

Praise for Scalability Rules

“Once again,Abbott and Fisher provide a book that I’ll be giving
to our engineers. It’s an essential read for anyone dealing with
scaling an online business.”

—Chris Lalonde,VP,Technical Operations and Infrastructure
Architecture, Bullhorn

“Abbott and Fisher again tackle the difficult problem of scalability
in their unique and practical manner. Distilling the challenges of
operating a fast-growing presence on the Internet into 50 easy-to-
understand rules, the authors provide a modern cookbook of
scalability recipes that guide the reader through the difficulties
of fast growth.”

—Geoffrey Weber,Vice President, Internet Operations, Shutterfly

“Abbott and Fisher have distilled years of wisdom into a set of
cogent principles to avoid many nonobvious mistakes.”

—Jonathan Heiliger,VP,Technical Operations, Facebook

“In The Art of Scalability, the AKF team taught us that scale is not
just a technology challenge. Scale is obtained only through a
combination of people, process, and technology.With Scalability
Rules, Martin Abbott and Michael Fisher fill our scalability toolbox
with easily implemented and time-tested rules that once applied
will enable massive scale.”

—Jerome Labat,VP, Product Development IT, Intuit

“When I joined Etsy, I partnered with Mike and Marty to hit the
ground running in my new role, and it was one of the best
investments of time I have made in my career.The indispensable
advice from my experience working with Mike and Marty is fully
captured here in this book.Whether you’re taking on a role as a
technology leader in a new company or you simply want to make
great technology decisions, Scalability Rules will be the go-to
resource on your bookshelf.”

—Chad Dickerson, CTO, Etsy

“Scalability Rules provides an essential set of practical tools and
concepts anyone can use when designing, upgrading, or inheriting
a technology platform. It’s very easy to focus on an immediate
problem and overlook issues that will appear in the future. This
book ensures strategic design principles are applied to everyday
challenges.”

—Robert Guild, Director and Senior Architect, Financial Services

“An insightful, practical guide to designing and building scalable
systems.A must-read for both product building and operations
teams, this book offers concise and crisp insights gained from years
of practical experience of AKF principals.With the complexity of
modern systems, scalability considerations should be an integral part
of the architecture and implementation process. Scaling systems for
hypergrowth requires an agile, iterative approach that is closely
aligned with product features; this book shows you how.”

—Nanda Kishore, Chief Technology Officer, ShareThis

“For organizations looking to scale technology, people, and
processes rapidly or effectively, the twin pairing of Scalability Rules
and The Art of Scalability are unbeatable.The rules-driven approach
in Scalability Rules makes this not only an easy reference companion,
but also allows organizations to tailor the Abbott and Fisher
approach to their specific needs both immediately and in the
future!”

—Jeremy Wright, CEO, BNOTIONS.ca and Founder, b5media

Scalability
Rules

50 Principles for
Scaling Web Sites

Martin L. Abbott
Michael T. Fisher

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark
claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the
preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsi-
bility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection
with or arising out of the use of the information or pro-
grams contained herein.

The publisher offers excellent discounts on this book
when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or
custom covers and content particular to your business,
training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Abbott, Martin L.
Scalability rules : 50 principles for scaling Web sites

/ Martin L. Abbott, Michael T. Fisher.
p. cm.

ISBN 978-0-321-75388-5 (pbk. : alk. paper) — ISBN
(invalid) 01321753887 (pbk. : alk. paper) 1.
Computer networks—Scalability. 2. Web sites—
Security measures. I. Fisher, Michael T. II. Title.

TK5105.59.A23 2011
006.7—dc22

2011006257

Copyright © 2011 AKF Consulting Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-75388-5
ISBN-10: 0-321-75388-7

Text printed in the United States on recycled paper at R.R. Donnelley in
Crawfordsville, Indiana.
First printing May 2011

Editor-in-Chief
Mark Taub

Senior Acquisitions
Editor
Trina MacDonald

Development Editor
Songlin Qiu

Managing Editor
Kristy Hart

Project Editor
Anne Goebel

Copy Editor
Geneil Breeze

Indexer
Erika Millen

Proofreader
Linda Seifert

Technical Reviewers
Robert Guild
Geoffrey Weber
Jeremy Wright

Publishing
Coordinator
Olivia Basegio

Cover Designer
Chuti Prasertsith

Senior Compositor
Gloria Schurick

This book is dedicated to our
friend and partner

“Big”Tom Keeven.
“Big” refers to the impact he’s

had in helping countless
companies scale in his nearly

30 years in the business.

❖

❖

This page intentionally left blank

Contents at a Glance
Preface viii

Acknowledgments xiii

About the Authors xiv

1 Reduce the Equation 1

2 Distribute Your Work 23

3 Design to Scale Out Horizontally 35

4 Use the Right Tools 53

5 Don’t Duplicate Your Work 71

6 Use Caching Aggressively 87

7 Learn from Your Mistakes 113

8 Database Rules 129

9 Design for Fault Tolerance and
Graceful Failure 147

10 Avoid or Distribute State 167

11 Asynchronous Communication and
Message Buses 179

12 Miscellaneous Rules 193

13 Rule Review and Prioritization 213

Index 247

Preface
Thanks for your interest in Scalability Rules! This book is meant
to serve as a primer, a refresher, and a lightweight reference
manual to help engineers, architects, and managers develop and
maintain scalable Internet products. It is laid out in a series of
rules, each of them bundled thematically by different topics.
Most of the rules are technically focused, while a smaller num-
ber of them address some critical mindset or process concern—
each of which is absolutely critical to building scalable products.
The rules vary in their depth and focus. Some rules are high
level, such as defining a model that can be applied to nearly any
scalability problem, while others are specific and may explain a
technique, such as how to modify headers to maximize the
“cache-ability” of content.

Quick Start Guide
For experienced engineers, architects, and managers read
through the header sections of all the rules that contain the
what, when, how, and why.You can browse through each chapter
reading these, or you can jump to Chapter 13,“Rule Review
and Prioritization,” which has a consolidated view of these
headers. Once you’ve read these go back to the chapters that are
new to you or that you find more interesting.

For less experienced readers we understand that 50 rules can
seem overwhelming.We do believe that you should eventually
become familiar with all the rules, but we also understand that
you need to prioritize your time.With that in mind, we have
picked out five chapters for managers, five chapters for software
developers, and five chapters for technical operations that we
recommend you read before the others to get a jump start on
your scalability knowledge.
Managers:

n Chapter 1,“Reduce the Equation”
n Chapter 2,“Distribute Your Work”
n Chapter 4,“Use the Right Tools”
n Chapter 7,“Learn from Your Mistakes”
n Chapter 12,“Miscellaneous Rules”

Software developers:
n Chapter 1,“Reduce the Equation”
n Chapter 2,“Distribute Your Work”
n Chapter 5,“Don’t Duplicate Your Work”
n Chapter 10,“Avoid or Distribute State”
n Chapter 11,“Asynchronous Communication and Message

Buses”

Technical operations:
n Chapter 2,“Distribute Your Work”
n Chapter 3,“Design to Scale Out Horizontally”
n Chapter 6,“Use Caching Aggressively”
n Chapter 8,“Database Rules”
n Chapter 9,“Design for Fault Tolerance and Graceful

Failure”

As you have time later, we recommend reading all the rules to
familiarize yourself with the rules and concepts that we present
no matter what your role.The book is short and can probably be
read in a coast-to-coast flight in the US.

After the first read, the book can be used as a reference. If
you are looking to fix or re-architect an existing product,
Chapter 13,“Rule Review and Prioritization,” offers an
approach to applying the rules to your existing platform based
on cost and the expected benefit (presented as a reduction of
risk). If you already have your own prioritization mechanism, we
do not recommend changing it for ours unless you like our
approach better. If you don’t have an existing method of priori-
tization, then our method should help you think through which
rules you should apply first.

If you are just starting to develop a new product, the rules
can help inform and guide you as to best practices for scaling. In
this case, the approach of prioritization represented in Chapter
13 can best be used as a guide to what’s most important to con-
sider in your design.You should look at the rules that are most
likely to allow you to scale for your immediate and long-term
needs and implement those.

ixScalability Rules

For all organizations, the rules can serve to help you create a
set of architectural principles to drive future development. Select
the 5, 10, or 15 rules that will help your product scale best and
use them as an augmentation to your existing design reviews.
Engineers and architects can ask questions relevant to each of
the scalability rules that you select and ensure that any new sig-
nificant design meets your scalability standards.While these rules
are as specific and fixed as possible there is room for modifica-
tion based on your system’s particular criteria. If you or your
team has extensive scalability experience, go ahead and tweak
these rules as necessary to fit your particular scenario. If you and
your team are lacking large scale experience use them exactly as
is and see how far they allow you to scale.

Finally, this book is meant to serve as a reference and hand-
book. Chapter 13 is set up as a quick reference and summary of
the rules.Whether you are experiencing problems or simply
looking to develop a more scalable solution, Chapter 13 can
become a quick reference guide to help pinpoint the rules that
will help you out of your predicament fastest or help you define
the best path forward in the event of new development. Besides
using this as a desktop reference also consider integrating this
into your organization by one of many tactics such as taking one
or two rules each week and discussing them at your technology
all-hands meeting.

Why Write Another Book on Scale?
There simply aren’t many good books on scalability on the mar-
ket yet, and Scalability Rules is unique in its approach in this
sparse market. It is the first book to address the topic of scalabili-
ty in a rules-oriented fashion. It is the first book meant to be as
much of a reference as it is an overview of the topic. It includes
a chapter summarizing the 50 rules and gives a prioritization of
the rules for those looking to apply the book to their existing
platforms.

One of our most-commented-on blog posts is on the need
for scalability to become a discipline.We and the community of
technologists that tackle scalability problems believe that scalabil-
ity architects are needed in today’s technology organizations. In

x Scalability Rules

the early days of computer systems almost everyone involved was
a programmer, and then came specialization with system opera-
tors, DBAs, architects, and so on.We now have many different
disciplines and specialties that make up our technology teams.
One of the missing disciplines is the scalability architect.

Unlike a DBA, whose job is to get things done and not nec-
essarily teach someone else unless they are mentoring a junior
DBA, one of the primary responsibilities of the scalability archi-
tect would be to educate technology people.The scalability
architects should be evangelists and teachers rather than the
gatekeepers of secret knowledge.As part of that teaching we’ve
made a step forward by putting together these 50 rules that we
believe will help guide any organization in scaling its systems.

How Did You Decide What 50 Rules
to Include?
The decision of which rules to include wasn’t easy.This could
easily be a book of 100 or even 200 rules. Our criteria for inclu-
sion was to look at the recommendations that we make most
often to our client base and find the most commonly recom-
mended changes, additions, or modifications to their products.
When we looked at these rules, we saw a fairly sharp drop-off in
the rate of recommendations after the first 50 rules.That’s not to
say that we made these 50 recommendations equally, or that the
51st potential rule wasn’t also fairly common. Rather, these 50
were just recommended more often with our clients.The rules
aren’t presented in order of frequency of recommendation. In
Chapter, 13 we group the rules by their benefit and priority
based on how we ranked each rule’s risk reduction and cost of
implementation or adoption.

How Does Scalability Rules Differ
from The Art of Scalability?
The Art of Scalability (ISBN: 0137030428, published by Addison-
Wesley), our first book on this topic, focused on people, process,
and technology, while Scalability Rules is predominately a techni-
cally focused book. Don’t get us wrong, we still believe that

xiScalability Rules

people and process are the most important component of build-
ing scalable solutions.After all, it’s the organization, including
both the individual contributors and the management, which
succeeds or fails in producing scalable solutions.The technology
isn’t at fault for failing to scale—it’s the people who are at fault
for building it, selecting it, or integrating it. But we believe that
The Art of Scalability adequately addresses the people and process
concerns around scalability, and we wanted to go in greater
depth on the technical aspects of scalability.

Scalability Rules expands on the third (technical) section of
our first book.The material in Scalability Rules is either new or
discussed in a more technical fashion than in The Art of
Scalability.Where we discussed something in that book, we
expand upon it or define it in a slightly different way to help
readers better understand the concept.

xii Scalability Rules

Acknowledgments
The rules contained within this book weren’t developed by our
partnership alone.They are the result of nearly 60 years of work
with clients, colleagues, and partners within nearly 200 compa-
nies, divisions, and organizations. Each of them contributed, in
varying degrees, to some or all of the rules within this book.As
such, we would like to acknowledge the contributions of our
friends, partners, clients, coworkers, and bosses for whom or with
which we’ve worked over the past several (combined) decades.

We would also like to acknowledge and thank the editors
who have provided guidance, feedback, and project management.
Our technical editors Geoffrey Weber, Jeremy Wright, and
Robert Guild shared with us their combined decades of tech-
nology experience and provided invaluable insight. Our editors
from Addison-Wesley, Songlin Qiu and Trina MacDonald, pro-
vided supportive stylistic and rhetorical guidance throughout
every step of this project.Thank you all for helping with this
project.

Last but certainly not least we’d like to thank our families and
friends who put up with our absence from social events to sit in
front of a computer screen and write. No undertaking of this
magnitude is done single-handedly, and without our families’
and friends’ understanding and support this would have been a
much more arduous journey.

About the Authors
Martin L. Abbott is an executive with experience running
technology and business organizations within Fortune 500 and
startup companies. He is a founding partner of AKF Partners, a
consulting firm focusing on meeting the technical and business
hyper growth needs of today’s fast-paced companies. Marty was
formerly the COO of Quigo, an advertising technology startup
acquired by AOL in 2007, where he was responsible for product
strategy, product management, technology development, advertis-
ing, and publisher services. Prior to Quigo, Marty spent nearly
six years at eBay, most recently as SVP of Technology and CTO
and member of the CEO’s executive staff. Prior to eBay, Marty
held domestic and international engineering, management, and
executive positions at Gateway and Motorola. Marty serves on
the boards of directors for OnForce, LodgeNet Interactive
(NASD:LNET), and Bullhorn. He sits on a number of advisory
boards for universities and public and private companies. Marty
has a BS in computer science from the United States Military
Academy, an MS in computer engineering from the University
of Florida, is a graduate of the Harvard Business School
Executive Education Program, and is pursuing a Doctorate of
Management from Case Western Reserve University. His current
research investigates the antecedents and effects of conflict with-
in executive teams of startups.

Michael T. Fisher is a veteran software and technology execu-
tive with experience in both Fortune 500 and startup compa-
nies.“Fish” is a founding partner of AKF Partners, a consulting
firm focusing on meeting the technical and business hyper
growth needs of today’s fast-paced companies. Michael’s experi-
ence includes two years as the chief technology officer of Quigo,
a startup Internet advertising company acquired by AOL in
2007. Prior to Quigo, Michael served as vice president of engi-
neering & architecture for PayPal, Inc., an eBay company. Prior
to joining PayPal, Michael spent seven years at General Electric
helping to develop the company’s technology strategy and
processes. Michael served six years as a captain and pilot in the

US Army. He sits on a number of boards of directors and adviso-
ry boards for private and nonprofit companies. Michael has a BS
in computer science from the United States Military Academy,
an MSIS from Hawaii Pacific University, a Ph.D. in Information
Systems from Kennedy-Western University, and an MBA from
Case Western Reserve University. Michael is a certified Six
Sigma Master Black Belt and is pursuing a Doctorate of
Management from Case Western Reserve University. His current
research investigates the drivers for the viral growth of digital
services.

This page intentionally left blank

1
Reduce the Equation

We’ve all been there at some point in our academic or profes-
sional careers:We stare at a complex problem and begin to lose
hope.Where do we begin? How can we possibly solve the prob-
lem within the allotted time? Or in the extreme case—how do
we solve it within a single lifetime? There’s just too much to do,
the problem is too complex, and it simply can’t be solved.That’s
it. Pack it in. Game over…

Hold on—don’t lose hope! Take a few deep breaths and
channel your high school or college math teacher/professor.
If you have a big hairy architectural problem, do the same thing
you would do with a big hairy math equation and reduce it into
easily solvable parts. Break off a small piece of the problem and
break it into several smaller problems until each of the problems
is easily solvable!

Our view is that any big problem, if approached properly, is
really just a collection of smaller problems waiting to be solved.
This chapter is all about making big architectural problems
smaller and doing less work while still achieving the necessary
business results. In many cases this approach actually reduces
(rather than increases) the amount of work necessary to solve the
problem, simplify the architecture and the solution, and end up
with a much more scalable solution or platform.

As is the case with many of the chapters in Scalability Rules,
the rules vary in size and complexity. Some are overarching
rules easily applied to several aspects of our design. Some rules
are very granular and prescriptive in their implementation to
specific systems.

Rule 1—Don’t Overengineer
the Solution

Rule 1: What, When, How, and Why
What: Guard against complex solutions during design.

When to use: Can be used for any project and should be used for
all large or complex systems or projects.

How to use: Resist the urge to overengineer solutions by testing
ease of understanding with fellow engineers.

Why: Complex solutions are costly to implement and have exces-
sive long-term costs.

Key takeaways: Systems that are overly complex limit your ability
to scale. Simple systems are more easily and cost effectively
maintained and scaled.

As Wikipedia explains, overengineering falls into two broad
categories.1 The first category covers products designed and
implemented to exceed the useful requirements of the product.
We discuss this problem briefly for completeness, but in our
estimation its impact to scale is small compared to the second
problem.The second category of overengineering covers prod-
ucts that are made to be overly complex.As we earlier implied,
we are most concerned about the impact of this second category
to scalability. But first, let’s address the notion of exceeding
requirements.

To explain the first category of overengineering, the exceed-
ing of useful requirements, we must first make sense of the term
useful, which here means simply capable of being used. For
example, designing an HVAC unit for a family house that is
capable of heating that house to 300 degrees Fahrenheit in out-
side temperatures of 0 Kelvin simply has no use for us anywhere.
The effort necessary to design and manufacture such a solution
is wasted as compared to a solution that might heat the house to
a comfortable living temperature in environments where outside
temperatures might get close to –20 degrees Fahrenheit.This
type of overengineering might have cost overrun elements,
including a higher cost to develop (engineer) the solution and a

2 Chapter 1 Reduce the Equation

higher cost to implement the solution in hardware and software.
It may further impact the company by delaying the product
launch if the overengineered system took longer to develop than
the useful system. Each of these costs has stakeholder impact as
higher costs result in lower margins, and longer development
times result in delayed revenue or benefits. Scope creep, or the
addition of scope between initial product definition and initial
product launch, is one manifestation of overengineering.

An example closer to our domain of experience might be
developing an employee timecard system capable of handling a
number of employees for a single company that equals or
exceeds 100 times the population of Planet Earth.The probabili-
ty that the Earth’s population increases 100-fold within the use-
ful life of the software is tiny.The possibility that all of those
people work for a single company is even smaller.We certainly
want to build our systems to scale to customer demands, but we
don’t want to waste time implementing and deploying those
capabilities too far ahead of our need (see Rule 2).

The second category of overengineering deals with making
something overly complex and making something in a complex
way. Put more simply, the second category consists of either
making something work harder to get a job done than is
necessary, making a user work harder to get a job done than is
necessary, or making an engineer work harder to understand
something than is necessary. Let’s dive into each of these three
areas of overly complex systems.

What does it mean to make something work harder than is
necessary? Some of the easiest examples come from the real
world. Imagine that you ask your significant other to go to the
grocery store.When he agrees, you tell him to pick up one of
everything at the store, and then to pause and call you when he
gets to the checkout line. Once he calls, you will tell him the
handful of items that you would like from the many baskets of
items he has collected and he can throw everything else on the
floor.“Don’t be ridiculous!” you might say. But have you ever
performed a select (*) from schema_name. table_name
SQL statement within your code only to cherry-pick your
results from the returned set (see Rule 35)? Our grocery store
example is essentially the same activity as the select (*) case

3Rule 1—Don’t Overengineer the Solution

above. How many lines of conditionals have you added to your
code to handle edge cases and in what order are they evaluated?
Do you handle the most likely case first? How often do you ask
your database to return a result set you just returned, and how
often do you re-create an HTML page you just displayed? This
particular problem (doing work repetitively when you can just
go back and get your last correct answer) is so rampant and easi-
ly overlooked that we’ve dedicated an entire chapter (Chapter 6,
“Use Caching Aggressively”) to this topic! You get the point.

What do we mean by making a user work harder than is
necessary? The answer to this one is really pretty simple. In many
cases, less is more. Many times in the pursuit of trying to make
a system flexible, we strive to cram as many odd features as
possible into it.Variety is not always the spice of life. Many times
users just want to get from point A to point B as quickly as pos-
sible without distractions. If 99% of your market doesn’t care
about being able to save their blog as a .pdf file, don’t build in a
prompt asking them if they’d like to save it as a .pdf. If your
users are interested in converting .wav files to mp3 files, they are
already sold on a loss of fidelity, so don’t distract them with the
ability to convert to lossless compression FLAC files.

Finally we come to the notion of making software complex
to understand for other engineers. Back in the day it was all the
rage, and in fact there were competitions, to create complex
code that would be difficult for others to understand. Sometimes
this complex code would serve a purpose—it would run faster
than code developed by the average engineer. More often than
not the code complexity (in terms of ability to understand what
it was doing due rather than a measure like cyclomatic complex-
ity) would simply be an indication of one’s “brilliance” or mas-
tery of “kung fu.” Medals were handed out for the person who
could develop code that would bring senior developers to tears
of acquiescence within code reviews. Complexity became the
intellectual cage within which geeky code-slingers would battle
for organizational dominance. It was a great game for those
involved, but companies and shareholders were the ones paying
for the tickets for a cage match no one cares about. For those
interested in continuing in the geek fest, but in a “safe room”

4 Chapter 1 Reduce the Equation

away from the potential stakeholder value destruction of doing it
“for real,” we suggest you partake in the International
Obfuscated C Code Contest at www0.us.ioccc.org/main.html.

We should all strive to write code that everyone can under-
stand.The real measure of a great engineer is how quickly that
engineer can simplify a complex problem (see Rule 3) and
develop an easily understood and maintainable solution. Easy to
follow solutions mean that less senior engineers can more quick-
ly come up to speed to support systems. Easy to understand
solutions mean that problems can be found more quickly during
troubleshooting, and systems can be restored to their proper
working order in a faster manner. Easy to follow solutions
increase the scalability of your organization and your solution.

A great test to determine whether something is too complex
is to have the engineer in charge of solving a given complex
problem present his or her solution to several engineering
cohorts within the company.The cohorts should represent dif-
ferent engineering experience levels as well as varying tenures
within the company (we make a difference here because you
might have experienced engineers with very little company
experience).To pass this test, each of the engineering cohorts
should easily understand the solution, and each cohort should be
able to describe the solution, unassisted, to others not otherwise
knowledgeable about the solution. If any cohort does not under-
stand the solution, the team should debate whether the system is
overly complex.

Overengineering is one of the many enemies of scale.
Developing a solution beyond that which is useful simply wastes
money and time. It may further waste processing resources,
increase the cost of scale, and limit the overall scalability of the
system (how far that system can be scaled). Building solutions
that are overly complex has a similar effect. Systems that work
too hard increase your cost and limit your ultimate size. Systems
that make users work too hard limit how quickly you are likely
to increase users and therefore how quickly you will grow your
business. Systems that are too complex to understand kill organi-
zational productivity and the ease with which you can add engi-
neers or add functionality to your system.

5Rule 1—Don’t Overengineer the Solution

www0.us.ioccc.org/main.html

Rule 2—Design Scale into the
Solution (D-I-D Process)

Rule 2: What, When, How, and Why
What: An approach to provide JIT (Just In Time) Scalability.

When to use: On all projects; this approach is the most cost
effective (resources and time) to ensure scalability.

How to use:

n Design for 20x capacity.

n Implement for 3x capacity.

n Deploy for ~1.5x capacity.

Why: D-I-D provides a cost effective, JIT method of scaling your
product.

Key takeaways: Teams can save a lot of money and time by
thinking of how to scale solutions early, implementing (coding)
them a month or so before they are needed, and implementing
them days before the customer rush or demand.

Our firm is focused on helping clients through their scalability
needs, and as you might imagine customers often ask us “When
should we invest in scalability?”The somewhat flippant answer is
that you should invest (and deploy) the day before the solution is
needed. If you could deploy scale improvements the day before
you needed them, you would delay investments to be “just in
time” and gain the benefits that Dell brought to the world
with configure-to-order systems married with just in time
manufacturing. In so doing you would maximize firm profits
and shareholder wealth.

But let’s face it—timing such an investment and deployment
“just in time” is simply impossible, and even if possible it would
incur a great deal of risk if you did not nail the date exactly.The
next best thing to investing and deploying “the day before” is
AKF Partners’ Design-Implement-Deploy or D-I-D approach to
thinking about scalability.These phases match the cognitive
phases with which we are all familiar: starting to think about and
designing a solution to a problem, building or coding a solution

6 Chapter 1 Reduce the Equation

to that problem, and actually installing or deploying the solution
to the problem.This approach does not argue for nor does it
need a waterfall model.We argue that agile methodologies abide
by such a process by the very definition of the need for human
involvement. One cannot develop a solution to a problem of
which they are not aware, and a solution cannot be manufac-
tured or released if it is not developed. Regardless of the devel-
opment methodology (agile, waterfall, hybrid, or whatever),
everything we develop should be based on a set of architectural
principles and standards that define and guide what we do.

Design
We start with the notion that discussing and designing some-
thing is significantly less expensive than actually implementing
that design in code. Given this relatively low cost we can discuss
and sketch out a design for how to scale our platform well in
advance of our need.Whereas we clearly would not want to put
10x, 20x, or 100x more capacity than we would need in our
production environment, the cost of discussing how to scale
something to those dimensions is comparatively small.The focus
then in the (D)esign phase of the D-I-D scale model is on scal-
ing to between 20x and infinity. Our intellectual costs are high
as we employ our “big thinkers” to think through the “big prob-
lems.” Engineering and asset costs, however, are low as we aren’t
writing code or deploying costly systems. Scalability summits, a
process in which groups of leaders and engineers gather to dis-
cuss scale limiting aspects of the product, are a good way to
identify the areas necessary to scale within the design phase of
the D-I-D process.Table 1.1 lists the parts of the D-I-D process.

Table 1.1 D-I-D Process for Scale

Design Implement Deploy

Scale Objective 20x to Infinite 3x to 20x 1.5x to 3x

Intellectual Cost High Medium Low to Medium

Engineering Cost Low High Medium

Asset Cost Low Low to Medium High to Very High

Total Cost Low/Medium Medium Medium

7Rule 2—Design Scale into the Solution (D-I-D Process)

Implement
As time moves on, and as our perceived need for future scale
draws near, we move to (I)mplementing our designs within our
software.We reduce our scope in terms of scale needs to some-
thing that’s more realistic, such as 3x to 20x our current size.We
use “size” here to identify that element of the system that is per-
ceived to be the greatest bottleneck of scale and therefore in the
greatest need of modification for scalability.There may be cases
where the cost of scaling 100x (or greater) our current size is
not different than the cost of scaling 20x, and if this is the case
we might as well make those changes once rather than going in
and making those changes multiple times.This might be the case
if we are going to perform a modulus of our user base to dis-
tribute (or share) them across multiple (N) systems and databas-
es.We might code a variable Cust_MOD that we can configure
over time between 1 (today) and 1,000 (5 years from now).The
engineering (or implementation) cost of such a change really
doesn’t vary with the size of N so we might as well make it.The
cost of these types of changes are high in terms of engineering
time, medium in terms of intellectual time (we already discussed
the designs earlier in our lifecycle), and low in terms of assets as
we don’t need to deploy 100x our systems today if we intend to
deploy a modulus of 1 or 2 in our first phase.

Deployment
The final phase of the D-I-D process is (D)eployment. Using
our modulus example above, we want to deploy our systems in a
just in time fashion; there’s no reason to have idle assets sitting
around diluting shareholder value. Maybe we put 1.5x of our
peak capacity in production if we are a moderately high growth
company and 5x our peak capacity in production if we are a
hyper growth company.We often guide our clients to leverage
the “cloud” for burst capacity so that we don’t have 33% of our
assets waiting around for a sudden increase in user activity.Asset
costs are high in the deployment phase, and other costs range
from low to medium.Total costs tend to be highest for this cate-
gory as to deploy 100x of your necessary capacity relative to
demand would kill many companies. Remember that scale is an

8 Chapter 1 Reduce the Equation

elastic concept; it can both expand and contract, and our solu-
tions should recognize both aspects of scale. Flexibility is there-
fore key as you may need to move capacity around as different
systems within your solution expand and contract to customer
demand.

Referring to Table 1.1, we can see that while each phase of
the D-I-D process has varying intellectual, engineering, and asset
costs, there is a clear progression of overall cost to the company.
Designing and thinking about scale comes relatively cheaply and
thus should happen frequently. Ideally these activities result in
some sort of written documentation so that others can build
upon it quickly should the need arise. Engineering (or develop-
ing) the architected or designed solutions can happen later and
cost a bit more overall, but there is no need to actually imple-
ment them in production.We can roll the code and make small
modifications as in our modulus example above without needing
to purchase 100x the number of systems we have today. Finally
the process lends itself nicely to purchasing equipment just ahead
of our need, which might be a six-week lead time from a major
equipment provider or having one of our systems administrators
run down to the local server store in extreme emergencies.

Rule 3—Simplify the Solution 3
Times Over

Rule 3: What, When, How, and Why
What: Used when designing complex systems, this rule simplifies
the scope, design, and implementation.

When to use: When designing complex systems or products
where resources (engineering or computational) are limited.

How to use:

n Simplify scope using the Pareto Principle.

n Simplify design by thinking about cost effectiveness and
scalability.

n Simplify implementation by leveraging the experience of
others.

9Rule 3—Simplify the Solution 3 Times Over

Why: Focusing just on “not being complex” doesn’t address the
issues created in requirements or story and epoch development
or the actual implementation.

Key takeaways: Simplification needs to happen during every
aspect of product development.

Whereas Rule 1 dealt with avoiding surpassing the “usable”
requirements and eliminating complexity, this rule discusses taking
another pass at simplifying everything from your perception of
your needs through your actual design and implementation. Rule
1 is about fighting against the urge to make something overly
complex, and Rule 3 is about attempting to further simplify the
solution by the methods described herein. Sometimes we tell our
clients to think of this rule as “asking the 3 how’s.” How do I sim-
plify my scope, my design, and my implementation?

How Do I Simplify the Scope?
The answer to this question of simplification is to apply the
Pareto Principle (also known as the 80-20 rule) frequently.What
80% of your benefit is achieved from 20% of the work? In our
case, a direct application is to ask “what 80% of your revenue
will be achieved by 20% of your features.” Doing significantly
less (20% of the work) and achieving significant benefits (80% of
the value) frees up your team to perform other tasks. If you cut
unnecessary features from your product, you can do 5x as much
work, and your product would be significantly less complex!
With 4/5ths fewer features, your system will no doubt have
fewer dependencies between functions and as a result will be
able to scale both more effectively and cost effectively. Moreover,
the 80% of the time that is freed up can be used to both launch
new product offerings as well as invest in thinking ahead to the
future scalability needs of your product.

We’re not alone in our thinking on how to reduce unneces-
sary features while keeping a majority of the benefit.The folks at
37signals are huge proponents of this approach, discussing the
need and opportunity to prune work in both their book
Rework2 and in their blog post titled “You Can Always Do
Less.”3 Indeed, the concept of the “minimum viable product”
popularized by Eric Reis and evangelized by Marty Cagan is

10 Chapter 1 Reduce the Equation

predicated on the notion of maximizing the “amount of validat-
ed learning about customers with the least effort.”4 This “agile”
focused approach allows us to release simple, easily scalable prod-
ucts quickly. In so doing we get greater product throughput in
our organizations (organizational scalability) and can spend addi-
tional time focusing on building the minimal product in a more
scalable fashion. By simplifying our scope we have more compu-
tational power as we are doing less.

How Do I Simplify My Design?
With this new smaller scope, the job of simplifying our imple-
mentation just became easier. Simplifying design is closely
related to the complexity aspect of overengineering. Complexity
elimination is about cutting off unnecessary trips in a job, and sim-
plification is about finding a shorter path. In Rule 1, we gave the
example of only asking a database for that which you need;
select(*) from schema_name.table_name became select

(column) from schema_name.table_name.The approach of
design simplification suggests that we first look to see if we already
have the information being requested within a local shared
resource like local memory. Complexity elimination is about doing
less work, and design simplification is about doing that work faster
and easier.

Imagine a case where we are looking to read some source
data, perform a computation on intermediate tokens from this
source data, and then bundle up these tokens. In many cases,
each of these verbs might be broken into a series of services. In
fact, this approach looks similar to that employed by the popular
“map-reduce” algorithm.This approach isn’t overly complex, so
it doesn’t violate Rule 1. But if we know that files to be read are
small and we don’t need to combine tokens across files, it might
make sense to take the simple path of making this a simple
monolithic application rather than decomposing it into services.
Going back to our timecard example, if the goal is simply to
compute hours for a single individual it makes sense to have
multiple cloned monolithic applications reading a queue of
timecards and performing the computations. Put simply, the step
of design simplification asks us how to get the job done in an
easy to understand, cost-effective, and scalable way.

11Rule 3—Simplify the Solution 3 Times Over

How Do I Simplify My Implementation?
Finally, we get to the question of implementation. Consistent
with Rule 2—the D-I-D Process for Scale, we define an imple-
mentation as the actual coding of a solution.This is where we
get into questions such as whether it makes more sense to solve
a problem with recursion or iteration. Should we define an array
of a certain size, or be prepared to allocate memory dynamically
as we need it? Do I make the solution, open-source the solution,
or buy it? The answers to all these solutions have a consistent
theme:“How can we leverage the experiences of others and
existing solutions to simplify our implementation?”

Given that we can’t be the best at building everything, we
should first look to find widely adopted open source or third-
party solutions to meet our needs. If those don’t exist, we should
look to see if someone within our own organization has devel-
oped a scalable solution to solve the problem. In the absence of a
proprietary solution, we should again look externally to see if
someone has described a scalable approach to solve the problem
that we can legally copy or mimic. Only in the absence of finding
one of these three things should we embark on attempting to
solve the solution ourselves.The simplest implementation is almost
always one that has already been implemented and proven scalable.

Rule 4—Reduce DNS Lookups

Rule 4: What, When, How, and Why
What: Reduce the number of DNS lookups from a user
perspective.

When to use: On all Web pages where performance matters.

How to use: Minimize the number of DNS lookups required to
download pages, but balance this with the browser’s limitation for
simultaneous connections.

Why: DNS lookups take a great deal of time, and large numbers
of them can amount to a large portion of your user experience.

Key takeaways: Reduction of objects, tasks, computation, and so
on is a great way of speeding up page load time, but division of
labor must be considered as well.

12 Chapter 1 Reduce the Equation

As we’ve seen so far in this chapter, reducing is the name of the
game for performance improvements and increased scalability.
A lot of rules are focused on the architecture of the Software as
a Service (SaaS) solution, but for this rule let’s consider your cus-
tomer’s browser. If you use any of the browser level debugging
tools such as Mozilla Firefox’s plug-in Firebug,5 you’ll see some
interesting results when you load a page from your application.
One of the things you will most likely notice is that similarly
sized objects on your page take different amounts of time to
download.As you look closer you’ll see some of these objects
have an additional step at the beginning of their download.This
additional step is the DNS lookup.

The Domain Name System (DNS) is one of the most
important parts of the infrastructure of the Internet or any other
network that utilizes the Internet Protocol Suite (TCP/IP). It
allows the translation from domain name (www.akfpartners.com)
to an IP address (184.72.236.173) and is often analogized to a
phone book. DNS is maintained by a distributed database sys-
tem, the nodes of which are the name servers.The top of the
hierarchy consists of the root name servers. Each domain has at
least one authoritative DNS server that publishes information
about that domain.

This process of translating domains into IP addresses is made
quicker by caching on many levels, including the browser, com-
puter operating system, Internet service provider, and so on.
However, in our world where pages can have hundreds or thou-
sands of objects, many from different domains, small milliseconds
of time can add up to something noticeable to the customer.

Before we go any deeper into our discussion of reducing the
DNS lookups we need to understand at a high level how most
browsers download pages.This isn’t meant to be an in-depth
study of browsers, but understanding the basics will help you
optimize your application’s performance and scalability. Browsers
take advantage of the fact that almost all Web pages are com-
prised of many different objects (images, JavaScript files, css files,
and so on) by having the ability to download multiple objects
through simultaneous connections. Browsers limit the maximum
number of simultaneous persistent connections per server or

13Rule 4—Reduce DNS Lookups

www.akfpartners.com

proxy.According to the HTTP/1.1 RFC6 this maximum should
be set to 2; however, many browsers now ignore this RFC and
have maximums of 6 or more.We’ll talk about how to optimize
your page download time based on this functionality in the next
rule. For now let’s focus on our Web page broken up into many
objects and able to be downloaded through multiple connections.

Every distinct domain that serves one or more objects for a
Web page requires a DNS lookup either from cache or out to a
DNS name server. For example, let’s assume we have a simple
Web page that has four objects: 1) the HTML page itself that
contains text and directives for other objects, 2) a CSS file for
the layout, 3) a JavaScript file for a menu item, and 4) a JPG
image.The HTML comes from our domain (akfpartners.com),
but the CSS and JPG are served from a subdomain (static.akf-
partners.com), and the JavaScript we’ve linked to from Google
(ajax.googleapis.com). In this scenario our browser first receives
the request to go to page www.akfpartners.com, which requires
a DNS lookup of the akfpartners.com domain. Once the
HTML is downloaded the browser parses it and finds that it
needs to download the CSS and JPG both from static.akfpart-
ners.com, which requires another DNS lookup. Finally, the pars-
ing reveals the need for an external JavaScript file from yet
another domain. Depending on the freshness of DNS cache in
our browser, operating system, and so on, this lookup can take
essentially no time up to hundreds of milliseconds. Figure 1.1
shows a graphical representation of this.

As a general rule, the fewer DNS lookups on your pages the
better your page download performance will be.There is a
downside to combining all your objects into a single domain,
and we’ve hinted at the reason in the previous discussion about
maximum simultaneous connects.We explore this topic in more
detail in the next rule.

14 Chapter 1 Reduce the Equation

www.akfpartners.com

1
5

R
ule 4

—
R

educe D
N

S
 Lookups

Figure 1.1 Object download time

Request Time

Legend

http://www.akfpartners.com/
http://static.akfpartners.com/styles.css
http://static.akpartners.com/fish.jpg
http://ajax.googleapis.com/ajax/libs/jquery.min.js

DNS Lookup

TCP Connection

Send Request

Receive Request

50ms 31ms 1ms 3ms

45ms 33ms 1ms 2ms

0ms 38ms 0ms 3ms

15ms 23ms 1ms 1ms

http://www.akfpartners.com/
http://static.akfpartners.com/styles.css
http://static.akpartners.com/fish.jpg
http://ajax.googleapis.com/ajax/libs/jquery.min.js

Rule 5—Reduce Objects Where
Possible

Rule 5: What, When, How, and Why
What: Reduce the number of objects on a page where possible.

When to use: On all web pages where performance matters.

How to use:

n Reduce or combine objects but balance this with maximiz-
ing simultaneous connections.

n Test changes to ensure performance improvements.

Why: The number of objects impacts page download times.

Key takeaways: The balance between objects and methods that
serve them is a science that requires constant measurement
and adjustment; it’s a balance between customer usability,
usefulness, and performance.

Web pages consist of many different objects (HTML, CSS,
images, JavaScript, and so on), which allows our browsers to
download them somewhat independently and often in parallel.
One of the easiest ways to improve Web page performance and
thus increase your scalability (fewer objects to serve per page
means your servers can serve more pages) is to reduce the num-
ber of objects on a page.The biggest offenders on most pages are
graphical objects such as pictures and images.As an example let’s
take a look at Google’s search page (www.google.com), which
by their own admission is minimalist in nature.7 At the time of
writing Google had five objects on the search page: the HTML,
two images, and two JavaScript files. In my very unscientific
experiment the search page loaded in about 300 milliseconds.
Compare this to a client that we were working with in the
online magazine industry, whose home page had more than 200
objects, 145 of which were images and took on average more
than 11 seconds to load.What this client didn’t realize was that
slow page performance was causing them to lose valuable read-
ers. Google published a white paper in 2009 claiming that tests
showed an increase in search latency of 400 milliseconds reduced
their daily searches by almost 0.6%.8

16 Chapter 1 Reduce the Equation

www.google.com

Reducing the number of objects on the page is a great way
to improve performance and scalability, but before you rush off
to remove all your images there are a few other things to con-
sider. First is obviously the important information that you are
trying to convey to your customers.With no images your page
will look like the 1992 W3 Project page, which claimed to be
the first Web page.9 Since you need images and JavaScript and
CSS files, your second consideration might be to combine all
similar objects into a single file.This is not a bad idea, and in fact
there are techniques such as CSS image sprites for this exact
purpose.An image sprite is a combination of small images into
one larger image that can be manipulated with CSS to display
any single individual image.The benefit of this is that the num-
ber of images requested is significantly reduced. Back to our dis-
cussion on the Google search page, one of the two images on
the search page is a sprite that consists of about two dozen
smaller images that can be individually displayed or not.10

So far we’ve covered that reducing the number of objects on
a page will improve performance and scalability, but this must be
balanced with the need for modern looking pages thus requiring
images, CSS, and JavaScript. Next we covered how these can be
combined into a single object to reduce the number of distinct
requests that must be made by the browser to render the page.
Yet another balance to be made is that combining everything
into a single object doesn’t make use of the maximum number
of simultaneous persistent connections per server that we dis-
cussed previously in Rule 3.As a recap this is the browser’s capa-
bility to download multiple objects simultaneously from a single
domain. If everything is in one object, having the capability to
download two or more simultaneous objects doesn’t help. Now
we need to think about breaking these objects back up into a
number of smaller ones that can be downloaded simultaneously.
One final variable to add to the equation is that part above
about simultaneous persistent connections “per server, which
will bring us full circle to our DNS discussion noted in Rule 4.

The simultaneous connection feature of a browser is a limit
ascribed to each domain that is serving the objects. If all objects
on your page come from a single domain (www.akfpartners.
com), then whatever the browser has set as the maximum

17Rule 5—Reduce Objects Where Possible

www.akfpartners.com
www.akfpartners.com

number of connections is the most objects that can be down-
loaded simultaneously.As mentioned previously, this maximum is
suggested to be set at 2, but many browsers by default have
increased this to 6 or more.Therefore, you want your content
(images, CSS, JavaScript, and so on) divided into enough objects
to take advantage of this feature in most browsers. One tech-
nique to really take advantage of this browser feature is to
serve different objects from different subdomains (for example,
static1.akfpartners.com, static2.akfpartners.com, and so on).The
browser considers each of these different domains and allows for
each to have the maximum connects concurrently.The client
that we talked about earlier who was in the online magazine
industry and had an 11-second page load time used this tech-
nique across seven subdomains and was able to reduce the
average load time to less than 5 seconds.

Unfortunately there is not an absolute answer about ideal size
of objects or how many subdomains you should consider.The
key to improving performance and scalability is testing your
pages.There is a balance between necessary content and func-
tionality, object size, rendering time, total download time,
domains, and so on. If you have 100 images on a page, each
50KB, combining them into a single sprite is probably not a
great idea because the page will not be able to display any
images until the entire 4.9MB object downloads.The same con-
cept goes for JavaScript. If you combine all your .js files into
one, your page cannot use any of the JavaScript functions until
the entire file is downloaded.The way to know for sure which is
the best alternative is to test your pages on a variety of browsers
with a variety of ISP connection speeds.

In summary, the fewer the number of objects on a page the
better for performance, but this must be balanced with many
other factors. Included in these factors are the amount of con-
tent that must be displayed, how many objects can be combined,
how to maximize the use of simultaneous connections by adding
domains, the total page weight and whether penalization can
help, and so on.While this rule touches on many Web site per-
formance improvement techniques the real focus is how to
improve performance and thus increase the scalability of your
site through the reduction of objects on the page. Many other

18 Chapter 1 Reduce the Equation

techniques for optimizing performance should be considered,
including loading CSS at the top of the page and JavaScript files
at the bottom, minifying files, and making use of caches, lazy
loading, and so on.

Rule 6—Use Homogenous
Networks

Rule 6: What, When, How, and Why
What: Don’t mix the vendor networking gear.

When to use: When designing or expanding your network.

How to use:

n Do not mix different vendors’ networking gear (switches
and routers).

n Buy best of breed for other networking gear (firewalls, load
balancers, and so on).

Why: Intermittent interoperability and availability issues simply
aren’t worth the potential cost savings.

Key takeaways: Heterogeneous networking gear tends to cause
availability and scalability problems. Choose a single provider.

We are technology agnostic, meaning that we believe almost any
technology can be made to scale when architected and deployed
correctly.This agnosticism ranges from programming language
preference to database vendors to hardware.The one caveat to
this is with network gear such as routers and switches.Almost all
the vendors claim that they implement standard protocols (for
example, Internet Control Message Protocol RFC792,11

Routing Information Protocol RFC1058,12 Border Gateway
Protocol RFC427113) that allow for devices from different
vendors to communicate, but many also implement proprietary
protocols such as Cisco’s Enhanced Interior Gateway Routing
Protocol (EIGRP).What we’ve found in our own practice, as
well as with many of our customers, is that each vendor’s inter-
pretation of how to implement a standard is often different.As
an analogy, if you’ve ever developed the user interface for a Web
page and tested it in a couple different browsers such as Internet

19Rule 6—Use Homogenous Networks

Explorer, Firefox, and Chrome, you’ve seen firsthand how differ-
ent implementations of standards can be. Now, imagine that
going on inside your network. Mixing Vendor A’s network
devices with Vendor B’s network devices is asking for trouble.

This is not to say that we prefer one vendor over another—
we don’t.As long as they are a “reference-able” standard utilized
by customers larger than you, in terms of network traffic vol-
ume, we don’t have a preference.This rule does not apply to
networking gear such as hubs, load balancers, and firewalls.The
network devices that we care about in terms of homogeneity are
the ones that must communicate to route communication. For
all the other network devices that may or may not be included
in your network such as intrusion detection systems (IDS), fire-
walls, load balancers, and distributed denial of service (DDOS)
protection appliances, we recommend best of breed choices. For
these devices choose the vendor that best serves your needs in
terms of features, reliability, cost, and service.

Summary
This chapter was about making things simpler. Guarding against
complexity (aka overengineering—Rule 1) and simplifying
every step of your product from your initial requirements or sto-
ries through the final implementation (Rule 3) gives us products
that are easy to understand from an engineering perspective and
therefore easy to scale. By thinking about scale early (Rule 2)
even if we don’t implement it, we can have solutions ready on
demand for our business. Rules 4 and 5 teach us to reduce the
work we force browsers to do by reducing the number of
objects and DNS lookups we must make to download those
objects. Rule 6 teaches us to keep our networks simple and
homogenous to decrease the chances of scale and availability
problems associated with mixed networking gear.

20 Chapter 1 Reduce the Equation

Endnotes
1. Wikipedia, “Overengineering,” http://en.wikipedia.org/wiki/

Overengineering.

2. Jason Fried and David Heinemeier Hansson, Rework (New York:

Crown Business, 2010).

3. 37Signals, “You Can Always Do Less,” Signal vs. Noise blog,

January 14, 2010, http://37signals.com/svn/posts/2106-you-can-

always-do-less.

4. Wikipedia, “Minimum Viable Product,” http://en.wikipedia.org/wiki/

Minimum_viable_product.

5. To get or install Firebug, go to http://getfirebug.com/.

6. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee, Network Working Group Request for Comments

2616, “Hypertext Transfer Protocol—HTTP/1.1,” June 1999,

www.ietf.org/rfc/rfc2616.txt.

7. The Official Google Blog, “A Spring Metamorphosis—Google’s New

Look,” May 5, 2010, http://googleblog.blogspot.com/2010/05/

spring-metamorphosis-googles-new-look.html.

8. Jake Brutlag, “Speed Matters for Google Web Search,” Google, Inc.,

June 2009, http://code.google.com/speed/files/delayexp.pdf.

9. World Wide Web, www.w3.org/History/19921103-hypertext/

hypertext/WWW/TheProject.html.

10. Google.com, www.google.com/images/srpr/nav_logo14.png.

11. J. Postel, Network Working Group Request for Comments 792,

“Internet Control Message Protocol,” September 1981, http://tools.

ietf.org/html/rfc792.

12. C. Hedrick, Network Working Group Request for Comments 1058,

“Routing Information Protocol,” June 1988, http://tools.ietf.org/

html/rfc1058.

13. Y. Rekhter, T. Li, and S. Hares, eds., Network Working Group Request

for Comments 4271, “A Border Gateway Protocol 4 (BGP-4), January

2006, http://tools.ietf.org/html/rfc4271.

21Endnotes

www.ietf.org/rfc/rfc2616.txt
http://googleblog.blogspot.com/2010/05/spring-metamorphosis-googles-new-look.html
http://googleblog.blogspot.com/2010/05/spring-metamorphosis-googles-new-look.html
http://code.google.com/speed/files/delayexp.pdf
www.w3.org/History/19921103-hypertext/hypertext/WWW/TheProject.html
www.w3.org/History/19921103-hypertext/hypertext/WWW/TheProject.html
www.google.com/images/srpr/nav_logo14.png
http://tools.ietf.org/html/rfc792
http://tools.ietf.org/html/rfc792
http://tools.ietf.org/html/rfc1058
http://tools.ietf.org/html/rfc1058
http://tools.ietf.org/html/rfc4271
http://en.wikipedia.org/wiki/Overengineering
http://en.wikipedia.org/wiki/Overengineering
http://37signals.com/svn/posts/2106-you-can-always-do-less
http://37signals.com/svn/posts/2106-you-can-always-do-less
http://en.wikipedia.org/wiki/Minimum_viable_product
http://en.wikipedia.org/wiki/Minimum_viable_product
http://getfirebug.com/

This page intentionally left blank

Index

Symbols/Numbers
* wildcard (SELECT statement),

142-144, 234

2PC (two-phase commit), 138-139

37signals, 10

3PC (three-phase commit), 138

80-20 rule, 10

300 Multiple Choices status
code, 77

301 Moved Permanently status
code, 77

302 Found status code, 77

303 See Other status code, 77

304 Not Modified status code, 77

305 Use Proxy status code, 78

306 (Unused) status code, 78

307 Temporary Redirect status
code, 78

A
ACID properties, 26, 54, 129-130

actions, identifying, 126

aggregating log files, 66-67

“Ajax: A New Approach to Web
Applications” (Garrett), 96

Ajax (Asynchronous JavaScript and
XML), 95-100, 228

AKF Partners’ D-I-D (Design-
Implement-Deploy) approach,
218

deployment, 8-9

design, 7

explained, 6-7

implementation, 8

AKF Scale Cube

explained, 24

illustrated, 24-25

message buses, 185, 188

RFM (recency, frequency, and
monetization) analysis, 198

X axis splits, 25-29, 220

Y axis splits, 29-31, 221

Z axis splits, 32, 222

Apache

Hadoop, 59

log files, 66

mod_alias module, 79

mod_expires module, 93

mod_rewrite module, 80

OJB, 108

application caches, 103-107, 229

applications, monitoring,
204-208, 241

archiving, 196-200, 240

The Art of Scalability, 23

asterisk (*) wildcard,
142-144, 234

asynchronous communication,
179-180

advantages of, 180

and fault isolation swimlanes,
152-154

asynchronous completion, 76

message buses

overcrowding, 188-190, 239

scaling, 183, 186, 238

Asynchronous JavaScript and XML
(Ajax), 95-100, 228

atomicity, 26

automatic markdowns, 164

avoiding overengineering, 2-5, 218

248 AKF Partners’ D-I-D (Design-Implement-Deploy) approach

B
backbones, 88

BASE (Basically Available, Soft
State, and Eventually Consistent)
architecture, 83

BigTable, 56

Boyce-Codd normal form, 132

browsers, maintaining session data
in, 171-173, 237

business intelligence, removing
from transaction processing,
201-204, 240

business operations, learning
from, 116

C
cache misses, 102

Cache-Control headers, 92-93, 98

caching, 87-88

Ajax calls, 95-100, 228

application caches, 103-107, 229

cache misses, 102

CDNs (content delivery
networks), 88-90, 227

distributed cache, 173-176, 237

Expires headers, 91-95, 228

Last-Modified headers, 98

object caches, 107-111, 229-230

page caches, 100-103, 228

Cagan, Marty, 10

Cassandra, 56

CDNs (content delivery networks),
88-90, 227

Ceph, 55

checking work, avoiding,
72-76, 226

circuits

in parallel, 160

in series, 158-159

clauses, FOR UPDATE,
140-142, 234

cloning, 25-29, 220

cloud computing, 48-50, 224

clusters, 148-149, 195

Codd, Edgar F., 26, 54

commands, header(), 93

commodity systems, 39-42, 223

communication. See asynchronous
communication

competence, 208-210, 242

competitive differentiation, 75

complexity

avoiding, 2-5, 218

reducing, 9-10, 219

design, 11

implementation, 12

scope, 10-11

config file markdowns, 164

consistency, 26

Constraint Satisfaction Problems
(CSP), 82

constraints, temporal, 81-84, 227

content delivery networks (CDNs),
88-90, 227

Cost-Value Data Dilemma, 61

CouchDB, 57

Craigslist, 170

CSP (Constraint Satisfaction
Problems), 82

customers, learning from, 115-116

D
D-I-D (Design-Implement-Deploy)

approach, 218

deployment, 8-9

design, 7

explained, 6-7

implementation, 8

data centers, scaling out,
42-47, 223

249design

data definition language
(DDL), 131

databases

ACID properties, 129-130

alternatives to, 55-61

cloning and replication,
25-29, 220

clustering, 195

entities, 131

locks, 134-137, 233

markdowns, 165

multiphase commits, 137-139, 233

normal forms, 132

normalization, 131

optimizers, 136

relationships, 130-133, 232

SELECT statement

FOR UPDATE clause,
140-142, 234

* wildcard, 142-144, 234

when to use, 54-61, 224

dbquery function, 109

DDL (data definition
language), 131

decision flowchart for
implementing state, 168

deployment, 8-9

design

D-I-D (Design-Implement-
Deploy) approach, 7

designing for fault tolerance

series, 158-162, 235

SPOFs (single points of
failure), 155-157, 235

swimlanes (fault isolation),
148-154, 234

Wire On/Wire Off
frameworks, 162-163,
166, 236

rollback, 120-123, 231

scaling out, 36-39, 222

simplifying, 11

Design-Implement-Deploy (D-I-D)
approach, 6-9

directives, 92

disabling services, 163, 166

distributed cache, 173-176, 237

distributing work

cloning and replication,
25-29, 220

explained, 23-24

separating functionality or
services, 29-31, 221

splitting similar data sets across
storage and application systems,
32-34, 222

DNS lookups, reducing number of,
12-14, 219

document stores, 57

duplicated work, avoiding, 71

avoiding checking work,
72-76, 226

avoiding redirects, 76-81, 226

relaxing temporal constraints,
81-84, 227

duplication of services/databases,
25-29, 220

durability, 26

E
eBay, 170

edge servers, 88

enabling services, 163, 166

enterprise service buses.
See message buses

entities, 131

ERDs (entity relationship
diagrams), 131

errors in log files, 68

ETag headers, 102-103

Expires headers, 91-95, 98, 228

ExpiresActive module, 93

explicit locks, 135

250 Design-Implement-Deploy approach

extensible record stores, 56

extent locks, 135

F
failures, learning from

designing for rollback,
120-123, 231

importance of, 113-116, 230

postmortem process, 123-127, 232

QA (quality assurance),
117-120, 231

SPOFs (single points of failure),
155-157, 235

fault isolation (swimlanes), 26,
148-154, 234

fault tolerance

series, 158-162, 235

SPOFs (single points of failure),
155-157, 235

swimlanes (fault isolation),
148-154, 234

Wire On/Wire Off frameworks,
162-166, 236

fifth normal form, 132

file markdowns, 165

file systems, 55

files, log files, 66-68, 225

aggregating, 66-67

errors in, 68

monitoring, 67

Firesheep, 172

firewalls, 62-65, 225

first normal form, 132

flexibility, 57-58

focus groups, 115

FOR UPDATE clause (SELECT
statement), 140-142, 234

foreign keys, 26

fourth normal form, 132

frequency, 198

functionality, separating,
29-31, 221

functions

dbquery, 109

setcookie, 172

G
Garrett, Jesse James, 96

GFS (Google File System), 55

Google

BigTable, 56

GFS (Google File System), 55

MapReduce, 59

H
Hadoop, 59

header() command, 93

headers

Cache-Control, 92-93, 98

ETag, 102-103

Expires, 91-95, 98, 228

Last-Modified, 98

High Reliability Organizations, 124

homogenous networks, 19-20, 220

horizontal scale, 25-29, 220. See
also scaling out

HTML meta tags, 91

HTTP (Hypertext Transfer
Protocol), 77

headers, 91

Cache-Control, 92-93, 98

ETag, 102-103

Expires, 91-95, 98, 228

Last-Modified, 98

keep-alives, 93

status codes, 77-78

251log files

I
implementation

D-I-D (Design-Implement-
Deploy) approach, 8

simplifying, 12

implicit locks, 134

International Obfuscated C Code
Contest, 5

isolating faults, 26, 148-154, 234

issue identification
(postmortems), 125

J-K
java.util.logging, 66

JIT (Just In Time) Scalability, D-I-D
approach, 218

deployment, 8-9

design, 7

explained, 6-7

implementation, 8

keep-alives, 93

key-value stores, 56

L
LaPorte, Todd, 124

Last-Modified headers, 98

learning from mistakes

designing for rollback,
120-123, 231

importance of, 113-116, 230

postmortem process, 123-127, 232

QA (quality assurance),
117-120, 231

legal requirements, 75

locks (database), 134-137, 233

log files, 66-68, 225

aggregating, 66-67

errors in, 68

monitoring, 67

Log4j logs, 66

lookups (DNS), reducing number
of, 12-14, 219

M
MapReduce, 59

Mark Up/Mark Down functionality,
163, 166

Maslow’s hammer, 53

Maslow, Abraham, 53

master-slave relationship, 28

max-age directive, 92

mean time to failure (MTTF), 73

Memcached, 56, 108

memory caching. See caching

message buses

overcrowding, 188-190, 239

scaling, 183, 186, 238

meta tags, 91

minimum viable product, 10

mistakes, learning from

designing for rollback,
120-123, 231

importance of, 113-116, 230

postmortem process, 123-127, 232

QA (quality assurance),
117-120, 231

mod_alias module, 79

mod_expires module, 93

mod_rewrite module, 80

MogileFS, 55

monetization, 198

monitoring, 67, 204-208, 241

Moore’s Law, 39

Moore, Gordon, 39

MTTF (mean time to failure), 73

multiphase commits,
137-139, 233

multiple live sites, 47-48

multiplicity effect, 161

252 Log4j logs

N
NCache, 108

networks

CDNs (content delivery
networks), 88-90, 227

homogenous networks, 19-20, 220

no-cache directive, 92

nodes, 88

Normal Accident Theory, 124

normal forms, 132

normalization, 131

NoSQL, 56

O
object caches, 107-111, 229-230

objects

object caches, 107-111, 229

reducing number of, 16-19, 220

XMLHttpRequest, 96

OJB, 108

OLTP (On Line Transactional
Processing), 26, 54

on-demand enabling/disabling of
services, 163, 166

optimizers, 136

overcrowding message buses,
188-191, 239

overengineering, avoiding, 2-5, 218

P
page caches, 100-103, 228

page locks, 135

Pareto Principle, 10

Perrow, Charles, 124

PNUTS, 57

pods, 32-34, 148-149

pools, 148-149

postmortem process,
123-127, 232

PRG (Post/Redirect/Get), 77

private directive, 92

public directive, 92

purging storage, 196-200, 240

Q-R
QA (quality assurance),

117-120, 231

RDBMSs (Relational Database
Management Systems), 26

alternatives to, 55-61

when to use, 54-61, 224

recency, frequency, and monetiza-
tion (RFM) analysis, 197-200

redirects, avoiding, 76-81, 226

reducing

complexity, 9-10, 219

design, 11

implementation, 12

scope, 10-11

DNS lookups, 12-14, 219

objects, 16-19, 220

regulatory requirements, 75

Reis, Eric, 10

Relational Database Management
Systems. See RDBMSs

“A Relational Model of Data for
Large Shared Data Banks”
(Codd), 26, 54

relationships, 57-58, 130-133, 232

relaxing temporal constraints,
81-84, 227

replication of services/databases,
25-29, 220

reverse proxy cache, 101, 103

reverse proxy servers, 101, 103

RFM (recency, frequency, and mon-
etization) analysis, 197-200

253servers

risk management

firewalls, 62-65, 225

risk-benefit model, 213-218

rolling back code, 120-123, 231

row locks, 135

runtime variables, 165

S
Saas (Software as a Service)

solution, 13

scaling out, 222

cloud computing, 48-50, 224

commodity systems, 39-42, 223

data centers, 42-47, 223

defined, 36

design, 36-39, 222

multiple live sites, 47-48

scaling up, 36

scope

scope creep, 3

simplifying, 10-11

second normal form, 132

Secure Socket Layer (SSL), 173

security

firewalls, 62-65, 225

sidejacking, 172

SSL (Secure Socket Layer), 173

SELECT statement

* wildcard, 142-144, 234

FOR UPDATE clause,
140-142, 234

separating functionality or
services, 29-31, 221

series, 158-162, 235

servers

edge servers, 88

page caches, 100-103, 228

services

cloning and replication,
25-29, 220

enabling/disabling on demand,
163, 166

scale through, 32-34, 222

separating, 29-31, 221

session data, maintaining in
browser, 171-173, 237

setcookie function, 172

shards, 32-34, 148-149

sidejacking, 172

simple solutions, 9-10, 219

design, 11

implementation, 12

importance of, 2-5, 218

scope, 10-11

SimpleDB, 57

single points of failure (SPOFs),
155-157, 235

singleton antipattern, 155

singletons, 155

sixth normal form, 132

social construction, 115

social contagion, 114

Software as a Service (SaaS)
solution, 13

solutions

importance of simple solutions,
2-5, 218

overengineering, 2-5, 218

simplifying, 9-10, 219

design, 11

implementation, 12

scope, 10-11

spinning up, 49

splits

of message bus, 183-188, 238

of similar data sets across
storage and application systems,
32-34, 222

254 services

X axis splits (AKF Scale Cube),
25-29, 220

Y axis splits (AKF Scale Cube),
29-31, 221

Z axis splits (AKF Scale Cube),
32-34, 222

SPOFs (single points of failure),
155-157, 235

SSL (Secure Socket Layer), 173

stand-in services, 164

state, 167-168

decision flowchart for
implementing state, 168

distributed cache, 173-176, 237

session data, maintaining in
browser, 171-173, 237

statelessness, 168-171, 236

statelessness, 43, 168-171, 236

statements, SELECT

* wildcard, 142-144, 234

FOR UPDATE clause,
140-142, 234

status codes (HTTP), 77-78

storage

archiving, 196-200, 240

databases. See databases

document stores, 57

extensible record stores, 56

file systems, 55

Hadoop, 59

key-value stores, 56

MapReduce, 59

NoSQL, 56

purging, 196-200, 240

RFM (recency, frequency, and
monetization) analysis, 197-200

scalability versus flexibility, 57-58

swimlanes (fault isolation),
148-154, 234

synchronous markdown
commands, 164

SystemErr logs, 66

SystemOut logs, 66

T
table locks, 135

tags, meta tags, 91

TCSP (Temporal Constraint
Satisfaction Problem), 82

temporal constraints, relaxing,
81-84, 227

third normal form, 26, 132

third-party scaling products, 193,
195-196, 239

Three Mile Island nuclear
accident, 124

three-phase commit (3PC), 138

timelines, 125

Tokyo Tyrant, 56

Tomcat log files, 66

traffic redirection, avoiding,
76-81, 226

transactions

multiphase commits, 137-139, 233

removing business intelligence
from transaction processing,
201-204, 240

two-phase commit (2PC), 138-139

U-V
usefulness, 2

vendor scaling products,
193-196, 239

viral growth, 114

virtualization, 41, 154

Voldemort, 56

255Z axis splits

W
webpagetest.org, 94

Websphere log files, 66

wildcards, * (asterisk),
142-144, 234

Wire On/Wire Off frameworks,
162-163, 166, 236

work distribution

cloning and replication,
25-29, 220

explained, 23-24

separating functionality or
services, 29-31, 221

splitting similar data sets across
storage and application systems,
32-34, 222

X-Y-Z
X axis splits (AKF Scale Cube),

25-29, 220

XMLHttpRequest object, 96

Y axis splits (AKF Scale Cube),
29-31, 221

Z axis splits (AKF Scale Cube),
32-34, 222

	Contents
	Preface
	Acknowledgments
	About the Authors
	1 Reduce the Equation
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U-V
	W
	X-Y-Z

