
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321754066
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321754066
https://plusone.google.com/share?url=http://www.informit.com/title/9780321754066
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321754066
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321754066/Free-Sample-Chapter

Praise for Experiences of Test Automation

“�What you hold in your hands is a treasure trove of hard-won knowledge about what works
and what doesn’t in test automation. It can save you untold hours and costs by steering you
away from paths that lead nowhere and guiding you towards those that lead to success.”

—Linda Hayes

“�From tools to methodology, Dorothy Graham and Mark Fewster weave a compelling set of
stories that provide a learning experience in automation. This comprehensive tome is the
first of its kind to take the reader deep into the world of automated testing, as depicted by
case studies that show the realities of what happened across a multitude of projects spanning
a wide variety of industries and technology environments. By identifying similarities and
repeated themes, the authors help the reader focus on the essential learning lessons and pit-
falls to avoid. Read this book cover to cover for inspiration and a realization of what it takes
to ultimately succeed in test automation.”

—Andrew L. Pollner, President & CEO of ALP International Corporation

“�Many years after their best-seller Software Test Automation, Mark Fewster and Dorothy
Graham have done it again. Agile methodologies have given test automation a dominant
presence in today’s testing practices. This is an excellent, highly practical book with many
well-documented case studies from a wide range of perspectives. Highly recommended to
all those involved, or thinking about getting involved, in test automation.”

—�Erik van Veenendaal, Founder of Improve Quality Services and vice-chair of
TMMi Foundation

“�This book is like having a testing conference in your hand, with a wealth of case studies
and insights. Except that this book is much cheaper than a conference, and you don’t have
to travel for it. What impressed me in particular was that it is all tied together in a concise
‘chapter zero’ that efficiently addresses the various aspects I can think of for automation suc-
cess. And that is something you will not get in a conference.”

—Hans Buwalda

“�An exciting, well-written, and wide-ranging collection of case studies with valuable real-
world experiences, tips, lessons learned, and points to remember from real automation proj-
ects. This is a very useful book for anyone who needs the evidence to show managers and
colleagues what works—and what does not work—on the automation journey.”

—Isabel Evans, FBCS CITP, Quality Manager, Dolphin Computer Access

“Experiences of Test Automation first describes the essence of effective automated testing.
It proceeds to provide many lifetimes worth of experience in this field, from a wide variety
of situations. It will help you use automated testing for the right reasons, in a way that suits
your organization and project, while avoiding the various pitfalls. It is of great value to anyone
involved in testing—management, testers, and automators alike.”

—Martin Gijsen, Independent Test Automation Architect

“This offering by Fewster and Graham is a highly significant bridge between test automa-
tion theory and reality. Test automation framework design and implementation is an inex-
act science begging for a reusable set of standards that can only be derived from a growing
body of precedence; this book helps to establish such precedence. Much like predecessor
court cases are cited to support subsequent legal decisions in a judicial system, the diverse
case studies in this book may be used for making contemporary decisions regarding engage-
ment in, support of, and educating others on software test automation framework design and
implementation.”

—Dion Johnson, Software Test Consultant and Principle Adviser to the Automated Testing
Institute (ATI)

“Even with my long-established ‘test automation won’t work’ stance, this book did make
me pause and ponder. It opened my mind and gave me a few ‘oh, I hadn’t thought of that’
moments. I would recommend this book as an initial reference for any organization wanting
to introduce test automation.”

—Audrey Leng

“This book is a stunning achievement. I believe that it is one of the best books ever written in
test automation. Dot and Mark’s approach presenting 28 case studies is a totally new concept
including eye-catching tips, good points, and lessons learned. The case studies are coming
from life experiences, successes and failures, including several aspects of automation, dif-
ferent environments, and a mixture of solutions. Books are ‘the’ source of wisdom, and what
a good idea for using storytelling to increase our learning through triggering our memories.
This book is a must for everyone who is thinking of or involved in test automation at all levels.
It is truly unique in its kind.”

—Mieke Gevers

Experiences of Test
Automation

This page intentionally left blank

Experiences of Test
Automation

Case Studies of Software Test
Automation

Dorothy Graham
Mark Fewster

Upper Saddle River, NJ  •  Boston  •  Indianapolis  •  San Francisco
New York  •  Toronto  •  Montreal  •  London  •  Munich  •  Paris  •  Madrid

Capetown  •  Sydney  •  Tokyo  •  Singapore  •  Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the des-
ignations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training
goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Graham, Dorothy, 1944-
 Experiences of test automation : case studies of software test automation / Dorothy Graham, Mark Fewster.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-321-75406-6 (pbk. : alk. paper)
 1. Computer software—Testing—Automation—Case studies. I. Fewster, Mark, 1959- II. Title.
 QA76.76.T48G73 2011
 005.3028’7—dc23
 2011040994

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and per-
mission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To
obtain permission to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request
to (201) 236-3290.

ISBN-13: 978-0-321-75406-6
ISBN-10: 0-321-75406-9
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
Second printing, August 2012

To my husband, Roger, for your love and support,
your good ideas, and for making the tea!

And to Sarah and James, our wonderful children.
—Dot Graham

To my wife, Barbara, for the good times we’ve shared.
And to my terrific son, Rhys, for the good times you bring.

—Mark Fewster

This page intentionally left blank

ix

Contents

Foreword	 xxix
Preface		 xxxi

	 Reflections on the Case Studies
Dorothy Graham, Mark Fewster	 1

A	 Management Issues	 2
A.1	 Objectives for Automation	 2
A.2	 Management Support	 3
A.3	 Return on Investment and Metrics	 3
A.4	 Automation in Agile Development	 4
A.5	 Skills	 5
A.6	 Planning, Scope, and Expectations	 5
A.7	 Relationship with Developers	 6
A.8	 Triggers for Change and Getting Started 	 6
A.9	 Tools and Training	 7
A.10	 Political Factors	 8

B	 Technical Issues	 8
B.1	 �Abstraction, Abstraction, Abstraction: The Testware Architecture	 8
B.2	 Automation Standards	 11
B.3	 Reusability, Documentation, and Flexibility	 12
B.4	 Test Results and Reporting	 12
B.5	 �Testing the Tests: Reviews, Static Analysis, Testing the Testware	 13
B.6	 What Tests to Automate	 13
B.7	 Test Automation Is More than Execution	 14
B.8	 Failure Analysis	 14
B.9	 Automation Finding Bugs?	 15
B.10	 Tools and Technical Aspects	 15

C	 Conclusion	 16

x	 Contents

Chapter 1	 An Agile Team’s Test Automation Journey: The First Year
Lisa Crispin	 17

1.1	 Background for the Case Study	 18
1.1.1	 The Problem	 19
1.1.2	 Our Goals	 19

1.2	 Whole Team Commitment	 19
1.3	 Setting Up the Automation Strategy	 20

1.3.1	 A Testable Architecture	 20
1.3.2	 Setting Up the Build Process	 22
1.3.3	 Getting a Base for Testing: GUI Smoke Tests	 22
1.3.4	 Driving Development at the Unit Level	 23

1.4	 Applying Acceptance Test-Driven Development (ATDD) to
	 Test behind the GUI Using FitNesse	 24

1.4.1	 In-Memory Tests	 24
1.4.2	 Tests Using the Database	 25
1.4.3	 Benefits of FitNesse Tests	 26

1.5	 Use an Incremental Approach	 26
1.6	 The Right Metrics	 27
1.7	 Celebrate Successes	 28
1.8	 Incorporate Engineering Sprints	 28
1.9	 Team Success	 29
1.10	 Continuous Improvement	 31
1.11	 Conclusion	 32

Chapter 2	 The Ultimate Database Automation
Henri van de Scheur	 33

2.1	 Background for the Case Study	 33
2.2	 Software under Test	 35
2.3	 Objectives for Test Automation	 36
2.4	 Developing Our Inhouse Test Tool	 37

2.4.1	 Configuration	 38
2.4.2	 Resource Optimization	 39
2.4.3	 Reporting	 39
2.4.4	 Failure Analysis	 39

2.5	 Our Results	 40
2.6	 Managing Our Automated Tests	 40
2.7	 Test Suites and Types	 41
2.8	 Today’s Situation	 43
2.9	 �Pitfalls Encountered and Lessons Learned (the Hard Way)	 43

	 Contents� xi

2.10	 �How We Applied Advice from the Test Automation Book	 45
2.11	 Conclusion	 47
2.12	 Acknowledgments	 48

Chapter 3	 Moving to the Cloud: The Evolution of TiP, Continuous
Regression Testing in Production
Ken Johnston, Felix Deschamps	 49

3.1	 Background for the Case Study	 50
3.2	 Moving Our Testing into the Cloud	 52

3.2.1	 What We Wanted to Get Out of Our TiP Test Strategy	 54
3.2.2	 Guiding Principles	 54

3.3	 How We Implemented TiP	 55
3.4	 Sample of Monthly Service Review Scorecards	 58

3.4.1	 Reading Our Scorecard	 58
3.4.2	 What We Did with the Incident and Escalation Report	 60

3.5	 �Exchange TiP v2—Migrating TiP to the Windows Azure Cloud	 62
3.6	 What We Learned	 63

3.6.1	 Issues Related to Partner Services	 64
3.6.2	 Challenges in Monitoring Across the Cloud	 64
3.6.3	 Sample Issues Found in Production by TiP Tests	 65
3.6.4	 Aggregating to Deal with “Noise” in the Results	 65
3.6.5	 Pitfalls	 66

3.7	 Conclusion	 67
3.8	 Acknowledgments	 67

Chapter 4	 The Automator Becomes the Automated
Bo Roop	 69

4.1	 Background for the Case Study: My First Job	 69
4.1.1	 My First Role: Technical Support	 71
4.1.2	 Joining the QA Team	 71

4.2	 My Great Idea . . .	 72
4.2.1	 But Would It Be Short-Lived?	 72

4.3	 A Breakthrough	 74
4.3.1	 Getting into the Job	 75
4.3.2	 Validating Checkpoints	 76
4.3.3	 Then Things Got Difficult	 77
4.3.4	 The Beginning of the End	 78

4.4	 Conclusion	 80

xii	 Contents

Chapter 5	 Autobiography of an Automator: From Mainframe to
Framework Automation
John Kent	 83

5.1	 Background for the Case Study	 84
5.1.1	 �Early Test Automation: My First Encounter with a Testing Tool	 84
5.1.2	 Overcoming Problems to Use the Tool to Replay Tests	 85
5.1.3	 How Mainframe Dumb Terminal Systems Worked and Why
	 Capture/Replay Was a Good Idea	 86
5.1.4	 Attended Replay and Its Advantages	 87

5.2	 A Mainframe Green-Screen Automation Project	 88
5.2.1	 Scaling Up	 88
5.2.2	 Using the Tool on the Tool Scripts	 88
5.2.3	 Success	 88
5.2.4	 Who Wants It Now?	 89

5.3	 �Difference between Mainframe and Script-Based Tools	 89
5.3.1	 Level of Interaction	 89

5.4	 Using the New Script-Based Tools	 91
5.4.1	 Trying to Use New Tools the Old Way	 91
5.4.2	 Programming the Tools	 92
5.4.3	 Building the Framework	 93
5.4.4	 Other Features of the Framework	 96
5.4.5	 �The Software Test Automation Paradox: Testing the Tests	 96

5.5	 Automating Tests for IBM Maximo	 97
5.5.1	 Moving on to 2010	 97
5.5.2	 The Liberation Framework	 98
5.5.3	 Technical Challenges	 100
5.5.4	 Results of the Test Automation	 101
5.5.5	 �Rolling Out Automation to the Rest of the Organization	 102

5.6	 Conclusion	 102
5.7	 Additional Reading	 103

Chapter 6	 Project 1: Failure!, Project 2: Success!
Ane Clausen	 105

6.1	 Background for the Case Study	 105
6.2	 Project 1: Failure!	 107
6.3	 Project 2: Success!	 109

6.3.1	 Our Estimated Return on Investment	 109
6.3.2	 The Start	 111
6.3.3	 Pilot Project Goals	 112

	 Contents� xiii

6.3.4	 �The First Month: Understanding the Task and the Tools	 113
6.3.5	 The Strategy and Plan	 115
6.3.6	 The Agile Testing Method	 116
6.3.7	 Result of the First Period	 118

6.4	 The Next Time Period: Testing for Real	 118
6.4.1	 What to Automate	 119
6.4.2	 Stakeholders’ Involvement	 119
6.4.3	 Uniform Solution	 120
6.4.4	 Application Structure and Test Case Structure in QC	 121
6.4.5	 Go/Do Not Go after 3 Months	 124
6.4.6	 Real Project after the Pilot Project	 124
6.4.7	 �The First Automated Test Used in Real Releases to Production	 124
6.4.8	 The Whole Automated Test in Production	 126

6.5	 Conclusion	 127

Chapter 7	 Automating the Testing of Complex Government Systems
Elfriede Dustin	 129

7.1	 Background for the Case Study	 129
7.2	 Our Requirements for Automation	 131
7.3	 Automated Test and Re-Test (ATRT), Our Automated Testing
	 Solution—What Is It? 	 132

7.3.1	 Can’t Be Intrusive to SUT	 132
7.3.2	 Must Be OS Independent (Compatible with Windows,
	 Linux, Solaris, etc.)	 134
7.3.3	 Must Be Independent of the GUI	 134
7.3.4	 Must Automate Tests for Both Display-Centric and
	 Non-Display-Centric Interfaces	 135
7.3.5	 Must Be Able to Handle a Networked Multicomputer
	 Environment 	 137
7.3.6	 Nondevelopers Should Be Able to Use the Tool 	 137
7.3.7	 Must Support an Automated Requirements
	 Traceability Matrix	 140

7.4	 Automated Testing Solution Applied 	 140
7.5	 Conclusion	 142

Chapter 8	 Device Simulation Framework
Alan Page	 143

8.1	 Background for the Case Study	 143
8.2	 The Birth of Device Simulation Framework (DSF)	 145

xiv	 Contents

8.3	 Building the DSF	 146
8.4	 Automation Goals	 148
8.5	 Case Studies	 149

8.5.1	 USB Firmware	 149
8.5.2	 USB Storage	 150
8.5.3	 Video Capture	 152
8.5.4	 Other Applications of DSF	 152

8.6	 No Silver Bullets	 153
8.7	 Conclusion	 154
8.8	 Acknowledgments	 154

Chapter 9	 Model-Based Test-Case Generation in ESA Projects
Stefan Mohacsi, Armin Beer	 155

9.1	 Background for the Case Study	 155
9.2	 Model-Based Testing and Test-Case Generation	 157

9.2.1	 Model-Based Testing with IDATG	 158
9.3	 Our Application: ESA Multi-Mission User Services	 161

9.3.1	 Testing Approach for MMUS	 163
9.4	 Experience and Lessons Learned	 168

9.4.1	 Benefits	 168
9.4.2	 ROI of Model-Based Testing	 168
9.4.3	 Problems and Lessons Learned	 171

9.5	 Conclusion	 173
9.5.1	 Summary	 173
9.5.2	 Outlook	 173

9.6	 References	 174
9.7	 Acknowledgments	 175

Chapter 10	 Ten Years On and Still Going
Simon Mills	 177

10.1	 Background for the Case Study: “Before”	 177
10.2	 Insurance Quotation Systems Tested Automatically
	 Every Month	 179

10.2.1	 Background: The UK Insurance Industry	 179
10.2.2	 The Brief, Or How I Became Involved	 180
10.2.3	 Why Automation?	 181
10.2.4	 Our Testing Strategy	 182
10.2.5	 Selecting a Test Automation Tool	 184

	 Contents� xv

10.2.6	 Some Decisions About our Test Automation Plans	 185
10.2.7	 The Test Plan	 187
10.2.8	 Some Additional Issues We Encountered	 189
10.2.9	 A Telling Tale: Tester Versus Automator	 191
10.2.10	Summary	 192
10.2.11	Acknowledgments	 192

10.3	 What Happened Next? 	 193
10.4	 Conclusion	 193

10.4.1	 Separation of Tester and Automator? 	 193
10.4.2	 Management Expectations	 194
10.4.3	 Independence from Particular Tools and Vendors	 194

Chapter 11	 A Rising Phoenix from the Ashes
Jason Weden	 197

11.1	 Background for the Case Study	 197
11.1.1	 The Organizational Structure	 199
11.1.2	 The Business Domain	 199

11.2	 The Birth of the Phoenix	 199
11.3	 The Death of the Phoenix	 202
11.4	 The Rebirth of the Phoenix	 203

11.4.1	 (Re)Starting the Automation Project	 203
11.4.2	 Increasing Ease of Use	 204
11.4.3	 Increasing the Visibility of Our Automation Efforts	 204
11.4.4	 Implementing Better Testing Methods	 206
11.4.5	 Realizing Benefits: Return on Investment	 207

11.5	 The New Life of the Phoenix	 207
11.5.1	 Focusing on Knowledge-Sharing	 208
11.5.2	 Tracking of Automation Framework Test Run Results	 208
11.5.3	 Designing for Speed and Ease of Use	 210

11.6	 Conclusion	 212
11.6.1	 Use Time to Automate	 213
11.6.2	 Enhance Automation Skills and Share Knowledge	 213
11.6.3	 Acquire Formal Education	 214
11.6.4	 Track Progress	 214
11.6.5	 Assess Usability	 214
11.6.6	 Tailor Your Automation to Suit Your Organization	 215
11.6.7	 And Finally . . .	 215

xvi	 Contents

Chapter 12	 Automating the Wheels of Bureaucracy
Damon Yerg (A Pseudonym) 	 217

12.1	 Background for the Case Study	 217
12.1.1	 The Organization 	 217
12.1.2	 The Agency Testing 	 219

12.2	 The Agency Automation	 219
12.2.1	 Enhancing Record and Playback	 220
12.2.2	 Health Checks and Smokers	 221
12.2.3	 Challenges and Lessons Learned	 221

12.3	 From 2000 to 2008	 223
12.3.1	 Benefits from the Mainframe Tool	 223
12.3.2	 The Web Way	 223
12.3.3	 Our KASA	 224
12.3.4	 More Challenges and Lessons Learned	 224
12.3.5	 Selling Automation	 225

12.4	 An Alignment of Planets	 226
12.4.1	 Gershon Review	 228
12.4.2	 Independent Testing Project	 228
12.4.3	 Core Regression Library Management Methodology	 229
12.4.4	 Our Current Location on the Journey	 230

12.5	 Building Capability within Test Teams	 231
12.5.1	 The Concept: Combine Script Development and
	 Business Knowledge	 231
12.5.2	 The Tools: KASA Meets DExTA	 232

12.6	 Future Directions: The Journey Continues	 233
12.6.1	 MBT Solutions	 233
12.6.2	 Embedded Automation Engineers	 233
12.6.3	 Organizational Approach to Regression Testing	 234
12.6.4	 Automate Early	 234

12.7	 Conclusion	 235

Chapter 13	 Automated Reliability Testing Using Hardware Interfaces
Bryan Bakker	 237

13.1	 Background for the Case Study	 238
13.2	 The Need for Action	 239
13.3	 Test Automation Startup (Incremental Approach)	 240
13.4	 Buy-In from Management	 242

	 Contents� xvii

13.5	 Further Development of Test Framework	 244
13.5.1	 Increment 2: A Better Language for the Testers	 244
13.5.2	 Increment 3: Log File Interpretation	 244

13.6	 Deployment and Improved Reporting	 248
13.7	 Conclusion	 250

Chapter 14	 Model-Based GUI Testing of Android Applications
Antti Jääskeläinen, Tommi Takala, Mika Katara	 253

14.1	 Background for the Case Study	 253
14.1.1	 About MBT	 255
14.1.2	 �Our Experience: Using TEMA on Android Applications	 255
14.1.3	 The Rest of This Chapter	 256

14.2	 MBT with TEMA Toolset	 256
14.2.1	 Domain-Specific Tools	 256
14.2.2	 Roles in TEMA	 257
14.2.3	 What the TEMA Toolset Does 	 257
14.2.4	 Action Machines and Refinement Machines	 258
14.2.5	 Defining Test Data	 259
14.2.6	 Test Configuration: Test Model and Testing Modes	 259
14.2.7	 Test Generation from the Model	 260
14.2.8	 An Example: Sending an SMS Message	 261

14.3	 Modeling Application Behavior	 261
14.3.1	 Modeling with TEMA Model Designer	 261
14.3.2	 Modeling with ATS4 AppModel	 264

14.4	 Generation of Tests	 266
14.4.1	 Function and Choice of Guidance Algorithms	 266
14.4.2	 Guidance Algorithm Trade-Offs	 267

14.5	 Connectivity and Adaptation	 268
14.5.1	 The Adapter Executes Keywords	 268
14.5.2	 Action Keywords and Verification Keywords	 268
14.5.3	 Challenges in Implementing Verification	 269
14.5.4	 Using A-Tool and Changes Needed to Use It	 269
14.5.5	 Additional Problems	 271

14.6	 Results	 272
14.7	 Conclusion	 273
14.8	 Acknowledgments	 274
14.9	 References	 274

xviii	 Contents

Chapter 15	 Test Automation of SAP Business Processes
Christoph Mecke, Melanie Reinwarth, Armin Gienger	 277

15.1	 Background for the Case Study	 278
15.1.1	 �Special Requirements of SAP as a Software Company	 279
15.1.2	 Test Automation Tools at SAP	 280

15.2	 Standards and Best Practices	 282
15.2.1	 Regression Test Process	 282
15.2.2	 Specification and Design	 283
15.2.3	 Coding Guidelines	 283
15.2.4	 Code Inspections	 284
15.2.5	 Reuse Guideline	 284
15.2.6	 Checkman for eCATT	 285

15.3	 eCATT Usage Examples	 286
15.3.1	 Data-Driven Automation Framework for Health
	 Care Processes	 286
15.3.2	 Test Automation Framework for Banking Scenarios	 289

15.4	 Conclusion	 292
15.5	 Acknowledgments	 293

Chapter 16	 Test Automation of a SAP Implementation
Björn Boisschot	 295

16.1	 Background for the Case Study	 295
16.2	 Project Overview	 298
16.3	 Phase 1: Proof of Concept	 299

16.3.1	 Define the Scope of the Project	 299
16.3.2	 Set the Expectations	 301
16.3.3	 Start Scripting the Test Cases	 304

16.4	 Phase 2: Project Start	 307
16.4.1	 Approval	 307
16.4.2	 Code Conventions and Documentation	 307
16.4.3	 Structured Approach	 310
16.4.4	 Data-Driving Test Cases	 314
16.3.5	 Multilingual	 317
16.4.6	 Security Role Testing	 319

16.5	 Conclusion	 319

	 Contents� xix

Chapter 17	 Choosing the Wrong Tool
Michael Williamson	 321

17.1	 Background for the Case Study	 321
17.1.1	 The Product	 321
17.1.2	 Development Team	 322
17.1.3	 Overview of Development at Google	 323
17.1.4	 Overview of Release Cycles	 324

17.2	 Our Preexisting Automation (or Lack Thereof)	 324
17.2.1	 Manual Testing and the Need for More Automation	 324

17.3	 �Decision Needed: New Tool or Major Maintenance Effort?	 326
17.3.1	 What We Had and Why It Had to Change	 326
17.3.2	 Overview of eggPlant	 328

17.4	 Moving Forward with eggPlant	 328
17.4.1	 Development Experience	 328
17.4.2	 Using the Tool Language	 329
17.4.3	 Problems with Image-Based Comparison	 331
17.4.4	 Test Maintenance Had to Be Done by Testers	 332
17.4.5	 Submitting Code Using Continuous Integration	 333
17.4.6	 What Would the Submit Queue Have Done for Us?	 334
17.4.7	 �How Did Our eggPlant Automation Adventure Turn Out?	 335
17.4.8	 A Surprising Twist to Earlier Assumptions!	 335

17.5	 What Did We Do after eggPlant?	 336
17.6	 Conclusion	 336

17.6.1	 eggPlant as a Tool	 336
17.6.2	 Test Automation in General: Our Lessons Learned	 337
17.6.3	 Current Problems with Automation	 337

Chapter 18	 Automated Tests for Marketplace Systems: Ten Years
and Three Frameworks
Lars Wahlberg 	 339

18.1	 Background for the Case Study	 340
18.2	 Automated Test Frameworks	 341

18.2.1	 Framework A	 342
18.2.2	 Framework B	 343
18.2.3	 Framework C	 344

18.3	 Test Roles	 344
18.3.1	 Test Engineer	 344

xx	 Contents

18.3.2	 Test Automation Architect	 345
18.3.3	 Daily Build Engineer	 345

18.4	 Abstraction Layer	 345
18.5	 Configuration	 348
18.6	 Cost and ROI	 349
18.7	 Conclusion	 352

Chapter 19	 There’s More to Automation Than Regression Testing:
Thinking Outside the Box
Jonathan Kohl	 355

19.1	 Background for the Case Study	 355
19.2	 Two Tales of Task Automation	 357

19.2.1	 Automation Failed, and How Did That Tester
	 Suddenly Improve?	 357
19.2.2	 �Automating Around the Testing, Not Automating the Testing	 360

19.3	 �Automation to Support Manual Exploratory Testing	 362
19.4	 Automating Data Interactions	 364
19.5	 Automation and Monitoring	 368

19.5.1	 The Tests That Passed Too Quickly	 368
19.5.2	 �If Nothing Is Wrong, the Test Must Have Passed, Right?	 369

19.6	 �Simulating Real-World Loads by Combining Simple Tools	 370
19.7	 Conclusion	 372
19.8	 References	 372

Chapter 20	 Software for Medical Devices and Our Need for
Good Software Test Automation
Albert Farré Benet, Christian Ekiza Lujua,
Helena Soldevila Grau, Manel Moreno Jáimez,
Fernando Monferrer Pérez, Celestina Bianco	 375

20.1	 Background for the Case Study	 376
20.1.1	 Medical Devices Background	 376
20.1.2	 Company Background	 378
20.1.3	 Medical Device Constraints and Specifics Pertaining
	 to STA	 378
20.1.4	 Different Projects, Different Scenarios	 379

20.2	 �Comparison of the Different Approaches to Each Project 	 381
20.2.1	 �Defining Test Objectives: Focusing on Critical Features	 382
20.2.2	 Test Flow	 383

20.3	 Project hamlet	 385

	 Contents� xxi

20.4	 Project phoenix	 386
20.4.1	 The Tools	 386
20.4.2	 Maintenance and Migration Issues	 387

20.5	 Project doityourself	 388
20.5.1	 The Tools	 388
20.5.2	 Maintenance and Tool Validation Issues	 389
20.5.3	 Techniques	 389
20.5.4	 Unexpected Problems and Applied Solutions	 390

20.6	 Project miniweb	 391
20.6.1	 Tools	 391
20.6.2	 Maintenance	 391
20.6.3	 Techniques	 391
20.6.4	 Unexpected Problems and Applied Solutions	 392

20.7	 Test Execution	 392
20.8	 Result Reporting	 393
20.9	 Conclusion	 396

20.9.1	 Looking Back at the Projects	 396
20.9.2	 What Would We Do Differently?	 398
20.9.3	 Plans for the Future	 400

Chapter 21	 Automation through the Back Door (by Supporting
Manual Testing)
Seretta Gamba	 401

21.1	 Background for the Case Study	 401
21.2	 Our Technical Solution	 403

21.2.1	 Command-Driven Testing	 403
21.2.2	 ISS Test Station	 405

21.3	 �Implementing Test Automation with ISS Test Station	 406
21.3.1	 The Automation Process	 406

21.4	 Implementing Test Automation 	 409
21.4.1	 Original Procedure	 410
21.4.2	 Weaknesses	 411

21.5	 Supporting Manual Testing 	 413
21.5.1	 Available Features	 413
21.5.2	 Features Not Currently Available in Our Framework	 413

21.6	 The New Manual Test Process	 417
21.6.1	 Migration to the Framework	 417
21.6.2	 Manual Testing with the Framework	 417
21.6.3	 Automating the Manual Tests	 420

xxii	 Contents

21.7	 Conclusion	 422
21.7.1	 Starting Phase	 422
21.7.2	 Status in 2010	 423
21.7.3	 Next Steps	 423

21.8	 References	 423

Chapter 22	 Test Automation as an Approach to Adding Value
to Portability Testing
Wim Demey	 425

22.1	 Background for the Case Study	 427
22.2	 Portability Testing: Love or Hate It	 428
22.3	 Combination of Both Worlds as a Solution	 428

22.3.1	 LA-PORTA	 430
22.3.2	 Virtualization Product	 432
22.3.3	 VixCOM	 432
22.3.4	 Test Automation Tool	 433
22.3.5	 File Structure	 434

22.4	 Conclusion	 435
22.5	 Acknowledgment	 435

Chapter 23	 Automated Testing in an Insurance Company:
Feeling Our Way
Ursula Friede	 437

23.1	 Background for the Case Study	 437
23.2	 The Application	 439
23.3	 Objectives	 440
23.4	 The Work	 441

23.4.1	 Phase 1	 441
23.4.2	 Phase 2	 442
23.4.3	 Phase 3	 442
23.4.4	 Phase 4	 443

23.5	 Lessons	 443
23.5.1	 Screen Resolution	 443
23.5.2	 Less Is Sometimes More	 444

23.6	 Conclusion	 444
23.6.1	 Greatest Success	 444
23.6.2	 Don’t Get Carried Away	 445

	 Contents� xxiii

Chapter 24	 Adventures with Test Monkeys
John Fodeh	 447

24.1	 Background for the Case Study	 447
24.2	 Limitations of Automated Regression Testing 	 449

24.2.1	 Automated Regression Tests Are Static	 449
24.2.2	 Automated Regression Tests Are Simple	 450
24.2.3	 Reinitialization of Automated Tests	 450
24.2.4	 Synchronized with Application	 450
24.2.5	 Vulnerable to Changes 	 450

24.3	 Test Monkeys	 451
24.3.1	 Characteristics	 451
24.3.2	 Basic Features	 452

24.4	 Implementing Test Monkeys	 453
24.5	 Using Test Monkeys	 454

24.5.1	 Metrics	 456
24.6	 Benefits and Limitations	 458
24.7	 Conclusion	 459
24.8	 Additional Reading	 460

Chapter 25	 System-of-Systems Test Automation at NATS
Mike Baxter, Nick Flynn, Christopher Wills, Michael Smith	 461

25.1	 Background for the Case Study	 461
25.1.1	 System-of-Systems Operational Context	 462
25.1.2	 �Initial Objectives and Constraints for Test Automation	 464

25.2	 Test Execution Tool Integration	 465
25.3	 Pilot Project for the Tool	 466
25.4	 In-Service Model	 467
25.5	 Implementation	 467
25.6	 Typical Script Template	 470
25.7	 Lessons Learned	 472

25.7.1	 General Lessons	 472
25.7.2	 Technical Lessons	 474

25.8	 Conclusion	 474

xxiv	 Contents

Chapter 26	 Automating Automotive Electronics Testing
Ross Timmerman, Joseph Stewart	 477

26.1	 Background for the Case Study	 477
26.2	 Objectives for Automation Project 	 480
26.3	 Brief History of the Automation Project	 480

26.3.1	 Our First Tools	 480
26.3.2	 Limitations of the First Tool and Creation of the
	 Next-Generation Tool	 481

26.4	 Results of the Automation Project	 483
26.5	 Conclusion	 483

Chapter 27	 BHAGs, Change, and Test Transformation
Ed Allen, Brian Newman	 485

27.1	 Background for the Case Study	 485
27.2	 Buy-In	 487

27.2.1	 The Executives	 487
27.2.2	 The Developer “Why”	 488
27.2.3	 Empowering QA	 489

27.3	 The Story of Building the Automation Framework 	 491
27.3.1	 Creating Test Points	 491
27.3.2	 The Beginning	 492
27.3.3	 The Consultant	 492
27.3.4	 Redoing the Framework	 492

27.4	 Description of our Automation Framework 	 493
27.4.1	 Modules in Our Framework	 493
27.4.2	 Considerations for Modules	 495
27.4.3	 Script Execution	 497
27.4.4	 Failure Capturing Method	 497

27.5	 The Test Environment	 497
27.5.1	 Multiple LANs	 498
27.5.2	 Virtual Machines	 498

27.6	 Metrics	 499
27.6.1	 Benefits of Automation	 499
27.6.2	 Effect on Customer-Found Defects	 500

27.7	 Conclusion	 501
27.7.1	 Lessons Learned	 501
27.7.2	 Ongoing Challenges	 502
27.7.3	 What’s Next	 503

	 Contents� xxv

Chapter 28	 Exploratory Test Automation: An Example Ahead of
Its Time
Harry Robinson, Ann Gustafson Robinson	 505

28.1	 Background for the Case Study	 505
28.2	 What’s a Trouble Manager?	 507
28.3	 Testing a Trouble Manager Transaction	 509

28.3.1	 Testing That a CreateTicket Transaction Succeeds
	 When All Required Fields Are Present	 509
28.3.2	 Testing That a CreateTicket Transaction Fails When
	 a Required Field Is Missing	 509

28.4	 Constructing Test Cases Programmatically	 510
28.5	 New Ways to Think about Automated Tests	 511
28.6	 Testing the Trouble Manager Workflow	 513
28.7	 Test Generation in Action	 518
28.8	 Home Stretch	 520
28.9	 Post-Release	 521
28.10	 Conclusion	 522
28.11	 Acknowledgments	 522

Chapter 29	 Test Automation Anecdotes	 523

29.1	 Three Grains of Rice
Randy Rice 	 523
29.1.1	 Testware Reviews	 523
29.1.2	 Missing Maintenance	 525
29.1.3	 A Wildly Successful Proof-of-Concept	 526

29.2	 Understanding Has to Grow
Molly Mahai 	 527

29.3	 First Day Automated Testing
Jonathon Lee Wright	 528
29.3.1	 Initial Investment	 529
29.3.2	 What Is to Be Automated?	 529
29.3.3	 First Day Automated Testing	 531
29.3.4	 Problems and Solutions	 533
29.3.5	 Results of Our First Day Automation Approach	 534

29.4	 Attempting to Get Automation Started
Tessa Benzie	 535

xxvi	 Contents

29.5	 Struggling with (against) Management
Kai Sann		 536
29.5.1	 The “It Must Be Good, I’ve Already Advertised
	 It” Manager	 536
29.5.2	 The “Testers Aren’t Programmers” Manager	 536
29.5.3	 The “Automate Bugs” Manager	 537
29.5.4	 �The “Impress the Customers (the Wrong Way)” Manager	 537

29.6	 �Exploratory Test Automation: Database Record Locking
Douglas Hoffman	 538
29.6.1	 The Case Study	 539

29.7	 Lessons Learned from Test Automation in an Embedded
	 Hardware–Software Computer Environment

Jon Hagar	 545
29.7.1	 VV&T Process and Tools 	 545
29.7.2	 Lessons Learned 	 547
29.7.3	 Summary of Results	 548

29.8	 The Contagious Clock
Jeffrey S. Miller	 549
29.8.1	 The Original Clock	 549
29.8.2	 Increasing Usefulness	 550
29.8.3	 Compelling Push	 550
29.8.4	 Lessons Learned	 551

29.9	 Flexibility of the Automation System
Mike Bartley 	 551

29.10	 A Tale of Too Many Tools (and Not Enough
	 Cross-Department Support)

Adrian Smith	 552
29.10.1	Project 1: Simulation Using a DSTL	 552
29.10.2	Project 2: Testing a GUI Using TestComplete	 553
29.10.3	Project 3: Rational Robot	 554
29.10.4	 �Project 4: Final Python Project and QTP Proof-of-Concept	 554
29.10.5	Project 5: QTP2	 555
29.10.6	The End of the Story	 556

29.11	 A Success with a Surprising End
George Wilkinson	 556
29.11.1	Our Chosen Tool	 557
29.11.2	 �The Tool Infrastructure and an Interesting Issue as a Result	 558
29.11.3	Going toward Rollout	 559
29.11.4	The Unexpected Happens	 560

	 Contents� xxvii

29.12	 �Cooperation Can Overcome Resource Limitations
Michael Albrecht 	 561

29.13	 An Automation Process for Large-Scale Success
Michael Snyman	 562
29.13.1	Where We Started	 562
29.13.2	 �The Key to Our Eventual Success: An Automation Process	 564
29.13.3	What We Learned	 565
29.13.4	Return on Investment	 566

29.14	 Test Automation Isn’t Always What It Seems
Julian Harty	 567
29.14.1	 �Just Catching Exceptions Does Not Make It a Good Test	 568
29.14.2	 �Sometimes the Failing Test Is the Test Worth Trusting	 569
29.14.3	Sometimes, Micro-Automation Delivers the Jackpot	 570

Appendix	 Tools	 573

	 About the Case Study Authors	 587
	 About the Book Authors	 605
	 Index	 607

This page intentionally left blank

xxix

Foreword

Automated testing—it’s the Holy Grail, the Fountain of Youth, and the Philosopher’s
Stone all rolled into one. For decades, testers have looked to automated testing for
relief from the drudgery of manual testing—constructing test cases and test data, set-
ting system preconditions, executing tests, comparing actual with expected results,
and reporting possible defects. Automated testing promises to simplify all these
operations and more.

Unfortunately, successful, effective, and cost-effective automated testing is dif-
ficult to achieve. Automated testing projects are often initiated only later to stumble,
lose their way, and be thrown onto the ever-growing pile of failed projects.

Automation fails for many reasons—unachievable expectations is perhaps the
most common, followed by inadequate allocation of resources (time, people, and
money). Other factors include tools that are poorly matched to needs, the sheer
impatience for success that hinders quality work, and a lack of understanding that
automated testing is a different kind of software development, one that requires the
same professional approach as all other development efforts.

Dorothy and Mark’s previous book, Software Test Automation: Effective Use of
Test Execution Tools, published in 1999, set the standard for books on this topic. The
first part detailed practices found in most successful automation efforts—scripting
techniques, automated comparison, testware architecture, and useful metrics. The
second part described the experiences of a number of organizations as they imple-
mented test automation efforts. Now, with an additional 10 years of industry knowl-
edge behind them, Dorothy and Mark provide another set of organizational and per-
sonal experiences to guide our automation work. It brings us up to date, describing
both the classical and most modern approaches to test automation. Each chapter
tells a story of a unique automation effort—including both successes and failures—to
give us guidance.

Certain themes reoccur in Experiences in Test Automation: reasonable and
achievable objectives; management support; metrics, including return on investment;
required skills; planning; setting expectations; building relationships; tools; training;
and politics—all necessary to make test automation successful. However, these same

xxx	 Foreword

themes are equally applicable at both the project and personal levels. One great ben-
efit of this book comes from stepping outside the test automation realm and consid-
ering these themes in the larger context.

I first met Dorothy and Mark at the 1998 EuroStar conference in Munich. I
was impressed with both their knowledge of and passion for helping others do great
automated testing. I congratulate them for their outstanding accomplishment and
commend this book to you.

—Lee Copeland
December 2011

xxxi

Preface

Test automation tools have been around for about 30 years, yet many automation
attempts fail, or at least are only partially successful. Why is this?

We wanted to understand if the principles of effective automation, as published
in our previous book, Software Test Automation, are still relevant and what other
principles now apply, so we began gathering information about real-world test auto-
mation implementations. This led us to a rather pleasant discovery: Over the past 10
years, many people have had good success with software test automation, many of
them using our book. Of course, we are not the only ones to have described or dis-
covered good automation practices, yet successful and lasting automation still seems
to be an elusive achievement today. We hope the stories in this book will help many
more people to succeed in their test automation efforts.

This book brings together contemporary automation stories. The technology of
test automation has progressed significantly since our last book on automation was
published in 1999. We wanted to find out what approaches have been successful,
what types of applications are now being tested using test automation, and how test
automation has changed in recent years. Different people have solved automation
problems in different ways—we wanted to know what can be learned from their
experiences and where and how test automation is being applied in new ways.

The case studies in this book show some approaches that were successful and
some that were not. This book gives you the knowledge to help avoid the pitfalls and
learn from the successes achieved in real life. We designed this book to help you get
the most out of the real-life experiences of other professionals.

The case studies in this book cover mainly the automation of test execution, but
other types of automation are mentioned in some chapters. We focus primarily on
system-level automation (including user acceptance testing), although some chapters
also cover unit or integration testing. Test automation is described for many types
of applications, many environments and platforms; the chapters cover commercial,
open source, and inhouse tools in traditional and agile development projects. We are
surprised by the number of different tools being used—around 90 commercial and
open source tools are listed in the Appendix (which includes any tools used by the
chapter authors, not just testing tools).

xxxii	 Preface

The experiences described in this book are all true, even though in some cases
the author or company name is not revealed. We encouraged the case study authors
to describe what happened rather than offer general advice, so this book is very real!

In collecting this book’s stories, we were struck by the pervasiveness of test auto-
mation into every industry and application. We were also impressed with the ded-
ication and persistence of those who have developed test automation within their
companies. Unfortunately, we were also struck by the difficulties that many of them
encountered, which sometimes resulted in failure. We are sure the experiences
described in this book can help you to be more successful with your test automation.

Case Studies Plus (Our Added Value)

This book is more than a collection of essays; we worked closely with the authors of
the chapters to produce a book with information that we felt would be most useful to
you. Our review process was thorough; we asked questions and suggested changes in
several rounds of reviewing (special thanks are due to the chapter authors for their
patience and additional information). Our “old versions” folder contains over 500
documents, so each chapter has been carefully crafted.

We help you get the most from this book by offering Good Points, Lessons, and
Tips. Each chapter includes our own comments to highlight points we think should
stand out at a glance. Watch for these helpful notes:

	■■ Good Points, which are well worth noting (even if they are not necessarily
new).

Good Point

Management support is critical, but expectations must be realistic.

	■■ Lessons, often learned the hard way—things it would have been better not
to do.

Lesson

Automation development requires the same discipline as software development.

	■■ Tips on ways to solve particular problems in a way that seemed new or novel
to us.

	 Preface� xxxiii

Tip

Use a “translation table” for things that may change, so the automation can use a
standard constant term.

We picture these interjections as our way of looking over your shoulder as you
read through the chapter and saying, “Pay attention here,” “Look at this,” and “This
could be particularly useful.”

How to Read This Book

Each case study is a standalone account, so the chapters can be read in any order.
The arrangement of the chapters is designed to give you a variety of experiences if
you do read the book from front to back.

To decide which chapter you would like to read first or read next, look at
Table P.1, a “chapter selector” that summarizes characteristics of the various chap-
ters. The table enables you to see at a glance which chapters cover a particular appli-
cation, tool, development methodology, and so on, and helps you to quickly find the
chapters most directly relevant to you. After Table P.1 are one-paragraph summaries
of each case study chapter.

Following this Preface, the section titled “Reflections on the Case Studies” pres-
ents our overall perspective and summary of the management and technical issues
discussed in the chapters along with our view and comments on those issues (and
our diagram of testware architecture). In this section of the book, we distill the most
important points of advice to those currently involved in, or about to embark on,
their own automation. This is the “executive summary” of the book.

Chapters 1 to 28 are the case study chapters, each written by an author or authors
describing their experience in their specific context: what they did, what worked
well, what didn’t, and what they learned. Some of the chapters include very specific
information such as file structures and automation code; other chapters are more
general. One chapter (10) is an update from a case study presented in Software Test
Automation; the rest are new.

Chapter 29, “Test Automation Anecdotes,” is a mini-book in its own right—a col-
lection of short experience stories from over a dozen different people, ranging from
half a page to several pages, all with useful and interesting points to make.

Finally, the Appendix, “Tools,” covers the commercial and open source tools
referred to in the chapters.

xxxiv	 Preface

Table P.1  Case Study Characteristics

Chapter Author Application
Domain

Location Lifecycle Number
on the
Project

Time
Span

Tool Type(s) Pilot
Study?

ROI
Measured?

Successful? Still
Breathing?

1 Lisa Crispin Financial, web USA Agile 9–12 1 yr,
report
after 6 yr

Open source No No Yes Yes

2 Henri van de
Scheur

Database Norway 30–3 5–6 yr Inhouse No No, but
2,400 times
improved
efficiency

Yes Yes

3 Ken Johnston,
Felix Deschamps

Enterprise
server

USA Traditional
with agile
elements

>500 ~3 yr Commercial,
Inhouse

No No Yes Yes

4 Bo Roop Testing tool USA Waterfall 12–15 1 yr, 2 mo Commercial No No No No

5 John Kent Mainframe to
web-based

UK Traditional 40 23 yr Commercial Yes No Yes Yes

6 Ane Clausen 2 projects:
pensions and
insurance

Denmark None and
agile

3–5 6 mo
1 yr

Commercial No
Yes

No
Yes

No
Yes

No
Yes

7 Elfriede Dustin Government:
Department of
Defense

USA Agile 100s 4½ yr Commercial,
Open source,
Inhouse

Yes Yes Yes Yes

8 Alan Page Device drivers USA Traditional Hundreds 9 yr Commercial,
Inhouse

No No Yes Yes

9 Stefan Mohacsi,
Armin Beer

European Space
Agency services

Austria,
Italy,
Germany

Traditional >100 6+ yr Commercial,
Open source,
Inhouse

No Yes, projected
payback after
4 cycles

Yes Yes

10 Simon Mills Financial:
insurance

UK Chaotic and
variable

Dozens 15 yr Commercial No, but
began
small
scale

No, but now
running 5
million tests
per month

Yes Yes; client
base still
growing

11 Jason Weden Networking
equipment

USA Traditional
(waterfall)

25 3 yr Inhouse No No Ultimately,
yes

Yes

	 Preface� xxxv

Table P.1  Case Study Characteristics

Chapter Author Application
Domain

Location Lifecycle Number
on the
Project

Time
Span

Tool Type(s) Pilot
Study?

ROI
Measured?

Successful? Still
Breathing?

1 Lisa Crispin Financial, web USA Agile 9–12 1 yr,
report
after 6 yr

Open source No No Yes Yes

2 Henri van de
Scheur

Database Norway 30–3 5–6 yr Inhouse No No, but
2,400 times
improved
efficiency

Yes Yes

3 Ken Johnston,
Felix Deschamps

Enterprise
server

USA Traditional
with agile
elements

>500 ~3 yr Commercial,
Inhouse

No No Yes Yes

4 Bo Roop Testing tool USA Waterfall 12–15 1 yr, 2 mo Commercial No No No No

5 John Kent Mainframe to
web-based

UK Traditional 40 23 yr Commercial Yes No Yes Yes

6 Ane Clausen 2 projects:
pensions and
insurance

Denmark None and
agile

3–5 6 mo
1 yr

Commercial No
Yes

No
Yes

No
Yes

No
Yes

7 Elfriede Dustin Government:
Department of
Defense

USA Agile 100s 4½ yr Commercial,
Open source,
Inhouse

Yes Yes Yes Yes

8 Alan Page Device drivers USA Traditional Hundreds 9 yr Commercial,
Inhouse

No No Yes Yes

9 Stefan Mohacsi,
Armin Beer

European Space
Agency services

Austria,
Italy,
Germany

Traditional >100 6+ yr Commercial,
Open source,
Inhouse

No Yes, projected
payback after
4 cycles

Yes Yes

10 Simon Mills Financial:
insurance

UK Chaotic and
variable

Dozens 15 yr Commercial No, but
began
small
scale

No, but now
running 5
million tests
per month

Yes Yes; client
base still
growing

11 Jason Weden Networking
equipment

USA Traditional
(waterfall)

25 3 yr Inhouse No No Ultimately,
yes

Yes

Continues

xxxvi	 Preface

Chapter Author Application
Domain

Location Lifecycle Number
on the
Project

Time
Span

Tool Type(s) Pilot
Study?

ROI
Measured?

Successful? Still
Breathing?

12 Damon Yerg
(pseudonym)

Government
services

Australia V model Hundreds 11 yr Inhouse Yes No, but
comparable
manual effort
calculated

Yes (peaks
and troughs)

Yes; thriving
and forging
ahead

13 Bryan Bakker Medical devices Netherlands V model 50 1.5 yr Commercial,
Open source,
Inhouse

Started
small

Yes Yes Yes

14 Antti Jääskeläinen,
Tommi Takala,
Mika Katara

Smartphone
applications in
Android

Finland 2 6–8 mo Commercial,
Open source

Entire
project
is a pilot
study

No Yes Yes

15 Christoph
Mecke, Melanie
Reinwarth, Armin
Gienger

ERP Systems
(SAP), 2
projects: health
care and
banking

Germany,
India

Traditional 10 4 yr
2 yr

Commercial,
Inhouse

No No Yes Yes

16 Björn Boisschot SAP applications
in the energy
sector

Belgium Traditional 12 6 mo Commercial Yes No Yes Yes

17 Michael
Williamson

Web-based,
distributed

USA Agile 15 6 mo Commercial,
Open source

Yes No No No

18 Lars Wahlberg Financial
marketplace
systems

Sweden Incremental
to agile

20
(typical)

~10 yr Open source Yes Yes, projected
payback for
tests run daily,
weekly, or
monthly

Yes Yes

19 Jonathan Kohl Various, web to
embedded

Canada Agile and
traditional

A few –60 Various Commercial,
Open source,
Inhouse

Yes, in
some
cases

No Yes Yes; some
still in use

Table P.1  Case Study Characteristics (Continued)

	 Preface� xxxvii

Chapter Author Application
Domain

Location Lifecycle Number
on the
Project

Time
Span

Tool Type(s) Pilot
Study?

ROI
Measured?

Successful? Still
Breathing?

12 Damon Yerg
(pseudonym)

Government
services

Australia V model Hundreds 11 yr Inhouse Yes No, but
comparable
manual effort
calculated

Yes (peaks
and troughs)

Yes; thriving
and forging
ahead

13 Bryan Bakker Medical devices Netherlands V model 50 1.5 yr Commercial,
Open source,
Inhouse

Started
small

Yes Yes Yes

14 Antti Jääskeläinen,
Tommi Takala,
Mika Katara

Smartphone
applications in
Android

Finland 2 6–8 mo Commercial,
Open source

Entire
project
is a pilot
study

No Yes Yes

15 Christoph
Mecke, Melanie
Reinwarth, Armin
Gienger

ERP Systems
(SAP), 2
projects: health
care and
banking

Germany,
India

Traditional 10 4 yr
2 yr

Commercial,
Inhouse

No No Yes Yes

16 Björn Boisschot SAP applications
in the energy
sector

Belgium Traditional 12 6 mo Commercial Yes No Yes Yes

17 Michael
Williamson

Web-based,
distributed

USA Agile 15 6 mo Commercial,
Open source

Yes No No No

18 Lars Wahlberg Financial
marketplace
systems

Sweden Incremental
to agile

20
(typical)

~10 yr Open source Yes Yes, projected
payback for
tests run daily,
weekly, or
monthly

Yes Yes

19 Jonathan Kohl Various, web to
embedded

Canada Agile and
traditional

A few –60 Various Commercial,
Open source,
Inhouse

Yes, in
some
cases

No Yes Yes; some
still in use

Continues

xxxviii	 Preface

Chapter Author Application
Domain

Location Lifecycle Number
on the
Project

Time
Span

Tool Type(s) Pilot
Study?

ROI
Measured?

Successful? Still
Breathing?

20 Albert Farré
Benet, Christian
Ekiza Lujua,
Helena Soldevila
Grau, Manel
Moreno Jáimez,
Fernando
Monferrer Pérez,
Celestina Bianco

4 projects,
all medical
software

Spain, USA,
Italy

Spiral,
prototyping,
waterfall

2–17 5 yr
2 yr
Few
months
1 yr

Commerical
Inhouse
Commercial
Commercial

No No Yes
Partly
No
Yes

Yes
Yes
No
Planned

21 Seretta Gamba Insurance Germany Iterative 27 12 mo Commercial,
Inhouse

Yes No Yes Yes

22 Wim Demey Customized
software
packages

Belgium Traditional
V model

 4 mo Commercial,
Open source

Yes No Yes Yes

23 Ursula Friede Insurance Germany Traditional
(V model)

30 ~6 mo Commercial No No, but
quantified
savings of
€120,000 per
release

Yes Yes

24 John Fodeh Medical
applications and
devices

Denmark Traditional
(V model),
incremental

30 6 yr Commercial,
Inhouse

Yes No Yes Yes

25 Mike Baxter,
Nick Flynn,
Christopher Wills,
Michael Smith

Air traffic
control

UK Traditional 15–20 Cycles
lasting
3–12 mo

Commercial,
Open source,
Inhouse

Yes No Yes Yes

26 Ross Timmerman,
Joseph Stewart

Embedded:
automotive
systems

USA Phased
waterfall

8 5 yr Inhouse with
commercial
hardware

No No Yes Yes

Table P.1  Case Study Characteristics (Continued)

	 Preface� xxxix

Chapter Author Application
Domain

Location Lifecycle Number
on the
Project

Time
Span

Tool Type(s) Pilot
Study?

ROI
Measured?

Successful? Still
Breathing?

20 Albert Farré
Benet, Christian
Ekiza Lujua,
Helena Soldevila
Grau, Manel
Moreno Jáimez,
Fernando
Monferrer Pérez,
Celestina Bianco

4 projects,
all medical
software

Spain, USA,
Italy

Spiral,
prototyping,
waterfall

2–17 5 yr
2 yr
Few
months
1 yr

Commerical
Inhouse
Commercial
Commercial

No No Yes
Partly
No
Yes

Yes
Yes
No
Planned

21 Seretta Gamba Insurance Germany Iterative 27 12 mo Commercial,
Inhouse

Yes No Yes Yes

22 Wim Demey Customized
software
packages

Belgium Traditional
V model

 4 mo Commercial,
Open source

Yes No Yes Yes

23 Ursula Friede Insurance Germany Traditional
(V model)

30 ~6 mo Commercial No No, but
quantified
savings of
€120,000 per
release

Yes Yes

24 John Fodeh Medical
applications and
devices

Denmark Traditional
(V model),
incremental

30 6 yr Commercial,
Inhouse

Yes No Yes Yes

25 Mike Baxter,
Nick Flynn,
Christopher Wills,
Michael Smith

Air traffic
control

UK Traditional 15–20 Cycles
lasting
3–12 mo

Commercial,
Open source,
Inhouse

Yes No Yes Yes

26 Ross Timmerman,
Joseph Stewart

Embedded:
automotive
systems

USA Phased
waterfall

8 5 yr Inhouse with
commercial
hardware

No No Yes Yes

Continues

xl	 Preface

Chapter Author Application
Domain

Location Lifecycle Number
on the
Project

Time
Span

Tool Type(s) Pilot
Study?

ROI
Measured?

Successful? Still
Breathing?

27 Ed Allen, Brian
Newman

Web-based,
mobile, desktop,
social channels
(voice, chat,
email)

USA Traditional 28 1 yr Commercial,
Inhouse

No No, but
benefits
measured

Yes Yes

28 Harry Robinson,
Ann Gustafson
Robinson

Problem
reporting for
telephone
systems

USA Waterfall 30 overall
4 on
project

1.5 yr Inhouse No No Yes No

Table P.1  Case Study Characteristics (Continued)

Chapter Summaries

Chapter 1, An Agile Team’s Test Automation Journey:
The First Year
Lisa Crispin describes, in her very engaging style, what happened when an agile team
decided to automate their testing. Given Lisa’s expertise in agile, you will not be sur-
prised to see that this team really was agile in practice. One of the interesting things
about this project is that everyone on the team (which was fairly small) was involved
in the automation. Not only did they excel in agile development, they also developed
the automation in an agile way—and they succeeded. Agile development was not the
only component of this team’s success; other factors were equally important, includ-
ing building a solid relationship with management through excellent communication
and building the automation to help support creative manual testing. Another key
factor was the team’s decision to build in process improvement along the way, includ-
ing scheduling automation refactoring sprints twice a year. You are sure to agree that
what Lisa and her team accomplished in their first year is remarkable. The project
was done for a United States company in the finance sector.

	 Preface� xli

Chapter Author Application
Domain

Location Lifecycle Number
on the
Project

Time
Span

Tool Type(s) Pilot
Study?

ROI
Measured?

Successful? Still
Breathing?

27 Ed Allen, Brian
Newman

Web-based,
mobile, desktop,
social channels
(voice, chat,
email)

USA Traditional 28 1 yr Commercial,
Inhouse

No No, but
benefits
measured

Yes Yes

28 Harry Robinson,
Ann Gustafson
Robinson

Problem
reporting for
telephone
systems

USA Waterfall 30 overall
4 on
project

1.5 yr Inhouse No No Yes No

Chapter 2, The Ultimate Database Automation
Henri van de Scheur tells a story that spans half a dozen years, relating what hap-
pened when he and his colleagues developed a tool for testing databases in multiple
environments. They set good objectives for their automation and a good architecture
for the tool. They automated so many tests that they developed a lifecycle for auto-
mated tests that included periodic weeding. Tests were run nightly, weekly, or with
special scheduling. Despite great success, a number of problems were encountered,
and Henri describes them honestly. The development of this database testing tool
(now open source) was done in Norway by a small team, over several years, and it
achieved a very impressive return on investment.

Chapter 3, Moving to the Cloud: The Evolution of TiP,
Continuous Regression Testing in Production
Ken Johnston and Felix Deschamps from Microsoft describe how they moved from
product-based to service-based automated testing by implementing the automation
in the cloud. Testing of Microsoft Exchange servers was already extensively auto-
mated, and much of the existing automation was reusable. Testing in production
seems a foreign concept to most testers, but this chapter explains why it was neces-
sary and beneficial to move to continuous monitoring and contains useful tips for
anyone considering a similar move. This experience takes place in the United States,
over three years, and unsurprisingly, Microsoft tools were used.

xlii	 Preface

Chapter 4, The Automator Becomes the Automated
Bo Roop takes us on a guided tour of attempting to automate the testing of a test
automation tool. One of the first questions to ask a tool vendor is “Do you test the
tool using the tool?” But the answer isn’t as straightforward as you might think! With
his lively writing style, Bo gives an honest description of the difficulties and chal-
lenges he encountered, particularly in the verification of test results. It is a good idea
to find out what others have tried, and Bo shows the advantages of doing so. His sen-
sible approach to automation is to start by automating the easier components before
tackling the more complex. Unfortunately, this story does not have a happy ending.
It illustrates how presumably well-intentioned management actions can sabotage an
automation effort. For reasons that become obvious when you read this chapter, the
tool vendor is not identified: a fictitious company and tool name are used instead.
This experience takes place in the United States with one automator (the author)
and covers just over one year.

Chapter 5, Autobiography of an Automator: From
Mainframe to Framework Automation
John Kent tells us how and when test automation started and offers surprising infor-
mation about the origins of capture/replay technology. Understanding how automa-
tion worked on mainframes shows how some of the prevailing problems with test
automation have developed; approaches that worked well in that environment did
not work well with GUIs and the need to synchronize the test scripts with the soft-
ware under test. The principles John discovered and put into practice, such as good
error handling and reporting and the importance of testing the automation itself,
are still relevant and applicable today. John’s explanation of the economic benefits of
wrappers and levels of abstraction are compelling. He ends with some recent prob-
lem/solution examples of how web elements can trip up the automation. This United
Kingdom–based project involved mainly commercial tools.

Chapter 6, Project 1: Failure!, Project 2: Success!
Ane Clausen tells of two experiences with test automation, the first one unsuccess-
ful and the second one a solid success, largely due to what she learned from her first
experience. Lessons are not always so well learned—which is a lesson in itself for
everyone! Ane’s first story is told honestly and highlights the serious impact of insuf-
ficient management support and the importance of choosing the right area to auto-
mate. In her second story, Ane designed a three-month pilot study with clear objec-
tives and a good plan for achieving them. Many useful lessons are described in this

	 Preface� xliii

chapter, such as good communication (including using the walls), limited scope of the
early automation efforts, good use of standards in the automation, a good structure
(looking for common elements), and keeping things simple. The continuing automa-
tion was then built on the established foundation. Ane’s experience was with pension
and insurance applications in Denmark, using commercial tools.

Chapter 7, Automating the Testing of Complex Government
Systems
Elfriede Dustin, well known in the test automation world, shares her experience of
developing an automation framework for real-time, mission-critical systems for the
U.S. Department of Defense. Because of the particular type of software that was
being tested, there were specific requirements for a tool solution, and Elfriede and
her colleagues needed to spend some time searching for and experimenting with dif-
ferent tools. Their clear statement of requirements kept them on track for a success-
ful outcome, and their eventual solution used a mixture of commercial, open source,
and inhouse tools. They met with some unexpected resistance to what was techni-
cally a very good system. This story covers hundreds of testers and tens of automa-
tors, testing millions of lines of code, over a period of four and a half years.

Chapter 8, Device Simulation Framework
Alan Page from Microsoft tells a story of discovery: how to automate hardware device
testing. We all take for granted that our USB devices will work with our computers,
but the number of different devices that need to be tested is very large and growing,
and it was difficult to automate such actions as unplugging a device. However, a sim-
ulation framework was developed that has enabled much of this testing to be auto-
mated in a way that has found widespread use inside and outside of Microsoft. The
chapter includes numerous examples showing both the problems encountered and
the solutions implemented. This story is from the United States and was an inhouse
development now used by hundreds of testers.

Chapter 9, Model-Based Test-Case Generation in ESA
Projects
Stefan Mohacsi and Armin Beer describe their experience in using model-based
testing (MBT) for the European Space Agency (ESA). Their team developed a test
automation framework that took significant effort to set up but eventually was able
to generate automated tests very quickly when the application changed. This chapter

xliv	 Preface

includes an excellent return-on-investment calculation applicable to other automation
efforts (not just MBT). The team estimated break-even at four iterations/releases.
The need for levels of abstraction in the testware architecture is well described. The
application being tested was ESA’s Multi-Mission User Information Services. The
multinational team met the challenges of automation in a large, complex system with
strict quality requirements (including maintainability and traceability) in a waterfall
development—yes, it can work! If you are thinking of using MBT, you will find much
useful advice in this chapter. A mixture of inhouse, commercial, and open source
tools were used by the team.

Chapter 10, Ten Years On and Still Going
Simon Mills updates his case study from our previous book, Software Test Automation
(Addison-Wesley, 1999). Still automating 10 years on is a significant achievement!
The original story is included in full and contains excellent lessons and ideas. The
success and continued growth of this automation is a testament to the sound founda-
tion on which it was built more than a decade ago. The case study describes many
lessons learned the hard way and some amusing observations on Simon and his team’s
first automation attempts. Their automation architecture separated their tests from
the specific tools they were using—a wise move as was proved later. They devised a
reliable way to document their tests that has stood the test of time. This story takes
place in the United Kingdom, uses commercial tools, and covers about 15 years.

Chapter 11, A Rising Phoenix from the Ashes
Jason Weden tells a story of initial failure leading to later success. The failure of the
first attempt at automation was not due to technical issues—the approach was sound.
However, it was a grassroots effort and was too dependent on its originator. When he
left, the automation fell into disuse. But the phoenix did rise from the ashes, thanks
to Jason and others who had the wisdom to build on what had gone before, making
many improvements to ensure that it was more widely used by business users as well
as technical people. Their “test selector” for choosing which tests to execute gave the
test engineers flexibility, and they ensured their legitimacy by keeping stakeholders
informed about bugs found by automated tests. The small team that implemented
automated testing for home networking equipment is based in the United States.

Chapter 12, Automating the Wheels of Bureaucracy
Damon Yerg (a pseudonym) tells of experiences in automating large systems for
a government agency, over more than 10 years, with hundreds of developers and

	 Preface� xlv

testers and more than a dozen automators. After some uncertain starts, external pres-
sure brought the right support to move the automation in the right way. The tests to
be automated covered diverse applications from web-based to mainframes, all with
environmental factors. This story brings home the need for automation standards
when many people are using the automation. Damon and his colleagues organized
the regression library into core and targeted tests to enable them to be selective
about which tests to run, and they related the automated tests to risk factors. The
basic design of the automation supported business expert testers and offered techni-
cal support as needed. One of the most powerful things they did to ensure continu-
ing management support was to develop a spreadsheet describing the benefits in a
way that communicated effectively to stakeholders. This is a very successful large-
scale automation project from Australia.

Chapter 13, Automated Reliability Testing Using Hardware
Interfaces
Bryan Bakker tells of automating testing for medical devices, an area with strin-
gent quality requirements and difficulties in accessing the software embedded in
devices such as X-ray machines. Bakker and his team’s starting point was simple
tests that assessed reliability; functional testing came later. The automation was
developed in increments of increasing functionality. The chapter contains many
interesting observations about management’s changing views toward the automa-
tion (e.g., management was surprised when the testers found a lot of new bugs,
even though “finding bugs” is what management expected of them). The team
developed a good abstraction layer, interfacing through the hardware, and were
even able to detect hardware issues such as the machines overheating. The results
in the test logs were analyzed with inhouse tools. The reliability testing paid for
itself with the first bug it prevented from being released—and, in all, 10 bugs were
discovered. Subsequent functional testing was smoother, resulting in cutting the
number of test cycles from 15 to 5. This story is from the Netherlands, and the
project had excellent success using commercial and inhouse tools with just two
people as the test automators.

Chapter 14, Model-Based GUI Testing of Android
Applications
Antti Jääskeläinen, Tommi Takala, and Mika Katara tell how they used model-based
testing (MBT) in a substantial pilot study, testing smartphone applications—spe-
cifically Messaging, Contacts, and Calendar—on the Android platform. They used

xlvi	 Preface

domain-specific tools rather than generic testing tools and a mix of commercial, open
source, and inhouse tools, including two MBT tools. Testing in a huge state space
was quite a challenge, but they give clear examples of the types of tests they were
automating and good explanations of the algorithms used. They include many help-
ful ideas for making testing easier, such as using correct syntax for keywords and con-
verting testware to more usable formats. This story covers a pilot project in Finland.

Chapter 15, Test Automation of SAP Business Processes
Christoph Mecke, Melanie Reinwarth, and Armin Gienger tell how automation is
used in testing major application areas of SAP, specifically banking and health care.
Because SAP applications are deployed in many client sites and have a long life, the
test automation is on a large scale, with over 3 million automation lines of code and
2,400 users of the automation. The testware architecture of the tool they developed
is modular. The standards and guidelines put in place ensure the automation can
be used in many areas and in many countries, and the tool can be used by SAP cus-
tomers as well. The automated tests must be ready to go as soon as new software is
delivered to enable the testing to help speed delivery rather than slow it down. Some
of the problems they encountered concerned testing parallel versions and multiple
releases, consistency of test data environments, setting of customized parameters,
and country-specific legal issues. One particularly good idea the authors relate is to
have a tool do static analysis on the test automation scripts. They also warn about
ending up with “zombie scripts”: dead automation code in a script. This story takes
place in Germany and India over several years.

Chapter 16, Test Automation of a SAP Implementation
Björn Boisschot tells how he developed a generic framework based on his observa-
tions while setting up automation for various clients. He explains how he used the
framework and extended it in the automation of the testing for two SAP applications
in the energy sector. The groundwork for the project is well laid, with a proof-of-
concept forming the basis of the go/no-go decision. Björn gives good examples of
communicating with managers, explains why capture/playback does not work, and
emphasizes the importance of setting realistic expectations. The framework, now a
commercial product, used good automation and software development principles to
construct a modular structure that successfully scaled up. The layers of abstraction
are well implemented, separating the automated tests from the tool and giving users
access to tests without having to program. He ends by showing how multilingual
tests were implemented through a translation table and some of the challenges of
that project. This case study takes place in Belgium and is the origin of a commercial
framework.

	 Preface� xlvii

Chapter 17, Choosing the Wrong Tool
Michael Williamson tells the story of trying to use a tool (which he inherited) that he
later realized was not suitable for what he was trying to test. He was trying to auto-
mate the testing of major functionality in web development tools at Google, where
he was new to testing and test automation. Some assumptions that seemed obvious
at first turned out to be not as they seemed. His approach to taking over the use of
an existing tool seemed sensible, yet he encountered a lot of problems (which are
illustrated), particularly in automated comparison. Michael found it was difficult to
abandon something you have put a lot of effort into already, yet in the end, this was
the best approach (and he was surprised when he discovered what had really been
hindering his efforts). This story is of one person in the United States attempting to
use a commercial tool.

Chapter 18, Automated Tests for Marketplace Systems: Ten
Years and Three Frameworks
Lars Wahlberg gives an insight into his 10 years of test automation for marketplace
systems, including the development of three automation frameworks. One of the
key messages in this chapter is the importance of having the right abstraction level
between the technical aspects of the automated tests and the testers. Lars describes
how they addressed this issue in each of the different frameworks and some of the
problems that occurred if the abstraction layer was too thick or too thin. As Lars
and his team moved into agile development, they found the process worked best
when they had people who could be both tester and test automator, but the role of
the test automation architect was critical for smooth implementation of automation.
The chapter illustrates the progression of a test from manual to automated and the
automated checking of preconditions. Lars also includes an illuminating assessment
of return on investment for automation based on how often tests are run, the costs
of automating, and the number of tests that are automated. This work was done in
Sweden using open source tools.

Chapter 19, There’s More to Automation than Regression
Testing: Thinking Outside the Box
Jonathan Kohl takes us through a set of short stories, each illustrating a variation
on the theme of automating things other than what people usually think of, that is,
thinking outside the box. The stories together demonstrate the value of applying
ingenuity and creativity to solve problems by automating simple tasks, or processes
other than test execution. Full-scale automation is not necessarily a practical option
in some cases, but small and simple tool solutions can provide significant benefits

xlviii	 Preface

and savings. Jonathan shows that even devising “disposable” automation scripts
can be very useful. These experiences from Canada cover small to large applica-
tions, from web-based to embedded systems, using commercial, open source, and
inhouse tools.

Chapter 20, Software for Medical Devices and Our Need for
Good Software Test Automation
Even if you are not working with medical devices, this chapter, written by Albert
Farré Benet, Christian Ekiza Lujua, Helena Soldevila Grau, Manel Moreno Jáimez,
Fernando Monferrer Pérez, and Celestina Bianco, has many interesting lessons for
anyone in automation. For the safety-related applications they test, a strict, formal
test process is used with a risk-based approach to the implementation of the automa-
tion. Their story shows how success can be mixed even across different projects in
the same organization; attempts to resurrect previous automated tests that had fallen
into disuse resulted in different outcomes in different projects. In some cases, unre-
alistic imposed objectives (“total automation”) virtually guaranteed failure. However,
they did progress, devising a good list of what they wanted to use automation for and
what they wanted to avoid automating. The problems encountered included some
that are unique to regulated industries (where test tools need to be formally vali-
dated before their results can be used in the qualification testing of the software),
problems with hardware interaction, and problems with custom controls (overcome
by an abstraction layer). Their honest description of problems, solutions, and lessons
learned in the four projects described is as useful as it is interesting. These stories
from Spain involve commercial and inhouse-developed tools and cover projects last-
ing a few months to five years.

Chapter 21, Automation through the Back Door (by
Supporting Manual Testing)
Seretta Gamba tells of the difficulties she and her team experienced in trying to prog-
ress automation, even though it had a good technical foundation. She shows how they
addressed the real needs of the testers and provided support where testers needed it
most, which was in manual testing. The really interesting twist is how they were able at
the same time to harvest things that would progress the automation—win-win situations.
Their approach is described in detail, showing how they implemented levels of abstrac-
tion, separating tests from application detail such as the GUI, and they include an exam-
ple of a user interface (UI) to the tests. They developed what they call command-driven
testing, which is based on a form of keyword-driven testing and worked well for them.
This case study takes place in the insurance industry in Germany.

	 Preface� xlix

Chapter 22, Test Automation as an Approach to Adding
Value to Portability Testing
Wim Demey describes how he developed an inhouse tool to work with commercial
and open source tools to enable parallel testing of different configurations. Testing
the installation of packages that are developed with a common core but customized
for different customers is important because failures in installation may have seri-
ous impacts not just on the system but on market perception as well. But testing the
ports of the different packages on a large variety of configurations (operating sys-
tems, browsers, databases) can be a time-consuming and resource-hungry process,
so it is a good candidate for automation. Wim used virtualization to run portability
tests on many configurations at once through a custom-built tool that launches the
portability tests in the virtual environments. The chapter offers many good lessons,
including the importance of automating the activities surrounding test execution, for
those considering a similar task. This story comes from Belgium and involves finan-
cial client software.

Chapter 23, Automated Testing in an Insurance Company:
Feeling Our Way
Ursula Friede describes the experience of “feeling their way” to better automation.
She and her team did not plan the steps they ended up taking, but it would have
been a good plan if they had. They began by just experimenting with a tool but soon
realized its limitations, so they decided to focus on the most pressing problems by
changing their automation. In each of four phases, they successfully addressed an
existing problem but then encountered new problems. They calculated an impres-
sive saving per release after they had implemented their improvements. Ursula was
based in Germany at the time and was automating tests in the insurance sector.

Chapter 24, Adventures with Test Monkeys
John Fodeh tells of his experiences with automated random test execution, also
known as “monkey testing,” for medical devices used for diagnosis and in therapeutic
procedures. John describes the limitations of automated regression testing and why
few bugs are found that way. Using test monkeys enabled him to find many bugs in
the devices that otherwise would not have been found before release. Inputs are
selected from a list at random, and all crashes are investigated. Test monkeys can be
implemented with commercial execution tools or inhouse tools. This approach bor-
ders on model-based testing and also is close to exploratory test automation. John’s
team was able to calculate the reliability of the devices over time, which helped in

l	 Preface

the release decision. Many other interesting metrics are described in this chapter
as well. An honest assessment of the limitations of the technique makes this a well-
balanced description of an interesting use of tool support in testing. This story takes
place in Denmark.

Chapter 25, System-of-Systems Test Automation at NATS
Mike Baxter, Nick Flynn, Christopher Wills, and Michael Smith describe the automa-
tion of testing for NATS (formerly called National Air Traffic Services Ltd.). Among
its other responsibilities, NATS provides air traffic control services for the airspace
over the eastern North Atlantic Ocean. Testing a safety-critical system where lives
are at stake requires a careful approach, and the requirements included special tech-
nical factors, human factors, and commercial considerations. The tool used was able
to test the software without affecting it, and it was also useful in some unexpected
ways, such as in training. The authors provide a helpful checklist for deciding which
tests to automate and describe lessons learned, both general and technical. This
case study is from the United Kingdom and involves commercial, open source, and
inhouse tools.

Chapter 26, Automating Automotive Electronics Testing
Ross Timmerman and Joseph Stewart tell about the inhouse testing tools they devel-
oped over the years to test automotive electronics systems at Johnson Controls. In
2000, no commercial tools were available for this niche area, so the Johnson Controls
team chose to develop their own tools, which was done initially by the test team and
later by an offshore team. Both benefits and problems arise from writing your own
tools, but the team dramatically increased the number of tests they were able to run.
They also discovered ways to automate things they initially thought had to be done
manually. In their second initiative, they built on the success of the earlier tools but
provided more functionality, using off-the-shelf hardware modules with their own
software to get the best results. This case study covers five years and is based in the
United States.

Chapter 27, BHAGs, Change, and Test Transformation
Ed Allen and Brian Newman tell of their experience in automating the testing for a
customer relationship management system. The problems they encountered ranged
from technical issues, such as environments, testware architecture/framework,
and “script creep,” to people issues, including management support, working with

	 Preface� li

developers, and when to ignore a consultant. After several false starts, they were
challenged by some “Big Hairy Audacious Goals” (BHAGs) and were given support
to meet them. They achieved good benefits in the end and provide some intrigu-
ing metrics about the number of defects found by different ways of testing (auto-
mated, manual scripted, exploratory testing, and bug fixes). This story is based in
the United States with a team of 28, including 25 from quality assurance and 3 from
development.

Chapter 28, Exploratory Test Automation: An Example
Ahead of Its Time
Harry Robinson and Ann Gustafson Robinson describe Harry’s experiences in doing
what seems on the surface like an oxymoron. How can testing be both exploratory
and automated? There are a number of requirements to make it possible, but when
it can be done, it provides a way to explore test input spaces that are far too large
to be tested in any other way. This chapter takes us step by step through Harry’s
journey of implementing what has now become known as model-based testing. The
effort was far more successful than anyone thought possible at the time, which had
an unexpected side effect on Harry’s career! Although this story takes place rather a
long time ago, the techniques described are now “coming into their own” because
better tool support makes them applicable to more systems in a wider context. (Note:
Although this chapter has two authors, it is told from Harry’s viewpoint for easier
reading.) This story comes from the United States.

Contributors and Acknowledgments

Submissions for inclusion in this book came from people we knew, people we met
at conferences, and those who responded to the appeal for authors on our web-
sites and in our newsletters. We began work on the book in autumn 2009, and from
December 2009 until December 2011, the two of us put in over 850 hours on this
book; this does not include the effort from all of the chapter and anecdote authors.

Thanks to all of the chapter authors for their tremendous efforts, more often
than not on their own time, to produce their respective chapters and liaise with
us through the production of this book. Thanks to the authors who contributed to
Chapter 29: Michael Albrecht, Mike Bartley, Tessa Benzie, Jon Hagar, Julian Harty,
Douglas Hoffman, Jeffrey S. Miller, Molly Mahai, Randy Rice, Kai Sann, Adrian
Smith, Michael Snyman, George Wilkinson, and Jonathon Lee Wright.

lii	 Preface

Thanks to a number of other people who helped with this book, including
Claudia Badell, Alex Blair, Hans Buwalda, Isabel Evans, Beth Galt, Mieke Gevers,
Martin Gijsen, Daniel Gouveia, Linda Hayes, Dion Johnson, Audrey Leng, Kev
Milne, Andrew Pollner, David Trent, and Erik Van Veenendaal. Thanks to authors
for co-reviewing other chapters.

Thanks to the Pearson publishing team for their help, encouragement, and all
the work they have done to make this book a reality: Christopher Guzikowski, Raina
Chrobak, Sheri Cain, Olivia Basegio, and freelancer Carol Lallier.

—Dorothy Graham
Macclesfield, United Kingdom

www.dorothygraham.co.uk

—Mark Fewster
Llandeilo, United Kingdom

www.grove.co.uk

December 2011

www.dorothygraham.co.uk
www.grove.co.uk

523

C h a p t e r 2 9

Test Automation Anecdotes

An anecdote is a short account of an incident (especially a biographical one).
Numerous people told us short stories (anecdotes) of their experiences, and because
they merit retelling but don’t constitute full chapters, we collected them in this chap-
ter. The stories vary in length from half a page to five pages. They are all indepen-
dent, so they can be read in any order.

29.1  Three Grains of Rice

Randy Rice, United States
Consultant, speaker, and author

As a consultant, I see a number of different situations. The following describes three
short experiences I have had with a couple of clients.

29.1.1  Testware Reviews
I was a consultant once on a project where we were trying to bring best practices in
test automation into a large organization that had only tinkered with test automa-
tion. The company’s environment spanned web-based, client/server, and mainframe
applications. About 15 test designers and 15 test automators were brought in to work
on this effort. The test tools in use when we first arrived were old versions not even
being supported by the vendor because of their age. Only a small portion of the
applications were automated to any degree. The automation that was in place con-
sisted of large test scripts that were very difficult to maintain.

The project was initiated as one of several aggressive projects to technically reen-
gineer the entire IT operation. The chief information officer (CIO) who was the
original champion of these projects was a believer in test automation. Her succes-
sor inherited the projects but did not share the same commitment and enthusiasm
for many of them. There was also a 6-month vacancy while the new CIO was being
recruited, so things had just coasted along. When the new sheriff came to town, peo-
ple started trying to figure out who would survive.

524	 Chapter 29  Test Automation Anecdotes

Supervising this effort were three senior test automation consultants who really
knew their stuff and had a very specific approach to be followed. We had six test
automation gurus on the managing consultant side, and we had regular communica-
tion based on metrics and goals. In fact, we developed a very nice dashboard that
integrated directly with the tools. At any time on any project, people could see the
progress being made. We gave demonstrations of how the automation was being cre-
ated (this went over management’s heads) and also the results of automation, so we
had plenty of knowledge and communication.

To their credit, the contracting company trained all the incoming test design and
automation consultants out of their own pocket. Although these were experienced
consultants, the contractor wanted to set a level baseline of knowledge for how the
work would be done on this project.

After about 3 weeks, it became apparent that some of the test automators were
going their own way and deviating from the defined approach. This was a big prob-
lem because a keyword approach was being used, and certain keywords had to work
consistently among applications. There were too many people who wanted to do
things their way instead of the way that had been designed.

To correct the issue, the senior consultants required all test designers and con-
sultants to attend daily technical reviews of testware. Technical reviews are not just
for application software code or requirements. To get 30 people (more or less) from
diverse backgrounds on the same approach is not a trivial achievement! Before long,
this became a peer review type of effort, with critiques coming from peers instead of
the senior consultants. It had turned into a forum for collaboration and learning.

Good Point

Reviews of automation testware are beneficial not just from a technical standpoint
but also from an idea-sharing and brainstorming standpoint.

Some of the test consultants resisted the technical reviews and didn’t last on the
project. They were the same test automators who refused to follow the designed
approach.

After a few weeks, it was no longer necessary to maintain the frequent reviews,
and the test automation effort went a lot more smoothly.

Unfortunately, test management and senior technical management (at the CIO
level) in this organization never saw the value of test automation. Therefore, much
of the fine work done by this team was scrapped when senior management pulled
all support for this effort. They terminated the contracts of everyone who knew

	 29.1  Three Grains of Rice� 525

anything about the automation and ended up “achieving” a negative return on invest-
ment (ROI)—millions of dollars were spent with very little to show for it. I see little
future for automation at this company now, in spite of the great work that was done.

Lesson

Technical success is no guarantee of lasting automation; management support
through good communication is needed.

This was a huge and very visible project. But the test manager was like many test
managers and had been thrust into the role with no training in testing. The client
staff were thin in numbers, skills, and motivation.

My bottom line assessment is that the organization simply was not ready for
such an aggressive project. Then, when the sponsoring CIO left, there was no one to
champion the project. Also, the software wasn’t engineered in a way that was easily
automated; it was old and very fragile. The expectations for ROI were very high and
it would have been better to take smaller steps first.

29.1.2  Missing Maintenance
There was a move in the late 1990s to go from fractional stock prices to decimal
prices. For decades, stock prices had been shown as “$10 1/2” instead of “$10.50.”
There were many benefits to the decimal representation, such as ease of computa-
tion, standardization worldwide, and so forth. This was a major conversion effort that
was almost as significant for the company as the Y2K maintenance effort.

Because the conversion effort was so massive and time was so short, manage-
ment decided not to update the test automation during the project. This decision
later proved to be significant.

By the time the decimalization project was complete, work was well underway
for the Y2K conversion effort. We wanted to update the test automation for both
efforts—decimalization and Y2K—at the same time. However, the schedule won
again, and by the time the Y2K effort was complete, the test automation was deemed
to be so out of date, it would be easier to start all over in a new, more modern tool.
This was indeed the case. One of the problems was the platform, the DEC VAX.
There was only one tool on the market for that platform. An emulator-based PC tool
could have been used, but then there would be issues of character-based testing.

At the time, keyword-driven or even data-driven approaches were not widely
known, and the automators and test managers encountered for themselves the

526	 Chapter 29  Test Automation Anecdotes

difficulties of maintaining the automation code with hardcoded values. The first
decision not to keep up with maintenance of the automated testware proved to be
the death of the entire test automation effort for that application. This was a highly
complex financial application, taking about 3 years to create the original test automa-
tion. There were new projects being developed on client/server platforms. Starting
again from square one might have been a good idea, but the company hadn’t yet real-
ized the ROI from the first effort. Basically, the manual test approach just seemed
too compelling.

Lesson

Once you abandon the maintenance of the automation, it is likely to die. For a bet-
ter chance of success, choose an automation approach that will require the least
maintenance.

29.1.3  A Wildly Successful Proof-of-Concept
I was hired by a large Wall Street company to assess the quality of its software testing
process and make recommendations regarding a workable test automation approach.
This company was not new to the idea of test automation. In fact, it already had three
major test automation tools in place and was looking for another test automation
solution. There was no integration between the various test automation tools, and
they were applied in functional silos.

One particular system at this company was being manually regression tested
every day! This one very unfortunate lady performed the same tests every day for
about 8 hours a day.

As we were considering which tools might be the best fit for this system, I sug-
gested that we contact the various candidate vendors and see if any were willing to
send a technical consultant and perform a proof-of-concept using the the vendor’s
tool and my client’s system.

My client thought this was an excellent idea, so we contacted the vendors and
found one that was willing to send in a consultant at a reduced daily rate. We felt it
was worth the risk to pay for the proof-of-concept. It would have taken us weeks to
try to get an unfamiliar tool working, and we didn’t want to pay for a tool without
knowing it would work.

It seemed to me a good test project for the proof-of-concept was the 8-hour daily
manual regression test, so we asked the vendor’s test automation consultant to tackle
that application.

	 29.2  Understanding Has to Grow� 527

After 3 days, the regression tests were completely automated! We were hoping
just to get an idea that the tool would work in the environment. What we got instead
was our first success! We probably broke even on ROI after 1 month.

Tip

Tool vendors can be a great help to get you started “on the right foot.”

My client was thrilled, I looked good for suggesting the idea, and the vendor
made a big sale. However, the person happiest with the outcome was the lady who
had previously performed the manual regression tests for 8 hours a day. Now, she
started an automated test and 15 minutes later, the test was done. Her time was now
free for designing better tests and performing more creative tests.

29.2  Understanding Has to Grow

Molly Mahai, United States
Test manager

When we started looking at automation, I read everything I could get my hands on. I
knew I couldn’t automate everything. I knew automation would not replace people,
and I knew it would require investment. I read Software Test Automation (Fewster
and Graham, Addison-Wesley, 1999) at a recommendation, and I learned about the
steps to take.

The funny thing is that even knowing all that, I felt I could not accomplish the
first steps to set up an architectural framework. I know that sounds simple, but what
does an architecture look like? How do we want to capture our tests? How will we
set it up so that we can reuse scripts? All these questions kept preventing us from
making progress. So, in my usual fashion, I made a decision and picked an archi-
tecture. I had no idea if it would work or not, but we needed to get moving with
something. This freed us up to learn, and learn we did. We created a regression suite
that addressed a handful of our applications, and it looked like we were moving in
the right direction, but we ran into problems. There were too many scripts, and the
initial grouping (directory structure) was not sufficient for our use.

This time, though, I knew a lot more and figured out that our architecture was
lacking. We had too many projects, the library was cumbersome, and so on. So, I
redesigned the architecture and created staging areas, including a sandbox area for

528	 Chapter 29  Test Automation Anecdotes

development scripts, a place for scripts in use, and a place for scripts that were part
of the production suite. We also enforced the naming conventions that we had put in
place. These simple changes fixed a good many of our organizational problems.

The key is that we knew about this potential pitfall, and we knew how important
it was to have an architecture that worked for us, but we couldn’t design that archi-
tecture until we knew more of what we wanted to accomplish. For us, this was not a
pitfall that we could avoid: We had to learn our way through it. The great thing was
that I was intently aware of this potential problem (from reading the book), and I
kept my eye on it. We redesigned the architecture as soon as we realized it wasn’t
working for us, and the impact on our automation effort was negligible.

I relate this to trying to explain to teenagers that they will view things differently
when they are older. They cannot grasp it through hearing from someone else; they
must learn it for themselves.

Lesson

Experiencing the problem is often the best (or only) way to see a better solution.

29.3  First Day Automated Testing

Jonathon Lee Wright, United Kingdom
Consultant and speaker

In the past decade, I have dealt with a number of ways of creating testware frame-
works and found advantages and disadvantages in each of the following approaches:

	 Modularity driven ■■

	 Keyword driven ■■

	 Data driven■■

In 2009, I was tasked with automating the testing of a new package for the New
Zealand Lotteries Commission. The requirements phase had only just been com-
pleted, and the scheduled testing was looking very tight—less than a month (the
schedule was imposed on us by marketing, who had already overcommitted their
advertising!).

	 29.3  First Day Automated Testing� 529

With just 2 months until the release would be delivered, this was an opportunity
to adapt the testware frameworks I had used before, combining them with the latest
technologies to develop what I refer to as a hybrid (keyword-/data-driven) automa-
tion framework.

Not only would this meet all the requirements set by the business, but more
important, it would allow us to start the development of the testware framework
immediately.

29.3.1  Initial Investment
The inherent problem with the hybrid approach is the large initial investment in
time and effort to design the testware framework. Consequently, it was important
that the development of this framework be treated as a legitimate project in its own
right with its own planning, design, development, and testing phases together with
the necessary resources. Table 29.1 shows our estimates for the effort required to
create 100 test scenarios.

In essence, the hybrid approach would take roughly twice as long as the previous
automation approach, which in turn would take twice as long to automate than the
preparation for manual testing.

29.3.2  What Is to Be Automated?
Given the limited time available and the increased initial effort required, it was criti-
cal that we identified the optimum test coverage. To avoid developing unnecessary
test components, we used the MoSCoW method:

	 What ■■ must be automated?
	 What ■■ should be automated?
	 What ■■ could be automated?
	 What ■■ won’t be automated?

Table 29.1  Simple Calculations for Initial Testware Preparation Effort

Approach Effort

Manual 2 weeks

Existing framework 1 month

Hybrid framework 2 months

530	 Chapter 29  Test Automation Anecdotes

This method allowed us to focus our efforts on those test components that were
necessary and would give the greatest value by assessing the associated business risk,
reusability, usage, complexity, and feasibility of each test component.

The test components were regarded as individual jigsaw pieces, but we kept in
mind what was needed to complete the entire puzzle.

Business process modeling (BPM) was used within the centralized test manage-
ment tool (Quality Centre) to represent the individual puzzle pieces (test compo-
nents); mapping the pieces revealed the workflow through the system.

Figure 29.1 shows how one BPM may only include 5 puzzle pieces but enable
more than 20 different paths through the system under test (SUT), with each path
having a different business risk and impact assessment.

This made it easier to decide which automation modules to develop first by start-
ing small and automating only the most critical business processes—keeping it as
simple as possible while recognizing that the test coverage could be increased as the
framework matured over time.

The decomposition of the workflows into a high-level model visualizes and
enables an agile approach to the framework development. The development’s build
order and resource focus becomes obvious.

Each path through the system represents an agile feature, which may be in or
out of scope depending on time and resources. Another benefit of this approach is
that the model becomes an artifact that may be shared between the test framework
and target application developers.

A1

B1

Login.Process

Buy.Tickets

Check.Tickets

My.Account

Logout.Process

D1

C1

B2
B4

C3 B3C2
B5

D3
C4 D2

D4 D5

C5

Figure 29.1  Business process model of the SUT.

	 29.3  First Day Automated Testing� 531

Good Point

Start by automating the most valuable tests, but plan for later growth.

29.3.3  First Day Automated Testing
The key to first day automated testing is to create a dynamic object repository based
on a combination of fuzzy logic and descriptive programming supporting the design
and development of test scenarios before the actual delivery of the SUT.

Traditionally, because of the dependency on building the object repository, test
automation is carried out at the end of the software development lifecycle once the
SUT is delivered. However, because we had only a single month in which to execute
testing but a full 2 months before the SUT was delivered, it seemed logical to develop
the testware framework beforehand while the application was still in development.

Good Point

Automation can (and should) start before the software being tested is delivered, so
the automated tests are ready to run on the first day the software is released. But
this requires good planning and good testware architecture.

29.3.3.1  Business-Level Keywords
To allow the creation of test scenarios ahead of the SUT delivery, a high-level key-
word approach was used to represent:

	 Specific BPM and business process testing (BPT) modules■■

	 Specific/collections of user stories■■

	 Assigned work items■■

	 Queries against the test asset database■■

Using high-level business-level keywords, such as Login.Process, allows com-
plexity hiding and reusable encapsulation. Login.Process contains a number of
low-level keywords, such as Enter Username Text and Press Login Button.

The collection of application keywords represents natural domain-specific lan-
guages that translate into a number of lower-level actions performed before and after

532	 Chapter 29  Test Automation Anecdotes

the core event. This included checking that the pretest and posttest conditions were
met and the actions and reactions, including any popup/error recovery, were pro-
cessed correctly.

Good Point

The more automation code is reused, the more worthwhile it is to build in recovery
from unexpected errors or events and the more robust the scripts are.

Using this approach meant we had a foundation upon which to design and
develop reliable, domain-specific, and reusable test scenarios before the release of
the SUT.

Writing the test scenarios (manual or automated) as business-level keywords
combined with natural language made it accessible to application domain experts,
business analysts, and developers. The test language was self-validating and human
readable, which removed the requirements to educate the end user in the tool.
The verbs and nouns in the domain-specific language were written in natural lan-
guage using context-sensitive validation. This improved the utilization of resources
by encouraging joint collaboration between multifunctional teams while supporting
behavior-driven development (BDD).

The Scrum team was made up of a number of multidiscipline team members
(business analysts, testers, and developers) sharing the various roles of the test design
phase without any previous automation experience. This allowed teams to collaborate
and share test assets such as BPM/BPT modules, user stories, and work items. They
could also run queries against previously created test scenarios and reuse shared test
cases and steps.

The flexibility of having the test scenarios stored in a database also allowed for
full/partial fallback support for legacy manual testing because the test data could be
easily extracted into a traditional test scenario format. It was easy to read because of
the use of natural language combined with valid test data that could be easily used in
manual test execution.

Good Point

Automated tests should be accessible and readable by all and should enable the
tests to be run manually if necessary.

	 29.3  First Day Automated Testing� 533

In summary, this approach of managing centralized test assets to generate sanitized
test scenarios validated against business rules provided ready-to-use tests and data in
the correct format. This was evidenced by the ability to generate tests featuring over
10,000 ticket number combination states covering all possible combinations of ticket
types and amounts (this excluded specialized test runs such as boundary and nega-
tive tests, which were run separately) before the SUT had even been written.

29.3.4  Problems and Solutions
We found problems stemming from procedures not being followed consistently. For
example, changes to the functionality of reusable test components’ jigsaw pieces
were not being checked in correctly. This was caused by not having an enforceable
gated check-in procedure and consequently resulted in limited reusability of some of
the test components. The problem was solved by enforcing the check-in procedures
in the Configuration Management tool.

Lesson

Automation development requires the same discipline as software development.

It became apparent when the testware framework entered the execution phase
and was distributed across a pool of remote test clients generated by a virtual machine
(VM) dispenser that there was limited direct visibility into the test execution status.

While it was relatively easy to identify primary core modules failing on startup,
more subtle changes to reusable test components were much harder to spot. The
requirement for a test asset loader to validate the current SUT build against the test
asset database before execution could have prevented this.

Without the ability to monitor runtime failure, especially controlled failure (i.e.,
scenario recovery), a significant amount of execution time was wasted. For example,
a discrete change to a test component could cause a false-positive error, which in turn
caused the testware framework to repeatedly retry the current test scenario before
attempting to continue through the remaining test cases. What was needed here was
a suitable real-time dashboard that could provide notifications regarding the SUT
health as well as progress of test client execution.

We solved this problem by devising a way to flag the overall status of a test set—
In Progress, Ready, Repair, or Blocked—to keep the tester informed. This would
affect the current test run and associated test client VM’s state where, for example, a
Blocked status did not allow the test run to be continued until the necessary pretest
conditions were met (e.g., the Lotto product draw had been successfully processed).

534	 Chapter 29  Test Automation Anecdotes

Tip

Keep track of things that affect the test execution to avoid wasting time running tests
that will fail for reasons you are not interested in. There is a danger, however, that
tests that are turned off will never be turned back on.

29.3.5  Results of Our First Day Automation Approach
This approach worked extremely well, and we realized a good return on investment
(ROI) for the additional effort in developing the framework.

Once the release was delivered, the execution was run constantly, day and night.
This was made possible by having dedicated resources available during the day
to deal with basic debugging of failed scripts and execution. Developers based in
another time zone were also available in the evening to maintain the framework and
provide additional support for improved test coverage.

Overall, this approach was found to work well in this case study by demonstrating
its innate advantages, reflected in what I like to call the approach: Hybrid Keyword
Data-Driven Automation Framework.

	■■ Hybrid: Utilizing the best technologies and resources to do the job.
	■■ Keyword: Creating simple and robust test scenarios written in business-level

keywords combined with natural language.
	■■ Data: Effective use of dynamic business data to provide an input source.
	■■ Driven: Reusable component modules and libraries to provide reliable pro-

cessing of generic actions, objects, and events.
	■■ Automation: That is collaborative, distributed, and scalable.
	■■ Framework: Independent of application, technology, or environment

under test.

The best aspects of these proven approaches demonstrate how they have evolved
over the past decade; this echoes some of the progress toward leaner and more agile
business methodologies. They are in a constant state of evolution—just as the under-
pinning technologies evolve over time.

A significant benefit was that the framework had the ability to support multiple
browsers, platforms, and technology stacks under a unified engine with the capability
to deal with generic object classes as well as application-specific classes.

	 29.4  Attempting to Get Automation Started� 535

29.4  Attempting to Get Automation Started

Tessa Benzie, New Zealand
Test engineer

My company was keen to get into test automation. We had a couple of days of con-
sultancy (with one of the authors of this book) to explore what we wanted and the
best ways of achieving our goal. We discussed good objectives for automation and
created an outline plan. We realized the need for a champion who would be the
internal enthusiast for the automation. The champion needed to be someone with
development skills.

We hired someone who was thought to be a suitable candidate to be the cham-
pion for our initiative. However, before he could get started on the automation, he
needed to do some training in databases, as this was also a required area of expertise,
and we needed him to be up to speed with the latest developments there.

After the training, he was asked to help some people sort out some problems
with their database, again “before you start on the automation.” After these peo-
ple, there were some other groups needing help with databases. When do you think
he finally started automation? As you may have guessed already, he never did! Of
course, it can be very hard for a new person to say no, but the consequences should
be pointed out.

A few months after that, a new test manager came in who was keen to get the
automation started at the company. He did some great work in pushing for automa-
tion, and we chose and acquired a test tool that looked suitable. There were a couple
of other contractors (the test manager was also a contractor) who were coming to
grips with the initial use of the tool and began to see how it could be beneficial.

So we had a good start, we thought, to our automation initiative.
Shortly after this, there was a reorganization, and the contractors and test man-

ager were let go. A new quality assurance manager was brought in, but test auto-
mation was not on her list of priorities. Some people were trying to use some of
the automated tests, but there was no support for this activity. However, there were
many, many tests that needed to be done urgently, including lots of regression tests.
Now we had “football teams” of manual testers, including many contractors.

Lesson

Organizational support is needed to get a significant automation initiative started;
be sure you choose a champion who will stay on task and be the driving force
behind your initiative. Beware of knowledge walking out the door with your con-
tractors—it’s far better to involve permanent staff.

536	 Chapter 29  Test Automation Anecdotes

29.5  Struggling with (against) Management

Kai Sann, Austria
Engineer and test manager

I have had some “interesting” managers over the years who had some challenging
effects on the way we did test automation.

29.5.1 � The “It Must Be Good, I’ve Already Advertised It”
Manager

We started software test automation in 2002. The management’s intention was to
reduce time for the system test. Furthermore, the management used automation as a
marketing strategy before the automation was developed.

At this time, there was no calculation for return on investment (ROI). The
approach was this: Software test automation must pay because manual testing is no
longer needed. The goal was to automate 100 percent of all test cases.

I had a hard time explaining that software test automation is just one of many
methods to achieve better software and that it is not free—or even cheap.

29.5.2  The “Testers Aren’t Programmers” Manager
We started very classically and believed the promises of the vendors. They told us,
“You only need to capture and replay,” but we found this was not true. In our experi-
ence, this leads to shelfware, not success—it does not pay off.

After some trial and mostly error, we started to write automation code. At this
point, we were far away from developing automated test cases. We needed some les-
sons in writing code. We were lucky to have very good mentors on our development
team who taught us to write libraries and functions so we didn’t have to code the
same tasks repeatedly.

I had a discussion with my boss about what programming is. He explained to me
that he consciously hadn’t hired testers with an informatics degree because he didn’t
want to have more developers in his department. You can imagine his surprise when
I told him that our automation code included libraries and functions.

He told his superiors that the testers do “advanced scripting” rather than
coding because he was afraid that the testers would otherwise be forced to write
production code!

	 29.5  Struggling with (against) Management� 537

Good Point

Beware of political issues and fears.

29.5.3  The “Automate Bugs” Manager
An idea provided by one manager was to automate bugs we received from our cus-
tomer care center. We suffer the consequences to this day. How did this work? Our
developers had to fix our customers’ bugs. We were told to read this bug and auto-
mate this exact user action. This is where the consequences come in: Not knowing
any better, we hardcoded the user data into our automation. After 2 years, we were
one major release behind the development. We didn’t know anything about data-
driven tests at that time.

We were automating bugs for versions that were not in the field anymore. Most
of these test cases still exist because we haven’t had time to replace them.

Lesson

Holding the title of manager doesn’t necessarily mean a person knows best (or any-
thing) about test automation! You may need to educate your manager.

29.5.4 � The “Impress the Customers (the Wrong Way)”
Manager

My boss had the habit of installing the untested beta versions for presentations of the
software in front of customers. He would install unstable versions and then call our
developers from the airport at 5:30 a.m. and order immediate fixes to be sent to him
by email.

Our programmers hated this so much that we introduced an automated smoke
test. This test checks if we have a new build; then it installs the beta, and finally it
checks the basic functions of our product. Our boss was told to only install smoke-
tested beta versions.

Today we don’t have this boss issue anymore, but we continue the automated
smoke tests for our nightly builds because they provide us with a good guess about
the state of our software. Here we really save money because smoke tests must be
done anyway and we can provide our development with a lot of issues concerning the

538	 Chapter 29  Test Automation Anecdotes

integration of new modules at an early stage. We expand this test every few months.
The coolest thing is that we are informed about the latest test results by email.

So in spite of some challenging managers, we are now doing well with our
automation!

Good Point

Sometimes an approach adopted for one reason turns out to be good for other
reasons.

29.6 � Exploratory Test Automation: Database Record
Locking

Douglas Hof fman, United States
Consultant and speaker

Pre–World Wide Web (late 1980s), I was the quality assurance (QA) manager, test
lead, and test architect for the second-largest relational database management sys-
tem (RDBMS) software company at the time. Before landing the job, I got my bach-
elor’s degree in computer science, started out as a systems engineer, and had worked
my way up into hands-on engineering services management (QA, tech support, sales
support, and tech writing).

The company had about 300 employees, mostly in San Mateo, California. The
relational database engine had evolved over more than 10 years and had a well-
established, fairly stable codebase. At the time, the code had to be ported across
180 hardware/software platforms (most were variations of UNIX). The QA team was
small (initially with a ratio of about 1:20 with developers, growing to ~1:5 over 18
months) and nearly completely focused on testing. Most new testers were recruited
from other companies’ development organizations.

To support the large number of versions, the product was developed using inter-
nal switches to enable or disable different code functions. Therefore, most of the
porting was done by selecting the proper combinations of switches. This meant that
once features or bug fixes had been incorporated into the base code, the various
ports would pour into QA.

Because the test team was small, we spent almost all our time running tests on
the various platforms. Little time was available for design and implementation of

	 29.6  Exploratory Test Automation: Database Record Locking� 539

tests for new features. A thorough test run for a new release on a platform could take
2 weeks, and the dozen testers could receive 150 versions in a few weeks. The man-
agement and technical challenges dealing with this situation are other case studies in
themselves. This case study focuses on one particular exploratory automated test we
created.

Unlike regression tests that do the same thing every time they are run, explor-
atory automated tests are automated tests that don’t have predetermined results
built in; they create new conditions and inputs each time they’re run. Exploratory
test automation is capable of finding bugs that were never specifically conceived of in
advance. These are typically long-sequence tests and involve huge numbers of itera-
tions because they are only limited by available computer resources.

Tip

When the input space of an application is huge, exploratory automated tests can
find defects that are difficult to find manually.

29.6.1  The Case Study
Bug being sought: Errors in database record locking (failure to lock or release a lock
on a record, table, or database).

When I took over the QA organization, the existing test cases were simple appli-
cations written in the various frontend languages, mostly our proprietary SQL. Most
existing tests were applications and data sets collected from customers or scripts that
verified bug fixes. Automation was achieved using a simple shell script that walked
through the directories containing the tests and sequentially launched them. Most
of the testers’ efforts were in analyzing the results and tweaking the tests to conform
with nuances on the various platforms.

One area of concern that wasn’t well tested using our regression tests was record
locking. A few intermittent bugs that locked up the programs or clobbered data had
been found in the field. The locking mechanism was complex because of the distrib-
uted nature of the database. For example:

	 Parts of the database might be replicated and the “master” copy moved around ■■

as requests were made.
	 Different parts of the database needed to communicate about actions before ■■

they could be completed.

540	 Chapter 29  Test Automation Anecdotes

	 Requests could occur simultaneously. ■■

	 Common data could be updated by multiple users.■■

	 One user’s request for exclusive access (e.g., to update part of a record) could ■■

cause some other users’ requests to wait.
	 User requests for nonexclusive access might proceed under some circumstances.■■

	 Non-overlapping parts of interlocking records might be updated by different ■■

users.
	 Timeouts could occur, causing locks and/or requests to be cancelled. ■■

Most multiuser database systems at the time were hardwired and LAN based, so
Internet and cloud issues weren’t part of the picture. (This was before widespread
Internet use, browsers, or the World Wide Web.) Frontend programs were built out
of compiled or interpreted programs written in proprietary languages. The use of
LANs meant that interrupt events came directly through hardware drivers and were
not processed by higher-level system services.

Prior to the test automation project, the straightforward locking sequences were
tested using manual scripts on two terminals. For example,

	 1.	 One user would open a record for nonexclusive update (which should lock
the record from being modified but allow reading of the record by other
users).

	 2.	 A second user would open and attempt to modify the record (thus success-
fully opening but then encountering a record lock).

	 3.	 Another test would have the first user opening for nonexclusive read (which
should not lock the record and should allow reading and modifying of the
record by other users).

	 4.	 The second user would read and update the record (which should work).

The regression tests confirmed the basic functioning of the lock/unlock mecha-
nisms. Only a subset of condition pairs could be manually tested this way because of
the amount of time it took, and complex sequences of interactions were out of the
question. Figure 29.2 shows an example of the interaction of two users attempting to
access the same record.

In relational databases, updating a record can write data in many tables and
cause updates to multiple indexes. Different users running different programs may
reference some common data fields along with unique data. The data records are
contained in multiple files (called tables), and programs reference some subset of the
fields of data across the database. Intermittent, seemingly unreproducible problems
could occur when the requests overlapped at precisely the wrong times. For example,

	 29.6  Exploratory Test Automation: Database Record Locking� 541

the second read request might come in while the first was in the process of updating
the database record. There might be tiny windows of time during which a lock might
be missed or a partially updated record returned. These kinds of combinations are
extremely difficult to encounter and nearly impossible to reproduce manually. We
decided that the best way to look for errors was to generate lots of database activities
from multiple users at the same time.

Good Point

Good candidates for automation are tests that are difficult to run manually and
those that are too complex for manual testing.

The challenge was to create multithreaded tests that could find timing-related
problems of this type. The goal was to produce tests that would generate lots of
conditions and could detect the bugs and provide enough failure information to the
developers so they could isolate the cause and have some chance at fixing the bugs.

Automated tests: We created a single program that accessed a database using various
randomly selected access methods and locking options. The test verified and logged
each action. We then ran multiple instances of the program at the same time (each

User A User B

Database

Lock Record
Lock Record

Locked
Blocked

Unlock Record Locked

Unlocked

{Pause}

Unlock Record

{Continue}

Record Locking Example

Unlocked

Figure 29.2  Record locking example

542	 Chapter 29  Test Automation Anecdotes

being its own thread or on its own machine). This generated huge numbers of combi-
nations and sequences of database activities. The logs provided enough information
to recreate the (apparent) sequence of database actions from all the threads. If no
problems were detected, we discarded the logs because they could get quite large.
While the tests were running, a monitoring program observed the database and log
files to ensure that none of the threads reported an error or became hung.

Oracle: Watching for error returns and observing whether any of the threads termi-
nated or took excessively long. The test program did very trivial verification of its own
activities. By the nature of multiple users updating overlapping data all the time, data
changes might be made by any user at any time. We couldn’t reliably confirm what
was expected because some other user activity might change some data by the time
the test program reread it. Because most database activities completed in fractions
of seconds, if there was no lockout, the monitor program checked for multisecond
delays on nonlocked transactions or after locks had been logged as released.

Good Point

A test oracle, especially for automated exploratory testing, may just be looking for
system failures rather than functional correctness. Use an oracle that is appropriate
to the testing you are doing.

Method summary:

	 1.	 Created a program that independently, randomly accessed records for
update, read, insert, and delete. Different types of record locking were ran-
domly included with the requests. Each program logged its activity for diag-
nostic purposes and checked for reasonable responses to its requests.

	 2.	 Ran multiple instances of the program at the same time so they potentially
accessed the same data and could interfere with one another. Access should
have been denied if records were locked by other processes and allowed if
none of the other threads was locking the referenced record.

	 3.	 Created and ran another program to monitor the log file and the database
engine to detect problem indications and shut down if a problem occurred.

Because the threads were running doing random activities, different combina-
tions and sequences of activities were generated at a high rate of speed. The programs
might have detected errors, or the threads might hang or abnormally terminate, indi-
cating the presence of bugs. Each instance of the test generated large numbers of
combinations of events and different timing sequences. The number of actions was

	 29.6  Exploratory Test Automation: Database Record Locking� 543

limited by the amount of time we allocated for the lock testing. We sometimes ran
the test for a few minutes, but at other times it could run an hour or longer. Each
thread might only do hundreds of database actions per second because of the time it
took for waiting, error checking, and logging. We ran from three to a dozen threads
using multiple networked systems, so a minute of testing might generate 100,000 to
300,000 possible locking conditions.

Results: We caught and were able to fix a number of interesting combinations, timing-
related bugs, and one design problem. For example, a bug might come up when:

	 User A opens a record for update.■■

	 User B waits for the record to be unlocked to do its own update.■■

	 User C waits for the record to be unlocked to do its own update.■■

	 User A modifies the data but releases the lock without committing the ■■

change.
	 User B modifies the data but releases the lock without committing the ■■

change.
	 User C updates the data, commits it, and releases the lock.■■

	 User C’s data was not written into the database.■■

I was surprised because a few of the timing- and sequence-related bugs were not
related to the record locking itself. If the commits occurred at the same time (within
a tiny time window), the database could become corrupted by simultaneous writes of
different records by multiple users in a single table. Although the records were not
locked because the users were referencing different rows, the data could become
switched.

We couldn’t be certain that we caught all the bugs because of the nature of these
kinds of timing- and sequence-related problems. Although millions of combinations
were tried and checked, there were myriad possibilities for errors that we couldn’t
detect or didn’t check for. Trillions of combinations wouldn’t amount to a measurable
percentage of the total number of possibilities. But, to the best of my knowledge,
there were no reported field problems of that nature for at least a year after we cre-
ated these tests. (I moved on and no longer had access to such information.)

Good Point

The benefits of exploratory automated tests may be significant even if you can’t
know what you didn’t test.

544	 Chapter 29  Test Automation Anecdotes

We didn’t leave reproducibility to chance, although even running the same series
of inputs doesn’t always reproduce a problem. The at-random tests used pseudoran-
dom numbers; that is, we recorded seed values to be able to restart the same ran-
dom sequences. This approach substantially improves reproducibility. We generated
a new seed first when we wanted to do a new random walk, and we reused the seed
to rerun a test.

Tip

Even random tests should be reproducible in order to confirm bugs and bug fixes.
Use the same starting point (the “seed”) to reproduce the same random test.

The archiving system is critical for tracing back to find the likely cause and also
as the test oracle. Much of the data being recorded can be checked for consistency
and obvious outliers to detect when likely bugs are encountered. I tend to log the
things developers tell me might be important to them as the test progresses and then
“dump the world” when a bug is suspected.

We used some functional test suites that were available for SQL, including from
the National Bureau of Standards (which later became the National Institute of
Standards and Technology), but they only checked basic functionality. We used them
to some degree, but they were not random, asynchronous, or multithreaded. TPC-B
wasn’t created until several years later.

Recognizing the root cause of reported bugs required serious investigation
because the failures we were seeking generally required multiple simultaneous (or a
specific sequence of) events. Many of the factors we looked at were environmental.
We were primarily looking for fundamental violations of the locking rules (deadlocks
and data corruption), so recognizing those failures was straightforward. Identifying
the cause was more difficult and frustrating. It sometimes took a lot of investigation,
and once in a while, we gave up looking for the cause. This was frustrating because
we knew there was a bug, but we couldn’t do anything about it other than look for
other symptoms. Most of the time, though, the developers were able to identify the
probable cause by looking for the possible ways the failure could have happened.

Good Point

Unreproducible failures are worth reporting because sometimes developers can
trace the cause in the code if they know that something is wrong.

	29.7  Lessons Learned from Test Automation in an Embedded Hardware–Software Computer Environment� 545

29.7 � Lessons Learned from Test Automation in an
Embedded Hardware–Software Computer
Environment

Jon Hagar, United States
Engineer, trainer, and consultant

Embedded systems comprise specialized hardware, software, and operations. They
come with all of the problems of normal software, but they also include some unique
aspects:

	 Specialized hardware that the software “controls” with long and concurrent ■■

development cycles.
	 Hardware problems that are “fixed” in the software late in the project.■■

	 Limited user interfaces and minimal human intervention.■■

	 Small amounts of dense, complex functions often in the control theory domain ■■

(e.g., calculating trajectories, flight dynamics, vehicle body characteristics, and
orbital targets).

	 (A big one) Very tight real-time performance issues (often in millisecond or ■■

microsecond ranges).

Products that make up embedded software systems now span the automotive,
control, avionics, medical, telecom, electronics, and almost every other product
domain one can think of. I have been involved in space avionics (guidance, navigation,
and control software), but many of the approaches and lessons learned are applicable
to other embedded software systems. In this section, we use examples drawn from a
hypothetical but historically based space flight software embedded system.

The goal of verification, validation, and testing (VV&T) is to show that embed-
ded software is ready for use and the risk of failure due to software can be consid-
ered acceptable by the stakeholders.

Development programs can be small—for example, 30,000 source lines of code
(with staffs of 10 to 60 people)—yet these programs are time and computationally
complex and are critical to the successful control of the hardware system.

29.7.1  VV&T Process and Tools
We typically have four levels of testing and tools that support each level. The lowest
level is probably the most different for embedded systems because it is nearest to the

546	 Chapter 29  Test Automation Anecdotes

hardware. It uses a host/target configuration and cross-compiled code (including auto-
mation code). Cross-compiling is where source code is compiled on one computer, not
into the binary (executable) of that (host) computer but rather into binary executable
code that will run on a different computer (the “target”) that is too limited to be able
to run a compiler on. Our testing at this level aims to check against standards and code
coverage as well as requirements and design and is automated by the developer.

We call this “implementation structural verification testing” (some places call this
unit testing). This testing is conducted with a digital simulation of the computer and/
or a single-board target hardware-based computer.

The implementation test tools were customized in the beginning, but other
off-the-shelf tools were added later. Examples include LDRA TBrun, Cantata, and
AdaTEST. The project used both test-driven development and code-then-test imple-
mentation approaches. The comparison and review of results, which include very
complex calculations, is done using test oracle information generated from commer-
cial tools such as MATLAB, BridgePoint, and Mathmatica.

The middle level, which we call design-based simulation tools, uses tools that are
based on software architecture structures and design information, which have been
integrated across module boundaries. These tools allow the assessment of software
for particular aspects individually. In some projects, model-based development tools,
BridgePoint, and MATLAB were used, and this enabled the integration efforts to go
better than in past systems, because the models enforced rules and checks that pre-
vented many integration defects from happening in the first place.

Tip

Using models can help to prevent and eliminate defects that otherwise would be
found in testing (or not found), but nothing guarantees that you find 100 percent
of them.

The next level is requirements-based simulation (scientific simulation tools).
These simulations (driven by models) are done in both a holistic way and based on
individual functions. For example, a simulation may model the entire boost profile
of a system with full vehicle dynamics simulation, and another simulation may model
the specifics of how the attitude thrust vector control works.

This allows system evaluation from a microscopic level to a macroscopic level.
The results from one level can be used as automated oracles to other levels of VV&T
test supporting “compare” activities.

This approach of using simulation/models to drive and analyze test results comes
with a risk. There is the chance that an error can be contained in the model or tool

	29.7  Lessons Learned from Test Automation in an Embedded Hardware–Software Computer Environment� 547

that replicates and “offsets” an error in the actual product (a self-fulfilling model
result). This is a classic problem with model-based test oracles. To help with this risk,
the project used the levels of testing (multiple compares), a variety of tools, different
VV&T techniques, and expert skilled human reviewers who were aware of this risk.
These methods, when used in combination with testing, were found to detect errors
if they exist (one major objective) and resulted in software that worked.

Finally, at a system level, VV&T of the software uses actual hardware in the loop
and operations. An extensive, real-time, continuous digital simulation modeling and
feedback system of computers is used to test the software in a realistic environment
with the same interfaces, inputs, and outputs as in the actual system. The system
under test runs in actual real time; thus there is no speed-up or slow-down of time
due to the test harness. Additionally, with hardware in the loop and realistic simula-
tions, complete use scenarios involving the hardware and software could be played
out with both for typical usage scenarios (daily use) and unusual situations such as
high load, boundary cases, and invalid inputs.

29.7.2  Lessons Learned
This section summarizes some general observations that the projects had during the
initial setup and use of automated VV&T tools:

	■■ Training: It is important to allow both time and money for training on tools
and testing.

	■■ Planning: Tools must be planned for and developed like any software effort.
Automated VV&T tools are not “plug and play.” To be successful, plan for
development, establish a schedule and budget, integrate with existing pro-
cesses, plan the test environment, and also test the test tools. Test tools must
be “engineered” like any development effort.

	■■ Have an advocate: Test tools need a champion in order for them to become
incorporated into common use. The champion is someone who knows the
tools and advocates their use. Success comes from getting staff to think “out-
side the automated tool box.” The new tools must “integrate” with the existing
staff, which means education, mentoring, and some customization. Advocates
work these issues.

	■■ Usability of a tool must be reasonable for the users: While people will need
training on tools, and tools by nature have complexities, a tool that is too hard
to use or is constantly in revision by vendors leads to frustration by users that,
in the extreme, will lead to shelfware. Ensure that the user interface is part of
the selection evaluation before purchasing any tool.

548	 Chapter 29  Test Automation Anecdotes

Good Point

Usability of the tools is important—even for “techies.”

	■■ Expect some failures and learn from them: Our project explored several tools
that were abandoned after an initial period of time. While failure is not good,
it is really only total failure when one does not learn from the mistake. Also,
management must avoid blaming engineers for the failure of an idea because
doing so stifles future ideas.

Good Point

If you learn from your mistakes, you have not totally failed. Any failure or mistake
becomes a source of information to share.

	■■ Know your process: Automated test tools must fit within your process. If you
lack process, just having tools will probably result in failure. Expect some
changes in your process when you get a new tool, but a tool that is outside of
your process will likely become shelfware.

	■■ Embedded systems have special problems in test automation: Despite prog-
ress, automated test tools do not totally solve all embedded VV&T problems.
For example, our projects found issues in dealing with cross-compiling, tim-
ing, initialization, data value representation, and requirements engineering.
These can be overcome, but that means vendors have more functions to add
and projects will take more money and time. Plan for the unexpected.

	■■ Tools evolve: Plan on test tool integration cycles with increments.
	■■ Configuration management (CM): Even with VV&T tools, projects need to

manage and control all aspects of the configuration, including the test tools as
well as the test data.

29.7.3  Summary of Results
Although I am not permitted to reveal specific data, when compared to custom-devel-
oped tools and manual testing, establishing an automated commercial-based VV&T
environment took about 50 percent fewer people. The projects tend to take these

	 29.8  The Contagious Clock� 549

savings to create more and/or better automated tests. While adding to test automa-
tion, the projects maintained and improved functionality and quality. Further, main-
tenance-regression costs decreased because vendors provided upgrades for a low
annual fee (relative to staff costs for purely customized tools). Commercial tools have
a disadvantage of lacking total project process customization, but this has proven
to be a minor issue as long as the major aspects of the process were supported by
the tools.

Additionally, the projects reduced test staff work hours by between 40 and 75
percent (based on past VV&T cycles). We found that our test designers were more
productive. We created the same number of tests and executed them in less time and
found more defects earlier and faster. We had fewer “break-it, fix-it” cycles of regres-
sion testing, which meant that less effort was needed to achieve the same level of
quality in the testing and the same defect detection rates.

In an embedded software VV&T environment, automated test tools can be good
if you consider them as tools and not “magic bullets.” People make tools work, and
people do the hard parts of VV&T engineering that tools cannot do. Tools can auto-
mate the parts humans do not like or are not good at. Embedded projects continue
to evolve VV&T automation. VV&T automation tools take effort, increments, and
iterations. Tools aid people—but are not a replacement for them.

Good Point

The best use of tools is to support people.

29.8  The Contagious Clock

Jef frey S. Miller, United States
Developer

Sometimes a good testing idea is contagious. Once it meets one need in your system,
other uses may emerge that were quite unexpected when you began.

29.8.1  The Original Clock
I had just been hired at Google as a developer on a project during its preparation
for public release. The system under development embedded a timestamp when

550	 Chapter 29  Test Automation Anecdotes

recording certain events. Depending on how long it had been since the events were
recorded, the system needed to present, interpret, or process the events in different
ways.

The project had a strong mandate for developers to demonstrate the features
they created via automated unit and system tests. As my first development task, I
took on the job of designing and coding an application clock to make developer test-
ing of time-based behavior simpler. In production, the application clock follows the
system clock, but for testing, it wraps a test clock that can be manipulated to simulate
the passing of minutes, hours, or days.

29.8.2  Increasing Usefulness
At first, the application clock was used for automated testing of portions of code
encapsulating the core logic for time-dependent features. However, the system
under development could be driven as a whole via a scripting language that could
simulate one or more users interacting with the system to accomplish a set of tasks.
Script-driven system tests were the common property of developers, feature owners,
and a team of testing specialists. The testing team used script-driven system tests
alongside manual verification to exercise the system in detail before each version
was released to production. Soon I helped add commands to the scripting language
to control the clock, allowing nonprogrammers to set up scenarios that included the
passage of time.

29.8.3  Compelling Push
The original application clock was limited by design so that the clock could never
be manipulated in the production system and thereby create troublesome inconsis-
tencies. However, the testing team needed to exercise the system and its features
interactively in a staging environment similar to the production setup. However, for
testing time-based behavior, sometimes they set up a scenario before a weekend and
returned after the weekend to verify the correct behavior. Other times the testing
team changed the system clock so that the application would pick up the changed
time and demonstrate the desired behavior. Both of these techniques were laborious
and error prone, with the system clock manipulation frequently causing side effects
that would ruin the test.

At the request of a primary tester and another developer familiar with the
application clock, I revisited the application clock design. By this time, the system
supported a mechanism for enabling and disabling features in production without
having to redeploy a new system binary. This mechanism allowed me to guard the

	 29.9  Flexibility of the Automation System� 551

application clock from being manipulated on the actual production servers while
allowing the testing team to control time interactively on their own simulated pro-
duction servers.

29.8.4  Lessons Learned
The main thread of this story follows a version of a software developer’s adage: “Wrap
external dependencies.” While the runtime library is normally considered internal,
the clock it provides is a service outside the system. When the passage of time is
important in system logic, wrapping the clock is a beneficial move.

The unexpected bonus was that adapting to successively larger scopes (isolated
code, scripted captive system, interactive deployed system) provided benefit to more
and different groups of people and for different types of tests. Although the larger
scopes required modestly more architectural plumbing, in each case the wrapped
clock fit into configuration systems that had been built to bring other benefits to
the system. With hindsight, it would have been better to build them earlier had we
known more of the operational and testing uses for the application clock.

I’ve now moved on to other work within the company, but I can see the appli-
cation clock has been maintained and adapted to fit the system’s new configuration
mechanisms. I’m glad it continues to prove useful.

Lesson

Look for wider application for any useful utilities that help to automate some aspect
of testing.

29.9  Flexibility of the Automation System

Mike Bar tley, United Kingdom
Lecturer and consultant

We developed our test automation system ourselves and devised ways to adapt our
automated testing to be more efficient in ways that we have not seen elsewhere.

Because we had already developed an inhouse software version control and build
system, it was fairly easy to integrate our automation tool with our build system. This
made our testing more efficient because we could selectively test only those modules

552	 Chapter 29  Test Automation Anecdotes

that had changed, as shown by our source code dependency tree. If nothing that
a particular test depended on had changed, that test would not be executed. This
dramatically reduced the build and cycle time and thus allowed us to put in place
continuous integration of builds and tests. We did keep an option that forced all tests
to rebuild and run if we wanted to run a full regression test.

We made it easy to remove tests from the test suite when a test needed updat-
ing because of changes in the software it was testing. Although we were then cutting
down on the test coverage because the test(s) were not run, it meant that the mainte-
nance of those tests didn’t have to be done immediately, thereby stopping the rest of
the test suite from running.

We extended this to a way of “banning” specific tests for various reasons:

	 The software has changed, but the tests have not yet been updated.■■

	 A test is known to be giving a false failure (i.e., it fails but it should pass).■■

	 A test is not restoring test machines to a known good state.■■

This idea proved to be a major benefit to our efficiency.

Tip

Being able to selectively choose tests to run or not to run can make the automation
quicker and more efficient. Make it clear which tests are active and which are not.

29.10 � A Tale of Too Many Tools (and Not Enough
Cross-Department Support)

Adrian Smith, United Kingdom
QA lead

I have been involved in five automation projects over 5 years, with varying degrees
of success.

29.10.1  Project 1: Simulation Using a DSTL
The first project was written in Python and batch scripts, running functional and
performance tests on 85 to 145 PCs, simulating more than 20,000 machines. It was

	 29.10  A Tale of Too Many Tools (and Not Enough Cross-Department Support)� 553

not originally an automation project, but I made it so. What started as a simple con-
trol program ended up growing into a fully flexible domain-specific test language
(DSTL), as it would now be called, that enabled the tester to write test steps in
a simple though unstructured keyword/parameter language. Expand the tests, alter
them, chain them, and add new elements to the language as needed. The potential
9-month project was still being used 6 years later, It has ended up having a much
better ROI than expected as its scope has increased over time. Thousands of man
hours were saved and vastly more test runs were performed than a could have been
run manually and with fewer execution errors.

About halfway through the automation project, my manager wanted me to do
some manual testing for a different project because it was way behind. I knew this
would be the end of the automation, so I managed to convince him that it would be
better for me to stay with this (ad hoc) project—and this contributed to its success.

Lesson

Have the courage to argue your position with your manager.

29.10.2  Project 2: Testing a GUI Using TestComplete
The second automation project was to automate system-level applications. A tool
was bought to experiment with: TestComplete 3. I had high hopes for another suc-
cess using a DSTL for the testers, but this would take a long lead time to build. We
then came across problems of automating GUI interfaces written in an automation-
unfriendly way. I naively asked development to assist by modifying their code to help
with the automation but was flatly refused. I had no support from management for
this, so I had to go it alone. I probably should have stopped there and then.

Lesson

Without the cooperation of developers, test automation will be more difficult than it
needs to be.

But I didn’t. I persevered with the DSTL framework, though with little abstrac-
tion because I wanted to have something working sooner for management. At the
time the first beta was just about ready, a new director of testing was appointed.
The good news was that he thought automation was a good thing. The bad news

554	 Chapter 29  Test Automation Anecdotes

was that he decided we needed to get “the right tool” with a single solution of man-
ual test creation, results gathering, and reporting. I had to suspend my work with
TestComplete and was given a 2-month task to evaluate a number of GUI automa-
tion tools. The final three were Rational Robot, Quality Centre QTP, and guess what:
TestComplete. After the evaluation, I thought TestComplete was the most flexible
and wanted to continue with it. The company thought differently, so this framework
was never completed.

29.10.3  Project 3: Rational Robot
A 3-month proof-of-concept was then initiated for Rational Robot. If I had got further
in the previous project, I could have at least reused the tests written. It was decided
to do something similar with this tool, framework, abstraction, and tests being a thin
layer on top. After 8 months, another automator and I had abstracted the tests and
had a GUI object action library that could be generated automatically. Many hun-
dreds of lines of code were automatically generated to do simple GUI actions as click
a button or check a textbox. All that was changing was which control in which win-
dow to use. We had a good feeling about this framework because it was simple, and
we were just starting to settle on a project to automate when, at this point, manage-
ment decided to do a proof-of-concept for QuickTest Professional (QTP).

29.10.4 � Project 4: Final Python Project and QTP Proof-of-
Concept

Management were now getting involved and wanted to see some ROI that could be
quantified to justify the purchase of this tool. We set to work on a single-use frame-
work in Python, eventually automating 15 end-to-end smoke tests using GUI librar-
ies. I had made a Python frontend so that testers could create and maintain tests
without needing a lot of technical knowledge. The number of bugs that it found was
too low to justify extending this automation to other areas. However, we were begin-
ning to get occasional cooperation from developers. There were a couple of inter-
faces that could be called directly from Python to C written specifically for us to
enable the tests to function.

We had one problem that we lost many days trying to figure out: The tool would
crash but didn’t report any error. It turned out to be a bug in the tool itself.

Good Point

Don’t forget that the tool itself is also software and may have bugs.

	 29.10  A Tale of Too Many Tools (and Not Enough Cross-Department Support)� 555

For the proof-of-concept project for QTP, we had trouble trying to work with
QTP in the way we wanted to, and a lot of time was wasted coming to grips with
it. Eventually, we found a workaround to allow us to put many methods in one
QTP file. At the end of this proof-of-concept, I would still have opted for one of the
other tools.

Management chose QTP, and we had a real project to do with deadlines and end
dates, so many of our ideals were curtailed, sidelined, or dropped. We again ran into
problems with GUI objects and no help from developers.

29.10.5  Project 5: QTP2
With a new release of QTP, we tried to integrate our framework and Python code
so that test results would be received centrally while still allowing us to launch
tests including rebooting machines. This was using VMware virtualization and
CruiseControl. We added extensively to application libraries, which were QTP librar-
ies that did lots of specific tasks in a GUI, passing in a number of parameters. We
also wanted to bring the test creation tool up to date so that the testers could use the
automation easily. The thought behind this was that the easier it was to write a test,
the quicker it would be to add tests, while the application libraries could be main-
tained by the automators.

However, management didn’t want “extraneous time” spent on this perceived
nonproductive activity!

Lesson

Managers sometimes think they know best even when they don’t. As an automation
champion, dare to say “Mission Impossible” when necessary.

The way we automators wanted it was that testers would not have to learn much
programming, but because there would be no tool to help with creating tests, then
testers would have to learn programming and know much more about the internal
workings of the automation system. This is not a bad thing, but with a lot of pressure
on the test department, it seemed (and was proven to be true) that testers rarely had
time to dedicate to automation programming before being taken off again by another
project. In a lot of cases, they never made it to do any automation because of dead-
line changes. At this time, automation still was not at the forefront of management
thinking, but it was definitely starting to get their notice.

Progress was being made, libraries were expanding, and the tests were nearing
completion, having overcome many of the problems of GUI fragility.

556	 Chapter 29  Test Automation Anecdotes

Now a problem that we automators had “forgotten about” came back. For the
first time in a couple of years, the GUI interfaces began to be amended or over-
hauled on a much more frequent but ad hoc basis (to us automators). We were not
informed of changes as they happened, so our tests started failing, and it took a long
time to find out why. After 2½ months of battling this upset (hundreds of changes to
GUIs rendered even the smoke tests useless), I called a halt.

Lesson

Changes to the user interface can derail the automation if it cannot cope with such
changes.

29.10.6  The End of the Story
Of the five automation projects I was involved in, only the first one achieved success.
It was non-GUI and an isolated project. The others failed because of what seemed
to be management decisions and lack of cross-department cooperation, but perhaps
better communication would have helped.

Management had a bit of a shock and a rethink about automation after all the
previous high-profile problems. Automation is now a deliverable for developers—
one of the key problems before was that there was no incentive for developers or
development managers to support or even cooperate with automators, as they had
their own targets. Direct GUI automation has been abandoned, and automation is
now at API level.

The final irony is that developers now have to maintain the APIs and automation
code; if only they had agreed to maintain object libraries or had added a few lines to
object maps earlier, there would have been less work for them now.

29.11  A Success with a Surprising End

George Wilkinson, United Kingdom
Test manager, trainer, and consultant

This anecdote describes some of my experiences on a large test automation proj-
ect undertaken in 2007 and 2008. This project was to automate the core processes

	 29.11  A Success with a Surprising End� 557

of the system validation tests of the National Health Service (NHS) Care Records
System (CRS) application as rolled out within England by a large health IT Systems
Integration company. This was being undertaken as part of the wider National
Programme for IT (NPfit). The study covers 8 months of continuous progress, though
with a surprising end.

An automation team was formed from a number of locations, including the North
of England, the Midlands, and the West Country. Rather than looking for an exact
skills match, we wanted people experienced in the CRS application who were enthu-
siastic about getting involved in automation. Because the team was geographically
distributed, we decided to meet most weeks in a geographically central location for
2 days.

Good Point

Team-building is important for automation teams, too, especially when they are geo-
graphically dispersed.

29.11.1  Our Chosen Tool
TestStream was a commercial validation suite from Vedant Health, a United States
company specializing in test health-care automation targeted at laboratory informa-
tion systems (LIS) and health informatics systems (HIS). Our representative from
Vedant traveled from the United States to start the project going and to run the
training in the product set and the TestStream methodology.

Good Point

Take advantage of learning from others when the opportunity arises.

One of the useful features of TestStream was called Scenario Builder. It provided
a way to construct automated patient journeys, which are made up of a number of
predefined actions. The analyst simply pulls together these actions to create a longer
test. There are over 600 actions for our CRS application system, and they include
elements such as Register a Patient, Add Allergy, Schedule Surgery, and Check in
a Patient. The Scenario Builder allows the sequence of events to be defined and
viewed as a true patient journey.

558	 Chapter 29  Test Automation Anecdotes

No scripts, scripting, or further script development was required by either my
team or Vedant Health, because the Scenario Builder’s actions provided the com-
ponents or scenarios required. The only requirements were a solid familiarity with
the application under test and a thorough understanding of the test case (normally a
patient journey).

We built a comprehensive library of automated scripts and devised standards
and procedures about how they were to be stored and maintained. We developed
a customized comparison and data collection tool, which we called CAT (collection
analysis tool).

29.11.2 � The Tool Infrastructure and an Interesting Issue as
a Result

The product was installed and accessible by the user via a secured network to serv-
ers running virtual machines (VMs), as shown in Figure 29.3. Access to the VMs and
thus to the test environments was provided to both the automation team running
tests and company IT support staff.

Vedant’s access for support could be from anywhere in the world because some
of the highly experienced Vedant support staff moved around the world assisting
other clients. This required remote access to our infrastructure, but we soon discov-
ered that it didn’t work. The system was so secure (in order to prevent fraudulent
access into any test environment that may hold live patient data) that it prevented
the remote access facility from working.

Good Point

Don’t forget to test your support facility, especially if you have stringent security
requirements.

We resolved the issue by allowing both companies independent access to another
test system that was clean of any patient data. This solution was foolproof from a
security perspective but provided only limited support, which was to be mitigated
by the test system holding the same application version that the majority of systems
were holding in the field. Although the solution was not perfect, because the deploy-
ments were not always running the same system version, it was a step in the right
direction—and one on which we could make progress.

Looking back, we realized that no feasibility study had been conducted on sup-
port, which could have prevented the remote access issue from arising.

	 29.11  A Success with a Surprising End� 559

29.11.3  Going toward Rollout
Over the next 3 to 4 months, the team grew from 6 to 10, with an additional four
part-time support members. We produced a catalog of the automation tests that
were available to the deployment projects to build their own scenarios. As we pro-
gressed with the pilot, we identified data and configuration requirements that were
localized to the individual projects as they moved away from a standard. This meant
that our current generic approach needed to be tailored for the deployment-specific
test environment. What we had done was created a process but lost some sight of our
individual customer’s requirements.

Lesson

Don’t invest too much effort in designing your automation without testing it out in a
real situation.

Test environment
a

Test environment
b

User access to
TestStream

Secure servers
using VMware,
running several

TestStream clients

Figure 29.3  TestStream infrastructure

560	 Chapter 29  Test Automation Anecdotes

We ran a sample of the data collection and clinical ordering features of the CRS
for a particular deployment. This was a great success because we found many defects
that were thereby prevented from entering the live environment. We found between
10 and 100 defects on well-built and established test environments and thousands on
other environments.

We published a report to the stakeholders showing how we added value to the
current manual test approach. We found that we could automate tests for around 70
percent of the installed CRS functionality and save approximately 30 percent of our
current testing effort.

We now decided to initiate some public relations for the tool. We scheduled sev-
eral educational sessions to explain the program and what we had been doing, to
give stakeholders the opportunity to ask questions, and to gather feedback from the
teams working on customer sites.

Lesson

You probably need to do more public relations and communication than you
thought. Make pilots or demonstrations part of project milestones so that they are
more visible.

I was quite surprised at how many people had a very different interpretation
than we did of the product set and its intentions and of software test automation
itself. Most people’s experience with automation test tools is that they require con-
stant scripting or maintenance to work. Fortunately, these sessions helped to con-
vince people that our automation was an improvement on that.

We also dispelled some illusions and misperceptions about automation and set
more realistic expectations. The public relations meeting also raised the team’s confi-
dence and gave them some well-deserved recognition.

The automation team were elated by the results from the pilot project and the
fact we were now in the rollout stage. Their confidence was really growing; after all,
they had made it work. TestStream was out there and making a real difference! We
were positioning ourselves well, and the future, at last, after a good deal of effort,
was looking more positive.

29.11.4  The Unexpected Happens
In late May 2008, after discussing our success so far and the rollout plans, the over-
all project was cancelled because of a breakdown in the contract with the systems

	 29.12  Cooperation Can Overcome Resource Limitations� 561

integration company. Therefore, our automation project was also cancelled. I gath-
ered my team together for the last team meeting and officially announced the can-
cellation. They had worked extremely hard, but the automation project was over; all
those many late evenings, weekends, sheer determination, and extra miles traveling
to make this work were now history. What a heartbreaking end to what should have
been a great success.

Good Point

Sometimes in spite of a great effort, things don’t go the way we expect because of
factors entirely out of our control. Take what you can from the experience to use
next time.

29.12 � Cooperation Can Overcome Resource
Limitations

Michael Albrecht, Sweden
Test manager, consultant, and speaker

I was in a test team that was testing technical aspects of banking system processing
without access to a GUI. For this project, we needed not just domain knowledge but
more technical skills than we had. Rather than take the traditional project approach
and try to hire someone, we got everyone together, both testers and developers, and
developed the skills we needed between us, although we did need to bring some tes-
ters with coding skills into the team.

We had no money for tools, so we just started to use the same open source tools
that the developers were using. The difference in the way we used them was that we
needed to do some coding to create scenarios for our tests rather than just exercising
each one individually. We also needed to verify our expected results and double-
check with the database directly.

We didn’t spend any money on tools, but we did spend a lot of time (we also built
our own performance-testing tool). Sometimes it is easier to explain (or hide) these
costs: The purchase of a tool would appear to be a large single cost, but time being
spent over months or years doesn’t appear to be as significant even if it is the same or
even more money!

562	 Chapter 29  Test Automation Anecdotes

We found that close cooperation with the customer and working as a team
enabled us to succeed in our automation. Being forced to use the same tools was a
blessing in disguise in the end.

P.S. from Lisa Crispin: In one project (a good while ago), I knew I needed to
get help from the developers to progress the automation, so I decided to use the
same programming language for the tests that the developers were using. I bought
myself a book and started writing scripts. When I needed help, the programmers
were happy to help me because they knew the language.

Lesson

Cooperation between testers and developers is good for automation, and so is
extending the tools you already use. And sometimes deviousness works!

29.13  An Automation Process for Large-Scale Success

Michael Snyman, South Africa

Test manager

I work for a large bank in South Africa, employing 25,000 staff. We adopted test
automation from 2006 to 2008 with a clear aim of reducing costs and increasing
productivity.

It was Edward Deming who said, “If you can’t describe what you are doing as a
process, you don’t know what you are doing.” In our case, this was true; any success
in the area of automation was due to individual skill and a large amount of luck. The
challenge was in taking what the successful individuals did and describing this prac-
tice in the form of a process.

29.13.1  Where We Started
Our shelves were littered with numerous tool acquisitions and implementations with
varying degrees of success. Each of these individual attempts had been focused on
very limited and sometimes selfish objectives. The habit of looking only at accom-
plishing immediate project goals had significantly affected the ability of the organiza-
tion to optimally use its selected tools. Such a one-sided view of automation had a
considerable negative effect on operational activities such as regression testing and

	 29.13  An Automation Process for Large-Scale Success� 563

on justifying the investment made. Compounding the problem was the loss of valu-
able information in the form of test cases, test scenarios, and test data.

Lesson

Focusing on too low a level in the organization does not optimize automation as a
whole.

Automation was involved too late in the process. How often is automation viewed
as the savior of the behind-schedule project? When automation does not deliver on
these unrealistic expectations, it becomes yet another automation failure. In reality,
it is very different; my experience points to automation requiring multiple cycles and
project releases for it to become fully effective and provide an acceptable ROI.

We weren’t capitalizing on what we could have learned. For example, a failure
experienced in production is an example of a test missed and one that should be
included in the test cases for the next release. Test automation should provide an
interface for both manual testers and incident management systems with the aim of
capturing lessons learned during any phase in the project lifecycle.

The seeming lack of success in test automation initiatives and the large upfront
investment required deters projects from planning and implementing test automa-
tion. The reluctance to learn from unsuccessful implementations and the habit of
blaming the tool for failure in automation projects has resulted in a stigma linked to
specific tools and automation in general.

Past attempts to justify automation focused on quality as the key attribute to be
considered and measured. The difficulty in dealing with quality is that it is extremely
complex. We clearly needed a way of providing a cost–benefit calculation for test
automation using an attribute other than quality.

Good Point

Appropriate objectives are critical. Automation does not improve the quality of the
tests or the software being tested.

In the absence of a detailed automation framework and process, a large dependency
was placed on the skill and ability of individual team members.

564	 Chapter 29  Test Automation Anecdotes

29.13.2 � The Key to Our Eventual Success: An Automation
Process

In 2006, a formal project was launched with dedicated resources, a champion for
automation, a good technical framework, clear goals, and a detailed plan. In this
anecdote, I describe one aspect that was critical to our success in achieving automa-
tion on a large scale.

It was clear, based on past experience, that a standard approach for automa-
tion should be defined and documented in the form of a test automation process.
However, this process could not exist in isolation but had to be integrated into the
newly defined manual test process and should be compatible with the organizational
software development lifecycle (SDLC). For example, in the requirement for a
defined automation process, the framework required high-level activities described
as specification analysis, script creation, scenario documentation, validation, and
data sourcing that needed to be satisfied by a detailed process. The full process is
shown in Figure 29.4.

Tip

The more people who are involved in automation, the better the documentation
about it needs to be.

From the documented automation framework, we were able to extract the key
process activities required to perform and support most automated testing activities.
Here follows a brief description of the objective of each step.

	■■ Analysis and design: Understand the client’s requirements, and establish if it is
possible to satisfy each requirement with current technology at our disposal.

	■■ Scripting and configuration: Implement the client’s requirements via an auto-
mated solution. This might include recoding, coding, and building special
utilities.

	■■ Parameter definition: Assess scripts against system user–defined scenarios
with the aim of identifying elements to be parameterized.

	■■ Parameter management: Manage large amounts of data in customized
spreadsheets.

	■■ Scenario collection: Populate spreadsheets with scenarios provided by stake-
holders of the system.

	■■ Validation: Check the spreadsheets and parameters, incorporating pass and
fail criteria in the spreadsheets and allowing the automated script to validate
results of executed tests.

	 29.13  An Automation Process for Large-Scale Success� 565

	■■ Testing of scripts: Ensure that the scripts run as expected, and remove any
bugs in the scripts.

	■■ Script execution: Run the scripts with the scenarios and parameters defined.
	■■ Review of results: Internally review the results of script execution, what tests

passed and failed, any common problems such as an unavailable environment,
and so on.

	■■ Result communication: Summarize the results sent to managers, developers,
stakeholders, and others.

29.13.3  What We Learned
These are the main lessons we learned on our journey through test automation:

	 Having a tool is not an automation strategy.■■

a.	 The tool is nothing more than an enabler of a well-thought-out set of
automation activities.

b.	 We believe that if you approach automation correctly, you should be able
to switch between tools with little or no impact.

Analysis and
design

Testing of scripts Validation Scenario
collection

Parameter
management

Parameter
definition

Scripting and
configuration

Script execution

Review of
results

Result
communication

Figure 29.4  Automation process

566	 Chapter 29  Test Automation Anecdotes

	 Automation does not test in the same way as manual testers do.■■

a.	 Automation will never replace manual testers. We view automation as an
extension of the manual tester, taking care of mundane activities such
as regression testing, leaving the tester to get on with the more intellec-
tual work.

	 Record and playback is only the start.■■

a.	 A set of recorded, unparameterized scripts has very limited reuse and
ages quickly. The focus on data-driven automation provides us with the
flexibility and reuse required.

	 Automation test scripts are software programs and must be treated as such.■■

a.	 Follow a standard software development life cycle in the creation of
automated scripts.

b.	 Document requirements; design, implement, and test your automated
scripts.

	 The value lies in the maintenance.■■

a.	 The secret of getting a good return on your investment is reuse; for this
to be possible, ensure maintenance is simple.

b.	 Keyword or data-driven approach facilitates both reuse and easy mainte-
nance.

29.13.4  Return on Investment
Our automation process enabled us to achieve consistency of automation practices
across the bank. We showed a benefit of $8,600,000 after 3 years. This benefit calcu-
lation method was reviewed by our finance team at the highest level, and the benefits
were confirmed by the individual system owner for whom the testing was done.

The total amount invested in the testing project, of which automation was a sub-
project, was in the area of $4,200,000. The amount spent on automation was less
than 20 percent of this total budget, including the acquisition of functional testing
tools, consulting, and the creation and execution of automated test scripts.

The benefit calculation was primarily based on the saving achieved in human
resource costs. For example, one of our main systems used in the sales process took,
on average, 4 weeks with 20 human resources to regression test. With automation,
we reduced that process to 5 days and two resources: a reduction from 2,800 man-
hours to 70 man-hours. This translated to a financial savings of about $120,500 per
regression cycle. If you take into account that, on average, we run two full regres-
sion cycles per release and have multiple system releases per year, and that we are
involved in various other systems, the savings soon start adding up.

	 29.14  Test Automation Isn’t Always What It Seems� 567

We have a spreadsheet that uses parameters as the basis for all calculations. It
allows us to compare the manual execution time per parameter to the automated
time. We refer to parameters as the inputs required by the system under test (e.g.,
if we are testing a transfer from one account to another, parameters might be “from
account,” “to account,” and “amount”). So, if we say that conservatively we invested
$850,000 in automation and had benefit of $8,600,000, then the ROI for automation
(ROI = (Gain − Cost)/Cost) was over 900 percent.

From a project testing perspective, the organization viewed the return on the
total investment in testing, which was still over 100 percent. (Usually, if ROI is 10
percent or more, it is considered an excellent investment!)

It is also interesting to note that the automation part was the only initiative within
the project testing that could be measured accurately, and as such, it provided justifi-
cation for the entire project.

Good Point

Keep good records of the costs and benefits of automation (and testing) to make
sure the highest levels in the organization realize what a good investment they have
made in automating testing.

29.14  Test Automation Isn’t Always What It Seems

Julian Har ty, United Kingdom
Tester at large

I strongly believe testing can and should use automation appropriately, and con-
versely, we should be careful not to waste time and resources on automating gar-
bage (e.g., ineffective, misguided, or useless tests). Also, we should beware of being
beguiled by shiny automation for its own sake, and over the years, I’ve sadly met
many people who believe, without foundation, that because they have automated
tests, these tests are appropriate or sufficient. One of my self-assigned responsibilities
as a test engineer is to challenge these flawed tests and retire as many as practical.

Good Point

Just because a test is automated doesn’t make it a good test.

568	 Chapter 29  Test Automation Anecdotes

This anecdote includes several experience reports of test automation, both good
and bad. Generally, I was directly involved in them, but sometimes the analysis was
done by other team members. They are taken from companies I’ve worked with and
for over the last 11 years. Project teams ranged from about 10 to 150 technical staff
and typically ran for several years.

In every case, test automation was core to the project.

29.14.1 � Just Catching Exceptions Does Not Make It a
Good Test

A large global application included several APIs that allowed both internal and exter-
nal groups to integrate with it. Java was the primary programming language. Over
the years, before I was involved, hundreds of automated tests had been written for
the respective APIs. For one API, the tests were written as a separate application,
started from the command line, and in the other, the open source JUnit framework
was used. Each set of tests ran slowly, and several days were required to update the
tests after each release from the application’s development team.

Our team of test engineers was asked to assume responsibility for both sets of
tests. Each engineer was assigned to one set of tests. We spent several days learn-
ing how to simply run each set of tests (the process was cumbersome, poorly docu-
mented, and simply unreliable). We then started reading through the source code.
What we found horrified us: There was an incredible amount of poorly written,
duplicated code (implying little or no software design or structure), and worst of all,
the only thing each test did to determine success or failure was catch runtime excep-
tions (e.g., out of memory, network timeout). When an exception was caught, the test
reported a failure.

Good Point

Just because automated tests can be run doesn’t make it good automation. You
need to know the details of what the test does in order to assess whether or not it is
a good test.

API tests should provide known inputs and confirm the results received are as
expected without undesirable side effects or problems. For example, if we have an
API for a calculator program, a typical method may be

result = divide(numerator, denominator);

	 29.14  Test Automation Isn’t Always What It Seems� 569

A good test should check that the calculated result is within the error range for
the sum (for real numbers, the answer may be approximated, truncated, or rounded,
etc.). It should also check for what happens when invalid inputs (e.g., trying to
divide by zero) are provided. For example, what should the result be, and should an
exception be thrown? (And if so, which exception, and what should the exception
contain?)

After spending several more weeks working on the test automation code, we
ended up deleting all the tests in one case and effectively rewriting the tests for the
other API. In both cases, we decided to focus on enhancing the lower-level unit tests
written by the developers of the respective APIs rather than propagating or sustain-
ing inadequate tests written by testing “specialists.”

Good Point

Don’t be afraid to throw away bad automation code and poor automated tests.

29.14.2 � Sometimes the Failing Test Is the Test Worth
Trusting

We decided to restructure our web browser–based tests because the existing tests
had various problems and limitations, including high maintenance and poor reliabil-
ity. The initial restructuring went well, and we also migrated from Selenium RC to
WebDriver, which had a more compact and powerful API designed to make tests eas-
ier and faster to write. At this stage, the tests ran on a single machine, typically shared
with the web application under test when run by the automated build process.

The tests took a long time to run (tens of minutes), which was much longer than
our goal (of having them run within a few minutes). Thankfully, we had existing infra-
structure to run the tests in parallel across banks of machines. The tests needed to
connect to the appropriate test server, which was compiled and started by the build
process, so the test engineer made what seemed to be the appropriate modifications
to the automated tests to take advantage of the distributed testing infrastructure.
Perplexingly, however, one of the tests failed every time he ran the tests using the
distributed infrastructure.

Over the next few days, he dug into his code, the configuration scripts, and so on,
but was unable to get the now embarrassingly obdurate test to pass. Finally, he dis-
covered that a network configuration issue prevented any of the tests from reaching
the newly built server; however, only one of the tests detected this! At this point, he
was able to fix the network configuration issue and finally get the failing test to pass.

570	 Chapter 29  Test Automation Anecdotes

Good Point

Just because the tests pass, it doesn’t mean that all is well. Tests need to be
tested, too.

Several valuable lessons were learned:

	 The other existing tests had effectively been worthless because they didn’t fail ■■

when they could not reach the server at all.
	 Even expert engineers can be fooled for days when test results don’t conform ■■

to expectations.
	 The failing test was actually the friend of the project because it exposed the ■■

problems with the rest of the—very flawed—tests.

One concept worth embracing is to consider how easily the current test could be
fooled, or misled, into providing an erroneous result. For example, would an auto-
mated test for an email service detect missing menu options? Then consider how to
strengthen the test so that it will not be fooled by this problem. While this concept
can be applied iteratively to a given test, I suggest you limit yourself to addressing
potentially significant problems; otherwise, your test code may take too long to write,
maintain, and run.

29.14.3  Sometimes, Micro-Automation Delivers the Jackpot
In this story, 10 lines of Perl cracked open a critical nationwide system.

I learned many years ago that I’m not a brilliant typist. On one project, my poor
typing helped expose a potential security issue when I accidentally mistyped some
commands for a file transfer protocol in a telnet application, which led to a poten-
tial problem. Although I wanted to explore the potential flaw more scientifically, I
continued to mistype commands in different ways and found that my mistakes were
now hampering my ability to explore the application effectively. At the time, I lacked
UNIX or Perl skills, so although writing an automated script to enter the commands
seemed sensible, I was unsure whether it was worth spending the time to learn how
to write a suitable script.

Salvation came in the form of a gnarly system administrator who knew both UNIX
and Perl inside-out. Furthermore, the system architect had unilaterally decreed there
were no security flaws in his file transfer protocol, and the system administrator saw a
great opportunity to potentially prove the architect wrong, so he immediately offered

	 29.14  Test Automation Isn’t Always What It Seems� 571

to write a simple command-line script in Perl that would start telnet and issue vari-
ous preliminary commands (those I’d been mistyping). The work took him less than
30 minutes.

Good Point

Don’t hesitate to ask for help; it can save a lot of time (and hassle).

Once I had this basic script, I was able to experiment with the script through
interactive typing, once the script had completed the initial steps, or by adding addi-
tional file transfer commands to custom versions of the script. With this script, we
eventually proved that there were serious issues in the implementation of the file
transfer protocol that resulted in buffer overflows in the underlying program, which
we could then exploit to compromise the security of the system. I also identified
several design flaws in the software update mechanism and proved that these flaws
allowed an attacker to effectively disable the entire nationwide system. Not bad for a
few hours work (and a few days to get permission to reproduce the problems in vari-
ous environments, including the live production system).

This page intentionally left blank

607

Acceptance tests, 21, 24-25, 29, 41, 101,
243, 250, 367–369, 576

Access Control Lists (ACLs), 64
Action keywords, 268–269
Action machines, 258–259, 263
Actiview, 507–508
ACTS (Advanced Combinatorial Testing

System), 137, 574–576
AdaTEST, 546, 574
Adobe Forms, 299–300, 306, 312, 320
Advanced Business Application

Programming (ABAP), 279–280,
282, 285–287, 290–292

Advanced Combinatorial Testing System
(ACTS), 574

Agile development/lifecycle, 4, 17-32,
50, 106, 115–118, 124, 130, 322,
339–340, 344, 356, 530, 534

Agile team. See Teams, agile team
Agile test automation, 17-32, 114–118,

124, 356, 530
Air traffic control (ATC). See NATS

(National Air Traffic Services Ltd.)
AIV (assembly, integration, and

operational validation), 162–165
Ajax, 31, 337, 381, 386
Albrecht, Michael, 561
Algorithms

for test generation, 160, 174, 253, 257,
260–261, 264, 266–268, 272,
516–518

in systems or tools, 24, 134, 269, 381
All-pair tests (APT), 287–289, 292
Allen, Ed, 485, 603
Analysis of failures. See Failures, failure

analysis
Andrea, Jennitta, 365, 372
Android applications, 253–275
Anecdotes, 523–573
Ant, 23, 574
Apache Web Server, 202, 574
APD. See Automated PERL Driver
APIs. See Application Programming

Interfaces
Application areas for automated tests

air traffic control, 461–475
automotive electronics, 477–484

databases, 25, 33-48, 364–368,
538–544

device simulation system, 143–154
energy systems, 295–320
enterprise systems, 49-67
financial systems (excluding insurance),

1-32, 277–293, 339–354, 525–528,
561–567

government-related, 129–142, 155–
175, 217–235

health care systems, 237–252, 447–460,
556–561

home networking equipment, 197–215
insurance systems, 84-91, 105–128,

177–196, 401–424, 437–445
large organization test automation,

523–525, 568–569
lottery systems, 528–534
medical devices, 237–252, 375–400,

447–460
mobile devices, 11, 57, 65, 134, 270,

253–275, 295, 485–504
packages, automated testing of,

425–435
SAP, 277–293, 295–320
space systems, 155–175, 545–549
system clock, 549–551
telephone system test automation,

505–522
test tool, 69-81
web-based applications, 1-32,97-104,

321–337, 335–373, 358–360,
485–504, 569–570

Application lifecycle management
(ALM), 136

Application Programming Interfaces
(APIs), 21, 35, 269, 282–283,
289, 292, 341, 344–348, 430–433,
491, 556, 568–569, 584. See also
Business Application Programming
Interfaces.

APT. See All-pair tests
Araxis Merge, 574
Architecture (of system), 18-21, 64,

146–147, 202–203, 546. See also
Service-oriented architecture
(SOA)

Architecture (of tests). See Testware
architecture

ASP (Active Server Pages), 92
Assembly, integration, and operational

validation (AIV), 162–165
AT&T Bell Laboratories, 505–506, 513
ATDD. See Acceptance test-driven

development
Atomic actions, 159–160
ATRT. See Automated Test and Re-Test
ATS4 AppModel, 254–256, 264–266,

272–274, 574
Attended replay, 87
Audit, 186, 189, 388, 393, 464
AutoIt, 430, 433–435, 574
Automated exploratory testing 503, 542
Automated generation of test reports,

37-39, 127, 246, 393–394, 400,
464, 466, 475

Automated generation of tests. See
Automated test generation (test
cases and test data)

Automated PERL Driver (APD),
199–210

Automated regression tests, 15, 19-21,
25-27, 30, 108–109, 125–126, 164,
221, 279–281, 383, 447–451, 454,
459–460, 466, 488–489, 498–500,
504. See also Regression tests

Automated Test and Re-Test (ATRT),
131–141

Automated test generation (test cases
and test data) 13, 44, 75, 137,
138, 155–175, 185–187, 191, 221,
253–275, 280, 290, 322–324, 367,
388, 393, 399, 421, 510–522, 533,
541–544, 554. See also Model-
based testing (MBT) and Test
monkeys

Automation objectives. See Objectives
for automation

Automation of regression tests. See
Automated regression tests

Automation in agile development. See
Agile test automation

Automation project failure. See Failures,
of an automation effort / project

Index

608	 Index

Automation team. See Teams,
automation team

Automation value. See Value, of
automation

Automator QA, 185, 193, 574
Automotive electronics test automation,

477–484
AWT. See Abstract Window Toolkit
Azure. See Windows Azure

B
Bach, James, 356, 372
Back door (supporting manual testing),

401–424
Bakker, Bryan, 237, 593
Banking system test automation, 164,

277–279, 286, 289–292, 561–562,
566

BAPIs. See Business Application
Programming Interfaces

Bartley, Mike, 551
Baxter, Mike, 461, 601
Bean counters, 143
Beer, Armin, 155, 591
Behavior-driven development

(BDD), 532
Beizer’s pesticide paradox. See Pesticide

paradox
Benefits

anticipated (e.g. in pilot project), 77,
86, 124, 466

communication / learning /
understanding of, 6, 24, 34, 77,
124, 473, 519, 530

costs and ROI, 3-6, 20-21, 102, 207,
235, 306, 350, 352, 383, 444–445,
454, 499, 563, 566–567. See also
Costs, cost/benefit ratio

general, 3-6, 19, 32, 86, 102, 110,
124–127, 193, 223, 226, 230, 235,
250–251, 291, 301–302, 306, 349,
352, 367, 383, 433–435, 449, 458,
469, 473–475, 477, 485–486, 525,
543, 556–567

hidden, 367
not realizing benefits, 107, 210,

293, 469
of abstraction and wrappers, 83, 95, 99,

107, 433, 551–552,
of exploratory automated tests,

512, 543
of MBT / test monkeys, 173, 255,

454, 458
of regression testing, 230, 254, 350
of small / simple solutions, 14, 355,

360, 364, 388
of specific tools / platform / framework,

26, 62, 291, 433, 455, 466, 534
of standard approach, 107, 120, 468

specific lists of benefits, 125, 127, 168,
208–209, 251, 292, 464, 498

visible, 27, 61, 78, 124, 208, 219, 225–
226, 234, 240, 249, 566–567

Benet, Albert Farré, 375, 597
Benzie, Tessa, 535
Best practice, 107, 113–114, 118–121,

124, 128, 279, 282–286, 298, 304,
345, 360, 472, 523

Beta testing, 71, 134, 537, 553
Bianco, Celestina, 375, 598
Big Hairy Audacious Goals (BHAGs),

485–504
BIRT (Business and Intelligence Reports

Tool), 140, 574
Bitmaps, 12, 268–271, 331
Boisschot, Björn, 295, 595
Bottleneck, 129–130, 299, 329, 345–347,

371, 398, 435
Boundary testing, 151, 161, 191, 206–

207, 391–393, 494, 533, 547
BPM. See Business process modeling
BPT. See Business process testing
Breadth testing, 55-57, 209, 221, 267
BridgePoint, 546, 574
Browsers, 90, 212, 232, 324, 327, 331–

337, 358–359, 363, 370–371, 392,
425–428, 534, 540, 569, 580, 584

Bug fix tests, 12, 20-21, 24-26, 35, 65,
109, 119, 126, 150, 181, 241–242,
272, 389, 411, 485, 504, 506, 537,
539, 544

Bug hunt mode, 260, 267
Bug reports. See Defect reports
Bugs / defects

in automation code, 13, 96, 284–286
in automation objectives, 2, 15, 36–37
customer 49-50, 60, 150, 500
exploratory testing for. See Exploratory

test automation
minor vs. major, 44
in release cycles, 323–325, 333

Build process setup, 22
Build costs. See Costs, build costs /

development of automation
Bureaucracy. See Government-related

applications
Bus simulation, 146
Business and Intelligence Reports Tool.

See BIRT
Business Application Programming

Interfaces (BAPIs), 286–288
Business architecture, 202–203
Business continuance planning

(BCP), 51
Business domains, 199
Business knowledge. See Management

issues
Business-level keywords, 531–533

Business process modeling (BPM),
530–532

Business process testing (BPT), 105–107,
113–117, 531–532

Business team. See Teams, business team
Buwalda, Hans, 5, 103, 259, 274, 423
Buy-in, 105, 242–243, 487–488. See also

Management issues

C
C#, 52, 148, 131, 134, 309
C++, 52, 323, 329, 327
CA-VERIFY, 84, 86-88, 574
Cacti, 369, 574
Canoo WebTest, 23–27, 31, 574
Cantata, 546, 574
Capability Maturity Model Integration

(CMMI), 379, 479
Capture/replay record/playback, 22, 70,

72-75, 83-87, 90-92, 102, 107, 115,
133–134, 138–139, 170, 220–221,
295, 301–304, 315, 357, 363, 371,
387–388, 393, 397, 404–407, 416,
420–421, 433, 438–441, 450, 492,
497, 502, 536, 566, 574, 580. See
also Video capture

Care Records System (CRS) application,
557–561

The CAST Report, 184
CATS (Constrained Array Test System),

512, 574
Cause-effect coverage incorporating

linear boundaries (CECIL),
161, 168

CA-VERIFY (commercial mainframe
test execution tool), 84-91, 574

Checklists, 427, 468–469
Checkman (static analysis tool for SAP

systems), 285–286, 292
Chinese postman algorithm, 264
CI. See Continuous integration
CICS-Playback, 87, 575
Citrix, 122, 127
Clausen, Ane, 105, 589
CLIs. See Command-line interfaces
Cloud-based testing, 49-67, 166, 486,

498, 540. See also Testing in
Production (TiP)

CM. See Configuration management
CMMI. See Capability Maturity Model

Integration
Code

application code, 19-22, 24-26, 30-31,
41-42, 47, 51-54, 72, 75, 116, 120,
129, 136, 141, 144

automation code 8-9, 13, 22-24, 28-29,
80, 93, 95-100, 103, 114, 119,
138, 142

Code coverage, 152, 289, 449, 546. See
also Coverage

Index 609

Coding standards 120, 278, 345–347, 376
Cohn, Mike, 21
COM (Component Object Model),

148, 270
Command-driven testing, 403–405, 421
Command-line interfaces (CLIs), 35, 46,

199–201, 211, 361, 464, 568, 571
Commercial off-the-shelf (COTS) tools,

464, 472, 482
Commercial tools, 14, 23, 70, 83-84,

105–106, 129, 130–132, 155–158,
164. 177–178, 237–238, 253–255,
278, 295–296, 320–322, 326,
355–356, 376, 402, 425–426, 433–
435, 438, 447–448, 454, 461–465,
477–478, 482, 486–487, 492, 498,
503, 546–549, 557, 573–585. See
also Appendix, 573–585

Commercial tools by name
A-Tool, 254–256, 269–270, 574
AdaTEST, 546, 574
Araxis Merge, 574
Automated Test and Re-Test (ATRT),

131–141
Automator QA, 185, 193, 574
BIRT (Business and Intelligence

Reports Tool), 140, 574
BridgePoint, 546, 574
CA-VERIFY, 84, 86-88, 574
Cantata, 546, 574
CATS (Constrained Array Test

System), 512, 574
Diff Doc, 576
eCATT (extended Computer-Aided

Test Tool), 285–291, 299, 576
eggPlant, 133–137, 321–337, 465–467,

470–475, 576
FASTBoX, 297, 304, 310, 576
IP Engine Per Server (IPEPS),

466, 576
LabVIEW, 240–241, 244–247, 578
Liberation framework, 98–100, 578
Lotus 123, 187–188, 578
Mathematica, 578
MATLAB, 137, 546, 578
Model 204, 219, 578
Nagios, 369, 578
OATS (Orthogonal Array Test System),

512, 580
PDF Forms plug-in, 580
PICT (pairwise independent

combinatorial testing tool),
288–289, 580

QADirector, 498, 580
QARun, 98, 580
QEMM (Quarterdeck Expanded

Memory Manager), 186, 580
QC (Quality Center), 105–107, 110,

113–114, 120–124, 312–313, 530,
554, 580

QTP (QuickTest Pro/Professional),
85, 93, 98-102, 106–114, 120, 124,
132, 161, 299, 304–306, 311–317,
428–430, 433, 438, 554–556, 580

Rational tools, 92, 132, 193, 454, 554,
574, 580

RealVNC, 465, 58
RequisitePro, 479, 580
SilkTest, 161, 377, 386, 391, 406, 582
SPSS (statistical package), 189, 582
SuperSMITH Visual (scientific plotting

tool), 582
TBrun, 546, 582
TEMPPO, 158, 164, 174, 582
TEMPPO Designer (formerly

IDATG), 158–161, 164–165,
173–174, 576

T-Plan Robot, 133, 582
TestComplete, 132, 377, 386, 406,

553–554, 582
TestExecute, 406, 582
TestPartner, 85, 159–161, 164–166,

170, 406, 487, 582
TestStream, 557–560, 582
Text Image Generator (TIG), 474, 582
“The Automator” (pseudonym),

70-80, 582
TwinText, 309–310, 584
Visual Source Safe, 78, 584
Visual Studio, 50-52, 578
Visual Test, 92, 98, 584
VMWare, 430–433, 555, 584
Windows PowerShell, 50, 61, 584
WinRunner, 98, 132, 161, 584

Common Object Request Broker
Architecture (CORBA), 135–
137, 164

Complex government systems. See
Department of Defense (DoD)
test automation

Component Object Model (COM),
148, 270

Concurrent Versions System. See CVS
Configuration management (CM), 165,

280, 412–414, 473, 533, 548, 576,
582–584

Consultants, 23, 113–114, 489–493,
524, 526

Continuous improvement, 6, 31, 67, 230
Continuous integration (CI), 4, 19, 22,

141, 235, 333–334, 552, 576
Continuous regression testing, 49–68
Control wrapper, 93-95, 98–103
Controller area network (CAN), 480–482
CORBA. See Common Object Request

Broker Architecture
Cost-effective. See Costs, cost-effective
Cost savings. See Costs, cost savings

Costs
build costs / development of

automation, 3, 110–112, 140, 226,
248, 302, 339, 350, 357, 376, 381,
385–386, 396, 445, 469, 472, 482

cost of execution, 109, 110–111,
169–171, 226–227, 248, 339, 350,
380, 386

cost/benefit ratio, 5, 20-21, 102, 109,
112, 306, 343, 349, 352, 383, 444,
454, 469, 563, 567

cost-effective, 143, 151, 219, 387,
459–460, 464, 519

cost savings, 151, 154, 227, 350–351, 562
failure analysis costs, 4, 442, 497
human resources / human costs, 110,

143, 222, 227, 248, 549, 566
maintenance costs, 1, 8, 25, 30-31, 140,

170–173, 190,
320, 347–351, 383, 387–389, 400, 442,

501, 549. See also Maintenance,
maintenance costs, maintenance
time/effort

manual testing costs, 109–112, 222,
226–227, 350, 499

other costs, 3-4, 51, 62, 66, 140, 143,
151–153, 181, 235, 248, 283, 285,
347, 349, 352, 379, 381, 386, 454,
473, 482, 487, 561

reducing costs, 6, 36, 51, 157, 173, 222,
226, 360, 364, 388, 397, 549

COTS (commercial off-the-shelf) tools,
464, 472, 482

Coverage, 4, 15, 19-31, 39, 62, 97-98,
102, 115–116, 126–127, 137, 140,
151–152, 158, 161–163, 168–169,
174, 188, 191, 203, 206–210, 228–
230, 251, 257, 260, 267, 289–291,
323–325, 379–382, 387, 400, 444,
449, 464, 475, 517–518, 521–522,
529–530, 534, 546, 552. See also
Code coverage, Test coverage.

Creep. See Scope creep, Script creep
Crispin, Lisa, 17, 562, 587
Critical care diagnosis instruments,

381–383
CRM (customer relationship

management), 485
Cross-compiling, 546
Crow-AMSAA, 249, 252
CruiseControl, 22, 29, 555, 574
CSS (cascading style sheets), 322–323
CTG (Computer Task Group), 297, 299
Customer-found defects. See Bugs /

defects, customer
Customer relationship management

(CRM) automation, 485–504
CVS (Concurrent Versions System),

29, 576
Cycle of change, 302–303

610	 Index

D
Daily build 345, 350, 455
Daily regression tests, 4, 19, 30, 42, 52,

57, 141, 208, 212, 221, 345, 350–
351, 399, 455, 500, 526, 534. See
also Nightly regression tests

Data access objects (DAO) layer, 365
Data sensitivity. See Sensitive data
Data values. See Values (of variables

or data)
Data-driven 122, 286–287, 297, 403, 525,

528–529, 534, 566
DATA-File, 403–405, 421
Database administrators (DBAs), 367
Database record locking, 538–544
Databases, 25, 33-48, 364–368, 538–544
DDE (Dynamic Data Exchange), 75–77
Debugging logging options, 210–211
Defect detection percentage (DDP), 501
Defect log. See Logs/logging, issue log
Defect reports, 165, 168, 173, 359,

490, 522
Defect removal efficiency, 501
Defect tracking, 419
Demey, Wim, 425, 599
Department of Defense (DoD) test

automation, 129–142
Deschamps, Felix, 49, 588
DevControl, 258, 269–271
Developer sandbox. See Sandbox
Developers

as test automators, 24-5, 187, 223,
289, 342, 354, 399, 488–489, 496,
534, 550

as users of automation, 10, 41-42, 120,
125, 212, 455, 556

automating unit tests, 29-30, 323–324,
546, 556, 569

fixing defects, 60, 119, 411–413, 419,
422, 455, 537, 541, 544

of applications, 15, 33-34, 38, 45-47,
114, 119–120, 126-7, 130, 144–
147, 150, 153, 199, 206, 238–240,
244, 273, 288, 298, 304, 322–233,
329, 332–334, 344, 362, 370–371,
385, 402, 406, 408, 411–416, 419,
422, 453–455, 459, 473, 487–489,
498, 506, 512, 518–520, 530, 532,
536, 537, 538, 541, 544, 546, 549–
551, 553–556, 561–562, 565, 569

of a tool or framework, 37, 72-73, 78,
132, 136, 147, 401

relationship with testers / test
automators, 5-6, 8, 19-20, 29-30,
34, 40, 120, 163, 186–187, 332–
323, 344, 487–490, 512, 553–556,
597, 561–562

too concerned for quality, 47

Development of automation costs. See
Costs, build costs / development of
automation

Development skills needed for
automation, 5, 10, 30, 46, 173,
186–187, 203, 206, 213–214, 231,
255, 278, 342, 344, 347, 372, 378,
408, 440, 445, 490, 535, 561, 570

Development team. See Teams,
development team

DevHost, 258, 269–270
Device Simulation Framework (DSF),

143–154
DExTA. See Distributed Execution Test

Agent
Diff Doc, 576
Difficult to maintain. See Maintenance,

difficulties in maintenance
Digital multimeters (DMMs), 482
Digital subscriber line (DSL), 199
Disposable scripts, 12, 355, 363–364
Distributed development, 280
Distributed Execution Test Agent

(DExTA), 232–233
Distributed team. See Teams,

distributed team
DMMs (digital multimeters), 482
Documentation, 8, 12, 113–114, 151,

161–162, 204, 213, 246, 284, 296,
304, 307–312, 347, 368, 379, 402,
417, 422, 472, 475, 502, 564, 584

DoD. See Department of Defense test
automation

Dog-fooding, 52-54, 71, 141–142, 497
Domain-specific test language (DSTL) /

keywords, 10-11, 95, 531–532, 553
Domain-specific tools, 256–257
Don’t Repeat Yourself maxim (DRY), 25
Driver subsystem stress tests, 153
DRY. See Don’t Repeat Yourself
DSF. See Device Simulation Framework
DSL (digital subscriber line), 199
DSTL. See Domain-specific test

language
dumb terminal systems, 86
Dustin, Elfriede, 129, 590
Dynamic Data Exchange (DDE), 75–77

E
Early automation. See History of test

automation
Early bird, 383
Earth observation (EO), 161–162, 166
Ease of maintenance. See Maintenance,

easy to maintain
Ease of use, 62, 122, 204, 207, 210,

244, 299
eCATT (extended Computer-Aided Test

Tool), 285–291, 299, 576
Eclipse, 135–137, 140, 224, 576

EDI (Electronic Data Interchange), 180
Effort in maintenance. See Maintenance,

maintenance time / effort
EFSMs (extended finite-state

machines), 174
eggPlant, 133–137, 321–337, 465–467,

470–475, 576
Electronic Data Interchange (EDI), 180
Embedded hardware-software computer

environments, 545–549
EMMA, 39, 576
Energy sector, 295–320
Engineering sprints, 28–29
Environment. See Test environment
EO. See Earth observation
Enterprise systems, 49-67
Error handling, 12, 83, 443, 450
European Space Agency (ESA), 155–

175. See also Model-based testing
(MBT)

Excel spreadsheet, 58-59, 98, 299, 305,
310, 314–319, 359, 393, 417. See
also Spreadsheet

Exceptions, catching, 568–569
Exchange servers. See Cloud-based

testing
Execution costs. See Costs, cost of

execution
Executive buy-in. See Buy-in,

Management issues
Expectations, 5-6, 46, 87, 126, 173,

194, 219, 283–284, 297, 300–304,
320, 382, 398–399, 467–468,
525, 560, 563, 570. See also
Goals, Maintenance, unrealistic
perceptions, Objectives for
automation

Expected results, 5, 24, 45, 77, 92,
138–139, 160–161, 167, 188–189,
408, 416–421, 561

Exploratory manual tests, 208
Exploratory test automation, 505–522,

538–544
Extended Computer-Aided Test Tool.

See eCATT
Extended finite-state machines

(EFSMs), 174
Extensible Markup Language. See XML
Extreme programming (XP), 368

F
Failure mode and effects analysis

(FMEA), 239
Failure analysis costs. See Costs, failure

analysis costs
Failures

automated failure analysis 39, 449
failure analysis, 14, 39, 393, 396, 442,

449, 497

	 Index� 611

intermittent, 61, 64-67, 101, 363–373,
370, 539–540

of an automation effort / project, 1-3,
7, 16, 20, 80, 105–113, 189, 193,
197–198, 212, 215, 296–297, 357–
360, 375, 396, 425, 548, 563

of automated tests, 96, 220, 492
of hardware / physical failure 44,

65, 245
of software (software bugs), 14, 20,

27, 36-37, 39-47, 53, 58, 61-62,
65-66, 79, 101, 126, 145, 200–201,
239, 240–243, 247, 250–251, 272,
325, 333, 361–363, 369, 399, 449,
456–457, 464, 497–498, 501, 511,
533, 539–545, 552, 563, 568

False failure / false negative, 44, 251,
303, 552

False pass / false positive, 44, 59, 66, 269,
533. See also Zombie tests

False sense of security, 66
FASTBoX, 297, 304, 310, 576
FDA. See Food and Drug

Administration (US)
Feature availability scorecard, 61
Feedback, 20, 23-32, 42, 48, 75, 81, 208,

214, 224, 238, 283–284, 327, 334,
382, 433, 455, 459, 488, 547, 560

FEST Swing Java, 389, 576
Fiber distributed data interface

(FDDI), 463
Field-programmable gate array

(FPGA), 152
Financial systems (excluding insurance),

1-32, 277–293, 339–354,525–528,
561–567

FireEye. See ACTS
Firefox, 328, 331–332, 358, 392, 427
Firmware, 64, 147–153
FIT (Framework for Integrated Testing),

365–367
FitNesse, 24–27, 29–31, 367, 576
Fixing defects. See Developers, fixing

defects
Flawed tests, 567–571. See also Failures
Flexibility, 12, 551–552
Flynn, Nick, 461, 601
FMEA. See Failure mode and effects

analysis
Fodeh, John, 447, 600
Food and Drug Administration (FDA), 378
FPGA (field-programmable gate

array), 152
Framework for Integrated Testing.

See FIT
Frameworks in test automation, 83–104,

164–166, 244–247, 289–291,
341–344, 353, 365–366, 405–409,
414–416, 491–497, 527–531, 534,

Friede, Ursula, 437, 600

G
Gamba, Seretta, 401, 599
GenBlue 2 (GB2), 482–483
Generation of expected results, 546. See

also Test oracle
Generation of scripts, 75, 138, 164,

167, 264, 384, 405, 407, 416, 421,
433, 554

Generation of test cases and test data.
See Automated test generation
(test cases and test data)

Generation of test reports. See
Automated generation of test
reports

Gershon, Sir Peter, 228–230
Gijsen, Martin, 11
Gilb, Tom, 328
Gienger, Armin, 277, 595
Goals, 5-6, 15, 19, 22, 28, 30-31, 54, 58,

108, 112, 118, 127, 138, 141, 147–
149, 153, 163, 166, 202, 213, 235,
259, 266–267, 272, 283, 287–289,
297, 301, 314, 321, 327, 333, 337,
342–343, 357, 360–361, 368, 377,
382–385, 390–391, 397–398, 433,
464–465, 481, 485, 489, 492, 524,
535–536, 541, 545, 562–564, 569.
See also Expectations, Objectives
for automation

Gomez, 57, 64, 67. See also Keynote
Google, 321–337, 549, 585. See also

Webmaster tools
Government-related applications, 129–

142, 155–175, 217–235
Grau, Helena Soldevila, 375, 597
Green-screen automation, 88–89

H
Hagar, Jon, 545–547
HALT. See Highly accelerated life

testing
Hardware devices. See Device

Simulation Framework (DSF)
Hardware failure. See Failures, of

hardware / physical failure
Hardware interfaces. See Reliability

testing
Hardware-software computer

environments, 545–549
Harty, Julian, 567
Health care systems, 237–252, 447–460,

556–561. See also Medical devices
Health information systems (HIS), 557
Hewlett-Packard (HP), 113, 463. See also

QC, QTP
Highly accelerated life testing

(HALT), 451
History of test automation, 84-85, 219,

234–235, 358, 383–384, 480–482
HMI. See Human–machine interface

Hoffman, Douglas, 538
Home grown tools. See Inhouse tools
Home network test automation, 197–215
Hotkeys, 453
HP. See Hewlett-Packard
HTML (HyperText Markup Language),

97-103, 282, 297, 304, 309–311,
336, 473

Hudson, 29, 141, 345, 353, 576
Human costs. See Costs, human

resources / human costs
Human–machine interface (HMI), 468
Hybrid 64, 132, 174–175, 377, 477,

529, 534
Hybrid Keyword Data-Driven

Automation Framework, 529, 534
Hyperstation, 220–221

I
I/O. See Input/output
IBM Maximo, 97-102
IBM Rational. See Rational Tools (IBM)
Icon-driven test automation, 138
IDATG (Integrating Design and

Automated Test-Case Generation).
See SiTEMPO Designer

IDE. See Integrated Development
Environment

IE. See Internet Explorer
IEEE 1667, 151
Image acquisition, 239, 243, 246. See also

X-ray devices
Images (including image-based

comparison) 12, 86-88, 133–134,
138–139, 166–167, 271, 328,
331–337, 393, 426, 429–432, 459,
468, 471–474

In-memory tests, 24–25
Incident and escalation scorecards,

60–61
Incremental approaches, 26, 213, 240–

241, 252, 468
Independence, 10, 40, 52-53, 85, 94, 116,

122, 131, 134–136, 166, 177–179,
193–195, 228–230, 243, 290, 344,
378, 387, 403, 406–407, 434, 464,
473, 479, 489, 518, 534, 542, 558

Inhouse tools / home grown tools, 14,
34–42, 50, 88, 129–132, 135,
142–144, 155–156, 198, 201,
209, 215, 218, 224, 232, 237–238,
245, 253–254, 278, 347, 356–357,
376-7, 381, 390, 397, 402, 425,
438–439, 447–448, 461–462, 466,
477–480, 486, 503, 506, 551

Input/output (I/O), 146, 369–370
Instances of objects, 99
Insurance systems, 84-91, 105–128,

177–196, 401–424, 437–445

612	 Index

Integrated development environment
(IDE), 135, 576

Intermittent failures. See Failures,
intermittent

International Software Testing
Qualifications Board (ISTQB),
47, 164

International Standards Organization
(ISO), 378

Internationalization, 324. See also
Localization

Internet Explorer (IE), 327, 331–332,
358, 392, 427

IP Engine Per Server (IPEPS), 466, 576
ISS Test Station framework, 405–409
Issue log. See Logs/logging, issue log,

Defect reports
ISTQB. See International Software

Testing Qualifications Board
ITS-Client, 405–406
ITS-Engine, 406

J
J1850 communication, 480–482
Jääskeläinen, Antti, 253, 593
JAG (JET Agent), 37–38, 578
Jáimez, Manel Moreno, 375, 598
Java, 22, 29-31. 35-37, 92, 135–136, 161,

299, 309, 320–325, 329–331, 336,
341–347, 350, 353, 365, 389, 568,
574–578

Java Development Kit (JDK), 35
Java Engine for Testing. See JET
Java Server Pages (JSP), 92
JavaScript, 31, 52, 100, 145, 322–323,

336–337, 580
JDK. See Java Development Kit
JET (Java Engine for Testing), 37–38,

578
JMeter, 370–371, 578
Johnston, Ken, 49, 588
JSP. See Java Server Pages
JUnit, 26-29, 341, 343, 568, 578

K
Kaner, Cem, 103, 355–356, 373, 460
KASA. See Keyword Automated

Software Assurance
Katara, Mika, 253, 594
Kent, John, 83, 589
Key performance indicators (KPIs), 163
Keynote, 57, 64, 67. See also Gomez
Keyword Automated Software Assurance

(KASA) (pseudonym), 224,
232–233

Keyword-driven approach, 115, 138,
225, 232–233, 284, 297, 388, 396,
401–403, 475, 525, 528–529, 566

Keywords, 95, 224, 258–260, 264,
267–268, 270, 315, 318, 403, 524,
531, 534, 553

Knowledge-sharing, 208, 213
Kohl, Jonathan, 355, 596
KPIs. See Key performance indicators
KVM-over-IP technology, 464–466, 576
KVM (keyboard, visual display unit,

mouse), 134, 464–466, 576

L
LA-PORTA (Launch Automated

Portability testing), 429–432, 435
Labeled state transition systems

(LSTSs), 257
Laboratory information systems

(LISs), 557
LabVIEW, 240–241, 244–247, 578
LANs. See Local area networks
Large organization test automation,

523–525, 568–569. See also
Government-related applications

Lateral knowledge-sharing, 213
Launch Automated Portability testing.

See LA-PORTA
LDRA. See AdaTest, Cantata, TBrun
Legacy systems/legacy code, 18, 22, 25,

30, 247, 251, 365, 371–372, 532
Liberation framework, 98–100, 578
Library (of tests, library management)

6, 24, 150, 217, 224, 229–231,
234, 247, 254, 257–259, 262–264,
269, 270, 331, 407, 420, 428, 433,
466–468, 527, 551, 554, 558. See
also Watir, FEST Swing Java

Lifecycles. See Agile, Incremental,
Spiral, V-model, Waterfall

Linux, 22, 130–131, 134, 165, 200–202,
253–256, 427

LISs. See laboratory information systems
Load testing, 370–371, 488, 498, 578,

582–584. See also Performance
testing

Local area networks (LANs), 199, 463–
465, 474, 498, 540

Localization, 259, 263. See also
Internationalization

Locking database records, 538–544
Login window wrapper. See Wrappers
Logs/logging

from testing, 59, 200, 237, 240–246,
250–252, 363, 410–414, 455, 542

issue log, 120, 195, 210, 412, 503. See
also Defect reports

logging by automation/tool, 14, 77, 96,
99, 200, 258, 261, 279, 380, 393–
397, 405, 408, 414, 431, 434, 452,
455, 464, 471–472, 510, 541–543

logging on/off 85, 93-95, 99, 112–114,
117, 123–124, 160, 167, 302, 363,
432, 471, 530–531

other, 61, 96, 114, 210–211, 363, 369,
452–455, 503, 544

Long-term, 3-5, 23, 42-43, 59, 74, 108,
122, 202–203, 225, 230, 256, 368,
409, 466

Lottery systems, 528–534
Lotus 123, 187–188, 578
LSTSs. See Labeled state transition

systems
Lujua, Christian Ekiza, 375, 597

M
Mac computers, 134, 328, 465
Mahai, Molly, 527–528
Mainframes, 83-91, 223
Maintenance

difficulties in maintenance, 4, 108,
163, 190, 202, 221–222, 269, 278,
283–275, 302–304, 335–337,
346, 360–362, 381, 385, 399, 408,
442–444, 469, 489, 492, 523–526,
556, 560, 569–570

easy to maintain, 120, 124, 305, 360–
361, 417, 473, 491, 501

maintainability, 23, 28-30, 155, 158,
166–168, 244, 309, 353, 384, 388,
450, 466, 472–474

maintenance costs, 1, 8-9, 21, 25,
30-31, 40, 110–111, 140, 168–173,
291, 320, 347, 350–351, 383, 387–
389, 397, 400, 501, 549, 566. See
also Costs, maintenance costs.

maintenance time/effort, 4, 25, 47,
78-80, 99, 108, 122, 140, 157, 160,
271, 308, 326, 363, 385, 396–398,
488

of automated testware / automation
code, 1, 5, 8, 125, 202, 224, 231,
441, 457, 473, 551, 566

of documentation, 114, 347
of models, 170, 173, 257, 261, 264,

271, 454
of regime / framework, 3, 7, 45, 224,

345–347, 350, 534, 558
of systems, 18, 97, 251, 279, 283, 292,

348–349, 390, 399, 461, 549
of tests, 4, 10, 21, 25, 122, 162, 170,

185, 190, 230, 240, 255, 322, 345,
351, 359, 405, 414, 417, 442–444,
450, 552

of tools, 31, 72, 281, 327, 350–351,
372, 389

reducing maintenance / minimal
maintenance, 99, 103, 122, 160,
163, 173, 190, 291–292, 383, 391,
398, 468, 492, 495

	 Index� 613

responsible for maintenance, 5, 10, 37,
40, 89, 109, 119–120, 126, 163,
202, 231–232, 322, 345, 359, 402,
473–475, 489, 499, 534, 554–555

unrealistic perceptions, 80, 93, 347
Management buy-in. See Buy-in
Management issues, 2-8, 40-41, 78-79,

97, 117, 136, 194, 242–244,
225–226, 300, 304, 378, 445, 485,
536–538, 556

Management team. See Teams,
management team

Manual tests, 109, 113, 153, 169–171,
190, 213, 324–325, 362–364,
411, 413–421, 420–421, 428, 468,
487–488, 491, 499, 502–504

Manual testing costs. See Costs, manual
testing costs

Marketplace systems test automation,
339–354

Mathematica, 578
Mathur, Aditya, 154
MATLAB, 137, 546, 578
Maximo. See IBM Maximo
MBT. See Model-based testing
McLachlan, Fergus, 88-89
Mean time between failures (MTBF),

247, 249, 456
Mecke, Christoph, 277, 594
Medical device test monkeys, 453
Medical devices, 237–252, 375–400,

447–460
Memory, 21, 24–25, 146, 186, 257, 328,

369–370, 385, 453–456, 479,
568, 580

Metrics, 3-4, 27-28, 36, 39, 41, 46-47, 60,
124, 257, 273, 371, 411, 423, 447,
456–458, 468, 473, 483–485, 499,
503, 521–524

Micro-automation, 570–571
Microsoft, 49-53, 57, 60, 67, 91-92,

143–154, 270, 288, 308, 429, 480
578. See also Device Simulation
Framework, Visual Studio

Microsoft Office Document Imaging.
See MODI

Microsoft Visual Studio. See Visual
Studio

Migration, 62, 387–388, 405, 417, 506
Miller, Jeffrey S., 549
Mills, Simon, 177, 179, 591–592
Minimal maintenance. See Maintenance,

reducing maintenance / minimal
maintenance

MMUS. See Multi-Mission User Services
Mobile devices, 11, 57, 65, 134, 270,

253–275, 295, 485–504. See also
Android applications

Model 204, 219, 578

Model-based testing (MBT), 15,
155–175, 233, 253–275, 447–460,
505–522, 546, 574, 576, 582

Model Designer. See TEMA toolset
Models, 53, 138–139, 148–149, 155–175,

182, 231–233, 249, 253–275, 288–
289, 349, 365–366, 405, 447, 454,
467, 486, 520–522, 530, 546–547,
573, 574. See also Business process
modeling

MODI (Microsoft Office Document
Imaging), 270–271

Mohacsi, Stefan, 155, 591
Monkey testing. See Test monkeys
MoSCoW method, 529–531
MS-Test, 92, 96
MTBF (mean time between failures),

247, 249, 456
Multi-Mission User Services (MMUS),

161–167
Multilingual capabilities, 317–318
Multiple LANs (local area networks), 498

N
.NET, 50, 92, 299, 320, 430, 433
Nagios, 369, 578
National Health Service (NHS), 557–561
National Institute of Standards and

Technology (NIST), 137, 544
NATS (National Air Traffic Services

Ltd.), 461–476
Net-SNMP, 202, 578
New Zealand Lotteries Commission, 528
Newman, Brian, 485, 603
Nightly regression tests, 23, 26, 33, 36,

37, 41-45, 76, 101, 141, 241, 250,
334–335, 399, 455, 459, 469, 498,
498–500, 519–522, 534, 537. See
also Daily regression tests

NIST. See National Institute of
Standards and Technology

NMAP, 202, 580
“noise,” 65–66
Nokia ATS tools, 256
Non-developers, 8, 24, 131, 137–139
Notepad, 74–78
nUnit, 141, 580

O
OATS (Orthogonal Array Test System),

512, 580
Object maps, 10, 99, 160–161, 404, 492,

556
Object-relational mapper (ORM),

365–366
Object repositories, 93, 98–99, 304–306,

313–318, 531

Objectives for automation, 1-2, 5, 33,
36-37, 47, 55, 105, 131, 209, 222,
257, 260, 325, 375, 382, 385, 392,
397–340, 464–465, 480, 535, 562–
563. See also Expectations, Goals

OCR. See Optical character recognition
ODBC. See Open Database Connectivity
Offline, 260, 265, 268
OneBoxes, 53–54
Online, 7, 67, 161, 254, 260, 268–270
Open Database Connectivity

(ODBC), 35
Open Handset Alliance, 253, 255
Open source tools, 3, 18, 23, 31-33, 39,

43, 129–135, 140–142, 155–156,
166, 195, 202, 238, 244, 253–256,
264, 320–322, 326, 336, 339–342,
345, 353–354, 355–356, 369–370,
425–426, 433, 461–462, 503, 561,
568, 573–585. See also Appendix,
513–585

Open source tools by name
ACTS (Advanced Combinatorial

Testing System), 137, 574–576
Ant, 23, 574
Apache Web Server, 202, 574
ATS4 AppModel, 254–256, 264–266,

272–274, 574
AutoIt, 430, 433–435, 574
Cacti, 369, 574
Canoo WebTest, 23–27, 31, 574
CruiseControl, 22, 29, 555, 574
CVS (Concurrent Versions System),

29, 576
Eclipse, 135–137, 140, 224, 576
EMMA, 39, 576
FEST Swing Java, 389, 576
FireEye. See ACTS
FIT (Framework for Integrated

Testing), 365–367
FitNesse, 24-27, 29-31, 367, 576
Hudson, 29, 141, 345, 353, 576
JET (Java Engine for Testing),

37–38, 578
JMeter, 370–371, 578
JUnit, 26-29, 341, 343, 568, 578
Model Designer. See TEMA toolset
Nagios, 369, 578
Net-SNMP, 202, 578
NMAP, 202, 580
nUnit, 141, 580
OpenSTA, 166, 580
Selenium, 326–327, 329, 336, 569, 580
SendMail, 202, 580
SLIM, 31, 586
soapUI, 370–371, 582
Subversion (also known as SVN), 29,

141, 582
T-Plan Robot, 133, 582
TEMA toolset, 254–266, 582, 578

614	 Index

Open source tools by name, continued
VixCOM, 432–433, 584
VNCRobot, 132–133, 584
Watir, 30-31, 358, 363, 370–371, 584
WDK (Windows Driver Kit),

144–146, 584
WebDriver, 336–338, 569, 584
WebLOAD, 370–371, 584
xllvnc, 465, 584

OpenSTA, 166, 580
Operating systems (OS), 27, 35-36,

39, 45, 53, 72, 90, 130–131, 134,
145–146, 150, 153, 164, 200–201,
256, 270, 327–328, 425, 427–432,
442, 454, 463

Operating systems by name
Linux, 22, 130–131, 134, 165, 200–202,

253–256, 427
Mac (Apple), 134, 328, 465
Solaris, 35, 130–131, 134
Symbian, 134, 256
Windows, 35, 38, 45, 72, 91, 130–131,

134, 151, 165, 270, 327–328, 427,
430, 448, 453, 459, 463

Optical character recognition (OCR),
269–273

Oracle, 165, 320, 427, 430. See also Test
oracle

ORM. See Object-relational mapper
Ozzie, Ray, 51

P
Packages, automated testing of, 425–435
Page, Alan, 143, 590
Paradox, 96–97, 467–468, 487
PCI. See Peripheral component

interconnect
PDE. See Plug-in Development

Environment
PDF Forms plug-in, 580
Pensions. See Insurance systems
Pérez, Fernando Monferrer, 375, 598
Performance testing, 29-31, 37, 42-43,

165–166, 488, 552, 561, 574, 580
Peripheral component interconnect

(PCI) controllers, 149
Peripheral device testing. See Device

Simulation Framework (DSF)
Perl, 199–200, 203–206, 213, 309, 362,

570–571
Persistence Layer, 365
Pesticide paradox, 467–468, 487
Phoenix, 197–215, 377, 381–383,

386–388, 394–400. See also Home
network test automation

Physical failure. See Failures, of
hardware / physical failure

PICT (pairwise independent
combinatorial testing tool),
288–289, 580

Pilot projects, 3-7, 11, 65, 105–128,
174, 233, 253–275, 342–343, 466,
559–560

PIT. See Product integration testing
Plans. See Test plans
Plug-in Development Environment

(PDE), 136, 577
Plug-ins, 135–136, 224, 264, 306, 337,

576, 580
POC. See Proof-of-concept
Point-of-sale (POS) devices, 134
Political factors, 8
Portability testing, 425–435
PowerBuilder, 91–96
Prestwick Air Traffic Control Centre,

462, 467
Prioritizing, 23, 39, 107, 116, 119, 282,

285, 408, 414, 441
Probe effect, 251
Problem reports. See Defect reports
Product integration testing (PIT),

234–235
Production / production testing, 19-25,

30, 37, 47, 49–68, 106–109, 113,
117, 120, 124–127, 220, 230, 279,
314, 326, 337, 348, 349, 365–371,
420–423, 439, 474, 500, 528, 536,
530, 550–551, 563, 571

Project team. See Teams, project team
Proof-of-concept (POC) 102, 134, 295,

299–305, 473, 526, 554–555
Purdue University, 154
Pyramid of automated tests, 21, 29
Python, 160, 259, 329, 362, 365, 552–555

Q
QA. See Quality assurance
QADirector, 498, 580
QARun, 98, 580
QC (Quality Center), 105–107, 110,

113–114, 120–124, 312–313, 530,
554, 580

QEMM (Quarterdeck Expanded
Memory Manager), 186, 580

Quality assurance (QA), 71, 208, 228,
243, 310, 324, 362, 378, 386,
486–492, 498, 535, 538–539

Quality assurance team. See Teams,
quality assurance (QA) team

Quality Center. See QC
Quarterdeck Expanded Memory

Manager. See QEMM
QuickTest Pro/Professional. See QTP
Quigley, Ellie, 204
QTP (QuickTest Pro/Professional), 85,

93, 98-102, 106–114, 120, 124,
132, 161, 299, 304–306, 311–317,
428–430, 433, 438, 554–556, 580

R
Race condition, 453
Random test generation, 44, 153, 158,

173–174, 267–268, 272, 342, 346–
348, 371, 393, 447–448, 451–452,
455–458, 503, 512–513, 516–517,
541–544

Ratio of costs and benefits. See Costs,
cost/benefit ratio

Rational Tools (IBM), 92, 132, 193, 454,
554, 574, 580

RDBMS. See Relational database
management system

RealVNC, 465, 580
Record and playback. See Capture/replay

record/playback
Recovery, 96, 99, 304, 313, 532, 533
Reducing costs. See Costs, reducing costs
Reducing maintenance. See

Maintenance, reducing
maintenance / minimal
maintenance

Refinement machines, 258–259, 263, 271
Regression test libraries, 150, 229–230
Regression tests, 2-4, 19-20, 25-31, 41,

49-67, 88-89, 99-101, 108–110,
124–127, 150, 163–164, 182, 207,
210–212, 217, 220, 229–230, 234,
246, 254–255, 279, 282, 286, 297,
300, 307, 314, 343, 355–364, 368,
372, 382–384, 399, 408, 414, 428,
439–440, 443–444, 467–469,
472, 487–491, 499, 504, 512, 521,
526–527, 535, 539–540, 549, 552,
562, 566. See also Automated
regression tests, Manual tests

Reinwarth, Melanie, 277, 595
Relational database management system

(RDBMS), 365, 538, 540
Relationship of developers, testers,

test automators. See Developers,
relationship with testers / test
automators

Reliability / reliability testing 13-15, 99,
173, 237–252, 269, 273, 447–451,
455–460, 495, 569, 582

Reliability team. See Teams,
reliability team

Remote procedure calls (RPCs), 328,
330, 336

Reports/reporting, 12-13, 37-39, 118,
127, 140, 189, 208, 225, 248–250,
393–394, 397, 400, 414, 463, 466,
501, 574. See also Documentation,
Defect reports, Test reports

Requirements traceability matrix (RTM),
131, 140

RequisitePro, 479, 580
Resource optimization, 39

Index 615

Responsibility for maintenance. See
Maintenance, responsible for
maintenance

Restructured Extended Executor
(REXX), 221

Results. See Expected results
Return on investment (ROI), 1-4, 11,

21, 24, 30, 33, 44, 102, 109–110,
127, 140, 155, 168–173, 189, 207,
225–226, 248, 297, 302, 306–307,
327, 332, 336, 339, 343, 349–351,
396–397, 445, 472, 499, 525–527,
534–536, 553–554, 563, 566–567

Reuse / Reusability, 6, 9, 11-12, 37, 45,
49-51, 54-55, 76, 80, 85, 92-93,
99-101, 107, 113–116, 121, 131–
132, 137, 142, 166–169, 200–203,
214, 254–256, 273, 278, 281–285,
290–292, 304, 307, 310–312,
315–316, 320, 330, 343, 352, 382,
386–390, 399–400, 405, 422, 430,
434, 439–441, 450, 466, 469, 474,
527, 530–534, 544, 554, 566

Review scorecards, 58–61
Reviews, 13–14, 163, 168, 171, 251, 278,

284, 329, 523–524
REXX. See Restructured Extended

Executor
Rice, Randy, 523
Risk and requirements–based testing

(RRBT), 229
RMSs. See Root management systems
Robinson, Ann Gustafson, 505, 604
Robinson, Harry, 505, 603–604
Robot. See Rational tools (IBM), T-Plan

Robot, VNCRobot
Roboto Industries (pseudonym), 69-81
Roden, Lloyd, 491
ROI. See Return on investment
Roles, 5, 9, 23, 47, 52, 71, 185, 208–209,

213, 218, 226, 231, 239, 257, 298,
319, 339, 344–345, 348, 354, 378,
408, 479, 489–490, 506, 525, 532

Roop, Bo, 69, 588–589
Root management systems (RMSs), 57
RPCs. See Remote procedure calls
RRBT. See Risk and requirements–based

testing
RTM. See Requirements traceability

matrix
Ruby, 244, 247, 358–360, 370–371
Run selected tests. See Test selector

S
S60 platform, 254, 265
SaaS. See Software as a service
SAATS. See Shanwick Automated Air

Traffic System
Sandbox, 38
Sann, Kai, 536–538

SAP test automation, 277–293, 295–320
Scenario Builder, 557–558
SCOM (System Center Operations

Manager), 54–60, 67
Scope creep, 467–468
Scorecards, 58–61
Script creep, 501–502
Script development, 224, 231–232, 466,

473, 558
Script templates, 470–472
Scrum, 19, 23, 28, 358, 532
SDLC. See Software development

lifecycle
Security, 54, 66, 202, 298, 319, 378–379,

558, 570–571, 580
Selenium, 326–327, 329, 336, 569, 580
SendMail, 202, 580
Senior management buy-in. See Buy-in,

Management issues
SenseTalk (language), 328–331, 334
Sensitive data, 115
Service-oriented architecture (SOA), 136
Shanwick Automated Air Traffic System

(SAATS), 462–464
Shier, Peter, 145–147
SilkTest, 161, 377, 386, 391, 406, 582
Silver bullet, 141, 153, 187, 194, 226
Simple Network Management Protocol

(SNMP), 199, 202, 578
Simple Object Access Protocol (SOAP),

166, 370–371, 582
SIT. See Systems integration testing
Skills needed for automation. See

Development skills needed for
automation

SLIM, 31, 586
Smartphones. See Android applications
Smith, Adrian, 552
Smith, Michael, 461, 602
Smoke tests, 12, 21-24, 164, 221–222,

246, 385, 392, 397, 400, 408, 414,
455, 537, 554–556

SMS messages, 259, 261, 263. See also
Android application

SNMP. See Simple Network
Management Protocol

Snyman, Michael, 562
SOA. See Service-oriented architecture
SOAP. See Simple Object Access

Protocol
soapUI, 370–371, 582
Software as a service (SaaS), 486
Software development lifecycle (SDLC).

See Agile, Incremental, Spiral,
V-model, Waterfall

Software failure. See Failures, of software
(software bugs)

Software Test Automation (the book), 36,
177, 224, 356, 527

Solaris, 35, 130–131, 134

Spiral lifecycle, 377
Spreadsheet, 12, 58, 98, 110, 188–190,

217, 305, 310, 315–319, 410–412,
415–417, 420–422, 564, 567, 578.
See also Excel spreadsheet

SPSS (statistical package), 189, 582
SQL (structured query language), 35, 43,

63, 165, 319, 365, 369–371, 408,
416, 539, 544

SRM. See Supplier Relationship
Management

Stafford, Bill, 518–519
Stakeholders, 8, 13, 24, 28, 47, 109, 117–

119, 124–126, 197, 217, 382–389,
396, 521, 545, 560

Standard controls, 389–390
Standard Quote (in insurance), 183, 188
Standards, 11-12, 91, 113, 121–124, 137,

148, 167, 282, 292, 320, 336, 407,
518, 559, 564, 566. See also Coding
standards

Static analysis/static checks, 13, 274, 277,
285–286, 292

Statistical analysis, 189, 419–420
Stewart, Joseph, 477, 602
Strategies, 19-23, 32, 51, 54, 57, 66,

108, 113–118, 124, 163, 174,
181–185, 194, 213, 225, 231, 279,
325, 348–349, 353, 362, 365, 370,
387, 449–451, 460, 491, 501, 520,
536, 565

Stress tests, 149, 153, 385, 392,-393, 397,
400, 459

Structured query language. See SQL
Submit queue system, 333–336
Subversion (also known as SVN), 29,

141, 582
SuperSMITH Visual (scientific plotting

tool), 582
Supplier Relationship Management

(SRM), 300, 304
SVN. See Subversion
Symbian, 134, 256
Synchronization, 16, 44, 83, 87, 90-92,

99-102, 338, 443, 450, 459, 466,
495, 497, 544

System Center Operations Manager
(SCOM), 54–60, 67

System-of-systems (SoS) test automation,
461–476

System validation test automation,
556–561

Systems integration testing (SIT),
234–235

T
T-Plan Robot, 133, 582
TAD. See Test and development

environments

616 Index

Tampere University of Technology,
256, 275

TAU. See Test automation unit
Tagging tests. See Test selector
Takala, Tommi, 253, 594
Task automation, 357–361, 372, 584
TBrun, 546, 582
TCG. See Test-case generator
TDD. See Test-driven development
Team leader. See Teams, team leader
TEMPPO, 158, 164, 174, 582
TEMPPO Designer (formerly IDATG),

158–161, 164–165, 173–174, 576
Teams

agile team, 17-32, 124, 344, 532
automation team, 13, 19-20, 33-35, 47,

71, 107–108, 113–114, 118–119,
124–126, 150–151, 177, 219–228,
231–233, 244, 310–313, 322–323,
343–344, 376–378, 381, 400,
402, 407–410, 416, 420–423, 483,
489–490, 496, 524, 557–561

business team, 117–119, 127
development team, 71, 117, 143, 149,

150–154, 197, 228, 240, 298, 322–
323, 326–329, 345, 358–359, 368,
370–372, 385–386, 397–398, 410,
427, 480–481, 497, 507, 536, 568

distributed team 60, 164, 427–429, 482
management team, 107, 248, 488–

490, 566
project team, 42, 124, 243, 385,

399, 568
quality assurance (QA) team, 71, 362,

385, 487–492, 538
reliability team 240, 251
team leader, 95, 109, 440
team, other, 41-42, 50-55, 58-60,

64-67, 117, 127, 146, 219–220,
226, 274, 283, 307, 344, 364–367,
372, 503, 522, 535, 563, 566

technical support team, 70-72,
325, 560

test team, 41, 71, 77-79, 81, 85, 97,
102, 118, 145, 150–152, 155,
162–163, 168, 171, 199, 223–225,
230–233, 238–240, 251, 286, 332,
335–337, 358, 378, 385–387, 399–
400, 421, 427–429, 440, 445, 453,
467, 475, 479–483, 489, 498, 518,
521, 538, 550–551, 561–562, 568

Technical support, 71, 74, 185, 217,
231–233

Technical support team. See Teams,
technical support team

TEDSUP (in-house tool), 88
Telephone system test automation,

505–522
TEMA toolset, 254–266, 582, 578

Templates, 45, 167, 282–283, 386, 405–
415, 420–421, 470–473

Test and development (TAD)
environments, 465–469, 463–465

Test automation architect, 5, 9, 339, 345–
347, 354, 538. See also Testware
architecture

Test automation book. See Software Test
Automation

Test Automation Leadership Team, 490
Test automation team. See Teams,

automation team
Test automation tools. See Commercial

tools, Open source tools
Test automation tool, testing of, 69-81
Test Automation Unit (TAU), 326–327
Test automator, 5-9, 12, 69, 102, 140,

191–193, 226, 231, 234, 237, 314,
345, 378, 385, 398, 407–409, 420,
489, 492, 523–525, 554–556

Test-case generator (TCG), 157–158, 173
Test Commander (in-house tool),

164–166
Test configuration, 206, 258–260, 267,

423, 435
Test coverage, 19, 22-28, 31, 39, 97-98,

102, 126–127, 158, 163, 168, 174,
188, 206–208, 228–230, 289–291,
323, 379, 387, 464, 475, 529–530,
534, 552. See also Code coverage,
Coverage

Test data, 25, 30, 95, 99, 137–138,
159–161, 167–169, 185, 188–190,
258–259, 263, 266, 277, 281, 288,
319, 328, 353, 357–361, 365–367,
399, 423, 532, 548, 563

Test-driven development (TDD), 4,
20-25, 28, 153, 344–345, 365,
497–498, 546. See also Acceptance
test-driven development (ATDD)

Test engineers, 197–204, 207–209, 212–
215, 244, 248, 257, 341, 344–347,
378, 385–387, 393, 479–483, 522,
567–569

Test environment, 6, 22, 54, 125,
221–222, 367, 370, 433, 497–498,
547, 558–560

Test flow, 138–139, 383–384, 412
Test frameworks. See Frameworks in test

automation
Test generation. See Automated test

generation (test cases and
test data)

Test logs. See Logs, from testing
Test maintenance. See Maintenance
Test maintenance costs. See Costs,

maintenance costs

Test manager, 45, 55, 97, 102, 137, 226,
229–230, 257–258, 413, 419, 427,
525, 535. See also Management
issues, 257–258

Test models. See Business process
modeling, Model-based testing
(MBT), Models

Test monkeys, 447–460
Test automation objectives. See

Objectives for automation
Test oracle, 13, 342, 454, 511–512,

542–547
Test plans, 182, 186–194, 382, 387, 392,

423, 469
Test points, 491, 500–501
Test reports, 13, 37, 127, 165, 168,

285, 414
Test results. See Expected results
Test selector, 12, 38-39, 158, 187, 210,

217, 280, 297, 320, 341, 408, 415,
551–552

Test script versions, 279–280
Test suites, 19, 26-27, 31, 35, 41–45, 147,

165, 226, 233, 319, 333–334, 336,
347, 352, 358, 362, 367, 381–382,
385–386, 405–410, 414–422, 448,
455, 467–469, 472, 500, 544, 552

Test team. See Teams, test team
Test tool automation (automated testing

of a tool), 69-81
TestComplete, 132, 377, 386, 406,

553–554, 582
TestExecute, 406, 582
Testing automated tests, 13–14, 96–97,

421, 523, 547
Testing in production (TiP), 49-67
TestPartner, 85, 159–161, 164–166, 170,

406, 487, 582
TestStream, 557–560, 582
Testware architecture, 1-5, 8-9, 33,

37-38, 122, 155, 177, 184, 202–
203, 206–207, 212, 240, 244–247,
257–258, 277, 283, 292, 325–326,
376,450–451, 485, 527–528, 531

Testware, 1-5, 8-15, 38, 93, 122, 155,
160, 253, 277, 291, 307, 385, 398,
466, 473, 485, 523–526, 528–529,
531–533

Testware architect. See Test automation
architect

Text Image Generator (TIG), 474, 582
“The Automator” (pseudonym),

70-80, 582
Thinking outside the box. See Task

automation
Three R’s (Run it and Run it and Run

it), 101
TIG. See Text Image Generator
Time-based behaviors, 550
Time to engage (TTE), 60

	 Index� 617

Timmerman, Ross, 477, 602
TiP. See Testing in production
Too many tools, 552–556
Tool validation, 389
Tools, See Commercial tools, Open

source tools
Training, 7, 25, 71, 114, 169, 172, 204,

214, 230–232, 250, 255, 307, 344,
444, 461, 464–467, 474, 489–492,
506, 525, 535, 547, 557

Transaction buffer testing, 509–511
Translation table, 295, 305–306, 317–

318, 390, 404, 405–407, 531. See
also Object maps

TTE. See Time to engage
TwinText, 309–310, 584

U
UML (Unified Modeling Language), 157
Unit test automation. See Developers,

automating unit tests
University. See Purdue University,

Tampere University of Technology
UNIX, 91, 182–184, 361, 465, 509,

538, 570
Usability, 46, 214–215, 231, 547–548
USB storage media, 145–154, 243, 270

V
V-model development/lifecycle, 178, 218,

238, 426–428, 438, 448
V&V. See Verification and Validation
Vacuum cleaner salesperson, 226
Validation, 76-77, 162–165, 378–381,

389, 545–549
Value

financial, 183, 191
of automation, 13-14, 25, 29-30, 41,57,

169, 220–222, 225, 234, 243,
248, 252, 308, 327, 335, 349, 355,
364, 367, 372, 384, 387, 406, 414,
425–435, 444–445, 455, 469, 488,
524, 530, 560, 566

Values (of variables or data), 76-78, 88,
95, 98, 146, 160, 281, 288–289,
308, 315, 345–347, 364, 390–396,
405, 416–417, 430, 471, 493–494,
508–513, 526, 544, 548

van de Scheur, Henri, 33, 587
Variables. See Values (of variables or

data)
VBScript, 145, 148, 308–309, 316
Verification and Validation (V&V),

378–381, 384
Verification, Validation and Testing

(VV&T), 545–549
VERIFY. See CA-VERIFY
Video capture, 152, 503
Virtual hard disks, 429
Virtual machines (VMs), 27, 429, 498,

533, 558
Virtual network computing (VNC), 132–

134, 137, 465, 474–475, 580–584
Virtual private networks (VPNs), 199–

201, 209–211
Virtualization, 163, 425, 429–435,

555, 584
Visual Source Safe, 78, 584
Visual Studio, 50-52, 578
Visual Test, 92, 98, 584
VixCOM (Virtualization API),

432–433, 584
VMs. See Virtual machines
VMWare, 430–433, 555, 584
VNC. See Virtual network computing
VNCRobot, 132–133, 584
VPNs. See Virtual private networks
VV&T. See Verification, Validation and

Testing

W
Wahlberg, Lars, 339, 596
Waterfall development/lifecycle, 70, 147,

155, 198–199, 377, 478, 506
Watir, 30-31, 358, 363, 370–371, 584
WDK (Windows Driver Kit),

144–146, 584
Weavers, Ian, 93

Web-based applications, 1-32, 97-104,
321–337, 335–373, 358–360,
485–504, 569–570

WebDriver, 336–338, 569, 584
WebLOAD, 370–371, 584
Webmaster tools, 321–330, 335–336
WebTest. See Canoo WebTest
Weden, Jason, 197, 592
Wilkinson, George, 556
Williamson, Michael, 321, 596
Wills, Christopher, 461, 601
Window wrappers. See Wrappers
Windows, 35, 38, 45, 72, 91, 130–131,

134, 151, 165, 270, 327–328, 427,
430, 448, 453, 459, 463

Windows Azure, 62–63
Windows Driver Kit. See WDK
Windows Live ID, 53-54, 64–65
Windows PowerShell, 50, 61, 584
WinRunner, 98, 132, 161, 584
Workflow, 55, 158–159, 174, 202, 214,

220–222, 231, 285, 357–358,
363–365, 371, 411, 507–508,
513–518, 530

Workflow testing, 513–518
Wrappers, 9-10, 93-95, 98-100, 430–432
Wright, Jonathan Lee, 528

X
X-ray devices, 237–245. See also Medical

devices, Reliability testing
xllvnc, 465, 584
XML (Extensible Markup Language),

23, 37, 161, 199, 201, 300, 313,
344, 347

XP (extreme programming), 368

Y
Y2K, 89, 525
Yerg, Damon (pseudonym), 217,

592–593

Z
Z Shell (zsh), 362
Zombie tests, 13, 285–286. See also False

pass / false positive

	Contents
	Foreword
	Preface
	Chapter 29 Test Automation Anecdotes
	29.1 Three Grains of Rice
	29.1.1 Testware Reviews
	29.1.2 Missing Maintenance
	29.1.3 A Wildly Successful Proof-of-Concept

	29.2 Understanding Has to Grow
	29.3 First Day Automated Testing
	29.3.1 Initial Investment
	29.3.2 What Is to Be Automated?
	29.3.3 First Day Automated Testing
	29.3.4 Problems and Solutions
	29.3.5 Results of Our First Day Automation Approach

	29.4 Attempting to Get Automation Started
	29.5 Struggling with (against) Management
	29.5.1 The “It Must Be Good, I’ve Already Advertised It” Manager
	29.5.2 The “Testers Aren’t Programmers” Manager
	29.5.3 The “Automate Bugs” Manager
	29.5.4 The “Impress the Customers (the Wrong Way)” Manager

	29.6 Exploratory Test Automation: Database Record Locking
	29.6.1 The Case Study

	29.7 Lessons Learned from Test Automation in an Embedded Hardware–Software Computer Environment
	29.7.1 VV&T Process and Tools
	29.7.2 Lessons Learned
	29.7.3 Summary of Results

	29.8 The Contagious Clock
	29.8.1 The Original Clock
	29.8.2 Increasing Usefulness
	29.8.3 Compelling Push
	29.8.4 Lessons Learned

	29.9 Flexibility of the Automation System
	29.10 A Tale of Too Many Tools (and Not Enough Cross-Department Support)
	29.10.1 Project 1: Simulation Using a DSTL
	29.10.2 Project 2: Testing a GUI Using TestComplete
	29.10.3 Project 3: Rational Robot
	29.10.4 Project 4: Final Python Project and QTP Proof-of-Concept
	29.10.5 Project 5: QTP2
	29.10.6 The End of the Story

	29.11 A Success with a Surprising End
	29.11.1 Our Chosen Tool
	29.11.2 The Tool Infrastructure and an Interesting Issue as a Result
	29.11.3 Going toward Rollout
	29.11.4 The Unexpected Happens

	29.12 Cooperation Can Overcome Resource Limitations
	29.13 An Automation Process for Large-Scale Success
	29.13.1 Where We Started
	29.13.2 The Key to Our Eventual Success: An Automation Process
	29.13.3 What We Learned
	29.13.4 Return on Investment

	29.14 Test Automation Isn’t Always What It Seems
	29.14.1 Just Catching Exceptions Does Not Make It a Good Test
	29.14.2 Sometimes the Failing Test Is the Test Worth Trusting
	29.14.3 Sometimes, Micro-Automation Delivers the Jackpot

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

