100 THINGS EVERY DESIGNER NEEDS TO KNOW ABOUT PEOPLE

SUSAN M. WEINSCHENK, Ph.D.
ACKNOWLEDGEMENTS

Many thanks to my great editing team at Peachpit, especially the late night email exchanges with Jeff Riley my development editor. Thanks to Michael Nolan (acquisitions editor) for encouraging me in writing this one and sheparding it through the process. Thanks to Guthrie Weinschenk for his photos, Maisie Weinschenk for her great ideas, and Peter Weinschenk for his support and patience. And a thank you to all those who follow my blog, come to my presentations, and in general listen to me talk about psychology. You give me valuable ideas, opinions, and are the reason I keep searching out and writing about psychology and design.
DEDICATION

Dedicated to the memory of Miles and Jeanette Schwartz. Wish you were here to share the book with.
THE PSYCHOLOGY OF DESIGN vii

HOW PEOPLE SEE

1 WHAT YOU SEE ISN'T WHAT YOUR BRAIN GETS 2
2 PERIPHERAL VISION IS USED MORE THAN CENTRAL VISION TO GET THE GIST OF WHAT YOU SEE 5
3 PEOPLE IDENTIFY OBJECTS BY RECOGNIZING PATTERNS 7
4 THERE'S A SPECIAL PART OF THE BRAIN JUST FOR RECOGNIZING FACES 9
5 PEOPLE IMAGINE OBJECTS TILTED AND AT A SLIGHT ANGLE ABOVE 11
6 PEOPLE SCAN SCREENS BASED ON PAST EXPERIENCE AND EXPECTATIONS 13
7 PEOPLE SEE CUES THAT TELL THEM WHAT TO DO WITH AN OBJECT 15
8 PEOPLE CAN MISS CHANGES IN THEIR VISUAL FIELDS 19
9 PEOPLE BELIEVE THAT THINGS THAT ARE CLOSE TOGETHER BELONG TOGETHER 21
10 RED AND BLUE TOGETHER ARE HARD ON THE EYES 22
11 NINE PERCENT OF MEN AND ONE-HALF PERCENT OF WOMEN ARE COLOR-BLIND 23
12 THE MEANINGS OF COLORS VARY BY CULTURE 27
<table>
<thead>
<tr>
<th>Page</th>
<th>HOW PEOPLE READ</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>IT’S A MYTH THAT CAPITAL LETTERS ARE INHERENTLY HARD TO READ</td>
</tr>
<tr>
<td>14</td>
<td>READING AND COMPREHENDING ARE TWO DIFFERENT THINGS</td>
</tr>
<tr>
<td>15</td>
<td>PATTERN RECOGNITION HELPS PEOPLE IDENTIFY LETTERS IN DIFFERENT FONTS</td>
</tr>
<tr>
<td>16</td>
<td>FONT SIZE MATTERS</td>
</tr>
<tr>
<td>17</td>
<td>READING A COMPUTER SCREEN IS HARDER THAN READING PAPER</td>
</tr>
<tr>
<td>18</td>
<td>PEOPLE READ FASTER WITH A LONGER LINE LENGTH, BUT THEY PREFER A SHORTER LINE LENGTH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page</th>
<th>HOW PEOPLE REMEMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>SHORT-TERM MEMORY IS LIMITED</td>
</tr>
<tr>
<td>20</td>
<td>PEOPLE REMEMBER ONLY FOUR ITEMS AT ONCE</td>
</tr>
<tr>
<td>21</td>
<td>PEOPLE HAVE TO USE INFORMATION TO MAKE IT STICK</td>
</tr>
<tr>
<td>22</td>
<td>IT’S EASIER TO RECOGNIZE INFORMATION THAN RECALL IT</td>
</tr>
<tr>
<td>23</td>
<td>MEMORY TAKES A LOT OF MENTAL RESOURCES</td>
</tr>
<tr>
<td>24</td>
<td>PEOPLE RECONSTRUCT MEMORIES EACH TIME THEY REMEMBER THEM</td>
</tr>
<tr>
<td>25</td>
<td>IT’S A GOOD THING THAT PEOPLE FORGET</td>
</tr>
<tr>
<td>26</td>
<td>THE MOST VIVID MEMORIES ARE WRONG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page</th>
<th>HOW PEOPLE THINK</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>PEOPLE PROCESS INFORMATION BETTER IN BITE-SIZED CHUNKS</td>
</tr>
<tr>
<td>28</td>
<td>SOME TYPES OF MENTAL PROCESSING ARE MORE CHALLENGING THAN OTHERS</td>
</tr>
<tr>
<td>29</td>
<td>MINDS WANDER 30 PERCENT OF THE TIME</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>30</td>
<td>THE MORE UNCERTAIN PEOPLE ARE, THE MORE THEY DEFEND THEIR IDEAS</td>
</tr>
<tr>
<td>31</td>
<td>PEOPLE CREATE MENTAL MODELS</td>
</tr>
<tr>
<td>32</td>
<td>PEOPLE INTERACT WITH CONCEPTUAL MODELS</td>
</tr>
<tr>
<td>33</td>
<td>PEOPLE PROCESS INFORMATION BEST IN STORY FORM</td>
</tr>
<tr>
<td>34</td>
<td>PEOPLE LEARN BEST FROM EXAMPLES</td>
</tr>
<tr>
<td>35</td>
<td>PEOPLE ARE DRIVEN TO CREATE CATEGORIES</td>
</tr>
<tr>
<td>36</td>
<td>TIME IS RELATIVE</td>
</tr>
<tr>
<td>37</td>
<td>THERE ARE FOUR WAYS TO BE CREATIVE</td>
</tr>
<tr>
<td>38</td>
<td>PEOPLE CAN BE IN A FLOW STATE</td>
</tr>
<tr>
<td>39</td>
<td>CULTURE AFFECTS HOW PEOPLE THINK</td>
</tr>
<tr>
<td>40</td>
<td>ATTENTION IS SELECTIVE</td>
</tr>
<tr>
<td>41</td>
<td>PEOPLE FILTER INFORMATION</td>
</tr>
<tr>
<td>42</td>
<td>WELL-PRACTICED SKILLS DON’T REQUIRE CONSCIOUS ATTENTION</td>
</tr>
<tr>
<td>43</td>
<td>EXPECTATIONS OF FREQUENCY AFFECT ATTENTION</td>
</tr>
<tr>
<td>44</td>
<td>SUSTAINED ATTENTION LASTS ABOUT TEN MINUTES</td>
</tr>
<tr>
<td>45</td>
<td>PEOPLE PAY ATTENTION ONLY TO SALIENT CUES</td>
</tr>
<tr>
<td>46</td>
<td>PEOPLE CAN’T ACTUALLY MULTITASK</td>
</tr>
<tr>
<td>47</td>
<td>DANGER, FOOD, SEX, MOVEMENT, FACES, AND STORIES GET THE MOST ATTENTION</td>
</tr>
<tr>
<td>48</td>
<td>LOUD NOISES STARTLE AND GET ATTENTION</td>
</tr>
<tr>
<td>49</td>
<td>FOR PEOPLE TO PAY ATTENTION TO SOMETHING, THEY MUST FIRST PERCEIVE IT</td>
</tr>
</tbody>
</table>
WHAT MOTIVATES PEOPLE

50	PEOPLE ARE MORE MOTIVATED AS THEY GET CLOSER TO A GOAL	116
51	VARIABLE REWARDS ARE POWERFUL	118
52	DOPAMINE MAKES PEOPLE ADDICTED TO SEEKING INFORMATION	121
53	UNPREDICTABILITY KEEPS PEOPLE SEARCHING	123
54	PEOPLE ARE MORE MOTIVATED BY INTRINSIC REWARDS THAN EXTRINSIC REWARDS	125
55	PEOPLE ARE MOTIVATED BY PROGRESS, MASTERY, AND CONTROL	127
56	PEOPLE’S ABILITY TO DELAY GRATIFICATION (OR NOT) STARTS YOUNG	131
57	PEOPLE ARE INHERENTLY LAZY	132
58	PEOPLE WILL LOOK FOR SHORTCUTS ONLY IF THE SHORTCUTS ARE EASY	136
59	PEOPLE ASSUME IT’S YOU, NOT THE SITUATION	137
60	FORMING A HABIT TAKES A LONG TIME AND REQUIRES SMALL STEPS	139
61	PEOPLE ARE MORE MOTIVATED TO COMPETE WHEN THERE ARE FEWER COMPETITORS	141
62	PEOPLE ARE MOTIVATED BY AUTONOMY	142

PEOPLE ARE SOCIAL ANIMALS

<p>| 63 | THE “STRONG TIE” GROUP SIZE LIMIT IS 150 PEOPLE | 144 |
| 64 | PEOPLE ARE HARD-WIRED FOR IMITATION AND EMPATHY | 147 |
| 65 | DOING THINGS TOGETHER BONDS PEOPLE TOGETHER | 149 |
| 66 | PEOPLE EXPECT ONLINE INTERACTIONS TO FOLLOW SOCIAL RULES | 151 |</p>
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>People lie to differing degrees depending on the media</td>
</tr>
<tr>
<td>68</td>
<td>Speakers' brains and listeners' brains sync up during communication</td>
</tr>
<tr>
<td>69</td>
<td>The brain responds uniquely to people you know personally</td>
</tr>
<tr>
<td>70</td>
<td>Laughter bonds people together</td>
</tr>
<tr>
<td>71</td>
<td>People can tell when a smile is real or fake more accurately with video</td>
</tr>
<tr>
<td>72</td>
<td>Seven basic emotions are universal</td>
</tr>
<tr>
<td>73</td>
<td>Emotions are tied to muscle movement and vice versa</td>
</tr>
<tr>
<td>74</td>
<td>Anecdotes persuade more than data</td>
</tr>
<tr>
<td>75</td>
<td>Smells evoke emotions and memories</td>
</tr>
<tr>
<td>76</td>
<td>People are programmed to enjoy surprises</td>
</tr>
<tr>
<td>77</td>
<td>People are happier when they're busy</td>
</tr>
<tr>
<td>78</td>
<td>Pastoral scenes make people happy</td>
</tr>
<tr>
<td>79</td>
<td>People use look and feel as their first indicator of trust</td>
</tr>
<tr>
<td>80</td>
<td>Listening to music releases dopamine in the brain</td>
</tr>
<tr>
<td>81</td>
<td>The more difficult something is to achieve, the more people like it</td>
</tr>
<tr>
<td>82</td>
<td>People overestimate reactions to future events</td>
</tr>
<tr>
<td>83</td>
<td>People feel more positive before and after an event than during it</td>
</tr>
<tr>
<td>84</td>
<td>People want what is familiar when they're sad or scared</td>
</tr>
</tbody>
</table>
PEOPLE MAKE MISTAKES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>PEOPLE WILL ALWAYS MAKE MISTAKES; THERE IS NO FAIL-SAFE PRODUCT</td>
<td>188</td>
</tr>
<tr>
<td>86</td>
<td>PEOPLE MAKE ERRORS WHEN THEY ARE UNDER STRESS</td>
<td>190</td>
</tr>
<tr>
<td>87</td>
<td>NOT ALL MISTAKES ARE BAD</td>
<td>194</td>
</tr>
<tr>
<td>88</td>
<td>PEOPLE MAKE PREDICTABLE TYPES OF ERRORS</td>
<td>195</td>
</tr>
<tr>
<td>89</td>
<td>PEOPLE USE DIFFERENT ERROR STRATEGIES</td>
<td>198</td>
</tr>
</tbody>
</table>

HOW PEOPLE DECIDE

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>PEOPLE MAKE MOST DECISIONS UNCONSCIOUSLY</td>
<td>202</td>
</tr>
<tr>
<td>91</td>
<td>THE UNCONSCIOUS KNOWS FIRST</td>
<td>204</td>
</tr>
<tr>
<td>92</td>
<td>PEOPLE WANT MORE CHOICES AND INFORMATION THAN THEY CAN PROCESS</td>
<td>206</td>
</tr>
<tr>
<td>93</td>
<td>PEOPLE THINK CHOICE EQUALS CONTROL</td>
<td>208</td>
</tr>
<tr>
<td>94</td>
<td>PEOPLE MAY CARE ABOUT TIME MORE THAN THEY CARE ABOUT MONEY</td>
<td>210</td>
</tr>
<tr>
<td>95</td>
<td>MOOD INFLUENCES THE DECISION-MAKING PROCESS</td>
<td>212</td>
</tr>
<tr>
<td>96</td>
<td>GROUP DECISION MAKING CAN BE FAULTY</td>
<td>214</td>
</tr>
<tr>
<td>97</td>
<td>PEOPLE ARE SWAYED BY A DOMINANT PERSONALITY</td>
<td>216</td>
</tr>
<tr>
<td>98</td>
<td>WHEN PEOPLE ARE UNCERTAIN, THEY LET OTHERS DECIDE WHAT TO DO</td>
<td>217</td>
</tr>
<tr>
<td>99</td>
<td>PEOPLE THINK OTHERS ARE MORE EASILY INFLUENCED THAN THEY ARE THEMSELVES</td>
<td>219</td>
</tr>
<tr>
<td>100</td>
<td>PEOPLE VALUE A PRODUCT MORE HIGHLY WHEN IT’S PHYSICALLY IN FRONT OF THEM</td>
<td>221</td>
</tr>
</tbody>
</table>

BIBLIOGRAPHY 225
INDEX 235
Whether you’re designing a Web site or a medical device—or something somewhere in between—your audience is comprised of the people who will benefit from that design. And the totality of your audience’s experience is profoundly impacted by what you know—or don’t know—about them.

How do they think? How do they decide? What motivates them to click or purchase or whatever it is you want them to do?

You’ll learn those things in this book.

You’ll also learn what grabs their attention, what errors they will make and why, as well as other things that will help you design better.

And you’ll design better because I’ve already done most of the heavy lifting for you. I’m one of those strange people who likes to read research. Lots and lots of research. So I read—or in some cases, re-read—dozens of books and hundreds of research articles. I picked my favorite theories, concepts, and research studies.

Then I combined them with experience I’ve gained throughout the many years I’ve been designing technology interfaces.

And you’re holding the result: 100 things I think you need to know about people.
This page intentionally left blank
Imagine that you’re walking down a busy street in a large city when you suddenly see the face of a family member. Even if you were not expecting to see this person, and even if there are dozens, or even hundreds, of people in your visual field, you will immediately recognize him or her as your relative. You’ll also have an accompanying emotional response, be it love, hate, fear, or otherwise.

Although the visual cortex is huge and takes up significant brain resources, there is a special part of the brain outside the visual cortex whose sole purpose is to recognize faces. Identified by Nancy Kanwisher (1997), the fusiform face area (FFA) allows faces to bypass the brain’s usual interpretive channels and helps us identify them more quickly than objects. The FFA is also near the amygdala, the brain’s emotional center.

People with autism don’t view faces with the FFA

Research by Karen Pierce (2001) showed that people with autism don’t use the FFA when looking at faces. Instead, they use other, regular pathways in the brain and visual cortex that are normally used to recognize and interpret objects but not faces.

We look where the face looks

Eye-tracking research shows that if a picture of a face looks away from us and toward a product on a Web page (see Figure 4.1), then we tend to also look at the product.

But remember, just because people look at something doesn’t mean they’re paying attention. As you consider your Web approach, you’ll have to decide whether you want to establish an emotional connection (the face looking right at the user) or direct attention (the face looking directly at a product).
People are born with a preference for faces

Research by Catherine Mondloch et al. (1999) shows that newborns less than an hour old prefer looking at something that has facial features.

The eyes have it: people decide who and what is alive by looking at the eyes

Christine Looser and T. Wheatley (2010) takes pictures of people and then morphs them in stages into inanimate mannequin faces. She shows the stages and has research subjects decide when the picture is no longer a human and alive. Figure 4.2 shows examples of her pictures. Looser’s research found that subjects say the pictures no longer show someone who is alive at about the 75 percent mark. She also found that people primarily use the eyes to decide if a picture shows someone who is human and alive.

FIGURE 4.2 An example of Looser’s and Wheatley’s people to mannequin faces

Takeaways

- People recognize and react to faces on Web pages faster than anything else on the page (at least by those who are not autistic).
- Faces looking right at people will have the greatest emotional impact on a Web page, probably because the eyes are the most important part of the face.
- If a face on a Web page looks at another spot or product on the page, people will also tend to look at that product. This doesn’t necessarily mean that they paid attention to it, just that they physically looked at it.
INDEX

A
Aaker, Jennifer, 210
Aarts, Henk, 125
affordances, 15
 hyperlinks, 17–18
 incorrect affordances, 16, 18
 perceived affordances, 15–17
 usage cues, 15–16
alexpoole.info Web site, 38
algorithmic to heuristic work, 126
Alloway, Tracy, 47
Anderson, Cameron, 216
Anderson and Pichert study, 36
anecdotes versus data as persuasion, 168
App Inventor, 142
ARCS (Attention, Relevance, Confidence, and Satisfaction), 64
Aronson, Elliot, 180
The Art of Choosing, 206, 208
Attention, Relevance, Confidence, and Satisfaction (ARCS), 64
attention focus
 cell phone conversations, 105–107
 filtering
 distractions, 97
 information, 98
 frequency
 expectations, 101–102
 signaling infrequency, 102
 items receiving most attention, 108–109
 multitasking, 105–107
 noises that startle, 110–111
 perceiving before attention, 112–113
 salient cues, 104
 selective attention, 96
 unconscious, 97
 signal detection theory, 112–113
 sustained attention spans, 103
 well-practiced skills, 99–100
Attention Restoration Therapy, 176
attribute errors, fundamental, 137–138
autism and FFA (fusiform face area) use, 9
autonomy, 142
Ayduk, Ozlem, 131

B
Baddeley, Alan, 48
Bahrami, Bahador, 215
Bandura, Albert, 155
Barth, John, 148, 219
Batson, C., 84
Bayle, Dimitri, 6
Bechara, Antoine, 204
Begley, Sharon, 94
Bellenkes, Andrew, 101
Belova, Marina, 171
Berman, Mark, 176
Berns, Gregory, 171
Berridge, Kent, 121
Biederman, Irving, 7–8
blue-yellow color deficiency, 23–25
Boradbent, Donald, 49
Boyd, John, 84
Bushong, Ben, 221, 224

C
camouflage and color blindness, 26
Canessa, Nicola, 166
canonical perspective, 12
Carey, Susan, 73
Carlsson, Arvid, 121
categorizing things/information, 82–83
Cattell, James, 30
cell phone conversations, 105–107
central versus peripheral vision, 5–6, 20
Chabris, Christopher, 19, 77
change blindness, 19
Chartrand, Tanya, 148
Chen, Yi-Fen, 218
chromostereopsis, 22
Chua, Hannah, 93
Clem, Roger, 57
cognitive dissonance theory, 180

cognitive dissonance/denial, 70–71

cognitive loads, 65, 67

“Cognitive Science and Science Education,” 73

color

 chromostereopsis, 22
 color blindness, 23–26
 influences of color and shapes, 3
 meanings, 27–28
 selective attention, 96

colorfilter.wickline.org Web site, 26

commission errors, 195

conceptual versus mental models, 74–75

crude versus abstract words, 54

contingent rewards, 125

continuous reinforcement schedules, 120

Cowan, Nelson, 48

Craik, Kenneth, 72

creativity, 86
 deliberate
 and cognitive, 86–87
 and emotional, 86–88
 spontaneous
 and cognitive, 86, 88
 and emotional, 86, 88–89

Csikszentmihalyi, Mihaly, 91

cultural influences on brain processes, 93–94

Custers, Ruud, 125

D

Darley, John, 84, 217

Davidson, Mary Jo, 72

Davis, Joshua, 166

daydreaming versus mind wandering, 68

De Vries, Marieke, 184, 212

decision making
 choice equals control, 208–209
 influences
 display of products, 221–224
 dominant personalities, 216
 groups, 214–215
 mood, 212–213
 others more than self, 219–220
 testimonials and ratings, 217
 third-person effect, 220
 “jam” study, 206
 multiple choices paralyze thoughts, 206–207
 social validation, 217
 time versus money, 210–211
 uncertainty breeds indecision, 217–218

unconscious decisions, 202–205, 220
 danger alerts, 204–205
 SCR (skin conductance response), 204–205

decorative fonts, 37–39

The Design of Everyday Things, 15

Dietrich, Ann, 86–87

Dodson, John, 191

donations for natural versus man-made disasters, 138

Don’t Make Me Think, 64, 132

dopamine system, 121–122
 140-character messages, 124
 breaking dopamine loops, 124
 evolutionary standpoint, 121
 listening to music, 179
 monetary rewards, 126
 Pavlovian reflex, 123

Dove, Laura, 72

dreaming, 55

Drive, 126, 129–130

Dropbox Web site, 116–117, 120

Duchenne, Guillaume, 161–162

Dunbar, Robin, 144–145

Dunbar’s number for species, 144–145

Dutton, Denis, 175

Dyson, Mary, 43

E

Ebbinghaus, Hermann, 58, 60

Edison, Thomas, 86–87

Ekman, Paul, 164–165

e-mail
 dopamine system, 121
 e-mail campaigns, 79–81, 128
 unpredictability, 123

Emberson, Lauren, 106

emotions
 anecdotes versus data as persuasion, 168
 Attention Restoration Therapy, 176
 cognitive dissonance theory, 180
 enjoyment of surprises, 171–172
 events
 reactions to current events, 182–183
 reactions to future events, 181
 familiarity desired when sad or scared, 184–185
 happiness
 busy activities, 173–174
 dopamine released by music, 179
 trust as predictor, 177–178
viewing pastoral scenes, 175
microexpressions, 164
muscle movement, 166–167
scarcity and exclusivity, 180
smells, 169–170
universal emotions, 164–165
Emotions Revealed: Recognizing Faces and Feelings to Improve Communication and Emotional Life, 164
empathy, 147–148
errors in memory, 60
errors people make
 age factors, 199
 error messages, 188–189
 error strategies, 198–199
 no fail-safe products, 188–189
 not all bad, 194
 predictable error types
 HFACS (Human Factors Analysis and Classification System), 197
 motor-control, 195–196
 performance, 195
 Swiss cheese model, 196
 stressful conditions, 190–193
 Yerkes-Dodson law, 191–192
Eternal Sunshine of the Spotless Mind, 57
extrinsic versus intrinsic rewards, 125–126
eye tracking, 19–20
eyewitness testimonies, 56–57

F
Facebook
 dopamine loops, 124
 responding to personal acquaintances, 158
 social group size, 145
facial recognition
 attention focus, 108–109
 babies’ preferences, 10
 eyes indicating life, 10
 FFA (fusiform face area), 9
Festinger, Leon, 70
FFA (fusiform face area), 9
Fishbach, Ayelet, 116
Fitt’s Law, 66
fixation and saccade reading patterns, 30–31, 44
flashbulb memory, 60
Flesch-Kincaid Readability Formula, 33–34
flow state, 91–92
fonts
 decorative, 37–39
 readability, 38–39
serif versus sans serif, 37–38
size, 40–41
Forgetting Curve, 58, 60
Fox TV series, Lie to Me, 164
fundamental attribution errors, 137–138
fusiform face area (FFA), 9

G
Gal, David, 71
gaming and loads, 67
Garcia, Stephen, 141
Gentner, Dedre, 72
geographical influences on brain processes, 93–94
The Geography of Bliss, 177
The Geography of Thought, 93
genos (geometric icons), 7–8
Gibson, James, 15
Gilbert, Daniel, 181
goal-gradient effect, 116–117
“Good Samaritan” research, 84–85
Goodman, Kenneth, 31
Google
 App Inventor, 142
 dopamine loops, 124
“Gorilla video,” 19
gratification, delaying or not, 131
Greene, David, 125

H
habits, 139–140
Hancock, Jeff, 155
happiness
 busy activities, 173–174
 dopamine released by music, 179
 trust as predictor, 177–178
 viewing pastoral scenes, 175
Havas, David, 166
heavy media multitaskers (HMMs), 106
HFACS (Human Factors Analysis and Classification System), 197
Hillarp, Nils-Ake, 121
HMMs (heavy media multitaskers), 106
hover cues, 17–18
Hsee, Christopher, 173
Hubel, David, 7
Hull, Clark, 116
Human Error, 196
Human Factors Analysis and Classification System (HFACS), 197
Hyman, Ira, 105
hyperlinks, 17–18
imitation, 147–148
inattention blindness, 19
inclusion errors, 53
incorrect affordances, 16, 18
influences on decision making
display of products, 221–224
dominant personalities, 216
groups, 214–215
mood, 212–213
others more than self, 219–220
testimonials and ratings, 217
third-person effect, 220
InformationIsBeautiful.net Web site, 27
interaction rules
online, 151–153
social, 151
interval reward schedules, 118–120
intrinsic versus extrinsic rewards, 125–126
The Invisible Gorilla, 19, 77
Iyengar, Sheena, 206, 208
"jam" study, 206
Ji, Daoyun, 55
Johnson-Laird, Philip, 72
Kahn, Peter, 176
Kang, Neung Eun, 198–199
Kanizsa, Gaetano, 2
Kanizsa rectangle, 2
Kanwisher, Nancy, 9
Kaplan, Stephen, 176
Kawai, Nobuyuki, 50
Keller, J.M., 64
Kilduff, Gavin, 216
Kivez, Ran, 116–117, 120
Knutson, Brian, 126
Koo, Minjung, 116
Krienen, Fenna, 157–158
Krug, Steve, 64, 132
Krumhuber, Eva, 162
Kurtzberg, Terri, 154
Lally, Philippa, 139–140
Larson, Adam, 5–6, 20
Larson, Kevin, 32
Latane, Bibb, 217
laughter bonding, 159–160
laziness, 132–135, 173
LeDoux, Joseph, 164
Lehrer, Jonah, 158
Lepper, Mark, 125, 206
Lie to Me, 164
light media multitaskers (LMMs), 106
LinkedIn, 127, 158
Livemocha Web site, 127–129
LMMs (light media multitaskers), 106
loads
cognitive, 65, 67
increasing, 67
motor, 65–67
trade-offs, 65
visual, 65, 67
Loftus, Elizabeth, 56
long-term memory
four items, 49, 206
retention of information, 51–52
schemata, 51–52
Looser, Christine, 10
Loschky, Lester, 5–6, 20
lowercase or mixed case letters versus uppercase letters, 30–32
Lupien, Sonia, 192
Lynda.com Web site, 103
Maine state Web site, 134
Mandler, George, 49
Manstead, Antony, 162
Marshmallow Experiment, 131
mastery incentive, 129–130
Matsuzawa, Tetsuro, 50
McCandless, David, 27
Medina, John, 4
Mednick, Sara, 89
Medtronic’s annual report, 78
memory
concrete versus abstract words, 54
degradation of, 58
dreaming, 55
emotions, 168
erasing, 57
errors, 60
eyewitness testimonies, 56–57
flashbulb memory, 60
Forgetting Curve, 58, 60
long-term
four items, 49, 206
retention of information, 51–52
schemata, 51–52
phonological coding, 55
recency and suffix effects, 54
recognition versus recall tasks, 53
inclusion errors, 53
reconstructed memory, 56–57
short-term, 46–47
visual memory versus words, 54
working, 46–47
four items, 48–50
versus sensory input, 47
mental models, 72–73
about frequency, 101
versus conceptual models, 74–75
Mental Models, 72, 73
“Mental Models and Usability,” 72
microexpressions, 164
mid-brain, 108
Miller, George A., 48
mind wandering, 68–69
mirror neurons, 147–148, 167
Mischel, Walter, 131
Mississippi state Web site, 133
mistakes people make. See errors people make
Mitchell, Terrence, 182
mixed case or lowercase letters versus uppercase letters, 30–32
Mogilner, Cassie, 210
Mojzisch, Andreas, 214
Mondloch, Catherine, 10
monetary rewards, 126
Morgan, Jacob, 145
Morrell error taxonomy, 195
motivation
algorithmic to heuristic work, 126
anticipation versus getting, 122
autonomy, 142
defaults, 136
donations for natural versus man-made disasters, 138
dopamine system, 121–122
140-character messages, 124
breaking dopamine loops, 124
monetary rewards, 126
Pavlovian reflex, 123
forming habits, 139–140
fundamental attribution errors, 137–138
goal-gradient effect, 116–117
gratification, delaying or not, 131
laziness
versus happiest when busy, 173
inherent, 132–135
mastery incentive, 129–130
number of competitors factor, 141
operant conditioning, 118–120
opioid system, 121
post-reward resetting phenomenon, 117
progress incentive, 127–129
rewards/reinforcements, 116–117
contingent, 125
continuous reinforcement schedules, 120
interval reward schedules, 118–120
intrinsic versus extrinsic, 125–126
monetary, 126
ratio reward schedules, 118–120
variable rewards, 118–120
shortcuts, 136
social incentive, 126
unconscious, 125
motor loads, 65–67
Müller-Lyer, Franz, 3
multitasking, 105–107
Muppets, 184, 212
muscle movement and emotions, 166–167
N
N effect, 141
Nass, Clifford, 106
The Nature of Explanation, 72
Neisser, Ulric, 60
new brain, 108
Newton, Issac, 86, 88
Nisbett, Richard, 93, 125
noises that startle, 110–111
Norman, Don, 15
O
object/pattern recognition, 7–8
affordances, 15
hyperlinks, 17–18
incorrect affordances, 16, 18
perceived affordances, 15–17
usage cues, 15–16
canonical perspective, 12
objects close together, 21
objects tilted or slight angle above, 11–12
selective attention, 96
old brain, 108–109, 142
olfactory paths, 169
omission errors, 195
operant conditioning, 118–120
INDEX

Ophir, Eyal, 106
opioid system, 121
Organizing for America Web site, 152–153

P – Q
Paap, Kenneth, 30
Palmer, Stephen, 11
Panksepp, Jaak, 160
Parsons New School for Design, scent master’s program, 169
Pavlov, Ivan, 123
Pavlovian responses, 123, 224
people as social animals
 empathy, 147–148
 imitation, 147–148
 laughter bonding, 159–160
 mirror neurons, 147–148
 online interaction rules, 151–153
 responding to personal acquaintances, 157–158
 smiling, real or fake, 161–162
 social groups, 144–146
 social interaction rules, 151
 synchronous activities, 149–150
 syncing speakers’/listeners’ brains, 156
 telling lies depending on media, 154–155
 perceived affordances, 15–17
 peripheral vision
 versus central vision, 5–6, 20
 reading, 31
phonological coding, 55
Pierce, Karen, 9
Pink, Daniel, 126, 129–130
post-reward resetting phenomenon, 117
predictable error types
 HFACS (Human Factors Analysis and Classification System), 197
 motor-control, 195–196
 performance, 195
 Swiss cheese model, 196
progress incentives, 127–129
progress indicators, 85
progressive disclosure, 62–64
Provine, Robert, 159

R
Ramachandran, Vilayanur, 148
ratio reward schedules, 118–120
Rayner, Keith, 30
 reading
 versus comprehension, 33–36
computer screens
 line lengths, 43–44
 versus paper, 42
Flesch-Kincaid Readability Formula, 33–34
 fonts
 decorative, 37–39
 readability, 38–39
 serif versus sans serif, 37–38
 size, 40–41
music versus text, 31
pattern recognition, 37–39
peripheral vision, 31
point of view, 36
text readability calculations, 33–34
titles and headlines, 34–35
uppercase versus mixed case or lowercase letters, 30–32
word shape theory, 30
Reason, James, 196
recency and suffix effects, 54
recognition versus recall tasks, 53
reconstructed memory, 56–57
REM sleep and creativity, 89
reptilian brain, 108
rewards/reinforcements, 116–117
 contingent, 125
 continuous reinforcement schedules, 120
 interval reward schedules, 118–120
 intrinsic versus extrinsic, 125–126
 monetary, 126
 ratio reward schedules, 118–120
 variable rewards, 118–120
Rhone Island state Web site, 133
The Rocket Science Group, LLC, 62, 80–81
Rodriguez, Alan, 193
Rucker, Derek, 71

S
saccade and fixation reading patterns, 30–31, 44
salient cues, 104
Salimpoor, Valorie, 179
sans serif versus serif fonts, 37–38
satisficing, 132, 135
Sauter, Disa, 164
scent branding, 169
schemata, 51–52
Schindler’s List, 184, 212
Schooler, Jonathan, 68
Schulz-Hardt, Stefan, 214
Schwarz, Norbert, 38
SCR (skin conductance response), 204–205
Seif, Farid, 101
selective attention, 96–97
Sephens, Greg, 156
serif versus sans serif fonts, 37–38
Sesame Street, 82
Shappell, Scott, 197
shortcuts, 136
short-term memory, 46–47
sight
 brain shortcuts, 2–3
 bright or low light, 3
 color
 chromostereopsis, 22
 color blindness, 23–26
 influences of color and shapes, 3
 meanings, 27–28
 meanings by cultures, 27–28
 selective attention, 96
content placement
 avoiding screen edges, 13–14
 peripheral versus central vision, 5–6, 20
 scanning screen based on experience/expectations, 13–14
 2D versus 3D, 8
cues
 hyperlinks, 17
 object shapes, 15–16
 online buttons, 16–17
facial recognition, 9–10
 attention focus, 108–109
 babies’ preferences, 10
 eyes indicating life, 10
 FFA (fusiform face area), 9
object/pattern recognition, 7–8
 affordances, 15
 affordances, incorrect, 16, 18
 affordances, perceived, 15–17
 canonical perspective, 12
 hyperlinks, 17–18
 objects close together, 21
 objects tilted or slight angle above, 11–12
 selective attention, 96
 usage cues, 15–16
optical illusions, 3
 peripheral versus central vision, 5–6, 20
 2D versus 3D, 4
visual field changes, 19–20
signal detection theory, 112–113
signaling infrequency, 102
Silence, Elizabeth, 177
Simons, Daniel, 19, 77
skin conductance response (SCR), 204–205
Skinner, B.F., 118, 120
smells
 and decision making, 223
 and emotions, 169–170
smiling, real or fake, 161–162
social animals, people as
 empathy, 147–148
 imitation, 147–148
 laughter bonding, 159–160
 mirror neurons, 147–148
 online interaction rules, 151–153
 responding to personal acquaintances, 157–158
 smiling, real or fake, 161–162
 social groups, 144–146
 social interaction rules, 151
 synchronous activities, 149–150
 syncing speakers’/listeners’ brains, 156
social groups, 144–146
social incentives, 126
social networks
 dopamine loops, 124
 unpredictability, 123
social validation, 217
Solso, Robert, 96
Song, Hyunjin, 38
St. Claire, Lindsay, 192
standards-schmandards.com Web site, 34
storytelling, 76–78
 attention focus, 108–109
Stumbling on Happiness, 181
Swiss cheese model, human errors, 196
synchronous activities, 149–150
T
Telling Lies: Clues to Deceit in the Marketplace, Politics, and Marriage, 164
Texas state Web site, 134
texting
 dopamine system, 121
 unpredictability, 123–124
The Art Instinct: Beauty, Pleasure, and Human Evolution, 175
Thermos products, 212
thinking
ARCS (Attention, Relevance, Confidence, and Satisfaction), 64
categorizing, 82–83
causality, assigning, 78
cognitive dissonance/denial, 70–71
conceptual models, 74–75
cultural influences, 93–94
danger alerts, 204–205
SCR (skin conductance response), 204–205
unconscious decisions, 202–205, 220
danger alerts, 204–205
SCR (skin conductance response), 204–205
unconscious motivation, 125
universal emotions, 164–165
uppercase versus mixed case or lowercase letters, 30–32
usage cues, 15–16
user-centered design (UCD), 75
UCD (user-centered design), 75
Ulrich, Roger, 176
Ulrich-Lai, Yvonne, 193
unconscious decisions, 202–205, 220
danger alerts, 204–205
SCR (skin conductance response), 204–205
variable rewards, 118–120
vischeck.com Web site, 26
visual loads, 65, 67
visual memory versus words, 54

W
Wagner, Ullrich, 89
Walters, Antoinette, 78
Weiner, Eric, 177
Weltz, Julie, 72
Wheatley, T., 10
When Prophecy Fails, 70
Wiegmann, Douglas, 197
Wiesel, Torsten, 7
Wikipedia Web site, 127
Wilson, Matthew, 55
Wohl, Michael, 140
word shape theory, 30
working memory, 46–47
four items, 48–50
versus sensory input, 47
wrong-action errors, 195

X – Z
x-height, fonts, 40–41

Yarbus, Alfred, 20
Yerkes, Robert, 191
Yerkes-Dodson law, 191–192
Yoon, Wan Chul, 198–199
Young, Indi, 73
YouTube videos, Panksepp, Jaak, 160

Zagefka, Hanna, 138
Zihui, Lu, 93
Zimbardo, Philip, 84
van der Linden, Dimitri, 194
Van Veen, Vincent, 71
Vischeck.com Web site, 26
visual loads, 65, 67
visual memory versus words, 54

W
Wagner, Ullrich, 89
Walters, Antoinette, 78
Weiner, Eric, 177
Weltz, Julie, 72
Wheatley, T., 10
When Prophecy Fails, 70
Wiegmann, Douglas, 197
Wiesel, Torsten, 7
Wikipedia Web site, 127
Wilson, Matthew, 55
Wohl, Michael, 140
word shape theory, 30
working memory, 46–47
four items, 48–50
versus sensory input, 47
wrong-action errors, 195

X – Z
x-height, fonts, 40–41

Yarbus, Alfred, 20
Yerkes, Robert, 191
Yerkes-Dodson law, 191–192
Yoon, Wan Chul, 198–199
Young, Indi, 73
YouTube videos, Panksepp, Jaak, 160

Zagefka, Hanna, 138
Zihui, Lu, 93
Zimbardo, Philip, 84

van der Linden, Dimitri, 194
Van Veen, Vincent, 71
variable rewards, 118–120