence as varargs

for Loops

for (i <- 1 to n) println(i) // i iterates through all values in 1 to n
for (i <- 1 to 9; j <- 1 to 9) println(i * 10 + j) // Multiple iterates
for (i <- 1 to 9 if i != 5; j <- 1 to 9 if i != j) println(i * 10 + j) // Guards
for (i <- 1 to 3; from = 4 - i; j <- from to 3) println(i * 10 + j) // Variable
val r = for (i <- 1 to n) yield i * i // r is a sequence 1, 4, 9,  . . .  
for ((x, y) <- pairs) println(x + " " + y) // Destructures pairs and other values with extractors

Pattern Matching

val x = r match {
  case '0' => ... // Match value
  case ch if someProperty(ch) => ... // Guard
  case e: Employee => ... // Match runtime type
  case (x, y) => ... // Destructures pairs and other values with extractors
  case Some(v) => ... // Case classes have extractors
  case 0 :: tail => ... // Infix notation for extractors yielding a pair
  case _ => ... // Default case
}

try { ... } catch { // Use the same syntax for catch clauses
 case _: MalformedURLException => println("Bad URL")
 case ex: IOException => ex.printStackTrace()
}



Scala for the Impatient



This page intentionally left blank 



Scala for the Impatient

Cay S. Horstmann

Upper Saddle River, NJ •  Boston •  Indianapolis •  San Francisco

New York •  Toronto •  Montreal •  London •  Munich •  Paris •  Madrid

Capetown •  Sydney •  Tokyo •  Singapore •  Mexico City



Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382–3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Horstmann, Cay S., 1959-
    Scala for the impatient / Cay S. Horstmann.
        p.   cm.
    Includes index.
    ISBN 978-0-321-77409-5 (pbk. : alk. paper)—ISBN 0-321-77409-4 (pbk. :
alk. paper)  1.  Scala (Computer program language) 2.  Programming
languages (Electronic computers) 3.  Computer programming.  I. Title.
    QA76.73.S28H67 2012
    005.13’3—dc23
                                                                                                            2011052136

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your
request to (201) 236-3290.

ISBN-13: 978-0-321-77409-5
ISBN-10: 0-321-77409-4
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
Second printing, June 2013



To my wife, who made writing this book possible,

and to my children, who made it necessary.



This page intentionally left blank 



Foreword xvii

Preface xix

About the Author xxi

THE BASICS A1 11
The Scala Interpreter 11.1

Declaring Values and Variables 31.2

Commonly Used Types 41.3

Arithmetic and Operator Overloading 51.4

Calling Functions and Methods 71.5

The apply Method 81.6

Scaladoc 81.7

Exercises 11

CONTROL STRUCTURES AND FUNCTIONS A1 132
Conditional Expressions 142.1

Statement Termination 152.2

Block Expressions and Assignments 162.3

Contents

vii



Input and Output 172.4

Loops 182.5

Advanced for Loops and for Comprehensions 192.6

Functions 202.7

Default and Named Arguments L1 212.8

Variable Arguments L1 222.9

Procedures 232.10

Lazy Values L1 232.11

Exceptions 242.12

Exercises 26

WORKING WITH ARRAYS A1 293
Fixed-Length Arrays 293.1

Variable-Length Arrays: Array Buffers 303.2

Traversing Arrays and Array Buffers 313.3

Transforming Arrays 323.4

Common Algorithms 343.5

Deciphering Scaladoc 353.6

Multidimensional Arrays 373.7

Interoperating with Java 373.8

Exercises 38

MAPS AND TUPLES A1 414
Constructing a Map 414.1

Accessing Map Values 424.2

Updating Map Values 434.3

Iterating over Maps 434.4

Sorted Maps 444.5

Interoperating with Java 444.6

Tuples 454.7

Zipping 464.8

Exercises 46

Contentsviii



CLASSES A1 495
Simple Classes and Parameterless Methods 495.1

Properties with Getters and Setters 505.2

Properties with Only Getters 535.3

Object-Private Fields 545.4

Bean Properties L1 555.5

Auxiliary Constructors 565.6

The Primary Constructor 575.7

Nested Classes L1 605.8

Exercises 63

OBJECTS A1 656
Singletons 656.1

Companion Objects 666.2

Objects Extending a Class or Trait 676.3

The apply Method 676.4

Application Objects 686.5

Enumerations 696.6

Exercises 71

PACKAGES AND IMPORTS A1 737
Packages 747.1

Scope Rules 757.2

Chained Package Clauses 777.3

Top-of-File Notation 777.4

Package Objects 787.5

Package Visibility 787.6

Imports 797.7

Imports Can Be Anywhere 807.8

Renaming and Hiding Members 807.9

Implicit Imports 807.10

Exercises 81

ixContents



INHERITANCE A1 858
Extending a Class 858.1

Overriding Methods 868.2

Type Checks and Casts 878.3

Protected Fields and Methods 888.4

Superclass Construction 888.5

Overriding Fields 898.6

Anonymous Subclasses 918.7

Abstract Classes 918.8

Abstract Fields 918.9

Construction Order and Early Definitions L3 928.10

The Scala Inheritance Hierarchy 948.11

Object Equality L1 958.12

Exercises 96

FILES AND REGULAR EXPRESSIONS A1 999
Reading Lines 1009.1

Reading Characters 1009.2

Reading Tokens and Numbers 1019.3

Reading from URLs and Other Sources 1029.4

Reading Binary Files 1029.5

Writing Text Files 1029.6

Visiting Directories 1039.7

Serialization 1049.8

Process Control A2 1059.9

Regular Expressions 1069.10

Regular Expression Groups 1079.11

Exercises 107

TRAITS L1 11110
Why No Multiple Inheritance? 11110.1

Traits as Interfaces 11310.2

Traits with Concrete Implementations 11410.3

Objects with Traits 11510.4

Contentsx



Layered Traits 11610.5

Overriding Abstract Methods in Traits 11710.6

Traits for Rich Interfaces 11810.7

Concrete Fields in Traits 11810.8

Abstract Fields in Traits 11910.9

Trait Construction Order 12010.10

Initializing Trait Fields 12210.11

Traits Extending Classes 12310.12

Self Types L2 12410.13

What Happens under the Hood 12510.14

Exercises 127

OPERATORS L1 13111
Identifiers 13111.1

Infix Operators 13211.2

Unary Operators 13311.3

Assignment Operators 13311.4

Precedence 13411.5

Associativity 13511.6

The apply and update Methods 13511.7

Extractors L2 13611.8

Extractors with One or No Arguments L2 13811.9

The unapplySeq Method L2 13811.10

Exercises 139

HIGHER-ORDER FUNCTIONS L1 14312
Functions as Values 14312.1

Anonymous Functions 14412.2

Functions with Function Parameters 14512.3

Parameter Inference 14612.4

Useful Higher-Order Functions 14612.5

Closures 14812.6

SAM Conversions 14912.7

Currying 14912.8

xiContents



Control Abstractions 15012.9

The return Expression 15212.10

Exercises 152

COLLECTIONS A2 15513
The Main Collections Traits 15613.1

Mutable and Immutable Collections 15713.2

Sequences 15813.3

Lists 15913.4

Mutable Lists 16013.5

Sets 16113.6

Operators for Adding or Removing Elements 16213.7

Common Methods 16413.8

Mapping a Function 16713.9

Reducing, Folding, and Scanning A3 16813.10

Zipping 17113.11

Iterators 17213.12

Streams A3 17313.13

Lazy Views 17413.14

Interoperability with Java Collections 17513.15

Threadsafe Collections 17713.16

Parallel Collections 17813.17

Exercises 179

PATTERN MATCHING AND CASE CLASSES A2 18314
A Better Switch 18414.1

Guards 18514.2

Variables in Patterns 18514.3

Type Patterns 18614.4

Matching Arrays, Lists, and Tuples 18714.5

Extractors 18814.6

Patterns in Variable Declarations 18814.7

Patterns in for Expressions 18914.8

Case Classes 18914.9

Contentsxii



The copy Method and Named Parameters 19014.10

Infix Notation in case Clauses 19114.11

Matching Nested Structures 19214.12

Are Case Classes Evil? 19214.13

Sealed Classes 19314.14

Simulating Enumerations 19414.15

The Option Type 19414.16

Partial Functions L2 19514.17

Exercises 196

ANNOTATIONS A2 19915
What Are Annotations? 20015.1

What Can Be Annotated? 20015.2

Annotation Arguments 20115.3

Annotation Implementations 20215.4

Annotations for Java Features 20315.5

15.5.1 Java Modifiers 203

15.5.2 Marker Interfaces 204

15.5.3 Checked Exceptions 204

15.5.4 Variable Arguments 205

15.5.5 JavaBeans 205

Annotations for Optimizations 20615.6

15.6.1 Tail Recursion 206

15.6.2 Jump Table Generation and Inlining 207

15.6.3 Eliding Methods 208

15.6.4 Specialization for Primitive Types 209

Annotations for Errors and Warnings 21015.7

Exercises 211

XML PROCESSING A2 21316
XML Literals 21416.1

XML Nodes 21416.2

Element Attributes 21616.3

Embedded Expressions 21716.4

xiiiContents



Expressions in Attributes 21816.5

Uncommon Node Types 21916.6

XPath-like Expressions 22016.7

Pattern Matching 22116.8

Modifying Elements and Attributes 22216.9

Transforming XML 22316.10

Loading and Saving 22316.11

Namespaces 22616.12

Exercises 227

TYPE PARAMETERS L2 23117
Generic Classes 23217.1

Generic Functions 23217.2

Bounds for Type Variables 23217.3

View Bounds 23417.4

Context Bounds 23417.5

The Manifest Context Bound 23517.6

Multiple Bounds 23517.7

Type Constraints L3 23617.8

Variance 23717.9

Co- and Contravariant Positions 23817.10

Objects Can’t Be Generic 24017.11

Wildcards 24117.12

Exercises 241

ADVANCED TYPES L2 24518
Singleton Types 24618.1

Type Projections 24718.2

Paths 24818.3

Type Aliases 24918.4

Structural Types 25018.5

Compound Types 25018.6

Infix Types 25118.7

Existential Types 25218.8

Contentsxiv



The Scala Type System 25318.9

Self Types 25418.10

Dependency Injection 25518.11

Abstract Types L3 25718.12

Family Polymorphism L3 25918.13

Higher-Kinded Types L3 26318.14

Exercises 265

PARSING A3 26919
Grammars 27019.1

Combining Parser Operations 27119.2

Transforming Parser Results 27319.3

Discarding Tokens 27419.4

Generating Parse Trees 27519.5

Avoiding Left Recursion 27619.6

More Combinators 27719.7

Avoiding Backtracking 28019.8

Packrat Parsers 28019.9

What Exactly Are Parsers? 28119.10

Regex Parsers 28219.11

Token-Based Parsers 28319.12

Error Handling 28519.13

Exercises 286

ACTORS A3 28920
Creating and Starting Actors 29020.1

Sending Messages 29120.2

Receiving Messages 29220.3

Sending Messages to Other Actors 29320.4

Channels 29420.5

Synchronous Messages and Futures 29520.6

Thread Sharing 29620.7

The Actor Life Cycle 29920.8

Linking Actors 30020.9

xvContents



Designing with Actors 30120.10

Exercises 302

IMPLICITS L3 30521
Implicit Conversions 30621.1

Using Implicits for Enriching Existing Libraries 30621.2

Importing Implicits 30721.3

Rules for Implicit Conversions 30821.4

Implicit Parameters 30921.5

Implicit Conversions with Implicit Parameters 31021.6

Context Bounds 31121.7

Evidence 31221.8

The @implicitNotFound Annotation 31321.9

CanBuildFrom Demystified 31421.10

Exercises 316

DELIMITED CONTINUATIONS L3 31922
Capturing and Invoking a Continuation 32022.1

The “Computation with a Hole” 32122.2

The Control Flow of reset and shift 32222.3

The Value of a reset Expression 32322.4

The Types of reset and shift Expressions 32322.5

CPS Annotations 32522.6

Turning a Recursive Visit into an Iteration 32622.7

Undoing Inversion of Control 32922.8

The CPS Transformation 33222.9

Transforming Nested Control Contexts 33422.10

Exercises 336

Index 339

Contentsxvi



When I met Cay Horstmann some years ago he told me that Scala needed a better
introductory book. My own book had come out a little bit earlier, so of course I
had to ask him what he thought was wrong with it. He responded that it was
great but too long; his students would not have the patience to read through the
eight hundred pages of Programming in Scala. I conceded that he had a point.
And he set out to correct the situation by writing Scala for the Impatient.

I am very happy that his book has finally arrived because it really delivers on
what the title says. It gives an eminently practical introduction to Scala, explains
what’s particular about it, how it differs from Java, how to overcome some
common hurdles to learning it, and how to write good Scala code.

Scala is a highly expressive and flexible language. It lets library writers use
highly sophisticated abstractions, so that library users can express themselves
simply and intuitively. Therefore, depending on what kind of code you look at,
it might seem very simple or very complex.

A year ago, I tried to provide some clarification by defining a set of levels for
Scala and its standard library. There were three levels each for application pro-
grammers and for library designers. The junior levels could be learned quickly
and would be sufficient to program productively. Intermediate levels would
make programs more concise and more functional and would make libraries

xvii

Foreword



more flexible to use. The highest levels were for experts solving specialized tasks.
At the time I wrote:

I hope this will help newcomers to the language decide in what order to pick
subjects to learn, and that it will give some advice to teachers and book authors
in what order to present the material.

Cay’s book is the first to have systematically applied this idea. Every chapter is
tagged with a level that tells you how easy or hard it is and whether it’s oriented
towards library writers or application programmers.

As you would expect, the first chapters give a fast-paced introduction to the basic
Scala capabilities. But the book does not stop there. It also covers many of the
more “senior” concepts and finally progresses to very advanced material which
is not commonly covered in a language introduction, such as how to write parser
combinators or make use of delimited continuations. The level tags serve as a
guideline for what to pick up when. And Cay manages admirably to make even
the most advanced concepts simple to understand.

I liked the concept of Scala for the Impatient so much that I asked Cay and his
editor, Greg Doench, whether we could get the first part of the book as a free
download on the Typesafe web site. They have gracefully agreed to my request,
and I would like to thank them for that. That way, everybody can quickly access
what I believe is currently the best compact introduction to Scala.

Martin Odersky

January 2012

Forewordxviii



The evolution of Java and C++ has slowed down considerably, and programmers
who are eager to use more modern language features are looking elsewhere.
Scala is an attractive choice; in fact, I think it is by far the most attractive choice
for programmers who want to move beyond Java or C++. Scala has a concise
syntax that is refreshing after the Java boilerplate. It runs on the Java virtual
machine, providing access to a huge set of libraries and tools. It embraces the
functional programming style without abandoning object orientation, giving
you an incremental learning path to a new paradigm. The Scala interpreter lets you
run quick experiments, which makes learning Scala very enjoyable. Last but not
least, Scala is statically typed, enabling the compiler to find errors, so that you
don’t waste time finding them—or not—later in the running program.

I wrote this book for impatient readers who want to start programming in Scala
right away. I assume you know Java, C#, or C++, and I don’t bore you with ex-
plaining variables, loops, or classes. I don’t exhaustively list all the features of
the language, I don’t lecture you about the superiority of one paradigm over
another, and I don’t make you suffer through long and contrived examples. In-
stead, you will get the information that you need in compact chunks that you
can read and review as needed.

Scala is a big language, but you can use it effectively without knowing all of its
details intimately. Martin Odersky, the creator of Scala, has identified levels of

Preface

xix



expertise for application programmers and library designers—as shown in the
following table.

Overall Scala LevelLibrary DesignerApplication Programmer

BeginningBeginning A1

IntermediateJunior L1Intermediate A2

AdvancedSenior L2Expert A3

ExpertExpert L3

For each chapter (and occasionally for individual sections), I indicate the experi-
ence level required. The chapters progress through levels A1 , L1 , A2 , L2 , A3 , L3 .
Even if you don’t want to design your own libraries, knowing about the tools that
Scala provides for library designers can make you a more effective library user.

I hope you enjoy learning Scala with this book. If you find errors or have sugges-
tions for improvement, please visit http://horstmann.com/scala and leave a
comment. On that page, you will also find a link to an archive file containing
all code examples from the book.

I am very grateful to Dmitry Kirsanov and Alina Kirsanova who turned my
manuscript from XHTML into a beautiful book, allowing me to concentrate on
the content instead of fussing with the format. Every author should have it
so good!

Reviewers include Adrian Cumiskey, Mike Davis, Rob Dickens, Daniel Sobral,
Craig Tataryn, David Walend, and William Wheeler. Thanks so much for your
comments and suggestions!

Finally, as always, my gratitude goes to my editor, Greg Doench, for encouraging
me to write this book, and for his insights during the development process.

Cay Horstmann

San Francisco, 2012

Prefacexx

http://horstmann.com/scala


Cay S. Horstmann is principal author of Core Java™, Volumes I & II, Eighth Edition
(Sun Microsystems Press, 2008), as well as a dozen other books for professional
programmers and computer science students. He is a professor of computer
science at San Jose State University and a Java Champion.

About the Author

xxi



Topics in This Chapter  A1

1.1 The Scala Interpreter — page 1

1.2 Declaring Values and Variables — page 3

1.3 Commonly Used Types — page 4

1.4 Arithmetic and Operator Overloading — page 5

1.5 Calling Functions and Methods — page 7

1.6 The apply Method — page 8

1.7 Scaladoc — page 8

Exercises — page 11

The Basics



In this chapter, you will learn how to use Scala as an industrial-strength pocket
calculator, working interactively with numbers and arithmetic operations. We
introduce a number of important Scala concepts and idioms along the way. You
will also learn how to browse the Scaladoc documentation at a beginner’s level.

Highlights of this introduction are:

• Using the Scala interpreter

• Defining variables with var and val

• Numeric types

• Using operators and functions

• Navigating Scaladoc

1.1 The Scala Interpreter
To start the Scala interpreter:

• Install Scala.

• Make sure that the scala/bin directory is on the PATH.

• Open a command shell in your operating system.

• Type scala followed by the Enter key.

1Chapter

1



TIP: Don’t like the command shell? There are other ways of running the
interpreter—see http://horstmann.com/scala/install.

Now type commands followed by Enter. Each time, the interpreter displays the
answer. For example, if you type 8 * 5 + 2 (as shown in boldface below), you
get 42.

scala> 8 * 5 + 2
res0: Int = 42

The answer is given the name res0. You can use that name in subsequent
computations:

scala> 0.5 * res0
res1: Double = 21.0
scala> "Hello, " + res0
res2: java.lang.String = Hello, 42

As you can see, the interpreter also displays the type of the result—in our
examples, Int, Double, and java.lang.String.

You can call methods. Depending on how you launched the interpreter, you may
be able to use tab completion for method names. Try typing res2.to and then hit
the Tab key. If the interpreter offers choices such as

toCharArray   toLowerCase   toString      toUpperCase

this means tab completion works. Type a U and hit the Tab key again. You now
get a single completion:

res2.toUpperCase

Hit the Enter key, and the answer is displayed. (If you can’t use tab completion
in your environment, you’ll have to type the complete method name yourself.)

Also try hitting the ↑ and ↓ arrow keys. In most implementations, you will see
the previously issued commands, and you can edit them. Use the ←, →, and Del
keys to change the last command to

res2.toLowerCase

As you can see, the Scala interpreter reads an expression, evaluates it, prints it,
and reads the next expression. This is called the read-eval-print loop, or REPL.

Technically speaking, the scala program is not an interpreter. Behind the scenes,
your input is quickly compiled into bytecode, and the bytecode is executed by

Chapter 1 The Basics2

http://horstmann.com/scala/install


the Java virtual machine. For that reason, most Scala programmers prefer to call
it “the REPL”.

TIP: The REPL is your friend. Instant feedback encourages experimenting,
and you will feel good whenever something works.

It is a good idea to keep an editor window open at the same time, so you can
copy and paste successful code snippets for later use. Also, as you try more
complex examples, you may want to compose them in the editor and then
paste them into the REPL.

1.2 Declaring Values and Variables
Instead of using the names res0, res1, and so on, you can define your own names:

scala> val answer = 8 * 5 + 2
answer: Int = 42

You can use these names in subsequent expressions:

scala> 0.5 * answer
res3: Double = 21.0

A value declared with val is actually a constant—you can’t change its contents:

scala> answer = 0
<console>:6: error: reassignment to val

To declare a variable whose contents can vary, use a var:

var counter = 0
counter = 1 // OK, can change a var

In Scala, you are encouraged to use a val unless you really need to change the
contents. Perhaps surprisingly for Java or C++ programmers, most programs
don’t need many var variables.

Note that you need not specify the type of a value or variable. It is inferred from
the type of the expression with which you initialize it. (It is an error to declare a
value or variable without initializing it.)

However, you can specify the type if necessary. For example,

val greeting: String = null
val greeting: Any = "Hello" 

31.2 Declaring Values and Variables



NOTE: In Scala, the type of a variable or function is always written after the
name of the variable or function. This makes it easier to read declarations
with complex types.

As I move back and forth between Scala and Java, I find that my fingers write
Java declarations such as String greeting on autopilot, so I have to rewrite
them as greeting: String.This is a bit annoying, but when I work with complex
Scala programs, I really appreciate that I don’t have to decrypt C-style type
declarations.

NOTE: You may have noticed that there were no semicolons after variable
declarations or assignments. In Scala, semicolons are only required if you
have multiple statements on the same line.

You can declare multiple values or variables together:

val xmax, ymax = 100 // Sets xmax and ymax to 100
var greeting, message: String = null
  // greeting and message are both strings, initialized with null

1.3 Commonly Used Types
You have already seen some of the data types of the Scala language, such as Int
and Double. Like Java, Scala has seven numeric types: Byte, Char, Short, Int, Long,
Float, and Double, and a Boolean type. However, unlike Java, these types are classes.
There is no distinction between primitive types and class types in Scala. You can
invoke methods on numbers, for example:

1.toString() // Yields the string "1"

or, more excitingly,

1.to(10) // Yields Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

(We will discuss the Range class in Chapter 13. For now, just view it as a collection
of numbers.)

In Scala, there is no need for wrapper types. It is the job of the Scala compiler to
convert between primitive types and wrappers. For example, if you make an array
of Int, you get an int[] array in the virtual machine.

As you saw in Section 1.1, “The Scala Interpreter,” on page 1, Scala relies
on the underlying java.lang.String class for strings. However, it augments
that class with well over a hundred operations in the StringOps class.

Chapter 1 The Basics4



For example, the intersect method yields the characters that are common to two
strings:

"Hello".intersect("World") // Yields "lo"

In this expression, the java.lang.String object "Hello" is implicitly converted to a
StringOps object, and then the intersect method of the StringOps class is applied.

Therefore, remember to look into the StringOps class when you use the Scala
documentation (see Section 1.7, “Scaladoc,” on page 8).

Similarly, there are classes RichInt, RichDouble, RichChar, and so on. Each of them has
a small set of convenience methods for acting on their poor cousins—Int, Double,
or Char. The to method that you saw above is actually a method of the RichInt class.
In the expression

1.to(10)

the Int value 1 is first converted to a RichInt, and the to method is applied to that
value.

Finally, there are classes BigInt and BigDecimal for computations with an arbitrary
(but finite) number of digits. These are backed by the java.math.BigInteger
and java.math.BigDecimal classes, but, as you will see in the next section, they are
much more convenient because you can use them with the usual mathematical
operators.

NOTE: In Scala, you use methods, not casts, to convert between numeric
types. For example, 99.44.toInt is 99, and 99.toChar is 'c'. Of course, as in
Java, the toString method converts any object to a string.

To convert a string containing a number into the number, use toInt or toDouble.
For example, "99.44".toDouble is 99.44.

1.4 Arithmetic and Operator Overloading
Arithmetic operators in Scala work just as you would expect in Java or C++:

val answer = 8 * 5 + 2

The + - * / % operators do their usual job, as do the bit operators & | ^ >> <<. There
is just one surprising aspect: These operators are actually methods. For example,

a + b

is a shorthand for

a.+(b)

51.4 Arithmetic and Operator Overloading



Here, + is the name of the method. Scala has no silly prejudice against non-
alphanumeric characters in method names. You can define methods with just
about any symbols for names. For example, the BigInt class defines a method
called /% that returns a pair containing the quotient and remainder of a division.

In general, you can write

a method b

as a shorthand for

a.method(b)

where method is a method with two parameters (one implicit, one explicit). For
example, instead of

1.to(10)

you can write

1 to 10

Use whatever you think is easier to read. Beginning Scala programmers tend to
stick to the Java syntax, and that is just fine. Of course, even the most hardened
Java programmers seem to prefer a + b over a.+(b).

There is one notable difference between Scala and Java or C++. Scala does not
have ++ or -- operators. Instead, simply use +=1 or -=1:

counter+=1 // Increments counter—Scala has no ++

Some people wonder if there is any deep reason for Scala’s refusal to provide a
++ operator. (Note that you can’t simply implement a method called ++. Since the
Int class is immutable, such a method cannot change an integer value.) The Scala
designers decided it wasn’t worth having yet another special rule just to save
one keystroke.

You can use the usual mathematical operators with BigInt and BigDecimal objects:

val x: BigInt = 1234567890
x * x * x // Yields 1881676371789154860897069000

That’s much better than Java, where you would have had to call
x.multiply(x).multiply(x).

NOTE: In Java, you cannot overload operators, and the Java designers
claimed this is a good thing because it stops you from inventing crazy
operators like !@$&* that would make your program impossible to read. Of
course, that’s silly; you can make your programs just as hard to read by using
crazy method names like qxywz. Scala allows you to define operators, leaving
it up to you to use this feature with restraint and good taste.

Chapter 1 The Basics6



1.5 Calling Functions and Methods
Scala has functions in addition to methods. It is simpler to use mathematical
functions such as min or pow in Scala than in Java—you need not call static
methods from a class.

sqrt(2) // Yields 1.4142135623730951
pow(2, 4) // Yields 16.0
min(3, Pi) // Yields 3.0

The mathematical functions are defined in the scala.math package. You can import
them with the statement

import scala.math._ // In Scala, the _ character is a “wildcard,” like * in Java

NOTE: To use a package that starts with scala., you can omit the scala prefix.
For example, import math._ is equivalent to import scala.math._, and math.sqrt(2)
is the same as scala.math.sqrt(2).

We discuss the import statement in more detail in Chapter 7. For now, just use
import packageName._ whenever you need to import a particular package.

Scala doesn’t have static methods, but it has a similar feature, called singleton
objects, which we will discuss in detail in Chapter 6. Often, a class has a
companion object whose methods act just like static methods do in Java. For exam-
ple, the BigInt companion object to the BigInt class has a method probablePrime that
generates a random prime number with a given number of bits:

BigInt.probablePrime(100, scala.util.Random)

Try this in the REPL; you’ll get a number such as 1039447980491200275486540240713.
Note that the call BigInt.probablePrime is similar to a static method call in Java.

NOTE: Here, Random is a singleton random number generator object, defined
in the scala.util package. This is one of the few situations where a singleton
object is better than a class. In Java, it is a common error to construct a new
java.util.Random object for each random number.

Scala methods without parameters often don’t use parentheses. For example, the
API of the StringOps class shows a method distinct, without (), to get the distinct
letters in a string. You call it as

"Hello".distinct 

The rule of thumb is that a parameterless method that doesn’t modify the object
has no parentheses. We discuss this further in Chapter 5.

71.5 Calling Functions and Methods



1.6 The apply Method
In Scala, it is common to use a syntax that looks like a function call. For example,
if s is a string, then s(i) is the ith character of the string. (In C++, you would write
s[i]; in Java, s.charAt(i).) Try it out in the REPL:

"Hello"(4) // Yields 'o'

You can think of this as an overloaded form of the () operator. It is implemented
as a method with the name apply. For example, in the documentation of the StringOps
class, you will find a method

def apply(n: Int): Char 

That is, "Hello"(4) is a shortcut for

"Hello".apply(4)

When you look at the documentation for the BigInt companion object, you will
see apply methods that let you convert strings or numbers to BigInt objects. For
example, the call

BigInt("1234567890")

is a shortcut for

BigInt.apply("1234567890")

It yields a new BigInt object, without having to use new. For example:

BigInt("1234567890") * BigInt("112358111321")

Using the apply method of a companion object is a common Scala idiom for con-
structing objects. For example, Array(1, 4, 9, 16) returns an array, thanks to the
apply method of the Array companion object.

1.7 Scaladoc
Java programmers use Javadoc to navigate the Java API. Scala has its own variant,
called Scaladoc (see Figure 1–1).

Navigating Scaladoc is a bit more challenging than Javadoc. Scala classes tend
to have many more convenience methods than Java classes. Some methods use
features that you haven’t learned yet. Finally, some features are exposed as they
are implemented, not as they are used. (The Scala team is working on improving
the Scaladoc presentation, so that it can be more approachable to beginners in the
future.)

Chapter 1 The Basics8



Figure 1–1 The entry page for Scaladoc

Here are some tips for navigating Scaladoc, for a newcomer to the language.

You can browse Scaladoc online at www.scala-lang.org/api, but it is a good
idea to download a copy from www.scala-lang.org/downloads#api and install
it locally.

Unlike Javadoc, which presents an alphabetical listing of classes, Scaladoc’s class
list is sorted by packages. If you know the class name but not the package name,
use the filter in the top left corner (see Figure 1–2).

Figure 1–2 The filter box in Scaladoc

91.7 Scaladoc

www.scala-lang.org/downloads#api
www.scala-lang.org/api


Click on the X symbol to clear the filter.

Note the O and C symbols next to each class name. They let you navigate to the
class (C) or the companion object (O).

Scaladoc can be a bit overwhelming. Keep these tips in mind.

• Remember to look into RichInt, RichDouble, and so on, if you want to know how
to work with numeric types. Similarly, to work with strings, look into StringOps.

• The mathematical functions are in the package scala.math, not in any class.

• Sometimes, you’ll see functions with funny names. For example, BigInt has a
method unary_-. As you will see in Chapter 11, this is how you define the prefix
negation operator -x.

• A method tagged as implicit is an automatic conversion. For example, the
BigInt object has conversions from int and long to BigInt that are automatically
called when needed. See Chapter 21 for more information about implicit
conversions.

• Methods can have functions as parameters. For example, the count method in
StringOps requires a function that returns true or false for a Char, specifying
which characters should be counted:

def count(p: (Char) => Boolean) : Int 

You supply a function, often in a very compact notation, when you call the
method. As an example, the call s.count(_.isUpper) counts the number of upper-
case characters. We will discuss this style of programming in much more
detail in Chapter 12.

• You’ll occasionally run into classes such as Range or Seq[Char]. They mean what
your intuition tells you—a range of numbers, a sequence of characters. You
will learn all about these classes as you delve more deeply into Scala.

• Don’t get discouraged that there are so many methods. It’s the Scala way to
provide lots of methods for every conceivable use case. When you need
to solve a particular problem, just look for a method that is useful. More often
than not, there is one that addresses your task, which means you don’t have
to write so much code yourself.

• Finally, don’t worry if you run into the occasional indecipherable incantation,
such as this one in the StringOps class:

def patch [B >: Char, That](from: Int, patch: GenSeq[B], replaced: Int)
(implicit bf: CanBuildFrom[String, B, That]): That

Just ignore it. There is another version of patch that looks more reasonable:

def patch(from: Int, that: GenSeq[Char], replaced: Int): StringOps[A] 

Chapter 1 The Basics10



If you think of GenSeq[Char] and StringOps[A] as String, the method is pretty easy
to understand from the documentation. And it’s easy to try it out in the REPL:

"Harry".patch(1, "ung", 2) // Yields "Hungry"

Exercises
1. In the Scala REPL, type 3. followed by the Tab key. What methods can be

applied?

2. In the Scala REPL, compute the square root of 3, and then square that value.
By how much does the result differ from 3? (Hint: The res variables are your
friend.)

3. Are the res variables val or var?

4. Scala lets you multiply a string with a number—try out "crazy" * 3 in the REPL.
What does this operation do? Where can you find it in Scaladoc?

5. What does 10 max 2 mean? In which class is the max method defined?

6. Using BigInt, compute 21024.

7. What do you need to import so that you can get a random prime as
probablePrime(100, Random), without any qualifiers before probablePrime and Random?

8. One way to create random file or directory names is to produce a random
BigInt and convert it to base 36, yielding a string such as "qsnvbevtomcj38o06kul".
Poke around Scaladoc to find a way of doing this in Scala.

9. How do you get the first character of a string in Scala? The last character?

10. What do the take, drop, takeRight, and dropRight string functions do? What
advantage or disadvantage do they have over using substring?

11Exercises



Topics in This Chapter  A1

2.1 Conditional Expressions — page 14

2.2 Statement Termination — page 15

2.3 Block Expressions and Assignments — page 16

2.4 Input and Output — page 17

2.5 Loops — page 18

2.6 Advanced for Loops and for Comprehensions — page 19

2.7 Functions — page 20

2.8 Default and Named Arguments L1  — page 21

2.9 Variable Arguments L1  — page 22

2.10 Procedures — page 23

2.11 Lazy Values L1  — page 23

2.12 Exceptions — page 24

Exercises — page 26

Control Structures and Functions



In this chapter, you will learn how to implement conditions, loops, and functions
in Scala. You will encounter a fundamental difference between Scala and other
programming languages. In Java or C++, we differentiate between expressions
(such as 3 + 4) and statements (for example, an if statement). An expression has
a value; a statement carries out an action. In Scala, almost all constructs have
values. This feature can make programs more concise and easier to read.

Here are the highlights of this chapter:

• An if expression has a value.

• A block has a value—the value of its last expression.

• The Scala for loop is like an “enhanced” Java for loop.

• Semicolons are (mostly) optional.

• The void type is Unit.

• Avoid using return in a function.

• Beware of missing = in a function definition.

• Exceptions work just like in Java or C++, but you use a “pattern matching”
syntax for catch.

• Scala has no checked exceptions.

13

2Chapter



2.1 Conditional Expressions
Scala has an if/else construct with the same syntax as in Java or C++. However,
in Scala, an if/else has a value, namely the value of the expression that follows
the if or else. For example,

if (x > 0) 1 else -1

has a value of 1 or -1, depending on the value of x. You can put that value in a
variable:

val s = if (x > 0) 1 else -1

This has the same effect as

if (x > 0) s = 1 else s = -1

However, the first form is better because it can be used to initialize a val. In the
second form, s needs to be a var.

(As already mentioned, semicolons are mostly optional in Scala—see Section 2.2,
“Statement Termination,” on page 15.)

Java and C++ have a ?: operator for this purpose. The expression

x > 0 ? 1 : -1 // Java or C++

is equivalent to the Scala expression if (x > 0) 1 else -1. However, you can’t put
statements inside a ?: expression. The Scala if/else combines the if/else and ?:
constructs that are separate in Java and C++.

In Scala, every expression has a type. For example, the expression if (x > 0) 1
else -1 has the type Int because both branches have the type Int. The type of a
mixed-type expression, such as

if (x > 0) "positive" else -1

is the common supertype of both branches. In this example, one branch is a
java.lang.String, and the other an Int. Their common supertype is called Any. (See
Section 8.11, “The Scala Inheritance Hierarchy,” on page 94 for details.)

If the else part is omitted, for example in

if (x > 0) 1

then it is possible that the if statement yields no value. However, in Scala, every
expression is supposed to have some value. This is finessed by introducing a
class Unit that has one value, written as (). The if statement without an else is
equivalent to

if (x > 0) 1 else ()

Chapter 2 Control Structures and Functions14



Think of () as a placeholder for “no useful value,” and think of Unit as the analog
of void in Java or C++.

(Technically speaking, void has no value whereas Unit has one value that signifies
“no value”. If you are so inclined, you can ponder the difference between an
empty wallet and a wallet with a bill labeled “no dollars”.)

NOTE:   Scala has no switch statement, but it has a much more powerful
pattern matching mechanism that we will discuss in Chapter 14. For now, just
use a sequence of if statements.

CAUTION: The REPL is more nearsighted than the compiler—it only sees
one line of code at a time. For example, when you type

if (x > 0) 1
else if (x == 0) 0 else -1

the REPL executes if (x > 0) 1 and shows the answer.Then it gets confused
about the else keyword.

If you want to break the line before the else, use braces:

if (x > 0) { 1
} else if (x == 0) 0 else -1

This is only a concern in the REPL. In a compiled program, the parser will
find the else on the next line.

TIP: If you want to paste a block of code into the REPL without worrying about
its nearsightedness, use paste mode. Type

:paste

Then paste in the code block and type Ctrl+K. The REPL will then analyze
the block in its entirety.

2.2 Statement Termination
In Java and C++, every statement ends with a semicolon. In Scala—like in
JavaScript and other scripting languages—a semicolon is never required if it falls
just before the end of the line. A semicolon is also optional before an }, an else,
and similar locations where it is clear from context that the end of a statement
has been reached.

152.2 Statement Termination



However, if you want to have more than one statement on a single line, you need
to separate them with semicolons. For example,

if (n > 0) { r = r * n; n -= 1 }

A semicolon is needed to separate r = r * x and n -= 1. Because of the }, no
semicolon is needed after the second statement.

If you want to continue a long statement over two lines, you need to make sure
that the first line ends in a symbol that cannot be the end of a statement. An
operator is often a good choice:

s = s0 + (v - v0) * t + // The + tells the parser that this is not the end 
  0.5 * (a - a0) * t * t 

In practice, long expressions usually involve function or method calls, and then
you don’t need to worry much—after an opening (, the compiler won’t infer the
end of a statement until it has seen the matching ).

In the same spirit, Scala programmers favor the Kernighan & Ritchie brace style:

if (n > 0) {
  r = r * n
  n -= 1
}

The line ending with a { sends a clear signal that there is more to come.

Many programmers coming from Java or C++ are initially uncomfortable
about omitting semicolons. If you prefer to have them, just put them in—they
do no harm.

2.3 Block Expressions and Assignments
In Java or C++, a block statement is a sequence of statements enclosed in { }. You
use a block statement whenever you need to put multiple actions in the body of
a branch or loop statement.

In Scala, a { } block contains a sequence of expressions, and the result is also an
expression. The value of the block is the value of the last expression.

This feature can be useful if the initialization of a val takes more than one step.
For example,

val distance = { val dx = x - x0; val dy = y - y0; sqrt(dx * dx + dy * dy) }

Chapter 2 Control Structures and Functions16



The value of the { } block is the last expression, shown here in bold. The variables
dx and dy, which were only needed as intermediate values in the computation,
are neatly hidden from the rest of the program.

In Scala, assignments have no value—or, strictly speaking, they have a value of
type Unit. Recall that the Unit type is the equivalent of the void type in Java and
C++, with a single value written as ().

A block that ends with an assignment statement, such as

{ r = r * n; n -= 1 }

has a Unit value. This is not a problem, just something to be aware of when
defining functions—see Section 2.7, “Functions,” on page 20.

Since assignments have Unit value, don’t chain them together.

x = y = 1 // No

The value of y = 1 is (), and it’s highly unlikely that you wanted to assign a Unit
to x. (In contrast, in Java and C++, the value of an assignment is the value that is
being assigned. In those languages, chained assignments are useful.)

2.4 Input and Output
To print a value, use the print or println function. The latter adds a newline char-
acter after the printout. For example,

print("Answer: ")
println(42)

yields the same output as

println("Answer: " + 42)

There is also a printf function with a C-style format string:

printf("Hello, %s! You are %d years old.\n", "Fred", 42)

You can read a line of input from the console with the readLine function. To read
a numeric, Boolean, or character value, use readInt, readDouble, readByte, readShort,
readLong, readFloat, readBoolean, or readChar. The readLine method, but not the other
ones, takes a prompt string:

val name = readLine("Your name: ")
print("Your age: ")
val age = readInt()
printf("Hello, %s! Next year, you will be %d.\n", name, age + 1)

172.4 Input and Output



2.5 Loops
Scala has the same while and do loops as Java and C++. For example,

while (n > 0) {
  r = r * n
  n -= 1
}

Scala has no direct analog of the for (initialize; test; update) loop. If you need
such a loop, you have two choices. You can use a while loop. Or, you can use a
for statement like this:

for (i <- 1 to n) 
  r = r * i

You saw the to method of the RichInt class in Chapter 1. The call 1 to n returns a
Range of the numbers from 1 to n (inclusive).

The construct

for (i <- expr)

makes the variable i traverse all values of the expression to the right of the <-.
Exactly how that traversal works depends on the type of the expression. For a
Scala collection, such as a Range, the loop makes i assume each value in turn.

NOTE: There is no val or var before the variable in the for loop. The type of
the variable is the element type of the collection.The scope of the loop variable
extends until the end of the loop.

When traversing a string or array, you often need a range from 0 to n – 1. In that
case, use the until method instead of the to method. It returns a range that doesn’t
include the upper bound.

val s = "Hello"
var sum = 0
for (i <- 0 until s.length) // Last value for i is s.length - 1
  sum += s(i)

In this example, there is actually no need to use indexes. You can directly loop
over the characters:

var sum = 0
for (ch <- "Hello") sum += ch

Chapter 2 Control Structures and Functions18



In Scala, loops are not used as often as in other languages. As you will see in
Chapter 12, you can often process the values in a sequence by applying a function
to all of them, which can be done with a single method call.

NOTE: Scala has no break or continue statements to break out of a loop.What
to do if you need a break? Here are a few options:

1. Use a Boolean control variable instead.

2. Use nested functions—you can return from the middle of a function.

3. Use the break method in the Breaks object:

import scala.util.control.Breaks._
breakable {
   for (...) {
      if (...) break; // Exits the breakable block
      ...
   }      
}

Here, the control transfer is done by throwing and catching an exception,
so you should avoid this mechanism when time is of the essence.

2.6 Advanced for Loops and for Comprehensions
In the preceding section, you saw the basic form of the for loop. However, this
construct is much richer in Scala than in Java or C++. This section covers the
advanced features.

You can have multiple generators of the form variable <- expression. Separate them
by semicolons. For example,

for (i <- 1 to 3; j <- 1 to 3) print((10 * i + j) + " ")
  // Prints 11 12 13 21 22 23 31 32 33

Each generator can have a guard, a Boolean condition preceded by if:

for (i <- 1 to 3; j <- 1 to 3 if i != j) print((10 * i + j) + " ")
  // Prints 12 13 21 23 31 32

Note that there is no semicolon before the if.

You can have any number of definitions, introducing variables that can be used
inside the loop:

for (i <- 1 to 3; from = 4 - i; j <- from to 3) print((10 * i + j) + " ")
  // Prints 13 22 23 31 32 33

192.6 Advanced for Loops and for Comprehensions



When the body of the for loop starts with yield, then the loop constructs a collection
of values, one for each iteration:

for (i <- 1 to 10) yield i % 3
  // Yields Vector(1, 2, 0, 1, 2, 0, 1, 2, 0, 1)

This type of loop is called a for comprehension.

The generated collection is compatible with the first generator.

for (c <- "Hello"; i <- 0 to 1) yield (c + i).toChar
  // Yields "HIeflmlmop"
for (i <- 0 to 1; c <- "Hello") yield (c + i).toChar
  // Yields Vector('H', 'e', 'l', 'l', 'o', 'I', 'f', 'm', 'm', 'p')

NOTE: If you prefer, you can enclose the generators, guards, and definitions
of a for loop inside braces, and you can use newlines instead of semicolons
to separate them:

for { i <- 1 to 3
  from = 4 - i
  j <- from to 3 }

2.7 Functions
Scala has functions in addition to methods. A method operates on an object, but
a function doesn’t. C++ has functions as well, but in Java, you have to imitate
them with static methods.

To define a function, you specify the function’s name, parameters, and body
like this:

def abs(x: Double) = if (x >= 0) x else -x

You must specify the types of all parameters. However, as long as the function
is not recursive, you need not specify the return type. The Scala compiler deter-
mines the return type from the type of the expression to the right of the = symbol.

If the body of the function requires more than one expression, use a block. The
last expression of the block becomes the value that the function returns. For
example, the following function returns the value of r after the for loop.

def fac(n : Int) = {
  var r = 1
  for (i <- 1 to n) r = r * i
  r
}

Chapter 2 Control Structures and Functions20



There is no need for the return keyword in this example. It is possible to use return
as in Java or C++, to exit a function immediately, but that is not commonly done
in Scala.

TIP: While there is nothing wrong with using return in a named function (except
the waste of seven keystrokes), it is a good idea to get used to life without
return. Pretty soon, you will be using lots of anonymous functions, and
there, return doesn’t return a value to the caller. It breaks out to the enclosing
named function.Think of return as a kind of break statement for functions, and
only use it when you want that breakout functionality.

With a recursive function, you must specify the return type. For example,

def fac(n: Int): Int = if (n <= 0) 1 else n * fac(n - 1)

Without the return type, the Scala compiler couldn’t verify that the type of
n * fac(n - 1) is an Int.

NOTE: Some programming languages (such as ML and Haskell) can infer
the type of a recursive function, using the Hindley-Milner algorithm. However,
this doesn’t work well in an object-oriented language. Extending the
Hindley-Milner algorithm so it can handle subtypes is still a research problem.

2.8 Default and Named Arguments L1
You can provide default arguments for functions that are used when you don’t
specify explicit values. For example,

def decorate(str: String, left: String = "[", right: String = "]") =
  left + str + right

This function has two parameters, left and right, with default arguments "["
and "]".

If you call decorate("Hello"), you get "[Hello]". If you don’t like the defaults, supply
your own: decorate("Hello", "<<<", ">>>").

If you supply fewer arguments than there are parameters, the defaults are applied
from the end. For example, decorate("Hello", ">>>[") uses the default value of the
right parameter, yielding ">>>[Hello]".

You can also specify the parameter names when you supply the arguments. For
example,

decorate(left = "<<<", str = "Hello", right = ">>>")

212.8 Default and Named Arguments



The result is "<<<Hello>>>". Note that the named arguments need not be in the same
order as the parameters.

Named arguments can make a function call more readable. They are also useful
if a function has many default parameters.

You can mix unnamed and named arguments, provided the unnamed ones come
first:

decorate("Hello", right = "]<<<") // Calls decorate("Hello", "[", "]<<<")

2.9 Variable Arguments L1
Sometimes, it is convenient to implement a function that can take a variable
number of arguments. The following example shows the syntax:

def sum(args: Int*) = {
  var result = 0
  for (arg <- args) result += arg
  result
}

You can call this function with as many arguments as you like.

val s = sum(1, 4, 9, 16, 25)

The function receives a single parameter of type Seq, which we will discuss in
Chapter 13. For now, all you need to know is that you can use a for loop to visit
each element.

If you already have a sequence of values, you cannot pass it directly to such a
function. For example, the following is not correct:

val s = sum(1 to 5) // Error

If the sum function is called with one argument, that must be a single integer, not
a range of integers. The remedy is to tell the compiler that you want the parameter
to be considered an argument sequence. Append : _*, like this:

val s = sum(1 to 5: _*) // Consider 1 to 5 as an argument sequence

This call syntax is needed in a recursive definition:

def recursiveSum(args: Int*) : Int = {
  if (args.length == 0) 0 
  else args.head + recursiveSum(args.tail : _*)
}

Here, the head of a sequence is its initial element, and tail is a sequence of all
other elements. That’s again a Seq, and we have to use : _* to convert it to an
argument sequence.

Chapter 2 Control Structures and Functions22



CAUTION: When you call a Java method with variable arguments of type
Object, such as PrintStream.printf or MessageFormat.format, you need to convert
any primitive types by hand. For example,

val str = MessageFormat.format("The answer to {0} is {1}", 
  "everything", 42.asInstanceOf[AnyRef])

This is the case for any Object parameter, but I mention it here because it is
most common with varargs methods.

2.10 Procedures
Scala has a special notation for a function that returns no value. If the function
body is enclosed in braces without a preceding = symbol, then the return type is Unit.
Such a function is called a procedure. A procedure returns no value, and you only
call it for its side effect. For example, the following procedure prints a string inside
a box, like

-------
|Hello|
-------

Because the procedure doesn’t return any value, we omit the = symbol.

def box(s : String) { // Look carefully: no =
  val border = "-" * s.length + "--\n"
  println(border + "|" + s + "|\n" + border)
} 

Some people (not me) dislike this concise syntax for procedures and suggest that
you always use an explicit return type of Unit:

def box(s : String): Unit = {  
  ...
} 

CAUTION: The concise procedure syntax can be a surprise for Java and C++
programmers. It is a common error to accidentally omit the = in a function
definition.You then get an error message at the point where the function is
called, and you are told that Unit is not acceptable at that location.

2.11 Lazy Values L1
When a val is declared as lazy, its initialization is deferred until it is accessed for
the first time. For example,

232.11 Lazy Values



lazy val words = scala.io.Source.fromFile("/usr/share/dict/words").mkString

(We will discuss file operations in Chapter 9. For now, just take it for granted
that this call reads all characters from a file into a string.)

If the program never accesses words, the file is never opened. To verify this, try it
out in the REPL, but misspell the file name. There will be no error when the ini-
tialization statement is executed. However, when you access words, you will get
an error message that the file is not found.

Lazy values are useful to delay costly initialization statements. They can also
deal with other initialization issues, such as circular dependencies. Moreover,
they are essential for developing lazy data structures—see Section 13.13,
“Streams,” on page 173.

You can think of lazy values as halfway between val and def. Compare

val words = scala.io.Source.fromFile("/usr/share/dict/words").mkString
  // Evaluated as soon as words is defined
lazy val words = scala.io.Source.fromFile("/usr/share/dict/words").mkString
  // Evaluated the first time words is used
def words = scala.io.Source.fromFile("/usr/share/dict/words").mkString
  // Evaluated every time words is used

NOTE: Laziness is not cost-free. Every time a lazy value is accessed, a
method is called that checks, in a threadsafe manner, whether the value has
already been initialized.

2.12 Exceptions
Scala exceptions work the same way as in Java or C++. When you throw an
exception, for example

throw new IllegalArgumentException("x should not be negative")

the current computation is aborted, and the runtime system looks for an exception
handler that can accept an IllegalArgumentException. Control resumes with the
innermost such handler. If no such handler exists, the program terminates.

As in Java, the objects that you throw need to belong to a subclass of
java.lang.Throwable. However, unlike Java, Scala has no “checked” exceptions—you
never have to declare that a function or method might throw an exception.

Chapter 2 Control Structures and Functions24



NOTE: In Java, “checked” exceptions are checked at compile time. If your
method might throw an IOException, you must declare it. This forces
programmers to think where those exceptions should be handled, which is
a laudable goal. Unfortunately, it can also give rise to monstrous method
signatures such as void doSomething() throws IOException, InterruptedException,
ClassNotFoundException. Many Java programmers detest this feature and end
up defeating it by either catching exceptions too early or using excessively
general exception classes. The Scala designers decided against checked
exceptions, recognizing that thorough compile-time checking isn’t always
a good thing.

A throw expression has the special type Nothing. That is useful in if/else expressions.
If one branch has type Nothing, the type of the if/else expression is the type of the
other branch. For example, consider

if (x >= 0) { sqrt(x) 
} else throw new IllegalArgumentException("x should not be negative")

The first branch has type Double, the second has type Nothing. Therefore, the if/else
expression also has type Double.

The syntax for catching exceptions is modeled after the pattern matching syntax
(see Chapter 14).

val url = new URL("http://horstmann.com/fred-tiny.gif")
try {
  process(url)
} catch {
  case _: MalformedURLException => println("Bad URL: " + url)
  case ex: IOException => ex.printStackTrace()
}

As in Java or C++, the more general exception types should come after the more
specific ones.

Note that you can use _ for the variable name if you don’t need it.

The try/finally statement lets you dispose of a resource whether or not an
exception has occurred. For example:

var in = new URL("http://horstmann.com/fred.gif").openStream()
try {
  process(in)
} finally {
  in.close()
}

252.12 Exceptions



The finally clause is executed whether or not the process function throws an
exception. The reader is always closed.

This code is a bit subtle, and it raises several issues.

• What if the URL constructor or the openStream method throws an exception? Then
the try block is never entered, and neither is the finally clause. That’s just as
well—in was never initialized, so it makes no sense to invoke close on it.

• Why isn’t val in = new URL(...).openStream() inside the try block? Then the scope
of in would not extend to the finally clause.

• What if in.close() throws an exception? Then that exception is thrown out of
the statement, superseding any earlier one. (This is just like in Java, and it
isn’t very nice. Ideally, the old exception would stay attached to the new one.)

Note that try/catch and try/finally have complementary goals. The try/catch
statement handles exceptions, and the try/finally statement takes some action
(usually cleanup) when an exception is not handled. It is possible to combine
them into a single try/catch/finally statement:

try { ... } catch { ... } finally { ... }

This is the same as

try { try { ... } catch { ... } } finally { ... }

However, that combination is rarely useful.

Exercises
1. The signum of a number is 1 if the number is positive, –1 if it is negative, and

0 if it is zero. Write a function that computes this value.

2. What is the value of an empty block expression {}? What is its type?

3. Come up with one situation where the assignment x = y = 1 is valid in Scala.
(Hint: Pick a suitable type for x.)

4. Write a Scala equivalent for the Java loop

for (int i = 10; i >= 0; i--) System.out.println(i); 

5. Write a procedure countdown(n: Int) that prints the numbers from n to 0.

6. Write a for loop for computing the product of the Unicode codes of all letters
in a string. For example, the product of the characters in "Hello" is 9415087488L.

7. Solve the preceding exercise without writing a loop. (Hint: Look at the StringOps
Scaladoc.)

8. Write a function product(s : String) that computes the product, as described
in the preceding exercises.

Chapter 2 Control Structures and Functions26



9. Make the function of the preceding exercise a recursive function.

10. Write a function that computes xn, where n is an integer. Use the following
recursive definition:

• xn = y2 if n is even and positive, where y = xn / 2.

• xn = x· xn – 1 if n is odd and positive.

• x0 = 1.

• xn = 1 / x–n if n is negative.

Don’t use a return statement.

27Exercises



This page intentionally left blank 



Symbols and Numbers
- (minus sign)

in identifiers, 132
operator:

arithmetic, 5
for collections, 163–164
for maps, 43
for type parameters, 237
left-associative, 135
precedence of, 134
unary, 10, 133

-- operator
arithmetic, 6
for collections, 163–164
for sets, 162–163

_ (underscore)
as wildcard:

for XML elements, 220
in case clauses, 25, 184–185, 221, 292
in imports, 7, 70, 79–80
in tuples, 45

for function calls, 144, 254
for function parameters, 146
in identifiers, 131, 283

_* syntax
for arrays, 187
for nested structures, 192
in function arguments, 22
in pattern matching, 221

_=, in setter methods, 51
_1, _2, _3 methods, 45
; (semicolon)

after statements, 4, 14–16
inside loops, 19–20

: (colon)
followed by annotations, 201
in case clauses, 186–187
in identifiers, 132
in implicits, 311–312
in operator names, 252

and precedence, 134
right-associative, 135, 170

in type parameters, 234–235
:: operator, 240

for lists, 159–160, 163–164
in case clauses, 187, 191
right-associative, 135, 160

::: operator, 163–164

Index

339



:\ operator, 170
:+ operator, 163–164
:+= operator, 164
! (exclamation mark)

in identifiers, 132
in shell scripts, 105–106
operator:

for actors, 291, 294–295
precedence of, 134
unary, 133

!!, in shell scripts, 105
!= operator, 133
!? operator, 295
? (question mark)

in identifiers, 132
in parsers, 274

?: operator, 14
/ (slash)

in identifiers, 132
in XPath, 220
operator:

arithmetic, 5
precedence of, 134

/: operator, 170
//

for comments, 283
in XPath, 220

/* ... */ comments, 283
/% operator, 6, 189
` (backquote)

as escape character, for identifiers, 132
in case clauses, 186

^ (caret)
in identifiers, 132
in Pascal, 139
operator:

arithmetic, 5
precedence of, 134

^? operator, 279
^^ operator, 273–275, 278
^^^ operator, 278
' (single quote)

in symbols, 210
parsing, 283

" (double quote), 283

""", in regular expressions, 106
~ (tilde)

in identifiers, 132
operator:

in case clauses, 191
in parsers, 271–277, 279–280
unary, 133

~! operator, 279–280
~> operator, 274–275, 278
() (parentheses)

as shortcut for apply method, 8
as value of Unit , 14–15, 17
discarding, in parsers, 274
for annotations, 201
for continuations, 323, 335
for functions, 144–146, 151
for maps, 42
for tuples, 45, 253
in case clauses, 187, 190
in method declarations, 7, 50, 54
in regular expressions, 107
to access XML attributes, 216

[] (square brackets)
for methods in traits, 117
for type parameters, 232, 253

{} (braces)
for block expressions, 16–17
for existential types, 252
for function arguments, 145
for structural types, 250–251
in imports, 80
in package clauses, 77
in pattern matching, 195–196,

221
in REPL, 15
in XML literals, 218
Kernighan & Ritchie style for, 16

@ (at), 204
for XML attributes, 220
in case clauses, 192
in identifiers, 132

\ (backslash)
for nodes, 220–221
in identifiers, 132

\\ operator, 220–221

Index340



* (asterisk)
as wildcard in Java, 7, 79
in identifiers, 132
in parsers, 274
operator:

arithmetic, 5, 308–309
no infix notation for, 252
precedence of, 134

**

in Fortran, 139
in identifiers, 132

& (ampersand)
in identifiers, 132
operator:

arithmetic, 5
for sets, 162–164
precedence of, 134

&...; (XML), 215
&~ operator, 162–163
&#...; (XML), 216
# (number sign), 62

for type projections, 247–249, 253
in identifiers, 132

#:: operator, 173
#&& operator, 106
#< operator, 105–106
#> operator, 105
#>> operator, 105
#| operator, 105
#|| operator, 106
% (percent sign)

for XML attributes, 222
in identifiers, 132
operator:

arithmetic, 5
precedence of, 134

+ (plus sign)
in identifiers, 132
operator:

arithmetic, 5
for collections, 163–164
for maps, 43
for type parameters, 237
precedence of, 134
unary, 133

+: operator
for collections, 163–164
in case clauses, 191
right-associative, 135, 163

++ operator
arithmetic, 6
for collections, 163–164
for sets, 162–163

++: operator, 163–164
++= operator

for array buffers, 30
for collections, 163–164

++=: operator, 163–164
+= operator, 315

assignment, 133
for array buffers, 30, 36
for collections, 163–164, 314
for maps, 43

+=: operator, 163–164
< (left angle bracket)

in identifiers, 132
in XML literals, 214
operator:

and implicits, 310–311
precedence of, 134

<- operator, 18–19, 189
<: operator, 233, 235–237, 252,

259
<:< operator, 236, 312, 314
<!-- ... --> comments, 215
<? ... ?> (XML), 215
<?xml...?> (XML), 225
<~ operator, 274–275, 278
<% operator, 234
<%< operator, 236, 312–313
<< operator, 5
<= operator, 133
> (right angle bracket)

in identifiers, 132
operator, 134

>: operator, 233, 235
>= operator, 133
>> operator

arithmetic, 5
in parsers, 278

341Index



-= operator
for collections, 163–164
for maps, 43

--= operator, 163–164
-> operator

for maps, 41–42
precedence of, 134

= (equal sign)
in identifiers, 132
operator:

assignment, 133–134
precedence of, 134
with CPS annotations, 326

=:= operator, 236, 312–313
=/= operator, 134
== operator, 134, 210

for reference types, 96
=== operator, 134
=> operator

for continuations, 321–324
for functions, 151, 253–254
for self types, 124–125, 260
in case clauses, 184–188, 190–192,

194–195
| (vertical bar)

in identifiers, 132
operator:

arithmetic, 5
for sets, 162–163
in parsers, 270–286
precedence of, 134

√ (square root), 132
80 bit extended precision, 204

A
abstract keyword, 91, 113, 117
accept method, 279
act method, 290, 297–301

blocking calls inside, 295
running concurrently, 290

Actor trait, 290, 299
Actor companion object, 290
actors, 289–302

anonymous, 291
blocking, 292, 295–296, 302

calling methods on, 302
creating, 290–291
global, 293
linking, 300–301
references to, 293–294
sharing threads for, 296–299
starting, 290, 299
terminating, 299–301

addString method, 166, 173
aggregate method, 165, 173, 179
Akka project, 289
aliases, 62, 157, 249, 255
Annotation trait, 202
annotations, 199–211, 253

arguments of, 201–202
deprecated, 204
for compiler optimizations, 206–210
implementing, 202–203
in Java, 200–206
meta-annotations for, 203
order of, 200

Any class, 94, 96
AnyRef class, 94–95, 102, 313
AnyVal class, 94
Apache Commons Resolver project, 224
App trait, 68
append method, 35
appendAll method, 35
Application trait, 69
apply method, 8, 67–68, 106, 135–137, 157,

190, 195, 314–315
args property, 69
array buffers, 30–31

adding/removing elements of, 30
appending collections to, 30
converting to arrays, 31
displaying contents of, 34
empty, 30
largest/smallest elements in, 34
parallel implementations for, 178
sorting, 34
transforming, 32–33
traversing, 31–32

Array class, 29–30, 35, 235
Array companion object, 8, 188

Index342



ArrayBuffer class, 30–31, 156, 315
mutable, 159
serializing, 104
subclasses of, 36

ArrayList class (Java), 30, 37, 157
ArrayOps class, 35
arrays, 29–37

converting to array buffers, 31
displaying contents of, 34
fixed-length, 29–30
function call syntax for, 136
generic, 235
interoperating with Java, 37
invariance of, 238
largest/smallest elements in, 34
multidimensional, 37, 68
parallel implementations for, 178
pattern matching for, 187
ragged, 37
sorting, 34
transforming, 32–33
traversing, 18, 31–32
variable-length. See array buffers
vs. lists, 156

ArrayStoreException, 239
asAttrMap method, 217
ASCII characters, 132
asInstanceOf method, 87, 94, 186
asJavaCollection function, 176
asJavaConcurrentMap function, 176
asJavaDictionary function, 176
asJavaEnumeration function, 176
asJavaIterable function, 176
asJavaIterator function, 176
asScalaBuffer function, 176
asScalaConcurrentMap function, 176
asScalaIterator function, 176
asScalaSet function, 176
assert method, 209
AssertionError, 209
assignments, 16–17, 133–134

no chaining of, 17
precedence of, 134
right-associative, 135, 163
value of, 17

Atom class, 217–219

Attribute trait, 222
attributes (XML), 216–217

atoms in, 218
entity references in, 218
expressions in, 218–219
iterating over, 217
matching, 222
modifying, 222–223

automatic conversions. See implicits

B
backtracking, 279–280
balanced trees, 44

parallel implementations for, 178
bash shell, 105
bean properties, 55–56
@BeanDescription annotation, 206
@BeanDisplayName annotation, 206
@beanGetter annotation, 203
@BeanInfo annotation, 206
@BeanInfoSkip annotation, 206
@BeanProperty annotation, 55–56, 200, 205

generated methods for, 59
@beanSetter annotation, 203
BigDecimal class, 5–6
BigInt class, 5–7, 139
BigInt companion object, 7–8
BitSet class, 162
blocks, 16–17
BNF (Backus-Naur Form), 270
Boolean type, 4, 17
@BooleanBeanProperty annotation, 205
break method, 19
Breaks object, 19
Buffer class, 315
bufferAsJavaList function, 176
buffered method, 100
BufferedInputStream class (Java), 128
Byte type, 4, 17

arrays of, 102

C
C programming language, 184
C++ programming language

?: operator in, 14
arrays in, 30

343Index



C++ programming language (cont.)
assignments in, 17
construction order in, 94
exceptions in, 24
expressions in, 13–15
functions in, 20–21
implicit conversions in, 306
linked lists in, 160
loops in, 18, 32
methods in, 66, 88
multiple inheritance in, 111–112
namespaces in, 74
operators in, 134
protected fields in, 88
reading files in, 100
singleton objects in, 66
statements in, 13, 15–16
switch in, 207
virtual base classes in, 112
void in, 15, 17, 95

cake pattern, 256
case keyword, 184, 189

catch-all pattern for, 184–185
enclosed in braces, 195–196
followed by variable, 185
infix notation in, 191

case classes, 189–196
applicability of, 192–193
declaring, 190
default methods of, 137, 190, 193
extending other case classes, 193
for channels, 294–295
for messages from actors, 291–292
in parsers, 272, 275
modifying properties in, 190
sealed, 193–194
with variable fields, 193

case objects, 189–190
casts, 87–88
CatalogResolver class (Java), 224
catch statement, 25–26
CDATA markup, 219, 224
chaining

assignments, 17
auxiliary constructors, 59

method calls, 36
packages, 76–77

chainl1 method, 278
Channel class, 294–295
Char type, 4, 17, 281
character references, 216
character sets, 102
characters

common, in two strings, 5
in identifiers, 132, 283
reading, 17, 100–101
sequences of, 10
uppercase, 10

circular dependencies, 24, 125
class keyword, 49, 253
class files, 202
ClassCastException, 209
classes, 8, 49–62, 253

abstract, 91
abstract types in, 257
and primitive types, 4
annotated, 200
case. See case classes
combined with primary constructor, 60
concrete, 120
definitions of, 58

using traits in, 115
equality in, 95
extending, 67, 85–86

Java classes, 89
only one superclass, 119

granting access to, 55–56
immutable, 6
implementing, 231
importing members of, 70, 79
inheritance hierarchy of, 94–95
interoperating with Java, 52
linearization of, 121
mutable, 193
names of, 131–132
nested, 60–62, 247
properties of, 51, 53
serializable, 104, 204
type aliases in, 249
type parameters in, 232

Index344



visibility of, 50
vs. singletons, 7
vs. traits, 122

ClassfileAnnotation trait, 202
classOf method, 87
Cloneable interface (Java), 114, 204
@cloneable annotation, 204
close method, 100
closures, 148
collect method, 165, 168, 173, 196
collectionAsScalaIterable function, 176
collections, 155–179

adding/removing elements of, 163–164
applying functions to all elements of,

147, 165–168
combining, 171–172
companion objects of, 315
constructing instances of, 157
converting to specific type, 166
filtering, 165
folding, 165, 169–171
hierarchy of, 35, 156–157
immutable, 157–158
interoperating with Java, 175–177
methods for, 164–167
mutable, 157–158, 164, 177
ordered, 156, 163
parallel, 178–179
reducing, 165, 168–169
scanning, 165, 171
serializing, 104
threadsafe, 177
traits for, 156–157
traversing, 18, 32, 156, 206–207
unevaluated, 174
unordered, 156, 163–164
vs. iterators, 173

com.sun.org.apache.xml.internal.resolver.tools

package, 224
combinators, 277–280
command-line arguments, 69
comma-separated lists, 277
comments

in lexical analysis, 270
in XML, 215
parsing, 224, 282–283

companion objects, 7, 62, 66–67, 136, 157,
248, 310

implicits in, 307
Comparable interface (Java), 36, 233–234, 310
Comparator class (Java), 210–211
compareTo method, 233
compiler

CPS transformations in, 332
implicits in, 309, 313–314
internal types in, 254
optimizations in, 206–210
Scala annotations in, 200
transforming continuations in, 325

compiler plugin, 200
Component class (Java), 127
compound types, 250–251, 253
comprehensions, 20
computation with a hole, 321–324, 328
concurrency, 178
ConcurrentHashMap class (Java), 177
ConcurrentSkipListMap class (Java), 177
console

input from, 17, 101
printing to, 17, 103

Console class, 103
ConsoleLogger trait, 115
constants. See values
ConstructingParser class, 224–225
constructors

auxiliary, 56–57, 88
chaining, 59
eliminating, 58

order of, 92–94
parameterless, 58, 122
parameters of, 55, 57–60

annotated, 203
implicit, 235

primary, 56–60, 88
annotated, 201
private, 60

superclass, 88–89
vals in, 93

Container class (Java), 127
contains method, 42, 162, 166, 173
containsSlice method, 166, 173
context bounds, 234–235

345Index



continuations, 319–336
boundaries of, 320
capturing, 320–321, 326, 330
in web applications, 329–332
invoking, 320–323
plugin for, 321

control abstractions, 151–152
control flow

combinators for, 298
inversion of, 329
using continuations for, 319–336

ControlContext class, 332–336
copy method, 193, 222

of case classes, 190
copyToArray method, 36, 166, 173
copyToBuffer method, 166, 173
corresponds method, 150, 237
count method, 10, 36, 165, 173
CPS (continuation-passing style)

transformations, 325–327, 332–336
code generated by, 334
of nexted control contexts, 334–336

@cps annotation, 325–327, 330
@cpsParam annotation, 325
Curry, Haskell Brooks, 149

D
deadlocks, 289, 295, 302
debugging

reading from strings for, 102
reporting types for, 34

def keyword, 20
abstract, 89
in parsers, 280
overriding, 89–90
parameterless, 89
return value of, 280

default statement, 184
definitions, 19–20
DelayedInit trait, 69
Delimiters type, 309
dependency injections, 255–257
@deprecated annotation, 203, 210
@deprecatedName annotation, 202, 210
destructuring, 188, 191
diamond inheritance problem, 112–113

dictionaryAsScalaMap function, 176
diff method, 162, 167, 173
directories

and packages, 74
naming, 11
printing, 104, 326
traversing, 103–104

Directory class, 103
do loop, 18
docElem method, 224
DocType class, 225
domain-specific languages, 131, 269
Double type, 4, 17
DoubleLinkedList class (Java), 159, 161
drop method, 165, 173
dropRight method, 165
dropWhile method, 165, 173
DTDs (Document Type Definitions),

224–225
duck typing, 250
dynamically typed languages, 250

E
early definitions, 93, 122–123
EBNF (Extended Backus-Naur Form),

271–272
Eiffel programming language, 53
Either type, 266
elem keyword, 160–161
Elem type, 214, 222, 227, 281
elements (XML), 214

attributes of. See attributes (XML)
child, 221–222
empty, 226
matching, 220
modifying, 222–223

@elidable annotation, 208–209
empty keyword, 161
Empty class, 240
endsWith method, 166, 173
entity references, 215

in attributes, 216, 218
resolving, 225

EntityRef class, 216
Enumeration class, 69–71
enumerationAsScalaIterator function, 176

Index346



enumerations, 69–71
simulating, 194

eq method, 95
equals method, 95–96, 190, 193

overriding, 96
parameter type of, 96

err method, 279
error messages, 86

explicit, 285
type projections in, 249

escape hatch, 132
event handlers, 297
eventloop method, 299
evidence objects, 313
Exception trait, 254
exceptionHandler method, 300
exceptions, 24–26

catching, 25
checking at compile time, 24
in Java, 204–205

exists method, 165, 173
exit method, 299–300
expressions

annotated, 201
conditional, 14–15
traversing values of, 18
type of, 14
vs. statements, 13

extends keyword, 85, 93, 113–114
extractors, 107, 136–138, 188

F
failure method, 279
fall-through problem, 184
family polymorphism, 259–262
@field annotation, 203
fields

abstract, 91–92, 119–120, 122
accessing uninitialized, 93
annotated, 200
comparing, 193
concrete, 92, 118–119
copying, 193
for primary constructor parameters, 55,

59
getter/setter methods for, 51, 55–56, 59

hash codes of, 96, 193
immutable, 59
object-private, 54–55, 59
overriding, 89–90, 119–120, 122
printing, 193
private, 53–54
private final, 53
protected, 88
public, 50
static, 65
transient, 203
volatile, 203

File class, 103
file2RichFile method, 308
FileInputStream class (Java), 102
files

and packages, 74
appending, 105
binary, 102
naming, 11
processing, 99–106
reading, 100–101, 320
redirecting input/output for, 105
saving, 225–226
writing, 102–103

Files class (Java), 103–104
FileVisitor interface (Java), 103
filter method, 33, 147, 165, 173, 195
final keyword, 53
finally statement, 25–26
findAllIn, findFirstIn methods, 106
findPrefixOf method, 107
flatMap method, 165, 167–168, 173, 333,

335–336
Float type, 4, 17
floating-point calculations, 204
fluent interfaces, 246–247
fold method, 165, 173, 179
foldLeft method, 152–153, 165, 169–170, 173,

179, 239
foldRight method, 165, 170, 173, 179
for loop, 18–20

annotated as CPS, 327
enhanced (Java), 32
for arrays, 31–33
for maps, 43–44

347Index



for loop (cont.)
for regex groups, 107
parallel implementations for, 178
pattern matching in, 189
range-based (C++), 32
regular expressions in, 106
with Option type, 195

forall method, 165, 173
force method, 175
foreach method, 147, 165, 168, 173, 195, 327
format method, 102
Fortran programming language, 139
Fraction class, 136–137
Fraction companion object, 307
fraction2Double method, 308
FractionConversions companion object, 307
fragile base class problem, 86
French delimiters, 310
fromString method, 102
fromURL method, 102
functional programming languages, 143
functions, 20–21, 143–152, 253

anonymous, 21, 144–146, 152
as method parameters, 10, 144
binary, 147–148, 168
calling, 7, 144
curried, 149–151, 309
defining, 20
exiting immediately, 21
from methods, 254
higher-order, 145–148
implementing, 231
importing, 7
left-recursive, 276
mapping, 167–168
names of, 10, 131–132, 306
nested, 19
parameterless, 150–151, 320
parameters of, 20, 145–146

call-by-name, 151
default, 21
named, 21
only one, 146, 238
type, 232
type deduction in, 146
variable, 22–23

partial, 168, 195–196, 279, 292, 297
passing to another function, 144–146,

149
recursive, 20–22
return type of, 4, 20, 23
return value of, 150–152, 320
scope of, 148
storing in variables, 143–144
syntax of, 135–136
vs. variables, in parsers, 279

G
generators, 19–20
GenIterable trait, 178
GenMap trait, 178
GenSeq trait, 178
GenSet trait, 178
GenTraversable trait, 196
get method, 42, 194, 216
getLines method, 100, 174
getOrElse method, 42, 195, 217
getResponse method, 329–331
@getter annotation, 203
getXxx methods, 52, 55, 205
grammars, 270–271

left-recursive, 280
Group type, 219
grouped method, 166, 172–173
guard method, 279
guards, 19–20, 32, 185

for pattern matching, 222
in for statements, 189
variables in, 185

H
hash codes, 94, 96
hash maps, 293
hash sets, 161
hash tables, 41, 44

parallel implementations for, 178
hashCode method, 96, 161, 190, 193

overriding, 96
Haskell programming language, 21
hasNext method, 118, 173
head method, 100, 159–160, 165
headOption method, 165

Index348



Hindley-Milner algorithm, 21
HTTP (Hypertext Transfer Protocol), 102,

269

I
id method, 70
ident method, 284
identifiers, 131–132, 283
identity functions, 313
IEEE double values, 204
if/else expression, 14–15, 25
implements keyword, 113
implicit keyword, 10, 306, 309–311
implicit conversions, 10, 36–37, 131, 149,

305–316
adapting functions with, 103
ambiguous, 308–309
for parsers, 282
for strings to ProcessBuilder objects, 105
for type parameters, 234
importing, 307–308, 312
multiple, 308
naming, 306
rules for, 308–309
unwanted, 175, 306–307
uses of, 306–307

implicit parameters, 235, 265, 309–316
not available, 210, 313
of common types, 310

implicit values, 234–235
implicitly method, 311–313
@implicitNotFound annotation, 210, 313–314
:implicits in REPL, 307
import statement, 70, 74, 79–81

implicit, 80–81, 104
location of, 80
overriding, 81
selectors for, 80
wildcards in, 7, 79–80

inching forward, 333
IndexedSeq trait, 156, 315
IndexedSeq companion object, 315
indexOf method, 166, 173
indexOfSlice method, 166, 173
indexWhere method, 166, 173
infix notation, 132–133, 251–253

in case clauses, 191
in math, 251
with anonymous functions, 145

inheritance hierarchy, 94–95
init method, 165
@inline annotation, 208
InputChannel trait, 294
InputStream class (Java), 223
Int type, 4, 17, 234, 236

immutability of, 6
no null value in, 95

int2Fraction method, 307–308
Integer class (Java), 209
intersect method, 5, 162, 167, 173
intersection types. See compound types
into combinator, 277–278
inversion of control problem, 297
isDefinedAt method, 195
isEmpty method, 165, 173
isInstanceOf method, 87, 94, 186
isSet method, 296
istream::peek function (C++), 100
Iterable trait, 35, 156, 239, 263–265

and parallel implementations, 178
important methods of, 164–167, 173

iterableAsScalaIterable function, 176
iterator method, 172
Iterator trait, 118, 156, 173
iterators, 100, 172–173

from iterations, 337
from recursive visits, 326–329, 334–336
mutable, 173
next method of, 329
turning into arrays, 106
vs. collections, 173
weakly consistent, 177

J
Java programming language

?: operator in, 14
annotations in, 200–206
arrays in, 30, 37, 157, 239
assertions in, 209
assignments in, 17
asynchronous channels in, 302
casts in, 87

349Index



Java programming language (cont.)
checked exceptions in, 205
classes in, 85–86

hierarchy of, 61
serializable, 104
vs. Scala, 8

closures in, 148
construction order in, 94
dependencies in, 256
event handling in, 259
exceptions in, 24, 204
expressions in, 13–15
fields in:

protected, 88
public, 50

identifiers in, 131–132
imports in, 7
interfaces in, 111–114, 125–126
interoperating with Scala:

arrays, 37
classes, 52, 89, 200, 204
collections, 175–177
fields, 203–204
maps, 44–45, 189
methods, 204–205
traits, 125–126

linked lists in, 157, 160
loops in, 18, 32
maps in, 156
methods in, 66, 86, 88

abstract, 91
overriding, 93
static, 7, 20–21
with variable arguments, 23

missing values in, 236
modifiers in, 203–204
no multiple inheritance in, 111
no variance in, 211
null value in, 95
objects in, 161
operators in, 134
packages in, 74, 76, 78
primitive types in, 30, 94
reading files in, 100–102
SAM types in, 149
singleton objects in, 66

statements in, 13, 15–16
superclass constructors in, 89
switch in, 207
synchronized in, 95
toString in, 34
traversing directories in, 103–104
type checks in, 87
void in, 15, 17, 95
wildcards in, 79, 241, 252

Java AWT library, 127
java.io.InputStream class, 223
java.io.Reader class, 223
java.io.Writer class, 225
java.lang package, 80–81
java.lang.Integer class, 209
java.lang.ProcessBuilder class, 37, 105–106
java.lang.String class, 5, 234
java.lang.Throwable class, 24
java.math.BigDecimal class, 5
java.math.BigInteger class, 5
java.nio.file.Files class, 103–104
java.util package, 176
java.util.Comparator class, 210–211
java.util.concurrent package, 177
java.util.Properties class, 44, 189
java.util.Scanner class, 46, 101
java.util.TreeSet class, 162
JavaBeans, 55–56, 127, 205–206
JavaConversions class, 37, 44, 175–177
JavaEE, 200
JavaScript, 219

closures in, 148
duck typing in, 250

JavaTokenParsers trait, 282–283
JComponent class (Swing), 127
JContainer class (Swing), 127
JDK (Java Development Kit), 196, 224
JSON (JavaScript Object Notation), 269
jump tables, 207
JUnit, 200–201
JVM (Java Virtual Machine)

continuation support in, 332
generic types in, 235
inlining in, 208
stack in, 206, 325
transient/volatile fields in, 203

Index350



K
Kernighan & Ritchie brace style, 16
keySet method, 44

L
last method, 165
lastIndexOf method, 166, 173
lastIndexOfSlice method, 166, 173
lastOption method, 165
lazy keyword, 23–24, 123
length method, 165, 173
lexers, 270
lexical analysis, 270
li (XML), 217–218
link method, 300–301
linked hash sets, 162
LinkedHashMap class, 44
LinkedList class (Java), 157, 159–161
List class, 191, 263, 272

immutable, 157–158
implemented with case classes, 193

List interface (Java), 157
lists, 159–160

adding/removing elements of, 163–164
constructing, 135, 159
destructuring, 160, 191
empty, 95
heterogeneous, 196
immutable, 173, 240
linked, 156
mutable, 160–161
order of elements in, 161
pattern matching for, 187–188
traversing, 160
vs. arrays, 156

literals. See XML literals
loadFile method, 223
locks, 289
log method, 279
log messages

adding timestamp to, 116
printing, 279
truncating, 116
types of, 118

Logged trait, 115–116
LoggedException trait, 125

Logger trait, 118
Long type, 4, 17
loop combinator, 298
loops, 18–20

breaking out of, 19
for collections, 18
infinite, 298–299
variables within, 19
vs. folding, 170–171

loopWhile combinator, 298

M
mailboxes, 292–293, 296–299, 301–302
main method, 68
makeURL method, 218
Manifest object, 235, 265
map method, 33, 147, 165, 167–168, 173, 195,

263–264, 333–335
Map trait, 41–42, 156, 194

immutable, 157
mapAsJavaMap function, 176
mapAsScalaMap function, 44, 176
maps, 41–46

blank, 42
constructing, 41–42

from collection of pairs, 46
function call syntax for, 136
immutable, 42–43
interoperating with Java, 44–45
iterating over, 43–44
keys of:

checking, 42
removing, 43
visiting in insertion order, 44

mutable, 42–43
reversing, 44
sorted, 44
traversing, 189
values of, 42–43

match expression, 184–188, 190–192,
194–195, 207–208, 237

MatchError, 184
mathematical functions, 7, 10
max method, 34, 36, 165, 173
maximum munch rule, 284
MessageFormat.format method (Java), 23

351Index



messages
asynchronous, 291–292
case classes for, 291–292
contextual data in, 302
receiving, 292–293
returning to sender, 294–295
sending, 293–294
serializing, 293
synchronous, 295–296, 302

MetaData classtype, 216–217, 222
method types (in compiler), 254
methods

abstract, 89, 91–92, 113, 117, 125
abundance of, 8, 10
accessor, 50
annotated, 200
calling, 2, 4, 7, 50–51, 117
chained, 246
co-/contravariant, 313
concrete, 125
declaring, 50
eliding, 208–209
executed lazily, 174–175
final, 86, 96, 207
for primary constructor parameters, 59
getter, 51–54, 92, 200, 205
in superclass, 86–87
inlining, 208
modifiers for, 78–79
mutator, 50
names of, 6

misspelled, 86
overriding, 86–87, 89–90, 117
parameterless, 7, 50, 89
parameters of, 86, 232, 239, 246

two, 6
type, 232
using functions for, 10, 144

private, 53, 207
protected, 88, 299
public, 51
return type of, 239, 246, 326, 336
return value of, 232
setter, 51–54, 92, 200, 205
static, 65, 125
turning into functions, 144, 254

used under certain conditions, 236
variable-argument, 23, 205
with shift , 325–326

Meyer, Bertrand, 53
min method, 7, 34, 165, 173
mkString method, 34, 166, 173
ML programming language, 21
monad laws, 333
mulBy function, 145, 148
multiple inheritance, 111–113
mutableMapAsJavaMap function, 176
mutableSeqAsJavaList function, 176
mutableSetAsJavaSet function, 176

N
NamespaceBinding class, 226
namespaces, 226–227
@native annotation, 204
negation operator, 10
new keyword, 61

omitting, 136, 190, 192–193
newline character

in long statements, 16
in printed values, 17
inside loops, 20

next method, 118, 160–161, 173, 329
Nil list, 95, 159–160, 210, 240
Node type, 214–216, 240
node sequences, 214

binding variables to, 221
descendants of, 220
grouping, 219
immutable, 216, 222
traversing, 214
turning into strings, 216

NodeBuffer class, 215–216
NodeSeq type, 214–216, 220–221
@noinline annotation, 208
None object, 194–195, 272–273
nonterminal symbols, 271
not method, 279
Nothing type, 25, 95, 237, 240
notify method, 95
notifyAll method, 95
null value, 95, 236
Null type, 95, 223

Index352



NumberFormatException, 101
numbers

classes for, 10
converting:

between numeric types, 5, 8
to arrays, 101

greatest common divisor of,
139

in identifiers, 283
invoking methods on, 4
parsing, 278, 283
random, 7
ranges of, 10
reading, 17, 101
sums of, 34
writing, 102

numericLit method, 284

O
object keyword, 65–70, 247
Object class, 94–95
objects, 65–70

adding traits to, 115
cloneable, 204
compound, 193
constructing, 8, 50, 66, 115
default methods for, 161
equality of, 94–96
extending class or trait, 67
extracting values from, 188
importing members of, 70, 79
nested, 192
nested classes in, 60–62, 247
no type parameters for, 240
of a given class, 87–88
pattern matching for, 186
remote, 204
scope of, 248
serializable, 104, 250
type aliases in, 249

ofDim method, 37
operators, 131–138

arithmetic, 5–6
assignment, 133–135
associativity of, 135, 179
binary, 133–135

for adding/removing elements, 162–164
infix, 132–134
parsing, 284
postfix, 134
precedence of, 134–135, 252, 273
unary, 133

opt method, 271–272
Option class, 42, 106, 136, 138, 165, 194–195,

217, 236, 272–273
Ordered trait, 34, 36, 234, 310–312
Ordering type, 36, 311–312
orNull method, 236
OSGi (Open Services Gateway initiative

framework), 256
OutOfMemoryError, 174
OutputChannel trait, 294
override keyword, 86–87, 89–90, 113, 117

omitted, 91–92
@Overrides annotation, 86

P
package objects, 78
packages, 74–81

adding items to, 74
chained, 76–77
defined in multiple files, 74
importing, 79–81

always, 80–81, 104
selected members of, 80

modifiers for, 78–79, 88
naming, 76–77, 81
nested, 75–77
scope of, 248
top-of-file notation for, 77

packrat parsers, 280–281
PackratParsers trait, 280
PackratReader class, 281
padTo method, 36, 166, 173
Pair class, 239, 241
par method, 178
@param annotation, 203
parameters

annotated, 200
curried, 237
deprecated, 210
named, 190

353Index



ParIterable trait, 178
ParMap trait, 178
parse method, 272
parse trees, 274–275
parseAll method, 272, 279, 281, 284–285
ParSeq trait, 178
parsers, 269–286

backtracking in, 279–280
entity map of, 225
error handling in, 285–286
numbers in, 278
output of, 273–274
regex, 282–283, 286
strings in, 278
whitespace in, 282

Parsers trait, 271, 281–286
ParSet trait, 178
PartialFunction class, 195–196, 292
partition method, 46, 165, 173
Pascal programming language, 139
patch method, 10
paths, 248–249
pattern matching, 183–196

and +: operator, 164
by type, 186–187
classes for. See case classes
extractors in, 136
failed, 136
for arrays, 187
for lists, 160, 187–188
for maps, 43
for objects, 186
for tuples, 45, 187–188
guards in, 185
in actors, 291
in XML, 221–222
jump tables for, 207
nested, 192
not exhaustive, 210
variables in, 185–186
vs. type checks and casts, 87–88
with Option type, 195

PCData type, 219
permutations method, 167, 173
phrase method, 279
piping, 105

polymorphism, 192
Positional trait, 279, 286
positioned method, 279, 286
pow method, 7, 139
Predef object, 87, 157, 209

always imported, 80–81
implicits in, 310–313

prefixLength method, 166, 173
PrettyPrinter class, 226
prev method, 161
print method, 17, 101
printf method, 17, 102–103
println method, 17
PrintStream.printf method (Java), 23
PrintWriter class (Java), 102
PriorityQueue class, 159
private keyword, 51–62, 78
probablePrime method, 7
procedures, 23
process method, 330–331
Process object, 106
process control, 105–106
ProcessBuilder class (Java), 37

constructing, 106
implicit conversions to, 105

processing instructions, 215
product method, 165, 173
programs

concurrent, 178
displaying elapsed time for, 69
implicit imports in, 80–81, 104
piping, 105
readability of, 6
self-documenting, 262

properties, 51
in Java. See bean properties
read-only, 53
write-only, 54

Properties class (Java), 44, 189
propertiesAsScalaMap function, 176
property change listener, 127
PropertyChangeSupport class (Java), 127
protected keyword, 78, 88
public keyword, 50, 78
PushbackInputStreamReader class (Java), 100
Python, 148

Index354



Q
Queue class, 158–159
quickSort method, 34

R
r method, 106
race conditions, 289, 293–294
Random object, 7
RandomAccess interface (Java), 157
Range class, 4, 10, 263–264, 315

immutable, 158
traversing, 18

raw string syntax, 106
react method, 294, 297–299, 302
reactWithin method, 296
read method, 308
readBoolean method, 17
readByte method, 17
readChar method, 17
readDouble method, 17, 101
Reader class (Java), 223
readFloat method, 17
readInt method, 17, 101
readLine method, 17
readLong method, 17, 101
readShort method, 17
receive method, 292–295
receiveWithin method, 296
recursions, 158

for lists, 160
infinite, 298
left, 276–277
tail, 206–207
turning into iterations, 326–329, 334–336

red-black trees, 162
reduce method, 165, 173, 179
reduceLeft method, 147, 165, 168, 173, 179
reduceRight method, 165, 169, 173, 179
reference types

== operator for, 96
assigning null to, 95

reflective calls, 250
Regex class, 106
RegexParsers trait, 271, 281–283, 286
regular expressions, 106–107

for extractors, 188

grouping, 107
in parsers, 282–283
matching tokens against, 271
raw string syntax in, 106
return value of, 272

Remote interface (Java), 204
@remote annotation, 204
rep method, 271–272, 277–278
rep1 method, 278
rep1sep method, 278
REPL (read-eval-print loop), 2–3

braces in, 15
implicits in, 307, 313
paste mode in, 15, 67
types in, 144, 249

replaceAllIn method, 107
replaceFirstIn method, 107
reply method, 295
repN method, 278
repsep method, 278
reset method, 320–336

value of, 323
with type parameters, 323–325

restart method, 301
result method, 207
return keyword, 21, 152
reverse method, 167, 173
RewriteRule class, 223
rich interfaces, 118
RichChar class, 5
RichDouble class, 5, 10
RichFile class, 306–307
RichInt class, 5, 10, 18, 31, 234
RichString class, 234
_root_ in package names, 76–77
Ruby programming language

closures in, 148
duck typing in, 250

RuleTransformer class, 223
run method (Java), 290
Runnable interface (Java), 290

S
SAM (single abstract method) conversions,

149
save method, 225

355Index



SAX parser, 224
scala package, 157

always imported, 76, 80–81, 104
Scala programming language

embedded languages in, 131, 269
interoperating with:

Java, 37, 44–45, 52, 89, 125–126,
175–177, 189, 200–206

shell programs, 105
interpreter of, 1–3
older versions of, 69, 103

scala/bin directory, 1
scala.collection package, 157, 176
scala.collection.JavaConversions package, 189
scala.math package, 7, 10
scala.sys.process package, 105
scala.tools.nsc.io package, 103
scala.util package, 7
Scaladoc, 5, 8–11, 35–36, 206
ScalaObject interface, 95
scanLeft method, 171
Scanner class (Java), 46, 101
scanRight method, 171
sealed keyword, 193–194
segmentLength method, 166, 173
self types, 62, 124–125

dependency injections in, 256–257
no automatic inheritance for, 255
structural types in, 125
typesafe, 260
vs. traits with supertypes, 125

Seq trait, 22, 35, 156, 237
important methods of, 166

Seq[Char] class, 10
Seq[Node] class, 214, 216
seqAsJavaList function, 176
sequences

adding/removing elements of, 164
comparing, 150, 237
extracting values from, 138–139
filtering, 147
immutable, 158–159
integer, 158
mutable, 159
of characters, 10
reversing, 167

sorting, 148, 167
with fast random access, 158

ser method, 178
Serializable trait, 104, 204
Serializable interface (Java), 114
@serializable annotation, 204
serialization, 104
@SerialVersionUID annotation, 104, 204
Set trait, 156–157
setAsJavaSet function, 176
sets, 161–162

adding/removing elements of, 163–164
difference of, 162–163
finding elements in, 161
hash. See hash sets
intersection of, 162–163
order of elements in, 161
sorted. See sorted sets
union of, 162–163

@setter annotation, 203
setXxx methods, 52, 55, 205
shared states, 289, 301
shell scripts, 105–106
shift method, 320–335

with type parameters, 323–325
Short type, 4, 17
singleton objects, 7, 65–66, 247

case objects for, 189
vs. classes, 7

singleton types, 246–247, 249, 253
slice method, 165, 173
sliding method, 166, 172–173
SmallTalk programming language, 54
Some class, 194–195, 272–273
sortBy method, 167, 173
sorted method, 34, 167, 173
sorted sets, 162
SortedMap trait, 156
SortedSet trait, 156
sortWith method, 148, 167, 173
Source object, 100–102
span method, 165, 173
@specialized annotation, 209–210
splitAt method, 165, 173
Spring framework, 256
sqrt method, 7, 308

Index356



Stack class, 158–159
stack overflow, 206
standard input, 102
StandardTokenParsers class, 283
start method, 290, 299
start symbol, 271–272
startsWith method, 166, 173
statements

and line breaks, 16
terminating, 15–16
vs. expressions, 13

StaticAnnotation trait, 202
stdin method, 102
StdLexical trait, 284–285
StdTokenParsers trait, 281, 284
StdTokens trait, 283
Stream class, 158
streams, 173–174
@strictfp annotation, 203–204
String class, 102, 106
stringLit method, 284
StringOps class, 5, 10, 46
strings, 5

characters in:
common, 5
distinct, 7
uppercase, 10

classes for, 10
converting:

from any objects, 5
to numbers, 8, 101
to ProcessBuilder objects, 105

parsing, 278, 283
traversing, 18
vs. symbols, 210

structural types, 91, 125, 250
adding to compound types, 251

subclasses
anonymous, 91
concrete, 92
equality in, 96
implementing abstract methods in, 113

subsetOf method, 162
success method, 279
sum method, 34, 165, 173
super keyword, 86–87, 117

super keyword (Java), 89
superclasses, 123–124

abstract fields in, 92
constructing, 88–89
extending, 126
methods of:

abstract, 91
new, 86
overriding, 90

no multiple inheritance of, 111, 114, 119
scope of, 248
sealed, 193–194

supertypes, 14, 36
supervisors, 300–302
@suspendable annotation, 325
Swing toolkit, 127–128
switch statement, 15, 184
@switch annotation, 207–208
Symbol class, 202
symbols, 210
synchronized method, 95
SynchronizedBuffer trait, 177
SynchronizedMap trait, 177
SynchronizedPriorityQueue trait, 177
SynchronizedQueue trait, 177
SynchronizedSet trait, 177
SynchronizedStack trait, 177
syntactic sugar, 241, 252

T
tab completion, 2
tail method, 159–160, 165
TailCalls object, 207
TailRec object, 207
@tailrec annotation, 207
take method, 165, 173
takeRight method, 165
takeWhile method, 165, 173
@Test annotation, 201
text method, 216
Text class, 217

pattern matching for, 221
this keyword, 36, 53, 59, 88, 124–125, 246,

260
aliases for, 62, 255
scope of, 248

357Index



threads
blocking, 331
sharing, 296–299, 302

throw expression, 25
Throwable class (Java), 24
@throws annotation, 204
TIMEOUT object, 296
to method, 5, 18, 159
toArray method, 31, 100, 166, 173
toBuffer method, 31, 100
toChar method, 5
toDouble method, 5, 101
toIndexedSeq method, 166, 173
toInt method, 5, 101
toIterable method, 166, 173
token method, 284–285
Token type, 281
tokens, 270

discarding, 274–275
matching against regexs, 271

Tokens trait, 283
toList method, 166, 173
toMap method, 46, 166, 173
toSeq method, 166, 173
toSet method, 166, 173
toStream method, 166, 173
toString method, 5, 34, 70, 190, 193,

217
trait keyword, 113, 253
traits, 113–126, 253

abstract types in, 257
adding to objects, 115
construction order of, 116–117,

120–122
dependencies in, 125, 256–257
extending, 67

classes, 123–124
other traits, 115–119, 122–123
superclass, 126

fields in:
abstract, 119–120, 122
concrete, 118–119

for collections, 156–157
for rich interfaces, 118
implementing, 114, 235
layered, 116–117

methods in, 114–115, 125
overriding, 117
unimplemented, 113

parameterless constructors of, 122–123
type parameters in, 232
vs. classes, 122
vs. Java interfaces, 111–114, 125
vs. structural types, 250

trampolining, 207
transform method, 223
@transient annotation, 203
Traversable trait, 35
TraversableOnce trait, 35
TreeMap class (Java), 44
TreeSet class (Java), 162
trees, 326–329
trimEnd method, 30
try statement, 25–26

exceptions in, 152
tuples, 41, 45–46, 253

accessing components of, 45
converting to maps, 46
pattern matching for, 187–188
zipping, 46

type keyword, 246–247, 249, 253
type constraints, 312–313
type constructors, 263–265
type parameters, 91, 231–241, 253, 258, 310

annotated, 201
bounds for, 232–235
context bounds of, 311–312
implicit conversions for, 234
infix notation for, 251–252
not possible for objects, 240
structural, 250
with continuations, 323–325

type projections, 62, 247–249, 253
in forSome blocks, 253

types, 4–5
abstract, 257, 281

bounds for, 259
made concrete in subclass, 249, 257

aliases for, 157
annotated, 201
anonymous, 92
checking, 87–88

Index358



constraints of, 236–237
converting between, 5
enriched, 306–307
equality of, 236
errors in, 239
existential, 241
generic, 235, 241
implementing multiple traits, 235
inference of, 236–237
invariant, 241
matching by, 186–187
naming, 262
primitive, 4, 30, 209
subtypes of, 236
variance of, 237–241
view-convertible, 236
wrapper, 4

U
ul (XML), 218
unapply method, 136–138, 188, 190–191
unapplySeq method, 138–139, 188
unary_ methods, 133
UncaughtException, 300
@unchecked annotation, 210
@uncheckedVariance annotation, 210–211
Unicode characters, 132
uniform access principle, 53
uniform creation principle, 157
uniform return type principle, 167
union method, 162
Unit class, 23, 94–95, 320, 323, 326, 335–336

value of, 14–15, 17
Unparsed type, 219
until method, 18, 31, 151–152, 159
update method, 135–136
URIs (Uniform Resource Identifiers), 226
URLs (Uniform Resource Locators)

loading files from, 223
reading from, 102
redirecting input from, 106

V
val fields, 3

declarations of, 3–4

early definitions of, 93
final, 93
generated methods for, 53, 56,

59
in forSome blocks, 253
in parsers, 280
initializing, 3, 16, 23–24
lazy, 23–24, 93, 123, 280
overriding, 89–90, 92
private, 56
scope of, 248
specifying type of, 3
storing functions in, 143–144

Value method, 69–70
value classes, 193
valueAtOneQuarter method, 146
values

binding to variables, 192
naming, 186
printing, 17

values method, 44
var fields, 3

annotated, 200
declarations of, 3–4

extractors in, 136
pattern matching in, 188–189

generated methods for, 56, 59
initializing, 3
no path elements in, 249
overriding, 90
private, 56
specifying type of, 4, 232
updating, 43
vs. function calls, in parsers, 279

@varargs annotation, 205
variables

binding to values, 192
in case clauses, 185
naming, 131–132, 186

vector type (C++), 30
Vector class, 158
view method, 174–175
view bounds, 234–235
void keyword (C++, Java), 15, 17, 95
@volatile annotation, 203

359Index



W
wait method, 95
walkFileTree method (Java), 103–104
web applications, 329–332
while loop, 18, 151

annotated as CPS, 327
whitespace

in lexical analysis, 270
parsing, 224, 282–283

wildcards
for XML elements, 220
in catch statements, 25
in imports, 7, 79–80
in Java, 79, 241, 252

with keyword, 93, 114–115, 235, 250–251,
253

wrapper types, 4
Writer class (Java), 225

X
-Xcheckinit compiler flag, 93
-Xelide-below compiler flag, 208–209
XHTML (Extensible Hypertext Markup

Language), 219
XhtmlParser class, 225
XML (Extensible Markup Language),

213–227
attributes in, 216–219, 222–223
character references in, 216
comments in, 215

elements in, 222–223, 226
entity references in, 215–216, 225
including non-XML text into,

219
loading, 223
malformed, 219
namespaces in, 226–227
nodes in, 214–216
processing instructions in, 215
saving, 217, 225–226
self-closing tags in, 226
transforming, 223

XML declarations, 225
XML literals, 214

braces in, 218
embedded expressions in, 217–218
entity references in, 216
in pattern matching, 221–222

XPath (XML Path language), 220–221
-Xprint compiler flag, 309, 334

Y
yield keyword

as Java method, 132
in loops, 20, 32, 178

Z
zip method, 46, 165–173
zipAll method, 165, 172–173
zipWithIndex method, 165, 172–173

Index360



Classes

class Point(val x: Double, val y: Double) {
  // Primary constructor defines and initializes fields: new Point(3, 4)
  // val or var in class or primary constructor defines property: p.x
  this() { this(0, 0) } // Auxiliary constructor
  def distance(other: Point) = { // Method
    val dx = x - other.x; val dy = y - other.y
    math.sqrt(dx * dx + dy * dy) 
  }
}
object Point { // Companion object
  def distance(a: Double, b: Double) = math.sqrt(a * a + b * b) // Like Java static method
  val origin = new Point(0, 0) // Like Java static field
}

Inheritance

class Employee(name: String) extends Person(name) {
  // Call primary constructor of superclass
  var salary = 0.0
  override def toString = super.toString + "[salary=" + salary + "]"
    // Use override when overriding a method
}

if (p.isInstanceOf[Employee]) { // Like Java instanceof
  val e = p.asInstanceOf[Employee]; ... } // Like Java cast (Employee)
if (p.getClass == classOf[Employee]) { ... } // Like Java Employee.class

Traits

trait Logger { // Traits can’t have constructor parameters
  def log(msg: String) // Abstract method
  def info(msg: String) = log("INFO: " + msg) // Can have concrete methods
}
class App extends Logger with Auth { ... } // Mix in any number of traits
trait TimestampLogger extends Logger {
  abstract override def log(msg: String) { // Still abstract
    super.log(new Date() + " " + msg) }
}
object App extends ConsoleLogger with TimestampLogger
  // App.log("Hi") calls log of last trait; super.log calls preceding trait

Imports

import java.awt._ // _ is wildcard, like * in Java
import java.awt.Color._ // RED is java.awt.Color.RED. Like Java import static
import java.awt.{Color,Font}
import java.awt.{List => AWTList} // AWTList is java.awt.List
import java.awt.{List => _, _} // Imports everything but List from java.awt
val x = Some(42) // Same as scala.Some
  // scala, scala.Predef, and java.lang are always imported
def sq(x) = { import scala.math._; pow(x, 2) } // Imports can be anywhere
import math._ // Same as import scala.math._. Imports nest in Scala


	Contents
	Foreword
	Preface
	About the Author
	1 THE BASICS A1
	1.1 The Scala Interpreter
	1.2 Declaring Values and Variables
	1.3 Commonly Used Types
	1.4 Arithmetic and Operator Overloading
	1.5 Calling Functions and Methods
	1.6 The apply Method
	1.7 Scaladoc
	Exercises

	2 CONTROL STRUCTURES AND FUNCTIONS A1
	2.1 Conditional Expressions
	2.2 Statement Termination
	2.3 Block Expressions and Assignments
	2.4 Input and Output
	2.5 Loops
	2.6 Advanced for Loops and for Comprehensions
	2.7 Functions
	2.8 Default and Named Arguments L1
	2.9 Variable Arguments L1
	2.10 Procedures
	2.11 Lazy Values L1
	2.12 Exceptions
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




