

OpenCL
Programming Guide

The OpenGL graphics system is a software interface to graphics

hardware. (“GL” stands for “Graphics Library.”) It allows you to

create interactive programs that produce color images of moving, three-

dimensional objects. With OpenGL, you can control computer-graphics

technology to produce realistic pictures, or ones that depart from reality

in imaginative ways.

The OpenGL Series from Addison-Wesley Professional comprises

tutorial and reference books that help programmers gain a practical

understanding of OpenGL standards, along with the insight needed to

unlock OpenGL’s full potential.

Visit informit.com/opengl for a complete list of available products

OpenGL® Series

OpenCL
Programming Guide

Aaftab Munshi
Benedict R. Gaster
Timothy G. Mattson
James Fung
Dan Ginsburg

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distin-
guish their products are claimed as trademarks. Where those designa-
tions appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or
in all capitals.

The authors and publisher have taken care in the preparation of
this book, but make no expressed or implied warranty of any kind
and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in
quantity for bulk purchases or special sales, which may include elec-
tronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For
more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

OpenCL programming guide / Aaftab Munshi ... [et al.].
 p. cm.
 Includes index.
 ISBN-13: 978-0-321-74964-2 (pbk. : alk. paper)
 ISBN-10: 0-321-74964-2 (pbk. : alk. paper)
 1. OpenCL (Computer program language) I. Munshi, Aaftab.
 QA76.73.O213O64 2012
 005.2'75—dc23
 2011016523

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This pub-
lication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For informa-
tion regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-74964-2
ISBN-10: 0-321-74964-2
Text printed in the United States on recycled paper at Edwards Brothers
in Ann Arbor, Michigan.
Second printing, September 2011

Editor-in-Chief
Mark Taub

Acquisitions Editor
Debra Williams Cauley

Development Editor
Michael Thurston

Managing Editor
John Fuller

Project Editor
Anna Popick

Copy Editor
Barbara Wood

Indexer
Jack Lewis

Proofreader
Lori Newhouse

Technical Reviewers
Andrew Brownsword
Yahya H. Mizra
Dave Shreiner

Publishing Coordinator
Kim Boedigheimer

Cover Designer
Alan Clements

Compositor
The CIP Group

 v

Contents

 Figures . xv

 Tables .xxi

 Listings . xxv

 Foreword. .xxix

 Preface .xxxiii

 Acknowledgments . xli

 About the Authors . xliii

Part I The OpenCL 1.1 Language and API 1

1. An Introduction to OpenCL . 3

What Is OpenCL, or . . . Why You Need This Book 3
Our Many-Core Future: Heterogeneous Platforms 4
Software in a Many-Core World . 7
Conceptual Foundations of OpenCL . 11

Platform Model . 12
Execution Model . 13
Memory Model . 21
Programming Models . 24

OpenCL and Graphics . 29
The Contents of OpenCL . 30

Platform API . 31
Runtime API . 31
Kernel Programming Language . 32
OpenCL Summary. 34

The Embedded Profile . 35
Learning OpenCL . 36

vi Contents

2. HelloWorld: An OpenCL Example . 39

Building the Examples. 40
Prerequisites. 40
Mac OS X and Code::Blocks . 41
Microsoft Windows and Visual Studio . 42
Linux and Eclipse . 44

HelloWorld Example . 45
Choosing an OpenCL Platform and Creating a Context 49
Choosing a Device and Creating a Command-Queue 50
Creating and Building a Program Object 52
Creating Kernel and Memory Objects . 54
Executing a Kernel . 55

Checking for Errors in OpenCL . 57

3. Platforms, Contexts, and Devices . 63

OpenCL Platforms . 63
OpenCL Devices . 68
OpenCL Contexts . 83

4. Programming with OpenCL C . 97

Writing a Data-Parallel Kernel Using OpenCL C 97
Scalar Data Types. 99

The half Data Type . 101
Vector Data Types . 102

Vector Literals . 104
Vector Components. 106

Other Data Types . 108
Derived Types . 109
Implicit Type Conversions. 110

Usual Arithmetic Conversions . 114
Explicit Casts . 116
Explicit Conversions . 117
Reinterpreting Data as Another Type . 121
Vector Operators . 123

Arithmetic Operators . 124
Relational and Equality Operators . 127

Contents vii

Bitwise Operators . 127
Logical Operators . 128
Conditional Operator . 129
Shift Operators . 129
Unary Operators . 131
Assignment Operator . 132

Qualifiers . 133
Function Qualifiers . 133
Kernel Attribute Qualifiers . 134
Address Space Qualifiers . 135
Access Qualifiers . 140
Type Qualifiers . 141

Keywords . 141
Preprocessor Directives and Macros . 141

Pragma Directives . 143
Macros . 145

Restrictions . 146

5. OpenCL C Built-In Functions . 149

Work-Item Functions. 150
Math Functions . 153

Floating-Point Pragmas . 162
Floating-Point Constants . 162
Relative Error as ulps . 163

Integer Functions. 168
Common Functions . 172
Geometric Functions . 175
Relational Functions . 175
Vector Data Load and Store Functions . 181
Synchronization Functions . 190
Async Copy and Prefetch Functions . 191
Atomic Functions . 195
Miscellaneous Vector Functions . 199
Image Read and Write Functions . 201

Reading from an Image. 201
Samplers . 206
Determining the Border Color . 209

viii Contents

Writing to an Image . 210
Querying Image Information . 214

6. Programs and Kernels . 217

Program and Kernel Object Overview . 217
Program Objects . 218

Creating and Building Programs . 218
Program Build Options . 222
Creating Programs from Binaries . 227
Managing and Querying Programs . 236

Kernel Objects . 237
Creating Kernel Objects and Setting Kernel Arguments 237
Thread Safety. 241
Managing and Querying Kernels . 242

7. Buffers and Sub-Buffers. 247

Memory Objects, Buffers, and Sub-Buffers Overview. 247
Creating Buffers and Sub-Buffers . 249
Querying Buffers and Sub-Buffers. 257
Reading, Writing, and Copying Buffers and Sub-Buffers 259
Mapping Buffers and Sub-Buffers . 276

8. Images and Samplers . 281

Image and Sampler Object Overview . 281
Creating Image Objects . 283

Image Formats . 287
Querying for Image Support . 291

Creating Sampler Objects . 292
OpenCL C Functions for Working with Images 295
Transferring Image Objects . 299

9. Events . 309

Commands, Queues, and Events Overview 309
Events and Command-Queues . 311
Event Objects . 317

Contents ix

Generating Events on the Host . 321
Events Impacting Execution on the Host . 322
Using Events for Profiling . 327
Events Inside Kernels . 332
Events from Outside OpenCL . 333

10. Interoperability with OpenGL . 335

OpenCL/OpenGL Sharing Overview . 335
Querying for the OpenGL Sharing Extension 336
Initializing an OpenCL Context for OpenGL Interoperability 338
Creating OpenCL Buffers from OpenGL Buffers 339
Creating OpenCL Image Objects from OpenGL Textures 344
Querying Information about OpenGL Objects. 347
Synchronization between OpenGL and OpenCL. 348

11. Interoperability with Direct3D . 353

Direct3D/OpenCL Sharing Overview . 353
Initializing an OpenCL Context for Direct3D Interoperability 354
Creating OpenCL Memory Objects from Direct3D Buffers
 and Textures. 357
Acquiring and Releasing Direct3D Objects in OpenCL 361
Processing a Direct3D Texture in OpenCL . 363
Processing D3D Vertex Data in OpenCL. 366

12. C++ Wrapper API . 369

C++ Wrapper API Overview . 369
C++ Wrapper API Exceptions . 371
Vector Add Example Using the C++ Wrapper API 374

Choosing an OpenCL Platform and Creating a Context 375
Choosing a Device and Creating a Command-Queue 376
Creating and Building a Program Object 377
Creating Kernel and Memory Objects . 377
Executing the Vector Add Kernel . 378

x Contents

13. OpenCL Embedded Profile . 383

OpenCL Profile Overview . 383
64-Bit Integers . 385
Images . 386
Built-In Atomic Functions . 387
Mandated Minimum Single-Precision Floating-Point
 Capabilities. 387
Determining the Profile Supported by a Device in an
 OpenCL C Program . 390

Part II OpenCL 1.1 Case Studies .391

14. Image Histogram . 393

Computing an Image Histogram . 393
Parallelizing the Image Histogram . 395
Additional Optimizations to the Parallel Image Histogram. 400
Computing Histograms with Half-Float or Float Values for
Each Channel . 403

15. Sobel Edge Detection Filter . 407

What Is a Sobel Edge Detection Filter? . 407
Implementing the Sobel Filter as an OpenCL Kernel 407

16. Parallelizing Dijkstra’s Single-Source Shortest-Path
 Graph Algorithm . 411

Graph Data Structures . 412
Kernels . 414
Leveraging Multiple Compute Devices . 417

17. Cloth Simulation in the Bullet Physics SDK 425

An Introduction to Cloth Simulation . 425
Simulating the Soft Body . 429
Executing the Simulation on the CPU . 431
Changes Necessary for Basic GPU Execution 432
Two-Layered Batching . 438

Contents xi

Optimizing for SIMD Computation and Local Memory 441
Adding OpenGL Interoperation . 446

18. Simulating the Ocean with Fast Fourier Transform 449

An Overview of the Ocean Application . 450
Phillips Spectrum Generation. 453
An OpenCL Discrete Fourier Transform . 457

Determining 2D Decomposition . 457
Using Local Memory . 459
Determining the Sub-Transform Size . 459
Determining the Work-Group Size . 460
Obtaining the Twiddle Factors . 461
Determining How Much Local Memory Is Needed 462
Avoiding Local Memory Bank Conflicts. 463
Using Images . 463

A Closer Look at the FFT Kernel . 463
A Closer Look at the Transpose Kernel . 467

19. Optical Flow . 469

Optical Flow Problem Overview . 469
Sub-Pixel Accuracy with Hardware Linear Interpolation 480
Application of the Texture Cache . 480
Using Local Memory . 481
Early Exit and Hardware Scheduling . 483
Efficient Visualization with OpenGL Interop. 483
Performance. 484

20. Using OpenCL with PyOpenCL . 487

Introducing PyOpenCL . 487
Running the PyImageFilter2D Example . 488
PyImageFilter2D Code. 488
Context and Command-Queue Creation . 492
Loading to an Image Object . 493
Creating and Building a Program . 494
Setting Kernel Arguments and Executing a Kernel. 495
Reading the Results . 496

xii Contents

21. Matrix Multiplication with OpenCL. 499

The Basic Matrix Multiplication Algorithm 499
A Direct Translation into OpenCL . 501
Increasing the Amount of Work per Kernel 506
Optimizing Memory Movement: Local Memory 509
Performance Results and Optimizing the Original CPU Code 511

22. Sparse Matrix-Vector Multiplication. 515

Sparse Matrix-Vector Multiplication (SpMV) Algorithm 515
Description of This Implementation. 518
Tiled and Packetized Sparse Matrix Representation 519
Header Structure . 522
Tiled and Packetized Sparse Matrix Design Considerations 523
Optional Team Information . 524
Tested Hardware Devices and Results . 524
Additional Areas of Optimization. 538

A. Summary of OpenCL 1.1 . 541

The OpenCL Platform Layer . 541
Contexts . 541
Querying Platform Information and Devices. 542

The OpenCL Runtime . 543
Command-Queues . 543

Buffer Objects . 544
Create Buffer Objects. 544
Read, Write, and Copy Buffer Objects . 544
Map Buffer Objects . 545
Manage Buffer Objects . 545
Query Buffer Objects. 545

Program Objects . 546
Create Program Objects. 546
Build Program Executable . 546
Build Options . 546
Query Program Objects. 547
Unload the OpenCL Compiler . 547

Contents xiii

Kernel and Event Objects . 547
Create Kernel Objects . 547
Kernel Arguments and Object Queries . 548
Execute Kernels . 548
Event Objects. 549
Out-of-Order Execution of Kernels and Memory
 Object Commands. 549
Profiling Operations . 549
Flush and Finish . 550

Supported Data Types . 550
Built-In Scalar Data Types . 550
Built-In Vector Data Types . 551
Other Built-In Data Types . 551
Reserved Data Types . 551

Vector Component Addressing . 552
Vector Components. 552
Vector Addressing Equivalencies. 553
Conversions and Type Casting Examples 554
Operators . 554
Address Space Qualifiers . 554
Function Qualifiers . 554

Preprocessor Directives and Macros . 555
Specify Type Attributes . 555
Math Constants . 556
Work-Item Built-In Functions . 557
Integer Built-In Functions . 557
Common Built-In Functions . 559
Math Built-In Functions . 560
Geometric Built-In Functions . 563
Relational Built-In Functions . 564
Vector Data Load/Store Functions. 567
Atomic Functions . 568
Async Copies and Prefetch Functions. 570
Synchronization, Explicit Memory Fence . 570
Miscellaneous Vector Built-In Functions . 571
Image Read and Write Built-In Functions . 572

xiv Contents

Image Objects . 573
Create Image Objects. 573
Query List of Supported Image Formats 574
Copy between Image, Buffer Objects . 574
Map and Unmap Image Objects . 574
Read, Write, Copy Image Objects . 575
Query Image Objects. 575

Image Formats . 576
Access Qualifiers . 576
Sampler Objects . 576
Sampler Declaration Fields . 577
OpenCL Device Architecture Diagram . 577
OpenCL/OpenGL Sharing APIs. 577

CL Buffer Objects > GL Buffer Objects . 578
CL Image Objects > GL Textures. 578
CL Image Objects > GL Renderbuffers . 578
Query Information . 578
Share Objects . 579
CL Event Objects > GL Sync Objects. 579
CL Context > GL Context, Sharegroup. 579

OpenCL/Direct3D 10 Sharing APIs. 579

 Index . 581

 xv

Figures

Figure 1.1 The rate at which instructions are retired is the
same in these two cases, but the power is much less
with two cores running at half the frequency of a
single core. .5

Figure 1.2 A plot of peak performance versus power at the
thermal design point for three processors produced
on a 65nm process technology. Note: This is not to
say that one processor is better or worse than the
others. The point is that the more specialized the
core, the more power-efficient it is. .6

Figure 1.3 Block diagram of a modern desktop PC with
multiple CPUs (potentially different) and a GPU,
demonstrating that systems today are frequently
heterogeneous .7

Figure 1.4 A simple example of data parallelism where a
single task is applied concurrently to each element
of a vector to produce a new vector .9

Figure 1.5 Task parallelism showing two ways of mapping six
independent tasks onto three PEs. A computation
is not done until every task is complete, so the goal
should be a well-balanced load, that is, to have the
time spent computing by each PE be the same. 10

Figure 1.6 The OpenCL platform model with one host and
one or more OpenCL devices. Each OpenCL device
has one or more compute units, each of which has
one or more processing elements. .12

xvi Figures

Figure 1.7 An example of how the global IDs, local IDs, and
work-group indices are related for a two-dimensional
NDRange. Other parameters of the index space are
defined in the figure. The shaded block has a global
ID of (gx, gy) = (6, 5) and a work-group plus local ID of
(wx, wy) = (1, 1) and (lx, ly) =(2, 1) . 16

Figure 1.8 A summary of the memory model in OpenCL and
how the different memory regions interact with
the platform model .23

Figure 1.9 This block diagram summarizes the components
of OpenCL and the actions that occur on the host
during an OpenCL application. .35

Figure 2.1 CodeBlocks CL_Book project .42

Figure 2.2 Using cmake-gui to generate Visual Studio projects43

Figure 2.3 Microsoft Visual Studio 2008 Project44

Figure 2.4 Eclipse CL_Book project .45

Figure 3.1 Platform, devices, and contexts .84

Figure 3.2 Convolution of an 8×8 signal with a 3×3 filter,
resulting in a 6×6 signal .90

Figure 4.1 Mapping get_global_id to a work-item 98

Figure 4.2 Converting a float4 to a ushort4 with round-to-
nearest rounding and saturation .120

Figure 4.3 Adding two vectors .125

Figure 4.4 Multiplying a vector and a scalar with widening126

Figure 4.5 Multiplying a vector and a scalar with conversion
and widening .126

Figure 5.1 Example of the work-item functions150

Figure 7.1 (a) 2D array represented as an OpenCL buffer;
(b) 2D slice into the same buffer .269

Figures xvii

Figure 9.1 A failed attempt to use the clEnqueueBarrier()
command to establish a barrier between two
command-queues. This doesn’t work because the
barrier command in OpenCL applies only to the
queue within which it is placed. 316

Figure 9.2 Creating a barrier between queues using
clEnqueueMarker() to post the barrier in one
queue with its exported event to connect to a
clEnqueueWaitForEvent() function in the other
queue. Because clEnqueueWaitForEvents()
does not imply a barrier, it must be preceded by an
explicit clEnqueueBarrier(). 317

Figure 10.1 A program demonstrating OpenCL/OpenGL
interop. The positions of the vertices in the sine
wave and the background texture color values are
computed by kernels in OpenCL and displayed
using Direct3D. .344

Figure 11.1 A program demonstrating OpenCL/D3D interop.
The sine positions of the vertices in the sine wave
and the texture color values are programmatically
set by kernels in OpenCL and displayed using
Direct3D .368

Figure 12.1 C++ Wrapper API class hierarchy 370

Figure 15.1 OpenCL Sobel kernel: input image and output
image after applying the Sobel filter409

Figure 16.1 Summary of data in Table 16.1: NV GTX 295 (1 GPU,
2 GPU) and Intel Core i7 performance 419

Figure 16.2 Using one GPU versus two GPUs: NV GTX 295 (1 GPU,
2 GPU) and Intel Core i7 performance420

Figure 16.3 Summary of data in Table 16.2: NV GTX 295 (1 GPU,
2 GPU) and Intel Core i7 performance—10 edges per
vertex .421

Figure 16.4 Summary of data in Table 16.3: comparison of dual
GPU, dual GPU + multicore CPU, multicore CPU,
and CPU at vertex degree 1 .423

xviii Figures

Figure 17.1 AMD’s Samari demo, courtesy of Jason Yang426

Figure 17.2 Masses and connecting links, similar to a
mass/spring model for soft bodies426

Figure 17.3 Creating a simulation structure from a cloth mesh427

Figure 17.4 Cloth link structure .428

Figure 17.5 Cloth mesh with both structural links that stop
stretching and bend links that resist folding of the
material .428

Figure 17.6 Solving the mesh of a rope. Note how the motion
applied between (a) and (b) propagates during
solver iterations (c) and (d) until, eventually, the
entire rope has been affected. .429

Figure 17.7 The stages of Gauss-Seidel iteration on a set of
soft-body links and vertices. In (a) we see the mesh
at the start of the solver iteration. In (b) we apply
the effects of the first link on its vertices. In (c) we
apply those of another link, noting that we work
from the positions computed in (b).432

Figure 17.8 The same mesh as in Figure 17.7 is shown in (a). In
(b) the update shown in Figure 17.7(c) has occurred
as well as a second update represented by the dark
mass and dotted lines. .433

Figure 17.9 A mesh with structural links taken from the
input triangle mesh and bend links created across
triangle boundaries with one possible coloring into
independent batches .434

Figure 17.10 Dividing the mesh into larger chunks and applying
a coloring to those. Note that fewer colors are
needed than in the direct link coloring approach.
This pattern can repeat infinitely with the same
four colors. .439

Figure 18.1 A single frame from the Ocean demonstration450

Figures xix

Figure 19.1 A pair of test images of a car trunk being closed.
The first (a) and fifth (b) images of the test
sequence are shown. .470

Figure 19.2 Optical flow vectors recovered from the test images
of a car trunk being closed. The fourth and fifth
images in the sequence were used to generate this
result. 471

Figure 19.3 Pyramidal Lucas-Kanade optical flow algorithm473

Figure 21.1 A matrix multiplication operation to compute
a single element of the product matrix, C. This
corresponds to summing into each element Ci,j
the dot product from the ith row of A with the jth
column of B.. .500

Figure 21.2 Matrix multiplication where each work-item
computes an entire row of the C matrix. This
requires a change from a 2D NDRange of size
1000×1000 to a 1D NDRange of size 1000. We set
the work-group size to 250, resulting in four work-
groups (one for each compute unit in our GPU). 506

Figure 21.3 Matrix multiplication where each work-item
computes an entire row of the C matrix. The same
row of A is used for elements in the row of C so
memory movement overhead can be dramatically
reduced by copying a row of A into private memory.508

Figure 21.4 Matrix multiplication where each work-item
computes an entire row of the C matrix. Memory
traffic to global memory is minimized by copying
a row of A into each work-item’s private memory
and copying rows of B into local memory for each
work-group. . 510

Figure 22.1 Sparse matrix example . 516

Figure 22.2 A tile in a matrix and its relationship with input
and output vectors .520

Figure 22.3 Format of a single-precision 128-byte packet 521

xx Figures

Figure 22.4 Format of a double-precision 192-byte packet 522

Figure 22.5 Format of the header block of a tiled and
packetized sparse matrix .523

Figure 22.6 Single-precision SpMV performance across
22 matrices on seven platforms .528

Figure 22.7 Double-precision SpMV performance across
22 matrices on five platforms .528

 xxi

Tables

Table 2.1 OpenCL Error Codes .58

Table 3.1 OpenCL Platform Queries .65

Table 3.2 OpenCL Devices .68

Table 3.3 OpenCL Device Queries .71

Table 3.4 Properties Supported by clCreateContext 85

Table 3.5 Context Information Queries .87

Table 4.1 Built-In Scalar Data Types .100

Table 4.2 Built-In Vector Data Types .103

Table 4.3 Application Data Types .103

Table 4.4 Accessing Vector Components .106

Table 4.5 Numeric Indices for Built-In Vector Data Types 107

Table 4.6 Other Built-In Data Types .108

Table 4.7 Rounding Modes for Conversions 119

Table 4.8 Operators That Can Be Used with Vector Data Types123

Table 4.9 Optional Extension Behavior Description 144

Table 5.1 Built-In Work-Item Functions . 151

Table 5.2 Built-In Math Functions .154

Table 5.3 Built-In half_ and native_ Math Functions 160

xxii Tables

Table 5.4 Single- and Double-Precision Floating-Point Constants . . 162

Table 5.5 ulp Values for Basic Operations and Built-In Math
Functions .164

Table 5.6 Built-In Integer Functions . 169

Table 5.7 Built-In Common Functions . 173

Table 5.8 Built-In Geometric Functions . 176

Table 5.9 Built-In Relational Functions . 178

Table 5.10 Additional Built-In Relational Functions 180

Table 5.11 Built-In Vector Data Load and Store Functions 181

Table 5.12 Built-In Synchronization Functions 190

Table 5.13 Built-In Async Copy and Prefetch Functions192

Table 5.14 Built-In Atomic Functions . 195

Table 5.15 Built-In Miscellaneous Vector Functions.200

Table 5.16 Built-In Image 2D Read Functions202

Table 5.17 Built-In Image 3D Read Functions204

Table 5.18 Image Channel Order and Values for Missing
Components. .206

Table 5.19 Sampler Addressing Mode .207

Table 5.20 Image Channel Order and Corresponding Bolor
Color Value .209

Table 5.21 Built-In Image 2D Write Functions 211

Table 5.22 Built-In Image 3D Write Functions212

Table 5.23 Built-In Image Query Functions . 214

Tables xxiii

Table 6.1 Preprocessor Build Options .223

Table 6.2 Floating-Point Options (Math Intrinsics)224

Table 6.3 Optimization Options .225

Table 6.4 Miscellaneous Options .226

Table 7.1 Supported Values for cl_mem_flags 249

Table 7.2 Supported Names and Values for
clCreateSubBuffer .254

Table 7.3 OpenCL Buffer and Sub-Buffer Queries 257

Table 7.4 Supported Values for cl_map_flags 277

Table 8.1 Image Channel Order .287

Table 8.2 Image Channel Data Type .289

Table 8.3 Mandatory Supported Image Formats290

Table 9.1 Queries on Events Supported in clGetEventInfo() . . . 319

Table 9.2 Profiling Information and Return Types329

Table 10.1 OpenGL Texture Format Mappings to OpenCL
Image Formats .346

Table 10.2 Supported param_name Types and Information
Returned .348

Table 11.1 Direct3D Texture Format Mappings to OpenCL
Image Formats .360

Table 12.1 Preprocessor Error Macros and Their Defaults 372

Table 13.1 Required Image Formats for Embedded Profile387

Table 13.2 Accuracy of Math Functions for Embedded Profile
versus Full Profile .388

Table 13.3 Device Properties: Minimum Maximum Values for
Full Profile versus Embedded Profile389

xxiv Tables

Table 16.1 Comparison of Data at Vertex Degree 5 418

Table 16.2 Comparison of Data at Vertex Degree 10 420

Table 16.3 Comparison of Dual GPU, Dual GPU + Multicore
CPU, Multicore CPU, and CPU at Vertex Degree 10422

Table 18.1 Kernel Elapsed Times for Varying Work-Group Sizes458

Table 18.2 Load and Store Bank Calculations465

Table 19.1 GPU Optical Flow Performance .485

Table 21.1 Matrix Multiplication (Order-1000 Matrices)
Results Reported as MFLOPS and as Speedup
Relative to the Unoptimized Sequential C Program
(i.e., the Speedups Are “Unfair”) . 512

Table 22.1 Hardware Device Information .525

Table 22.2 Sparse Matrix Description .526

Table 22.3 Optimal Performance Histogram for Various
Matrix Sizes .529

 xxv

Listings

Listing 2.1 HelloWorld OpenCL Kernel and Main Function 46

Listing 2.2 Choosing a Platform and Creating a Context49

Listing 2.3 Choosing the First Available Device and Creating a
Command-Queue . 51

Listing 2.4 Loading a Kernel Source File from Disk and
Creating and Building a Program Object 53

Listing 2.5 Creating a Kernel .54

Listing 2.6 Creating Memory Objects .55

Listing 2.7 Setting the Kernel Arguments, Executing the
Kernel, and Reading Back the Results56

Listing 3.1 Enumerating the List of Platforms 66

Listing 3.2 Querying and Displaying Platform-Specific
Information .67

Listing 3.3 Example of Querying and Displaying Platform-
Specific Information .79

Listing 3.4 Using Platform, Devices, and Contexts—Simple
Convolution Kernel .90

Listing 3.5 Example of Using Platform, Devices, and
Contexts—Simple Convolution .91

Listing 6.1 Creating and Building a Program Object 221

Listing 6.2 Caching the Program Binary on First Run229

Listing 6.3 Querying for and Storing the Program Binary230

xxvi Listings

Listing 6.4 Example Program Binary for HelloWorld.cl
(NVIDIA) .233

Listing 6.5 Creating a Program from Binary .235

Listing 7.1 Creating, Writing, and Reading Buffers and Sub-
Buffers Example Kernel Code .262

Listing 7.2 Creating, Writing, and Reading Buffers and Sub-
Buffers Example Host Code .262

Listing 8.1 Creating a 2D Image Object from a File 284

Listing 8.2 Creating a 2D Image Object for Output 285

Listing 8.3 Query for Device Image Support .291

Listing 8.4 Creating a Sampler Object .293

Listing 8.5 Gaussian Filter Kernel .295

Listing 8.6 Queue Gaussian Kernel for Execution297

Listing 8.7 Read Image Back to Host Memory300

Listing 8.8 Mapping Image Results to a Host Memory Pointer307

Listing 12.1 Vector Add Example Program Using the C++
Wrapper API . 379

Listing 13.1 Querying Platform and Device Profiles384

Listing 14.1 Sequential Implementation of RGB Histogram393

Listing 14.2 A Parallel Version of the RGB Histogram—
Compute Partial Histograms .395

Listing 14.3 A Parallel Version of the RGB Histogram—Sum
Partial Histograms .397

Listing 14.4 Host Code of CL API Calls to Enqueue Histogram
Kernels .398

Listing 14.5 A Parallel Version of the RGB Histogram—
Optimized Version .400

Listings xxvii

Listing 14.6 A Parallel Version of the RGB Histogram for Half-
Float and Float Channels .403

Listing 15.1 An OpenCL Sobel Filter .408

Listing 15.2 An OpenCL Sobel Filter Producing a Grayscale
Image . 410

Listing 16.1 Data Structure and Interface for Dijkstra’s
Algorithm . 413

Listing 16.2 Pseudo Code for High-Level Loop That Executes
Dijkstra’s Algorithm . 414

Listing 16.3 Kernel to Initialize Buffers before Each Run of
Dijkstra’s Algorithm . 415

Listing 16.4 Two Kernel Phases That Compute Dijkstra’s
Algorithm . 416

Listing 20.1 ImageFilter2D.py .489

Listing 20.2 Creating a Context. .492

Listing 20.3 Loading an Image .494

Listing 20.4 Creating and Building a Program495

Listing 20.5 Executing the Kernel .496

Listing 20.6 Reading the Image into a Numpy Array496

Listing 21.1 A C Function Implementing Sequential Matrix
Multiplication .500

Listing 21.2 A kernel to compute the matrix product of A and
B summing the result into a third matrix, C. Each
work-item is responsible for a single element of the
C matrix. The matrices are stored in global memory.501

Listing 21.3 The Host Program for the Matrix Multiplication
Program .503

xxviii Listings

Listing 21.4 Each work-item updates a full row of C. The kernel
code is shown as well as changes to the host code
from the base host program in Listing 21.3. The
only change required in the host code was to the
dimensions of the NDRange. .507

Listing 21.5 Each work-item manages the update to a full row
of C, but before doing so the relevant row of the A
matrix is copied into private memory from global
memory. .508

Listing 21.6 Each work-item manages the update to a full row
of C. Private memory is used for the row of A and
local memory (Bwrk) is used by all work-items in a
work-group to hold a column of B. The host code
is the same as before other than the addition of a
new argument for the B-column local memory. 510

Listing 21.7 Different Versions of the Matrix Multiplication
Functions Showing the Permutations of the Loop
Orderings . 513

Listing 22.1 Sparse Matrix-Vector Multiplication OpenCL
Kernels .530

 xxix

Foreword

During the past few years, heterogeneous computers composed of CPUs
and GPUs have revolutionized computing. By matching different parts of
a workload to the most suitable processor, tremendous performance gains
have been achieved.

Much of this revolution has been driven by the emergence of many-core
processors such as GPUs. For example, it is now possible to buy a graphics
card that can execute more than a trillion floating point operations per
second (teraflops). These GPUs were designed to render beautiful images,
but for the right workloads, they can also be used as high-performance
computing engines for applications from scientific computing to aug-
mented reality.

A natural question is why these many-core processors are so fast com-
pared to traditional single core CPUs. The fundamental driving force is
innovative parallel hardware. Parallel computing is more efficient than
sequential computing because chips are fundamentally parallel. Modern
chips contain billions of transistors. Many-core processors organize these
transistors into many parallel processors consisting of hundreds of float-
ing point units. Another important reason for their speed advantage is
new parallel software. Utilizing all these computing resources requires
that we develop parallel programs. The efficiency gains due to software
and hardware allow us to get more FLOPs per Watt or per dollar than a
single-core CPU.

Computing systems are a symbiotic combination of hardware and soft-
ware. Hardware is not useful without a good programming model. The
success of CPUs has been tied to the success of their programming mod-
els, as exemplified by the C language and its successors. C nicely abstracts
a sequential computer. To fully exploit heterogeneous computers, we need
new programming models that nicely abstract a modern parallel computer.
And we can look to techniques established in graphics as a guide to the
new programming models we need for heterogeneous computing.

I have been interested in programming models for graphics for many
years. It started in 1988 when I was a software engineer at PIXAR, where
I developed the RenderMan shading language. A decade later graphics

xxx Foreword

systems became fast enough that we could consider developing shading
languages for GPUs. With Kekoa Proudfoot and Bill Mark, we developed
a real-time shading language, RTSL. RTSL ran on graphics hardware by
compiling shading language programs into pixel shader programs, the
assembly language for graphics hardware of the day. Bill Mark subse-
quently went to work at NVIDIA, where he developed Cg. More recently,
I have been working with Tim Foley at Intel, who has developed a new
shading language called Spark. Spark takes shading languages to the next
level by abstracting complex graphics pipelines with new capabilities such
as tesselation.

While developing these languages, I always knew that GPUs could be used
for much more than graphics. Several other groups had demonstrated that
graphics hardware could be used for applications beyond graphics. This
led to the GPGPU (General-Purpose GPU) movement. The demonstra-
tions were hacked together using the graphics library. For GPUs to be used
more widely, they needed a more general programming environment that
was not tied to graphics. To meet this need, we started the Brook for GPU
Project at Stanford. The basic idea behind Brook was to treat the GPU as
a data-parallel processor. Data-parallel programming has been extremely
successful for parallel computing, and with Brook we were able to show
that data-parallel programming primitives could be implemented on a
GPU. Brook made it possible for a developer to write an application in a
widely used parallel programming model.

Brook was built as a proof of concept. Ian Buck, a graduate student at
Stanford, went on to NVIDIA to develop CUDA. CUDA extended Brook in
important ways. It introduced the concept of cooperating thread arrays, or
thread blocks. A cooperating thread array captured the locality in a GPU
core, where a block of threads executing the same program could also
communicate through local memory and synchronize through barriers.
More importantly, CUDA created an environment for GPU Computing
that has enabled a rich ecosystem of application developers, middleware
providers, and vendors.

OpenCL (Open Computing Language) provides a logical extension of the
core ideas from GPU Computing—the era of ubiquitous heterogeneous
parallel computing. OpenCL has been carefully designed by the Khronos
Group with input from many vendors and software experts. OpenCL
benefits from the experience gained using CUDA in creating a software
standard that can be implemented by many vendors. OpenCL implemen-
tations run now on widely used hardware, including CPUs and GPUs from
NVIDIA, AMD, and Intel, as well as platforms based on DSPs and FPGAs.

Foreword xxxi

By standardizing the programming model, developers can count on more
software tools and hardware platforms.

What is most exciting about OpenCL is that it doesn’t only standardize
what has been done, but represents the efforts of an active community
that is pushing the frontier of parallel computing. For example, OpenCL
provides innovative capabilities for scheduling tasks on the GPU. The
developers of OpenCL have have combined the best features of task-
parallel and data-parallel computing. I expect future versions of OpenCL
to be equally innovative. Like its father, OpenGL, OpenCL will likely grow
over time with new versions with more and more capability.

This book describes the complete OpenCL Programming Model. One of
the coauthors, Aaftab, was the key mind behind the system. He has joined
forces with other key designers of OpenCL to write an accessible authorita-
tive guide. Welcome to the new world of heterogeneous computing.

—Pat Hanrahan
Stanford University

This page intentionally left blank

 xxxiii

Preface

Industry pundits love drama. New products don’t build on the status quo
to make things better. They “revolutionize” or, better yet, define a “new
paradigm.” And, of course, given the way technology evolves, the results
rarely are as dramatic as the pundits make it seem.

Over the past decade, however, something revolutionary has happened.
The drama is real. CPUs with multiple cores have made parallel hardware
ubiquitous. GPUs are no longer just specialized graphics processors; they
are heavyweight compute engines. And their combination, the so-called
heterogeneous platform, truly is redefining the standard building blocks
of computing.

We appear to be midway through a revolution in computing on a par with
that seen with the birth of the PC. Or more precisely, we have the potential
for a revolution because the high levels of parallelism provided by hetero-
geneous hardware are meaningless without parallel software; and the fact
of the matter is that outside of specific niches, parallel software is rare.

To create a parallel software revolution that keeps pace with the ongoing
(parallel) heterogeneous computing revolution, we need a parallel soft-
ware industry. That industry, however, can flourish only if software can
move between platforms, both cross-vendor and cross-generational. The
solution is an industry standard for heterogeneous computing.

OpenCL is that industry standard. Created within the Khronos Group
(known for OpenGL and other standards), OpenCL emerged from a col-
laboration among software vendors, computer system designers (including
designers of mobile platforms), and microprocessor (embedded, accelera-
tor, CPU, and GPU) manufacturers. It is an answer to the question “How
can a person program a heterogeneous platform with the confidence that
software created today will be relevant tomorrow?”

Born in 2008, OpenCL is now available from multiple sources on a wide
range of platforms. It is evolving steadily to remain aligned with the latest
microprocessor developments. In this book we focus on OpenCL 1.1. We
describe the full scope of the standard with copious examples to explain
how OpenCL is used in practice. Join us. Vive la révolution.

xxxiv Preface

Intended Audience
This book is written by programmers for programmers. It is a pragmatic
guide for people interested in writing code. We assume the reader is
comfortable with C and, for parts of the book, C++. Finally, we assume
the reader is familiar with the basic concepts of parallel programming.
We assume our readers have a computer nearby so they can write software
and explore ideas as they read. Hence, this book is overflowing with pro-
grams and fragments of code.

We cover the entire OpenCL 1.1 specification and explain how it can be
used to express a wide range of parallel algorithms. After finishing this
book, you will be able to write complex parallel programs that decom-
pose a workload across multiple devices in a heterogeneous platform. You
will understand the basics of performance optimization in OpenCL and
how to write software that probes the hardware and adapts to maximize
performance.

Organization of the Book
The OpenCL specification is almost 400 pages. It’s a dense and complex
document full of tediously specific details. Explaining this specification is
not easy, but we think that we’ve pulled it off nicely.

The book is divided into two parts. The first describes the OpenCL speci-
fication. It begins with two chapters to introduce the core ideas behind
OpenCL and the basics of writing an OpenCL program. We then launch
into a systematic exploration of the OpenCL 1.1 specification. The tone of
the book changes as we incorporate reference material with explanatory
discourse. The second part of the book provides a sequence of case stud-
ies. These range from simple pedagogical examples that provide insights
into how aspects of OpenCL work to complex applications showing how
OpenCL is used in serious application projects. The following provides
more detail to help you navigate through the book:

Part I: The OpenCL 1.1 Language and API

• Chapter 1, “An Introduction to OpenCL”: This chapter provides a
high-level overview of OpenCL. It begins by carefully explaining why
heterogeneous parallel platforms are destined to dominate comput-
ing into the foreseeable future. Then the core models and concepts
behind OpenCL are described. Along the way, the terminology used
in OpenCL is presented, making this chapter an important one to read

Preface xxxv

even if your goal is to skim through the book and use it as a reference
guide to OpenCL.

• Chapter 2, “HelloWorld: An OpenCL Example”: Real programmers
learn by writing code. Therefore, we complete our introduction to
OpenCL with a chapter that explores a working OpenCL program.
It has become standard to introduce a programming language by
printing “hello world” to the screen. This makes no sense in OpenCL
(which doesn’t include a print statement). In the data-parallel pro-
gramming world, the analog to “hello world” is a program to complete
the element-wise addition of two arrays. That program is the core of
this chapter. By the end of the chapter, you will understand OpenCL
well enough to start writing your own simple programs. And we urge
you to do exactly that. You can’t learn a programming language by
reading a book alone. Write code.

• Chapter 3, “Platforms, Contexts, and Devices”: With this chapter,
we begin our systematic exploration of the OpenCL specification.
Before an OpenCL program can do anything “interesting,” it needs
to discover available resources and then prepare them to do useful
work. In other words, a program must discover the platform, define
the context for the OpenCL program, and decide how to work with
the devices at its disposal. These important topics are explored in this
chapter, where the OpenCL Platform API is described in detail.

• Chapter 4, “Programming with OpenCL C”: Code that runs on an
OpenCL device is in most cases written using the OpenCL C program-
ming language. Based on a subset of C99, the OpenCL C program-
ming language provides what a kernel needs to effectively exploit
an OpenCL device, including a rich set of vector instructions. This
chapter explains this programming language in detail.

• Chapter 5, “OpenCL C Built-In Functions”: The OpenCL C program-
ming language API defines a large and complex set of built-in func-
tions. These are described in this chapter.

• Chapter 6, “Programs and Kernels”: Once we have covered the lan-
guages used to write kernels, we move on to the runtime API defined
by OpenCL. We start with the process of creating programs and
kernels. Remember, the word program is overloaded by OpenCL. In
OpenCL, the word program refers specifically to the “dynamic library”
from which the functions are pulled for the kernels.

• Chapter 7, “Buffers and Sub-Buffers”: In the next chapter we move
to the buffer memory objects, one-dimensional arrays, including
a careful discussion of sub-buffers. The latter is a new feature in

xxxvi Preface

OpenCL 1.1, so programmers experienced with OpenCL 1.0 will find
this chapter particularly useful.

• Chapter 8, “Images and Samplers”: Next we move to the very
important topic of our other memory object, images. Given the close
relationship between graphics and OpenCL, these memory objects are
important for a large fraction of OpenCL programmers.

• Chapter 9, “Events”: This chapter presents a detailed discussion of
the event model in OpenCL. These objects are used to enforce order-
ing constraints in OpenCL. At a basic level, events let you write con-
current code that generates correct answers regardless of how work is
scheduled by the runtime. At a more algorithmically profound level,
however, events support the construction of programs as directed acy-
clic graphs spanning multiple devices.

• Chapter 10, “Interoperability with OpenGL”: Many applications
may seek to use graphics APIs to display the results of OpenCL pro-
cessing, or even use OpenCL to postprocess scenes generated by graph-
ics. The OpenCL specification allows interoperation with the OpenGL
graphics API. This chapter will discuss how to set up OpenGL/OpenCL
sharing and how data can be shared and synchronized.

• Chapter 11, “Interoperability with Direct3D”: The Microsoft fam-
ily of platforms is a common target for OpenCL applications. When
applications include graphics, they may need to connect to Microsoft’s
native graphics API. In OpenCL 1.1, we define how to connect an
OpenCL application to the DirectX 10 API. This chapter will demon-
strate how to set up OpenCL/Direct3D sharing and how data can be
shared and synchronized.

• Chapter 12, “C++ Wrapper API”: We then discuss the OpenCL C++
API Wrapper. This greatly simplifies the host programs written in
C++, addressing automatic reference counting and a unified interface
for querying OpenCL object information. Once the C++ interface is
mastered, it’s hard to go back to the regular C interface.

• Chapter 13, “OpenCL Embedded Profile”: OpenCL was created
for an unusually wide range of devices, with a reach extending from
cell phones to the nodes in a massively parallel supercomputer. Most
of the OpenCL specification applies without modification to each
of these devices. There are a small number of changes to OpenCL,
however, needed to fit the reduced capabilities of low-power proces-
sors used in embedded devices. This chapter describes these changes,
referred to in the OpenCL specification as the OpenCL embedded
profile.

Preface xxxvii

Part II: OpenCL 1.1 Case Studies

• Chapter 14, “Image Histogram”: A histogram reports the frequency
of occurrence of values within a data set. For example, in this chapter,
we compute the histogram for R, G, and B channel values of a color
image. To generate a histogram in parallel, you compute values over
local regions of a data set and then sum these local values to generate
the final result. The goal of this chapter is twofold: (1) we demonstrate
how to manipulate images in OpenCL, and (2) we explore techniques
to efficiently carry out a histogram’s global summation within an
OpenCL program.

• Chapter 15, “Sobel Edge Detection Filter”: The Sobel edge filter is a
directional edge detector filter that computes image gradients along
the x- and y-axes. In this chapter, we use a kernel to apply the Sobel
edge filter as a simple example of how kernels work with images in
OpenCL.

• Chapter 16, “Parallelizing Dijkstra’s Single-Source Shortest-Path
Graph Algorithm”: In this chapter, we present an implementation of
Dijkstra’s Single-Source Shortest-Path graph algorithm implemented
in OpenCL capable of utilizing both CPU and multiple GPU devices.
Graph data structures find their way into many problems, from artifi-
cial intelligence to neuroimaging. This particular implementation was
developed as part of FreeSurfer, a neuroimaging application, in order
to improve the performance of an algorithm that measures the curva-
ture of a triangle mesh structural reconstruction of the cortical surface
of the brain. This example is illustrative of how to work with multiple
OpenCL devices and split workloads across CPUs, multiple GPUs, or
all devices at once.

• Chapter 17, “Cloth Simulation in the Bullet Physics SDK”: Phys-
ics simulation is a growing addition to modern video games, and in
this chapter we present an approach to simulating cloth, such as a
warrior’s clothing, using OpenCL that is part of the Bullet Physics
SDK. There are many ways of simulating soft bodies; the simulation
method used in Bullet is similar to a mass/spring model and is opti-
mized for execution on modern GPUs while integrating smoothly
with other Bullet SDK components that are not written in OpenCL.
We show an important technique, called batching, that transforms
the particle meshes for performant execution on wide SIMD archi-
tectures, such as the GPU, while preserving dependences within the
mass/spring model.

xxxviii Preface

• Chapter 18, “Simulating the Ocean with Fast Fourier Transform”:
In this chapter we present the details of AMD’s Ocean simulation.
Ocean is an OpenCL demonstration that uses an inverse discrete
Fourier transform to simulate, in real time, the sea. The fast Fou-
rier transform is applied to random noise, generated over time as a
frequency-dependent phase shift. We describe an implementation
based on the approach originally developed by Jerry Tessendorf that
has appeared in a number of feature films, including Waterworld,
Titanic, and Fifth Element. We show the development of an optimized
2D DFFT, including a number of important optimizations useful when
programming with OpenCL, and the integration of this algorithm
into the application itself and using interoperability between OpenCL
and OpenGL.

• Chapter 19, “Optical Flow”: In this chapter, we present an imple-
mentation of optical flow in OpenCL, which is a fundamental concept
in computer vision that describes motion in images. Optical flow has
uses in image stabilization, temporal upsampling, and as an input to
higher-level algorithms such as object tracking and gesture recogni-
tion. This chapter presents the pyramidal Lucas-Kanade optical flow
algorithm in OpenCL. The implementation demonstrates how image
objects can be used to access texture features of GPU hardware. We
will show how the texture-filtering hardware on the GPU can be used
to perform linear interpolation of data, achieve the required sub-pixel
accuracy, and thereby provide significant speedups. Additionally,
we will discuss how shared memory can be used to cache data that
is repeatedly accessed and how early kernel exit techniques provide
additional efficiency.

• Chapter 20, “Using OpenCL with PyOpenCL”: The purpose of this
chapter is to introduce you to the basics of working with OpenCL in
Python. The majority of the book focuses on using OpenCL from
C/C++, but bindings are available for other languages including
Python. In this chapter, PyOpenCL is introduced by walking through
the steps required to port the Gaussian image-filtering example from
Chapter 8 to Python. In addition to covering the changes required to
port from C++ to Python, the chapter discusses some of the advan-
tages of using OpenCL in a dynamically typed language such as
Python.

• Chapter 21, “Matrix Multiplication with OpenCL”: In this chapter,
we discuss a program that multiplies two square matrices. The pro-
gram is very simple, so it is easy to follow the changes made to the
program as we optimize its performance. These optimizations focus

Preface xxxix

on the OpenCL memory model and how we can work with the model
to minimize the cost of data movement in an OpenCL program.

• Chapter 22, “Sparse Matrix-Vector Multiplication”: In this chapter,
we describe an optimized implementation of the Sparse Matrix-Vector
Multiplication algorithm using OpenCL. Sparse matrices are defined
as large, two-dimensional matrices in which the vast majority of the
elements of the matrix are equal to zero. They are used to characterize
and solve problems in a wide variety of domains such as computa-
tional fluid dynamics, computer graphics/vision, robotics/kinematics,
financial modeling, acoustics, and quantum chemistry. The imple-
mentation demonstrates OpenCL’s ability to bridge the gap between
hardware-specific code (fast, but not portable) and single-source
code (very portable, but slow), yielding a high-performance, efficient
implementation on a variety of hardware that is almost as fast as a
hardware-specific implementation. These results are accomplished
with kernels written in OpenCL C that can be compiled and run on
any conforming OpenCL platform.

Appendix

• Appendix A, “Summary of OpenCL 1.1”: The OpenCL specification
defines an overwhelming collection of functions, named constants,
and types. Even expert OpenCL programmers need to look up these
details when writing code. To aid in this process, we’ve included an
appendix where we pull together all these details in one place.

Example Code
This book is filled with example programs. You can download many of
the examples from the book’s Web site at www.openclprogrammingguide.
com.

Errata
If you find something in the book that you believe is in error, please send
us a note at errors@opencl-book.com. The list of errata for the book can
be found on the book’s Web site at www.openclprogrammingguide.com.

www.openclprogrammingguide.com
www.openclprogrammingguide.com
www.openclprogrammingguide.com

This page intentionally left blank

 xli

Acknowledgments

From Aaftab Munshi
It has been a great privilege working with Ben, Dan, Tim, and James on
this book. I want to thank our reviewers, Andrew Brownsword, Yahya
H. Mizra, Dave Shreiner, and Michael Thurston, who took the time to
review this book and provided valuable feedback that has improved the
book tremendously. I want to thank our editor at Pearson, Debra Williams
Cauley, for all her help in making this book happen.

I also want to thank my daughters, Hannah and Ellie, and the love of my
life, Karen, without whom this book would not be possible.

From Benedict R. Gaster
I would like to thank AMD for supporting my work on OpenCL. There
are four people in particular who have guided my understanding of the
GPGPU revolution: Mike Houston, Justin Hensley, Lee Howes, and Laurent
Morichetti.

This book would not have been possible without the continued enjoyment
of life in Santa Cruz and going to the beach with Miranda, Maude, Polly,
and Meg. Thanks!

From Timothy G. Mattson
I would like to thank Intel for giving me the freedom to pursue work on
OpenCL. In particular, I want to thank Aaron Lefohn of Intel for bringing
me into this project in the early days as it was just getting started. Most
of all, however, I want to thank the amazing people in the OpenCL
working group. I have learned a huge amount from this dedicated team of
professionals.

xlii Acknowledgments

From James Fung
It’s been a privilege to work alongside my coauthors and contribute to this
book. I would also like to thank NVIDIA for all its support during writing
as well as family and friends for their support and encouragement.

From Dan Ginsburg
I would like to thank Dr. Rudolph Pienaar and Dr. Ellen Grant at
Children’s Hospital Boston for supporting me in writing this book and
for their valuable contributions and insights. It has been an honor and a
great privilege to work on this book with Affie, Ben, Tim, and James, who
represent some of the sharpest minds in the parallel computing business.
I also want to thank our editor, Debra Williams Cauley, for her unending
patience and dedication, which were critical to the success of this project.

 xliii

About the Authors

Aaftab Munshi is the spec editor for the OpenGL ES 1.1, OpenGL ES
2.0, and OpenCL specifications and coauthor of the book OpenGL ES 2.0
Programming Guide (with Dan Ginsburg and Dave Shreiner, published by
Addison-Wesley, 2008). He currently works at Apple.

Benedict R. Gaster is a software architect working on programming
models for next-generation heterogeneous processors, in particular look-
ing at high-level abstractions for parallel programming on the emerging
class of processors that contain both CPUs and accelerators such as GPUs.
Benedict has contributed extensively to the OpenCL’s design and has rep-
resented AMD at the Khronos Group open standard consortium. Benedict
has a Ph.D. in computer science for his work on type systems for exten-
sible records and variants. He has been working at AMD since 2008.

Timothy G. Mattson is an old-fashioned parallel programmer, having
started in the mid-eighties with the Caltech Cosmic Cube and continuing
to the present. Along the way, he has worked with most classes of paral-
lel computers (vector supercomputers, SMP, VLIW, NUMA, MPP, clusters,
and many-core processors). Tim has published extensively, including the
books Patterns for Parallel Programming (with Beverly Sanders and Berna
Massingill, published by Addison-Wesley, 2004) and An Introduction to
Concurrency in Programming Languages (with Matthew J. Sottile and Craig E
Rasmussen, published by CRC Press, 2009). Tim has a Ph.D. in chemistry
for his work on molecular scattering theory. He has been working at Intel
since 1993.

James Fung has been developing computer vision on the GPU as it
progressed from graphics to general-purpose computation. James has
a Ph.D. in electrical and computer engineering from the University of
Toronto and numerous IEEE and ACM publications in the areas of parallel
GPU Computer Vision and Mediated Reality. He is currently a Developer
Technology Engineer at NVIDIA, where he examines computer vision and
image processing on graphics hardware.

Dan Ginsburg currently works at Children’s Hospital Boston as a
Principal Software Architect in the Fetal-Neonatal Neuroimaging and
Development Science Center, where he uses OpenCL for accelerating

xliv About the Authors

neuroimaging algorithms. Previously, he worked for Still River Systems
developing GPU-accelerated image registration software for the Monarch
250 proton beam radiotherapy system. Dan was also Senior Member of
Technical Staff at AMD, where he worked for over eight years in a vari-
ety of roles, including developing OpenGL drivers, creating desktop and
hand-held 3D demos, and leading the development of handheld GPU
developer tools. Dan holds a B.S. in computer science from Worcester
Polytechnic Institute and an M.B.A. from Bentley University.

 97

Chapter 4

Programming with OpenCL C

The OpenCL C programming language is used to create programs that
describe data-parallel kernels and tasks that can be executed on one or
more heterogeneous devices such as CPUs, GPUs, and other processors
referred to as accelerators such as DSPs and the Cell Broadband Engine
(B.E.) processor. An OpenCL program is similar to a dynamic library, and
an OpenCL kernel is similar to an exported function from the dynamic
library. Applications directly call the functions exported by a dynamic
library from their code. Applications, however, cannot call an OpenCL
kernel directly but instead queue the execution of the kernel to a com-
mand-queue created for a device. The kernel is executed asynchronously
with the application code running on the host CPU.

OpenCL C is based on the ISO/IEC 9899:1999 C language specification
(referred to in short as C99) with some restrictions and specific extensions
to the language for parallelism. In this chapter, we describe how to write
data-parallel kernels using OpenCL C and cover the features supported by
OpenCL C.

Writing a Data-Parallel Kernel Using OpenCL C
As described in Chapter 1, data parallelism in OpenCL is expressed as
an N-dimensional computation domain, where N = 1, 2, or 3. The N-D
domain defines the total number of work-items that can execute in paral-
lel. Let’s look at how a data-parallel kernel would be written in OpenCL C
by taking a simple example of summing two arrays of floats. A sequential
version of this code would perform the sum by summing individual ele-
ments of both arrays inside a for loop:

void
scalar_add (int n, const float *a, const float *b, float *result)
{
 int i;

98 Chapter 4: Programming with OpenCL C

 for (i=0; i<n; i++)
 result[i] = a[i] + b[i];
}

A data-parallel version of the code in OpenCL C would look like this:

kernel void
scalar_add (global const float *a,

global const float *b,
global float *result)

{
 int id = get_global_id(0);
 result[id] = a[id] + b[id];
}

The scalar_add function declaration uses the kernel qualifier to indi-
cate that this is an OpenCL C kernel. Note that the scalar_add kernel
includes only the code to compute the sum of each individual element,
aka the inner loop. The N-D domain will be a one-dimensional domain
set to n. The kernel is executed for each of the n work-items to produce the
sum of arrays a and b. In order for this to work, each executing work-item
needs to know which individual elements from arrays a and b need to
be summed. This must be a unique value for each work-item and should
be derived from the N-D domain specified when queuing the kernel for
execution. The get_global_id(0) returns the one-dimensional global
ID for each work-item. Ignore the global qualifiers specified in the kernel
for now; they will be discussed later in this chapter.

Figure 4.1 shows how get_global_id can be used to identify a unique
work-item from the list of work-items executing a kernel.

7 9 13 1 31 3 0 76 33 5 23 11 51 77 60 8

+

34 2 0 13 18 22 6 22 47 17 56 41 29 11 9 82

=

41 11 13 14 49 25 6 98 80 22 79 52 80 88 69 90

get_global_id(0) = 7

Figure 4.1 Mapping get_global_id to a work-item

Scalar Data Types 99

The OpenCL C language with examples is described in depth in the sec-
tions that follow. The language is derived from C99 with restrictions that
are described at the end of this chapter.

OpenCL C also adds the following features to C99:

• Vector data types. A number of OpenCL devices such as Intel SSE,
AltiVec for POWER and Cell, and ARM NEON support a vector
instruction set. This vector instruction set is accessed in C/C++ code
through built-in functions (some of which may be device-specific) or
device-specific assembly instructions. In OpenCL C, vector data types
can be used in the same way scalar types are used in C. This makes it
much easier for developers to write vector code because similar opera-
tors can be used for both vector and scalar data types. It also makes
it easy to write portable vector code because the OpenCL compiler is
now responsible for mapping the vector operations in OpenCL C to
the appropriate vector ISA for a device. Vectorizing code also helps
improve memory bandwidth because of regular memory accesses and
better coalescing of these memory accesses.

• Address space qualifiers. OpenCL devices such as GPUs implement a
memory hierarchy. The address space qualifiers are used to identify a
specific memory region in the hierarchy.

• Additions to the language for parallelism. These include support for
work-items, work-groups, and synchronization between work-items in
a work-group.

• Images. OpenCL C adds image and sampler data types and built-in
functions to read and write images.

• An extensive set of built-in functions such as math, integer, geo-
metric, and relational functions. These are described in detail in
Chapter 5.

Scalar Data Types
The C99 scalar data types supported by OpenCL C are described in Table
4.1. Unlike C, OpenCL C describes the sizes, that is, the exact number of
bits for the integer and floating-point data types.

100 Chapter 4: Programming with OpenCL C

Table 4.1 Built-In Scalar Data Types

Type Description

bool A conditional data type that is either true or false. The value
true expands to the integer constant 1, and the value false
expands to the integer constant 0.

char A signed two’s complement 8-bit integer.

unsigned char, uchar An unsigned 8-bit integer.

short A signed two’s complement 16-bit integer.

unsigned short, ushort An unsigned 16-bit integer.

int A signed two’s complement 32-bit integer.

unsigned int, uint An unsigned 32-bit integer.

long A signed two’s complement 64-bit integer.

unsigned long, ulong An unsigned 64-bit integer.

float A 32-bit floating-point. The float data type must conform to
the IEEE 754 single-precision storage format.

double A 64-bit floating-point. The double data type must conform
to the IEEE 754 double-precision storage format. This is an
optional format and is available only if the double-precision
extension (cl_khr_fp64) is supported by the device.

half A 16-bit floating-point. The half data type must conform to
the IEEE 754-2008 half-precision storage format.

size_t The unsigned integer type of the result of the sizeof opera-
tor. This is a 32-bit unsigned integer if the address space of the
device is 32 bits and is a 64-bit unsigned integer if the address
space of the device is 64 bits.

ptrdiff_t A signed integer type that is the result of subtracting two
pointers. This is a 32-bit signed integer if the address space of
the device is 32 bits and is a 64-bit signed integer if the
address space of the device is 64 bits.

intptr_t A signed integer type with the property that any valid pointer
to void can be converted to this type, then converted back to
a pointer to void, and the result will compare equal to the
original pointer.

Scalar Data Types 101

The half Data Type

The half data type must be IEEE 754-2008-compliant. half numbers
have 1 sign bit, 5 exponent bits, and 10 mantissa bits. The interpreta-
tion of the sign, exponent, and mantissa is analogous to that of IEEE 754
floating-point numbers. The exponent bias is 15. The half data type must
represent finite and normal numbers, denormalized numbers, infinities,
and NaN. Denormalized numbers for the half data type, which may be
generated when converting a float to a half using the built-in function
vstore_half and converting a half to a float using the built-in func-
tion vload_half, cannot be flushed to zero.

Conversions from float to half correctly round the mantissa to 11 bits
of precision. Conversions from half to float are lossless; all half num-
bers are exactly representable as float values.

The half data type can be used only to declare a pointer to a buffer that
contains half values. A few valid examples are given here:

void
bar(global half *p)
{
 ...
}

void
foo(global half *pg, local half *pl)
{
 global half *ptr;
 int offset;

 ptr = pg + offset;
 bar(ptr);
}

Type Description

uintptr_t An unsigned integer type with the property that any valid
pointer to void can be converted to this type, then converted
back to a pointer to void, and the result will compare equal to
the original pointer.

void The void type constitutes an empty set of values; it is an
incomplete type that cannot be completed.

Table 4.1 Built-In Scalar Data Types (Continued)

102 Chapter 4: Programming with OpenCL C

Following is an example that is not a valid usage of the half type:

half a;
half a[100];

half *p;
a = *p; // not allowed. must use vload_half function

Loads from a pointer to a half and stores to a pointer to a half can be
performed using the vload_half, vload_halfn, vloada_halfn and
vstore_half, vstore_halfn, and vstorea_halfn functions, respec-
tively. The load functions read scalar or vector half values from memory
and convert them to a scalar or vector float value. The store functions
take a scalar or vector float value as input, convert it to a half scalar or
vector value (with appropriate rounding mode), and write the half scalar
or vector value to memory.

Vector Data Types
For the scalar integer and floating-point data types described in Table
4.1, OpenCL C adds support for vector data types. The vector data type is
defined with the type name, that is, char, uchar, short, ushort, int,
uint, float, long, or ulong followed by a literal value n that defines the
number of elements in the vector. Supported values of n are 2, 3, 4, 8, and
16 for all vector data types. Optionally, vector data types are also defined
for double and half. These are available only if the device supports the
double-precision and half-precision extensions. The supported vector data
types are described in Table 4.2.

Variables declared to be a scalar or vector data type are always aligned to
the size of the data type used in bytes. Built-in data types must be aligned
to a power of 2 bytes in size. A built-in data type that is not a power of 2
bytes in size must be aligned to the next-larger power of 2. This rule does
not apply to structs or unions.

For example, a float4 variable will be aligned to a 16-byte boundary and
a char2 variable will be aligned to a 2-byte boundary. For 3-component
vector data types, the size of the data type is 4 × sizeof(component).
This means that a 3-component vector data type will be aligned to a 4 ×
sizeof(component) boundary.

The OpenCL compiler is responsible for aligning data items appropriately
as required by the data type. The only exception is for an argument to a

Vector Data Types 103

kernel function that is declared to be a pointer to a data type. For such
functions, the compiler can assume that the pointee is always appropri-
ately aligned as required by the data type.

For application convenience and to ensure that the data store is appropri-
ately aligned, the data types listed in Table 4.3 are made available to the
application.

Table 4.2 Built-In Vector Data Types

Type Description

charn A vector of n 8-bit signed integer values

ucharn A vector of n 8-bit unsigned integer values

shortn A vector of n 16-bit signed integer values

ushortn A vector of n 16-bit unsigned integer values

intn A vector of n 32-bit signed integer values

uintn A vector of n 32-bit unsigned integer values

longn A vector of n 64-bit signed integer values

ulongn A vector of n 64-bit unsigned integer values

floatn A vector of n 32-bit floating-point values

doublen A vector of n 64-bit floating-point values

halfn A vector of n 16-bit floating-point values

Table 4.3 Application Data Types

Type in OpenCL Language API Type for Application

char cl_char

uchar cl_uchar

short cl_short

ushort cl_ushort

int cl_int

continues

104 Chapter 4: Programming with OpenCL C

Vector Literals

Vector literals can be used to create vectors from a list of scalars, vectors,
or a combination of scalar and vectors. A vector literal can be used either
as a vector initializer or as a primary expression. A vector literal cannot be
used as an l-value.

A vector literal is written as a parenthesized vector type followed by a
parenthesized comma-delimited list of parameters. A vector literal oper-
ates as an overloaded function. The forms of the function that are avail-
able are the set of possible argument lists for which all arguments have

Type in OpenCL Language API Type for Application

uint cl_uint

long cl_long

ulong cl_ulong

float cl_float

double cl_double

half cl_half

charn cl_charn

ucharn cl_ucharn

shortn cl_shortn

ushortn cl_ushortn

intn cl_intn

uintn cl_uintn

longn cl_longn

ulongn cl_ulongn

floatn cl_floatn

doublen cl_doublen

halfn cl_halfn

Table 4.3 Application Data Types (Continued)

Vector Data Types 105

the same element type as the result vector, and the total number of
elements is equal to the number of elements in the result vector. In addi-
tion, a form with a single scalar of the same type as the element type of
the vector is available. For example, the following forms are available for
float4:

(float4)(float, float, float, float)
(float4)(float2, float, float)
(float4)(float, float2, float)
(float4)(float, float, float2)
(float4)(float2, float2)
(float4)(float3, float)
(float4)(float, float3)
(float4)(float)

Operands are evaluated by standard rules for function evaluation, except
that no implicit scalar widening occurs. The operands are assigned to
their respective positions in the result vector as they appear in mem-
ory order. That is, the first element of the first operand is assigned to
result.x, the second element of the first operand (or the first element
of the second operand if the first operand was a scalar) is assigned to
result.y, and so on. If the operand is a scalar, the operand is replicated
across all lanes of the result vector.

The following example shows a vector float4 created from a list of
scalars:

float4 f = (float4)(1.0f, 2.0f, 3.0f, 4.0f);

The following example shows a vector uint4 created from a scalar, which
is replicated across the components of the vector:

uint4 u = (uint4)(1); // u will be (1, 1, 1, 1)

The following examples show more complex combinations of a vector
being created using a scalar and smaller vector types:

float4 f = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));
float4 f = (float4)(1.0f, (float2)(2.0f, 3.0f), 4.0f);

The following examples describe how not to create vector literals. All of
these examples should result in a compilation error.

float4 f = (float4)(1.0f, 2.0f);
float4 f = (float2)(1.0f, 2.0f);
float4 f = (float4)(1.0f, (float2)(2.0f, 3.0f));

106 Chapter 4: Programming with OpenCL C

Vector Components

The components of vector data types with 1 to 4 components (aka ele-
ments) can be addressed as <vector>.xyzw. Table 4.4 lists the compo-
nents that can be accessed for various vector types.

Table 4.4 Accessing Vector Components

Vector Data Types Accessible Components

char2, uchar2, short2, ushort2, int2, uint2, long2,
ulong2, float2

.xy

char3, uchar3, short3, ushort3, int3, uint3, long3,
ulong3, float3

.xyz

char4, uchar4, short4, ushort4, int4, uint4, long4,
ulong4, float4

.xyzw

double2, half2 .xy

double3, half3 .xyz

double4, half4 .xyzw

Accessing components beyond those declared for the vector type is an
error. The following describes legal and illegal examples of accessing vec-
tor components:

float2 pos;
pos.x = 1.0f; // is legal
pos.z = 1.0f; // is illegal

float3 pos;
pos.z = 1.0f; // is legal
pos.w = 1.0f; // is illegal

The component selection syntax allows multiple components to be
selected by appending their names after the period (.). A few examples
that show how to use the component selection syntax are given here:

float4 c;

c.xyzw = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
c.z = 1.0f;
c.xy = (float2)(3.0f, 4.0f);
c.xyz = (float3)(3.0f, 4.0f, 5.0f);

Vector Data Types 107

The component selection syntax also allows components to be permuted
or replicated as shown in the following examples:

float4 pos = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
float4 swiz = pos.wzyx; // swiz = (4.0f, 3.0f, 2.0f, 1.0f)
float4 dup = pox.xxyy; // dup = (1.0f, 1.0f, 2.0f, 2.0f)

Vector components can also be accessed using a numeric index to refer to
the appropriate elements in the vector. The numeric indices that can be
used are listed in Table 4.5.

Table 4.5 Numeric Indices for Built-In Vector Data Types

Vector Components Usable Numeric Indices

2-component 0, 1

3-component 0, 1, 2

4-component 0, 1, 2, 3

8-component 0, 1, 2, 3, 4, 5, 6, 7

16-component 0, 1, 2, 3, 4, 5, 6 , 7, 8, 9,

a, A , b, B, c, C, d, D, e, E, f, F

All numeric indices must be preceded by the letter s or S. In the follow-
ing example f.s0 refers to the first element of the float8 variable f and
f.s7 refers to the eighth element of the float8 variable f:

float8 f

In the following example x.sa (or x.sA) refers to the eleventh element of
the float16 variable x and x.sf (or x.sF) refers to the sixteenth element
of the float16 variable x:

float16 x

The numeric indices cannot be intermixed with the .xyzw notation. For
example:

float4 f;
float4 v_A = f.xs123; // is illegal
float4 v_B = f.s012w; // is illegal

Vector data types can use the .lo (or .odd) and .hi (or .even) suffixes
to get smaller vector types or to combine smaller vector types into a larger

108 Chapter 4: Programming with OpenCL C

vector type. Multiple levels of .lo (or .odd) and .hi (or .even) suffixes
can be used until they refer to a scalar type.

The .lo suffix refers to the lower half of a given vector. The .hi suffix
refers to the upper half of a given vector. The .odd suffix refers to the odd
elements of a given vector. The .even suffix refers to the even elements of
a given vector. Some examples to illustrate this concept are given here:

float4 vf;

float2 low = vf.lo; // returns vf.xy
float2 high = vf.hi; // returns vf.zw
float x = low.low; // returns low.x
float y = low.hi; // returns low.y

float2 odd = vf.odd; // returns vf.yw
float2 even = vf.even; // returns vf.xz

For a 3-component vector, the suffixes .lo (or .odd) and .hi (or .even)
operate as if the 3-component vector were a 4-component vector with the
value in the w component undefined.

Other Data Types
The other data types supported by OpenCL C are described in Table 4.6.

Table 4.6 Other Built-In Data Types

Type Description

image2d_t A 2D image type.

image3d_t A 3D image type.

sampler_t An image sampler type.

event_t An event type. These are used by built-in functions
that perform async copies from global to local memory
and vice versa. Each async copy operation returns an
event and takes an event to wait for that identifies a
previous async copy operation.

Derived Types 109

There are a few restrictions on the use of image and sampler types:

• The image and samplers types are defined only if the device supports
images.

• Image and sampler types cannot be declared as arrays. Here are a
couple of examples that show these illegal use cases:

kernel void
foo(image2d_t imgA[10]) // error. images cannot be declared
 // as arrays
{
 image2d_t imgB[4]; // error. images cannot be declared
 // as arrays
 ...
}

kernel void
foo(sampler_t smpA[10]) // error. samplers cannot be declared
 // as arrays
{
 sampler_t smpB[4]; // error. samplers cannot be declared
 // as arrays
 ...
}

• The image2d_t, image3d_t, and sampler_t data types cannot be
declared in a struct.

• Variables cannot be declared to be pointers of image2d_t,
image3d_t, and sampler_t data types.

Derived Types
The C99 derived types (arrays, structs, unions, and pointers) constructed
from the built-in data types described in Tables 4.1 and 4.2 are supported.
There are a few restrictions on the use of derived types:

• The struct type cannot contain any pointers if the struct or pointer to
a struct is used as an argument type to a kernel function. For example,
the following use case is invalid:

typedef struct {
 int x;
 global float *f;
} mystruct_t;

110 Chapter 4: Programming with OpenCL C

kernel void
foo(global mystruct_t *p) // error. mystruct_t contains
 // a pointer
{
 ...
}

• The struct type can contain pointers only if the struct or pointer
to a struct is used as an argument type to a non-kernel function or
declared as a variable inside a kernel or non-kernel function. For
example, the following use case is valid:

void
my_func(mystruct_t *p)
{
 ...
}

kernel void
foo(global int *p1, global float *p2)
{
 mystruct_t s;

 s.x = p1[get_global_id(0)];
 s.f = p2;
 my_func(&s);
}

Implicit Type Conversions
Implicit type conversion is an automatic type conversion done by the
compiler whenever data from different types is intermixed. Implicit
conversions of scalar built-in types defined in Table 4.1 (except void,
double,1 and half2) are supported. When an implicit conversion is done,
it is not just a reinterpretation of the expression’s value but a conversion
of that value to an equivalent value in the new type.

Consider the following example:

float f = 3; // implicit conversion to float value 3.0
int i = 5.23f; // implicit conversion to integer value 5

1 Unless the double-precision extension (cl_khr_fp64) is supported by the
device.

2 Unless the half-precision extension (cl_khr_fp16) is supported by the device.

Implicit Type Conversions 111

In this example, the value 3 is converted to a float value 3.0f and then
assigned to f. The value 5.23f is converted to an int value 5 and then
assigned to i. In the second example, the fractional part of the float
value is dropped because integers cannot support fractional values; this is
an example of an unsafe type conversion.

Warning Note that some type conversions are inherently unsafe, and
if the compiler can detect that an unsafe conversion is being
implicitly requested, it will issue a warning.

Implicit conversions for pointer types follow the rules described in the
C99 specification. Implicit conversions between built-in vector data types
are disallowed. For example:

float4 f;
int4 i;

f = i; // illegal implicit conversion between vector data types

There are graphics shading languages such as OpenGL Shading Language
(GLSL) and the DirectX Shading Language (HLSL) that do allow implicit
conversions between vector types. However, prior art for vector casts in C
doesn’t support conversion casts. The AltiVec Technology Programming Inter-
face Manual (www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.
pdf?fsrch=1), Section 2.4.6, describes the function of casts between vector
types. The casts are conversion-free. Thus, any conforming AltiVec com-
piler has this behavior. Examples include XL C, GCC, MrC, Metrowerks,
and Green Hills. IBM’s Cell SPE C language extension (C/C++ Language
Extensions for Cell Broadband Engine Architecture; see Section 1.4.5) has
the same behavior. GCC and ICC have adopted the conversion-free
cast model for SSE (http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Vector-
Extensions.html#Vector-Extensions). The following code example shows
the behavior of these compilers:

#include <stdio.h>

// Declare some vector types. This should work on most compilers
// that try to be GCC compatible. Alternatives are provided
// for those that don't conform to GCC behavior in vector
// type declaration.
// Here a vFloat is a vector of four floats, and
// a vInt is a vector of four 32-bit ints.
#if 1
 // This should work on most compilers that try
 // to be GCC compatible
 // cc main.c -Wall -pedantic
 typedef float vFloat __attribute__ ((__vector_size__(16)));

www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf?fsrch=1
www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf?fsrch=1
http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Vector-Extensions.html#Vector-Extensions
http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Vector-Extensions.html#Vector-Extensions

112 Chapter 4: Programming with OpenCL C

 typedef int vInt __attribute__ ((__vector_size__(16)));
 #define init_vFloat(a, b, c, d) (const vFloat) {a, b, c, d}
#else
 //Not GCC compatible
 #if defined(__SSE2__)
 // depending on compiler you might need to pass
 // something like -msse2 to turn on SSE2
 #include <emmintrin.h>
 typedef __m128 vFloat;
 typedef __m128i vInt;
 static inline vFloat init_vFloat(float a, float b,
 float c, float d);
 static inline vFloat init_vFloat(float a, float b,
 float c, float d)
 { union{ vFloat v; float f[4];}u;
 u.f[0] = a; u.f[1] = b;
 u.f[2] = c; u.f[3] = d;
 return u.v;
 }
 #elif defined(__VEC__)
 // depending on compiler you might need to pass
 // something like -faltivec or -maltivec or
 // "Enable AltiVec Extensions" to turn this part on
 #include <altivec.h>
 typedef vector float vFloat;
 typedef vector int vInt;

 #if 1
 // for compliant compilers
 #define init_vFloat(a, b, c, d) \
 (const vFloat) (a, b, c, d)
 #else
 // for FSF GCC
 #define init_vFloat(a, b, c, d) \
 (const vFloat) {a, b, c, d}
 #endif
 #endif
#endif

void
print_vInt(vInt v)
{
 union{ vInt v; int i[4]; }u;
 u.v = v;

 printf("vInt: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\n",
 u.i[0], u.i[1], u.i[2], u.i[3]);
}

Implicit Type Conversions 113

void
print_vFloat(vFloat v)
{
 union{ vFloat v; float i[4]; }u;
 u.v = v;

 printf("vFloat: %f %f %f %f\n", u.i[0], u.i[1], u.i[2], u.i[3]);
}

int
main(void)
{
 vFloat f = init_vFloat(1.0f, 2.0f, 3.0f, 4.0f);
 vInt i;

 print_vFloat(f);

 printf("assign with cast: vInt i = (vInt) f;\n");
 i = (vInt) f;

 print_vInt(i);

 return 0;
}

The output of this code example demonstrates that conversions between
vector data types implemented by some C compilers3 such as GCC are
cast-free.

vFloat: 1.000000 2.000000 3.000000 4.000000
assign with cast: vInt i = (vInt) f;
vInt: 0x3f800000 0x40000000 0x40400000 0x40800000

So we have prior art in C where casts between vector data types do not
perform conversions as opposed to graphics shading languages that do
perform conversions. The OpenCL working group decided it was best to
make implicit conversions between vector data types illegal. It turns out
that this was the right thing to do for other reasons, as discussed in the
section “Explicit Conversions” later in this chapter.

3 Some fiddling with compiler flags to get the vector extensions turned on may
be required, for example, -msse2 or -faltivec. You might need to play with
the #ifs. The problem is that there is no portable way to declare a vector type.
Getting rid of the sort of portability headaches at the top of the code example
is one of the major value-adds of OpenCL.

114 Chapter 4: Programming with OpenCL C

Usual Arithmetic Conversions

Many operators that expect operands of arithmetic types (integer or
floating-point types) cause conversions and yield result types in a similar
way. The purpose is to determine a common real type for the operands
and result. For the specified operands, each operand is converted, without
change of type domain, to a type whose corresponding real type is the
common real type. For this purpose, all vector types are considered to
have a higher conversion rank than scalars. Unless explicitly stated oth-
erwise, the common real type is also the corresponding real type of the
result, whose type domain is the type domain of the operands if they are
the same, and complex otherwise. This pattern is called the usual arith-
metic conversions.

If the operands are of more than one vector type, then a compile-time
error will occur. Implicit conversions between vector types are not
permitted.

Otherwise, if there is only a single vector type, and all other operands are
scalar types, the scalar types are converted to the type of the vector ele-
ment, and then widened into a new vector containing the same number of
elements as the vector, by duplication of the scalar value across the width
of the new vector. A compile-time error will occur if any scalar operand
has greater rank than the type of the vector element. For this purpose, the
rank order is defined as follows:

1. The rank of a floating-point type is greater than the rank of another
floating-point type if the floating-point type can exactly represent all
numeric values in the second floating-point type. (For this purpose,
the encoding of the floating-point value is used, rather than the sub-
set of the encoding usable by the device.)

2. The rank of any floating-point type is greater than the rank of any
integer type.

3. The rank of an integer type is greater than the rank of an integer type
with less precision.

4. The rank of an unsigned integer type is greater than the rank of a
signed integer type with the same precision.

5. bool has a rank less than any other type.

6. The rank of an enumerated type is equal to the rank of the compatible
integer type.

Implicit Type Conversions 115

7. For all types T1, T2, and T3, if T1 has greater rank than T2, and T2 has
greater rank than T3, then T1 has greater rank than T3.

Otherwise, if all operands are scalar, the usual arithmetic conversions
apply as defined by Section 6.3.1.8 of the C99 specification.

Following are a few examples of legal usual arithmetic conversions with
vectors and vector and scalar operands:

short a;
int4 b;
int4 c = b + a;

In this example, the variable a, which is of type short, is converted to an
int4 and the vector addition is then performed.

int a;
float4 b;
float4 c = b + a;

In the preceding example, the variable a, which is of type int, is con-
verted to a float4 and the vector addition is then performed.

float4 a;
float4 b;
float4 c = b + a;

In this example, no conversions need to be performed because a, b, and c
are all the same type.

Here are a few examples of illegal usual arithmetic conversions with vec-
tors and vector and scalar operands:

int a;
short4 b;
short4 c = b + a; // cannot convert & widen int to short4

double a;
float4 b;
float4 c = b + a; // cannot convert & widen double to float4

int4 a;
float4 b;
float4 c = b + a; // cannot cast between different vector types

116 Chapter 4: Programming with OpenCL C

Explicit Casts
Standard type casts for the built-in scalar data types defined in Table 4.1
will perform appropriate conversion (except void and half4). In the next
example, f stores 0x3F800000 and i stores 0x1, which is the floating-
point value 1.0f in f converted to an integer value:

float f = 1.0f;
int i = (int)f;

Explicit casts between vector types are not legal. The following examples
will generate a compilation error:

int4 i;
uint4 u = (uint4)i; // compile error

float4 f;
int4 i = (int4)f; // compile error

float4 f;
int8 i = (int8)f; // compile error

Scalar to vector conversions are performed by casting the scalar to the
desired vector data type. Type casting will also perform the appropriate
arithmetic conversion. Conversions to built-in integer vector types are
performed with the round-toward-zero rounding mode. Conversions to
built-in floating-point vector types are performed with the round-to-near-
est rounding mode. When casting a bool to a vector integer data type,
the vector components will be set to -1 (that is, all bits are set) if the bool
value is true and 0 otherwise.

Here are some examples of explicit casts:

float4 f = 1.0f;
float4 va = (float4)f; // va is a float4 vector
 // with elements (f, f, f, f)

uchar u = 0xFF;
float4 vb = (float4)u; // vb is a float4 vector with elements
 // ((float)u, (float)u,
 // (float)u, (float)u)

float f = 2.0f;
int2 vc = (int2)f; // vc is an int2 vector with elements
 // ((int)f, (int)f)

4 Unless the half-precision extension (cl_khr_fp16) is supported.

Explicit Conversions 117

uchar4 vtrue =(uchar4)true; // vtrue is a uchar4 vector with
 // elements(0xFF, 0xFF, 0xFF, 0xFF)

Explicit Conversions
In the preceding sections we learned that implicit conversions and explicit
casts do not allow conversions between vector types. However, there are
many cases where we need to convert a vector type to another type. In
addition, it may be necessary to specify the rounding mode that should be
used to perform the conversion and whether the results of the conversion
are to be saturated. This is useful for both scalar and vector data types.

Consider the following example:

float x;
int i = (int)x;

In this example the value in x is truncated to an integer value and stored
in i; that is, the cast performs round-toward-zero rounding when convert-
ing the floating-point value to an integer value.

Sometimes we need to round the floating-point value to the nearest inte-
ger. The following example shows how this is typically done:

float x;
int i = (int)(x + 0.5f);

This works correctly for most values of x except when x is 0.5f – 1 ulp5

or if x is a negative number. When x is 0.5f – 1 ulp, (int)(x + 0.5f)
returns 1; that is, it rounds up instead of rounding down. When x is a
negative number, (int)(x + 0.5f) rounds down instead of rounding up.

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <float.h>

int
main(void)
{
 float a = 0.5f;
 float b = a – nextafterf(a, (float)-INFINITY); // a – 1 ulp

5 ulp(x) is the gap between two finite floating-point numbers. A detailed
description of ulp(x) is given in Chapter 5 in the section “Math Functions,”
subsection “Relative Error as ulps.”

118 Chapter 4: Programming with OpenCL C

 printf("a = %8x, b = %8x\n",
 *(unsigned int *)&a, *(unsigned int *)&b);
 printf("(int)(a + 0.5f) = %d \n", (int)(a + 0.5f));
 printf("(int)(b + 0.5f) = %d \n", (int)(b + 0.5f));
}

The printed values are:

a = 3f000000, b = 3effffff // where b = a – 1 ulp.
(int)(a + 0.5f) = 1,
(int)(b + 0.5f) = 1

We could fix these issues by adding appropriate checks to see what value
x is and then perform the correct conversion, but there is hardware to
do these conversions with rounding and saturation on most devices. It is
important from a performance perspective that OpenCL C allows devel-
opers to perform these conversions using the appropriate hardware ISA as
opposed to emulating in software. This is why OpenCL implements built-
in functions that perform conversions from one type to another with
options that select saturation and one of four rounding modes.

Explicit conversions may be performed using either of the following:

destType convert_destType<_sat><_roundingMode> (sourceType)
destType convert_destTypen<_sat><_roundingMode> (sourceTypen)

These provide a full set of type conversions for the following scalar types:
char, uchar, short, ushort, int, uint, long, ulong, float, double,6

half,7 and the built-in vector types derived therefrom. The operand and
result type must have the same number of elements. The operand and
result type may be the same type, in which case the conversion has no
effect on the type or value.

In the following example, convert_int4 converts a uchar4 vector u to
an int4 vector c:

uchar4 u;
int4 c = convert_int4(u);

In the next example, convert_int converts a float scalar f to an int
scalar i:

float f;
int i = convert_int(f);

6 Unless the double-precision extension (cl_khr_fp64) is supported.
7 Unless the half-precision extension (cl_khr_fp16) is supported.

Explicit Conversions 119

The optional rounding mode modifier can be set to one of the values
described in Table 4.7.

The optional saturation modifier (_sat) can be used to specify that the
results of the conversion must be saturated to the result type. When
the conversion operand is either greater than the greatest representable
destination value or less than the least representable destination value,
it is said to be out of range. When converting between integer types, the
resulting value for out-of-range inputs will be equal to the set of least sig-
nificant bits in the source operand element that fits in the corresponding
destination element. When converting from a floating-point type to an
integer type, the behavior is implementation-defined.

Conversions to integer type may opt to convert using the optional satu-
rated mode by appending the _sat modifier to the conversion function
name. When in saturated mode, values that are outside the representable
range clamp to the nearest representable value in the destination format.
(NaN should be converted to 0.)

Conversions to a floating-point type conform to IEEE 754 rounding rules.
The _sat modifier may not be used for conversions to floating-point
formats.

Following are a few examples of using explicit conversion functions.

The next example shows a conversion of a float4 to a ushort4 with
round-to-nearest rounding mode and saturation. Figure 4.2 describes the
values in f and the result of conversion in c.

float4 f = (float4)(-5.0f, 254.5f, 254.6f, 1.2e9f);

ushort4 c = convert_uchar4_sat_rte(f);

Table 4.7 Rounding Modes for Conversions

Rounding Mode Modifier Rounding Mode Description

_rte Round to nearest even.

_rtz Round toward zero.

_rtp Round toward positive infinity.

_rtn Round toward negative infinity.

No modifier specified Use the default rounding mode for this destination
type: _rtz for conversion to integers or _rte for
conversion to floating-point types.

120 Chapter 4: Programming with OpenCL C

The next example describes the behavior of the saturation modifier when
converting a signed value to an unsigned value or performing a down-
conversion with integer types:

short4 s;

// negative values clamped to 0
ushort4 u = convert_ushort4_sat(s);

// values > CHAR_MAX converted to CHAR_MAX
// values < CHAR_MIN converted to CHAR_MIN
char4 c = convert_char4_sat(s);

The following example illustrates conversion from a floating-point to an
integer with saturation and rounding mode modifiers:

float4 f;

// values implementation-defined for f > INT_MAX, f < INT_MAX, or
NaN
int4 i = convert_int4(f);

// values > INT_MAX clamp to INT_MAX,
// values < INT_MIN clamp to INT_MIN
// NaN should produce 0.
// The _rtz rounding mode is used to produce the integer values.
int4 i2 = convert_int4_sat(f);

// similar to convert_int4 except that floating-point values
// are rounded to the nearest integer instead of truncated
int4 i3 = convert_int4_rte(f);

// similar to convert_int4_sat except that floating-point values
// are rounded to the nearest integer instead of truncated
int4 i4 = convert_int4_sat_rte(f);

f −5.0f 254.5f 254.6f

c 0 254 255 255

1.2E9f

Figure 4.2 Converting a float4 to a ushort4 with round-to-nearest
rounding and saturation

Reinterpreting Data as Another Type 121

The final conversion example given here shows conversions from an
integer to a floating-point value with and without the optional rounding
mode modifier:

int4 i;

// convert ints to floats using the round-to-nearest rounding mode
float4 f = convert_float4(i);

// convert ints to floats; integer values that cannot be
// exactly represented as floats should round up to the next
// representable float
float4 f = convert_float4_rtp(i);

Reinterpreting Data as Another Type
Consider the case where you want to mask off the sign bit of a floating-
point type. There are multiple ways to solve this in C—using pointer
aliasing, unions, or memcpy. Of these, only memcpy is strictly correct in
C99. Because OpenCL C does not support memcpy, we need a different
method to perform this masking-off operation. The general capability we
need is the ability to reinterpret bits in a data type as another data type.
In the example where we want to mask off the sign bit of a floating-point
type, we want to reinterpret these bits as an unsigned integer type and
then mask off the sign bit. Other examples include using the result of a
vector relational operator and extracting the exponent or mantissa bits of
a floating-point type.

The as_type and as_typen built-in functions allow you to reinterpret
bits of a data type as another data type of the same size. The as_type
is used for scalar data types (except bool and void) and as_typen for
vector data types. double and half are supported only if the appropriate
extensions are supported by the implementation.

The following example describes how you would mask off the sign bit of a
floating-point type using the as_type built-in function:

float f;
uint u;

u = as_uint(f);
f = as_float(u & ~(1 << 31));

If the operand and result type contain the same number of elements, the
bits in the operand are returned directly without modification as the new

122 Chapter 4: Programming with OpenCL C

type. If the operand and result type contain a different number of ele-
ments, two cases arise:

• The operand is a 4-component vector and the result is a 3-component
vector. In this case, the xyz components of the operand and the result
will have the same bits. The w component of the result is considered to
be undefined.

• For all other cases, the behavior is implementation-defined.

We next describe a few examples that show how to use as_type and
as_typen. The following example shows how to reinterpret an int as a
float:

uint u = 0x3f800000;
float f = as_float(u);

The variable u, which is declared as an unsigned integer, contains the
value 0x3f800000. This represents the single-precision floating-point
value 1.0. The variable f now contains the floating-point value 1.0.

In the next example, we reinterpret a float4 as an int4:

float4 f = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
int4 i = as_int4(f);

The variable i, defined to be of type int4, will have the following val-
ues in its xyzw components: 0x3f800000, 0x40000000, 0x40400000,
0x40800000.

The next example shows how we can perform the ternary selection opera-
tor (?:) for floating-point vector types using as_typen:

// Perform the operation f = f < g ? f : 0 for components of a
// vector
float4 f, g;
int4 is_less = f < g;

// Each component of the is_less vector will be 0 if result of <
// operation is false and will be -1 (i.e., all bits set) if
// the result of < operation is true.

f = as_float4(as_int4(f) & is_less);
// This basically selects f or 0 depending on the values in is_less.

The following example describes cases where the operand and result have
a different number of results, in which case the behavior of as_type and
as_typen is implementation-defined:

Vector Operators 123

int i;
short2 j = as_short2(i); // Legal. Result is implementation-defined

int4 i;
short8 j = as_short8(i); // Legal. Result is implementation-defined

float4 f;
float3 g = as_float3(f); // Legal. g.xyz will have same values as
 // f.xyz. g.w is undefined

This example describes reinterpreting a 4-component vector as a 3-com-
ponent vector:

float4 f;
float3 g = as_float3(f); // Legal. g.xyz will have same values as
 // f.xyz. g.w is undefined

The next example shows invalid ways of using as_type and as_typen,
which should result in compilation errors:

float4 f;
double4 g = as_double4(f); // Error. Result and operand have
 // different sizes.

float3 f;
float4 g = as_float4(f); // Error. Result and operand have
 // different sizes

Vector Operators
Table 4.8 describes the list of operators that can be used with vector data
types or a combination of vector and scalar data types.

Table 4.8 Operators That Can Be Used with Vector Data Types

Operator Category Operator Symbols

Arithmetic operators Add (+)

Subtract (-)

Multiply (*)

Divide (/)

Remainder (%)

continues

124 Chapter 4: Programming with OpenCL C

The behavior of these operators for scalar data types is as described by the
C99 specification. The following sections discuss how each operator works
with operands that are vector data types or vector and scalar data types.

Arithmetic Operators

The arithmetic operators—add (+), subtract (-), multiply (*), and divide
(/)—operate on built-in integer and floating-point scalar and vector data
types. The remainder operator (%) operates on built-in integer scalar and
vector data types only. The following cases arise:

Operator Category Operator Symbols

Relational operators Greater than (>)

Less than (<)

Greater than or equal (>=)

Less than or equal (<=)

Equality operators Equal (==)

Not equal (!=)

Bitwise operators And (&)

Or (|)

Exclusive or (^), not (~)

Logical operators And (&&)

Or (||)

Conditional operator Ternary selection operator (?:)

Shift operators Right shift (>>)

Left shift (<<)

Unary operators Arithmetic (+ or -)

Post- and pre-increment (++)

Post- and pre-decrement (--)

sizeof, not (!)

Comma operator (,)

Address and indirection operators (&, *)

Assignment operators =, *= , /= , += , -= , <<= , >>= , &= , ^= , |=

Table 4.8 Operators That Can Be Used with Vector Data Types (Continued)

Vector Operators 125

• The two operands are scalars. In this case, the operation is applied
according to C99 rules.

• One operand is a scalar and the other is a vector. The scalar operand
may be subject to the usual arithmetic conversion to the element type
used by the vector operand and is then widened to a vector that has
the same number of elements as the vector operand. The operation is
applied component-wise, resulting in the same size vector.

• The two operands are vectors of the same type. In this case, the opera-
tion is applied component-wise, resulting in the same size vector.

For integer types, a divide by zero or a division that results in a value
that is outside the range will not cause an exception but will result in an
unspecified value. Division by zero for floating-point types will result in
±infinity or NaN as prescribed by the IEEE 754 standard.

A few examples will illustrate how the arithmetic operators work when
one operand is a scalar and the other a vector, or when both operands are
vectors.

The first example in Figure 4.3 shows two vectors being added:

int4 v_iA = (int4)(7, -3, -2, 5);
int4 v_iB = (int4)(1, 2, 3, 4);
int4 v_iC = v_iA + v_iB;

7 −3 −2 5

1 2 3 4

8 −1 1 9

+

=

Figure 4.3 Adding two vectors

The result of the addition stored in vector v_iC is (8, -1, 1, 9).

The next example in Figure 4.4 shows a multiplication operation where
operands are a vector and a scalar. In this example, the scalar is just

126 Chapter 4: Programming with OpenCL C

widened to the size of the vector and the components of each vector are
multiplied:

float4 vf = (float4)(3.0f, -1.0f, 1.0f, -2.0f);
float4 result = vf * 2.5f;

*

=

2.5f
Widen

7.5f −2.5f 2.5f −5.0f

2.5f 2.5f 2.5f 2.5f

3.0f −1.0f 1.0f −2.0f

Figure 4.4 Multiplying a vector and a scalar with widening

The result of the multiplication stored in vector result is (7.5f,
-2.5f, 2.5f, -5.0f).

The next example in Figure 4.5 shows how we can multiply a vector and a
scalar where the scalar is implicitly converted and widened:

float4 vf = (float4)(3.0f, -1.0f, 1.0f, -2.0f);
float4 result = vf * 2;

−2.0f−1.0f

*

=

3.0f 1.0f

2.0f 2.0f
Widen Convert

22.0f2.0f 2.0f

−4.0f−2.0f6.0f 2.0f

Figure 4.5 Multiplying a vector and a scalar with conversion and widening

The result of the multiplication stored in the vector result is (6.0f,
-2.0f, 2.0f, -4.0f).

Vector Operators 127

Relational and Equality Operators

The relational operators—greater than (>), less than (<), greater than or
equal (>=), and less than or equal (<=)—and equality operators—equal
(==) and not equal (!=)—operate on built-in integer and floating-point
scalar and vector data types. The result is an integer scalar or vector type.
The following cases arise:

• The two operands are scalars. In this case, the operation is applied
according to C99 rules.

• One operand is a scalar and the other is a vector. The scalar operand
may be subject to the usual arithmetic conversion to the element type
used by the vector operand and is then widened to a vector that has
the same number of elements as the vector operand. The operation is
applied component-wise, resulting in the same size vector.

• The two operands are vectors of the same type. In this case, the opera-
tion is applied component-wise, resulting in the same size vector.

The result is a scalar signed integer of type int if both source operands
are scalar and a vector signed integer type of the same size as the vector
source operand. The result is of type charn if the source operands are
charn or ucharn; shortn if the source operands are shortn, shortn, or
halfn; intn if the source operands are intn, uintn, or floatn; longn if
the source operands are longn, ulongn, or doublen.

For scalar types, these operators return 0 if the specified relation is false
and 1 if the specified relation is true. For vector types, these operators
return 0 if the specified relation is false and -1 (i.e., all bits set) if the
specified relation is true. The relational operators always return 0 if one or
both arguments are not a number (NaN). The equality operator equal (==)
returns 0 if one or both arguments are not a number (NaN), and the equal-
ity operator not equal (!=) returns 1 (for scalar source operands) or -1 (for
vector source operands) if one or both arguments are not a number (NaN).

Bitwise Operators

The bitwise operators—and (&), or (|), exclusive or (^), and not (~)—oper-
ate on built-in integer scalar and vector data types. The result is an integer
scalar or vector type. The following cases arise:

• The two operands are scalars. In this case, the operation is applied
according to C99 rules.

128 Chapter 4: Programming with OpenCL C

• One operand is a scalar and the other is a vector. The scalar operand
may be subject to the usual arithmetic conversion to the element type
used by the vector operand and is then widened to a vector that has
the same number of elements as the vector operand. The operation is
applied component-wise, resulting in the same size vector.

• The two operands are vectors of the same type. In this case, the opera-
tion is applied component-wise, resulting in the same size vector.

Logical Operators

The logical operators—and (&&), or (||)—operate on built-in integer scalar
and vector data types. The result is an integer scalar or vector type. The
following cases arise:

• The two operands are scalars. In this case, the operation is applied
according to C99 rules.

• One operand is a scalar and the other is a vector. The scalar operand
may be subject to the usual arithmetic conversion to the element type
used by the vector operand and is then widened to a vector that has
the same number of elements as the vector operand. The operation is
applied component-wise, resulting in the same size vector.

• The two operands are vectors of the same type. In this case, the opera-
tion is applied component-wise, resulting in the same size vector.

If both source operands are scalar, the logical operator and (&&) will
evaluate the right-hand operand only if the left-hand operand compares
unequal to 0, and the logical operator or (||) will evaluate the right-hand
operand only if the left-hand operand compares equal to 0. If one or both
source operands are vector types, both operands are evaluated.

The result is a scalar signed integer of type int if both source operands
are scalar and a vector signed integer type of the same size as the vector
source operand. The result is of type charn if the source operands are
charn or ucharn; shortn if the source operands are shortn or ushortn;
intn if the source operands are intn or uintn; or longn if the source
operands are longn or ulongn.

For scalar types, these operators return 0 if the specified relation is false
and 1 if the specified relation is true. For vector types, these operators
return 0 if the specified relation is false and -1 (i.e., all bits set) if the
specified relation is true.

The logical exclusive operator (^^) is reserved for future use.

Vector Operators 129

Conditional Operator

The ternary selection operator (?:) operates on three expressions (expr1 ?
expr2 : expr3). This operator evaluates the first expression, expr1,
which can be a scalar or vector type except the built-in floating-point
types. If the result is a scalar value, the second expression, expr2, is evalu-
ated if the result compares unequal to 0; otherwise the third expression,
expr3, is evaluated. If the result is a vector value, then (expr1 ? expr2
: expr3) is applied component-wise and is equivalent to calling the built-
in function select(expr3, expr2, expr1). The second and third
expressions can be any type as long as their types match or if an implicit
conversion can be applied to one of the expressions to make their types
match, or if one is a vector and the other is a scalar, in which case the
usual arithmetic conversion followed by widening is applied to the scalar
to match the vector operand type. This resulting matching type is the
type of the entire expression.

A few examples will show how the ternary selection operator works with
scalar and vector types:

int4 va, vb, vc, vd;
int a, b, c, d;
float4 vf;

vc = d ? va : vb; // vc = va if d is true, = vb if d is false

vc = vd ? va : vb; // vc.x = vd.x ? va.x : vb.x
 // vc.y = vd.y ? va.y : vb.y
 // vc.z = vd.z ? va.z : vb.z
 // vc.w = vd.w ? va.w : vb.w

vc = vd ? a : vb; // a is widened to an int4 first
 // vc.x = vd.x ? a : vb.x
 // vc.y = vd.y ? a : vb.y
 // vc.z = vd.z ? a : vb.z
 // vc.w = vd.w ? a : vb.w

vc = vd ? va : vf; // error – vector types va & vf do not match

Shift Operators

The shift operators—right shift (>>) and left shift (<<)—operate on built-
in integer scalar and vector data types. The result is an integer scalar or
vector type. The rightmost operand must be a scalar if the first operand is
a scalar. For example:

130 Chapter 4: Programming with OpenCL C

uint a, b, c;
uint2 r0, r1;

c = a << b; // legal – both operands are scalars
r1 = a << r0; // illegal – first operand is a scalar and
 // therefore second operand (r0) must also be scalar.
c = b << r0; // illegal – first operand is a scalar and
 // therefore second operand (r0) must also be scalar.

The rightmost operand can be a vector or scalar if the first operand is a
vector. For vector types, the operators are applied component-wise.

If operands are scalar, the result of E1 << E2 is E1 left-shifted by
log2(N) least significant bits in E2. The vacated bits are filled with zeros.
If E2 is negative or has a value that is greater than or equal to the width
of E1, the C99 specification states that the behavior is undefined. Most
implementations typically return 0.

Consider the following example:

char x = 1;
char y = -2;
x = x << y;

When compiled using a C compiler such as GCC on an Intel x86 pro-
cessor, (x << y) will return 0. However, with OpenCL C, (x << y) is
implemented as (x << (y & 0x7)), which returns 0x40.

For vector types, N is the number of bits that can represent the type of ele-
ments in a vector type for E1 used to perform the left shift. For example:

char2 x = (uchar2)(1, 2);
char y = -9;

x = x << y;

Because components of vector x are an unsigned char, the vector shift
operation is performed as ((1 << (y & 0x7)), (2 << (y & 0x7))).

Similarly, if operands are scalar, the result of E1 >> E2 is E1 right-shifted
by log2(N) least significant bits in E2. If E2 is negative or has a value
that is greater than or equal to the width of E1, the C99 specification
states that the behavior is undefined. For vector types, N is the number of
bits that can represent the type of elements in a vector type for E1 used
to perform the right shift. The vacated bits are filled with zeros if E1 is
an unsigned type or is a signed type but is not a negative value. If E1 is a
signed type and a negative value, the vacated bits are filled with ones.

Vector Operators 131

Unary Operators

The arithmetic unary operators (+ and -) operate on built-in scalar and
vector types.

The arithmetic post- and pre- increment (++) and decrement (--) opera-
tors operate on built-in scalar and vector data types except the built-in
scalar and vector floating-point data types. These operators work compo-
nent-wise on their operands and result in the same type they operated on.

The logical unary operator not (!) operates on built-in scalar and vector
data types except the built-in scalar and vector floating-point data types.
These operators work component-wise on their operands. The result is a
scalar signed integer of type int if both source operands are scalar and a
vector signed integer type of the same size as the vector source operand.
The result is of type charn if the source operands are charn or ucharn;
shortn if the source operands are shortn or ushortn ; intn if the
source operands are intn or uintn; or longn if the source operands are
longn or ulongn.

For scalar types, these operators return 0 if the specified relation is false
and 1 if the specified relation is true. For vector types, these operators
return 0 if the specified relation is false and -1 (i.e., all bits set) if the
specified relation is true.

The comma operator (,) operates on expressions by returning the type
and value of the rightmost expression in a comma-separated list of
expressions. All expressions are evaluated, in order, from left to right. For
example:

// comma acts as a separator not an operator.
int a = 1, b = 2, c = 3, x;

// comma acts as an operator
x = a += 2, a + b; // a = 3, x = 5
x = (a, b, c); // x = 3

The sizeof operator yields the size (in bytes) of its operand. The result is
an integer value. The result is 1 if the operand is of type char or uchar;
2 if the operand is of type short, ushort, or half; 4 if the operand is of
type int, uint, or float; and 8 if the operand is of type long, ulong,
or double. The result is number of components in vector * size
of each scalar component if the operand is a vector type except for
3-component vectors, which return 4 * size of each scalar com-
ponent. If the operand is an array type, the result is the total number
of bytes in the array, and if the operand is a structure or union type, the

132 Chapter 4: Programming with OpenCL C

result is the total number of bytes in such an object, including any inter-
nal or trailing padding.

The behavior of applying the sizeof operator to the image2d_t,
image3d_t, sampler_t, and event_t types is implementation-defined.
For some implementations, sizeof(sampler_t) = 4 and on some
implementation this may result in a compile-time error. For portabil-
ity across OpenCL implementations, it is recommended not to use the
sizeof operator for these types.

The unary operator (*) denotes indirection. If the operand points to an
object, the result is an l-value designating the object. If the operand has
type “pointer to type,” the result has type type. If an invalid value has
been assigned to the pointer, the behavior of the indirection operator is
undefined.

The unary operator (&) returns the address of its operand.

Assignment Operator

Assignments of values to variables names are done with the assignment
operator (=), such as

lvalue = expression

The assignment operator stores the value of expression into lvalue.
The following cases arise:

• The two operands are scalars. In this case, the operation is applied
according to C99 rules.

• One operand is a scalar and the other is a vector. The scalar operand is
explicitly converted to the element type used by the vector operand and
is then widened to a vector that has the same number of elements as
the vector operand. The operation is applied component-wise, result-
ing in the same size vector.

• The two operands are vectors of the same type. In this case, the opera-
tion is applied component-wise, resulting in the same size vector.

The following expressions are equivalent:

lvalue op= expression
lvalue = lvalue op expression

The lvalue and expression must satisfy the requirements for both
operator op and assignment (=).

Qualifiers 133

Qualifiers
OpenCL C supports four types of qualifiers: function qualifiers, address
space qualifiers, access qualifiers, and type qualifiers.

Function Qualifiers

OpenCL C adds the kernel (or __kernel) function qualifier. This quali-
fier is used to specify that a function in the program source is a kernel
function. The following example demonstrates the use of the kernel
qualifier:

kernel void
parallel_add(global float *a, global float *b, global float *result)
{
 ...
}

// The following example is an example of an illegal kernel
// declaration and will result in a compile-time error.
// The kernel function has a return type of int instead of void.
kernel int
parallel_add(global float *a, global float *b, global float *result)
{
 ...
}

The following rules apply to kernel functions:

• The return type must be void. If the return type is not void, it will
result in a compilation error.

• The function can be executed on a device by enqueuing a command
to execute the kernel from the host.

• The function behaves as a regular function if it is called from a kernel
function. The only restriction is that a kernel function with variables
declared inside the function with the local qualifier cannot be called
from another kernel function.

The following example shows a kernel function calling another kernel
function that has variables declared with the local qualifier. The behav-
ior is implementation-defined so it is not portable across implementations
and should therefore be avoided.

kernel void
my_func_a(global float *src, global float *dst)

134 Chapter 4: Programming with OpenCL C

{
 local float l_var[32];

 ...
}

kernel void
my_func_b(global float * src, global float *dst)
{
 my_func_a(src, dst); // implementation-defined behavior
}

A better way to implement this example that is also portable is to pass the
local variable as an argument to the kernel:

kernel void
my_func_a(global float *src, global float *dst, local float *l_var)
{

 ...
}

kernel void
my_func_b(global float * src, global float *dst, local float *l_var)
{
 my_func_a(src, dst, l_var);
}

Kernel Attribute Qualifiers

The kernel qualifier can be used with the keyword __attribute__ to
declare the following additional information about the kernel:

• __attribute__((work_group_size_hint(X, Y, Z))) is a hint to
the compiler and is intended to specify the work-group size that will
most likely be used, that is, the value specified in the local_work_
size argument to clEnqueueNDRangeKernel.

• __attribute__((reqd_work_group_size(X, Y, Z))) is
intended to specify the work-group size that will be used, that is, the
value specified in the local_work_size argument to clEnqueueN-
DRangeKernel. This provides an opportunity for the compiler to
perform specific optimizations that depend on knowing what the
work-group size is.

• __attribute__((vec_type_hint(<type>))) is a hint to the
compiler on the computational width of the kernel, that is, the size

Qualifiers 135

of the data type the kernel is operating on. This serves as a hint to an
auto-vectorizing compiler. The default value of <type> is int, indi-
cating that the kernel is scalar in nature and the auto-vectorizer can
therefore vectorize the code across the SIMD lanes of the vector unit
for multiple work-items.

Address Space Qualifiers

Work-items executing a kernel have access to four distinct memory
regions. These memory regions can be specified as a type qualifier. The
type qualifier can be global (or __global), local (or __local), con-
stant (or __constant), or private (or __private).

If the type of an object is qualified by an address space name, the object
is allocated in the specified address space. If the address space name is not
specified, then the object is allocated in the generic address space. The
generic address space name (for arguments to functions in a program, or
local variables in a function) is private.

A few examples that describe how to specify address space names follow:

// declares a pointer p in the private address space that points to
// a float object in address space global
global float *p;

// declares an array of integers in the private address space
int f[4];

// for my_func_a function we have the following arguments:
//
// src - declares a pointer in the private address space that
// points to a float object in address space constant
//
// v - allocate in the private address space
//
int
my_func_a(constant float *src, int4 v)
{
 float temp; // temp is allocated in the private address space.
}

Arguments to a kernel function that are declared to be a pointer of a type
must point to one of the following address spaces only: global, local, or
constant. Not specifying an address space name for such arguments will
result in a compilation error. This limitation does not apply to non-kernel
functions in a program.

136 Chapter 4: Programming with OpenCL C

A few examples of legal and illegal use cases are shown here:

kernel void my_func(int *p) // illegal because generic address space
 // name for p is private.

kernel void
my_func(private int *p) // illegal because memory pointed to by
 // p is allocated in private.

void
my_func(int *p) // generic address space name for p is private.
 // legal as my_func is not a kernel function

void
my_func(private int *p) // legal as my_func is not a kernel function

Global Address Space

This address space name is used to refer to memory objects (buffers and
images) allocated from the global memory region. This memory region
allows read/write access to all work-items in all work-groups executing a
kernel. This address space is identified by the global qualifier.

A buffer object can be declared as a pointer to a scalar, vector, or user-
defined struct. Some examples are:

global float4 *color; // an array of float4 elements

typedef struct {
 float3 a;
 int2 b[2];
} foo_t;
global foo_t *my_info; // an array of foo_t elements

The global address qualifier should not be used for image types.

Pointers to the global address space are allowed as arguments to functions
(including kernel functions) and variables declared inside functions. Vari-
ables declared inside a function cannot be allocated in the global address
space.

A few examples of legal and illegal use cases are shown here:

void
my_func(global float4 *vA, global float4 *vB)
{
 global float4 *p; // legal
 global float4 a; // illegal
}

Qualifiers 137

Constant Address Space

This address space name is used to describe variables allocated in global
memory that are accessed inside a kernel(s) as read-only variables. This
memory region allows read-only access to all work-items in all work-
groups executing a kernel. This address space is identified by the con-
stant qualifier.

Image types cannot be allocated in the constant address space. The fol-
lowing example shows imgA allocated in the constant address space,
which is illegal and will result in a compilation error:

kernel void
my_func(constant image2d_t imgA)
{
 ...
}

Pointers to the constant address space are allowed as arguments to func-
tions (including kernel functions) and variables declared inside functions.

Variables in kernel function scope (i.e., the outermost scope of a kernel
function) can be allocated in the constant address space. Variables in
program scope (i.e., global variables in a program) can be allocated only in
the constant address space. All such variables are required to be initial-
ized, and the values used to initialize these variables must be compile-time
constants. Writing to such a variable will result in a compile-time error.

Also, storage for all string literals declared in a program will be in the
constant address space.

A few examples of legal and illegal use cases follow:

// legal - program scope variables can be allocated only
// in the constant address space
constant float wtsA[] = { 0, 1, 2, . . . }; // program scope

// illegal - program scope variables can be allocated only
// in the constant address space
global float wtsB[] = { 0, 1, 2, . . . };

kernel void
my_func(constant float4 *vA, constant float4 *vB)
{
 constant float4 *p = vA; // legal
 constant float a; // illegal – not initialized
 constant float b = 2.0f; // legal – initialized with a compile-
 // time constant

138 Chapter 4: Programming with OpenCL C

 p[0] = (float4)(1.0f); // illegal – p cannot be modified

 // the string "opencl version" is allocated in the
 // constant address space
 char *c = "opencl version";

}

Note The number of variables declared in the constant address space
that can be used by a kernel is limited to CL_DEVICE_MAX_
CONSTANT_ARGS. OpenCL 1.1 describes that the minimum value
all implementations must support is eight. So up to eight variables
declared in the constant address space can be used by a kernel and
are guaranteed to work portably across all implementations. The
size of these eight constant arguments is given by CL_DEVICE_
MAX_CONSTANT_BUFFER_SIZE and is set to 64KB. It is therefore
possible that multiple constant declarations (especially those
defined in the program scope) can be merged into one constant
buffer as long as their total size is less than CL_DEVICE_MAX_
CONSTANT_BUFFER_SIZE. This aggregation of multiple variables
declared to be in the constant address space is not a required
behavior and so may not be implemented by all OpenCL imple-
mentations. For portable code, the developer should assume that
these variables do not get aggregated into a single constant buffer.

Local Address Space

This address space name is used to describe variables that need to be allo-
cated in local memory and are shared by all work-items of a work-group
but not across work-groups executing a kernel. This memory region allows
read/write access to all work-items in a work-group. This address space is
identified by the local qualifier.

A good analogy for local memory is a user-managed cache. Local memory
can significantly improve performance if a work-item or multiple work-
items in a work-group are reading from the same location in global mem-
ory. For example, when applying a Gaussian filter to an image, multiple
work-items read overlapping regions of the image. The overlap region size
is determined by the width of the filter. Instead of reading multiple times
from global memory (which is an order of magnitude slower), it is prefera-
ble to read the required data from global memory once into local memory
and then have the work-items read multiple times from local memory.

Pointers to the local address space are allowed as arguments to functions
(including kernel functions) and variables declared inside functions.

Qualifiers 139

Variables declared inside a kernel function can be allocated in the local
address space but with a few restrictions:

• These variable declarations must occur at kernel function scope.

• These variables cannot be initialized.

Note that variables in the local address space that are passed as pointer
arguments to or declared inside a kernel function exist only for the life-
time of the work-group executing the kernel.

A few examples of legal and illegal use cases are shown here:

kernel void
my_func(global float4 *vA, local float4 *l)
{
 local float4 *p; // legal
 local float4 a; // legal
 a = 1;
 local float4 b = (float4)(0); // illegal – b cannot be
 // initialized

 if (...)
 {
 local float c; // illegal – must be allocated at
 // kernel function scope
 ...
 }
}

Private Address Space

This address space name is used to describe variables that are private to
a work-item and cannot be shared between work-items in a work-group
or across work-groups. This address space is identified by the private
qualifier.

Variables inside a kernel function not declared with an address space
qualifier, all variables declared inside non-kernel functions, and all func-
tion arguments are in the private address space.

Casting between Address Spaces

A pointer in an address space can be assigned to another pointer only in
the same address space. Casting a pointer in one address space to a pointer
in a different address space is illegal. For example:

140 Chapter 4: Programming with OpenCL C

kernel void
my_func(global float4 *particles)
{
 // legal – particle_ptr & particles are in the
 // same address space
 global float *particle_ptr = (global float *)particles;

 // illegal – private_ptr and particle_ptr are in different
 // address spaces
 float *private_ptr = (float *)particle_ptr;
}

Access Qualifiers

The access qualifiers can be specified with arguments that are an image
type. These qualifiers specify whether the image is a read-only (read_
only or __read_only) or write-only (write_only or __write_only)
image. This is because of a limitation of current GPUs that do not allow
reading and writing to the same image in a kernel. The reason for this is
that image reads are cached in a texture cache, but writes to an image do
not update the texture cache.

In the following example imageA is a read-only 2D image object and
imageB is a write-only 2D image object:

kernel void
my_func(read_only image2d_t imageA, write_only image2d_t imageB)
{
 ...
}

Images declared with the read_only qualifier can be used with the
built-in functions that read from an image. However, these images cannot
be used with built-in functions that write to an image. Similarly, images
declared with the write_only qualifier can be used only to write to an
image and cannot be used to read from an image. The following examples
demonstrate this:

kernel void
my_func(read_only image2d_t imageA,
 write_only image2d_t imageB,
 sampler_t sampler)
{
 float4 clr;
 float2 coords;

 clr = read_imagef(imageA, sampler, coords); // legal
 clr = read_imagef(imageB, sampler, coords); // illegal

Preprocessor Directives and Macros 141

 write_imagef(imageA, coords, &clr); // illegal
 write_imagef(imageB, coords, &clr); // legal
}

imageA is declared to be a read_only image so it cannot be passed as an
argument to write_imagef. Similarly, imageB is declared to be a write_
only image so it cannot be passed as an argument to read_imagef.

The read-write qualifier (read_write or __read_write) is reserved.
Using this qualifier will result in a compile-time error.

Type Qualifiers

The type qualifiers const, restrict, and volatile as defined by the
C99 specification are supported. These qualifiers cannot be used with the
image2d_t and image3d_t type. Types other than pointer types cannot
use the restrict qualifier.

Keywords
The following names are reserved for use as keywords in OpenCL C and
cannot be used otherwise:

• Names already reserved as keywords by C99

• OpenCL C data types (defined in Tables 4.1, 4.2, and 4.6)

• Address space qualifiers: __global, global, __local, local,
__constant, constant, __private, and private

• Function qualifiers: __kernel and kernel

• Access qualifiers: __read_only, read_only, __write_only,
write_only, __read_write, and read_write

Preprocessor Directives and Macros
The preprocessing directives defined by the C99 specification are sup-
ported. These include

non-directive
#if
#ifdef

142 Chapter 4: Programming with OpenCL C

#ifndef
#elif
#else
#endif
#include
#define
#undef
#line
#error
#pragma

The defined operator is also included.

The following example demonstrates the use of #if, #elif, #else, and
#endif preprocessor macros. In this example, we use the preprocessor
macros to determine which arithmetic operation to apply in the kernel.
The kernel source is described here:

#define OP_ADD 1
#define OP_SUBTRACT 2
#define OP_MULTIPLY 3
#define OP_DIVIDE 4

kernel void
foo(global float *dst, global float *srcA, global float *srcB)
{
 size_t id = get_global_id(0);
#if OP_TYPE == OP_ADD
 dst[id] = srcA[id] + srcB[id];
#elif OP_TYPE == OP_SUBTRACT
 dst[id] = srcA[id] – srcB[id];
#elif OP_TYPE == OP_MULTIPLY
 dst[id] = srcA[id] * srcB[id];
#elif OP_TYPE == OP_DIVIDE
 dst[id] = srcA[id] / srcB[id];
#else
 dst[id] = NAN;
#endif
}

To build the program executable with the appropriate value for OP_TYPE,
the application calls clBuildProgram as follows:

// build program so that kernel foo does an add operation
err = clBuildProgram(program, 0, NULL,
 "-DOP_TYPE=1", NULL, NULL);

Preprocessor Directives and Macros 143

Pragma Directives

The #pragma directive is described as

#pragma pp-tokensopt new-line

A #pragma directive where the preprocessing token OPENCL (used instead
of STDC) does not immediately follow pragma in the directive (prior
to any macro replacement) causes the implementation to behave in an
implementation-defined manner. The behavior might cause translation
to fail or cause the translator or the resulting program to behave in a
nonconforming manner. Any such pragma that is not recognized by the
implementation is ignored. If the preprocessing token OPENCL does imme-
diately follow pragma in the directive (prior to any macro replacement),
then no macro replacement is performed on the directive.

The following standard pragma directives are available.

Floating-Point Pragma

The FP_CONTRACT floating-point pragma can be used to allow (if the
state is on) or disallow (if the state is off) the implementation to contract
expressions. The FP_CONTRACT pragma definition is

#pragma OPENCL FP_CONTRACT on-off-switch
on-off-switch: one of ON OFF DEFAULT

A detailed description of #pragma OPENCL FP_CONTRACT is found in
Chapter 5 in the section “Floating-Point Pragmas.”

Compiler Directives for Optional Extensions

The #pragma OPENCL EXTENSION directive controls the behavior of
the OpenCL compiler with respect to language extensions. The #pragma
OPENCL EXTENSION directive is defined as follows, where extension_
name is the name of the extension:

#pragma OPENCL EXTENSION extension_name: behavior
#pragma OPENCL EXTENSION all : behavior

behavior: enable or disable

The extension_name will have names of the form cl_khr_<name> for
an extension (such as cl_khr_fp64) approved by the OpenCL working
group and will have names of the form cl_<vendor_name>_<name> for
vendor extensions. The token all means that the behavior applies to all
extensions supported by the compiler. The behavior can be set to one of
the values given in Table 4.9.

144 Chapter 4: Programming with OpenCL C

The #pragma OPENCL EXTENSION directive is a simple, low-level mecha-
nism to set the behavior for each language extension. It does not define
policies such as which combinations are appropriate; these are defined
elsewhere. The order of directives matters in setting the behavior for each
extension. Directives that occur later override those seen earlier. The
all variant sets the behavior for all extensions, overriding all previously
issued extension directives, but only if the behavior is set to disable.

An extension needs to be enabled before any language feature (such as
preprocessor macros, data types, or built-in functions) of this extension is
used in the OpenCL program source. The following example shows how
to enable the double-precision floating-point extension:

#pragma OPENCL EXTENSION cl_khr_fp64 : enable
double x = 2.0;

If this extension is not supported, then a compilation error will be
reported for double x = 2.0. If this extension is supported, this enables
the use of double-precision floating-point extensions in the program
source following this directive.

Similarly, the cl_khr_3d_image_writes extension adds new built-in
functions that support writing to a 3D image:

#pragma OPENCL EXTENSION cl_khr_3d_image_writes : enable
kernel void my_func(write_only image3d_t img, ...)

{
 float4 coord, clr;
 ...
 write_imagef(img, coord, clr);
}

Table 4.9 Optional Extension Behavior Description

Behavior Description

enable Enable the extension extension_name. Report an error on the
#pragma OpenCL EXTENSION if the extension_name is not
supported, or if all is specified.

disable Behave (including issuing errors and warnings) as if the extension
extension_name is not part of the language definition.

If all is specified, then behavior must revert back to that of the
nonextended core version of the language being compiled to.

Warn on the #pragma OPENCL EXTENSION if the extension
extension_name is not supported.

Preprocessor Directives and Macros 145

The built-in functions such as write_imagef with image3d_t in the pre-
ceding example can be called only if this extension is enabled; otherwise
a compilation error will occur.

The initial state of the compiler is as if the following directive were issued,
telling the compiler that all error and warning reporting must be done
according to this specification, ignoring any extensions:

#pragma OPENCL EXTENSION all : disable

Every extension that affects the OpenCL language semantics or syntax
or adds built-in functions to the language must also create a preprocessor
#define that matches the extension name string. This #define would
be available in the language if and only if the extension is supported on
a given implementation. For example, an extension that adds the exten-
sion string cl_khr_fp64 should also add a preprocessor #define called
cl_khr_fp64. A kernel can now use this preprocessor #define to do
something like this:

#ifdef cl_khr_fp64
 // do something using this extension
#else
 // do something else or #error
#endif

Macros

The following predefined macro names are available:

• __FILE__ is the presumed name of the current source file (a character
string literal).

• __LINE__ is the presumed line number (within the current source
file) of the current source line (an integer constant).

• CL_VERSION_1_0 substitutes the integer 100, reflecting the OpenCL
1.0 version.

• CL_VERSION_1_1 substitutes the integer 110, reflecting the OpenCL
1.1 version.

• __OPENCL_VERSION__ substitutes an integer reflecting the version
number of the OpenCL supported by the OpenCL device. This reflects
both the language version supported and the device capabilities as
given in Table 4.3 of the OpenCL 1.1 specification. The version of
OpenCL described in this book will have __OPENCL_VERSION__ sub-
stitute the integer 110.

146 Chapter 4: Programming with OpenCL C

• __ENDIAN_LITTLE__ is used to determine if the OpenCL device is a
little endian architecture or a big endian architecture (an integer con-
stant of 1 if the device is little endian and is undefined otherwise).

• __kernel_exec(X, typen) (and kernel_exec(X, typen)) is
defined as
__kernel __attribute__((work_group_size_hint(X, 1, 1))) \
 __attribute__((vec_type_hint(typen))).

• __IMAGE_SUPPORT__ is used to determine if the OpenCL device sup-
ports images. This is an integer constant of 1 if images are supported
and is undefined otherwise.

• __FAST_RELAXED_MATH__ is used to determine if the –cl-fast-
relaxed-math optimization option is specified in build options
given to clBuildProgram. This is an integer constant of 1 if the –
cl-fast-relaxed-math build option is specified and is undefined
otherwise.

The macro names defined by the C99 specification but not currently sup-
ported by OpenCL are reserved for future use.

Restrictions
OpenCL C implements the following restrictions. Some of these restric-
tions have already been described in this chapter but are also included
here to provide a single place where the language restrictions are
described.

• Kernel functions have the following restrictions:

• Arguments to kernel functions that are pointers must use the
global, constant, or local qualifier.

• An argument to a kernel function cannot be declared as a pointer
to a pointer(s).

• Arguments to kernel functions cannot be declared with the
following built-in types: bool, half, size_t, ptrdiff_t,
intptr_t, uintptr_t, or event_t.

• The return type for a kernel function must be void.

• Arguments to kernel functions that are declared to be a struct can-
not pass OpenCL objects (such as buffers, images) as elements of
the struct.

Restrictions 147

• Bit field struct members are not supported.

• Variable-length arrays and structures with flexible (or unsized) arrays
are not supported.

• Variadic macros and functions are not supported.

• The extern, static, auto, and register storage class specifiers are
not supported.

• Predefined identifiers such as __func__ are not supported.

• Recursion is not supported.

• The library functions defined in the C99 standard headers—
assert.h, ctype.h, complex.h, errno.h, fenv.h, float.h,
inttypes.h, limits.h, locale.h, setjmp.h, signal.h,
stdarg.h, stdio.h, stdlib.h, string.h, tgmath.h, time.h,
wchar.h, and wctype.h—are not available and cannot be included
by a program.

• The image types image2d_t and image3d_t can be specified only as
the types of a function argument. They cannot be declared as local
variables inside a function or as the return types of a function. An
image function argument cannot be modified. An image type can-
not be used with the private, local, and constant address space
qualifiers. An image type cannot be used with the read_write access
qualifier, which is reserved for future use. An image type cannot
be used to declare a variable, a structure or union field, an array of
images, a pointer to an image, or the return type of a function.

• The sampler type sampler_t can be specified only as the type of a
function argument or a variable declared in the program scope or
the outermost scope of a kernel function. The behavior of a sampler
variable declared in a non-outermost scope of a kernel function is
implementation-defined. A sampler argument or a variable cannot be
modified. The sampler type cannot be used to declare a structure or
union field, an array of samplers, a pointer to a sampler, or the return
type of a function. The sampler type cannot be used with the local
and global address space qualifiers.

• The event type event_t can be used as the type of a function argu-
ment except for kernel functions or a variable declared inside a func-
tion. The event type can be used to declare an array of events. The
event type can be used to declare a pointer to an event, for example,
event_t *event_ptr. An event argument or variable cannot be
modified. The event type cannot be used to declare a structure or

148 Chapter 4: Programming with OpenCL C

union field, or for variables declared in the program scope. The event
type cannot be used with the local, constant, and global address
space qualifiers.

• The behavior of irreducible control flow in a kernel is implementa-
tion-defined. Irreducible control flow is typically encountered in code
that uses gotos. An example of irreducible control flow is a goto
jumping inside a nested loop or a Duff’s device.

 581

Symbols
-- (pre-increment) unary operator, 131
- (subtract) operator, 124–126
?: (ternary selection) operator, 129
- or -- (unary) operators, 131
| or || (or) operators, 127–128
+ (addition) operator, 124–126
+ or ++ (post-increment) unary operator,

131
!= (not equal) operator, 127
== (equal) operator, 127
% (remainder) operator, 124–126
& or && (and) operators, 127–128
* (multiply) operator, 124–126
^ (exclusive or) operator, 127–128
^^ (exclusive) operator, 128
~ (not) operator, 127–128
> (greater than) operator, 127
>= (greater than or equal) operator, 127
>> (right shift) operator, 129–130

Numbers
0 value, 64–65, 68
2D composition, in DFT, 457–458
64-bit integers, embedded profile,

385–386
754 formats, IEEE floating-point arith-

metic, 34

A
accelerator devices

defined, 69
tiled and packetized sparse matrix

design, 523, 534
access qualifiers

as keywords in OpenCL C, 141
overview of, 140–141
reference guide, 576

add (+) arithmetic operator, 124–126
address space qualifiers

casting between address spaces,
139–140

constant, 137–138
global, 136
as keywords in OpenCL C, 141
local, 138–139
overview of, 135–136
private, 139
reference guide, 554
supported, 99

addressing mode, sampler objects, 282,
292–295

ALL_BUILD project, Visual Studio, 43
AltiVec Technology Programming Interface

Manual, 111–113
AMD

generating project in Linux, 40–41
generating project in Windows,

40–41
storing binaries in own format, 233

and (& or &&) operators, 127–128
Apple

initializing contexts for OpenGL
interoperability, 338

querying number of platforms, 64
storing binaries in own format, 233

application data types, 103–104
ARB_cl_event extension, OpenGL,

349–350
architecture diagram, OpenCL device, 577
arguments

context, 85
device, 68
enqueuing commands, 313
guassian_kernel(), 296–297
kernel function restrictions, 146
reference guide for kernel, 548
setting kernel, 55–57, 237–240

Index

582 Index

arithmetic operators
overview of, 124–126
post- and pre-increment (++ and --)

unary, 131
symbols, 123
unary (+ and -), 131

arrays
parallelizing Dijkstra’s algorithm,

412–414
representing sparse matrix with

binary data, 516
as_type(), 121–123
as_typen(), 121–123
ASCII File, representing sparse matrix,

516–517
assignment (=) operator, 124, 132
async copy and prefetch functions,

191–195, 570
ATI Stream SDK

generating project in Linux and
Eclipse, 44–45

generating project in Visual Studio,
42–44

generating project in Windows, 40
querying and selecting platform,

65–66
querying context for devices, 89
querying devices, 70

atomic built-in functions
embedded profile options, 387
overview of, 195–198
reference guide, 568–569

attribute keyword, kernel qualifier,
133–134

attributes, specifying type, 555
automatic load balancing, 20

B
barrier synchronization function,

190–191
batches

executing cloth simulation on GPU,
433–441

SpMV implementation, 518
behavior description, optional exten-

sion, 144
bilinear sampling object, optical flow,

476

binaries, program
creating, 235–236
HelloBinaryWorld example, 229–230
HelloWorld.cl (NVIDIA) example,

233–236
overview of, 227–229
querying and storing, 230–232

binary data arrays, sparse matrix, 516
bit field numbers, 147
bitwise operators, 124, 127–128
blocking enqueue calls, and callbacks,

327
blocking_read, executing kernel, 56
bool, rank order of, 113
border color, built-in functions, 209–210
bracket() operator, C++ Wrapper API,

370–371
buffers and sub-buffers

computing Dijkstra’s algorithm, 415
copying, 274–276
copying from image to, 299, 303–304
creating, 249–256
creating from OpenGL, 339–343
creating kernel and memory objects,

377–378
direct translation of matrix multipli-

cation into OpenCL, 502
executing Vector Add kernel, 377–

378, 381
mapping, 276–279
in memory model, 21
Ocean application, 451
OpenCL/OpenGL sharing APIs,

446–448, 578
overview of, 247–248
querying, 257–259
reading and writing, 259–274
reference guide, 544–545

building program objects
reference guide, 546–547
using clBuildProgram(). see

clBuildProgram()
built-in data types

other, 108–109
reference guide, 550–552
scalar, 99–101
vector, 102–103

built-in functions
async copy and prefetch, 191–195

Index 583

atomic, 195–198, 387, 568–569
border color, 209–210
common, 172–175, 559
floating-point constant, 162–163
floating-point pragma, 162
geometric, 175–177, 563–564
image read and write, 201–206,

572–573
integer, 168–172, 557–558
math, 153–161, 560–563
miscellaneous vector, 199–200, 571
overview of, 149
querying image information, 214–215
relational, 175, 178–181, 564–567
relative error as ulps, 163–168
samplers, 206–209
synchronization, 190–191
vector data load and store, 181–189
work-item, 150–152, 557
writing to image, 210–213

Bullet Physics SDK. see cloth simulation
in Bullet Physics SDK

bytes, and vector data types, 102

C
C++ Wrapper API

defined, 369
exceptions, 371–374
Ocean application overview, 451
overview of, 369–371

C++ Wrapper API, Vector Add example
choosing device and creating com-

mand-queue, 375–377
choosing platform and creating

context, 375
creating and building program object,

377
creating kernel and memory objects,

377–378
executing Vector Add kernel, 378–382
structure of OpenCL setup, 374–375

C99 language
OpenCL C derived from, 32–33, 97
OpenCL C features added to, 99

callbacks
creating OpenCL contexts, 85
event objects. see

clSetEventCallback()

events impacting execution on host,
324–327

placing profiling functions inside,
331–332

steps in Ocean application, 451
capacitance, of multicore chips, 4–5
case studies

cloth simulation. see cloth simulation
in Bullet Physics SDK

Dijkstra’s algorithm. see Dijkstra’s
algorithm, parallelizing

image histogram. see image
histograms

matrix multiplication. see matrix
multiplication

optical flow. see optical flow
PyOpenCL. see PyOpenCL
simulating ocean. see Ocean simula-

tion, with FFT
Sobel edge detection filter, 407–410

casts
explicit, 116
implicit conversions between vectors

and, 111–113
cEnqueueNDRangeKernel(), 251, 255
ckCreateSampler(), 292–295
CL_COMPLETE value, command-queue,

311
CL_CONTEXT_DEVICES, C++ Wrapper

API, 376
cl_context_properties fields,

initializing contexts, 338–339
CL_DEVICE_IMAGE_SUPPORT property,

clGetDeviceInfo(), 386–387
CL_DEVICE_IMAGE3D_MAX_WIDTH

property, clGetDeviceInfo(),
386–387

CL_DEVICE_MAX_COMPUTE_UNITS,
506–509

CL_DEVICE_TYPE_GPU, 502
_CL_ENABLE_EXCEPTIONS preprocessor

macro, 372
cl_image_format, 285, 287–291
cl_int clFinish (), 248
cl_int clWaitForEvents(), 248
CL_KERNEL_PREFERRED_WORK_GROUP_

SIZE MULTIPLE query, 243–244
CL_KERNEL_WORK_GROUP_SIZE query,

243–244

584 Index

cl_khr_gl_event extension, 342, 348
cl_khr_gl_sharing extension,

336–337, 342
cl_map_flags, clEnqueueMapBuffer(),

276–277
cl_mem object, creating images, 284
CL_MEM_COPY_FROM_HOST_PTR, 377–378
cl_mem_flags, clCreateBuffer(),

249–250
CL_MEM_READ_ONLY | CL_MEM_COPY_

HOST_PTR memory type, 55
CL_MEM_READ_WRITE, 308
CL_MEM_USE_HOST_PTR, 377–378
cl_net error values, C++ Wrapper API,

371
cl_platform, 370–371
CL_PROFILING_COMMAND_END, 502
CL_PROFILING_COMMAND_START, 502
CL_QUEUE_PROFILING_ENABLE flag, 328
CL_QUEUE_PROFILING_ENABLE prop-

erty, 502
CL_QUEUED value, command-queue, 311
CL_RUNNING value, command-queue,

311
CL_SUBMITTED value, command-queue,

311
CL_SUCCESS return value, clBuild-

Program(), 220
_CL_USER_OVERRIDE_ERROR_STRINGS

preprocessor macro, 372
classes, C++ Wrapper API hierarchy,

369–370
clBarrier(), 313–316
clBuffer(), 54
cl::Buffer(), 377–378, 381
clBuildProgram()

build options, 546–547
building program object, 219–220,

222
creating program from binary,

234–236
floating-point options, 224
miscellaneous options, 226–227
optimization options, 225–226
preprocessor build options, 223–224
querying program objects, 237
reference guide, 546

cl::CommandQueue::enqueueMap-
Buffer(), 379, 381

cl::commandQueue::enqueueUnmap
Obj(), 379, 382

cl::Context(), 375
cl::Context::getInfo(), 376
clCreateBuffer()

creating buffers and sub-buffers,
249–251

creating memory objects, 54–55
direct translation of matrix multipli-

cation into OpenCL, 502
reference guide, 544
setting kernel arguments, 239

clCreateCommandQueue(), 51–52, 543
clCreateContext(), 84–87, 541
clCreateContextFromType()

creating contexts, 84–85
querying context for associated

devices, 88
reference guide, 541

clCreateEventFromGLsyncKHR()
explicit synchronization, 349
reference guide, 579
synchronization between OpenCL/

OpenGL, 350–351
clCreateFromD3D10BufferKHR(), 580
clCreateFromD3D10Texture2DKHR(),

580
clCreateFromD3D10Texture3DKHR(),

580
clCreateFromGL*(), 335, 448
clCreateFromGLBuffer(), 339–343, 578
clCreateFromGLRenderbuffer()

creating memory objects from
OpenGL, 341

reference guide, 578
sharing with OpenCL, 346–347

clCreateFromGLTexture2D(), 341, 578
clCreateFromGLTexture3D(), 341, 578
clCreateImage2D()

creating 2D image from file, 284–285
creating image objects, 283–284
reference guide, 573–574

clCreateImage3D(), 283–284, 574
clCreateKernel()

creating kernel objects, 237–238
reference guide, 547
setting kernel arguments, 239–240

clCreateKernelsInProgram(),
240–241, 547

Index 585

clCreateProgram(), 221
clCreateProgramWithBinary()

creating programs from binaries,
228–229

HelloBinaryWorld example, 229–230
reference guide, 546

clCreateProgramWithSource()
creating and building program object,

52–53
creating program object from source,

218–219, 222
reference guide, 546

clCreateSampler(), 292–294, 576
clCreateSubBuffer(), 253–256, 544
clCreateUserEvent()

generating events on host, 321–322
how to use, 323–324
reference guide, 549

clEnqueueAcquireD3D10Ob-
jectsKHR(), 580

clEnqueueAcquireGLObjects()
creating OpenCL buffers from

OpenGL buffers, 341–342
explicit synchronization, 349
implicit synchronization, 348–349
reference guide, 579

clEnqueueBarrier()
function of, 316–317
ordering constraints between

commands, 313
reference guide, 549

clEnqueueCopyBuffer(), 275–276, 545
clEnqueueCopyBufferToImage()

copying from buffer to image,
303–305

defined, 299
reference guide, 574

clEnqueueCopyImage()
copy image objects, 302–303
defined, 299
reference guide, 575

clEnqueueCopyImageToBuffer()
copying from image to buffer,

303–304
defined, 299
reference guide, 574

clEnqueueMapBuffer()
mapping buffers and sub-buffers,

276–278

moving data to and from buffer,
278–279

reference guide, 545
clEnqueueMapImage()

defined, 299
mapping image objects into host

memory, 305–308
reference guide, 574

clEnqueueMarker(), 314–317, 549
clEnqueueMarker()

defining synchronization points, 314
function of, 315–317

clEnqueueNativeKernel(), 548
clEnqueueNDRangeKernel()

events and command-queues, 312
executing kernel, 56–57
reference guide, 548
work-items, 150

clEnqueueReadBuffer()
reading buffers, 260–261, 268–269
reading results back from kernel, 48,

56–57
reference guide, 544

clEnqueueReadBufferRect(),
269–272, 544

clEnqueueReadImage()
defined, 299–301
mapping image results to host

memory pointer, 307–308
reference guide, 575

clEnqueueReleaseD3D10ObjectsKHR(),
580

clEnqueueReleaseGLObjects()
implicit synchronization, 348–349
reference guide, 579
releasing objects acquired by

OpenCL, 341–342
synchronization between OpenCL/

OpenGL, 351
clEnqueueTask(), 150, 548
clEnqueueUnmapMapImage(),

305–306
clEnqueueUnmapMemObject()

buffer mapping no longer required,
277–278

moving data to and from buffer,
278–279

reference guide, 545
releasing image data, 308

586 Index

clEnqueueWaitForEvents(), 314–317,
549

clEnqueueWriteBuffer()
reference guide, 544
writing buffers, 259–260, 267

clEnqueueWriteBufferRect(),
272–273, 544–545

clEnqueueWriteImage()
defined, 299
reference guide, 575
writing images from host to device

memory, 301–302
cles_khr_int64 extension string,

embedded profile, 385–386
clFinish()

creating OpenCL buffers from
OpenGL buffers, 342–343

OpenCL/OpenGL synchronization
with, 348

OpenCL/OpenGL synchronization
without, 351

preprocessor error macro for, 327
reference guide, 549

clFlush()
preprocessor error macro for, 327
reference guide, 549
using callbacks with events, 327

cl.get_platforms(), PyOpenCL, 493
clGetCommandQueueInfo(), 543
clGetContextInfo()

HelloWorld example, 50–51
querying context properties, 86–87
querying list of associated devices, 88
reference guide, 542

clGetDeviceIDs()
convolution signal example, 91
querying devices, 68–69
translation of matrix multiplication

into OpenCL, 502
clGetDeviceIDsFromD3D10KHR(), 542
clGetDeviceInfo()

determining images supported, 290
embedded profile, 384
matrix multiplication, 506–509
querying context for associated

devices, 88
querying device information, 70–78
querying embedded profile device

support for images, 386–387

querying for OpenGL sharing
extension, 336–337

reference guide, 542–543, 579
steps in OpenCL usage, 83

clGetEventInfo(), 319–320, 549
clGetEventProfilingInfo()

direct translation of matrix multipli-
cation, 502

errors, 329–330
extracting timing data, 328
placing profiling functions inside

callbacks, 332
profiling information and return

types, 329
reference guide, 549

clGetGLContextInfoKHR(), 579
clGetGLObjectInfo(), 347–348, 578
clGetGLTextureInfo(), 578
clGetImageInfo(), 286
clGetKernelInfo(), 242–243, 548
clGetKernelWorkGroupInfo(),

243–244, 548
clGetMemObjectInfo()

querying buffers and sub-buffers,
257–259

querying image object, 286
reference guide, 545

clGetPlatformIDs()
querying context for associated

devices, 88
querying platforms, 63–64
reference guide, 542

clGetPlatformInfo()
embedded profile, 384
querying and selecting platform,

65–67
reference guide, 542

clGetProgramBuildInfo()
creating and building program object,

52–53
detecting build error, 220–221, 222
direct translation of matrix multipli-

cation, 502
reference guide, 547

clGetProgramInfo()
getting program binary back from

built program, 227–228
reference guide, 547

clGetSamplerInfo(), 294–295, 576

Index 587

clGetSupportedImageFormats(), 291,
574

clGetXXInfo(), use of in this book, 70
CLK_GLOBAL_MEM_FENCE value, barrier

functions, 190–191
CLK_LOCAL_MEM_FENCE value, barrier

functions, 190–191
cl::Kernel(), 378
cl::Kernel:setArg(), 378
cloth simulation in Bullet Physics SDK

adding OpenGL interoperation,
446–448

executing on CPU, 431–432
executing on GPU, 432–438
introduction to, 425–428
optimizing for SIMD computation

and local memory, 441–446
overview of, 425
of soft body, 429–431
two-layered batching, 438–441

cl::Program(), 377
clReleaseCommandQueue(), 543
clReleaseContext(), 89, 542
clReleaseEvent(), 318–319, 549
clReleaseKernel(), 244–245, 548
clReleaseMemObject()

reference guide, 545
release buffer object, 339
release image object, 284

clReleaseProgram(), 236, 546
clReleaseSampler(), 294, 576
clRetainCommandQueue(), 543
clRetainContext(), 89, 541
clRetainEvent(), 318, 549
clRetainKernel(), 245, 548
clRetainMemObject(), 339, 545
clRetainProgram(), 236–237, 546
clRetainSampler(), 576
clSetEventCallback()

events impacting execution on host,
325–326

placing profiling functions inside
callbacks, 331–332

reference guide, 549
clSetKernelArg()

creating buffers and sub-buffers, 250,
255

executing kernel, 55–56
executing Vector Add kernel, 378

matrix multiplication using local
memory, 509–511

reference guide, 548
sampler declaration fields, 577
setting kernel arguments, 56, 237–240
thread safety and, 241–242

clSetMemObjectDestructor-
Callback(), 545

clSetUserEventStatus()
generating events on host, 322
how to use, 323–324
reference guide, 549

clUnloadCompiler(), 237, 547
clWaitForEvents(), 323–324, 549
CMake tool

generating project in Linux and
Eclipse, 44–45

generating project in Visual Studio,
42–44

installing as cross-platform build tool,
40–41

Mac OS X and Code::Blocks, 40–41
cmake-gui, 42–44
Code::Blocks, 41–42
color, cloth simulation

executing on GPU, 433–438
in two-layered batching, 438–441

color images. see image histograms
comma operator (,), 131
command-queue

acquiring OpenGL objects, 341–342
as core of OpenCL, 309–310
creating, 50–52
creating after selecting set of devices,

377
creating in PyOpenCL, 493
defining consistency of memory

objects on, 24
direct translation of matrix multipli-

cation into OpenCL, 502
events and, 311–317
executing kernel, 56–57
in execution model, 18–21
execution of Vector Add kernel, 378,

380
OpenCL runtime reference guide, 543
runtime API setting up, 31–32
transferring image objects to,

299–300

588 Index

common functions, 172–175
compiler

directives for optional extensions,
143–145

unloading OpenCL, 547
component selection syntax, vectors,

106–107
components, vector data type, 106–108
compute device, platform model, 12
compute units, platform model, 12
concurrency, 7–8

exploiting in command-queues, 310
kernel execution model, 14
parallel algorithm limitations, 28–29

conditional operator, 124, 129
const type qualifier, 141
constant (_constant) address space

qualifier, 137–138, 141
constant memory

device architecture diagram, 577
memory model, 21–23

contexts
allocating memory objects against, 248
choosing platform and creating, 375
convolution signal example, 89–97
creating, 49–50, 84–87
creating in PyOpenCL, 492–493
defining in execution model, 17–18
incrementing and decrementing

reference count, 89
initializing for OpenGL interoperabil-

ity, 338–339
OpenCL platform layer, 541–542
overview of, 83
querying properties, 85–87
steps in OpenCL, 84

convergence, simulating soft body, 430
conversion

embedded profile device support
rules, 386–387

explicit, 117–121, 132
vector component, 554

convert_int(), explicit conversions, 118
convolution signal example, 89–97
coordinate mode, sampler objects, 282,

292–295
copy

buffers and sub-buffers, 274–276, 545
image objects, 302–305, 308, 575

costArray:, Dijkstra’s algorithm,
413–414, 415–417

CPUs
executing cloth simulation on,

431–432
heterogeneous future of multicore,

4–7
matrix multiplication and perfor-

mance results, 511–513
SpMV implementation, 518–519

CreateCommandQueue(), 50–51
CreateContext(), 49–50, 375
CreateMemObjects(), 54–55
CSR format, sparse matrix, 517

D
DAG (directed acyclic graph), command-

queues and, 310
data load and store functions, vectors,

181–189
data structure, Dijkstra’s algorithm,

412–414
data types

explicit casts, 116–117
explicit conversions, 117–121
implicit type conversions, 110–115
reference guide for supported,

550–552
reinterpreting data as other, 121–123
reserved as keywords in OpenCL C,

141
scalar. see scalar data types
specifying attributes, 555
vector. see vector data types

data-parallel programming model
overview of, 8–9
parallel algorithm limitations, 28–29
understanding, 25–27
writing kernel using OpenCL C,

97–99
decimation kernel, optical flow, 474
declaration fields, sampler, 577
default device, 69
#define preprocessor directive, 142, 145
denormalized numbers, 34, 388
dense matrix, 499
dense optical flow, 469
derived types, OpenCL C, 109–110

Index 589

design, for tiled and packetized sparse
matrix, 523–524

device_type argument, querying
devices, 68

devices
architecture diagram, 577
choosing first available, 50–52
convolution signal example, 89–97
creating context in execution model,

17–18
determining profile support by, 390
embedded profile for hand held,

383–385
executing kernel on, 13–17
execution of Vector Add kernel, 380
full profile for desktop, 383
in platform model, 12
querying, 67–70, 78–83, 375–377,

542–543
selecting, 70–78
steps in OpenCL, 83–84

DFFT (discrete fast Fourier transform),
453

DFT. see discrete Fourier transform
(DFT), Ocean simulation

Dijkstra’s algorithm, parallelizing
graph data structures, 412–414
kernels, 414–417
leveraging multiple compute devices,

417–423
overview of, 411–412

dimensions, image object, 282
Direct3D, interoperability with. see

interoperability with Direct3D
directed acyclic graph (DAG), command-

queues and, 310
directional edge detector filter, Sobel,

407–410
directories, sample code for this book, 41
DirectX Shading Language (HLSL),

111–113
discrete fast Fourier transform (DFFT), 453
discrete Fourier transform (DFT), Ocean

simulation
avoiding local memory bank con-

flicts, 463
determining 2D composition, 457–458
determining local memory needed,

462

determining sub-transform size,
459–460

determining work-group size, 460
obtaining twiddle factors, 461–462
overview of, 457
using images, 463
using local memory, 459

distance(), geometric functions,
175–176

divide (/) arithmetic operator, 124–126
doublen, vector data load and store, 181
DRAM, modern multicore CPUs, 6–7
dynamic libraries, OpenCL program vs., 97

E
early exit, optical flow algorithm, 483
Eclipse, generating project in, 44–45
edgeArray:, Dijkstra’s algorithm,

412–414
“Efficient Sparse Matrix-Vector Multipli-

cation on CUDA” (Bell and
Garland), 517

embedded profile
64-bit integers, 385–386
built-in atomic functions, 387
determining device supporting, 390
full profile vs., 383
images, 386–387
mandated minimum single-precision

floating-point capabilities,
387–389

OpenCL programs for, 35–36
overview of, 383–385
platform queries, 65

_EMBEDDED_PROFILE_macro, 390
enumerated type

rank order of, 113
specifying attributes, 555

enumerating, list of platforms, 66–67
equal (==) operator, 127
equality operators, 124, 127
error codes

C++ Wrapper API exceptions, 371–374
clBarrier(), 313
clCreateUserEvent(), 321–322
clEnqueueMarker(), 314
clEnqueueWaitForEvents(),

314–315

590 Index

error codes (continued)
clGetEventProfilingInfo(),

329–330
clGetProgramBuildInfo, 220–221
clRetainEvent(), 318
clSetEventCallback(), 326
clWaitForEvents(), 323
table of, 57–61

ERROR_CODE value, command-queue, 311
.even suffix, vector data types, 107–108
event data types, 108, 147–148
event objects

OpenCL/OpenGL sharing APIs, 579
overview of, 317–320
reference guide, 549–550

event_t async_work_group_copy(),
192, 332–333

event_t async_work_group_
strided_copy(), 192, 332–333

events
command-queues and, 311–317
defined, 310
event objects. see event objects
generating on host, 321–322
impacting execution on host,

322–327
inside kernels, 332–333
from outside OpenCL, 333
overview of, 309–310
profiling using, 327–332
in task-parallel programming model,

28
exceptions

C++ Wrapper API, 371–374
execution of Vector Add kernel, 379

exclusive (^^) operator, 128
exclusive or (^) operator, 127–128
execution model

command-queues, 18–21
contexts, 17–18
defined, 11
how kernel executes OpenCL device,

13–17
overview of, 13
parallel algorithm limitations, 28–29

explicit casts, 116–117
explicit conversions, 117–121, 132
explicit kernel, SpMV, 519
explicit memory fence, 570–571

explicit model, data parallelism, 26–27
explicit synchronization, 349
exponent, half data type, 101
expression, assignment operator, 132
extensions, compiler directives for

optional, 143–145

F
fast Fourier transform (FTT). see Ocean

simulation, with FFT
fast_ variants, geometric functions, 175
FBO (frame buffer object), 347
file, creating 2D image from, 284–285
filter mode, sampler objects, 282, 292–295
float channels, 403–406
float data type, converting, 101
float images, 386
float type, math constants, 556
floating-point arithmetic system, 33–34
floating-point constants, 162–163
floating-point data types, 113, 119–121
floating-point options

building program object, 224–225
full vs. embedded profiles, 387–388

floating-point pragmas, 143, 162
floatn, vector data load and store

functions, 181, 182–186
fma, geometric functions, 175
formats, image

embedded profile, 387
encapsulating information on, 282
mapping OpenGL texture to OpenCL

image, 346
overview of, 287–291
querying list of supported, 574
reference guide for supported, 576

formats, of program binaries, 227
FP_CONTRACT pragma, 162
frame buffer object (FBO), 347
FreeImage library, 283, 284–285
FreeSurfer. see Dijkstra’s algorithm,

parallelizing
FTT (fast Fourier transform). see Ocean

simulation, with FFT
full profile

built-in atomic functions, 387
determining profile support by

device, 390

Index 591

embedded profile as strict subset of,
383–385

mandated minimum single-precision
floating-point capabilities,
387–389

platform queries, 65
querying device support for images,

386–387
function qualifiers

overview of, 133–134
reference guide, 554
reserved as keywords, 141

functions. see built-in functions

G
Gaussian filter, 282–283, 295–299
Gauss-Seidel iteration, 432
GCC compiler, 111–113
general-purpose GPU (GPGPU), 10, 29
gentype

barrier functions, 191–195
built-in common functions, 173–175
integer functions, 168–171
miscellaneous vector functions,

199–200
vector data load and store functions,

181–189
work-items, 153–161

gentyped
built-in common functions, 173–175
built-in geometric functions, 175–176
built-in math functions, 155–156
defined, 153

gentypef
built-in geometric functions, 175–177
built-in math functions, 155–156,

160–161
defined, 153

gentypei, 153, 158
gentypen, 181–182, 199–200
geometric built-in functions, 175–177,

563–564
get_global_id(), data-parallel kernel,

98–99
getInfo(), C++ Wrapper API, 375–377
gl_object_type parameter, query

OpenGL objects, 347–348
glBuildProgram(), 52–53

glCreateFromGLTexture2D(), 344–345
glCreateFromGLTexture3D(), 344–345
glCreateSyncFromCLeventARB(),

350–351
glDeleteSync() function, 350
GLEW toolkit, 336
glFinish()

creating OpenCL buffers from
OpenGL buffers, 342

OpenCL/OpenGL synchronization
with, 348

OpenCL/OpenGL synchronization
without, 351

global (_global) address space
qualifier, 136, 141

global index space, kernel execution
model, 15–16

global memory
device architecture diagram, 577
matrix multiplication, 507–509
memory model, 21–23

globalWorkSize, executing kernel,
56–57

GLSL (OpenGL Shading Language),
111–113

GLUT toolkit, 336, 450–451
glWaitSync(), synchronization,

350–351
GMCH (graphics/memory controller), 6–7
gotos, irreducible control flow, 147
GPGPU (general-purpose GPU), 10, 29
GPU (graphics processing unit)

advantages of image objects. see
image objects

defined, 69
executing cloth simulation on,

432–438
leveraging multiple compute devices,

417–423
matrix multiplication and perfor-

mance results, 511–513
modern multicore CPUs as, 6–7
OpenCL implementation for NVIDIA,

40
optical flow performance, 484–485
optimizing for SIMD computation

and local memory, 441–446
querying and selecting, 69–70
SpMV implementation, 518–519

592 Index

GPU (graphics processing unit) (continued)
tiled and packetized sparse matrix

design, 523–524
tiled and packetized sparse matrix

team, 524
two-layered batching, 438–441

graph data structures, parallelizing
Dijkstra’s algorithm, 412–414

graphics. see also images
shading languages, 111–113
standards, 30–31

graphics processing unit. see GPU
(graphics processing unit)

graphics/memory controller (GMCH),
6–7

grayscale images, applying Sobel
OpenCL kernel to, 409–410

greater than (>) operator, 127
greater than or equal (>=) operator, 127

H
half data type, 101–102
half_ functions, 153
half-float channels, 403–406
half-float images, 386
halfn, 181, 182–186
hand held devices, embedded profile for.

see embedded profile
hardware

mapping program onto, 9–11
parallel computation as concurrency

enabled by, 8
SpMV kernel, 519
SpMV multiplication, 524–538

hardware abstraction layer, 11, 29
hardware linear interpolation, optical

flow algorithm, 480
hardware scheduling, optical flow

algorithm, 483
header structure, SpMV, 522–523
height map, Ocean application, 450
HelloWorld sample

checking for errors, 57–61
choosing device and creating com-

mand-queue, 50–52
choosing platform and creating

context, 49–50

creating and building program object,
52–53

creating kernel and memory objects,
54–55

downloading sample code, 39
executing kernel, 55–57
Linux and Eclipse, 44–45
Mac OS X and Code::Blocks, 41–42
Microsoft Windows and Visual

Studio, 42–44
overview of, 39, 45–48
prerequisites, 40–41

heterogeneous platforms, 4–7
.hi suffix, vector data types, 107–108
high-level loop, Dijkstra’s algorithm,

414–417
histogram. see image histograms
histogram_partial_image_rgba_

unorm8 kernel, 400
histogram_partial_results_rgba_

unorm8 kernel, 400–402
histogram_sum_partial_results_

unorm8kernel, 400
HLSL (DirectX Shading Language),

111–113
host

calls to enqueue histogram kernels,
398–400

creating, writing and reading buffers
and sub-buffers, 262–268

device architecture diagram, 577
events impacting execution on,

322–327
execution model, 13, 17–18
generating events on, 321–322
kernel execution model, 13
matrix multiplication, 502–505
platform model, 12

host memory
memory model, 21–23
reading image back to, 300–301
reading image from device to,

299–300
reading region of buffer into,

269–272
writing region into buffer from,

272–273
hybrid programming models, 29

Index 593

I
ICC compiler, 111–113
ICD (installable client driver) model, 49,

375
IDs, kernel execution model, 14–15
IEEE standards, floating-point arithme-

tic, 33–34
image channel data type, image formats,

289–291
image channel order, image formats,

287–291
image data types, 108–109, 147
image difference, optical flow algorithm,

472
image functions

border color, 209–210
querying image information, 214–215
read and write, 201–206
samplers, 206–209
writing to images, 210–213

image histograms
additional optimizations to parallel,

400–402
computing, 393–395, 403–406
overview of, 393
parallelizing, 395–400

image objects
copy between buffer objects and, 574
creating, 283–286, 573–574
creating in OpenCL from OpenGL

textures, 344–347
Gaussian filter example, 282–283
loading to in PyOpenCL, 493–494
mapping and ummapping, 305–308,

574
memory model, 21
OpenCL and, 30
OpenCL C functions for working

with, 295–299
OpenCL/OpenGL sharing APIs, 578
overview of, 281–282
querying, 575
querying list of supported formats,

574
querying support for device images,

291
read, write, and copy, 575
specifying image formats, 287–291
transferring data, 299–308

image pyramids, optical flow algorithm,
472–479

image3d_t type, embedded profile, 386
ImageFIlter2D example, 282–291,

488–492
images

access qualifiers for read-only or
write-only, 140–141

describing motion between. see
optical flow

DFT, 463
embedded profile device support for,

386–387
formats. see formats, image
as memory objects, 247
read and write built-in functions,

572–573
Sobel edge detection filter for, 407–410
supported by OpenCL C, 99

Image.tostring() method, PyO-
penCL, 493–494

implicit kernel, SpMV, 518–519
implicit model, data parallelism, 26
implicit synchronization, OpenCL/

OpenGL, 348–349
implicit type conversions, 110–115
index space, kernel execution model,

13–14
INF (infinity), floating-point arithmetic,

34
inheritance, C++ API, 369
initialization

Ocean application overview, 450–451
OpenCL/OpenGL interoperability,

338–340
parallelizing Dijkstra’s algorithm, 415

in-order command-queue, 19–20, 24
input vector, SpMV, 518
installable client driver (ICD) model, 49,

375
integer built-in functions, 168–172,

557–558
integer data types

arithmetic operators, 124–216
explicit conversions, 119–121
rank order of, 113
relational and equality operators, 127

intellectual property, program binaries
protecting, 227

594 Index

interoperability with Direct3D
acquiring/releasing Direct3D objects

in OpenCL, 361–363
creating memory objects from

Direct3D buffers/textures,
357–361

initializing context for, 354–357
overview of, 353
processing D3D vertex data in

OpenCL, 366–368
processing Direct3D texture in

OpenCL, 363–366
reference guide, 579–580
sharing overview, 353–354

interoperability with OpenGL
cloth simulation, 446–448
creating OpenCL buffers from

OpenGL buffers, 339–343
creating OpenCL image objects from

OpenGL textures, 344–347
initializing OpenCL context for,

338–339
optical flow algorithm, 483–484
overview of, 335
querying for OpenGL sharing

extension, 336–337
querying information about OpenGL

objects, 347–348
reference guide, 577–579
sharing overview, 335–336
synchronization, 348–351

irreducible control flow, restrictions,
147

iterations
executing cloth simulation on CPU,

431–432
executing cloth simulation on GPU,

434–435
pyramidal Lucas-Kanade optical flow,

472
simulating soft body, 429–431

K
kernel attribute qualifiers, 134–135
kernel execution commands, 19–20
kernel objects

arguments and object queries, 548
creating, 547–548

creating, and setting kernel argu-
ments, 237–241

executing, 548
managing and querying, 242–245
out-of-order execution of memory

object command and, 549
overview of, 237
program objects vs., 217–218
thread safety, 241–242

_kernel qualifier, 133–135, 141, 217
kernels

applying Phillips spectrum, 453–457
constant memory during execution

of, 21
creating, writing and reading buffers/

sub-buffers, 262
creating context in execution model,

17–18
creating memory objects, 54–55,

377–378
in data-parallel programming model,

25–27
data-parallel version of, 97–99
defined, 13
in device architecture diagram, 577
events inside, 332–333
executing and reading result, 55–57
executing Ocean simulation applica-

tion, 463–468
executing OpenCL device, 13–17
executing Sobel OpenCL, 407–410
executing Vector Add kernel, 381
in execution model, 13
leveraging multiple compute devices,

417–423
in matrix multiplication program,

501–509
parallel algorithm limitations, 28–29
parallelizing Dijkstra’s algorithm,

414–417
programming language and, 32–34
in PyOpenCL, 495–497
restrictions in OpenCL C, 146–148
in task-parallel programming model,

27–28
in tiled and packetized sparse matrix,

518–519, 523
keywords, OpenCL C, 141
Khronos, 29–30

Index 595

L
learning OpenCL, 36–37
left shift (<<) operator, 129–130
length(), geometric functions, 175–177
less than (<) operator, 127
less than or equal (<=) operator, 127
library functions, restrictions in OpenCL

C, 147
links

cloth simulation using two-layered
batching, 438–441

executing cloth simulation on CPU,
431–432

executing cloth simulation on GPU,
433–438

introduction to cloth simulation,
426–428

simulating soft body, 429–431
Linux

generating project in, 44–45
initializing contexts for OpenGL

interoperability, 338–339
OpenCL implementation in, 41

.lo suffix, vector data types, 107–108
load balancing

automatic, 20
in parallel computing, 9

loading, program binaries, 227
load/store functions, vector data,

567–568
local (_local) address space qualifier,

138–139, 141
local index space, kernel execution

model, 15
local memory

device architecture diagram, 577
discrete Fourier transform, 459,

462–463
FFT kernel, 464
memory model, 21–24
optical flow algorithm, 481–482
optimizing in matrix multiplication,

509–511
SpMV implementation, 518–519

localWorkSize, executing kernel,
56–57

logical operators
overview of, 128
symbols, 124

unary not(!), 131
Lucas-Kanade. see pyramidal Lucas-

Kanade optical flow algorithm
luminosity histogram, 393
lvalue, assignment operator, 132

M
Mac OS X

OpenCL implementation in, 40
using Code::Blocks, 41–42

macros
determining profile support by

device, 390
integer functions, 172
OpenCL C, 145–146
preprocessor directives and, 555
preprocessor error, 372–374

mad, geometric functions, 175
magnitudes, wave, 454
main() function, HelloWorld OpenCL

kernel and, 44–48
mandated minimum single-precision

floating-point capabilities,
387–389

mantissa, half data type, 101
mapping

buffers and sub-buffers, 276–279
C++ classes to OpenCL C type,

369–370
image data, 305–308
image to host or memory pointer, 299
OpenGL texture to OpenCL image

formats, 346
markers, synchronization point, 314
maskArray:, Dijkstra’s algorithm,

412–414, 415
masking off operation, 121–123
mass/spring model, for soft bodies,

425–427
math built-in functions

accuracy for embedded vs. full
profile, 388

floating-point constant, 162–163
floating-point pragma, 162
overview of, 153–161
reference guide, 560–563
relative error as ulps in, 163–168

math constants, reference guide, 556

596 Index

math intrinsics, program build options,
547

math_ functions, 153
Matrix Market (MM) exchange format,

517–518
matrix multiplication

basic algorithm, 499–501
direct translation into OpenCL,

501–505
increasing amount of work per kernel,

506–509
overview of, 499
performance results and optimizing

original CPU code, 511–513
sparse matrix-vector. see sparse

matrix-vector multiplication
(SpMV)

using local memory, 509–511
memory access flags, 282–284
memory commands, 19
memory consistency, 23–24, 191
memory latency, SpMV, 518–519
memory model, 12, 21–24
memory objects

buffers and sub-buffers as, 247–248
creating context in execution model,

17–18
creating kernel and, 54–55, 377–378
matrix multiplication and, 502
in memory model, 21–24
out-of-order execution of kernels and,

549
querying to determine type of,

258–259
runtime API managing, 32

mesh
executing cloth simulation on CPU,

431–432
executing cloth simulation on GPU, 433
introduction to cloth simulation,

425–428
simulating soft body, 429–431
two-layered batching, 438–441

MFLOPS, 512–513
Microsoft Windows

generating project in Visual Studio,
42–44

OpenCL implementation in, 40
OpenGL interoperability, 338–339

mismatch vector, optical flow algorithm,
472

MM (Matrix Market) exchange format,
517–518

multicore chips, power-efficiency of, 4–5
multiplication

matrix. see matrix multiplication
sparse matrix-vector. see sparse

matrix-vector multiplication
(SpMV)

multiply (*) arithmetic operator,
124–126

N
n suffix, 181
names, reserved as keywords, 141
NaN (Not a Number), floating-point

arithmetic, 34
native kernels, 13
NDRange

data-parallel programming model, 25
kernel execution model, 14–16
matrix multiplication, 502, 506–509
task-parallel programming model, 27

normalize(), geometric functions,
175–176

not (~) operator, 127–128
not equal (!=) operator, 127
NULL value, 64–65, 68
num_entries, 64, 68
numeric indices, built-in vector data

types, 107
numpy, PyOpenCL, 488, 496–497
NVIDIA GPU Computing SDK

generating project in Linux, 41
generating project in Linux and

Eclipse, 44–45
generating project in Visual Studio, 42
generating project in Windows, 40
OpenCL/OpenGL interoperability,

336

O
objects, OpenCL/OpenGL sharing API,

579
Ocean simulation, with FFT

FFT kernel, 463–467

Index 597

generating Phillips spectrum,
453–457

OpenCL DFT. see discrete Fourier
transform (DFT), Ocean
simulation

overview of, 449–453
transpose kernel, 467–468

.odd suffix, vector data types, 107–108
OpenCL, introduction

conceptual foundation of, 11–12
data-parallel programming model,

25–27
embedded profile, 35–36
execution model, 13–21
graphics, 30–31
heterogeneous platforms of, 4–7
kernel programming language, 32–34
learning, 36–37
memory model, 21–24
other programming models, 29
parallel algorithm limitations, 28–29
platform API, 31
platform model, 12
runtime API, 31–32
software, 7–10
summary review, 34–35
task-parallel programming model,

27–28
understanding, 3–4

OpenCL C
access qualifiers, 140–141
address space qualifiers, 135–140
built-in functions. see built-in

functions
derived types, 109–110
explicit casts, 116–117
explicit conversions, 117–121
function qualifiers, 133–134
functions for working with images,

295–299
implicit type conversions, 110
kernel attribute qualifiers, 134–135
as kernel programming language,

32–34
keywords, 141
macros, 145–146
other data types supported by,

108–109
overview of, 97

preprocessor directives, 141–144
reinterpreting data as another type,

121–123
restrictions, 146–148
scalar data types, 99–102
type qualifiers, 141
vector data types, 102–108
vector operators. see vector operators
writing data-parallel kernel using,

97–99
OPENCL EXTENSION directive, 143–145
OpenGL

interoperability between OpenCL
and. see interoperability with
Direct3D; interoperability with
OpenGL

Ocean application, 450–453
OpenCL and graphics standards, 30
reference guide for sharing APIs,

577–579
synchronization between OpenCL,

333
OpenGL Shading Language (GLSL),

111–113
operands, vector literals, 105
operators, vector. see vector operators
optical flow

application of texture cache, 480–481
early exit and hardware scheduling,

483
efficient visualization with OpenGL

interop, 483–484
performance, 484–485
problem of, 469–479
sub-pixel accuracy with hardware

linear interpolation, 480
understanding, 469
using local memory, 481–482

optimization options
clBuildProgram(), 225–226
partial image histogram, 400–402
program build options, 546

“Optimizing Power Using Transforma-
tions” (Chandrakasan et al.), 4–5

“Optimizing Sparse Matrix-Vector
Multiplication on GPUs” (Baskaran
and Bordawekar), 517

optional extensions, compiler directives
for, 143–145

598 Index

or (|) operator, 127–128
or (||) operator, 128
out-of-order command-queue

automatic load balancing, 20
data-parallel programming model, 24
execution model, 20
reference guide, 549
task-parallel programming model, 28

output, creating 2D image for, 285–286
output vector, SpMV, 518
overloaded function, vector literal as,

104–105

P
packets

optimizing sparse matrix-vector
multiplication, 538–539

tiled and packetized sparse matrix,
519–522

tiled and packetized sparse matrix
design, 523–524

tiled and packetized sparse matrix
team, 524

pad to 128-boundary, tiled and pack-
etized sparse matrix, 523–524

parallel algorithm limitations, 28–29
parallel computation

as concurrency enabled by software, 8
of image histogram, 395–400
image histogram optimizations,

400–402
parallel programming, using models for, 8
parallelism, 8
param_name values, querying platforms,

64–65
partial histograms

computing, 395–397
optimizing by reducing number of,

400–402
summing to generate final histogram,

397–398
partitioning workload, for multiple

compute devices, 417–423
Patterns for Parallel Programming (Matt-

son), 20
performance

heterogeneous future of, 4–7
leveraging multiple compute devices,

417–423

matrix multiplication results, 511–513
optical flow algorithm and, 484–485
soft body simulation and, 430–431
sparse matrix-vector multiplication

and, 518, 524–538
using events for profiling, 327–332
using matrix multiplication for high.

see matrix multiplication
PEs (processing elements), platform

model, 12
phillips function, 455–457
Phillips spectrum generation, 453–457
platform API, 30–31
platform model, 11–12
platforms

choosing, 49–50
choosing and creating context, 375
convolution signal example, 89–97
embedded profile, 383–385
enumerating and querying, 63–67
querying and displaying specific

information, 78–83
querying list of devices associated

with, 68
reference guide, 541–543
steps in OpenCL, 83–84

pointer data types, implicit conversions,
111

post-increment (++) unary operator, 131
power

efficiency of specialized core, 5–6
of multicore chips, 4–5

#pragma directives, OpenCL C, 143–145
predefined identifiers, not supported,

147
prefetch functions, 191–195, 570
pre-increment (--) unary operator, 131
preprocessor build options, 223–224
preprocessor directives

OpenCL C, 141–142
program object build options,

546–547
reference guide, 555

preprocessor error macros, C++ Wrapper
API, 372–374

private (_private) address space
qualifier, 139, 141

private memory, 21–23, 577
processing elements (PEs), platform

model, 12

Index 599

profiles
associated with platforms, 63–67
commands for events, 327–332
embedded. see embedded profile
reference guide, 549

program objects
build options, 222–227
creating and building, 52–53, 377
creating and building from binaries,

227–236
creating and building from source

code, 218–222
creating and building in PyOpenCL,

494–495
creating context in execution model,

17–18
kernel objects vs., 217–218
managing and querying, 236–237
reference guide, 546–547
runtime API creating, 32

programming language. see also OpenCL
C; PyOpenCL, 32–34

programming models
data-parallel, 25–27
defined, 12
other, 29
parallel algorithm limitations, 28–29
task-parallel, 27–28

properties
device, 70
querying context, 85–87

PyImageFilter2D, PyOpenCL, 488–492
PyOpenCL

context and command-queue
creation, 492–493

creating and building program,
494–495

introduction to, 487–488
loading to image object, 493–494
overview of, 487
PyImageFilter2D code, 488–492
reading results, 496
running PyImageFilter2D example,

488
setting kernel arguments/executing

kernel, 495–496
pyopencl vo-92+, 488
pyopencl.create_some_context(),

492

pyramidal Lucas-Kanade optical flow
algorithm, 469, 471–473

Python, using OpenCL in. see
PyOpenCL

Python Image Library (PIL), 488,
493–494

Q
qualifiers

access, 140–141
address space, 135–140
function, 133–134
kernel attribute, 134–135
type, 141

queries
buffer and sub-buffer, 257–259, 545
device, 542–543
device image support, 291
event object, 319–320
image object, 214–215, 286, 575
kernel, 242–245, 548
OpenCL/OpenGL sharing APIs, 578
OpenGL objects, 347–348
platform, 63–66, 542–543
program object, 241–242, 547
storing program binary and, 230–232
supported image formats, 574

R
R,G, B color histogram

computing, 393–395, 403–406
optimizing, 400–402
overview of, 393
parallelizing, 395–400

rank order, usual arithmetic conversions,
113–115

read
buffers and sub-buffers, 259–268, 544
image back to host memory, 300–301
image built-in functions, 201–206,

298, 572–573
image from device to host memory,

299–300
image objects, 575
memory objects, 248
results in PyOpenCL, 496–497

read_imagef(), 298–299

600 Index

read-only qualifier, 140–141
read-write qualifier, 141
recursion, not supported in OpenCL C,

147
reference counts

buffers and sub-buffers, 256
contexts, 89
event objects, 318

regions, memory model, 21–23
relational built-in functions, 175,

178–181, 564–567
relational operators, 124, 127
relaxed consistency model, memory

objects, 24
remainder (%) arithmetic operator,

124–126
render buffers, 346–347, 578
rendering of height map, Ocean applica-

tion, 450
reserved data types, 550–552
restrict type qualifier, 141
restrictions, OpenCL C, 146–148
return type, kernel function restrictions,

146
RGB images, applying Sobel OpenCL

kernel to, 409
RGBA-formatted image, loading in

PyOpenCL, 493–494
right shift (>>) operator, 129–130
rounding mode modifier

explicit conversions, 119–121
vector data load and store functions,

182–189
_rte suffix, 183, 187
runCLSimulation(), 451–457
runtime API, 30–32, 543

S
sampler data types

determining border color, 209–210
functions, 206–209
restrictions in OpenCL C, 108–109,

147
sampler objects. see also image objects

creating, 292–294
declaration fields, 577
functions of, 282
overview of, 281–282

reference guide, 576–577
releasing and querying, 294–295

_sat (saturation) modifier, explicit
conversions, 119–120

SaveProgramBinary(), creating
programs, 230–231

scalar data types
creating vectors with vector literals,

104–105
explicit casts of, 116–117
explicit conversions of, 117–121
half data type, 101–102
implicit conversions of, 110–111
integer functions, 172
reference guide, 550
supported by OpenCL C, 99–101
usual arithmetic conversions with,

113–115
vector operators with. see vector

operators
scalar_add (), writing data-parallel

kernel, 97–98
754 formats, IEEE floating-point arith-

metic, 34
sgentype

integer functions, 172
relational functions, 181

shape matching, soft bodies, 425
sharing APIs, OpenCL/OpenGL, 577–579
shift operators, 124, 129–130
shuffle, illegal usage of, 214
shuffle2, illegal usage of, 214
sign, half data type, 101
SIMD (Single Instruction Multiple Data)

model, 26–27, 465
simulation

cloth. see cloth simulation in Bullet
Physics SDK

ocean. see Ocean simulation, with
FFT

Single Instruction Multiple Data (SIMD)
model, 26–27, 465

Single Program Multiple Data (SPMD)
model, 26

single-source shortest-path graph
algorithm. see Dijkstra’s algorithm,
parallelizing

64-bit integers, embedded profile,
385–386

Index 601

sizeof operator, 131–132
slab, tiled and packetized sparse matrix,

519
Sobel edge detection filter, 407–410
soft bodies

executing cloth simulation on CPU,
431–432

executing cloth simulation on GPU,
432–438

interoperability with OpenGL,
446–448

introduction to cloth simulation,
425–428

simulating, 429–431
software, parallel, 7–10
solveConstraints, cloth simulation on

GPU, 435
solveLinksForPosition, cloth simulation

on GPU, 435
source code

creating and building programs from,
218–222

program binary as compiled version
of, 227

sparse matrix-vector multiplication
(SpMV)

algorithm, 515–517
defined, 515
description of, 518–519
header structure, 522–523
optional team information, 524
other areas of optimization, 538–539
overview of, 515
tested hardware devices and results,

524–538
tiled and packetized design, 523–524
tiled and packetized representation

of, 519–522
specify type attributes, 555
SPMD (Single Program Multiple Data)

model, 26
SpMV. see sparse matrix-vector multipli-

cation (SpMV)
storage

image layout, 308
sparse matrix formats, 517

strips, tiled and packetized sparse
matrix, 519

struct type
restrictions on use of, 109–110, 146
specifying attributes, 555

sub-buffers. see buffers and sub-buffers
sub-pixel accuracy, optical flow algo-

rithm, 480
subregions, of memory objects, 21
subtract (-) arithmetic operator, 124–126
sub-transform size, DFT, 459–460
suffixes, vector data types, 107–108
synchronization

commands, 19–21
computing Dijkstra’s algorithm with

kernel, 415–417
explicit memory fence, 570–571
functions, 190–191
OpenCL/OpenGL, 342, 348–351
primitives, 248

synchronization points
defining when enqueuing com-

mands, 312–315
in out-of-order command-queue, 24

T
T1 to T3 data types, rank order of, 114
task-parallel programming model

overview of, 9–10
parallel algorithm limitations, 28–29
understanding, 27–28

team information, tiled and packetized
sparse matrix, 524

ternary selection (?:) operator, 129
Tessendorf, Jerry, 449, 454
tetrahedra, soft bodies, 425–428
texture cache, optical flow algorithm,

480–482
texture objects, OpenGL. see also image

objects
creating image objects in OpenCL

from, 344–347
Ocean application creating, 451
OpenCL/OpenGL sharing APIs, 578
querying information about, 347–348

thread safety, kernel objects, 241–242
tiled and packetized sparse matrix

defined, 515
design considerations, 523–524

602 Index

tiled and packetized sparse matrix
(continued)

header structure of, 522–523
overview of, 519–522
SpMV implementation, 517–518

timing data, profiling events, 328
traits, C++ template, 376
transpose kernel, simulating ocean,

467–468
twiddle factors, DFT

FFT kernel, 464–466
obtaining, 461–462
using local memory, 463

2D composition, in DFT, 457–458
two-layered batching, cloth simulation,

438–441
type casting, vector component, 554
type qualifiers, 141

U
ugentype, 168–169, 181
ugentypen, 214–215
ulp values, 163–168
unary operators, 124, 131–132
union type, specifying attributes, 555
updatingCostArray:, Dijkstra’s

algorithm, 413–417
usual arithmetic conversions, 113–115

V
vadd() kernel, Vector Add kernel, 378
variable-length arrays, not supported in

OpenCL C, 147
variadic macros and functions, not

supported in OpenCL C, 147
VBO (vertex buffer object), 340–344,

446–448
vbo_cl_mem, creating VBO in OpenGL,

340–341
Vector Add example. see C++ Wrapper

API, Vector Add example
vector data types

application, 103–104
built-in, 102–103
components, 106–108, 552–554
data load and store functions,

181–189

explicit casts, 116–117
explicit conversions, 117–121
implicit conversions between,

110–113
literals, 104–105
load/store functions reference,

567–568
miscellaneous built-in functions,

199–200, 571
operators. see vector operators
optical flow algorithm, 470–472
reference guide, 550

supported by OpenCL C, 99
usual arithmetic conversions with,

113–115
vector literals, 104–105
vector operators

arithmetic operators, 124–126
assignment operator, 132
bitwise operators, 127–128
conditional operator, 129
logical operators, 128
overview of, 123–124
reference guide, 554
relational and equality operators, 127
shift operators, 129–130
unary operators, 131–132

vertex buffer object (VBO), 340–344,
446–448

vertexArray:, Dijkstra’s algorithm,
412–414

vertical filtering, optical flow, 474
vertices

introduction to cloth simulation,
425–428

simulating soft body, 429–431
Visual Studio, generating project in,

42–44
vload_half(), 101, 182, 567
vload_halfn(), 182, 567
vloada_half(), 185–186, 568
vloadn(), 181, 567
void return type, kernel functions, 146
void wait_group_events(), 193,

332–333
volatile type qualifier, 141
voltage, multicore chip, 4–5
vstore_half()

half data type, 101

Index 603

reference guide, 568
vector store functions, 183, 187

vstore_halfn(), 184, 186–188, 568
vstorea_halfn(), 186, 188–189, 568
vstoren(), 182, 567
VSTRIDE, FFT kernel, 464

W
wave amplitudes, 454
weightArray:, Dijkstra’s algorithm,

412–414
Windows. see Microsoft Windows
work-group barrier, 25–27
work-groups

data-parallel programming model,
25–27

global memory for, 21
kernel execution model, 14–16
local memory for, 21, 23
SpMV implementation, 518
tiled and packetized sparse matrix

team, 524
work-items

barrier functions, 190–191
built-in functions, 557

data-parallel programming model,
25–27

functions, 150–152
global memory for, 21
kernel execution model, 13–15
local memory for, 23
mapping get_global_id to, 98–99
matrix multiplication, 501–509
private memory for, 21
task-parallel programming model,

27
write

buffers and sub-buffers, 259–268,
544–545

image built-in functions, 210–213,
298–299, 572–573

image from host to device memory,
301–302

image objects, 575
memory objects, 248

write_imagef(), 298–299
write-only qualifier, 140–141

Z
0 value, 64–65, 68

	Contents
	Figures
	Tables
	Listings
	Foreword
	Preface
	Acknowledgments
	About the Authors
	4. Programming with OpenCL C
	Writing a Data-Parallel Kernel Using OpenCL C
	Scalar Data Types
	Vector Data Types
	Other Data Types
	Derived Types
	Implicit Type Conversions
	Explicit Casts
	Explicit Conversions
	Reinterpreting Data as Another Type
	Vector Operators
	Qualifiers
	Keywords
	Preprocessor Directives and Macros
	Restrictions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

