The Complete Manual of Typography

SECOND EDITION

A GUIDE TO SETTING PERFECT TYPE

“The ultimate typographic tool: a concise, beautiful book that pulls together everything you need to produce great typography.”

FRANK ROMANO
ROCHESTER INSTITUTE OF TECHNOLOGY, SCHOOL OF PRINT MEDIA
“Dangerously good book on typography. ‘Dangerous’ because there is enough well-presented information in this volume to set you on the path to typography snobbery. This book is an excellent read and reference volume for any designer, print or web.”

— Nora Brown, Nora Brown Design

“Felici elegantly and painstakingly sets out to demonstrate how to set type ‘perfectly’ in a digital age. This is the book that answers all the questions you wanted to ask, but also demonstrates all the steps you need to pursue to achieve a kind of typographic perfection.”

— Margaret Richardson, FontShop

“Buy this book, read it cover-to-cover, then keep it handy. You’ll be surprised at what a difference it can make in the appearance of your work, both print and web.”

— Peter Bauer, Photoshop User

“The Complete Manual of Typography, by James Felici, condenses timeless wisdom and timely technology into one complete guide. It explains everything about type designs and usage. If you had only one book on typography, this should be it.”

— Jay Nelson, Design Tools Monthly

“Reading this book is like sitting down with a longtime typesetter and going over the details of a complex job. Most people will use it as a reference—which it is—but reading any section straight through is rewarding. The writing is clear and straightforward, and Felici has obviously thought long and hard about everything he deals with here.”

— John D. Berry, CreativePro.com

“This excellent book discusses how type should look and how to set type like a professional.”

— Linda Bushyager, HiTech Review
“What Felici’s book does is show the importance to the reading experience of type that is well set on the page. It is copiously illustrated and elegant in design, and, I confess, I savored each of its 300 pages.”

—Dan Barnett, Musable Blog

“This is a superb reference book and should be often consulted by those who take pride in typography.”

—Phillip Parr, Cider Press

“James Felici deserves a special place on every computer user’s desk because with the power to put words on paper there comes a responsibility to do it well. For the ultimate guide to setting perfect type, you’ll need The Complete Manual of Typography.”

—Fred Showker, DTG Magazine

“If nothing else, this book will make interesting reading for people who love to read books and think about the written word. For me, I wouldn’t be without it, no matter the cost. This is one of my better reference books, and I Love Type.”

—George Engel, Foxwood Estates Computer Club

“While Felici has abundant experience setting type in almost every format used in the twentieth century, he takes the capabilities and possibilities of the computer as a starting point for a very lucid and practical discussion of how to get the best possible type from software. The book contains one of the few really clear explanations of hyphenation and justification settings and how best to use them, as well as very practical and contemporary advice on issues such as line length and text color.”

—Fonts Anon

“It covers all aspects of type design and applications of them in print and screen. This is like a master course in the finer points of typography. For a book that covers the historical tradition as well as digital innovations, this is a remarkable achievement.”

—Roy Johnson, Mantex.co.uk
The Complete Manual of Typography, Second Edition
The Complete Manual of
for Jennifer
Typography is what communication looks like.

But it is almost impossible to look and read at the same time because they are different perceptions. There is beauty in the language and beauty in the way it is presented. It all started about two millennia ago.

In AD 111, there was one typeface. It was the inscriptive seriffed lettering on the Trajan Column. In AD 2011, there are almost 200,000 fonts (most of them based on Garamond).

The Romans chiseled type into granite and made it monumental. Later, Jenson engraved type into metal and made it elemental. He went from columns of stone to columns of type.

There is a difference between type and typography. Typography was born because Gutenberg wanted to make his Bible appear handwritten. It was the first major publishing scam—pages reproduced as printed type at handcalligraphy prices.

Typography is the use of type to advocate, communicate, celebrate, educate, elaborate, illuminate, and disseminate. Along the way, the words and pages become art. Type and typography fostered books, magazines, catalogues, newspapers, forms, and a plethora of promotional materials.

Type and typography—what you do and how you do it—are both science and art. There are rules, most of which are ignored. There are tools, most of which are unknown. But now you have the ultimate typographic tool: Jim Felici’s knowledge at your fingertips.

As we edge toward 600 years of linear text and phase from paper to screen, the principles of good typography have not changed even as the technology of typography continues to change.

Type and typesetting went from metal to wood to film to dots. We set individual letters, lines of letters, and then pages of letters. We went from mechanical machine to mainframe to mini to desktop computer. We went from bitmaps to programmed curves and splines. We went from PostScript to TrueType to OpenType.

In only a few years we wiped out the entire typesetting industry, and typesetting became the province of the creative originator. The most demanding
type buyers became less demanding. We saw typewriter inch marks instead of real quotes and two hyphens substituting for em dashes. Forget about en dashes and real small caps and good H&J. Eventually, the industry did give us professional font sets, and programs automated many typographic processes.

There was a time when Courier, a monospaced typewriter face, was the most used typeface on the planet. Today that distinction belongs to a combination of Times and Helvetica. The most used faces are still the classics.

The letter and the numeral and the symbol begat the glyph, and the number of glyphs in a font multiplied—real small caps, old-style figures, gobs of diacriticals, and dingbats galore.

Those who work with type have to catch up with both what is old and what is new. Fortunately, you have the solution in your hands: a concise, beautiful book that puts together in one place everything you need to produce great typography. Thanks, Jim.

—FRANK ROMANO
Professor Emeritus
Rochester Institute of Technology
School of Print Media
Contents at a Glance

Foreword ... ix
Introduction ... xxiii

Part One Typographic Basics

1. The State of the Art and How We Got Here 3
2. Units of Typographic Measurement 21
3. About Typefaces ... 29
4. About Fonts .. 49
5. The Basics of Using Typefaces 71
6. Typesetting versus Typewriting 83
7. Setting Type on a Personal Computer 93
8. What Makes Good Type Good (and Bad Type Bad) 105

Part Two How to Set Type

9. Measure, Point Size, and Leading 117
10. Controlling Hyphenation and Justification 135
11. Kerning and Tracking 167
12. Managing Indentation and Alignment 179
13. Special Characters and Special Situations 197
14. Document Structures and Typographic Conventions 217
15. Tables .. 239
16. Language-Specific Issues 259
17. Typesetting with Style Sheets 271
18. Resolution Issues: Print, Screen, and Web 283

Part Three References

- **Glossary** .. 297
- **Index** .. 331
- **Further Reading** .. 373
Table of Contents

Foreword
ix

Introduction
xxiii

Part One Typographic Basics

1 The State of the Art and How We Got Here
3

- The Building Blocks of Type
- Bounding Boxes and Spaces
- Type Design as a Function of Size
- Evolution and Automation
- The Typewriter: The First Desktop Publishing Tool
 - Escapement • Monospaced Type
 - Proportional Type
- Monotype: Counting Character Widths
- The Changing Definition of Font
 - Photographic Fonts • Electronic Fonts
- Desktop Publishing Alters the Rules
- The PostScript Model
 - Raster Image Processing • Device Independence
 - Postscript Fonts • Imaging PostScript Fonts
- Output Resolution and Type Quality
- The Dark Side of wysiwyg
 - Near wysiwyg
- The Shadow of the Word Processor

2 Units of Typographic Measurement
21

- Absolute Measurements
- Uses for Picas and Points
 - The Definition of Point Size • Notation Conventions
- Use of English and Metric Units
Relative Units ... 24
The Em ... 24
 Em-based Character Widths • Em-based White-Space Adjustments
 Em-based Spacing Units • The Word Space
Other Units of Measure ... 27
Ciceros ... 27
Agates ... 27

3 About Typefaces .. 29
Definitions: Font versus Typeface 29
Type Design and the Em Square 30
 The Baseline ... 30
 x-Height ... 32
Type Anatomy .. 32
 Calligraphic Influences ... 32
 Serifs ... 33
 Bracketed Serifs • Unbracketed Serifs
 Slab Serifs • Hairline Serifs • Wedge Serifs
Ascenders and Descenders .. 36
Vestigial Features: Ink Wells 36
Optical Aspects of Typeface Design 37
Size Changes Everything ... 37
Master Character Designs .. 38
 Multiple Master Fonts
Principal Features of Typefaces 40
 Serifed and Sans Serif ... 40
 Variations in Typeface Weight 40
 Degrees of Boldness
Romans and Italics .. 41
 Obliques
Variations in Typeface Width 43
Typeface Families .. 43
Typefaces as Role Players: Text, Display, and Decorative 44
 Nonalphabetic Fonts .. 44
Classifying Typefaces by Historical Period 45
 Old-Style Typefaces .. 45
 Transitional Typefaces ... 46
 Modern Typefaces .. 46
Typeface-Naming Issues .. 47
Confusing Typeface Names .. 47
4 About Fonts .. 49
 The Two Basic Kinds of Fonts: Outline and Bitmapped 49
 What’s in a Font? .. 51
 Font Formats ... 52
 Postscript Fonts • Truetype Fonts • Macintosh DFonts
 Opentype Fonts • Web Fonts
 Unicode: The Underlying Technology 55
 Character vs. Glyph
 Cross-Platform Font-Compatibility Issues 56
 Font-Encoding Issues ... 56
 The Mac’s “Borrowed Characters”
 Finding the Characters You Need 58
 Using Windows’ Character Map 58
 Using the Macintosh’s Keyboard Viewer 59
 The Mac os and Unicode
 Application Glyph Palettes 60
 “Expert Sets” and Alternate Fonts 61
 Characters outside the Unicode Standard 61
 OpenType Layout Features .. 62
 Small Caps • Alternate Numerals • Automatic Fractions
 Alternate Ligatures • Swash Characters
 Superscripts and Subscripts, Ordinals and Superiors
 Titling and Case-Specific Forms
 Contextual Alternates and Positional Forms
 Slashed Zero • Stylistic Sets
 Identifying Font Formats ... 64
 Identifying Macintosh Fonts 65
 Identifying the Formats of Windows Fonts 66
 The Basics of Font Management 68
 Font-Management Programs 68
 Font-Editing Programs ... 69

5 The Basics of Using Typefaces 71
 Readability .. 71
 Traditional Roles for Serifed and Sans Serif Types 72
 Common Features of Text Faces 73
 Expressing Emphasis ... 75
 Uses for Bold and Other Type Weights 75
 Uses for Italics ... 76
Uses for Condensed and Extended Faces 77
Problems with Electronic Expanding and Condensing 77
Using Display Type ... 78
Using Decorative Type .. 79
Type in Color ... 79
Reverses .. 80
Onscreen Reverses .. 81

6 Typesetting versus Typewriting 83
Page Sizes and Line Lengths 83
Word Spaces .. 84
Line Endings and Carriage Returns 85
Quads .. 86
Typeface Choice and Point Size 87
Forms of Emphasis and Highlighting 88
Unavailable Characters .. 89
Hyphens and Dashes .. 89
Quotation Marks .. 90
Primes
Fractions .. 90
Tabs ... 91

7 Setting Type on a Personal Computer 93
A Tale of Two Systems: Typesetting and the Word Processing Legacy .. 93
Assigning Typographic Attributes 94
How WYSIWYG Works ... 95
How Fonts Are Used for Screen Display 96
Type and the “Style” Menu
Screen Rendering When Fonts Are Missing
How Operating Systems Manage Fonts 98
Problem: Corrupted Fonts 99
Problem: Missing Fonts 100
Problem: Duplicate Fonts 101
Font Embedding .. 101
Embedding Subsets of Fonts 102
Font Copyright Issues .. 102
8 What Makes Good Type Good (and Bad Type Bad) . 105
 Legibility and Readability ... 105
 Type Color ... 106
 Overly Tight Spacing ... 107
 Overly Loose Spacing ... 109
 Unbalanced Spacing ... 109
 Long Lines and Tight Leading 111
 Narrow-Measure Problems 111
 Optical Effects and Alignment Problems 112
 The Eyes Have It .. 113

PART TWO How to Set Type

9 Measure, Point Size, and Leading 117
 Line Length, or Measure ... 117
 Point Size and Measure .. 122
 Leading ... 122
 Automatic Leading ... 124
 Leading in Text Frames .. 125
 Changing Leading as Type Size Changes 126
 Line Spaces and Vertical Space Bands
 The “Baseline Shift” .. 128
 Leading in Reversed Type 129
 Asymmetrical Leading in Display Type 129
 Leading in Non-text Settings 130
 Leading Considerations in Multicolumn Settings 130
 Typeface-Specific Considerations 130
 Serifed Typefaces, Point Sizes, and Measures 131
 The Effect of x-Height • The Effect of Character Width
 The Effect of Stroke Weight
 Sans Serif Typefaces, Point Size, and Measure 133
 Typefaces and Leading .. 133

10 Controlling Hyphenation and Justification 135
 What Hyphenation and Justification Means 135
 How H&J Works .. 136
 Character-by-Character Calculations
 Problems with Line-at-a-Time H&J 139
11 Kerning and Tracking

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerning and Tracking</td>
<td>167</td>
</tr>
<tr>
<td>Definitions: Kerning and Tracking</td>
<td>167</td>
</tr>
<tr>
<td>Kerning in Practice</td>
<td>168</td>
</tr>
<tr>
<td>Manual Kerning</td>
<td>170</td>
</tr>
<tr>
<td>Manual Kerning Strategies</td>
<td></td>
</tr>
<tr>
<td>Kerning Italic-Roman Character Combinations</td>
<td></td>
</tr>
<tr>
<td>Algorithmic Kerning</td>
<td>172</td>
</tr>
<tr>
<td>Creating Custom Kerning Tables</td>
<td>172</td>
</tr>
<tr>
<td>Kerning Numerals</td>
<td></td>
</tr>
<tr>
<td>Using Tracking Controls</td>
<td>174</td>
</tr>
<tr>
<td>Special Tracking Situations</td>
<td>175</td>
</tr>
<tr>
<td>Character Spacing and Script Faces</td>
<td></td>
</tr>
<tr>
<td>Text on Curved Baselines</td>
<td>177</td>
</tr>
</tbody>
</table>
12 Managing Indention and Alignment

Kinds of Indents .. 179
Indents as Paragraph Attributes 180
Running Indents ... 181
Orphans and Running Indents
First-Line Indents .. 182
First-Line Indents in Rag-Left Text • Sidestepping First-Line Indents
Hanging Indents .. 184
Indents on a Point or Character 185
Skews and Wraps ... 185
Setting Skews ... 185
The Basics of Setting Wraps 186
Rectangular Wraps • Wrapping Irregular Shapes
Alignments of Characters and Text Blocks 190
Page and Baseline Grids .. 190
Text Frames and Grid Alignment
Vertical Alignment: Top, Center, and Bottom 191
Top Alignment • Center Alignment • Bottom Alignment
Hanging Characters .. 193
Visual Alignment ... 193
Troublesome Alignments with Ragged Margins 194
Problems with Centered Text
Aligning Oversized Characters 195

13 Special Characters and Special Situations

Extended Character Sets ... 197
Small Capitals .. 199
Uses for Small Caps ... 200
Old-Style Numbers .. 201
Ligatures, Logotypes, and Diphthongs 201
Automatic Ligature Substitution 202
Ligatures in Display Type ... 203
Swash Characters .. 204
Superiors, Inferiors, and Ordinals 204
Fractions .. 205
Building Fractions by Hand 206
Fraction Form .. 206
Dashes ... 207
Points of Ellipsis ... 208
Points of Ellipsis and Line Breaks 208
Common Pi Characters 209
Hard-to-Find Characters 210
 Primes • Minus and Multiplication Signs
Accented Characters 211
 The Dotless i ... 211
Character-Specific Spacing Issues 212
Initial Capitals .. 213
Drop Caps ... 213
 Difficult Drop-Cap Characters • Readability Issues with Drop Caps
 Standing Initial Capitals 215

14 Document Structures and Typographic Conventions ... 217
 Structural Elements 217
 Heads ... 219
 Subheadings 219
 Subhead Spacing Issues • Subhead Indention • Cut-In Subheads
 Extracts ... 223
 Outline Formats and Tables of Contents 223
 Outline Form • Table-of-Contents Form
 Navigation Tools 226
 Page Numbers, or Folios 226
 Running Heads 227
 Jump Lines 228
 End Marks
 Independent Text Units 229
 Captions and Legends 229
 Footnotes and Endnotes 230
 Footnote Point Size and Leading
 Footnote Alignment • Footnote Symbols
 Indexes .. 233
 Index Typefaces and Point Sizes 234
 Index Indention Styles 234
 Run-In Index Style • Indented Index Style
 Page-Break Issues in Indexes 235
 Bibliographies 236
Table of Contents

15 Tables

- The Structure of Tables .. 239
 - How Table Structures Are Specified 241
 - Problems with the Spreadsheet Table Metaphor
 - Typeface, Point Size, and Leading Specifications 245
 - Alignments in Tables ... 245
 - Indentation in Tab Entries
 - Rules in Tables .. 247
- Table-Setting Techniques ... 247
 - Balancing Column Widths and Gutters 248
- Leading in Tables .. 249
 - Specifying the Leading of Rules • Centering Text between Rules
- Aligning Heads and Tab Entries 252
- Alignment Issues in Numeric Tables 254
 - Hanging Characters in Numeric Tables
 - Aligning Currency Symbols in Tables
- Void or "Missing" Entries .. 257

16 Language-Specific Issues 259

- Character Sets .. 259
- Hyphenation .. 260
- Time Expressions .. 260
- Currency Symbols ... 261
- British English versus American English 262
 - American and British Quotation Styles 262
 - American and British Abbreviation Styles 263
 - American and British Temperatures 263
- French Typographic Conventions 263
 - French Punctuation Style 264
 - French Quotation Style • French Punctuation Spacing
 - French Accents ... 265
 - French Capitalization .. 265
 - French Numeric Expressions 266
- Spanish Typographic Conventions 266
- Italian Typographic Conventions 267
- German Typographic Conventions 267
17 Typesetting with Style Sheets .. 271

How Style Sheets Work .. 271
 Printing Style Sheets .. 272
 Paragraph versus Character Styles 273
 Follow-On Paragraph Styles • Nested Style Sheets
 Object Style Sheets • Table-Cell Style Sheets • Grep Styles
Creating Style Sheets .. 275
 Parent-Child Style Sheets .. 276
 Creating Style Sheets from Existing Text 277
Using Style Sheets ... 278
 Removing Style Sheets ... 279
 Setting Overrides ... 279
 Using Style Sheets to Create Overrides
Searching and Replacing Styles .. 280
 Paragraph Style Sheets and Document Structures 281
Importing Style Sheets .. 281

18 Resolution Issues:
 Print, Screen, and Web .. 283

The Advantages of High-Resolution Output 283
 Other Factors That Influence Print-Type Clarity 284
 Adapting to Low Print Resolutions 284
 Avoid Small Point Sizes • Avoid Reverses and Type over Backgrounds
 Avoid Angled Type at Text Sizes and Below
Type Onscreen .. 286
 Typefaces for Screen Display 287
 Other Onscreen Legibility Enhancements 288
Typography and the World Wide Web 290
 The Promise of Cascading Style Sheets 291
 What Cascading Style Sheets Can Do

PART THREE References

Glossary ... 297
Index ... 331
Further Reading .. 373
This book is about how type should look and how to make it look that way. It primarily covers type in print, which is where the art of typography reaches its highest form of expression. But people who read on computers, e-book readers, or any other electronic device need all the typographic help they can get, so setting type for screen display also gets its due.

The book is organized so that you can approach it in two ways: as a textbook to read from cover to cover, or as a reference guide to jump into at any point as need dictates. It has a wonderful index.

This is not a style guide, but an execution guide. It doesn’t explain why you might choose to use the typeface Bembo over Garamond, but rather, having made that choice, how you can set Bembo in the best possible way.

The rules of typography are centuries old, and although the technologies have changed, the goal has always remained the same: a beautiful setting in the service of a pleasant and fruitful reading experience. So while this book explains in very practical terms how to use today’s computerized tools, I’ve written it to outlast them. It’s been completely updated since the first edition appeared in 2003, and as in the original, references to specific programs have been kept to a minimum (although the capabilities of all the major programs have been taken into account). Programs change, but the lessons in this book will be just as applicable to version 20.0 of your software as they are to the version you use today.

Not all of the capabilities discussed in this book exist in every program or system. But none of them are fantasies—they all exist somewhere. Every typographer and typesetter has to hope that they all will converge in one program as soon as possible. In the meantime, I’ve included scores of workarounds to wring good type out of uncooperative programs.

Beautiful type comes from attention to myriad tiny details. It’s built up a fraction of an em at a time, through hundreds of decisions whose geometry belies their gravity. It requires, as a colleague once wrote, a heart hardened against accusations of being too fussy.

—James Felici
This page intentionally left blank
Typefaces are what you get to admire after your work is finished, but fonts are the tools you have to wrestle with in the meantime to get the job done. Computer operating systems and applications have made it much easier to work with fonts, but the process is still quite technical. Working with fonts forces you to learn more about your computer than you probably want, but everything you need to know is in this chapter.

The Two Basic Kinds of Fonts: Outline and Bitmapped

Digital devices—computer monitor screens, desktop printers, imagesetters—create images out of dots. The simplest way to create type for one of these devices is to draw a picture of every character as an array of dots and store these drawings in a font. Then all a device has to do to image the type is to copy those dots into place on the screen or page. When this technology was first figured out, each one of those dots was represented by one bit of computer data—a simple yes/no choice of whether to image a dot or not. Images created from these predrawn, prearranged arrays of dots were called bitmaps, and fonts using this trick were called bitmapped fonts.
Bitmaps are a clever and simple approach, but the more dots a bitmap contains, the more computer data it requires. As the resolution of the device increases or the size of the character images increases, the number of dots grows geometrically; Doubling the size of a character quadruples the number of dots. You also need a separate set of bitmaps—a separate font—for every size of type you want to create. And the bitmaps designed for one resolution will appear much smaller when imaged on a device with a higher resolution, where the dots are much smaller (see Figure 4.1). To image a single typeface at the same range of sizes on a computer screen, a desktop printer, and an imagesetter, then, would require hundreds of bitmapped fonts.

The solution is to store the descriptions of the characters as a set of outline drawings. Outline fonts, which do just this, store character images as outlines described mathematically as a series of curves and straight-line segments. (These line segments are sometimes called vectors; and the fonts based on them, vector fonts.) These outlines can be mathematically scaled to any size without distorting the shapes or proportions of the characters. The scaled outlines are then colored in with dots of the size created by the device that the type is being imaged on: around 100 dots per inch (dpi) for a computer screen, approximately 600 dpi for a desktop printer, and well over 1,000 dpi for imagesetters.

While it was once common for operating systems to use bitmapped fonts for screen display, they now generate screen type from the same outline fonts used for high-resolution printing. Some fonts may contain sets of hand-tuned bitmapped screen fonts for use at small sizes because they’re more legible than those generated by your computer. But these embedded screen fonts are not apparent to the user, and you don’t have to concern yourself with them.
What’s in a Font?

A font contains all the information needed to position and image the characters that it represents. How a computer operating system and an application program team up to use this information is covered in detail in Chapter 7. Here we’re just concerned with what’s inside a font and what it means to you as you set type.

The most important constituents of a font are the character outlines themselves. The entire collection of characters in a font is called its character set. For most alphanumeric fonts (that is, the ones used for text containing letters and numerals), character sets are standardized to a degree. Nearly all of these fonts share a basic set of characters, although they may contain optional extra characters as well. Figure 4.2 shows the core character set of a standard text font as well as some common variants used by various font vendors. Fonts based on Unicode (see the section on OpenType fonts on page 55) may contain additional characters beyond these basic collections.

The character outlines in a font are size independent. Inside each font a width table lists the horizontal space allotted to each character, as measured in fractions of an em. Computer programs use these widths to calculate how to fill lines with type, adding up the cumulative widths of the characters on a line until the line is filled.

A font may also contain tables for the widths of other members in its family. This is typically the case for the “regular,” or roman text-weight, member of a family. These tables enable a computer program to compose type for all four members of a family—regular, italic, bold, and bold italic—using only the regular font. The computer’s operating system, using the widths of the other family members, can synthesize false italics, bolds, and bold italics for onscreen display, relying on width tables in the regular font for getting the spacing and positioning right. The typesetting program, which relies only on the character widths, follows suit and can make appropriate decisions about how much text will fit on a line and how lines should be broken. When it comes time to print, all the necessary fonts will have to be present, as their outlines will be needed to image the type (see Figure 4.3). But to simply compose the type onscreen, only the regular-weight font is needed. The relationship between application and operating system is detailed in Chapter 7.

A font also contains a kerning table, which lists specific letter pairs and how the typesetting program should adjust the spacing between them. Kerning adjustments are also expressed in fractions of an em, which enables them to function at any point size. For more information about kerning, see Chapter 11.

<table>
<thead>
<tr>
<th>PostScript Type 1 character set</th>
<th>a b c d e f g h i j k l m</th>
<th>n o p q r s t u v w x y z</th>
<th>A B C D E F G H I J K L M</th>
<th>N O P Q R S T U V W X Y Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>characters added in Adobe Standard OpenType character set</td>
<td>L I Ω π Π ∆ ∂ Σ ∫ ∞ x = ≤ ≥ ε ∈ ξ</td>
<td>characters added in Bitstream OpenType character set</td>
<td>Č Ć Ĝ Č Ġ I § ¥</td>
<td>characters not included in Monotype Basic OpenType character set</td>
</tr>
</tbody>
</table>

FIGURE 4.2 At the top is the standard character set of a PostScript Type 1 font used by most vendors. Although such a font can nominally contain 256 characters, 33 “slots” in the font are taken up by commands such as backspace and delete, and 2 by the word space and nonbreaking space. Below it are the additions made to create the standard character sets for OpenType fonts from Adobe and Bitstream. Monotype uses the same character set as Adobe for its Basic OpenType fonts, with the exception of the characters noted at the bottom.
Font Formats

Ultimately, what’s inside a font depends on its format. The word *format* has two meanings in computer type. First, it can refer to the platform for which the font was designed. For example, two fonts with the same data for the same typeface may have different file formats depending on whether they’re designed for use on an Apple Macintosh or a Windows pc. Until the development of the OpenType font format, fonts were created to meet the data-structuring needs of one platform or the other, and a font designed for one machine would not work on the other. A single OpenType font file will work on either a Mac or a pc.

Another kind of font format reflects how the typographic information itself is described and organized. The three leading font formats today are PostScript, TrueType, and OpenType.

POSTSCRIPT FONTS

PostScript fonts are written in the PostScript page description language, and they need to be processed by a PostScript interpreter before they can be imaged. (See “The PostScript Model” in Chapter 1 for more information on PostScript interpreters.) For high-resolution printers and imagesetters, this interpreter is generally built into the device itself; it’s a separate onboard computer dedicated to turning PostScript code into printable output. For lower-resolution devices, such as computer monitors and desktop printers, PostScript fonts can be imaged by a PostScript interpreter built into the operating system. PostScript fonts are generally accompanied by a set of bitmapped fonts for screen display, and unless these screen fonts are installed alongside the outline fonts, your computer cannot image their type. Even though your computer may not use the screen fonts’ bitmapped images, it relies on the font metrics contained within the screen fonts to compose type using their companion outline fonts. This is an artifact of older technology, but it continues to function perfectly well.

The several kinds of PostScript fonts are distinguished from one another by number. The only one you’re likely to come across is *Type 1*, and it’s only mentioned here because of references you may come across to “PostScript Type 1” fonts. In publishing and typesetting contexts, when you talk about a PostScript font, it’s assumed you’re talking about the Type 1 variety.

Until the advent of the OpenType font format, PostScript fonts were the standard of the publishing industry. Today the PostScript format has been completely overtaken by OpenType, and most type vendors, including Adobe, have converted their entire libraries of PostScript fonts into the OpenType format. PostScript fonts continue to be fully supported by applications and operating systems, which is a good thing, because there are literally millions of them still
in circulation and daily use. They are, however, platform specific, and different versions of a font are required for Macintosh and Windows.

TrueType Fonts

For a few years in the late 1980s, the typesetting world had in PostScript a single, standard font format for the first time in its history. It wasn’t to last. For a combination of primarily commercial but also technological reasons, Apple Computer and Microsoft collaborated to create a new font format: TrueType. The new format enabled both companies to build outline font-imaging capabilities into their respective operating systems without being beholden to Adobe.

TrueType introduced many improvements over the PostScript format. The most prominently touted was its hinting, instructions added to the font that tell the character outlines how to reshape themselves at low and medium resolutions in order to create character images of maximum clarity. (For more on hinting, see “Imaging PostScript Fonts” in Chapter 1.) Because of the high quality of these hints, TrueType fonts were and still are typically delivered without any hand-drawn, bitmapped screen fonts. Screen type generated from the font’s character outlines is generally quite legible even in small point sizes.

TrueType also allowed for larger character sets. The PostScript font format had used a numbering system to identify the characters in its fonts based on a single byte of computer data, yielding a maximum of 256 distinct ID numbers. (Fonts of this kind are still referred to as single-byte fonts.) TrueType introduced a two-byte numbering system, which allowed much larger character sets by creating over 65,000 unique ID numbers.

This made plenty of room for alternate forms of characters as well as allowing languages that rely on huge character sets (such as Chinese, Japanese, and Korean) to be supported by a single font. TrueType fonts are still included as a part of major operating systems, but most independent digital font foundries have shifted to OpenType because it allows a single font file to work under multiple operating systems. TrueType fonts are still platform specific, and a TrueType font created for use on a Mac will not work on a Windows PC, and vice versa. TrueType fonts use a different technology than PostScript fonts do for describing the outline shapes of characters, but any system that can image type from PostScript fonts can also image type from TrueType fonts.

Macintosh DFONTS

Many Macintosh-specific fonts use a file structure that predates OS X. In this structure, the file contents are divided into two parts: a data fork and a resource fork. Older versions of the Mac OS used data in the resource fork to tell (among other things) what application created a specific file. Mac OS X does
this by reading a file’s filename extension, such as .doc. Dfonts are a variety of TrueType font that have no resource fork, and they are included in \textit{os x} for the sake of font compatibility with other computers running the \textit{unix} operating system. (\textit{Os x}, like Microsoft Windows, is based on \textit{unix}.)

You can use dfonts just as you would any other Macintosh TrueType font. Documents formatted with them will not, however, display correctly on Macs running operating systems that predate \textit{os x}.

\textbf{OpenType Fonts}

\textit{OpenType} is a hybrid font format created by Adobe and Microsoft. It reconciles the differences in the PostScript and TrueType formats, allowing them to exist together in a single file. OpenType fonts are also written in a file format that allows the same font file to be used on either a Macintosh or a Windows pc. Crudely put, an OpenType font is a TrueType font with a “pocket” for PostScript data. An OpenType font can contain TrueType font data, PostScript font data, or (theoretically) both. Thus it has the potential to combine the best of both formats in a transparent way. The operating system of your computer will sort out the data in an OpenType font and use what’s appropriate for it. A problem with OpenType fonts, as with the TrueType fonts that preceded them, is that from the outside there’s no way to know what’s inside. The original generation of PostScript fonts generally contained a standard character set with standard features. The TrueType format and, to an even greater extent, the OpenType format offer a wide range of optional features that may or may not be built into every font, although the core character set used in the original PostScript fonts has generally been retained. An OpenType font can contain anywhere from a handful of characters to more than 65,000. There’s no way of knowing what a particular font contains or what it can do unless the features of the font are documented in some way.

OpenType fonts also enable a variety of so-called \textit{layout features}, which give a typesetting program the ability to automatically substitute one character for another. Using an appropriate OpenType font, for example, a program can automatically convert the keystroke sequence $1/2$ into a proper fraction: $\frac{1}{2}$. Layout features are discussed in detail on pages 62–64.

\textbf{Web Fonts}

The term \textit{web font} does not refer to a specific font format but to fonts that have been extensively hinted for optimum legibility when displayed on computer screens and other electronic devices. Some have been designed from scratch for electronic display, while others have been adapted retroactively.
Popular web standards permit designers to specify the use of particular fonts when their pages are displayed, even though these fonts are not embedded in the file or necessarily available on the device displaying it. In this sense, web fonts are also understood to be those that exist on web servers for real-time use for imaging online documents that call for them. Some of these are available for free, but others are available only under license, with a fee paid for their use; they are, in effect, rented.

Web fonts are also discussed in Chapter 17, in the context of the Cascading Style Sheet standard used to structure many web documents.

Unicode: The Underlying Technology

All computer programs identify characters by number. International standards correlate every number to a unique character, so that a computer file from Europe, for example, can be properly typeset in Asia. It took decades before a single standard international numbering system was established: Unicode. Both TrueType and OpenType fonts use Unicode numbers to identify their constituent characters.

The goal of Unicode is to assign a unique ID number to every character, linguistic symbol, or ideogram in all of the world’s languages, living or dead. The number of such IDs now exceeds 100,000.

To facilitate backward compatibility, and to support legacy documents, today’s computing systems still suffer from vestiges of earlier numbering systems. The first of these was ASCII (the American Standard for Computer Information Interchange), which used the numbers 0 through 127, as shown in Figure 4.4. The original desktop computing systems—including Microsoft DOS and Windows and the Apple Macintosh OS—used one-byte numbering systems that were consistent through the ASCII range but differed in the ID numbers assigned to the other 128 characters a font could contain. This made communications between the two platforms needlessly complicated, with characters often incorrectly displayed on a nonnative system.

For technical reasons, the ID numbers assigned by Unicode are written in hexadecimal format. Hexadecimal, in addition to using the numerals 0 through 9 to express numbers, also uses the letters A through F. This allows 16 values to be expressed with a single character, like so: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. The letters following 9 represent 10, 11, 12, 13, 14, and 15, respectively, in our everyday counting system. In hexadecimal, the value expressed as 0010 (Unicode values are always expressed using four “digits”) is the equivalent of 16 in our normal base-10 system.

Fortunately, you don’t need to know anything more than this about hexadecimal notation, and even the preceding paragraph is added only to explain
why Unicode character numbers look so peculiar when seen in a font browsing window.

Both Windows and the Mac os now support Unicode as well as continuing to support the numbering schemes used in older font formats. This happens more or less transparently, although how you access certain characters in certain fonts will vary according to their format. This is described in detail later in the chapter, in the section “Finding the Characters You Need.”

CHARACTER VS. GLYPH

An important aspect of Unicode is that it recognizes that a single character may have several forms, each one of which is represented by a distinct **glyph**, as shown in Figure 4.5. Unicode’s main concern is clear communication, not typography per se, so it does not distinguish between a simple roman A and a decorated A used for design purposes. For Unicode, the goal is simply to accurately depict a capital A as a capital A. All capital As, then, have the same Unicode number—0041—although they may be represented by alternate glyphs. Tracking which glyph you’ve chosen to use is the job of your typesetting or page layout application.

For this reason, computer tools used for browsing the contents of fonts are often called **glyph palettes**, and a given font’s glyph set can be far larger than its character set.

Cross-Platform Font-Compatibility Issues

The legacy left by evolving font standards continues to bedevil the movement of document files between different computer systems. The only way to be sure that a typeset document appears on one platform exactly as it was designed on another platform is to create it using the same OpenType fonts from the same vendor on both platforms.

Font-Encoding Issues

How numbers are assigned to the characters within a typeface is referred to as a font’s **encoding**. Before they supported Unicode, the Macintosh and Windows operating systems used different encoding schemes.
Not only did the pre-Unic ode operating systems use different character-numbering schemes, but they also used different subsets of the basic Latin character collection as their standard character sets. The Macintosh set and encoding scheme were called MacRoman; the Windows character set and encoding scheme were called Win ansi. Although a vendor might sell identical fonts for both platforms, the Mac would allow its users to access one group of characters within a font, and Windows another. Figure 4.6 shows the characters that were unique to each platform.

Today’s operating systems on both platforms allow access to all of these characters. But both the Mac and pc lack keystroke combinations that allow you to easily type their formerly inaccessible characters. For the sake of backward compatibility, and in respect for people’s keyboarding habits, both operating systems act as if their old encoding schemes were still in use. To get access to the Unicode characters, you have to use special techniques (discussed in the next section).

Although Unicode is not a font encoding per se, it does provide applications on any platform with a standard way of indicating which characters to use. To assure the accurate representation of text as it travels through other computer systems, using Unicode-based fonts is a must.

Footnote: The Mac’s “Borrowed Characters”

When you’re working with PostScript fonts (and many TrueType fonts) on a Macintosh, the MacRoman encoding borrows certain characters from the Symbol font (see Figure 4.6). Such characters seem to be a part of every font you use. The keystroke combination Option-D, for example, always yields a lowercase Greek delta: \(\partial \). But the numbers assigned to these characters in the MacRoman encoding scheme point to blank “slots” in a Mac font. Calls for these numbers are diverted by the operating system to the Symbol font. That explains why these characters never match the style of the typeface you’re working in (unless it happens to be Times Roman, upon whose design the seriffed Symbol characters are based).

This curious situation is unique to the Mac and unique to this small handful of characters. It’s been largely corrected in most OpenType equivalents of older PostScript fonts through the incorporation of these formerly borrowed characters into their expanded character sets. The Mac os now explicitly shows that it’s using the Symbol font when you use the original keyboard commands to set these characters.
Finding the Characters You Need

Windows and the Mac os offer tools to see exactly which characters are in a particular font. Applications themselves are beginning to offer the same services (see Figure 4.7). These font-browsing tools are indispensable in the absence of standard character sets and are the only way to get many of a font’s glyphs into your documents.

Using Windows’ Character Map

Windows’ Character Map (found in the Programs > Accessories > System Tools menu) shows all the characters in a font in the form of a scrollable grid. From here you can select and copy a character or group of characters into your document. Selecting a character also indicates if there is a keystroke sequence you can use to access the character directly from the keyboard.

There are two kinds of such keystroke sequences. The first is based on the old Win ansi font encoding used in older versions of Windows. These involve holding down the Alt key while you type the Win ansi id number of the character you want. For example, Alt-0233 yields a lowercase e with an acute accent: é. When you release the Alt key, the character will appear in your text.

Some applications—notably those from the most recent versions of the Windows Microsoft Office suite—use a similar technique based on the character’s
Unicode number. In this case, you type the four-character Unicode ID for a character followed by Alt-x. This causes the program to reinterpret the previous four keystrokes and substitute the correct character. The keystroke sequence 00 bd Alt-x, for example, creates the fraction ½. Note that the alphabetic characters in the Unicode ID can be typed in either upper or lower case.

Using typed commands to set specific characters is much faster than copying them out of the Character Map display, and making a written list of the character IDs you commonly use will save you a lot of time. Because there can be so many characters in a TrueType or OpenType font, the Character Map gives you the option to display only certain groups of characters at a time: those used for particular languages, for example, or numeric characters, including fractions and the characters for building them.

You can also use the Character Map’s Search tool by using plain-English descriptions of the character you’re after, such as dash, fraction, or bullet.

Using the Macintosh’s Keyboard Viewer

The Macintosh’s Keyboard Viewer displays a keyboard to show what characters are assigned to which keys. By default, this utility is buried away in the operating system. To make it easily available, open Language & Text within System Preferences (located in the Apple menu). Click the Input Sources tab, and in the pane, select the checkboxes next to Keyboard & Character Viewer and (near the bottom) “Show Input menu in menu bar.” This causes a new icon (which looks like a flag, indicating your operating language) to appear on the right-hand side of the menu bar. The Input menu will give you access to the Keyboard Viewer utility.

With Keyboard Viewer open, holding down the Shift key changes the display to indicate which characters are available from each key with the Shift key held down. The same happens when you hold down the Option key or the Option and Shift keys simultaneously. With the four options—no Shift or Option, Shift, Option, and Option-Shift—the Mac os enables each alphanumeric key to access four characters. As with Windows’ Character Map, any characters you select in Keyboard Viewer can be copied into your documents.

The Mac os also uses more complex keystroke combinations to access accented characters. In this process you hold down the Option key while you press a key that represents the accent you want to use: acute, grave, dieresis (umlaut), tilde, or circumflex. Then, in a separate action, you press the key of the letter over which you want to place the accent. At this point the accented character appears onscreen. To see where these accent characters are located, hold down the Option key with the Keyboard Viewer window open. You’ll see that five keys appear with highlights. These are the accent keys.
In the Input Sources pane of the Language & Text System Preferences pane, you can choose which languages or keyboard layouts you’d like to include as alternate choices in the Input menu. If you add Russian, for example, and select it from the Input menu, Keyboard Viewer will show a Cyrillic keyboard layout. The same is true for French, British, or any other language- or nationality-specific keyboard layout.

The Mac OS and Unicode

For Unicode fonts with large character sets, Mac OS has two principal tools: Font Book and Character Viewer. Font Book (found in the Applications folder) is a font manager, which you can use to control which fonts on your Mac are active at any time. Only active fonts appear in your programs’ Font menus. By selecting Repertoire from Font Book’s Preview menu, you can see the entire character set of any font currently installed on your Mac, a list of which appears on the left. You can’t use Font Book to add characters to your documents, just to browse the contents of fonts.

Adding specific characters to documents is the job of Character Viewer. Character Viewer displays all of the characters in all of the fonts installed on your system. To find a particular character, you can browse by category or use the Search field. Character Viewer will show samples of your target character in all the installed fonts on your system. Double-clicking on the one you want inserts it into your text.

You can also use the Unicode ID number of a character to access it directly from your keyboard. To do this, once again open the Language & Text pane from within System Preferences and click the Input Sources tab. In the selection list put a check mark next to Unicode Hex Input, which adds this option to the Input menu. With Unicode Hex Input selected in the Input menu, holding down the Option key and typing a character’s Unicode ID adds that character to your document. The downside of Hex Input is that when this input option is activated, you lose the ability to use the familiar Option and Shift-Option keyboard character-access commands. Nevertheless, if you maintain a list of commonly used Unicode numbers for hard-to-access characters, switching options in the Input menu is faster than finding the characters using a glyph palette.

Application Glyph Palettes

Page layout programs offer their own tools for browsing the contents of fonts and copying selected characters into document text. These are similar in concept to Windows’ Character Map, but they offer easier access to alternate
glyphs where they exist for certain characters. You can usually create collections or sets of commonly used characters for which you have no direct keyboard access.

“Expert Sets” and Alternate Fonts

Before Unicode and OpenType came along, most fonts were restricted to 256 characters, and Latin-based alphanumeric fonts all contained a standard character set. (TrueType fonts have long been able to have larger character sets, but most font vendors—for the sake of compatibility—matched the character sets of their TrueType fonts to the sets of the PostScript fonts.) Those restrictions, though, were without historical precedent, and some typefaces had many characters for which there was no room in the standard font layouts.

The solution to the problem was to create companion fonts for certain typefaces, fonts that contained alternate characters. These companion fonts are called *expert sets* or *alternate fonts*. They include such characters as old-style numerals (which have varying heights, and some of which have descenders) and small capitals (scaled-down versions of capital letters made to be used amid lowercase type, where they are less obtrusive than full-size capitals). Other common expert-set or alternate characters include ligatures (tied letter combinations) and swash characters (with exaggerated terminals). Examples are shown in Figure 4.8.

The layouts of these fonts are not standard, so they’re usually sold with a chart showing which keystrokes yield which characters. Unfortunately, Unicode-based character-locating utilities won’t help, since most of these fonts predate Unicode, and many of the characters do not have standard Unicode numbers assigned to them in any case.

Expert-set fonts are also troublesome to use because they require a change of font, often for a single character. Macro programs or utilities—which enable you to program a key or screen button to execute a series of commands—are indispensable for dealing with expert-set fonts, as well as with pi fonts, for which you also need two changes of typeface to set a single character.

Fortunately, most typefaces with such extended character sets have been re-released in OpenType format, with their alternate sorts now rolled into a single font.

Characters outside the Unicode Standard

The encoding issue brings up a murky side of Unicode: namely, if Unicode assigns specific numbers to specific characters, what happens when a type designer creates characters that aren’t accommodated in the Unicode list?
Such characters include many of those normally found in expert-set and alternate fonts.

The answer is that the Unicode scheme contains a range of numbers designated for “Private Use,” and here a type designer can add customized characters. The meaning of these Unicode numbers, then, will vary from font to font. To simplify the arrangement, OpenType fonts can also contain links among characters to make it clear to an application or operating system that a particular character is actually an alternate form of one of the characters in the standard Unicode encoding. Figure 4.9 shows how an application can offer the choice of alternate characters to the user. By adding several planes to each character slot, the size of the total onscreen character grid is cut down to more manageable proportions, and characters can be found in logical places.

Look forward to the day when keyboards have illuminated readouts on the keys, so that when fonts change, keyboard layouts will change and the new character assignments will appear on the keys themselves. With the advent of large-character-set Unicode fonts, no one will be able to be a touch typist all the time anymore.

OpenType Layout Features

The OpenType font format was designed with internal structures that allow a type designer to populate a font with alternate forms for certain characters. These **layout features** allow you to have OpenType-savvy programs automatically substitute alternate characters when they’re available. These substitutions can
be restricted to a selected passage of text or applied globally to entire documents. The more common layout features are listed here. The uses of such alternate glyphs are discussed in detail in Chapter 13.

Small Caps

Reduced-size capital letters are used for setting certain kinds of type, including acronyms (NATO) and certain abbreviations (A.M., P.M.). Capital letters that have been electronically scaled down in size are ill proportioned in this role, so specifically designed small capitals should be used when available. With the OpenType small caps option turned on, any capital letters in the text will be converted to small caps, so this control should be applied locally only, to specific capitals that need to be set in reduced size.

Alternate Numerals

The standard numerals contained in most typefaces all sit on the baseline and all have the same width. These are called *tabular lining numerals*. Alternate forms with proportional, varying widths—*proportional lining numerals*—may also be available in a font. Other alternate forms include old-style (or lowercase) numerals, in both tabular and proportional styles. Leaving the OpenType option set for Default Figure Style will set numerals in the preferred style designated by the typeface designer.

Automatic Fractions

When this option is enabled, OpenType fonts that contain the necessary numerator and denominator glyphs can be used to automatically generate fractions. The keystroke sequence $\frac{12}{25}$, for example, will be converted to $\frac{12}{25}$.

Alternate Ligatures

Ligatures are fused characters designed to alleviate certain awkward character-shape interactions and sometimes used for historical or linguistic reasons. All text fonts include the common *fl* and *fi* ligatures, but some fonts contain many more. These can be made to appear in the text by turning on this layout feature. In most cases, this will be a global selection, affecting the entire document.

Swash Characters

Swashes are exaggerated extensions to the strokes of certain characters, both upper- and lowercase. Selecting this option substitutes them for their normal undecorated forms.
SUPERSCRIP TS AND SUBSC RIP TS, ORDI NALS AND SUPERI ORS

Superscripts and subscripts are reduced-size letters and numerals used in mathematical and scientific notation, such as $E = MC^2$ and H_2O. Ordinals are alphabetic characters used for indicating numeric values such as 1st (in English) and 1º (in Spanish). How superscripts, subscripts, and ordinals align relative to each other and to full-size text varies from typeface to typeface.

TITLING AND CASE-SPECIFIC FORMS

Titling characters are designed for use in large display sizes. Sometimes they are available only in uppercase forms. Case-specific alternates include characters such as elevated hyphens for use in all-caps material.

CONTEXTUAL ALTERNATES AND POSITIONAL FORMS

In some settings, principally non-English and particularly Arabic text, the shape and alignment of a character vary according to where in a word it appears. In such cases, contextual alternate forms are used.

SLASHED ZERO

When available, a slashed zero (Ø) can be substituted for a normal zero to avoid confusion with a capital O.

STYLISTIC SETS

Some alternate glyph categories are essentially “none of the above.” These sets are designated by the typeface designer and may consist of a single glyph, such as the historical medial s: f. They may also include sets of lowercase characters with longer or shorter ascenders and descenders. Their contents can be viewed from within application glyph palettes.

Identifying Font Formats

If you’ve read this chapter from the beginning, you’ll realize that not all fonts behave the same way. PostScript fonts, TrueType fonts, and OpenType fonts all have their own idiosyncrasies, not to mention some major functional differences. It’s important to be able to tell them apart.

If you’re looking in the folders where the operating system stores them, you can distinguish among the three formats relatively easily. Some applications display icons alongside the entries in their Font menus, but such displays are
not standardized and not always perfectly clear. In general, it’s better to know the formats of the fonts you use before you install them in your system and to create a method for keeping track of what’s what. Fonts in different formats may appear with identical names in your Font menus, and having two such fonts listed side by side is something you want to avoid. Furthermore, it’s entirely possible for an operating system to fail to distinguish between two fonts of the same name in different formats and to list just one of them in an application’s Font menu. Not only won’t you know that there are two fonts with the same name on your system, but you also won’t know which one you’re getting.

At one time, only OpenType fonts containing PostScript font data (so-called PostScript-flavored OpenType fonts) ended with the filename extension .otf. This is no longer the case. The .otf filename extension simply means that it is an OpenType font file that can be used on either a Mac or a PC. While TrueType fonts normally carry the filename extension .ttf, a TrueType font file that will work on either platform gets the .otf extension.

Fortunately, it no longer matters whether a given OpenType font contains TrueType or PostScript font data. Both work equally well on all computers and output devices, and all incompatibilities between the two ways of programming fonts have been ironed out. Nevertheless, if you want to, you can see what kind of font data a particular OpenType font contains. On the Mac, choose Show Font Info for a selected font from Font Book’s Preview menu. On a Windows PC, this information is generally shown as part of the font file names in the Windows/Fonts folder. If this display is ambiguous, select the font file name and choose Properties from the File menu.

Identifying Macintosh Fonts

The Mac icon for an OpenType font is shown in Figure 4.10, both as it appeared before os x 10.5 and after. Starting with os x 10.5, all font icons show a small preview of the typeface itself.

PostScript Type 1 fonts typically appear in Mac Finder windows without any filename extensions. That’s because most of them predate os x, which introduced the need for filename extensions on the Mac as a means of identifying file types. Using Get Info will reveal whether a font is a PostScript font. In the PostScript regime, each member of a font family is a separate file, so their names can become long enough that they have to be abbreviated into forms—such as OfficSerBooIta (Officina Serif Book Italic)—that may make them nearly unrecognizable. The weirdness of the names is often a giveaway.

In early versions of os x, icons for PostScript fonts bore the label lwfn, short for LaserWriter Font (in homage to Apple’s first laser printer). The icons of the companion collections of screen fonts were labeled ffil (Font File).
These can still be seen in the Finder’s large-icon list view, as seen in Figure 4.10. The ffil label may also be applied to TrueType fonts that include embedded bitmaps for screen display at particular sizes. In certain Finder views, a TrueType font may be referred to as a font suitcase, a term usually reserved for a collection of bitmapped screen fonts associated with a PostScript Type 1 font.

TrueType fonts are most commonly displayed in the Finder with one of two possible filename extensions. One is .ttf (TrueType font) and the other .ttc (TrueType Collection). TrueType Collections are single fonts that contain character outline data for several typefaces. The font AmericanTypewriter.ttc, for example, can generate type in six typefaces: Light, Regular, Bold, Light Condensed, Condensed, and Bold Condensed. The icon for such a font is a small preview of the regular roman member of the family.

If you use the Finder’s List view instead of the Icon view, you will have to rely on the file names alone, as the tiny icons that precede individual file names are too small to decipher. If you opt for the Column view, you have the option of displaying a preview column that for any selected font shows a typeface sample in addition to information on the font’s format.

Identifying the Formats of Windows Fonts

In versions of Windows prior to Windows 7, if you look at fonts in their folders, you’ll see them all identified with unique icons that distinguish PostScript from TrueType from OpenType fonts (see Figure 4.11).

In versions of Windows through xp, the filename extensions of font files are displayed in the Fonts folder. In later versions, only checking Properties in the File menu will reveal the filename extension. TrueType font names have the extension .ttf (TrueType font) or .ttc (TrueType Collection; a single font representing multiple typefaces), although these extensions can also be used for “TrueType flavored” OpenType fonts. As far as Windows is concerned, those formats are virtually identical, varying only by their character sets. Not all OpenType fonts, then, will have an .otf filename extension. Those that do will also work on a Macintosh.

If you’re using Windows 7 or later, you should choose the Details view for the Font menu. Once you’ve turned on the option to display Font Type (by right-clicking in the column-titles bar) this view will show you each font’s format plus other useful information. For most fonts you install, you can also right-click on their file names and select Properties from the pop-up menu that appears. This panel displays a range of information about each font. The Properties option is not available, however, for many of the fonts included with Windows 7.
PostScript Type 1 fonts have the filename extension .pfb (for the font files containing the character outline data; the b stands for binary) and .pfm (for the corresponding file containing the bitmapped screen fonts and metrics—that is, character-width—data). Because at the time of these fonts’ manufacture most versions of Windows were based on dos (disk operating system), the length of older font file names were limited to eight characters plus a filename extension (after a punctuating dot) of three more characters. This makes the names of most PostScript fonts completely unintelligible. It’s not apparent, for example, that varg.pfb is actually Viva Regular. Fortunately, when they’re placed in the Windows/Fonts folder (where installed Windows fonts are normally stored), Windows reads the true name of the typeface from within the font and displays it in readable form. In addition, it’s common for Windows applications to indicate in their Font menu the formats of the fonts listed. Here, ideally, is where you want to know this information, and it would be preferable if all programs on all platforms performed this useful service (see Figure 4.12).

FIGURE 4.11 Versions of Windows before Windows 7 clearly identify the formats of all fonts. In the Fonts window at left, the large-icon view clearly marks the file icons with the TT that stands for TrueType, an O for OpenType, or a lowercase italic a for PostScript fonts. The icon with a capital A indicates a bitmapped font. On the right, the view has been switched to Details, which explicitly lists each font’s formats under the heading Font type.

FIGURE 4.12 The Font menus of Windows programs often identify the formats of fonts with small icons. In this window, Windows Notepad distinguishes between TrueType, PostScript, and OpenType fonts in its scrolling font list. The Windows system’s bitmapped Modern font appears without an icon.
The Basics of Font Management

For operating systems to be able to use them, font files need to be stored in specific places. On a Windows pc, the principal font storehouse is the Windows/Fonts folder. From here, using a command from the File menu, you can install new fonts. You can also drag font files into this folder from other sources.

On the Mac, font files are stored in Fonts folders in each of the Library folders on the computer. The fonts in the Library found in the root folder are available to all users of that Mac. Fonts stored in the Libraries of individual users (found in the Users folder) are available only to those users. The fonts in the Library inside the System folder are used by the operating system and shouldn’t be touched.

Certain application programs—that generally those that come with their own collection of fonts—will store fonts in their own folders, where they alone can have access to them. This is a way of assuring that other applications can’t use them, as they are generally licensed to the user only for use with the host application.

Font-Management Programs

There is a breed of utility program called a font manager, whose job it is to help organize and manage the huge numbers of fonts that can come to populate your computer. Having too many fonts installed on your computer at the same time creates two main problems: First, it slows down your computer, which has to constantly keep track of all of those fonts. (Too many installed fonts may in fact cause your computer to freeze.) Second, it creates a Font menu that’s too long to manage, requiring endless scrolling to find the font you’re after. The main thing a font manager does is enable you to keep the number of fonts in your system at a minimum with very little effort.

The principal way it does this is by allowing you to install or remove fonts from active service individually or en masse at any time. You can build font sets to make this easier. You can have a certain set of fonts for a specific job, or a certain set of fonts that are associated with a particular program. Fonts can belong to two or more of these sets. Some font managers can automatically install whatever fonts are needed by a document that you open.

In addition, font management programs can help you organize your fonts in logical ways. Whereas an operating system would throw them in a single heap (or, worse, several hard-to-locate heaps), a font-management program can organize them according to any criteria you like: font format; historical style; text, display, or decorative use; or whatever else.
Mac os x includes its own font-management program: Font Book, located in the Applications folder. Windows has no such utility, although there are several available from independent software developers.

Font-Editing Programs

Font-editing programs are the tools that type designers use to create fonts from scratch. They include tools to draw character outlines as well as to edit those outlines later. Font editors can be useful to the non-designer as well, as they can add characters to a font (a digitized corporate logo, for example). They are also sometimes used by demanding typographers to improve the quality of the kerning information within a font.

Creating customized fonts can have its advantages, but its disadvantages are very serious. Edited fonts become unique fonts, and unless they have been given unique names, they can become confused with existing retail fonts. Fonts that have had their kerning information altered, for example, will cause text to compose in a unique way, and these differences are enshrined in the font, not in the document. If that document travels to a place where the custom font that created it is unavailable, it will not compose correctly, line endings will change, and whole layouts can become disrupted.

Because font files are mobile, a customized font that escapes its handlers can cause havoc if it becomes confused (or used) with its unedited forebear. Edited fonts, then, have to be employed with great care and control.
Symbols

Accents
- (acute accent), §8, 210
° (breve), 210, 260
, (cedilla), 211, 260
* (circumflex), §9, 260
” (dieresis or umlaut), §9, 211, 260
+ (double acute), 210, 211, 260
` (grave accent), §9, 211, 260, 265
ˇ (haček), 211, 260
˘ (macron), 211, 260
, (ogonék), 211, 260
° (ring), 211, 260
” (tilde), §9, 146, 211, 260

Currency symbols
¢ (cent sign), 212
$ (dollar sign), 77, 128, 212, 261–262
€ (euro), 261
£ (British pound-sterling sign), 261
¥ (Japanese yen sign), 261

Footnote reference symbols
* (asterisk), §93, 212, 233
† (dagger), §93, 233
‡ (double dagger), 233
§ (section mark), 212, 233
¶ (paragraph mark), 212, 233

Mathematical symbols
≈ (approximately equal to sign), 212
° (degree symbol), 212, 263
÷ (division sign), 212
= (equals sign), 23, 212
> (greater than sign), 212
≥ (greater than or equal to sign), 212
< (less than sign), 212
≤ (less than or equal to sign), 212

Punctuation
‘ (apostrophe), 76, 155, 171, 267
– (en dash). See en dash
- (hyphen). See hyphenation
() parentheses. See parentheses ()
, (comma). See commas (,)
. (period). See periods (.)
. . . (ellipsis, three-dot). See ellipsis,
three-dot (. . .)
. . . . (ellipsis, four-dot), 209, 318
/ virgule, 91, 141, 205–206
; (semicolon), 76, 89, 234, 236
[] (brackets), 90, 171, 192, 300
_ (underscore), 88–89, 327
{ } (braces), 192, 299
’ “” (quotation marks). See quotation
marks
« » (guillemets). See guillemets (« »)
— (em dash). See em dashes

Other symbols
& (ampersand), 212
@ (at sign), 212
• (bullet). See bullets (•)
© (copyright symbol), 212
(number or pound sign), 212
® (registered trademark), 212
™ (trademark), 212
A

a.m., conventions for, 260–261
abbreviations
 a.m., p.m., 63, 200, 260–261
 acronyms, 200
 American or British styles, 263
 B.C., B.C.E., A.D., 200
 in French, 204, 263
 of Latin terms, 76
 n/a or N.A., 257
 with periods, 200
 small caps and, 63, 200
absolute measurement, 21–24, 297, 307
accented characters
 accessing in glyph browser, 58, 259
 accessing in Macintosh, 59, 259
 accessing in Windows, 58, 259
 escapement for, 7
 in extended character sets, 198–199
 French typographic conventions, 265
 overview of, 211
 Spanish typographic conventions, 267
 used by major European languages, 261
acronyms. See also abbreviations
 preventing hyphenation of, 146
 small caps for, 63, 200
acute accent (’), 58, 210
Adobe Garamond typeface, 61, 74, 97, 133, 232
Adobe InDesign, 58, 96
Adobe Portable Document Format, 291
Adobe Systems, Inc.
 development of OpenType, 51–57, 54
 development of PostScript, 13, 15, 21–22
 font hinting, 16
advertising type
 agates in, 27
 decorative typefaces in, 44, 79
 display advertising, 73, 304
 dotless i in, 211
 as norm in advertising, 108–109
 sans serif fonts used in, 40
 top alignment of superior figures in, 192
 aesthetic rags, 164–165
agates, 27, 297
Akzidenz Grotesque typeface, 73
Aldines typeface, 42, 76, 297
algorithm, defined, 297
algorithmic (optical) kerning, 172, 297, 317
algorithmic hyphenation, 144–145, 297
alignment
 baseline shifts correcting, 129
 captions and legends and, 230–231
 currency symbols in tables and, 256–257
 defined, 179
 drop caps and, 213
 footnotes and endnotes and, 232
 hanging characters and, 193
 of heads and tab entries, 252–254
 of numeric tables, 254–257
 old-style numerals and, 201
 optical effects and, 112–113
 outline form and, 224
 oversized characters and, 195
 page and baseline grids and, 190–191
 vertical, 191–193
 visual, 193–195
 void or missing entries and, 257
alphabetic indicators, outline form, 224
alphanumeric fonts, 51, 297
Alt key, Windows’ Character Map, 58
alternate characters
 for alternate fonts, 61–62
 defined, 297
 designing into typeface, 199
 old-style numerals available as, 201
 OpenType layout using, 62
alternate fonts, 61–62, 297
alternate ligatures, 63
alternate numerals, 63
alternate sorts, 199
American English
 British English vs., 262–263
 rules of hyphenation, 260
American point, 22, 297
American Standard for Computer Information Interchange. See ASCII (American Standard for Computer Information Interchange)
American Type Founders. See ATF
(American Type Founders)
Americana typeface (Kingsley ATF), 32
ampersand (&), 212
angled type, and low resolutions, 286
anti-aliasing (font smoothing)
defined, 297
how fonts are used for screen
display, 96
legible screen type with, 18–19
onscreen legibility with, 289–290
onscreen legibility with loose
tracking and, 175–176
screen display and, 287
using grayscale in, 309
Antique #3 typeface, 47
Antique Olive typeface, 32, 47
antique typeface
confusion of name, 47
defined, 298
Egyptian typefaces, 305
x-height of Antique Olive, 32
apex, of character, 23, 298
apostrophe (’)
character widths in H&J, 155
Italian, 267
kerning italics-romans, 171
possessive “s” in italic words
and, 76
Apple
creating OpenType with Microsoft, 54
creating TrueType with Microsoft, 53
pioneering WYSIWYG, 95–96
Apple Systems, Inc., 53, 210
applications
character browsers for, 62, 211
finding characters, 60–61
font storage, 68
font-browsing tools, 58
PostScript font support, 52–53
Arabic numerals, in outline forms, 224
Arial Unicode MS typeface, 197
arm, of character, 33, 298
Arno Pro Open-Type font family, 39
Arrighi, Ludovico, 42
arrows, as pi fonts, 210
ascender line
defined, 298
point size and, 318
rectangular wraps and, 188
superiors and, 204, 325
text frames and, 191, 308
top alignment using, 191–192, 246
ascenders
defined, 298
and leading, 133
and leading in display type, 129
overview of, 36
rectangular wraps and, 188
screen display and, 288
ASCII (American Standard for Computer
Information Interchange)
character sets, 55
defined, 298
typewriter-style quotation marks, 90,
298, 327
asterisk (*), 193, 212, 233
asymmetrical leading, display type, 129
ATF (American Type Founders)
Americana, 32
defined, 298
Goudy Old Style, 36, 74
author’s name
bibliographies and, 236–237
running heads and, 227
auto-activation, 298
automatic fractions, OpenType, 63
automatic kerning
character width and, 132
defined, 298
turning off for kerning algorithm, 173
automatic leading, 124–125, 298
automatic ligature substitutions, 202–203
Avant Garde Gothic, 17C, 37, 47, 308
axis, 191, 298, 300
background
low-resolution printing and, 285
tracking and, 175
balanced columns, and orphans, 161
ballot boxes, setting, 210
bar, of character
defined, 298
illustrated, 33
old-style typefaces, 45
base alignment
baseline grids for, 190
of characters and text, 193
defined, 298
of fraction bar, 206
of fraction denominators, 192, 204
of leading in text frames, 125
of lining figures, 201
of quotation marks, 268
spreadsheet-style tables and, 243
baseline grid
defined, 298
footnote point size and, 231
jump lines and, 228
leading legends/captions and, 230–231
overview of, 190
rectangular wraps and, 218
of fraction bar, 206
of fraction denominators, 192, 204
of leading in text frames, 125
of lining figures, 201
of quotation marks, 268
spreadsheet-style tables and, 243
baseline grid
defined, 298
footnote point size and, 231
jump lines and, 228
leading legends/captions and, 230–231
overview of, 190
rectangular wraps and, 188
text frame object style and, 125
text frames and, 125, 190–191
vertical justification and, 163
baseline shift
accent over capitals and, 211
defined, 298
overview of, 128–129
top alignment and, 192
baselines
defined, 298
descenders and, 36
inferiors centered on, 204–205
leading and, 122, 125–126
optical aspects of design, 37
rectangular wraps and, 187–188
spreadsheet-style tables and, 245
table rules and, 251–252
text set on curved, 177
type design with cm square and, 30–31
Baskerville typeface, 46, 74–75
Baskerville, John, 41
batch pagination, 161–162, 299
Bauhaus design school, 40
beak, or beaked serif, 299
Bell Centennial typeface, 37
Bembo typeface, Monotype, 46, 74, 296
benchmark documents, H&J and, 156
Bézier curves, 15, 290, 326
bibliographies, 236–237
bitmapped fonts
identifying, 67
overview of, 49–50
PostScript fonts and, 52
screen display and, 287, 322
bitmaps
declared, 299
history of, 14
overview of, 49
screen display and, 96
bits, of computer data
creating bitmaps, 14, 49
defined, 299
high-bit ascii, 310
Bitstream typefaces
Cheltenham, 97
Clarendon, 35
Incised 901, 97
OpenType character set, 51
black letter typeface
confusing name of, 47
defined, 299
readability of, 72
blocks of type, 4–5
Bodoni typefaces
Baskerville text face vs., 75
family, 43
hairline serif of, 308
modern faces and, 46–47
naming issues, 47
resolution and, 17
tracking and, 175
x-height and, 32
Bodoni, Giambattista, 47
bold type. See also semibold typefaces
in bibliographies, 236
in Cascading Style Sheets, 292
defined, 299
degrees of, 41
display type and, 78
for emphasis, 75–76
index entries and, 234
jump lines and, 228
and low resolutions, 284
run-in subheads and, 221
screen rendering with missing fonts
and, 97–98
setting, 96–97
for subheads, 220
in tables, 245–246
typeface weight and, 40–41
typewriting vs. typesetting, 88–89
book weight, 132, 299
Bookman Antique typeface, rrc, 47, 298
Bookman Italic typeface, rrc, 42
Bookman Light typeface, rrc, 41, 132
books
display type and, 78
folios of, 307
French capitalization and, 266
metric measurements for, 24
multiline H&J and, 140–141
page setup and, 118
point size in, 122
running heads and, 227
serifed roman types for, 72
text faces for, 44
transitional typefaces and, 46
bottom alignment
defined, 191, 299
of multiline column headings, 249
with page grid, 190
in tables, 246
vertical, 193
bottom rules, tables, 247
bounding boxes
aligning oversized characters, 195
defined, 299
kerns and, 168
narrow-measure and, 111–112
optical effects and alignment, 111–112
point size and, 73
in serif typefaces, 131–132
text frames as. See text frames
type design and, 5
bowl, of character
counter inside, 302
defined, 299
loop of g as lower, 313
type anatomy, 33
boxed sidebar text, 228
braces { }, 192, 299
bracketed serifs, 34–35, 300
brackets [], 90, 171, 192, 300
British English typographic conventions
American English vs., 262–263
French text using quotation mark style
of, 264
rules of hyphenation, 260
broadside orientation, of tables, 240–241, 300
browsing tools, fonts, 58–64
bullets (•)
balancing column widths and
gutters, 249
center alignment and, 192
followed by spaces, 210
as pi characters, 209, 280
searching Character Map for, 59
sidestepping first-line indents, 183

C
calligraphy
as basis for Gutenberg’s system, 5
swash characters and, 203
typeface letterforms deriving from,
32–33
cancellaresca lettering, 42
cap height
ascenders and descenders and, 36
bullets and, 192
centering text between rules and,
251–252
defined, 300
in old-style numerals, 316
page layout and, 125
screen display and, 288
type size and, 131
capital line, defined, 300
capitalization. See also uppercase
alignment in outline forms, 224
bibliography entries, 236
capitalization (continued)
caps-and-small caps style. See caps-and-small caps
captions, 229
center alignment, 192
centering text between rules, 251–252
chapter headings, 219
for emphasis, 88
French conventions, 265–266
German conventions, 267
initial capitals. See initial capitals
kerning letter pairs, 168–169
placing accents, 211
small caps. See small caps
swash characters, 205
in titling faces, 78
caps and small caps
author’s name in bibliography in, 236
straddle heads in, 243
caps-and-small caps
captions in, 229
of cut-in subheads, 222
of running heads, 227
of subheadings, 219–220
captions
defined, 300
legends vs., 229
multiple master fonts for, 39
style sheets for, 277, 281
in tables, 247
typographic conventions for, 229–230
carriage returns. See also Return key
defined, 300
hard return as, 310
line endings and, 85–86
return command derived from, 321
Carta font, Adobe, 44
Carter, Matthew, 287
Cascading Style Sheets (CSS), 291–293
Caslon typeface, 45–46, 74, 78
Caslon, William, 46
catalogs
leading in, 130
nested style sheets for, 274
cathode-ray tube (CRT), 12–14, 302
CD-ROM manuals, tracking for, 175
cedilla (¢), 211, 260
cell style sheets, tables, 275
cells, table
alignment of, 246, 254–255
defined, 300
hanging characters in numeric, 255–256
leading of rules and, 250–252
spreadsheet-style, 243–245
style sheets and, 275
typesetting, 242, 247–248
cent sign (¢), 212
Centaur typeface, 32, 78
center alignment of characters, 191, 300
German conventions, 267
problems with centered text, 194–195
of subheads, 222
of tables, 246, 251–252
centered text
aesthetic rags and, 164
aligning heads and tab entries, 252
defined, 300
problems with, 194–195
Century typefaces
Century Expanded typeface, 43, 77
Century Old Style typeface, 43, 73
Century Schoolbook typeface, 301
New Century Schoolbook typeface, 50
chancery italic typeface, 42, 78
chapter headings, 218–220, 224–225
centering text
aesthetic rags and, 164
caps and small caps
author’s name in bibliography in, 236
straddle heads in, 243
caps-and-small caps
captions in, 229
of cut-in subheads, 222
of running heads, 227
of subheadings, 219–220
captions
defined, 300
legends vs., 229
multiple master fonts for, 39
style sheets for, 277, 281
in tables, 247
typographic conventions for, 229–230
carriage returns. See also Return key
defined, 300
hard return as, 310
line endings and, 85–86
return command derived from, 321
Carta font, Adobe, 44
Carter, Matthew, 287
Cascading Style Sheets (CSS), 291–293
Caslon typeface, 45–46, 74, 78
Caslon, William, 46
catalogs
leading in, 130
nested style sheets for, 274
cathode-ray tube (CRT), 12–14, 302
CD-ROM manuals, tracking for, 175
cedilla (¢), 211, 260
cell style sheets, tables, 275
cells, table
alignment of, 246, 254–255
defined, 300
hanging characters in numeric, 255–256
leading of rules and, 250–252
spreadsheet-style, 243–245
style sheets and, 275
typesetting, 242, 247–248
cent sign (¢), 212
Centaur typeface, 32, 78
center alignment of characters, 191, 300
German conventions, 267
problems with centered text, 194–195
of subheads, 222
of tables, 246, 251–252
centered text
aesthetic rags and, 164
caps and small caps
author’s name in bibliography in, 236
straddle heads in, 243
caps-and-small caps
captions in, 229
of cut-in subheads, 222
of running heads, 227
of subheadings, 219–220
captions
defined, 300
legends vs., 229
multiple master fonts for, 39
style sheets for, 277, 281
in tables, 247
typographic conventions for, 229–230
carriage returns. See also Return key
defined, 300
hard return as, 310
line endings and, 85–86
return command derived from, 321
Carta font, Adobe, 44
Carter, Matthew, 287
Cascading Style Sheets (CSS), 291–293
Caslon typeface, 45–46, 74, 78
Caslon, William, 46
catalogs
leading in, 130
nested style sheets for, 274
cathode-ray tube (CRT), 12–14, 302
CD-ROM manuals, tracking for, 175

fraction bar. See fraction bar (/)
glyph sets compared to, 56
hanging characters in tables and, 255
language issues, 259–260
Latin, 258–259
Macintosh, 60
Monotype, 9, 11
OpenType, 51, 54
PostScript, 51, 54
TrueType, 53–54
unavailable characters, 89–91
underscore and, 88
Unicode, 55, 62
character spacing
defined, 301
em-based character widths and, 24–25
onscreen legibility and, 289
script faces and, 176
specific issues, 212–213
wysiwyg computing and, 95
character styles. See also style sheets
applying with existing formatting, 278–279
assigning to style sheets, 273
creating style sheets from existing text, 278
embedding within paragraph styles, 274
character switching, contextual, 301
Character Viewer, Mac OS X, 60, 258
character width
altering during H&J, 154–155
of condensed and extended faces, 77–78
defined, 301
effect of, 132
em-based, 24–25
expressing in relative units, 30
how wysiwyg works, 95
kerning numerals and, 173
legibility and, 43
monospaced type and, 8–9
Monotype fonts and, 11
Monotype systems and, 9–10
of old-style numerals, 201
of PostScript Type 1 fonts, 67
proportional type and, 9
type size and, 131
varying, 131
character-based leading, 128–129
character-by-character calculations, in
H&J, 138–139
characters. See also special characters
aligning oversized, 195
alignment. See alignment
vs. glyphs, 56
handset metal type, 4
hanging, 193
indents on, 185
outlines for, 15–16, 51–52
top alignment of, 192
visual alignment of, 193–195
characters, font-browsing tools
application glyph palettes, 60–61
characters outside of Unicode standard,
61–62
expert sets and alternate fonts, 61
Mac OS and Unicode, 60
Macintosh’s Keyboard Viewer, 59–60
OpenType layout features, 62–63
Windows’ Character Map, 58–59
Cheltenham typeface, Bitstream, 97
children. See parent-child style sheets
Chinese language, 53
ciceros, 27, 301
circumflex (^), 59, 260
Clarendon typefaces, 35, 47, 301
closed-up characters
defined, 212, 301
footnote symbols set as, 233
fractions set as, 206
temperatures in American style set
as, 265
types of, 213
color, type. See type color
colored type, setting, 79–80
columns
aligning heads and tab entries, 252–254
Cascading Style Sheets and, 292–293
gutters between, 130, 248–249
columns (continued)
- hanging characters and, 193
- measure in, 117–118
- measuring depth in agates, 27
- measuring width in picas, 23
- narrow-measure problems, 112
- orphans in, 162–163
- outlines as, 224
- page grids defining, 190
- parent-child style sheets and, 276
- ragged margins and, 194
- rectangular wraps and, 188–189
- setting, 248
- single-column in typewriters, 83–84
- specifying, 241–242
- structure of, 239–241
- table of contents and, 225
- vertical justification of, 162
- vertical space bands and, 127–128
- visual alignment and, 113

columns, in tables
- balancing column widths and gutters, 248–249
- defining, 239–241
- jump lines and, 228
- page-breaks in indexes and, 235–236
- specifying, 241–242
- stub column and, 323

comma-delimited text, tables, 247

commas (,)
- American English quotations, 262
- currency symbols and, 257
- French numeric expressions, 266
- French punctuation style, 265
- French quotation style, 264
- hanging punctuation and, 193, 310
- inverted, 327
- monospaced, 8
- punctuation after italics, 76
- Spanish conventions, 266

compatibility issues
- with fonts, 56–58
- with numbering systems, 55

composition problems
- loose lines/tight lines, 156–158
- paragraph color, 158–159

rivers, 163–164
- vertical justification, 161–163
- widows and orphans, 159–161
- wrapped margins, 186

compound modifiers
- hard hyphens in, 207
- when to use en dash instead of hyphen in, 207

compressed typefaces. See condensed typefaces

computer typesetting systems. See also typesetting
- corrupted fonts, 99–100
- duplicate fonts, 101
- font copyright issues, 102–103
- font embedding, 101–102
- how fonts are used for screen display, 96–98
- how operating systems manage fonts, 98–99
- how wysiwyg works, 95–96
- how WYSIWYG works, 95–96
- missing fonts, 100–101
- overview of, 91
- typesetting and word processing legacy, 91–95

concave baselines, text set on, 177

condensed typefaces
- defined, 43, 301
- drop caps and, 214
- legends and, 230
- legibility and, 110
- letter spaces and, 142–143
- synthesized by computer, 77–78
- text on curved baselines using, 177
- uses for, 77
- word spaces and, 27, 142–143, 208

content signposting, 221

contextual character switching, 301
continued from statement, 228

contrast
- colored ink, 79
- defined, 301
- Dutch typefaces, 304
- Egyptian typefaces, 305
- Garaldes typefaces, 308
- modern typefaces, 46–47, 72, 315
old-style typefaces, 45, 316
overall color of type and, 106–107
reversed type, 80
sans serif faces, 77, 322
text faces, 74, 326
between thick and thin portion of strokes, 39, 45–47
transitional typefaces, 46, 72
Venetian typefaces, 327
control characters, defined, 301
convex baselines, 177
copy-fitting, not adjusting tracking for, 175
copyright issues, fonts, 47, 102–103
copyright symbol (©), 212
core font set, defined, 302
corrupted fonts, 99–100, 302, 308
counter, of character
defined, 302
illustrated, 33
in low print resolutions, 285
master character designs and, 38
Courier typeface, 8–9, 81, 101
crossbar, of character
defined, 302
em-based white-space adjustments and, 25–26
illustrated, 33
old-style typefaces and, 45
cross-platform fonts
compatibility issues, 56–58
OpenType as, 54
Unicode and, 55–56
crotch, of character
defined, 302
illustrated, 33
as ink wells, 36–37, 310
crt (cathode-ray tube), 12–14, 302
css (Cascading Style Sheets), 291–293
curly quotes, 90, 302
currency symbols
aligning in tables, 256–257
aligning in text, 192
language-specific conventions, 259–260
cursiva humanistica, 42
cursive typefaces, 42, 302
cursor keys, 91
curved baselines, 177
customized fonts, 69
cut-ins, 222–223, 302
cutline, 229
d

dagger (†), 193, 213
dashes

centered alignment and, 192
centered text and, 194–195
overview of, 207–208
searching for, 59
typewriting vs. typesetting, 89–90
data fork, Macintosh fonts, 53–54
decimal places, French conventions, 266
decimal-alignment, 254–255, 302
decorative initial capitals, 300
decorative typefaces
defined, 302
initial capitals and, 213–215
overview of, 44
readability of, 72
using, 79
dedicated typesetting systems. See also typesetting

aesthetic rags and, 164
assigning typographic attributes with, 94–95
baseline shift and, 128–129
defined, 302
desktop computers altering rules of, 13
escapement and, 7
extinction of, 94
indents as paragraph attributes vs., 180
keyboard shortcuts on, 270
quadding commands and, 86–87
tables, tools for setting, 17
vertical space bands and, 128
word processing and legacy of, 93–95
word processors compared to, 19
word spacing and, 84
default settings
automatic leading, 124
defined, 303
default settings (continued)
 text frames and grid alignment, 191
 tracking values, 174
default values, H&J program, 156
degree sign (°), 212, 263
de-install, digital fonts
 defined, 302
 en masse, 308
 overview of, 98
deleting style sheets, 279
denominator glyphs, OpenType, 63
denominators, in fractions, 204–206
depth, of paragraph indents, 182–183
descender line
 bottom alignment and, 193
center alignment along, 192
 defined, 303
 expressing point size, 317
 rectangular wraps and, 188
 table alignment and, 246
descenders
 bottom alignment and, 193
 defined, 304
 illustrated, 33
 and leading in display type, 129
 old-style numbers and, 201
 overview of, 36
 rectangular wraps and, 188
 screen display and, 288
desktop computers, 13
desktop printers, 284–286
desktop publishing
 dark side of wysiwyg, 17–18
 PostScript model, 13–16
 revolutionizing typesetting, 13
 typewriter as first tool for, 7–11
Details view for Font menu, Windows 7 or later, 66–67
device independence, 13–15, 303
dfonts, Macintosh, 53–54, 303
diagonal fractions, 205, 303
dialog boxes
 assigning typographic attributes
 with, 94
 style sheets and, 271–272
 as typesetting interface, 18
dialogue, punctuation of
 American English conventions, 262
 British English conventions, 262
 French conventions, 264–265
 German conventions, 267–268
 Italian conventions, 267
 Spanish conventions, 267
dictionary-based hyphenation. See hyphenation dictionary
didot points, 27, 205
dieresis (¨), 59, 211, 260
digital fonts
 bounding boxes and, 299
 defined, 303
de-installing, 302
 em-based character widths, 25
 em-based white-space adjustments, 25–26
 master designs, 38, 315
 outline technology of, 12–13
 point size of, 23, 38
dingbats
 common pi characters, 44, 209–210
 defined, 303
 in OpenType, 198–199
diphthongs, 201–202, 303
DirectWrite, 96
discretionary hyphens
 aesthetic rags and, 164–165
 defined, 90, 303
 hyphenation and, 157–158
 overview of, 145
 widows and, 160
display advertising
 defined, 304
 sans serif as standard for, 73
Display PostScript, 303
display typefaces
 asymmetrical leading in, 129
 bolding for emphasis, 75–76
 center alignment and, 192
 condensed faces for, 77
 decorative faces vs., 79
 down capitalization style in, 303
 extended faces for, 43, 77
 graphic strength of, 44
headline style for, 310
letterspacing in, 153
ligatures in, 202–203
manual kerning for, 170
negative leadings in, 123
onscreen legibility of, 289
overview of, 44
positioning folios and, 226
sans serif as standard for, 73
sentence style for, 321
three-dot ellipsis in, 208
tight spacing in, 108–109
tightening tracking in, 174
up capitalization for, 327
using, 78
division sign (–), 212
document structures
bibliographies, 236–237
captions and legends, 229–230
chapter headings, 219
cut-in subheads, 222–223
extracts, 223
footnotes and endnotes, 230–233
indexes, 233–236
navigation tools, 225–229
outline formats and tables of contents, 223–225
overview of, 217
paragraph style sheets and, 281
structural elements, overview, 217–219
subhead indentation, 222
subhead spacing issues, 221–222
subheadings, 219–221
tables of contents, 225
documents. See structure, of documents
dollar sign ($), 27, 128, 212, 261–262
dotless i, 211, 304
double acute (‘), 210, 211, 260
double dagger (‡), 233
double guillemets. See guillemets (« »)
double hyphens, 89, 146
double rules, tables, 247
double word spaces, ending sentences, 84–85
double-byte fonts, 304, 326
down capitalization style
chapter headings and, 219
defined, 304
legends and, 229
magazine and book titles, 266
down style. See sentence style (down style)
dpi (dots per inch)
defined, 304
high-resolution output and, 283–284
raster image processing and, 14
resolution and, 16
type onscreen and, 286–287
drop caps
alignment of, 195, 213
difficult characters for, 214
overview of, 213–214
readability issues, 214–215
separating text with, 218
dropout, pixel, 16, 304
dropped folio, 226, 304
dropped initial capital. See drop caps
duplicate fonts, 101
Dutch typefaces, 261, 304
e-books, tracking for, 175
editing programs, font, 69
Egyptian typefaces, 73, 305
electronic condensing and expanding, of
typefaces, 77–78
electronic fonts
condensing/expanding type and, 77–78
fractions in, 90
kerning adjustments in, 25
overview of, 12–13
ellipses. See points of ellipsis
ellipses, four-dot (. . .), 209, 267, 318
ellipses, three-dot (. .)
defined, 318
cm width in, 24
French conventions, 263–264
ellipsis, three-dot (continued)

Italian conventions, 267
overview of, 208–209
Spanish conventions, 266–267

em
corner calibrations based on, 167–168, 170
letterspacing multiple-word lines and, 154
in lowercase text, 73, 132
paragraph indents and, 182–183
tracking calibrations based on, 158, 174
white-space adjustments, 25–26
word space and, 26–27

em dashes
in bibliography, 237
French conventions, 263
German conventions, 268
as line-break points, 141
set closed up, 213
spacing problems of, 207–208
Spanish conventions, 267
as typographical dash, 89
for void or missing entries, 257

em fractions, 205, 305

em space
defined, 305
en space vs., 26
letterspacing and forced justification, 154
subheads, 221

table of contents and, 225

em square
ascenders and descenders and, 36
baselines and, 30–31
defined, 305
type design and, 30
typeface width and, 43
x-height and, 32
embedded fonts, 101–102, 290, 307

emphasis
expressing, 75–76
typewriting vs. typesetting, 88–89
en, 205, 305

en dash
defined, 304
French punctuation style, 263
as line-break points, 141
overview of, 207

en fraction, 198–199, 205, 305

en space
defined, 305
as em-based spacing units, 26
following bullet with, 210
gutters in columns sharing straddle head and, 249
letterspacing multiple-word lines, 154

encoding, font
characters outside Unicode standard and, 61–62
defined, 305
issues, 56–57
MacRoman, 57, 315
Unicode, 60

WIN ANS1, 58, 202, 327

end marks, 229, 305

end-line command, 86

endnotes
alignment of, 212
defined, 230–231, 306
point size and leading, 231–232
symbols, 232–233
typographic conventions, 230–231

end-of-line decisions
character-by-character calculations, 138–139
defined, 305
H&J process, 136–138
line-at-a-time H&J and, 139
line-break points and, 141
multiline H&J and, 139–141
end-paragraph command, 86, 305

English measurements, 22, 24
English ordinals, 204–205

English typefaces. See Dutch typefaces

English typographic conventions
abbreviations, 263
chapter headings, 219
quotations, 262
temperatures, 263
entry-a-line index, 235, 306
equals sign (=), 23, 212
escapement
defined, 306
monospaced type and, 8
Monotype machine and, 10
overview of, 7
proportional type and, 9
ezett (ß), 268, 306
euro (€), 261
European languages. See also by specific languages
accented character issues, 260
accented character used by major, 261
euro (€) sign and, 261
exception dictionary, 146–147, 306
exclamations, Spanish conventions, 267
expanded typefaces. See extended typefaces
expert sets
in Cascading Style Sheets, 292
defined, 306
as extended character sets, 197–199
ligatures in, 204
in new fonts, 199
overview of, 61
style sheets and, 280
style sheets overrides and, 280
extended character sets, 197–199, 203
extended typefaces
defined, 43, 306
legibility and, 110
synthesized by computer, 77–78
uses of, 77
extra lead
asymmetrical leading in display type and, 129
baseline grids and, 190
bibliographies and, 236
calculating, 123–124
defined, 123, 306
extracts with, 223
footnotes and, 231–232
jump lines and, 228
legends and captions and, 230
paragraphs starting with drop caps and, 214
running indents and, 181–182
subheads and, 126–127, 221–222
table of contents and, 225
Tables and, 236
typefaces and, 131
extracts, as quoted text, 223

| entry-a-line index, 235, 306 |
| equals sign (=), 23, 212 |
| escapement |
| defined, 306 |
| monospaced type and, 8 |
| Monotype machine and, 10 |
| overview of, 7 |
| proportional type and, 9 |
| ezett (ß), 268, 306 |
| euro (€), 261 |
| European languages. See also by specific languages |
| accented character issues, 260 |
| accented character used by major, 261 |
| euro (€) sign and, 261 |
| exception dictionary, 146–147, 306 |
| exclamations, Spanish conventions, 267 |
| expanded typefaces. See extended typefaces |
| expert sets |
| in Cascading Style Sheets, 292 |
| defined, 306 |
| as extended character sets, 197–199 |
| ligatures in, 204 |
| in new fonts, 199 |
| overview of, 61 |
| style sheets and, 280 |
| style sheets overrides and, 280 |
| extended character sets, 197–199, 203 |
| extended typefaces |
| defined, 43, 306 |
| legibility and, 110 |
| synthesized by computer, 77–78 |
| uses of, 77 |
| extra lead |
| asymmetrical leading in display type and, 129 |
| baseline grids and, 190 |
| bibliographies and, 236 |
| calculating, 123–124 |
| defined, 123, 306 |
| extracts with, 223 |
| footnotes and, 231–232 |
| jump lines and, 228 |
| legends and captions and, 230 |
| paragraphs starting with drop caps and, 214 |
| running indents and, 181–182 |
| subheads and, 126–127, 221–222 |
| table of contents and, 225 |
| tables and, 236 |
| typefaces and, 131 |
| extracts, as quoted text, 223 |

| faces. See typefaces |
| family |
| font. See font families |
| typeface. See typeface families |
| feathering leading, 162, 306 |
| feet, indicating with primes, 90 |
| Fenice typeface, 35 |
| Ffi label, Macintosh fonts, 65–66 |
| 54/50, negative leading, 123 |
| figure space |
| currency symbols and, 257 |
| defined, 306 |
| em basis of, 26–27 |
| file formats |
| defined, 306–307 |
| font compatibility and, 54 |
| native, 248 |
| packaging formatted documents, 291 |
| filename extensions, 65–66 |
| fillet, bracketed serifs, 34–35, 307 |
| financial tables |
| alignment of currency symbols, 256–257 |
| centering text between rules, 251–252 |
| hanging characters, 255–256 |
| void or missing entries, 257 |
| Finder, Mac os, 65–66 |
| finials, 198–199, 307 |
| first-line indents |
| defined, 186, 307 |
| footnotes and, 232 |
| hanging indents as, 184–195 |
| overview of, 182–183 |
| rag-left text and, 183 |
| relative indents and, 321 |
| sidestepping, 183–184 |
| standing caps and, 215 |
| tables and, 246 |
fixed measurement, 307. See also absolute measurement
fixed spaces. See also em space; en space;
thin spaces
em-based, 26
figure space, 26—27, 257, 306
hanging characters in tables and, 256
in letterspacing, 154
for paragraph indents, avoiding, 183
fixed-width typefaces, 307. See also
monospaced type
fleurons
defined, 307
in extended character sets, 198—199
as pi fonts, 210
flexing word spaces
with H&J program, 142—143
specifying in ragged-margins, 147—148
floating pallettes, 272
flourished characters, 203
flush space, 153, 307
folders, font management in, 68—69,
98—99
folios
defined, 307
dropped folio, 226, 304
jump lines and, 228
page grid and, 190
positioning, 226–227
running heads and, 227
table of contents and, 225
follow-on paragraph styles, 274
Font Book, Mac OS, 60, 69, 102
font editors
customizing kerning, 172–173
defined, 307
font use and, 69
revealing baselines, 31
font embedding, 101—102, 290, 307
font families
defined, 307
finding small caps with semibold
weight in, 200
fonts containing width tables for
members of its, 51–52
installing fonts with complete, 98
style menu and, 96—97
typeface, 43
font formats
identifying, 64—67
Macintosh dfonts, 53–54
OpenType fonts, 54
overview of, 52
PostScript fonts, 52–53
TrueType fonts, 53
web fonts, 54–55
font id, 308
font id conflict, 308
font manager
defined, 308
Font Book, 60
overview of, 68
font metrics, 30, 52, 308
font sets. See font manager
font smoothing. See anti-aliasing (font
smoothing)
font suitcase, Mac Finder, 66
fonts
bitmapped, 49–50
browsing tools, 58–64
changing definition of, 10–11
contents of, 51
copyright issues, 102–103
corrupted, 99–100
cross-platform, 56–58
defined, 307
dotless i feature, 211
duplicate, 101
duplicate, 101
defined, 308
Font Book, 60
overview of, 68
font metrics, 30, 52, 308
font sets. See font manager
font smoothing. See anti-aliasing (font
smoothing)
font suitcase, Mac Finder, 66
fonts
bitmapped, 49–50
browsing tools, 58–64
changing definition of, 10–11
contents of, 51
copyright issues, 102–103
corrupted, 99–100
cross-platform, 56–58
defined, 307
dotless i feature, 211
duplicate, 101
duplicate, 101
defined, 308
Font Book, 60
overview of, 68
font metrics, 30, 52, 308
font sets. See font manager
font smoothing. See anti-aliasing (font
smoothing)
font suitcase, Mac Finder, 66
fonts
bitmapped, 49–50
browsing tools, 58–64
changing definition of, 10–11
contents of, 51
copyright issues, 102–103
corrupted, 99–100
cross-platform, 56–58
defined, 307
dotless i feature, 211
duplicate, 101
duplicate, 101
defined, 308
Font Book, 60
overview of, 68
font metrics, 30, 52, 308
font sets. See font manager
font smoothing. See anti-aliasing (font
smoothing)
font suitcase, Mac Finder, 66
fonts
bitmapped, 49–50
browsing tools, 58–64
changing definition of, 10–11
contents of, 51
copyright issues, 102–103
corrupted, 99–100
cross-platform, 56–58
defined, 307
dotless i feature, 211
duplicate, 101
duplicate, 101
defined, 308
Font Book, 60
overview of, 68
font metrics, 30, 52, 308
font sets. See font manager
font smoothing. See anti-aliasing (font
smoothing)
font suitcase, Mac Finder, 66
fonts
bitmapped, 49–50
browsing tools, 58–64
changing definition of, 10–11
contents of, 51
copyright issues, 102–103
corrupted, 99–100
cross-platform, 56–58
defined, 307
dotless i feature, 211
duplicate, 101
duplicate, 101
defined, 308
Font Book, 60
overview of, 68
font metrics, 30, 52, 308
font sets. See font manager
font smoothing. See anti-aliasing (font
smoothing)
font suitcase, Mac Finder, 66
fonts
bitmapped, 49–50
browsing tools, 58–64
changing definition of, 10–11
contents of, 51
copyright issues, 102–103
corrupted, 99–100
cross-platform, 56–58
defined, 307
dotless i feature, 211
duplicate, 101
duplicate, 101
defined, 308
Font Book, 60
overview of, 68
font metrics, 30, 52, 308
font sets. See font manager
font smoothing. See anti-aliasing (font
smoothing)
font suitcase, Mac Finder, 66
fonts
bitmapped, 49–50
browsing tools, 58–64
changing definition of, 10–11
contents of, 51
copyright issues, 102–103
corrupted, 99–100
cross-platform, 56–58
defined, 307
dotless i feature, 211
duplicate, 101
duplicate, 101
defined, 308
Font Book, 60
overview of, 68
font metrics, 30, 52, 308
font sets. See font manager
font smoothing. See anti-aliasing (font
smoothing)
font suitcase, Mac Finder, 66
fonts
bitmapped, 49–50
browsing tools, 58–64
changing definition of, 10–11
contents of, 51
copyright issues, 102–103
corrupted, 99–100
cross-platform, 56–58
defined, 307
dotless i feature, 211
duplicate, 101
duplicate, 101
defined, 308
Font Book, 60
overview of, 68
font metrics, 30, 52, 308
font sets. See font manager
font smoothing. See anti-aliasing (font
smoothing)
font suitcase, Mac Finder, 66
fonts
bitmapped, 49–50
browsing tools, 58–64
changing definition of, 10–11
contents of, 51
copyright issues, 102–103
corrupted, 99–100
cross-platform, 56–58
defined, 307
dotless i feature, 211
duplicate, 101
duplicate, 101
defined, 308
Font Book, 60
overview of, 68
font metrics, 30, 52, 308
font sets. See font manager
font smoothing. See anti-aliasing (font
smoothing)
font suitcase, Mac Finder, 66
fonts
bitmapped, 49–50
browsing tools, 58–64
changing definition of, 10–11
contents of, 51
copyright issues, 102–103
corrupted, 99–100
cross-platform, 56–58
defined, 307
dotless i feature, 211
duplicate, 101
duplicate, 101
defined, 308
Font Book, 60
overview of, 68
font metrics, 30, 52, 308
font sets. See font manager
font smoothing. See anti-aliasing (font
smoothing)
font suitcase, Mac Finder, 66
fonts
bitmapped, 49–50
browsing tools, 58–64
changing definition of, 10–11
contents of, 51
copyright issues, 102–103
corrupted, 99–100
cross-platform, 56–58
defined, 307
dotless i feature, 211
duplicate, 101
duplicate, 101
defined, 308
Font Book, 60
overview of, 68
font metrics, 30, 52, 308
font sets. See font manager
font smoothing. See anti-aliasing (font
smoothing)
font suitcase, Mac Finder, 66
fonts
bitmapped, 49–50
browsing tools, 58–64
changing definition of, 10–11
contents of, 51
copyright issues, 102–103
corrupted, 99–100
cross-platform, 56–58
defined, 307
dotless i feature, 211
duplicate, 101
duplicate, 101
defined, 308
Font Book, 60
overview of, 68
font metrics, 30, 52, 308
font sets. See font manager
font smoothing. See anti-aliasing (font
smoothing)
font suitcase, Mac Finder, 66
fonts
bitmapped, 49–50
browsing tools, 58–64
changing definition of, 10–11
contents of, 51
copyright issues, 102–103
corrupted, 99–100
cross-platform, 56–58
defined, 307
dotless i feature, 211
duplicate, 101
PostScript. See PostScript font
screen display and, 96
three-dot ellipsis in all, 208
TrueType. See TrueType font
type design, 30–32
typefaces vs., 29–30
Unicode and, 55–56
web, 54–55
wysiwyg and, 95–96
Fonts folder
Macintosh, 68, 100
Windows, 66–68, 99, 102
fonts, Macintosh
cross-platform encoding and, 56–57
dfonts, 53–54
finding characters, 59–60, 211
identifying, 65–66
ligatures and, 202
management of, 68–69
screen display and, 96
Unicode and, 60
fonts, Windows os
accessing quotation marks in, 90
Character Map, 58–59, 211
encoding issues, 56–57
font management, 98–101
Fonts folder in Windows
through xp, 102
identifying font formats, 66–67
screen display, 96
screen rendering when fonts are
missing, 97–99
storage of, 68
viewing data for OpenType, 65
wysiwyg and, 95–96
footers, 226, 308
footnotes
alignment of, 232
defined, 230–231
hanging characters and, 193, 255–256
jump lines in, 228
low resolutions and, 285
point size and leading for, 231–232
superior numerals in, 204
symbols, 232–233
in tables, 255–256
top-aligning numbers in, 192
typographic conventions for, 230–231
forced justification, 153–154, 181, 308
foreign languages. See language issues
format converters, 247
formats, font
identifying, 64–65
identifying formats of Windows fonts,
66–67
identifying Macintosh fonts, 65–66
Macintosh dfonts, 53–54
OpenType, 54
overview of, 52–55
PostScript, 52–53
TrueType, 53
using embedded fonts, 101–102
web, 54–55
four-dot ellipsis (. . . .), 208–209
Fournier typeface, 46
fraction bar (/)
compared to virgule, 206
defined, 308
in em fraction, 205
for horizontal fraction, 309
as kerning character, 168, 313
typewriting vs. typesetting, 91
in Windows, 91
fractions
as alternate characters, 199
baseline shifts and, 129
building by hand, 206
as closed up, 206–207
denominators in, 204
diagonal, 205, 303
en, 198–199, 305
extended character sets with, 198–199
forms of, 206–207
hanging characters and, 255–256
horizontal, 205
numeratoras in, 192, 204
overview of, 205
searching for, 59
solidus, 205
in tables, 255–256
typewriter vs. typographic, 90–91

Symbols, 232–233
in tables, 255–256

Top-aligning numbers in, 192
typographic conventions for, 230–231
forced justification, 153–154, 181, 308
foreign languages. See language issues
format converters, 247
formats, font
identifying, 64–65
identifying formats of Windows fonts,
66–67
identifying Macintosh fonts, 65–66
Macintosh dfonts, 53–54
OpenType, 54
overview of, 52–55
PostScript, 52–53
TrueType, 53
using embedded fonts, 101–102
web, 54–55
four-dot ellipsis (. . . .), 208–209
Fournier typeface, 46
fraction bar (/)
compared to virgule, 206
defined, 308
in em fraction, 205
for horizontal fraction, 309
as kerning character, 168, 313
typewriting vs. typesetting, 91
in Windows, 91
fractions
as alternate characters, 199
baseline shifts and, 129
building by hand, 206
as closed up, 206–207
denominators in, 204
diagonal, 205, 303
en, 198–199, 305
extended character sets with, 198–199
forms of, 206–207
hanging characters and, 255–256
horizontal, 205
numeratoras in, 192, 204
overview of, 205
searching for, 59
solidus, 205
in tables, 255–256
typewriter vs. typographic, 90–91

Symbols, 232–233
in tables, 255–256

Top-aligning numbers in, 192
typographic conventions for, 230–231
forced justification, 153–154, 181, 308
foreign languages. See language issues
format converters, 247
formats, font
identifying, 64–65
identifying formats of Windows fonts,
66–67
identifying Macintosh fonts, 65–66
Macintosh dfonts, 53–54
OpenType, 54
overview of, 52–55
PostScript, 52–53
TrueType, 53
using embedded fonts, 101–102
web, 54–55
four-dot ellipsis (. . . .), 208–209
Fournier typeface, 46
fraction bar (/)
compared to virgule, 206
defined, 308
in em fraction, 205
for horizontal fraction, 309
as kerning character, 168, 313
typewriting vs. typesetting, 91
in Windows, 91
fractions
as alternate characters, 199
baseline shifts and, 129
building by hand, 206
as closed up, 206–207
denominators in, 204
diagonal, 205, 303
en, 198–199, 305
extended character sets with, 198–199
forms of, 206–207
hanging characters and, 255–256
horizontal, 205
numeratoras in, 192, 204
overview of, 205
searching for, 59
solidus, 205
in tables, 255–256
typewriter vs. typographic, 90–91

Symbols, 232–233
in tables, 255–256
Fraktur typeface
 confusing name of, 47
 defined, 299
 overview of, 91
 readability of, 72
frame-at-time vertical justification, 163
frames, text
 alignment and, 125–190–192
 defined, 308
 drawing and specifying width of, 118
 leading in, 125–126
 object style sheets and, 275
 in spreadsheet-style tables, 243
 vertical justification and, 163
French typographic conventions
 accents, 265
 capitalization, 266–266
 hyphenation, 260
 numeric expressions, 266
 overview of, 261–266
 punctuation spacing, 265
 punctuation style, 263–264
 quotation style, 264–265
Friz Quadrata typeface, 24
front ends, 19, 308
Frutiger typeface, 40, 133
full stops. See periods (.)
Futura typeface
 as geometric sans serif, 40, 307
 naming issues, 47
 as sans serif face, 32
 variations in weight, 41
 weights of, 41
 widths of word spaces and, 27, 133

G
Galliard typeface (ITC), 32, 36, 74
Garaldes typefaces, 45, 308
Garamond typeface
 Adobe Garamond, 61, 74, 97, 133, 232
 character width in, 132
 condensed versions of, 77
 as early italic form, 42
 expert font set, 61
 footnote point size in, 232
 in historical classifications, 45–46
 ITC Garamond, 41, 77
 Monotype Garamond, 132
 naming, 47
 screen display of, 97
 Stempel Garamond, 42, 45, 73
 weights of, 41
 x-height and, 133
Garamond, Claude, 45
gdi (Graphical Device Interface), 96, 308
generic formats, data for tables, 247
geometric sans serif, 40, 308, 314
Georgia typeface (Microsoft), 287–288
German typographic conventions
 accents, 265
 capitalization, 265–266
 hyphenation, 260
 numeric expressions, 266–266
 punctuation spacing, 265
 punctuation style, 263–264
 quotation style, 264–265
glyphs
 accessing hard-to-find characters, 210
 automatic fractions and, 63
 defined, 309
 extended character sets of, 197
 fonts and, 38, 60–61
 stylistic sets of, 64
 Unicode and, 56
Gothic type, 47, 72, 299, 309
Goudy Old Style typeface, 36, 74, 175
Graphical Device Interface (GDI), 96, 308
graphical user interfaces (GUIs), 94–95
graphics
 aligning drop caps and, 195
 bitmaps vs. vector-based, 14
 high resolution for, 284
 measuring in picas, 23
 missing fonts and, 100
 narrow-measure problems and, 112
 running indents and, 181
 table design and, 241
 text wraps and, 186–187
 vertical alignment of, 191
grave (’) accent, 59, 211, 260, 265
grayscale, 286, 289, 309
greater than or equal to sign (≥), 212
greater than sign (>), 212
grep (global/regular expression/printing)
 styles, 275
handset metal type
bounding boxes and spaces based on, 5
digital type vs., 5
fonts for, 10
Gutenberg’s system of movable type, 4
point size and, 23, 38

hang line, 190–191, 309
hanging characters
alignment and, 193–194
defined, 310
in numeric tables, 235–256
hanging folios, 226
hanging indents
bibliographies and, 236
bullets and, 210
defined, 180, 310
footnotes and, 232
indent-on-point character creating,
184–185
overview of, 184
hanging numerals. See old-style numerals
hanging punctuation, 193, 297, 310

hard hyphens
in compound modifiers, 207
controlling hyphenation, 144
defined, 145, 310
discretionary hyphens vs., 145
double-hyphenation with, 146
headings and, 219
typewriting vs. typesetting, 90

hard return, 310
hard-ended lines
aesthetic rags and, 165
centered text and, 195
defined, 310
letter spaces and, 153
running indents and, 181
setting index with, 234
head rule, 247, 310
heading row, tables, 240
headings
alignment for ragged margins, 194
bold type for, 76
capitalization of, 219
centered text and, 194
chapter, 219
headings (continued)
document structure and, 217–218
grid structure and, 190
style sheets and, 274, 281
visual alignment and, 113
headings, of tables
alignment, 252–254
balancing column widths and gutters, 248–249
centering with vertical rules, 247
column width and, 248
heading row, 240
leading for runovers in, 249
multiple-line, 200
overview of, 239–241
rules, 247
small caps for, 200
straddle heads, 240, 245–246
headline style, 219, 303, 310, 327
Helvetica typeface (Linotype)
bold command in, 97
as monospaced type, 8
oblique italic of, 42
range of text weights in, 41
as sans serif font, 40, 72
hexadecimal numbers, 55–56, 310
high-bit ASCII, 310
high-resolution output, 283–284
hints
defined, 309
fonts and, 16
low resolutions and, 286
screen display and, 287–288
TrueType and, 53
web fonts and, 54–55
historical designations, small caps for, 200
historical period, classifying typefaces
by, 45–47
horizontal alignment, 245
horizontal fractions, 310
horizontal rules, tables
centering text, 251–252
leading and, 250–251
overview of, 247
html (HyperText Markup Language)
css enhancing, 291–293
hyphen use in, 90
typography and, 291
humanist sans serif faces, 40, 310
HyperText Markup Language. See html (HyperText Markup Language)
hyphenation
adding words to dictionary, 146–147
adjusting badly spaced lines, 157
avoiding in titles and headings, 219
choosing means of, 144–145
controlling, overview, 143–144
defined, 311
definition of, 135
French punctuation style, 264
language issues, 258
line-break points and, 141
ranked hyphenation, 320
turning off for indexes, 233
types of, 145
typewriting vs. typesetting, 89–90
hyphenation and justification (H&J)
algorithmic hyphenation, 137, 144–145, 291
character width and, 154–155
character-by-character calculations, 138–139
controlling hyphenation, 143–147
creating aesthetic rags, 164–165
css with, 292
defined, 135–136, 311
dot-of-line decisions, 136–138
how it works, 136–138
hyphenation zones and, 144
justified margins and, 148–152
letter spaces and, 142–143
letter-space ranges and, 152–154
letterspacing and forced justification, 153–154
line-at-a-time calculation, 139
line-break points, 141
measure and, 147
overview of, 135
range of lines and, 139–141
testing values, 156
word spaces and, 142–143
word-space ranges and, 147–148
wrapped text and, 185–186
hyphenation and justification (H&J),
 composition problems
loose lines/tight lines, 156–158
paragraph color, 158–159
rivers, 163–164
vertical justification, 161–163
widows and orphans, 159–161
hyphenation dictionary
 adding words to, 146–147
 adjusting badly spaced lines with, 157
 algorithmic hyphenation and, 144–145
 kinds of hyphens, 145
 language issues, 260
 ligatures and, 283
 ranked hyphenation in, 320
hyphenation zones, 144, 311
hyphens. See also discretionary hyphens;
 hard hyphens
 center alignment issues, 192
 in French first names, 264
 overview of, 207
 titling characters in large display
 sizes, 64
types of, 145, 207
typesetting vs. typewriting, 89–90
uses of, 207
hypho, 311

I
IBM Selectric-type typewriters, 87
identifiers, table structure, 239
illuminated initial capitals, 213
imagesetters
 defined, 311
 high resolutions and, 284
 laser printers as, 13
 measuring resolution in dpi, 304
 PostScript interpreters and, 52
 raster image processing and, 14
imaging
 PostScript fonts, 15–16
 with raster image processor, 14
import filters, tables, 247–248
importing style sheets, 275–276, 281
 inches, indicating with primes, 90
Incised 901 typeface, Bitstream, 97
indent on point
 defined, 311
 hanging indents and, 184
 outlines and, 224
 overview of, 180
indentation
 alignment in tables, 245
 defined, 179, 311
 of dropped folios, 226
 in extracts, 223
 first-line, 182–184
 hanging, 184–185
 in indexes, 234–236
 kinds of, 179–180
 of lines ending with punctuation
 characters, 193
 of outline form, 224
 overview of, 179
 as paragraph attributes, 180
 running, 181–182
 in skews and wraps, 183–189
 in tab entries, 246–247
typewriter vs. typographic, 91
indentation command, 183
indented indexes, 235
independent text units
 bibliographies, 216–237
 captions and legends, 229–230
 defined, 229
 footnotes and endnotes, 230–233
 indexes, 233–236
indexes
 bold page numbers in, 76
 indentation styles, 234–235
 leading in, 130
 omitting running heads in, 227
 overview of, 233
 page-break issues in, 235–236
typefaces and point sizes for, 234
inferior numerals, in fractions, 198–199
inferiors
 defined, 311
 em fractions built from, 205
 low resolutions and, 285
inferiors (continued)

overview of, 204–205
sizing when building fractions by
hand, 206

initial capitals. See also capitalization
author’s name in bibliographies, 236
drop caps, 213–215
French punctuation, 264
overview of, 213
small caps for, 200
standing caps, 215
swash characters as, 203
ink spread, in reversed types, 80–81
ink wells (ink traps), 36–37

inkjet printers
angled type and, 286
output resolution and type quality, 17
raster image processing and, 14
installing fonts, 311
instructions. See hints
International Typeface Corporation.
See itc (International Typeface
Corporation) typefaces
interrogatives, Spanish conventions, 267
irregular shapes, wrapping, 189
Italian Old Style typeface, Monotype, 45
Italian typographic conventions, 267
italics
in bibliographies, 236
centered text and, 194
defined, 312
development of, 42
in indexes, 234–235
jump lines, 228
kerning roman characters and, 171
low resolutions and, 285
missing fonts and, 98–99
obliques vs., 42–43
readability of, 72
reversed type and, 80
run-in subheads and, 221
setting, 96–97
swash characters as, 203
switching to roman with style sheet,
280–281
in typewriters, 89

irtc (International Typeface Corporation)
typefaces
Avant Garde Gothic, 37, 47, 308
Bauhaus, 40
Bookman, 41, 42, 132, 298
Clearface, 78–79
defined, 312
Fenice, 35
Friz Quadrata, 24
Galliard, 32, 36, 74
Garamond, 24, 44, 77
New Baskerville, 36
Novarese, 42
Zapf Dingbats, 44, 198–199, 209–210

j

jaggies, defined, 312
Janson typeface, 32
Japanese language, 53
Japanese yen sign (¥), 261
joining em rule, 207–208, 237, 312
journals
bibliography entries for names, 236–237
chapter headings and, 219
point size in, 122
running heads and, 227
transitional typefaces and, 46
wider text faces for, 74
jump lines, 228, 312
jump page, 228, 312
justification. See also hyphenation and
justification (H&J); justified margins
defined, 10, 132–136, 312
forced, 153–154, 181, 308
vertical, 126, 161–163, 193, 218
word spaces and, 27
justification zones, 153, 312
justified margins
in Cascading Style Sheets, 292–293
defined, 53–56, 132
forcing, 153–154, 181, 308
hanging punctuation and, 193, 310
in indexes, 233
in tables, 246
word-space ranges and, 148–152
world wide web and, 290
K

keeps, orphans and, 161
kern, defined, 312
kerning
 accented characters, 211
 algorithmic, 172, 297, 317
 applying, 168–169
 automatic, 132, 173, 200, 298
 building accented characters, 211
 on curved baselines, 177
 custom kerning tables, 172–173
 decorative faces lacking, 79
 defined, 5, 313
 expressing in em units, 25
 fractions, 206–207
 H&J and, 138
 high-resolution output and, 284
 italic to roman transitions, 171–172
 manual, 170–171
 numerals, 173
 in practice, 168–169
 samples of, 26
 screen display and, 287
 small caps, 200
 standing caps, 215
 swash characters, 203
 tracking vs., 167–168
kerning characters
 defined, 313
 fraction bars as, 168, 206
 illustrated, 5
 swash characters as, 203
kerning pair metrics (kpx), 26
kerning pairs
 customizing kerning tables, 172–173
 defined, 168, 313
 large cap-small cap, 200
 list of typical, 169
 manual kerning and, 170
kerning tables, 26–27, 51, 168–170, 172–173, 312
 kern-table editor, QuarkXPress, 172
keyboard layout, Macintosh, 60
keyboard shortcuts
 for manual kerning, 170
 for paragraph styles, 273
 for style sheets, 272
Keyboard Viewer, Macintosh, 59–60, 211
keywords, indexes, 234, 235
Kingsley ATF, 298
knockouts, 80, 313
Koreans, movable type and, 4

L

Language & Text pane, Mac os, 60
language issues
 accessing accented characters, 211
 British vs. American English, 260–261
 character sets, 257–258
 currency symbols, 259–260
 French, 261–266
 German, 267–268
 hyphenation and, 258
 Italian, 267
 Spanish, 266–267
 time expressions, 258–259
laser printers
 angled type and, 286
 desktop publishing and, 13
 font hinting and, 286
 output resolution and type quality, 16–17
 raster image processing and, 14
Latin characters
 character sets, 57, 259–260
 defined, 313
 language issues. See language issues
 nonalphabetic fonts in, 44
 Non-Latin typefaces, 197
 seriffed forms predominating in, 40
 strokes defining shapes of, 33
 width of, 8
Latin typefaces, 197, 259, 313
layout. See page layout programs
leaders, 225, 257, 313
leading
 ascenders and descenders and, 36
 asymmetrical in display type, 129
 automatic, 124–125
 baseline shift and, 128–129
leading \textit{(continued)}
baseline grids and, 190
for bibliographies, 236
bottom alignment and, 193
for captions and legends, 230–231
changing as type size changes, 126–127
defined, 313
for extracts (quoted text), 223
for footnotes and endnotes, 231–232
historical derivation of term, 4
jump lines and, 228
line spaces vs. space bands and, 127–128
long lines and tight, 111
measuring from baseline to baseline, 31
measuring in points, 23
multicolumn applications, 130
negative leading, 123, 316
non-text applications, 130
overview of, 122–124
rectangular wraps and, 187–188
style sheets and, 272
subheads and, 221–222
in table of contents, 225
in tables, 239–240, 244, 248–252
tall ascenders and, 36
text frames and, 125–126
tight leading, 110–111, 121, 231
typefaces and, 133
vertical justification and, 161–163
x-height and, 132–133
left indents, 181
legends. See also captions
captions vs., 229
defined, 313
typographic conventions, 229–230
legibility
character width and, 34
defined, 105–106, 313
display typefaces and, 78
of footnotes and endnotes, 231–232
screen display and, 287–289
serifed typefaces and, 34
tight spacing and, 106, 108, 148–152
type size and, 17
x-height and, 132
less than or equal to sign (\leq), 212
less than sign ($<$), 212
letter pairs. See kerning pairs
letter spaces
controlling, 142–143
flexing character widths and, 154–155
H&J and, 136–138
letterspacing and forced justification, 153–154
loose or tight lines and, 156–158
ragged-margin text and, 147
screen display and, 287
specifying ranges, 289
unbalanced, 110
letterforms
ascenders and descenders and, 36
calligraphic origins of, 32–33
in contemporary printing, 41
flexing character widths, 155–156
ink wells and, 36
legibility and, 106
monospaced type and, 8
obliques, 42–43
reversed type and, 81
roman and italic, 42
serifed and sans serif, 40
typeface width variations, 43
letterpress printing, 10–11, 314
letterspacing
defined, 153, 314
forced justification and, 153
tricks and problems, 154
Library folders, Macintosh os, 68, 100
license agreements, fonts, 102–103
Life typeface (Simoncini), 133
ligatures
alternate, 63
automatic substitution, 202–203
defined, 201, 314
diphthongs as, 202
in display type, 203
in expert sets, 61, 198–199
German conventions for, 268
most common, 202
light, typeface weight, 40–41, 132
line breaks
defined, 314
ellipses points and, 208–209

first-line indents and, 184

H&J and, 140–141

hard-ending, 306

line caster, defined, 314

line endings, carriage returns and, 85–86

line feed, defined, 86, 314

line length. See measure

line printer, 87

line spacing. See also leading; spacing issues
defined, 314

running heads and, 227

separating text with, 218

unbalanced, 109–110

line-at-a-time H&J, 139

line-break points, 141

Cascading Style Sheets and, 293

overview of, 141

using ragged right margins in indexes,

234–235

linecasting machine, 10

line-ending commands
defined, 314

hard return as, 310

indents as paragraph attributes and, 180

overview of, 85–86

running indents and, 181

lining numerals or figures
centering text between rules, 251–252

in chapter headings, 219

defined, 9, 314

numbers in text, 201

solidus fraction and, 204

in typeface, 173

link, of character, 33, 314

links

hyphens and en dashes signifying, 207

from style sheet to text, 272

Linotype fonts, 10–11

lists

bulleted. See bullets (•)

leading in, 130

logotypes, 198–199, 201–202, 314

loop, of character, 33, 314

loose spacing

H&J and, 156–158

ligatures and, 207–203

overly, 109

reversed type and, 129

sans serif and, 108

type color and, 106–107

low resolution

adjusting type for, 284–286

loosening tracking for, 175–176

lowercase

accented characters in European languages, 261

in Cascading Style Sheets, 292

center alignment and, 192

centering text between rules and, 252
defined, 314

English ordinals in, 204–205

in extended character sets, 198–199

as gauge for typeface width, 132

kerning letter pairs, 168–169

outline form and, 224

small cap size vs., 199–200

superior characters in, 204

swash characters, as finials, 203

text on curved baselines in, 177

lowercase figures, 9, 201. See also old-style numerals

lwfn label, Macintosh, 65–66

M

Macintosh os x

finding characters, 59–60

font embedding and, 102

font management, 98–101

fonts. See fonts, Macintosh

missing fonts and, 97–99

pioneering wysiwyg, 95–96

Unicode and, 55, 57, 90

viewing OpenType fonts, 65

MacRoman encoding

accented characters, 211

accessing hard-to-find characters, 210

borrowed characters and, 57
defined, 57, 315

dotless i, 211

ordinals, 204
macron (¯), 211, 260

magazines
 bibliography entries for, 236–237
display type in, 78
display type in, 78
end marks and, 229
French capitalization and, 266
initial capitals and, 213
jump page and, 228
metric measurements for, 24
multiline H&J and, 140–141
overly loose spacing in, 109
page setup and, 118
paragraph color and, 158
point size and, 122
running heads and, 227
serif roman types for, 72
standard text size for, 122
subheads and, 218
symbolic jump lines and, 228
text faces for, 44
transitional typefaces and, 46

main references, index, 234
majuscules, 6. See also uppercase
manual kerning
 adjusting numeral 1, 173
 aligning oversized characters, 195
 of curved baselines, 177
 defined, 315
 of italic-roman characters, 171
 overview of, 170
 of standing initial caps, 215
Manutius, Aldus, 42
margins
 Cascading Style Sheets and, 292
centered text, 164, 194–195, 252–254
 indention and. See indentation
 justified. See justified margins
 measuring in picas, 23
 in multicolumn settings, 130
ragged. See ragged margins
ragged right. See ragged right margins
 skewed, 185–186
 of table columns, 241
marks of omission. See points of ellipsis
master character designs
 defined, 315
photographic fonts and, 12
 type sizes and, 38–39
mathematical formulas, 129, 204
matrix, Monotype fonts, 10–11, 315
Matt Antique typeface, 47
m-dash. See em dashes
mean line
 aligning rounded characters to, 37
 ascenders and descenders and, 36
 defined, 315
 measuring from, 32
measure
 alignments with ragged margins
 and, 194
in Cascading Style Sheets, 292
character width and, 132
defined, 84, 315
H&J and, 147
leading and. See leading
line length or, 117–121
point size and, 122
sans serif typefaces and, 133
seriffed typefaces and, 131–132
typewriting vs. typesetting and, 83–84
measurement units, typographic
 absolute, 21–24
 agates, 27
 didot point, 27
 relative, 24–27
mechanical alignment, defined, 315
metal type, 4–6, 11
metric measurements
 font, 30, 52, 308
 point conversion to, 23
typographic, 24
Microsoft
 development of OpenType font, 54
development of TrueType font, 53
screen display typefaces, 287
Wingdings and Webdings, 210
military time, 260
miniscules, 6. See also lowercase
minus sign (−), 210, 212
minutes, indicating with primes, 90, 319
missing entries, in tables, 237
missing fonts, 100–101
modern typefaces
 hairline serifs, 34–35
 overview of, 46–47
 reading material and, 72
monitors. See screen display
monoline, 34–35, 315
monospaced type
 applications of, 8–9
 defined, 315
 as fixed-width typeface, 307
 page sizes and line lengths, 83–84
 replacing with proportional type, 9
Monotype
 Arial Unicode MS, 197
 Bembo, 74
 Centaur, 32, 78
 character set, 51
 character widths and, 9–10, 24–25
 fonts in, 10–11
 Garamond, 132
 Gill Sans, 37, 42
 Goudy Old Style, 36
 Italian Old Style, 45
 Janson, 32
 machines, 6, 9
 overview of, 9
 popular text faces, 74
 Sorts, 44, 209
Times New Roman. See Times New Roman typeface (Monotype)
months, French capitalization of, 265
multiline H&J, 139–141, 145
multiline stub-tab entries, 246
Multiple Master font format, 39, 315
multiplication sign (×), 210, 212

N

N, 26, 314
n/a or N.A., 257
name ambiguities, typeface, 47
narrow typefaces. See condensed typefaces
narrow-measure page layout, 111–112
native file formats, 247–248
navigation tools
 end marks, 229
 jump lines, 228
 overview of, 225
 page numbers or folios, 225–226
 running heads, 227
n–dash. See en dash
negative indention, 184
negative leading, 123, 316
negative values, kerning, 168
nested styles, 274, 316
New Baskerville typeface, itc, 36, 74
New Century Schoolbook typeface, 30
newsletters, H&J and, 140
newspapers
 cut-in subheads in, 222–223
 display type in, 78
 headings, avoiding hyphenation, 219
 initial capitals in, 213
 jump lines in, 228
 multiline H&J and, 140–141
 narrow-measure problems, 111–112
 rivers in, 163–164
 setting gutters in, 130–131
 subheads in, 218
 typefaces for, 72, 130
 nibbed pens, 32–31, 374
 no-break text, 144, 316
 nonalphabetic fonts, 44
 nonbreaking hyphens
 defined, 316
 double-hyphenation with, 146
 line-break points and, 141
 using, 145
 nonbreaking word space
 British style of setting temperatures, 263
 defined, 316
 French numeric expressions, 266
 French punctuation spacing, 265
 line-break points and, 141
 Spanish typographic conventions, 266
nonhyphenation zones, 144
Non-Latin typefaces, character sets, 197
non-numeric reference marks, 233
nonprinting blocks, Gutenberg, 4
normal style, 276
normal word spaces
 defined, 316
French punctuation style, 265
 in H&J, 142
leading for non-text settings and, 130
leading for reversed type and, 129
points of ellipsis and, 208–209
Spanish conventions, 266
“no-style” stylesheets, 276, 278–279
not equal to sign (≠), 212
nouns, German capitalization of, 267
Novarese typeface, itc, 42
number or pound sign (#), 212
numbering system, fonts
 encoding issues, 56–57
 PostScript vs. TrueType, 53
 Unicode standard, 55–56
numbers, page. See folios
numerals
 aligning currency symbols, 257
 aligning footnotes, 232
 en dashes for ranges of, 207
 fractions. See fractions
French typographic conventions, 266
 kerning, 173
 lining figures. See lining numerals or figures
 old-style. See old-style numerals
 ordinal. See ordinals
 in outline forms, 224
 roman, 321
 subscripts. See subscripts
 superior and inferior, 264
 superscripts. See superscripts
 in typeface as lining figures, 9
numerator, in fractions
 OpenType automatic layout for, 63
 overview of, 204–206
 top alignment of, 192
numeric reference marks, 233
numeric tables
 alignment in, 254–257
 centering text between rules in, 251–252
 currency symbols in, 256–257
 hanging characters in, 255–256
nut fraction, 205, 305
nut fractions. See also horizontal fractions

0
0, as drop cap, 214
object style sheets, 235
oblique typefaces, 42–43, 45, 316
O’clock, time conventions, 261
offset lithography
 benefits of, 11
 defined, 316
 photographic fonts and, 12
 type design and, 36
offset printing, 16–17, 316
ogonek accent, 211, 260
old-style numerals
 defined, 316
 in expert sets, 61, 198–199
 kerning, 173
OpenType layouts, 63
 overview of, 201
 proportional versions of, 319
old-style typefaces, 45, 219
omissions, points of ellipsis for, 208–209
1 point of lead, setting type on, 123
one-off indents, for wraps, 186
onscreen display. See onscreen display
onscreen rulers, currency symbols, 257
OpenType font
 .otf extension, 65
 alignment and, 192–193
 alternate fonts, 61–62
 blocking, 102
 characters in, 51
 cross-platform compatibility and, 56–58
 currency symbols, 260–261
 defined, 316
 em-based, 25
 extended character sets of, 197–199
 font format, 54, 64–67
 fraction-building feature, 204–206
 hyphens and dashes, 89
 kerning numerals, 173
 layout features, 62–64
ligatures, 202–203
multiple master fonts of, 39
old-style numerals, 201
Unicode numbers and, 55–56
operating systems
defined, 316
font storage locations, 98–101
graphical user interfaces and, 94–95
Macintosh. See Macintosh OS X
support for PostScript, 52–53
Windows. See Windows OS
optical (algorithmic) kerning, 172, 297, 317
optical alignment
centered text, 194–195
correction for, 112–113
defined, 317
heads and tab entries, 237–254
leading, 125–126
oversized characters, 195
overview of, 193
ragged margins, 194
in typeface design, 37
optical kerning, 317. See also algorithmic
(optical) kerning
Optima typeface (Linotype), 40, 227
Option Key, Macintosh, 59
Option-Shift Key, Macintosh, 59
ordinals
defined, 317
OpenType layout features, 64
setting, 204–205
ornament characters, 198–199, 210
orphans
H&J and, 159–161
in indexes, 236
running indents and, 181–182
OS. See operating systems
.otf filename extension (OpenType), 65
out of sorts, 6
outdents. See hanging indents
outline fonts
defined, 50, 317
PostScript and, 52
printing problems and, 98
TrueType and, 53
outlines, formats of, 223–225
output resolution
adding hints for, 16
advantages of high, 283–286
anti-aliasing improving, 18–19
compensating for low, 175–176,
284–286
dark side of WYSIWYG, 17–18
typeset quality and, 16–17
word processors and, 18–19
overprint, 313, 317
overrides, 279–280, 317
overshoot, 37
oversized characters
aligning, 195
initial caps, 213–215
overstrike type, 89, 317

P
page break controls, 293
page description language (PDL), 13, 317
page grids
defined, 317
overview of, 190
text frames and, 125, 190–191
page layout programs. See also composition
problems
alignment, 192–195
automatic leading, 124–125
baseline shift, 128–129
footnotes and endnotes, 230
forced justification, 153–154
grid options, 118
H&J, default specifications, 156
highlighting lines violating spacing, 152
hyphenation zones, 144–145
kerning, 168
leading of rules, 250
legacy of word processors, 19
letterspacing, 153–154
ligatures, 203
line spaces, 128
manual kerning, 170
narrow measure problems in, 112
optical effects and alignment, 112–113
ragged-margin text, 148
page layout programs (continued)
running indents, 181
style sheets and, 272–273, 275, 279
tables, building, 247–249
text frames, 125, 190–191
tracking, 175
wraps, 186–187
page numbers. See folios
Page Setup dialog box, 94
page-breaks, 235–236, 293
pages
folio placement, 190
measuring dimensions, 22–24
size, 83–84
trim size of, 24, 118, 326
Palatino font, 101
Palatino typeface (Linotype), 42, 73–75, 232
Palo Alto Research Center (PARC), 13
paper
narrow typefaces economizing on, 74
print-type clarity and, 284
wove paper, 41
paragraph attributes
assigning in dialog boxes, 94
baseline shifts and, 128–129
defined, 317
end-paragraph command as, 86
H&J and, 156
indents as, 180, 183
leading as, 126–127
style sheets controlling, 272
paragraph indents. See also indentation
defined, 186, 317
measuring in points, 23
rag-left text and, 183
setting skews and depth of, 186
sidestepping, 183–184
paragraph mark (¶), 212, 233
paragraph styles, 273–274, 277–278, 281
paragraphs
aesthetic rags, 164–165
color problems, 158–159
first-line indents, 182–184
H&J and, 139–141
hyphenation for, 145
initial capitals starting, 213–215
run-in subheads and, 221
running indents in middle of, 181
style sheets for single, 278
tracking adjustments for, 158
PARC (Palo Alto Research Center), 13
parent-child style sheets, 275–277, 278, 281
parentheses (),
alignment of, 192, 246
as hanging characters, 255
kerning with italic characters, 171
paths. See also rules
curved (vectors), 13–14
defined, 318
strok ed, 244
patterned backgrounds, 175
PC typesetting. See computer typesetting systems
PDF (Portable Document Format), 291
PDL (page description language), 13, 317
pens, nibbed, 32–33, 324
percent sign (%), 212
periodicals. See magazines
periods (.)
after italics, 76
American English conventions, 262–264
currency symbols in numeric tables, 257
with ellipsis points, 208–209, 318
ending "See also" with, 234
French conventions, 263–264, 266
hanging punctuation and, 193, 310
kerning numerals, 173
in outlines, 224
Spanish conventions, 266
in tables of contents, 225
personal computer. See computer typesetting systems
per-thousand sign (‰), 24
.pfb filename extension, PostScript
Type 1, 67
photocomposition, 14
photographic film, 16–17, 284
photographic fonts, 11–12, 318
photographic masters, 284–285
photographic plates, offset lithography, 11
phototypesetting, 11, 318
pi fonts
 common, 209–210
 defined, 318
 end marks, 229
hard-to-find, 210
minus signs, 89
primes, 90
style sheet overrides and, 280
typesetting, 44
picas
 defined, 318
 leading and, 123–124
 for lowercase text, 132
 measuring type in, 21–22
notation conventions, 23
point size and, 122
uses for, 22–23
pixels
 adding hints to, 16
 anti-aliasing for legibility, 18–19
 defined, 318
 imaging PostScript fonts, 15–16
placeholders, 26–27
plain text, 318
platforms, 318. See also operating systems
plus sign (+), 212, 280
point size
 adjusting for character width, 132
 automatic leading and, 124–125, 298
 baseline shifts vulnerable to, 129
 of bibliographies, 236
 bottom alignment and, 193
calculating, 123–124
 for captions and legends, 229
defined, 318
 for extracts, 223
 for folios, 226
 for footnotes and endnotes, 231–232
 for indexes, 234
 jump lines and, 228
 leading, and change in, 126–127
 leading, calculating, 123–124
 leading, in multicolumn settings, 130–131
 line length and, 111, 118–121
 measure and, 122
resolution and, 284–285
 for reversed type, 80–81
 for running heads with folios, 227
sans serif types and, 133
screen display and, 287–289
seriffed types and, 131–132
 for subheads, 220–222
 for tables, 245, 248
tracking and. See tracking
typewriting vs. typesetting, 87–89
typographic measurement of, 23
for wraps with irregular shapes, 189
points. See also indent on point
 calculating, 122
typewriter character width for lowercase
text, 132
defined, 90
notation conventions, 23
primes and, 90
typographic measurement of, 21–22
uses for, 22–23
points of ellipsis
centered text and, 194–195
defined, 318
notation conventions, 23
primes and, 90
typographic measurement of, 21–22
uses for, 22–23
points of suspension. See points of ellipsis
pop caps. See standing caps
Portable Document Format (PDF), 291
positive values, in kerning, 168
PostScript font
color set, 51
color widths, 25
defined, 52, 319
development of, 15
device independence and, 14–15
duplicate, 101
identifying, 65–67
imaging, 15–16
ligatures and, 202
Macintosh and, 57, 95–96
not preventing embedded fonts, 102
PostScript font (continued)
OpenType for, 54, 319
overview of, 13–14, 52–53
points, 21–22
raster image processing and, 14–15
TruType improving, 53
PostScript interpreter, 52, 319
PostScript points, 22, 319
pound or number sign (#), 212
pound-sterling sign (£), 261
powers of magnitude sign (¥), 212
presses. See printing presses
primes (′, ″)
defined, 319
German conventions, 268
keystrokes for, 210
setting points with single, 23
spacing issues, 212
 typesetting vs. typewriting, 90
printers
inkjet, 14, 16
laser, 13, 17
line, 88–89
PostScript interpreter and, 52
printing
factors influencing clarity, 284
low resolution and, 284–286
offset lithography and, 11
of reversed type, 80–81
of style sheets, 272–273
of type in color, 79–80
when fonts are missing, 51–52, 101
printing presses, 10
Private Use range, Unicode, 62
proportional figures
defined, 319
lining, 173
old-style numerals, 201
proportional type
character widths of, 8
defined, 319
em-based, 24–25
overview of, 9
small capitals as, 199
word spaces of, 85
 pull-down menu, style sheets, 272
punctuation
British vs. American English, 262
centered text and, 194–195
as component of typeface, 29
for fractions, 207
French, 263–265
German, 267–268
hanging, 193
Italian, 267
kerning and, 168–169
in monospaced type, 8
for small caps, 200
subheads and, 221
punctuation space
aligning currency symbols in numeric
tables with, 257
defined, 319
QuarkXPress, kerning-table editor,
172–173
QuickDraw, 96
quotation marks. See also guillemets (« »)
 ASCII, 90, 298
 in bibliographies, 236
 book title in bibliography, 236
 British vs. American English, 262
centered text and, 194–195
as curly quotes, 302
extracts and, 223
French, 264
German, 267–268

Q
high-bit, 310
Italian, 267
italics and, 76
kerning and, 168, 171
Spanish, 266–267
typesetting vs. typewriting, 90, 327
quoted text, 223

R
rag right. See ragged right margins
ragged left margins, 183, 320
ragged margins
aesthetics of, 164–165
creating TOC, 225
defined, 320
gutters and, 131
H&J and, 145, 156
optical alignment and, 113
troublesome alignments with, 194–195
word-space ranges in, 147–148
wraps, avoiding, 187
ragged right margins
defined, 320
footnotes, 232
hyphenation zones and, 144
indexes, 233–234
justification and, 136–137
legends and, 230
measure and, 112, 117
optical alignment and, 113
range of lines, multiline H&J, 139–141
ranging numerals. See lining numerals or figures
ranked hyphenation, 320
raster image processor
overview of, 14–15
PostScript fonts and, 15–16
screen display and, 96
raster image processors (RIPs), 320
rasterized images, 14–15, 320
readability
defined, 320
drop cap issues, 214–215
leading in non-text settings, 130
legibility and, 105–107
screen display and, 175–176, 287–288
text faces and, 74
of various typefaces, 71–72
wraps and, 186
rectangular wraps, 187
recto, defined, 320
reference marks
defined, 321
for footnote symbols, 232–233
low resolutions and, 285
registered color inks, 80
registered trademark symbol (®), 192, 212
registration
knockouts and, 313
overprinting and, 317
type clarity and, 81
regular weight
defined, 321
setting text, 75
as typeface family component, 43
relative indents, 321
relative measurements
defined, 321
e, 24–26
kerning and, 168
overview of, 24
word space, 26–27
Remington typewriter, 7–11
rendering. See rasterized images
resolution. See also dpi (dots per inch)
bitmaps and, 50
Cascading Style Sheets and, 291–293
defined, 321
high output advantages, 283–284
low print, 175, 283–286
type onscreen and, 96, 286–290
typography for world wide web, 290–291
resource fork, Macintosh fonts, 53–54
Return key
defined, 321
leading and, 127–128
in modern typesetting, 85–86
paragraph indents and, 183
searching and replacing styles, 281
triggering follow-on style sheets, 274
reverse indentation, 184
reverse leading, 321
reverse type
 defined, 321
 leading in, 129
 loosening tracking in, 175
 low resolutions and, 285
 onscreen, 81
 overview of, 80–81
rewrapping lines, 157–158
right indents, 181, 321
right-reading images, 11, 321
ring (˚) accent, 211, 260
rips. See raster image processors (rips)
rivers, 163–164, 321
roles, classifying typefaces, 44
roman du roi, 46, 321
roman numerals, 224, 321
roman typefaces
 bibliographies and, 236
 defined, 321
 italics based on, 42
 kerning transition with italics, 171
 obliques based on, 42–43
 overview of, 41–42
 readability of, 72
 setting, 96–97
 style sheets and, 280–281
rows, table
 column structures, 241–242
 defined, 321
 setting, 248
 spreadsheet-style, 243–244
 structure of, 239–240
rule fill, 88–89, 322
rules
 centering text between, 251–252
 defined, 322
 leading of horizontal, 250–251
 specifying horizontal, 242
 specifying in spreadsheets, 244–245
 in tables, 247–248
runarounds, 322. See also wraps
run-in indexes, 214–236
run-in jump lines, 228
run-in subheads, 220–222, 322
running heads
 conventions for, 227
 defined, 322
 folios and, 226–227
 placement on page, 190
running indents
 defined, 180, 322
 hanging indents as, 184
 orphans and, 181–182
 overview of, 181
running text, 322
runover lines
 defined, 322
 footnotes and, 232
 in indexes, 234, 236
 leading and, 224
 in tables, 249
 widowed lines and, 234
 word processor non-support for, 241–242
S
Sabon typeface (Linotype), 74, 118–121
sans serif typefaces
 avoiding tightly spaced, 108
 colored inks and, 79–80
 in condensed typefaces, 77
 defined, 33, 322
 as display type, 44, 78–79
 in drop caps, 214
 geometric, 40, 308
 gothic names for, 47
 jump lines and, 228
 large typeface families of, 43
 ligatures and logotypes in, 202
 point size and measure and, 133
 readability of, 72
 in reversed type, 81
 screen display and, 287–288
 seriffed compared to, 40
 for subheads, 220
 system-generated italics of, 98–99
 tight spacing in, 168
 traditional uses, 72–73
 saving, style sheets, 276
Scotch rules, 247, 322
Scotch typefaces, 46, 322
screen display
 anti-aliasing for. See anti-aliasing
 (font smoothing)
 bitmapped fonts and, 49–50, 67,
 287, 322
 Display PostScript and, 303
 how fonts are used, 96–98
 increasing type size, 287–288
 legibility and, 288–289
 loose tracking and, 175–176
 resolution and. See resolution
 reversed type, 81
 Style menu and, 96–97
 typefaces for, 287–288
 when fonts are missing, 97–98
Windows and Mac OS imaging for,
 95–96
screen fonts, 322. See also bitmapped fonts
script typefaces, 176, 322
Search tool, Windows’ Character
 Map, 59
search-and-replace controls, style sheets,
 280–281
seconds, indicating with primes, 90
section headings, books, 218
section mark (§), 212, 233
sections of text, 222. See also subheads
“see also” references, indexes, 234–235
semibold typefaces
 footnotes and, 231–232
 reversed type and, 80–81
 setting on computer, 97
 small caps and, 200
 superiors and inferiors in, 205–206
 top alignment of characters and, 192
semicolon (;), 76, 89, 234, 236
sentence style (down style)
 captions in, 229
 chapter headings in, 219
 defined, 322
 titles of books and magazines in, 266
serifed typefaces
 benefits of, 33–34
 compared to sans serif, 40
condensed typefaces, not using, 77
defined, 121
italic and oblique, 42
of modern typefaces, 46–47
readability of, 72
text faces using, 74
traditional uses of, 72–73
types of, 34–35
x-height and, 131–132
serifs
 bracketed, 34–35
defined, 322, 323
 hairline, 34–35
 legibility and, 33–34
 overview of, 32–33
 slab, 34–35
 slur, defined, 323
 square, 34–35
 types of, 34–35
 unbracketed, 34–35
set width. See character width
shaped margins, 185, 323
shaped rags, 323
Shift key
 Macintosh’s Keyboard Viewer, 59
typewriting vs. typesetting, 89
shoulder, of curved characters, 33, 323
side bearing
defined, 323
 em dash and, 207–208
 monospacing with exaggerated, 8
 screen display and, 288
 tight spacing and, 108
Simoncini Life typeface, 133
single-byte fonts, 53, 323
size changes, typeface design and, 5–6,
 38–39
skew. See skewed margins
skewed margins, 185–186, 323
slab serifs, 34–35, 323
slash. See virgule (/)
slur serif, defined, 323
small caps
 author’s name in bibliography and, 236
 in caps-and-small caps style. See caps-
small caps (continued)
captions and legends using, 229
chapter headings in, 219
cut-in subheads and, 222
defined, 323
drop caps and, 214
expert or alternate fonts for, 61
extended character sets with, 198–199
as layout feature, 61
overview of, 199–200
running heads and, 227
standing caps and, 215
straddle heads and, 245
subheadings and, 219
uses of, 200
smoothing type. See anti-aliasing (font smoothing)
nap to guideline, frame alignment, 192
soft hyphens
aesthetic rags and, 164–165
defined, 323
hyphenation and, 157–158
overview of, 145
typesetting vs. typewriting, 89
widows and, 160
soft returns
aesthetic rags and, 165
centered text problems with, 194
defined, 323
first-line indents and, 183–184
nested styles and, 274
otypesetting vs. typewriting, 86
solid-set type, 122–125, 130, 323
solidus, 323. See also virgule (/)
solidus fraction, 204, 323
Sorts typeface, Monotype, 44, 209
sorts, type, 6, 323
“space after” paragraph attribute, 127, 323
space bands, 84, 323
“space before” paragraph attribute, 126, 128, 323
spacing issues. See also character spacing;
kerning pairs; line spacing; tracking;
word spaces
characters, 212–213
em dash, 207
loose and tight lines, 156–158
subheads, 221–222
type color, 106–107
typesetting and, 5
unbalanced spacing, 109–111
spacing units, em-based, 26
Spanish typographic conventions, 266–267
special characters. See also symbols
accented characters, 211
common pi characters, 209–210
dashes, 207–208
definition of, 197
extended character sets, 197–199
fractions, 205–207
initial capitals, 213–215
ligatures, logotypes, and diphthongs, 201–203
old-style numbers, 201
points of ellipsis, 208–209
small capitals, 199–200
specific spacing issues, 212–213
superiors, inferiors, and ordinals, 204–205
swash characters, 203
special characters, finding
with application glyph palettes, 60–61
expert sets and alternate fonts, 61
with Macintosh Keyboard Viewer, 59–60
minus and multiplication signs, 210
OpenType layouts, 62–64
outside Unicode standard, 61–62
primes, 210
with Windows Character Map, 58–59
species, use of italics for, 76
spelling dictionary, 203, 260
spine, of character, 33, 324
spread, 227, 324
spreadsheet-style tables
adding rules to, 250–251
alignment issues in, 254–255
hanging characters and, 255–256
overview of, 241
problems with, 241–242
setting, 247–248
vertical alignment in, 246
transitional and modern typefaces, 46–47

typeface weight and, 40

structure, of documents
chapter headings, 219
cut-in subheads, 222–223
extracts, 223
outline formats and tables of contents, 223–225
overview of, 217–219
subhead indention, 222
subhead spacing issues, 221–222
subheadings, 219–221

style sheets
building H&J values into, 156
creating, 275–278
defined, 271, 324–325
how they work, 271–272
importing, 281
overrides, 279–280
overview of, 271
paragraph, 281
paragraph indents with, 91, 183
paragraph vs. character, 273–275
printing, 272–273
removing, 279
searching and replacing, 280–281
tables of contents with, 224–225

street addresses, French conventions, 265

strike-out type. See strike-through type
strike-through type
in Cascading Style Sheets, 293
defined, 324
typewriting vs. typesetting, 89

stroke weight
calligraphic influence of, 33
in Cascading Style Sheets, 293
color of type and, 106–107
condensed faces and, 77
effect of, 132
legibility and, 39
of modern typefaces, 46
seriffed vs. sans serif, 40
software-generated small caps and, 199
transitional typefaces and, 46
type color and, 133
type size and, 131

subentries, index, 234–235, 325

subheads
bold type for, 76
captions and legends with, 279–280

cut-in, 222–223
defined, 325
document structure and, 217–219
indention, 222
point size of folio and, 226
run-in subheads, 220–221
in running heads, 227
spacing issues, 221–222
style sheets for, 281
in table of contents, 224–225
subheads (continued)
in tables, 245
typographic conventions for, 219–221
subscripts
alignment and, 192
in Cascading Style Sheets, 293
defined, 64, 325
overview of, 204–205
using grep expressions with, 275
subsets, of fonts, 161, 325
suitcase folder, Macintosh OS, 325
superior characters. See superscripts
superior ordinals, 204–205
superscripts
alignment and, 192
building fractions by hand, 206
em fractions built from, 205
hanging characters in tables and,
255–256
layout features, 64
low resolutions and, 285
overview of, 203
semibold typefaces and, 200, 205
specifying size of, 204
supplementary tracking controls, 173
superscript characters. See also superscript characters
overview of, 208–209
swash characters
defined, 325
in extended character sets, 198–199
layout features, 63
overview of, 203
Symbol font
duplicates, possibility of, 101
hard-to-find characters and, 210
MacRoman encoding and, 57
minus and multiplication signs, 89
pi characters and, 210
primes and, 90
symbols. See also accentuated characters; pi
fonts; special characters
currency, 256–257
indicating footnotes by, 232–233
jump lines with, 228
on Macintosh computer, 59–60, 211,
258–259
new OpenType fonts with, 198–199
typesetting nonalphabetic fonts, 44
on Windows computer, 58–59, 211,
258–259
T
tab cycle, 239, 325
tab entries, tables
alignment in numeric tables, 237
alignment of, 245–246, 248
alignment of heads and, 252–254
balancing with column widths and
gutters, 248–249
defined, 239, 325
indentation in, 246–247
leading and, 249
leading for runovers in, 249
narrow example, 249
in spreadsheet-style tables,
241–244
straddle heads and, 240
void or missing, 257
Tab key, 183
for indentation, 84
for indentation, improper use of, 183
keystroked codes and, 18
typesetting vs. typewriting, 91
word processors and, 241
tab values, 241, 252, 325
tab-delimited text files, 247–248
table-cell style sheets, 275
tables. See also headings, of tables
alignment, 245–247
complexity of, 239
grid (spreadsheet) approach, 242–245
hanging characters and, 193–194
indentation, 246–247
kerning. See kerning tables
leading, 239–240, 245, 248–252
point size, 245
rules, 247
small caps for headings, 200
specifying, 241–242
structures of, 239–241
typeface choice, 245
text on a path, 177, 326

text typefaces
 bolding for display roles, 78
 common features of, 73–75
 defined, 326
 expanded faces for, 43
 italics in, 76
 overview of, 44
 serif as standard for, 72–73
 using sans serif, 72–73

text wrapping. See wraps

thin spaces
 with bullets, 210
 defined, 326
 with ellipsis points, 208
 em-based, 26
 in French typography, 265–266
 in Italian typography, 267
 in letterspacing, 154
 with oversized characters, 195
 in Spanish typography, 266
 in temperature expressions, 263
 3-em dash, 237
 three-dot ellipsis (. . .), 208–209
 threshold effect, 19

tight rags, 147–148, 326. See also ragged margins

tight spacing
 in H&J, 156–157
 illegibility and, 106
 overly, 107–109
 type color and, 106–107
 word-space ranges in justified margins, 148–152

tilde (~) accent, 59, 146, 211, 260

time expressions, language-specific
 issues, 258–259

Times New Roman typeface
 (Monotype)
 readability problems of, 74, 107
 as seriffed font, 40
 size sensitivity of, 39
 as text face, 73–74
 text face features of, 73–74
 type color and, 107
 typeface family, 44
Times Roman typeface (Linotype)
character width and, 132
as narrow-width text face, 73–74
readability problems of, 74, 107
screen display and, 287
as serifed text face, 40, 72
type color and, 107
x-height and, 23
titles
for books in bibliographies, 236
defined, 218
hyphenation, avoiding in, 219
OpenType titling characters, 64
running heads, 227
style sheets for, 281
in table of contents, 225
titles, contractions in names, 263
titling typefaces, 38, 78, 199, 326
toc (tables of contents), 223–225, 274
tombstone effect, 130
top alignment
defined, 276
of drop caps, 213
of footnote symbols, 232–233
in tables, 246
vertical, 191–192
top rules (head), tables, 247
tracking
character spacing and script faces
and, 176
controlling, 170–171
correcting composition faults, 157–161
defined, 276
H&J and, 138, 146
kerning vs., 167–168
loosening for reversed type, 80, 175
onscreen legibility and, 289
in special situations, 175–176
tightening as point size grows,
174–175
trademark symbol (™), 192, 212
transition typefaces, 46, 326
trim size, of pages
defined, 326
overview of, 24
page grids and, 317
True Type Collections, 66–67
TrueType font
alternate fonts obsolete in, 61
blocking embedded fonts in, 102
e m units in, 25
extended character sets, 197–199
filename extension for (.otf), 65
identifying, 66–67
ligatures in, 202
Macintosh dfonts as, 53–54
multiple master fonts, 39
OpenType as hybrid for, 54
origins of, 16
overview of, 53
problem of duplicate fonts, 101
Unicode numbers and, 55–56
working on Macintosh with, 57
Trump Mediaeval, 73
.tt file extension, 66–67
.ttf file extension, 65–67
turn lines. See runover lines
12 on 12 (solid set), 123
type
ascenders and descenders, 36
bounding boxes and spaces, 5
building blocks, 1–4
calligraphic influences on, 32–33
changing definitions of font, 10–13
changing letterforms along with their
size, 38–39
design as function of size, 5–6
desktop publishing altering the rules
of, 13–16
evolution and automation of, 6–7
monotype, 9–10
output resolution and quality of,
16–17
overview of, 32–33
serifs, 33–35
size. See point size
typewriter, as first desktop publishing
tool, 7–9
Type 1 PostScript font. See PostScript font
type area, of page
defined, 326
grids defining, 190
type color
controlling with leading, 133
as key to graphically harmonious
page, 5
leading for reversed type, 129
loosely spaced type and, 109
paragraph problems, 158–159
quality control and, 166–167
rescuing widows and, 160
spacing and, 109–110
tightly spaced type and, 107–109
typewriting vs. typesetting, 87–89
variations in weight, 40–41
variations in width, 43

typesetting
anti-aliasing for improving quality of,
18–19
defined, 327
legibility and readability, 105–106
long lines and tight leading, 110–111
loose spacing, 109
narrow-measure problems, 111–112
optical effects and alignment problems,
112–113
output resolution, 16–17
overview of, 105
tight spacing, 107–109
trusting the eyes, 113
type color, 106–107
unbalanced spacing, 109–111
word processors and, 18–19
wysiwyg, 17–18

typesetting systems
dedicated. See dedicated typesetting
systems
personal computer. See computer
typesetting systems
typewriting vs. typesetting. See
typewriting vs. typesetting

typewriters
escapement, 7–8
as first desktop publishing tool, 7
monospaced type, 8
Monotype machines, 9–10
proportional type, 9
quotation mark style, 327

typewriting vs. typesetting
line endings and carriage returns,
85–86
overview of, 83
page sizes and line lengths, 83–84
quads, 86–87
tabs, 91
typeface choice and point size, 87–89
unavailable characters, 89–91
word spaces, 84

typeface families, 43, 326
typefaces
ascenders and descendents, 36
calligraphic influences, 32–33
captions and legends, 229–230
classifying by historical period,
45–47
condensed and extended faces,
72–78
decorative faces, 44, 79
defined, 29
display faces, 44, 78
em square in type design, 30–32
expressing emphasis, 75–76
fonts vs., 29–30
impact on point size, measures and
leading, 130–133
for indexes, 234
ink wells in, 36–37
naming issues, 47
nonalphabetic fonts, 44
optical aspect in design of, 37
point size of footnotes, 231–232
readability of, 71–72
reverse type in, 80–81
romans and italics in, 41–43
for running heads with folios, 227
sans serif faces, 40, 72–73
screen display fonts, 287–288
serif faces, 33–36, 40, 72–73
setting tracking for, 173–174
size changes and, 37–39
specifying for tables, 245, 248
text faces, 44, 73–75
type color and, 79–80, 106–107
typographic measurement units
 absolute, 21–24
 agates, 27
didot point, 27
 relative, 24–27
typographic quotation marks, 327

U
U.S. Type Founders Association, 21–22
ultracondensed typefaces. See condensed typefaces
umlaut (¨), 59, 211, 260
unbalanced spacing, 109–111
unbracketed, 34–35
unbracketed serifs
defined, 327
 hairline, in modern faces, 46, 315
 overview of, 34–35
underscore (_), 88–89, 327
Unicode, 56
 accessing accented characters, 258–259
 Character Map and, 59
 characters outside of, 61–62
 characters vs. glyphs in, 56
defined, 327
 encoding issues, 57
 extended character sets based on, 51, 197–199
 fraction bar in Windows, 206
 hard-to-find characters, 210
 ligatures and, 203
 Mac os x and, 55–57, 60
 numbering system technology, 55–56
United States Declaration of Independence, 84
units, typographic measurement
 absolute, 21–24
 agates, 27
didot point, 27
 relative, 24–27
Univers typeface, 40
Universal News with Commercial Pi, 210
Unshift, typewriters, 89, 327
up style, 219, 229, 327
uppercase. See also capitalization
 accented characters in European languages, 261
 in Cascading Style Sheets, 292
 common diphthongs in, 202
defined, 327
titling faces and, 64, 192
 transitional typefaces and, 46
 true condensed faces and, 78

V
variable dot size
 defined, 327
 laser printers and, 17
 vector fonts. See outline fonts
vector-based objects, 14
vectors
 defined, 327
 of outline fonts, 50
 in PostScript, 14
Venetian typefaces, 45, 327.
 See also old-style typefaces
Verdana typeface (Microsoft), 287–288
verso pages, 227, 327
vertical alignment
 bottom, 193
 in Cascading Style Sheets, 293
 center, 192–193
 in lowercase figures, 9
 of tab entries in tables, 245–247
 text on curved baselines and, 177
 top, 191–192
vertical gutters, 188
vertical justification
 defined, 328
 feathering during, 306
 frame-at-time, 163
 overview of, 161–163
 subheads and, 218
 vertical space bands and, 126, 162
vertical rules, tables, 247
vertical space bands
 defined, 328
 line spaces and, 127–128
 subheads and, 218
text frames, 126
vertical justification and, 162
video presentations, tracking for, 175
virgule (/)
defined, 328
fraction bar compared to, 206
as line-break point, 141
separating numerals in fractions, 91, 205
visual alignment
aligning heads and tab entries, 252–254
centered text and, 194–195
defined, 317
of oversized characters, 195
overview of, 193
of ragged margins, 194
void data, in tab entries, 257

W
Warnock Pro font family (Adobe), 97
web browsers
Cascading Style Sheets and, 290
text-composition abilities of, 287
typography and, 291
web fonts
defined, 328
overview of, 54–55
for screen display, 287–288
Webdings font (Microsoft), 209
wedge serifs
defined, 328
overview of, 34–35
weight, typeface. See also stroke weight
defined, 328
degrees of boldness and, 41
multiple master fonts and, 39
of old-style typefaces, 45
of subheads, 220
of table rules, 247
top aligning scaled-down characters
and, 192
variations in, 40–41
Western European languages, accents
for, 211
what you see is what you get. See WYSIWYG
white space
asymmetrical leading in display type
and, 129
defined, 328
em units, 25–26
kerning and, 168
in monospacing, 8
multicolumn settings and, 130–131
point size and, 123
in rivers, 163–164
screen display typefaces and, 288
table gutters and, 248–249
type size and, 37–38
widows
deep indents causing, 182–183
defined, 328
in indexes, 236
overview of, 159–160
rescuing, 160–161
width
character. See character width
variations in typeface, 43
width tables, 51, 328
width-compatible typefaces, 328
wild rag, 147–148, 328
Win ANSI
accessing fraction bar i, 91
accessing minus and multiplication
signs, 210
accessing primes, 210
Character Map, 58–59
defined, 57, 328
ligatures omitted in, 202
ordinals in, 204
Windows OS
fonts. See fonts, Windows OS
fraction bar, 206
symbols, 211, 258–259
Wingdings font (Microsoft), 209
word processors
aligning text using word spaces, 84
automatic leading, 124
bold command and, 96–97
emphasis and highlighting, 88–89
indents as paragraph attributes, 180
word processors (continued)

inferiors, 204
leading as paragraph attribute, 128
legacy of, 19, 93–95
ligatures, 203
line printers, 87–88
line spacing, 122
line-ending commands, 85–86
numeric tables and, 254–256
orphans, 161
page size and, 84
quotation marks, 90
runovers and, 241–242
style sheets and, 275, 279
superiors, 204
tabs, 91
tabs, typesetting vs., 241–242
traditional typesetting and, 17–18
word spaces and, 84

word spaces
in assigning character styles, 273
avoiding in points of ellipsis, 208
with bullets, 210
in centered text, 194
compared with thin space, 154
controlling, 142–143
defined, 329
em basis of, 26–27
in Gutenberg’s system, 4
H&J and, 136–138, 141–143, 147, 154–155
in indexes, 234
as line-break point, 141
loose or tight lines and, 156–158
narrow measures and, 111–112
nonbreaking, 141, 263, 265–266
overly loose spacing, 109
overly tight spacing, 107–109
in ragged-margin type, 147–148
reversed type and, 129
in text with justified margins, 148–152
type color and, 106–107
typewriting vs. typesetting, 84–85
in unbalanced spacing, 109–111
workgroups, shared style sheets and,
276–277

world wide web
Cascading Style Sheets and, 291–293
typography and, 290–291
wove paper, 41
wraps
badly set type and, 112
cut-in subheads and, 223
defined, 329
drop caps and, 214
H&J and, 139, 146
irregularly shaped, 189
narrow measures and, 112
overview of, 185
rectangular, 187–189
rewrapping lines, 157
setting, 186–187
standoff distance and, 186–189

wysiwyg
dark side of, 17–18
defined, 329
how it works, 95–96
improving, 18–19
origins of, 13

X
Xerox, 13
x-height
as ascenders and descenders and, 36
defined, 329
overview of, 32
screen display and, 288
serifed typefaces and, 131–132
small caps design and, 200
type color and, 107
type size and, 131–132
typeface design and, 38

Z
Zapf Dingbats font, ITC, 44, 198–199, 209–210
zones
hyphenation, 144–145, 148
justification, 153
zoom, in manual kerning, 170–171