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Foreword

During the past few years, heterogeneous computers composed of CPUs 
and GPUs have revolutionized computing. By matching different parts of 
a workload to the most suitable processor, tremendous performance gains 
have been achieved.

Much of this revolution has been driven by the emergence of many-core 
processors such as GPUs. For example, it is now possible to buy a graphics 
card that can execute more than a trillion floating point operations per 
second (teraflops). These GPUs were designed to render beautiful images, 
but for the right workloads, they can also be used as high-performance 
computing engines for applications from scientific computing to aug-
mented reality.

A natural question is why these many-core processors are so fast com-
pared to traditional single core CPUs. The fundamental driving force is 
innovative parallel hardware. Parallel computing is more efficient than 
sequential computing because chips are fundamentally parallel. Modern 
chips contain billions of transistors. Many-core processors organize these 
transistors into many parallel processors consisting of hundreds of float-
ing point units. Another important reason for their speed advantage is 
new parallel software. Utilizing all these computing resources requires 
that we develop parallel programs. The efficiency gains due to software 
and hardware allow us to get more FLOPs per Watt or per dollar than a 
single-core CPU.

Computing systems are a symbiotic combination of hardware and soft-
ware. Hardware is not useful without a good programming model. The 
success of CPUs has been tied to the success of their programming mod-
els, as exemplified by the C language and its successors. C nicely abstracts 
a sequential computer. To fully exploit heterogeneous computers, we need 
new programming models that nicely abstract a modern parallel computer. 
And we can look to techniques established in graphics as a guide to the 
new programming models we need for heterogeneous computing.

I have been interested in programming models for graphics for many 
years. It started in 1988 when I was a software engineer at PIXAR, where 
I developed the RenderMan shading language. A decade later graphics 
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systems became fast enough that we could consider developing shading 
languages for GPUs. With Kekoa Proudfoot and Bill Mark, we developed 
a real-time shading language, RTSL. RTSL ran on graphics hardware by 
compiling shading language programs into pixel shader programs, the 
assembly language for graphics hardware of the day. Bill Mark subse-
quently went to work at NVIDIA, where he developed Cg. More recently, 
I have been working with Tim Foley at Intel, who has developed a new 
shading language called Spark. Spark takes shading languages to the next 
level by abstracting complex graphics pipelines with new capabilities such 
as tesselation.

While developing these languages, I always knew that GPUs could be used 
for much more than graphics. Several other groups had demonstrated that 
graphics hardware could be used for applications beyond graphics. This 
led to the GPGPU (General-Purpose GPU) movement. The demonstra-
tions were hacked together using the graphics library. For GPUs to be used 
more widely, they needed a more general programming environment that 
was not tied to graphics. To meet this need, we started the Brook for GPU 
Project at Stanford. The basic idea behind Brook was to treat the GPU as 
a data-parallel processor. Data-parallel programming has been extremely 
successful for parallel computing, and with Brook we were able to show 
that data-parallel programming primitives could be implemented on a 
GPU. Brook made it possible for a developer to write an application in a 
widely used parallel programming model.

Brook was built as a proof of concept. Ian Buck, a graduate student at 
Stanford, went on to NVIDIA to develop CUDA. CUDA extended Brook in 
important ways. It introduced the concept of cooperating thread arrays, or 
thread blocks. A cooperating thread array captured the locality in a GPU 
core, where a block of threads executing the same program could also 
communicate through local memory and synchronize through barriers. 
More importantly, CUDA created an environment for GPU Computing 
that has enabled a rich ecosystem of application developers, middleware 
providers, and vendors.

OpenCL (Open Computing Language) provides a logical extension of the 
core ideas from GPU Computing—the era of ubiquitous heterogeneous 
parallel computing. OpenCL has been carefully designed by the Khronos 
Group with input from many vendors and software experts. OpenCL 
benefits from the experience gained using CUDA in creating a software 
standard that can be implemented by many vendors. OpenCL implemen-
tations run now on widely used hardware, including CPUs and GPUs from 
NVIDIA, AMD, and Intel, as well as platforms based on DSPs and FPGAs. 
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By standardizing the programming model, developers can count on more 
software tools and hardware platforms.

What is most exciting about OpenCL is that it doesn’t only standardize 
what has been done, but represents the efforts of an active community 
that is pushing the frontier of parallel computing. For example, OpenCL 
provides innovative capabilities for scheduling tasks on the GPU. The 
developers of OpenCL have have combined the best features of task- 
parallel and data-parallel computing. I expect future versions of OpenCL 
to be equally innovative. Like its father, OpenGL, OpenCL will likely grow 
over time with new versions with more and more capability.

This book describes the complete OpenCL Programming Model. One of 
the coauthors, Aaftab, was the key mind behind the system. He has joined 
forces with other key designers of OpenCL to write an accessible authorita-
tive guide. Welcome to the new world of heterogeneous computing.

—Pat Hanrahan
Stanford University
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Preface

Industry pundits love drama. New products don’t build on the status quo 
to make things better. They “revolutionize” or, better yet, define a “new 
paradigm.” And, of course, given the way technology evolves, the results 
rarely are as dramatic as the pundits make it seem.

Over the past decade, however, something revolutionary has happened. 
The drama is real. CPUs with multiple cores have made parallel hardware 
ubiquitous. GPUs are no longer just specialized graphics processors; they 
are heavyweight compute engines. And their combination, the so-called 
heterogeneous platform, truly is redefining the standard building blocks 
of computing.

We appear to be midway through a revolution in computing on a par with 
that seen with the birth of the PC. Or more precisely, we have the potential
for a revolution because the high levels of parallelism provided by hetero-
geneous hardware are meaningless without parallel software; and the fact 
of the matter is that outside of specific niches, parallel software is rare.

To create a parallel software revolution that keeps pace with the ongoing 
(parallel) heterogeneous computing revolution, we need a parallel soft-
ware industry. That industry, however, can flourish only if software can 
move between platforms, both cross-vendor and cross-generational. The 
solution is an industry standard for heterogeneous computing.

OpenCL is that industry standard. Created within the Khronos Group 
(known for OpenGL and other standards), OpenCL emerged from a col-
laboration among software vendors, computer system designers (including 
designers of mobile platforms), and microprocessor (embedded, accelera-
tor, CPU, and GPU) manufacturers. It is an answer to the question “How 
can a person program a heterogeneous platform with the confidence that 
software created today will be relevant tomorrow?”

Born in 2008, OpenCL is now available from multiple sources on a wide 
range of platforms. It is evolving steadily to remain aligned with the latest 
microprocessor developments. In this book we focus on OpenCL 1.1. We 
describe the full scope of the standard with copious examples to explain 
how OpenCL is used in practice. Join us. Vive la révolution.
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Intended Audience
This book is written by programmers for programmers. It is a pragmatic 
guide for people interested in writing code. We assume the reader is 
comfortable with C and, for parts of the book, C++. Finally, we assume 
the reader is familiar with the basic concepts of parallel programming. 
We assume our readers have a computer nearby so they can write software 
and explore ideas as they read. Hence, this book is overflowing with pro-
grams and fragments of code.

We cover the entire OpenCL 1.1 specification and explain how it can be 
used to express a wide range of parallel algorithms. After finishing this 
book, you will be able to write complex parallel programs that decom-
pose a workload across multiple devices in a heterogeneous platform. You 
will understand the basics of performance optimization in OpenCL and 
how to write software that probes the hardware and adapts to maximize 
performance.

Organization of the Book
The OpenCL specification is almost 400 pages. It’s a dense and complex 
document full of tediously specific details. Explaining this specification is 
not easy, but we think that we’ve pulled it off nicely. 

The book is divided into two parts. The first describes the OpenCL speci-
fication. It begins with two chapters to introduce the core ideas behind 
OpenCL and the basics of writing an OpenCL program. We then launch 
into a systematic exploration of the OpenCL 1.1 specification. The tone of 
the book changes as we incorporate reference material with explanatory 
discourse. The second part of the book provides a sequence of case stud-
ies. These range from simple pedagogical examples that provide insights 
into how aspects of OpenCL work to complex applications showing how 
OpenCL is used in serious application projects. The following provides 
more detail to help you navigate through the book: 

Part I: The OpenCL 1.1 Language and API

• Chapter 1, “An Introduction to OpenCL”: This chapter provides a 
high-level overview of OpenCL. It begins by carefully explaining why 
heterogeneous parallel platforms are destined to dominate comput-
ing into the foreseeable future. Then the core models and concepts 
behind OpenCL are described. Along the way, the terminology used 
in OpenCL is presented, making this chapter an important one to read 
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even if your goal is to skim through the book and use it as a reference 
guide to OpenCL. 

• Chapter 2, “HelloWorld: An OpenCL Example”: Real programmers 
learn by writing code. Therefore, we complete our introduction to 
OpenCL with a chapter that explores a working OpenCL program. 
It has become standard to introduce a programming language by 
printing “hello world” to the screen. This makes no sense in OpenCL 
(which doesn’t include a print statement). In the data-parallel pro-
gramming world, the analog to “hello world” is a program to complete 
the element-wise addition of two arrays. That program is the core of 
this chapter. By the end of the chapter, you will understand OpenCL 
well enough to start writing your own simple programs. And we urge 
you to do exactly that. You can’t learn a programming language by 
reading a book alone. Write code.

• Chapter 3, “Platforms, Contexts, and Devices”: With this chapter, 
we begin our systematic exploration of the OpenCL specification. 
Before an OpenCL program can do anything “interesting,” it needs 
to discover available resources and then prepare them to do useful 
work. In other words, a program must discover the platform, define 
the context for the OpenCL program, and decide how to work with 
the devices at its disposal. These important topics are explored in this 
chapter, where the OpenCL Platform API is described in detail.

• Chapter 4, “Programming with OpenCL C”: Code that runs on an 
OpenCL device is in most cases written using the OpenCL C program-
ming language. Based on a subset of C99, the OpenCL C program-
ming language provides what a kernel needs to effectively exploit 
an OpenCL device, including a rich set of vector instructions. This 
chapter explains this programming language in detail.

• Chapter 5, “OpenCL C Built-In Functions”: The OpenCL C program-
ming language API defines a large and complex set of built-in func-
tions. These are described in this chapter.

• Chapter 6, “Programs and Kernels”: Once we have covered the lan-
guages used to write kernels, we move on to the runtime API defined 
by OpenCL. We start with the process of creating programs and 
kernels. Remember, the word program is overloaded by OpenCL. In 
OpenCL, the word program refers specifically to the “dynamic library” 
from which the functions are pulled for the kernels.

• Chapter 7, “Buffers and Sub-Buffers”: In the next chapter we move 
to the buffer memory objects, one-dimensional arrays, including 
a careful discussion of sub-buffers. The latter is a new feature in 



xxxvi Preface

OpenCL 1.1, so programmers experienced with OpenCL 1.0 will find 
this chapter particularly useful. 

• Chapter 8, “Images and Samplers”: Next we move to the very 
important topic of our other memory object, images. Given the close 
relationship between graphics and OpenCL, these memory objects are 
important for a large fraction of OpenCL programmers.

• Chapter 9, “Events”: This chapter presents a detailed discussion of 
the event model in OpenCL. These objects are used to enforce order-
ing constraints in OpenCL. At a basic level, events let you write con-
current code that generates correct answers regardless of how work is 
scheduled by the runtime. At a more algorithmically profound level, 
however, events support the construction of programs as directed acy-
clic graphs spanning multiple devices. 

• Chapter 10, “Interoperability with OpenGL”: Many applications 
may seek to use graphics APIs to display the results of OpenCL pro-
cessing, or even use OpenCL to postprocess scenes generated by graph-
ics. The OpenCL specification allows interoperation with the OpenGL 
graphics API. This chapter will discuss how to set up OpenGL/OpenCL 
sharing and how data can be shared and synchronized.

• Chapter 11, “Interoperability with Direct3D”: The Microsoft fam-
ily of platforms is a common target for OpenCL applications. When 
applications include graphics, they may need to connect to Microsoft’s 
native graphics API. In OpenCL 1.1, we define how to connect an 
OpenCL application to the DirectX 10 API. This chapter will demon-
strate how to set up OpenCL/Direct3D sharing and how data can be 
shared and synchronized. 

• Chapter 12, “C++ Wrapper API”: We then discuss the OpenCL C++ 
API Wrapper. This greatly simplifies the host programs written in 
C++, addressing automatic reference counting and a unified interface 
for querying OpenCL object information. Once the C++ interface is 
mastered, it’s hard to go back to the regular C interface.

• Chapter 13, “OpenCL Embedded Profile”: OpenCL was created 
for an unusually wide range of devices, with a reach extending from 
cell phones to the nodes in a massively parallel supercomputer. Most 
of the OpenCL specification applies without modification to each 
of these devices. There are a small number of changes to OpenCL, 
however, needed to fit the reduced capabilities of low-power proces-
sors used in embedded devices. This chapter describes these changes, 
referred to in the OpenCL specification as the OpenCL embedded 
profile.
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Part II: OpenCL 1.1 Case Studies

• Chapter 14, “Image Histogram”: A histogram reports the frequency 
of occurrence of values within a data set. For example, in this chapter, 
we compute the histogram for R, G, and B channel values of a color 
image. To generate a histogram in parallel, you compute values over 
local regions of a data set and then sum these local values to generate 
the final result. The goal of this chapter is twofold: (1) we demonstrate 
how to manipulate images in OpenCL, and (2) we explore techniques 
to efficiently carry out a histogram’s global summation within an 
OpenCL program.

• Chapter 15, “Sobel Edge Detection Filter”: The Sobel edge filter is a 
directional edge detector filter that computes image gradients along 
the x- and y-axes. In this chapter, we use a kernel to apply the Sobel 
edge filter as a simple example of how kernels work with images in 
OpenCL.

• Chapter 16, “Parallelizing Dijkstra’s Single-Source Shortest-Path 
Graph Algorithm”: In this chapter, we present an implementation of 
Dijkstra’s Single-Source Shortest-Path graph algorithm implemented 
in OpenCL capable of utilizing both CPU and multiple GPU devices. 
Graph data structures find their way into many problems, from artifi-
cial intelligence to neuroimaging. This particular implementation was 
developed as part of FreeSurfer, a neuroimaging application, in order 
to improve the performance of an algorithm that measures the curva-
ture of a triangle mesh structural reconstruction of the cortical surface 
of the brain. This example is illustrative of how to work with multiple 
OpenCL devices and split workloads across CPUs, multiple GPUs, or 
all devices at once.

• Chapter 17, “Cloth Simulation in the Bullet Physics SDK”: Phys-
ics simulation is a growing addition to modern video games, and in 
this chapter we present an approach to simulating cloth, such as a 
warrior’s clothing, using OpenCL that is part of the Bullet Physics 
SDK. There are many ways of simulating soft bodies; the simulation 
method used in Bullet is similar to a mass/spring model and is opti-
mized for execution on modern GPUs while integrating smoothly 
with other Bullet SDK components that are not written in OpenCL. 
We show an important technique, called batching, that transforms 
the particle meshes for performant execution on wide SIMD archi-
tectures, such as the GPU, while preserving dependences within the 
mass/spring model.
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• Chapter 18, “Simulating the Ocean with Fast Fourier Transform”: 
In this chapter we present the details of AMD’s Ocean simulation. 
Ocean is an OpenCL demonstration that uses an inverse discrete 
Fourier transform to simulate, in real time, the sea. The fast Fou-
rier transform is applied to random noise, generated over time as a 
frequency-dependent phase shift. We describe an implementation 
based on the approach originally developed by Jerry Tessendorf that 
has appeared in a number of feature films, including Waterworld,
Titanic, and Fifth Element. We show the development of an optimized 
2D DFFT, including a number of important optimizations useful when 
programming with OpenCL, and the integration of this algorithm 
into the application itself and using interoperability between OpenCL 
and OpenGL.

• Chapter 19, “Optical Flow”: In this chapter, we present an imple-
mentation of optical flow in OpenCL, which is a fundamental concept 
in computer vision that describes motion in images. Optical flow has 
uses in image stabilization, temporal upsampling, and as an input to 
higher-level algorithms such as object tracking and gesture recogni-
tion. This chapter presents the pyramidal Lucas-Kanade optical flow 
algorithm in OpenCL. The implementation demonstrates how image 
objects can be used to access texture features of GPU hardware. We 
will show how the texture-filtering hardware on the GPU can be used 
to perform linear interpolation of data, achieve the required sub-pixel 
accuracy, and thereby provide significant speedups. Additionally, 
we will discuss how shared memory can be used to cache data that 
is repeatedly accessed and how early kernel exit techniques provide 
additional efficiency.

• Chapter 20, “Using OpenCL with PyOpenCL”: The purpose of this 
chapter is to introduce you to the basics of working with OpenCL in 
Python. The majority of the book focuses on using OpenCL from 
C/C++, but bindings are available for other languages including 
Python. In this chapter, PyOpenCL is introduced by walking through 
the steps required to port the Gaussian image-filtering example from 
Chapter 8 to Python. In addition to covering the changes required to 
port from C++ to Python, the chapter discusses some of the advan-
tages of using OpenCL in a dynamically typed language such as 
Python.

• Chapter 21, “Matrix Multiplication with OpenCL”: In this chapter, 
we discuss a program that multiplies two square matrices. The pro-
gram is very simple, so it is easy to follow the changes made to the 
program as we optimize its performance. These optimizations focus 
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on the OpenCL memory model and how we can work with the model 
to minimize the cost of data movement in an OpenCL program.

• Chapter 22, “Sparse Matrix-Vector Multiplication”: In this chapter, 
we describe an optimized implementation of the Sparse Matrix-Vector 
Multiplication algorithm using OpenCL. Sparse matrices are defined 
as large, two-dimensional matrices in which the vast majority of the 
elements of the matrix are equal to zero. They are used to characterize 
and solve problems in a wide variety of domains such as computa-
tional fluid dynamics, computer graphics/vision, robotics/kinematics, 
financial modeling, acoustics, and quantum chemistry. The imple-
mentation demonstrates OpenCL’s ability to bridge the gap between 
hardware-specific code (fast, but not portable) and single-source 
code (very portable, but slow), yielding a high-performance, efficient 
implementation on a variety of hardware that is almost as fast as a 
hardware-specific implementation. These results are accomplished 
with kernels written in OpenCL C that can be compiled and run on 
any conforming OpenCL platform.

Appendix

• Appendix A, “Summary of OpenCL 1.1”: The OpenCL specification 
defines an overwhelming collection of functions, named constants, 
and types. Even expert OpenCL programmers need to look up these 
details when writing code. To aid in this process, we’ve included an 
appendix where we pull together all these details in one place.

Example Code 
This book is filled with example programs. You can download many of 
the examples from the book’s Web site at www.openclprogrammingguide.
com.

Errata
If you find something in the book that you believe is in error, please send 
us a note at errors@opencl-book.com. The list of errata for the book can 
be found on the book’s Web site at www.openclprogrammingguide.com.

www.openclprogrammingguide.com
www.openclprogrammingguide.com
www.openclprogrammingguide.com
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Chapter 4

Programming with OpenCL C 

The OpenCL C programming language is used to create programs that 
describe data-parallel kernels and tasks that can be executed on one or 
more heterogeneous devices such as CPUs, GPUs, and other processors 
referred to as accelerators such as DSPs and the Cell Broadband Engine 
(B.E.) processor. An OpenCL program is similar to a dynamic library, and 
an OpenCL kernel is similar to an exported function from the dynamic 
library. Applications directly call the functions exported by a dynamic 
library from their code. Applications, however, cannot call an OpenCL 
kernel directly but instead queue the execution of the kernel to a com-
mand-queue created for a device. The kernel is executed asynchronously 
with the application code running on the host CPU.

OpenCL C is based on the ISO/IEC 9899:1999 C language specification 
(referred to in short as C99) with some restrictions and specific extensions 
to the language for parallelism. In this chapter, we describe how to write 
data-parallel kernels using OpenCL C and cover the features supported by 
OpenCL C. 

Writing a Data-Parallel Kernel Using OpenCL C
As described in Chapter 1, data parallelism in OpenCL is expressed as 
an N-dimensional computation domain, where N = 1, 2, or 3. The N-D 
domain defines the total number of work-items that can execute in paral-
lel. Let’s look at how a data-parallel kernel would be written in OpenCL C 
by taking a simple example of summing two arrays of floats. A sequential 
version of this code would perform the sum by summing individual ele-
ments of both arrays inside a for loop: 

void
scalar_add (int n, const float *a, const float *b, float *result)
{
    int i;
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    for (i=0; i<n; i++)
        result[i] = a[i] + b[i];
}

A data-parallel version of the code in OpenCL C would look like this:

kernel void
scalar_add (global const float *a, 

global const float *b, 
global float *result)

{
    int id = get_global_id(0);
    result[id] = a[id] + b[id];
}

The scalar_add function declaration uses the kernel qualifier to indi-
cate that this is an OpenCL C kernel. Note that the scalar_add kernel 
includes only the code to compute the sum of each individual element, 
aka the inner loop. The N-D domain will be a one-dimensional domain 
set to n. The kernel is executed for each of the n work-items to produce the 
sum of arrays a and b. In order for this to work, each executing work-item 
needs to know which individual elements from arrays a and b need to 
be summed. This must be a unique value for each work-item and should 
be derived from the N-D domain specified when queuing the kernel for 
execution. The get_global_id(0) returns the one-dimensional global 
ID for each work-item. Ignore the global qualifiers specified in the kernel 
for now; they will be discussed later in this chapter.

Figure 4.1 shows how get_global_id can be used to identify a unique 
work-item from the list of work-items executing a kernel.

7 9 13 1 31 3 0 76 33 5 23 11 51 77 60 8

+

34 2 0 13 18 22 6 22 47 17 56 41 29 11 9 82

=

41 11 13 14 49 25 6 98 80 22 79 52 80 88 69 90

get_global_id(0) = 7

Figure 4.1 Mapping get_global_id to a work-item
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The OpenCL C language with examples is described in depth in the sec-
tions that follow. The language is derived from C99 with restrictions that 
are described at the end of this chapter. 

OpenCL C also adds the following features to C99:

• Vector data types. A number of OpenCL devices such as Intel SSE, 
AltiVec for POWER and Cell, and ARM NEON support a vector 
instruction set. This vector instruction set is accessed in C/C++ code 
through built-in functions (some of which may be device-specific) or 
device-specific assembly instructions. In OpenCL C, vector data types 
can be used in the same way scalar types are used in C. This makes it 
much easier for developers to write vector code because similar opera-
tors can be used for both vector and scalar data types. It also makes 
it easy to write portable vector code because the OpenCL compiler is 
now responsible for mapping the vector operations in OpenCL C to 
the appropriate vector ISA for a device. Vectorizing code also helps 
improve memory bandwidth because of regular memory accesses and 
better coalescing of these memory accesses.

• Address space qualifiers. OpenCL devices such as GPUs implement a 
memory hierarchy. The address space qualifiers are used to identify a 
specific memory region in the hierarchy.

• Additions to the language for parallelism. These include support for 
work-items, work-groups, and synchronization between work-items in 
a work-group.

• Images. OpenCL C adds image and sampler data types and built-in 
functions to read and write images.

• An extensive set of built-in functions such as math, integer, geo-
metric, and relational functions. These are described in detail in 
Chapter 5.

Scalar Data Types
The C99 scalar data types supported by OpenCL C are described in Table 
4.1. Unlike C, OpenCL C describes the sizes, that is, the exact number of 
bits for the integer and floating-point data types.
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Table 4.1 Built-In Scalar Data Types

Type Description

bool A conditional data type that is either true or false. The value 
true expands to the integer constant 1, and the value false
expands to the integer constant 0.

char A signed two’s complement 8-bit integer.

unsigned char, uchar An unsigned 8-bit integer.

short A signed two’s complement 16-bit integer.

unsigned short, ushort An unsigned 16-bit integer.

int A signed two’s complement 32-bit integer.

unsigned int, uint An unsigned 32-bit integer.

long A signed two’s complement 64-bit integer.

unsigned long, ulong An unsigned 64-bit integer.

float A 32-bit floating-point. The float data type must conform to 
the IEEE 754 single-precision storage format.

double A 64-bit floating-point. The double data type must conform 
to the IEEE 754 double-precision storage format. This is an 
optional format and is available only if the double-precision 
extension (cl_khr_fp64) is supported by the device.

half A 16-bit floating-point. The half data type must conform to 
the IEEE 754-2008 half-precision storage format.

size_t The unsigned integer type of the result of the sizeof opera-
tor. This is a 32-bit unsigned integer if the address space of the 
device is 32 bits and is a 64-bit unsigned integer if the address 
space of the device is 64 bits.

ptrdiff_t A signed integer type that is the result of subtracting two 
pointers. This is a 32-bit signed integer if the address space of 
the device is 32 bits and is a 64-bit signed integer if the 
address space of the device is 64 bits.

intptr_t A signed integer type with the property that any valid pointer 
to void can be converted to this type, then converted back to 
a pointer to void, and the result will compare equal to the 
original pointer.
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The half Data Type

The half data type must be IEEE 754-2008-compliant. half numbers 
have 1 sign bit, 5 exponent bits, and 10 mantissa bits. The interpreta-
tion of the sign, exponent, and mantissa is analogous to that of IEEE 754 
floating-point numbers. The exponent bias is 15. The half data type must 
represent finite and normal numbers, denormalized numbers, infinities, 
and NaN. Denormalized numbers for the half data type, which may be 
generated when converting a float to a half using the built-in function 
vstore_half and converting a half to a float using the built-in func-
tion vload_half, cannot be flushed to zero. 

Conversions from float to half correctly round the mantissa to 11 bits 
of precision. Conversions from half to float are lossless; all half num-
bers are exactly representable as float values.

The half data type can be used only to declare a pointer to a buffer that 
contains half values. A few valid examples are given here:

void
bar(global half *p)
{
    ...
}

void
foo(global half *pg, local half *pl)
{
    global half *ptr;
    int offset;

    ptr = pg + offset;
    bar(ptr);
}

Type Description

uintptr_t An unsigned integer type with the property that any valid 
pointer to void can be converted to this type, then converted 
back to a pointer to void, and the result will compare equal to 
the original pointer.

void The void type constitutes an empty set of values; it is an 
incomplete type that cannot be completed.

Table 4.1 Built-In Scalar Data Types (Continued )
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Following is an example that is not a valid usage of the half type:

half a;
half a[100];

half *p;
a = *p;    // not allowed. must use vload_half function

Loads from a pointer to a half and stores to a pointer to a half can be 
performed using the vload_half, vload_halfn, vloada_halfn and 
vstore_half, vstore_halfn, and vstorea_halfn functions, respec-
tively. The load functions read scalar or vector half values from memory 
and convert them to a scalar or vector float value. The store functions 
take a scalar or vector float value as input, convert it to a half scalar or 
vector value (with appropriate rounding mode), and write the half scalar 
or vector value to memory.

Vector Data Types
For the scalar integer and floating-point data types described in Table 
4.1, OpenCL C adds support for vector data types. The vector data type is 
defined with the type name, that is, char, uchar, short, ushort, int,
uint, float, long, or ulong followed by a literal value n that defines the 
number of elements in the vector. Supported values of n are 2, 3, 4, 8, and 
16 for all vector data types. Optionally, vector data types are also defined 
for double and half. These are available only if the device supports the 
double-precision and half-precision extensions. The supported vector data 
types are described in Table 4.2.

Variables declared to be a scalar or vector data type are always aligned to 
the size of the data type used in bytes. Built-in data types must be aligned 
to a power of 2 bytes in size. A built-in data type that is not a power of 2 
bytes in size must be aligned to the next-larger power of 2. This rule does 
not apply to structs or unions. 

For example, a float4 variable will be aligned to a 16-byte boundary and 
a char2 variable will be aligned to a 2-byte boundary. For 3-component 
vector data types, the size of the data type is 4 × sizeof(component). 
This means that a 3-component vector data type will be aligned to a 4 ×
sizeof(component) boundary. 

The OpenCL compiler is responsible for aligning data items appropriately 
as required by the data type. The only exception is for an argument to a 
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kernel function that is declared to be a pointer to a data type. For such 
functions, the compiler can assume that the pointee is always appropri-
ately aligned as required by the data type. 

For application convenience and to ensure that the data store is appropri-
ately aligned, the data types listed in Table 4.3 are made available to the 
application.

Table 4.2 Built-In Vector Data Types

Type Description

charn A vector of n 8-bit signed integer values

ucharn A vector of n 8-bit unsigned integer values

shortn A vector of n 16-bit signed integer values

ushortn A vector of n 16-bit unsigned integer values

intn A vector of n 32-bit signed integer values

uintn A vector of n 32-bit unsigned integer values

longn A vector of n 64-bit signed integer values

ulongn A vector of n 64-bit unsigned integer values

floatn A vector of n 32-bit floating-point values

doublen A vector of n 64-bit floating-point values

halfn A vector of n 16-bit floating-point values

Table 4.3 Application Data Types

Type in OpenCL Language API Type for Application

char cl_char

uchar cl_uchar

short cl_short

ushort cl_ushort

int cl_int

continues
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Vector Literals

Vector literals can be used to create vectors from a list of scalars, vectors, 
or a combination of scalar and vectors. A vector literal can be used either 
as a vector initializer or as a primary expression. A vector literal cannot be 
used as an l-value. 

A vector literal is written as a parenthesized vector type followed by a 
parenthesized comma-delimited list of parameters. A vector literal oper-
ates as an overloaded function. The forms of the function that are avail-
able are the set of possible argument lists for which all arguments have 

Type in OpenCL Language API Type for Application

uint cl_uint

long cl_long

ulong cl_ulong

float cl_float

double cl_double

half cl_half

charn cl_charn

ucharn cl_ucharn

shortn cl_shortn

ushortn cl_ushortn

intn cl_intn

uintn cl_uintn

longn cl_longn

ulongn cl_ulongn

floatn cl_floatn

doublen cl_doublen

halfn cl_halfn

Table 4.3 Application Data Types (Continued )
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the same element type as the result vector, and the total number of 
elements is equal to the number of elements in the result vector. In addi-
tion, a form with a single scalar of the same type as the element type of 
the vector is available. For example, the following forms are available for 
float4:

(float4)( float, float, float, float )
(float4)( float2, float, float )
(float4)( float, float2, float )
(float4)( float, float, float2 )
(float4)( float2, float2 )
(float4)( float3, float )
(float4)( float, float3 )
(float4)( float )

Operands are evaluated by standard rules for function evaluation, except 
that no implicit scalar widening occurs. The operands are assigned to 
their respective positions in the result vector as they appear in mem-
ory order. That is, the first element of the first operand is assigned to 
result.x, the second element of the first operand (or the first element 
of the second operand if the first operand was a scalar) is assigned to 
result.y, and so on. If the operand is a scalar, the operand is replicated 
across all lanes of the result vector.

The following example shows a vector float4 created from a list of 
scalars:

float4  f = (float4)(1.0f, 2.0f, 3.0f, 4.0f);

The following example shows a vector uint4 created from a scalar, which 
is replicated across the components of the vector:

uint4   u = (uint4)(1); // u will be (1, 1, 1, 1)

The following examples show more complex combinations of a vector 
being created using a scalar and smaller vector types:

float4  f = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));
float4  f = (float4)(1.0f, (float2)(2.0f, 3.0f), 4.0f);

The following examples describe how not to create vector literals. All of 
these examples should result in a compilation error.

float4  f = (float4)(1.0f, 2.0f);
float4  f = (float2)(1.0f, 2.0f);
float4  f = (float4)(1.0f, (float2)(2.0f, 3.0f));
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Vector Components

The components of vector data types with 1 to 4 components (aka ele-
ments) can be addressed as <vector>.xyzw. Table 4.4 lists the compo-
nents that can be accessed for various vector types.

Table 4.4 Accessing Vector Components

Vector Data Types Accessible Components 

char2, uchar2, short2, ushort2, int2, uint2, long2,
ulong2, float2

.xy

char3, uchar3, short3, ushort3, int3, uint3, long3,
ulong3, float3

.xyz

char4, uchar4, short4, ushort4, int4, uint4, long4,
ulong4, float4

.xyzw

double2, half2 .xy

double3, half3 .xyz

double4, half4 .xyzw

Accessing components beyond those declared for the vector type is an 
error. The following describes legal and illegal examples of accessing vec-
tor components:

float2 pos;
pos.x = 1.0f; // is legal
pos.z = 1.0f; // is illegal

float3 pos;
pos.z = 1.0f; // is legal
pos.w = 1.0f; // is illegal

The component selection syntax allows multiple components to be 
selected by appending their names after the period (.). A few examples 
that show how to use the component selection syntax are given here:

float4 c;

c.xyzw = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
c.z = 1.0f;
c.xy = (float2)(3.0f, 4.0f);
c.xyz = (float3)(3.0f, 4.0f, 5.0f);
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The component selection syntax also allows components to be permuted 
or replicated as shown in the following examples:

float4 pos = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
float4 swiz = pos.wzyx; // swiz = (4.0f, 3.0f, 2.0f, 1.0f)
float4 dup = pox.xxyy;  // dup = (1.0f, 1.0f, 2.0f, 2.0f)

Vector components can also be accessed using a numeric index to refer to 
the appropriate elements in the vector. The numeric indices that can be 
used are listed in Table 4.5.

Table 4.5 Numeric Indices for Built-In Vector Data Types

Vector Components Usable Numeric Indices 

2-component 0, 1

3-component 0, 1, 2

4-component 0, 1, 2, 3

8-component 0, 1, 2, 3, 4, 5, 6, 7

16-component 0, 1, 2, 3, 4, 5, 6 , 7, 8, 9,

a, A , b, B, c, C, d, D, e, E, f, F

All numeric indices must be preceded by the letter s or S. In the follow-
ing example f.s0 refers to the first element of the float8 variable f and 
f.s7 refers to the eighth element of the float8 variable f:

float8 f

In the following example x.sa (or x.sA) refers to the eleventh element of 
the float16 variable x and x.sf (or x.sF) refers to the sixteenth element 
of the float16 variable x:

float16 x

The numeric indices cannot be intermixed with the .xyzw notation. For 
example:

float4 f;
float4 v_A = f.xs123;  // is illegal
float4 v_B = f.s012w;  // is illegal

Vector data types can use the .lo (or .odd) and .hi (or .even) suffixes 
to get smaller vector types or to combine smaller vector types into a larger 
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vector type. Multiple levels of .lo (or .odd) and .hi (or .even) suffixes 
can be used until they refer to a scalar type.

The .lo suffix refers to the lower half of a given vector. The .hi suffix 
refers to the upper half of a given vector. The .odd suffix refers to the odd 
elements of a given vector. The .even suffix refers to the even elements of 
a given vector. Some examples to illustrate this concept are given here:

float4 vf;

float2 low = vf.lo;    // returns vf.xy
float2 high = vf.hi;   // returns vf.zw
float x = low.low;     // returns low.x
float y = low.hi;      // returns low.y

float2 odd = vf.odd;   // returns vf.yw
float2 even = vf.even; // returns vf.xz

For a 3-component vector, the suffixes .lo (or .odd) and .hi (or .even)
operate as if the 3-component vector were a 4-component vector with the 
value in the w component undefined.

Other Data Types
The other data types supported by OpenCL C are described in Table 4.6.

Table 4.6 Other Built-In Data Types

Type Description

image2d_t A 2D image type.

image3d_t A 3D image type.

sampler_t An image sampler type.

event_t An event type. These are used by built-in functions 
that perform async copies from global to local memory 
and vice versa. Each async copy operation returns an 
event and takes an event to wait for that identifies a 
previous async copy operation.
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There are a few restrictions on the use of image and sampler types:

• The image and samplers types are defined only if the device supports 
images.

• Image and sampler types cannot be declared as arrays. Here are a 
couple of examples that show these illegal use cases:

kernel void
foo(image2d_t imgA[10]) // error. images cannot be declared 
                        //        as arrays
{
    image2d_t imgB[4];  // error. images cannot be declared 
                        //        as arrays
    ...
}

kernel void
foo(sampler_t smpA[10]) // error. samplers cannot be declared 
                        //        as arrays
{
    sampler_t smpB[4];  // error. samplers cannot be declared 
                        //        as arrays
    ...
}

• The image2d_t, image3d_t, and sampler_t data types cannot be 
declared in a struct.

• Variables cannot be declared to be pointers of image2d_t,
image3d_t, and sampler_t data types.

Derived Types
The C99 derived types (arrays, structs, unions, and pointers) constructed 
from the built-in data types described in Tables 4.1 and 4.2 are supported. 
There are a few restrictions on the use of derived types:

• The struct type cannot contain any pointers if the struct or pointer to 
a struct is used as an argument type to a kernel function. For example, 
the following use case is invalid: 

typedef struct {
    int  x;
    global float *f;
} mystruct_t;
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kernel void
foo(global mystruct_t *p) // error. mystruct_t contains 
                          //        a pointer
{
    ...
}

• The struct type can contain pointers only if the struct or pointer 
to a struct is used as an argument type to a non-kernel function or 
declared as a variable inside a kernel or non-kernel function. For 
example, the following use case is valid:

void
my_func(mystruct_t *p)
{
    ...
}

kernel void
foo(global int *p1, global float *p2)
{
    mystruct_t s;

    s.x = p1[get_global_id(0)];
    s.f = p2;
    my_func(&s);
}

Implicit Type Conversions
Implicit type conversion is an automatic type conversion done by the 
compiler whenever data from different types is intermixed. Implicit 
conversions of scalar built-in types defined in Table 4.1 (except void,
double,1 and half2) are supported. When an implicit conversion is done, 
it is not just a reinterpretation of the expression’s value but a conversion 
of that value to an equivalent value in the new type.

Consider the following example:

float f = 3;      // implicit conversion to float value 3.0
int   i = 5.23f;  // implicit conversion to integer value 5

1 Unless the double-precision extension (cl_khr_fp64) is supported by the 
device.

2 Unless the half-precision extension (cl_khr_fp16) is supported by the device.
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In this example, the value 3 is converted to a float value 3.0f and then 
assigned to f. The value 5.23f is converted to an int value 5 and then 
assigned to i. In the second example, the fractional part of the float
value is dropped because integers cannot support fractional values; this is 
an example of an unsafe type conversion.

Warning  Note that some type conversions are inherently unsafe, and 
if the compiler can detect that an unsafe conversion is being 
implicitly requested, it will issue a warning. 

Implicit conversions for pointer types follow the rules described in the 
C99 specification. Implicit conversions between built-in vector data types 
are disallowed. For example:

float4 f;
int4   i;

f = i;  // illegal implicit conversion between vector data types

There are graphics shading languages such as OpenGL Shading Language 
(GLSL) and the DirectX Shading Language (HLSL) that do allow implicit 
conversions between vector types. However, prior art for vector casts in C 
doesn’t support conversion casts. The AltiVec Technology Programming Inter-
face Manual (www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.
pdf?fsrch=1), Section 2.4.6, describes the function of casts between vector 
types. The casts are conversion-free. Thus, any conforming AltiVec com-
piler has this behavior. Examples include XL C, GCC, MrC, Metrowerks, 
and Green Hills. IBM’s Cell SPE C language extension (C/C++ Language 
Extensions for Cell Broadband Engine Architecture; see Section 1.4.5) has 
the same behavior. GCC and ICC have adopted the conversion-free 
cast model for SSE (http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Vector- 
Extensions.html#Vector-Extensions). The following code example shows 
the behavior of these compilers:

#include <stdio.h>

// Declare some vector types. This should work on most compilers 
// that try to be GCC compatible. Alternatives are provided 
// for those that don't conform to GCC behavior in vector 
// type declaration.
// Here a vFloat is a vector of four floats, and 
// a vInt is a vector of four 32-bit ints.
#if 1
    // This should work on most compilers that try 
    // to be GCC compatible
    // cc main.c -Wall -pedantic
    typedef float vFloat __attribute__ ((__vector_size__(16)));

www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf?fsrch=1
www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf?fsrch=1
http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Vector-Extensions.html#Vector-Extensions
http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Vector-Extensions.html#Vector-Extensions
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    typedef int   vInt   __attribute__ ((__vector_size__(16)));
    #define init_vFloat(a, b, c, d)    (const vFloat) {a, b, c, d}
#else
    //Not GCC compatible
    #if defined( __SSE2__ )
        // depending on compiler you might need to pass 
        // something like -msse2 to turn on SSE2
        #include <emmintrin.h>
        typedef __m128  vFloat;
        typedef __m128i vInt;
        static inline vFloat init_vFloat(float a, float b, 
                                         float c, float d);
        static inline vFloat init_vFloat(float a, float b, 
                                         float c, float d)
        { union{ vFloat v; float f[4];}u; 
          u.f[0] = a; u.f[1] = b; 
          u.f[2] = c; u.f[3] = d; 
          return u.v; 
        }
    #elif defined( __VEC__ )
        // depending on compiler you might need to pass 
        // something like -faltivec or -maltivec or 
        // "Enable AltiVec Extensions" to turn this part on
        #include <altivec.h>
        typedef vector float vFloat;
        typedef vector int   vInt;

        #if 1
            // for compliant compilers
            #define init_vFloat(a, b, c, d) \
                     (const vFloat) (a, b, c, d)
        #else 
            // for FSF GCC
            #define init_vFloat(a, b, c, d) \
                     (const vFloat) {a, b, c, d}
        #endif
    #endif
#endif

void
print_vInt(vInt v)
{
    union{ vInt v; int i[4]; }u;
    u.v = v;

    printf("vInt: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\n", 
                        u.i[0], u.i[1], u.i[2], u.i[3]);
}
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void
print_vFloat(vFloat v)
{
    union{ vFloat v; float i[4]; }u;
    u.v = v;

    printf("vFloat: %f %f %f %f\n", u.i[0], u.i[1], u.i[2], u.i[3]);
}

int
main(void)
{
    vFloat  f = init_vFloat(1.0f, 2.0f, 3.0f, 4.0f);
    vInt    i;

    print_vFloat(f);

    printf("assign with cast:  vInt i = (vInt) f;\n" );
    i = (vInt) f;

    print_vInt(i);

    return 0;
}

The output of this code example demonstrates that conversions between 
vector data types implemented by some C compilers3 such as GCC are 
cast-free.

vFloat: 1.000000 2.000000 3.000000 4.000000
assign with cast:  vInt i = (vInt) f;
vInt: 0x3f800000 0x40000000 0x40400000 0x40800000

So we have prior art in C where casts between vector data types do not 
perform conversions as opposed to graphics shading languages that do 
perform conversions. The OpenCL working group decided it was best to 
make implicit conversions between vector data types illegal. It turns out 
that this was the right thing to do for other reasons, as discussed in the 
section “Explicit Conversions” later in this chapter.

3 Some fiddling with compiler flags to get the vector extensions turned on may 
be required, for example, -msse2 or -faltivec. You might need to play with 
the #ifs. The problem is that there is no portable way to declare a vector type. 
Getting rid of the sort of portability headaches at the top of the code example 
is one of the major value-adds of OpenCL.
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Usual Arithmetic Conversions

Many operators that expect operands of arithmetic types (integer or 
floating-point types) cause conversions and yield result types in a similar 
way. The purpose is to determine a common real type for the operands 
and result. For the specified operands, each operand is converted, without 
change of type domain, to a type whose corresponding real type is the 
common real type. For this purpose, all vector types are considered to 
have a higher conversion rank than scalars. Unless explicitly stated oth-
erwise, the common real type is also the corresponding real type of the 
result, whose type domain is the type domain of the operands if they are 
the same, and complex otherwise. This pattern is called the usual arith-
metic conversions.

If the operands are of more than one vector type, then a compile-time 
error will occur. Implicit conversions between vector types are not 
permitted. 

Otherwise, if there is only a single vector type, and all other operands are 
scalar types, the scalar types are converted to the type of the vector ele-
ment, and then widened into a new vector containing the same number of 
elements as the vector, by duplication of the scalar value across the width 
of the new vector. A compile-time error will occur if any scalar operand 
has greater rank than the type of the vector element. For this purpose, the 
rank order is defined as follows:

1. The rank of a floating-point type is greater than the rank of another 
floating-point type if the floating-point type can exactly represent all 
numeric values in the second floating-point type. (For this purpose, 
the encoding of the floating-point value is used, rather than the sub-
set of the encoding usable by the device.)

2. The rank of any floating-point type is greater than the rank of any 
integer type.

3. The rank of an integer type is greater than the rank of an integer type 
with less precision.

4. The rank of an unsigned integer type is greater than the rank of a 
signed integer type with the same precision.

5. bool has a rank less than any other type.

6. The rank of an enumerated type is equal to the rank of the compatible 
integer type.
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7. For all types T1, T2, and T3, if T1 has greater rank than T2, and T2 has 
greater rank than T3, then T1 has greater rank than T3.

Otherwise, if all operands are scalar, the usual arithmetic conversions 
apply as defined by Section 6.3.1.8 of the C99 specification.

Following are a few examples of legal usual arithmetic conversions with 
vectors and vector and scalar operands:

short a;
int4  b;
int4  c = b + a; 

In this example, the variable a, which is of type short, is converted to an 
int4 and the vector addition is then performed.

int    a;
float4 b;
float4 c = b + a; 

In the preceding example, the variable a, which is of type int, is con-
verted to a float4 and the vector addition is then performed.

float4 a;
float4 b;
float4 c = b + a;

In this example, no conversions need to be performed because a, b, and c
are all the same type.

Here are a few examples of illegal usual arithmetic conversions with vec-
tors and vector and scalar operands:

int    a;
short4 b;
short4 c = b + a; // cannot convert & widen int to short4 

double a;
float4 b;
float4 c = b + a; // cannot convert & widen double to float4

int4   a;
float4 b;
float4 c = b + a; // cannot cast between different vector types
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Explicit Casts
Standard type casts for the built-in scalar data types defined in Table 4.1 
will perform appropriate conversion (except void and half4). In the next 
example, f stores 0x3F800000 and i stores 0x1, which is the floating-
point value 1.0f in f converted to an integer value:

float f = 1.0f;
int   i = (int)f;

Explicit casts between vector types are not legal. The following examples 
will generate a compilation error:

int4   i;
uint4  u = (uint4)i;   // compile error

float4 f;
int4   i = (int4)f;    // compile error

float4 f;
int8   i = (int8)f;    // compile error

Scalar to vector conversions are performed by casting the scalar to the 
desired vector data type. Type casting will also perform the appropriate 
arithmetic conversion. Conversions to built-in integer vector types are 
performed with the round-toward-zero rounding mode. Conversions to 
built-in floating-point vector types are performed with the round-to-near-
est rounding mode. When casting a bool to a vector integer data type, 
the vector components will be set to -1 (that is, all bits are set) if the bool
value is true and 0 otherwise.

Here are some examples of explicit casts:

float4 f = 1.0f;
float4 va = (float4)f;  // va is a float4 vector 
                        // with elements ( f, f, f, f )

uchar u = 0xFF;
float4 vb = (float4)u;  // vb is a float4 vector with elements
                        // ( (float)u, (float)u, 
                        //   (float)u, (float)u )

float f = 2.0f;
int2 vc = (int2)f;      // vc is an int2 vector with elements
                        // ( (int)f, (int)f )

4 Unless the half-precision extension (cl_khr_fp16) is supported.
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uchar4 vtrue =(uchar4)true;  // vtrue is a uchar4 vector with 
                             // elements(0xFF, 0xFF, 0xFF, 0xFF)

Explicit Conversions
In the preceding sections we learned that implicit conversions and explicit 
casts do not allow conversions between vector types. However, there are 
many cases where we need to convert a vector type to another type. In 
addition, it may be necessary to specify the rounding mode that should be 
used to perform the conversion and whether the results of the conversion 
are to be saturated. This is useful for both scalar and vector data types. 

Consider the following example:

float x;
int   i = (int)x;

In this example the value in x is truncated to an integer value and stored 
in i; that is, the cast performs round-toward-zero rounding when convert-
ing the floating-point value to an integer value. 

Sometimes we need to round the floating-point value to the nearest inte-
ger. The following example shows how this is typically done:

float x;
int   i = (int)(x + 0.5f);

This works correctly for most values of x except when x is 0.5f – 1 ulp5

or if x is a negative number. When x is 0.5f – 1 ulp, (int)(x + 0.5f)
returns 1; that is, it rounds up instead of rounding down. When x is a 
negative number, (int)(x + 0.5f) rounds down instead of rounding up.

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <float.h>

int
main(void)
{
    float a = 0.5f;
    float b = a – nextafterf(a, (float)-INFINITY); // a – 1 ulp

5 ulp(x) is the gap between two finite floating-point numbers. A detailed 
description of ulp(x) is given in Chapter 5 in the section “Math Functions,” 
subsection “Relative Error as ulps.”
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    printf("a = %8x, b = %8x\n", 
                    *(unsigned int *)&a, *(unsigned int *)&b);
    printf("(int)(a + 0.5f) = %d \n", (int)(a + 0.5f));
    printf("(int)(b + 0.5f) = %d \n", (int)(b + 0.5f));
}

The printed values are:

a = 3f000000, b = 3effffff  // where b = a – 1 ulp.
(int)(a + 0.5f) = 1, 
(int)(b + 0.5f) = 1

We could fix these issues by adding appropriate checks to see what value 
x is and then perform the correct conversion, but there is hardware to 
do these conversions with rounding and saturation on most devices. It is 
important from a performance perspective that OpenCL C allows devel-
opers to perform these conversions using the appropriate hardware ISA as 
opposed to emulating in software. This is why OpenCL implements built-
in functions that perform conversions from one type to another with 
options that select saturation and one of four rounding modes.

Explicit conversions may be performed using either of the following:

destType convert_destType<_sat><_roundingMode> (sourceType) 
destType convert_destTypen<_sat><_roundingMode> (sourceTypen)

These provide a full set of type conversions for the following scalar types: 
char, uchar, short, ushort, int, uint, long, ulong, float, double,6

half,7 and the built-in vector types derived therefrom. The operand and 
result type must have the same number of elements. The operand and 
result type may be the same type, in which case the conversion has no 
effect on the type or value.

In the following example, convert_int4 converts a uchar4 vector u to 
an int4 vector c:

uchar4 u;
int4   c = convert_int4(u);

In the next example, convert_int converts a float scalar f to an int
scalar i:

float f;
int   i = convert_int(f);

6 Unless the double-precision extension (cl_khr_fp64) is supported.
7 Unless the half-precision extension (cl_khr_fp16) is supported.



Explicit Conversions 119

The optional rounding mode modifier can be set to one of the values 
described in Table 4.7.

The optional saturation modifier (_sat) can be used to specify that the 
results of the conversion must be saturated to the result type. When 
the conversion operand is either greater than the greatest representable 
destination value or less than the least representable destination value, 
it is said to be out of range. When converting between integer types, the 
resulting value for out-of-range inputs will be equal to the set of least sig-
nificant bits in the source operand element that fits in the corresponding 
destination element. When converting from a floating-point type to an 
integer type, the behavior is implementation-defined. 

Conversions to integer type may opt to convert using the optional satu-
rated mode by appending the _sat modifier to the conversion function 
name. When in saturated mode, values that are outside the representable 
range clamp to the nearest representable value in the destination format. 
(NaN should be converted to 0.)

Conversions to a floating-point type conform to IEEE 754 rounding rules. 
The _sat modifier may not be used for conversions to floating-point 
formats. 

Following are a few examples of using explicit conversion functions.

The next example shows a conversion of a float4 to a ushort4 with 
round-to-nearest rounding mode and saturation. Figure 4.2 describes the 
values in f and the result of conversion in c.

float4  f = (float4)(-5.0f, 254.5f, 254.6f, 1.2e9f);

ushort4 c = convert_uchar4_sat_rte(f);

Table 4.7 Rounding Modes for Conversions

Rounding Mode Modifier Rounding Mode Description

_rte Round to nearest even.

_rtz Round toward zero.

_rtp Round toward positive infinity.

_rtn Round toward negative infinity.

No modifier specified Use the default rounding mode for this destination 
type: _rtz for conversion to integers or _rte for 
conversion to floating-point types.
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The next example describes the behavior of the saturation modifier when 
converting a signed value to an unsigned value or performing a down-
conversion with integer types:

short4 s;

// negative values clamped to 0
ushort4 u = convert_ushort4_sat(s); 

// values > CHAR_MAX converted to CHAR_MAX
// values < CHAR_MIN converted to CHAR_MIN
char4 c = convert_char4_sat(s);

The following example illustrates conversion from a floating-point to an 
integer with saturation and rounding mode modifiers:

float4 f;

// values implementation-defined for f > INT_MAX, f < INT_MAX, or 
NaN
int4 i = convert_int4(f);

// values > INT_MAX clamp to INT_MAX, 
// values < INT_MIN clamp to INT_MIN
// NaN should produce 0.
// The _rtz rounding mode is used to produce the integer values.
int4 i2 = convert_int4_sat(f);

// similar to convert_int4 except that floating-point values
// are rounded to the nearest integer instead of truncated
int4 i3 = convert_int4_rte(f);

// similar to convert_int4_sat except that floating-point values
// are rounded to the nearest integer instead of truncated
int4 i4 = convert_int4_sat_rte(f);

f −5.0f 254.5f 254.6f

c 0 254 255 255

1.2E9f

Figure 4.2 Converting a float4 to a ushort4 with round-to-nearest 
rounding and saturation
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The final conversion example given here shows conversions from an 
integer to a floating-point value with and without the optional rounding 
mode modifier:

int4 i;

// convert ints to floats using the round-to-nearest rounding mode
float4 f = convert_float4(i);

// convert ints to floats; integer values that cannot be 
// exactly represented as floats should round up to the next 
// representable float
float4 f = convert_float4_rtp(i);

Reinterpreting Data as Another Type
Consider the case where you want to mask off the sign bit of a floating-
point type. There are multiple ways to solve this in C—using pointer 
aliasing, unions, or memcpy. Of these, only memcpy is strictly correct in 
C99. Because OpenCL C does not support memcpy, we need a different 
method to perform this masking-off operation. The general capability we 
need is the ability to reinterpret bits in a data type as another data type. 
In the example where we want to mask off the sign bit of a floating-point 
type, we want to reinterpret these bits as an unsigned integer type and 
then mask off the sign bit. Other examples include using the result of a 
vector relational operator and extracting the exponent or mantissa bits of 
a floating-point type.

The as_type and as_typen built-in functions allow you to reinterpret 
bits of a data type as another data type of the same size. The as_type
is used for scalar data types (except bool and void) and as_typen for 
vector data types. double and half are supported only if the appropriate 
extensions are supported by the implementation.

The following example describes how you would mask off the sign bit of a 
floating-point type using the as_type built-in function:

float f;
uint  u;

u = as_uint(f);
f = as_float(u & ~(1 << 31));

If the operand and result type contain the same number of elements, the 
bits in the operand are returned directly without modification as the new 
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type. If the operand and result type contain a different number of ele-
ments, two cases arise:

• The operand is a 4-component vector and the result is a 3-component 
vector. In this case, the xyz components of the operand and the result 
will have the same bits. The w component of the result is considered to 
be undefined.

• For all other cases, the behavior is implementation-defined.

We next describe a few examples that show how to use as_type and 
as_typen. The following example shows how to reinterpret an int as a 
float:

uint  u = 0x3f800000;
float f = as_float(u);

The variable u, which is declared as an unsigned integer, contains the 
value 0x3f800000. This represents the single-precision floating-point 
value 1.0. The variable f now contains the floating-point value 1.0.

In the next example, we reinterpret a float4 as an int4:

float4 f = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
int4 i = as_int4(f); 

The variable i, defined to be of type int4, will have the following val-
ues in its xyzw components: 0x3f800000, 0x40000000, 0x40400000,
0x40800000.

The next example shows how we can perform the ternary selection opera-
tor (?:) for floating-point vector types using as_typen:

// Perform the operation f = f < g ? f : 0 for components of a
// vector
float4 f, g;
int4 is_less = f < g;

// Each component of the is_less vector will be 0 if result of < 
// operation is false and will be -1 (i.e., all bits set) if 
// the result of < operation is true.

f = as_float4(as_int4(f) & is_less);
// This basically selects f or 0 depending on the values in is_less.

The following example describes cases where the operand and result have 
a different number of results, in which case the behavior of as_type and 
as_typen is implementation-defined:
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int i;
short2 j = as_short2(i); // Legal. Result is implementation-defined

int4 i;
short8 j = as_short8(i); // Legal. Result is implementation-defined

float4 f;
float3 g = as_float3(f); // Legal. g.xyz will have same values as 
                         // f.xyz. g.w is undefined

This example describes reinterpreting a 4-component vector as a 3-com-
ponent vector:

float4 f;
float3 g = as_float3(f); // Legal. g.xyz will have same values as 
                         // f.xyz. g.w is undefined

The next example shows invalid ways of using as_type and as_typen,
which should result in compilation errors:

float4 f;
double4 g = as_double4(f); // Error. Result and operand have
                           // different sizes.

float3 f;
float4 g = as_float4(f); // Error. Result and operand have 
                         // different sizes

Vector Operators
Table 4.8 describes the list of operators that can be used with vector data 
types or a combination of vector and scalar data types.

Table 4.8 Operators That Can Be Used with Vector Data Types

Operator Category Operator Symbols

Arithmetic operators Add (+)

Subtract (-)

Multiply (*)

Divide (/)

Remainder (%)

continues
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The behavior of these operators for scalar data types is as described by the 
C99 specification. The following sections discuss how each operator works 
with operands that are vector data types or vector and scalar data types. 

Arithmetic Operators

The arithmetic operators—add (+), subtract (-), multiply (*), and divide 
(/)—operate on built-in integer and floating-point scalar and vector data 
types. The remainder operator (%) operates on built-in integer scalar and 
vector data types only. The following cases arise:

Operator Category Operator Symbols

Relational operators Greater than (>)

Less than (<)

Greater than or equal (>=)

Less than or equal (<=)

Equality operators Equal (==)

Not equal (!=)

Bitwise operators And (&)

Or (|)

Exclusive or (^), not (~)

Logical operators And (&&)

Or (||)

Conditional operator Ternary selection operator (?:)

Shift operators Right shift (>>)

Left shift (<<)

Unary operators Arithmetic (+ or -)

Post- and pre-increment (++)

Post- and pre-decrement (--)

sizeof, not (!)

Comma operator (,)

Address and indirection operators (&, *)

Assignment operators =, *= , /= , += , -= , <<= , >>= , &= , ^= , |=

Table 4.8 Operators That Can Be Used with Vector Data Types (Continued )
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• The two operands are scalars. In this case, the operation is applied 
according to C99 rules.

• One operand is a scalar and the other is a vector. The scalar operand 
may be subject to the usual arithmetic conversion to the element type 
used by the vector operand and is then widened to a vector that has 
the same number of elements as the vector operand. The operation is 
applied component-wise, resulting in the same size vector. 

• The two operands are vectors of the same type. In this case, the opera-
tion is applied component-wise, resulting in the same size vector.

For integer types, a divide by zero or a division that results in a value 
that is outside the range will not cause an exception but will result in an 
unspecified value. Division by zero for floating-point types will result in 
±infinity or NaN as prescribed by the IEEE 754 standard.

A few examples will illustrate how the arithmetic operators work when 
one operand is a scalar and the other a vector, or when both operands are 
vectors.

The first example in Figure 4.3 shows two vectors being added:

int4 v_iA = (int4)(7, -3, -2, 5);
int4 v_iB = (int4)(1, 2, 3, 4);
int4 v_iC = v_iA + v_iB;

7 −3 −2 5

1 2 3 4

8 −1 1 9

+

=

Figure 4.3 Adding two vectors

The result of the addition stored in vector v_iC is (8, -1, 1, 9).

The next example in Figure 4.4 shows a multiplication operation where 
operands are a vector and a scalar. In this example, the scalar is just 
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widened to the size of the vector and the components of each vector are 
multiplied:

float4 vf = (float4)(3.0f, -1.0f, 1.0f, -2.0f);
float4 result = vf * 2.5f; 

*

=

2.5f
Widen

7.5f −2.5f 2.5f −5.0f

2.5f 2.5f 2.5f 2.5f

3.0f −1.0f 1.0f −2.0f

Figure 4.4 Multiplying a vector and a scalar with widening

The result of the multiplication stored in vector result is (7.5f,
-2.5f, 2.5f, -5.0f).

The next example in Figure 4.5 shows how we can multiply a vector and a 
scalar where the scalar is implicitly converted and widened:

float4 vf = (float4)(3.0f, -1.0f, 1.0f, -2.0f);
float4 result = vf * 2;

−2.0f−1.0f

*

=

3.0f 1.0f

2.0f 2.0f
Widen Convert

22.0f2.0f 2.0f

−4.0f−2.0f6.0f 2.0f

Figure 4.5 Multiplying a vector and a scalar with conversion and widening

The result of the multiplication stored in the vector result is (6.0f,
-2.0f, 2.0f, -4.0f).
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Relational and Equality Operators

The relational operators—greater than (>), less than (<), greater than or 
equal (>=), and less than or equal (<=)—and equality operators—equal 
(==) and not equal (!=)—operate on built-in integer and floating-point 
scalar and vector data types. The result is an integer scalar or vector type. 
The following cases arise:

• The two operands are scalars. In this case, the operation is applied 
according to C99 rules.

• One operand is a scalar and the other is a vector. The scalar operand 
may be subject to the usual arithmetic conversion to the element type 
used by the vector operand and is then widened to a vector that has 
the same number of elements as the vector operand. The operation is 
applied component-wise, resulting in the same size vector. 

• The two operands are vectors of the same type. In this case, the opera-
tion is applied component-wise, resulting in the same size vector.

The result is a scalar signed integer of type int if both source operands 
are scalar and a vector signed integer type of the same size as the vector 
source operand. The result is of type charn if the source operands are 
charn or ucharn; shortn if the source operands are shortn, shortn, or 
halfn; intn if the source operands are intn, uintn, or floatn; longn if 
the source operands are longn, ulongn, or doublen.

For scalar types, these operators return 0 if the specified relation is false 
and 1 if the specified relation is true. For vector types, these operators 
return 0 if the specified relation is false and -1 (i.e., all bits set) if the 
specified relation is true. The relational operators always return 0 if one or 
both arguments are not a number (NaN). The equality operator equal (==)
returns 0 if one or both arguments are not a number (NaN), and the equal-
ity operator not equal (!=) returns 1 (for scalar source operands) or -1 (for 
vector source operands) if one or both arguments are not a number (NaN). 

Bitwise Operators

The bitwise operators—and (&), or (|), exclusive or (^), and not (~)—oper-
ate on built-in integer scalar and vector data types. The result is an integer 
scalar or vector type. The following cases arise:

• The two operands are scalars. In this case, the operation is applied 
according to C99 rules.
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• One operand is a scalar and the other is a vector. The scalar operand 
may be subject to the usual arithmetic conversion to the element type 
used by the vector operand and is then widened to a vector that has 
the same number of elements as the vector operand. The operation is 
applied component-wise, resulting in the same size vector. 

• The two operands are vectors of the same type. In this case, the opera-
tion is applied component-wise, resulting in the same size vector.

Logical Operators

The logical operators—and (&&), or (||)—operate on built-in integer scalar 
and vector data types. The result is an integer scalar or vector type. The 
following cases arise:

• The two operands are scalars. In this case, the operation is applied 
according to C99 rules.

• One operand is a scalar and the other is a vector. The scalar operand 
may be subject to the usual arithmetic conversion to the element type 
used by the vector operand and is then widened to a vector that has 
the same number of elements as the vector operand. The operation is 
applied component-wise, resulting in the same size vector. 

• The two operands are vectors of the same type. In this case, the opera-
tion is applied component-wise, resulting in the same size vector.

If both source operands are scalar, the logical operator and (&&) will 
evaluate the right-hand operand only if the left-hand operand compares 
unequal to 0, and the logical operator or (||) will evaluate the right-hand 
operand only if the left-hand operand compares equal to 0. If one or both 
source operands are vector types, both operands are evaluated.

The result is a scalar signed integer of type int if both source operands 
are scalar and a vector signed integer type of the same size as the vector 
source operand. The result is of type charn if the source operands are 
charn or ucharn; shortn if the source operands are shortn or ushortn;
intn if the source operands are intn or uintn; or longn if the source 
operands are longn or ulongn.

For scalar types, these operators return 0 if the specified relation is false 
and 1 if the specified relation is true. For vector types, these operators 
return 0 if the specified relation is false and -1 (i.e., all bits set) if the 
specified relation is true.

The logical exclusive operator (^^) is reserved for future use.
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Conditional Operator

The ternary selection operator (?:) operates on three expressions (expr1 ? 
expr2 : expr3). This operator evaluates the first expression, expr1,
which can be a scalar or vector type except the built-in floating-point 
types. If the result is a scalar value, the second expression, expr2, is evalu-
ated if the result compares unequal to 0; otherwise the third expression, 
expr3, is evaluated. If the result is a vector value, then (expr1 ? expr2 
: expr3) is applied component-wise and is equivalent to calling the built-
in function select(expr3, expr2, expr1). The second and third 
expressions can be any type as long as their types match or if an implicit 
conversion can be applied to one of the expressions to make their types 
match, or if one is a vector and the other is a scalar, in which case the 
usual arithmetic conversion followed by widening is applied to the scalar 
to match the vector operand type. This resulting matching type is the 
type of the entire expression. 

A few examples will show how the ternary selection operator works with 
scalar and vector types:

int4   va, vb, vc, vd;
int    a, b, c, d;
float4 vf;

vc = d ? va : vb;  // vc = va if d is true, = vb if d is false

vc = vd ? va : vb; // vc.x = vd.x ? va.x : vb.x
                   // vc.y = vd.y ? va.y : vb.y
                   // vc.z = vd.z ? va.z : vb.z
                   // vc.w = vd.w ? va.w : vb.w

vc = vd ? a : vb;  // a is widened to an int4 first 
                   // vc.x = vd.x ? a : vb.x
                   // vc.y = vd.y ? a : vb.y
                   // vc.z = vd.z ? a : vb.z
                   // vc.w = vd.w ? a : vb.w

vc = vd ? va : vf; // error – vector types va & vf do not match

Shift Operators

The shift operators—right shift (>>) and left shift (<<)—operate on built-
in integer scalar and vector data types. The result is an integer scalar or 
vector type. The rightmost operand must be a scalar if the first operand is 
a scalar. For example:
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uint  a, b, c;
uint2 r0, r1;

c = a << b;   // legal – both operands are scalars
r1 = a << r0; // illegal – first operand is a scalar and 
              // therefore second operand (r0) must also be scalar.
c = b << r0;  // illegal – first operand is a scalar and 
              // therefore second operand (r0) must also be scalar.

The rightmost operand can be a vector or scalar if the first operand is a 
vector. For vector types, the operators are applied component-wise.

If operands are scalar, the result of E1 << E2 is E1 left-shifted by 
log2(N) least significant bits in E2. The vacated bits are filled with zeros. 
If E2 is negative or has a value that is greater than or equal to the width 
of E1, the C99 specification states that the behavior is undefined. Most 
implementations typically return 0.

Consider the following example:

char x = 1;
char y = -2;
x = x << y;

When compiled using a C compiler such as GCC on an Intel x86 pro-
cessor, (x << y) will return 0. However, with OpenCL C, (x << y) is 
implemented as (x << (y & 0x7)), which returns 0x40.

For vector types, N is the number of bits that can represent the type of ele-
ments in a vector type for E1 used to perform the left shift. For example:

char2 x = (uchar2)(1, 2);
char  y = -9;

x = x << y;

Because components of vector x are an unsigned char, the vector shift 
operation is performed as ( (1 << (y & 0x7)), (2 << (y & 0x7)) ).

Similarly, if operands are scalar, the result of E1 >> E2 is E1 right-shifted 
by log2(N) least significant bits in E2. If E2 is negative or has a value 
that is greater than or equal to the width of E1, the C99 specification 
states that the behavior is undefined. For vector types, N is the number of 
bits that can represent the type of elements in a vector type for E1 used 
to perform the right shift. The vacated bits are filled with zeros if E1 is 
an unsigned type or is a signed type but is not a negative value. If E1 is a 
signed type and a negative value, the vacated bits are filled with ones.
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Unary Operators

The arithmetic unary operators (+ and -) operate on built-in scalar and 
vector types. 

The arithmetic post- and pre- increment (++) and decrement (--) opera-
tors operate on built-in scalar and vector data types except the built-in 
scalar and vector floating-point data types. These operators work compo-
nent-wise on their operands and result in the same type they operated on.

The logical unary operator not (!) operates on built-in scalar and vector 
data types except the built-in scalar and vector floating-point data types. 
These operators work component-wise on their operands. The result is a 
scalar signed integer of type int if both source operands are scalar and a 
vector signed integer type of the same size as the vector source operand. 
The result is of type charn if the source operands are charn or ucharn;
shortn if the source operands are shortn or ushortn ; intn if the 
source operands are intn or uintn; or longn if the source operands are 
longn or ulongn.

For scalar types, these operators return 0 if the specified relation is false 
and 1 if the specified relation is true. For vector types, these operators 
return 0 if the specified relation is false and -1 (i.e., all bits set) if the 
specified relation is true.

The comma operator (,) operates on expressions by returning the type 
and value of the rightmost expression in a comma-separated list of 
expressions. All expressions are evaluated, in order, from left to right. For 
example:

// comma acts as a separator not an operator.
int a = 1, b = 2, c = 3, x;

// comma acts as an operator
x = a += 2, a + b;      // a = 3, x = 5
x = (a, b, c);          // x = 3

The sizeof operator yields the size (in bytes) of its operand. The result is 
an integer value. The result is 1 if the operand is of type char or uchar;
2 if the operand is of type short, ushort, or half; 4 if the operand is of 
type int, uint, or float; and 8 if the operand is of type long, ulong,
or double. The result is number of components in vector * size 
of each scalar component if the operand is a vector type except for 
3-component vectors, which return 4 * size of each scalar com-
ponent. If the operand is an array type, the result is the total number 
of bytes in the array, and if the operand is a structure or union type, the 
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result is the total number of bytes in such an object, including any inter-
nal or trailing padding.

The behavior of applying the sizeof operator to the image2d_t,
image3d_t, sampler_t, and event_t types is implementation-defined. 
For some implementations, sizeof(sampler_t) = 4 and on some 
implementation this may result in a compile-time error. For portabil-
ity across OpenCL implementations, it is recommended not to use the 
sizeof operator for these types.

The unary operator (*) denotes indirection. If the operand points to an 
object, the result is an l-value designating the object. If the operand has 
type “pointer to type,” the result has type type. If an invalid value has 
been assigned to the pointer, the behavior of the indirection operator is 
undefined.

The unary operator (&) returns the address of its operand.

Assignment Operator

Assignments of values to variables names are done with the assignment 
operator (=), such as

lvalue = expression

The assignment operator stores the value of expression into lvalue.
The following cases arise:

• The two operands are scalars. In this case, the operation is applied 
according to C99 rules.

• One operand is a scalar and the other is a vector. The scalar operand is 
explicitly converted to the element type used by the vector operand and 
is then widened to a vector that has the same number of elements as 
the vector operand. The operation is applied component-wise, result-
ing in the same size vector. 

• The two operands are vectors of the same type. In this case, the opera-
tion is applied component-wise, resulting in the same size vector.

The following expressions are equivalent:

lvalue op= expression
lvalue = lvalue op expression

The lvalue and expression must satisfy the requirements for both 
operator op and assignment (=).
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Qualifiers
OpenCL C supports four types of qualifiers: function qualifiers, address 
space qualifiers, access qualifiers, and type qualifiers.

Function Qualifiers

OpenCL C adds the kernel (or __kernel) function qualifier. This quali-
fier is used to specify that a function in the program source is a kernel 
function. The following example demonstrates the use of the kernel 
qualifier:

kernel void
parallel_add(global float *a, global float *b, global float *result)
{
    ...
}

// The following example is an example of an illegal kernel 
// declaration and will result in a compile-time error.
// The kernel function has a return type of int instead of void.
kernel int
parallel_add(global float *a, global float *b, global float *result)
{
    ...
}

The following rules apply to kernel functions:

• The return type must be void. If the return type is not void, it will 
result in a compilation error.

• The function can be executed on a device by enqueuing a command 
to execute the kernel from the host.

• The function behaves as a regular function if it is called from a kernel 
function. The only restriction is that a kernel function with variables 
declared inside the function with the local qualifier cannot be called 
from another kernel function.

The following example shows a kernel function calling another kernel 
function that has variables declared with the local qualifier. The behav-
ior is implementation-defined so it is not portable across implementations 
and should therefore be avoided.

kernel void
my_func_a(global float *src, global float *dst)
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{
    local float l_var[32];

    ...
}

kernel void
my_func_b(global float * src, global float *dst)
{
    my_func_a(src, dst); // implementation-defined behavior
}

A better way to implement this example that is also portable is to pass the 
local variable as an argument to the kernel:

kernel void
my_func_a(global float *src, global float *dst, local float *l_var)
{

    ...
}

kernel void
my_func_b(global float * src, global float *dst, local float *l_var)
{
    my_func_a(src, dst, l_var); 
}

Kernel Attribute Qualifiers

The kernel qualifier can be used with the keyword __attribute__ to 
declare the following additional information about the kernel:

• __attribute__((work_group_size_hint(X, Y, Z))) is a hint to 
the compiler and is intended to specify the work-group size that will 
most likely be used, that is, the value specified in the local_work_
size argument to clEnqueueNDRangeKernel.

• __attribute__((reqd_work_group_size(X, Y, Z))) is 
intended to specify the work-group size that will be used, that is, the 
value specified in the local_work_size argument to clEnqueueN-
DRangeKernel. This provides an opportunity for the compiler to 
perform specific optimizations that depend on knowing what the 
work-group size is.

• __attribute__((vec_type_hint(<type>))) is a hint to the 
compiler on the computational width of the kernel, that is, the size 
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of the data type the kernel is operating on. This serves as a hint to an 
auto-vectorizing compiler. The default value of <type> is int, indi-
cating that the kernel is scalar in nature and the auto-vectorizer can 
therefore vectorize the code across the SIMD lanes of the vector unit 
for multiple work-items.

Address Space Qualifiers

Work-items executing a kernel have access to four distinct memory 
regions. These memory regions can be specified as a type qualifier. The 
type qualifier can be global (or __global), local (or __local), con-
stant (or __constant), or private (or __private).

If the type of an object is qualified by an address space name, the object 
is allocated in the specified address space. If the address space name is not 
specified, then the object is allocated in the generic address space. The 
generic address space name (for arguments to functions in a program, or 
local variables in a function) is private.

A few examples that describe how to specify address space names follow:

// declares a pointer p in the private address space that points to 
// a float object in address space global
global float *p;

// declares an array of integers in the private address space
int   f[4];

// for my_func_a function we have the following arguments:
//
//   src - declares a pointer in the private address space that
//         points to a float object in address space constant
//
//   v   - allocate in the private address space
//
int
my_func_a(constant float *src, int4 v)
{
    float temp;  // temp is allocated in the private address space.
}

Arguments to a kernel function that are declared to be a pointer of a type 
must point to one of the following address spaces only: global, local, or 
constant. Not specifying an address space name for such arguments will 
result in a compilation error. This limitation does not apply to non-kernel 
functions in a program.
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A few examples of legal and illegal use cases are shown here:

kernel void my_func(int *p) // illegal because generic address space 
                            // name for p is private.

kernel void 
my_func(private int *p) // illegal because memory pointed to by 
                        // p is allocated in private.

void
my_func(int *p) // generic address space name for p is private.
                // legal as my_func is not a kernel function

void
my_func(private int *p) // legal as my_func is not a kernel function

Global Address Space

This address space name is used to refer to memory objects (buffers and 
images) allocated from the global memory region. This memory region 
allows read/write access to all work-items in all work-groups executing a 
kernel. This address space is identified by the global qualifier.

A buffer object can be declared as a pointer to a scalar, vector, or user-
defined struct. Some examples are:

global float4 *color;    // an array of float4 elements

typedef struct {
    float3 a;
    int2   b[2];
} foo_t;
global foo_t *my_info;    // an array of foo_t elements

The global address qualifier should not be used for image types. 

Pointers to the global address space are allowed as arguments to functions 
(including kernel functions) and variables declared inside functions. Vari-
ables declared inside a function cannot be allocated in the global address 
space. 

A few examples of legal and illegal use cases are shown here:

void
my_func(global float4 *vA, global float4 *vB)
{
    global float4 *p;   // legal
    global float4 a;    // illegal
}
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Constant Address Space

This address space name is used to describe variables allocated in global 
memory that are accessed inside a kernel(s) as read-only variables. This 
memory region allows read-only access to all work-items in all work-
groups executing a kernel. This address space is identified by the con-
stant qualifier.

Image types cannot be allocated in the constant address space. The fol-
lowing example shows imgA allocated in the constant address space, 
which is illegal and will result in a compilation error:

kernel void
my_func(constant image2d_t imgA)
{
    ...
}

Pointers to the constant address space are allowed as arguments to func-
tions (including kernel functions) and variables declared inside functions. 

Variables in kernel function scope (i.e., the outermost scope of a kernel 
function) can be allocated in the constant address space. Variables in 
program scope (i.e., global variables in a program) can be allocated only in 
the constant address space. All such variables are required to be initial-
ized, and the values used to initialize these variables must be compile-time 
constants. Writing to such a variable will result in a compile-time error.

Also, storage for all string literals declared in a program will be in the 
constant address space.

A few examples of legal and illegal use cases follow:

// legal - program scope variables can be allocated only
// in the constant address space 
constant float wtsA[] = { 0, 1, 2, . . . };  // program scope

// illegal - program scope variables can be allocated only
// in the constant address space 
global float wtsB[] = { 0, 1, 2, . . . }; 

kernel void
my_func(constant float4 *vA, constant float4 *vB)
{
    constant float4 *p = vA;  // legal
    constant float a;         // illegal – not initialized
    constant float b = 2.0f;  // legal – initialized with a compile- 
                              //         time constant
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    p[0] = (float4)(1.0f);    // illegal – p cannot be modified

    // the string "opencl version" is allocated in the 
    // constant address space
    char *c = "opencl version";

}

Note  The number of variables declared in the constant address space 
that can be used by a kernel is limited to CL_DEVICE_MAX_
CONSTANT_ARGS. OpenCL 1.1 describes that the minimum value 
all implementations must support is eight. So up to eight variables 
declared in the constant address space can be used by a kernel and 
are guaranteed to work portably across all implementations. The 
size of these eight constant arguments is given by CL_DEVICE_
MAX_CONSTANT_BUFFER_SIZE and is set to 64KB. It is therefore 
possible that multiple constant declarations (especially those 
defined in the program scope) can be merged into one constant 
buffer as long as their total size is less than CL_DEVICE_MAX_
CONSTANT_BUFFER_SIZE. This aggregation of multiple variables 
declared to be in the constant address space is not a required 
behavior and so may not be implemented by all OpenCL imple-
mentations. For portable code, the developer should assume that 
these variables do not get aggregated into a single constant buffer.

Local Address Space

This address space name is used to describe variables that need to be allo-
cated in local memory and are shared by all work-items of a work-group 
but not across work-groups executing a kernel. This memory region allows 
read/write access to all work-items in a work-group. This address space is 
identified by the local qualifier.

A good analogy for local memory is a user-managed cache. Local memory 
can significantly improve performance if a work-item or multiple work-
items in a work-group are reading from the same location in global mem-
ory. For example, when applying a Gaussian filter to an image, multiple 
work-items read overlapping regions of the image. The overlap region size 
is determined by the width of the filter. Instead of reading multiple times 
from global memory (which is an order of magnitude slower), it is prefera-
ble to read the required data from global memory once into local memory 
and then have the work-items read multiple times from local memory.

Pointers to the local address space are allowed as arguments to functions 
(including kernel functions) and variables declared inside functions. 
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Variables declared inside a kernel function can be allocated in the local 
address space but with a few restrictions: 

• These variable declarations must occur at kernel function scope.

• These variables cannot be initialized.

Note that variables in the local address space that are passed as pointer 
arguments to or declared inside a kernel function exist only for the life-
time of the work-group executing the kernel.

A few examples of legal and illegal use cases are shown here:

kernel void
my_func(global float4 *vA, local float4 *l)
{
    local  float4 *p;   // legal
    local  float4 a;    // legal
    a = 1;
    local  float4 b = (float4)(0); // illegal – b cannot be 
                                   //           initialized

    if (...)
    {
        local float c;  // illegal – must be allocated at 
                        // kernel function scope
        ...
    }
}

Private Address Space

This address space name is used to describe variables that are private to 
a work-item and cannot be shared between work-items in a work-group 
or across work-groups. This address space is identified by the private
qualifier.

Variables inside a kernel function not declared with an address space 
qualifier, all variables declared inside non-kernel functions, and all func-
tion arguments are in the private address space.

Casting between Address Spaces

A pointer in an address space can be assigned to another pointer only in 
the same address space. Casting a pointer in one address space to a pointer 
in a different address space is illegal. For example:
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kernel void
my_func(global float4 *particles)
{
    // legal – particle_ptr & particles are in the 
    //         same address space
    global float *particle_ptr = (global float *)particles;

    // illegal – private_ptr and particle_ptr are in different 
    //           address spaces
    float *private_ptr = (float *)particle_ptr;
}

Access Qualifiers

The access qualifiers can be specified with arguments that are an image 
type. These qualifiers specify whether the image is a read-only (read_
only or __read_only) or write-only (write_only or __write_only)
image. This is because of a limitation of current GPUs that do not allow 
reading and writing to the same image in a kernel. The reason for this is 
that image reads are cached in a texture cache, but writes to an image do 
not update the texture cache. 

In the following example imageA is a read-only 2D image object and 
imageB is a write-only 2D image object:

kernel void
my_func(read_only image2d_t imageA, write_only image2d_t imageB)
{
    ...
}

Images declared with the read_only qualifier can be used with the 
built-in functions that read from an image. However, these images cannot 
be used with built-in functions that write to an image. Similarly, images 
declared with the write_only qualifier can be used only to write to an 
image and cannot be used to read from an image. The following examples 
demonstrate this:

kernel void
my_func(read_only image2d_t imageA, 
        write_only image2d_t imageB,
        sampler_t sampler)
{
    float4 clr;
    float2 coords; 

    clr = read_imagef(imageA, sampler, coords); // legal
    clr = read_imagef(imageB, sampler, coords); // illegal
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    write_imagef(imageA, coords, &clr);         // illegal
    write_imagef(imageB, coords, &clr);         // legal
}

imageA is declared to be a read_only image so it cannot be passed as an 
argument to write_imagef. Similarly, imageB is declared to be a write_
only image so it cannot be passed as an argument to read_imagef.

The read-write qualifier (read_write or __read_write) is reserved. 
Using this qualifier will result in a compile-time error.

Type Qualifiers

The type qualifiers const, restrict, and volatile as defined by the 
C99 specification are supported. These qualifiers cannot be used with the 
image2d_t and image3d_t type. Types other than pointer types cannot 
use the restrict qualifier.

Keywords
The following names are reserved for use as keywords in OpenCL C and 
cannot be used otherwise:

• Names already reserved as keywords by C99

• OpenCL C data types (defined in Tables 4.1, 4.2, and 4.6)

• Address space qualifiers: __global, global, __local, local,
__constant, constant, __private, and private

• Function qualifiers: __kernel and kernel

• Access qualifiers: __read_only, read_only, __write_only,
write_only, __read_write, and read_write

Preprocessor Directives and Macros
The preprocessing directives defined by the C99 specification are sup-
ported. These include

# non-directive
#if
#ifdef
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#ifndef
#elif
#else
#endif
#include
#define
#undef
#line
#error
#pragma

The defined operator is also included.

The following example demonstrates the use of #if, #elif, #else, and 
#endif preprocessor macros. In this example, we use the preprocessor 
macros to determine which arithmetic operation to apply in the kernel. 
The kernel source is described here:

#define OP_ADD          1
#define OP_SUBTRACT     2
#define OP_MULTIPLY     3
#define OP_DIVIDE       4

kernel void
foo(global float *dst, global float *srcA, global float *srcB)
{
    size_t id = get_global_id(0);
#if OP_TYPE == OP_ADD
    dst[id] = srcA[id] + srcB[id];
#elif OP_TYPE == OP_SUBTRACT
    dst[id] = srcA[id] – srcB[id];
#elif OP_TYPE == OP_MULTIPLY
    dst[id] = srcA[id] * srcB[id];
#elif OP_TYPE == OP_DIVIDE
    dst[id] = srcA[id] / srcB[id];
#else
    dst[id] = NAN;
#endif
}

To build the program executable with the appropriate value for OP_TYPE,
the application calls clBuildProgram as follows:

// build program so that kernel foo does an add operation
err = clBuildProgram(program, 0, NULL, 
                                "-DOP_TYPE=1", NULL, NULL); 
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Pragma Directives

The #pragma directive is described as

#pragma pp-tokensopt new-line

A #pragma directive where the preprocessing token OPENCL (used instead 
of STDC) does not immediately follow pragma in the directive (prior 
to any macro replacement) causes the implementation to behave in an 
implementation-defined manner. The behavior might cause translation 
to fail or cause the translator or the resulting program to behave in a 
nonconforming manner. Any such pragma that is not recognized by the 
implementation is ignored. If the preprocessing token OPENCL does imme-
diately follow pragma in the directive (prior to any macro replacement), 
then no macro replacement is performed on the directive.

The following standard pragma directives are available.

Floating-Point Pragma

The FP_CONTRACT floating-point pragma can be used to allow (if the 
state is on) or disallow (if the state is off) the implementation to contract 
expressions. The FP_CONTRACT pragma definition is 

#pragma OPENCL FP_CONTRACT on-off-switch
on-off-switch: one of ON OFF DEFAULT

A detailed description of #pragma OPENCL FP_CONTRACT is found in 
Chapter 5 in the section “Floating-Point Pragmas.”

Compiler Directives for Optional Extensions

The #pragma OPENCL EXTENSION directive controls the behavior of 
the OpenCL compiler with respect to language extensions. The #pragma
OPENCL EXTENSION directive is defined as follows, where extension_
name is the name of the extension:

#pragma OPENCL EXTENSION extension_name: behavior
#pragma OPENCL EXTENSION all : behavior

behavior: enable or disable

The extension_name will have names of the form cl_khr_<name> for 
an extension (such as cl_khr_fp64) approved by the OpenCL working 
group and will have names of the form cl_<vendor_name>_<name> for 
vendor extensions. The token all means that the behavior applies to all 
extensions supported by the compiler. The behavior can be set to one of 
the values given in Table 4.9.
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The #pragma OPENCL EXTENSION directive is a simple, low-level mecha-
nism to set the behavior for each language extension. It does not define 
policies such as which combinations are appropriate; these are defined 
elsewhere. The order of directives matters in setting the behavior for each 
extension. Directives that occur later override those seen earlier. The 
all variant sets the behavior for all extensions, overriding all previously 
issued extension directives, but only if the behavior is set to disable.

An extension needs to be enabled before any language feature (such as 
preprocessor macros, data types, or built-in functions) of this extension is 
used in the OpenCL program source. The following example shows how 
to enable the double-precision floating-point extension:

#pragma OPENCL EXTENSION cl_khr_fp64 : enable
double x = 2.0;

If this extension is not supported, then a compilation error will be 
reported for double x = 2.0. If this extension is supported, this enables 
the use of double-precision floating-point extensions in the program 
source following this directive.

Similarly, the cl_khr_3d_image_writes extension adds new built-in 
functions that support writing to a 3D image: 

#pragma OPENCL EXTENSION cl_khr_3d_image_writes : enable
kernel void my_func(write_only image3d_t img, ...)

{
    float4 coord, clr;
    ...
    write_imagef(img, coord, clr);
}

Table 4.9 Optional Extension Behavior Description

Behavior Description

enable Enable the extension extension_name. Report an error on the 
#pragma OpenCL EXTENSION if the extension_name is not 
supported, or if all is specified.

disable Behave (including issuing errors and warnings) as if the extension 
extension_name is not part of the language definition.

If all is specified, then behavior must revert back to that of the 
nonextended core version of the language being compiled to.

Warn on the #pragma OPENCL EXTENSION if the extension 
extension_name is not supported.
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The built-in functions such as write_imagef with image3d_t in the pre-
ceding example can be called only if this extension is enabled; otherwise 
a compilation error will occur.

The initial state of the compiler is as if the following directive were issued, 
telling the compiler that all error and warning reporting must be done 
according to this specification, ignoring any extensions:

#pragma OPENCL EXTENSION all : disable

Every extension that affects the OpenCL language semantics or syntax 
or adds built-in functions to the language must also create a preprocessor 
#define that matches the extension name string. This #define would 
be available in the language if and only if the extension is supported on 
a given implementation. For example, an extension that adds the exten-
sion string cl_khr_fp64 should also add a preprocessor #define called 
cl_khr_fp64. A kernel can now use this preprocessor #define to do 
something like this:

#ifdef cl_khr_fp64
    // do something using this extension
#else
    // do something else or #error
#endif

Macros

The following predefined macro names are available:

• __FILE__ is the presumed name of the current source file (a character 
string literal).

• __LINE__ is the presumed line number (within the current source 
file) of the current source line (an integer constant).

• CL_VERSION_1_0 substitutes the integer 100, reflecting the OpenCL 
1.0 version.

• CL_VERSION_1_1 substitutes the integer 110, reflecting the OpenCL 
1.1 version.

• __OPENCL_VERSION__ substitutes an integer reflecting the version 
number of the OpenCL supported by the OpenCL device. This reflects 
both the language version supported and the device capabilities as 
given in Table 4.3 of the OpenCL 1.1 specification. The version of 
OpenCL described in this book will have __OPENCL_VERSION__ sub-
stitute the integer 110.
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• __ENDIAN_LITTLE__ is used to determine if the OpenCL device is a 
little endian architecture or a big endian architecture (an integer con-
stant of 1 if the device is little endian and is undefined otherwise).

• __kernel_exec(X, typen) (and kernel_exec(X, typen)) is 
defined as
__kernel __attribute__((work_group_size_hint(X, 1, 1))) \
    __attribute__((vec_type_hint(typen))).

• __IMAGE_SUPPORT__ is used to determine if the OpenCL device sup-
ports images. This is an integer constant of 1 if images are supported 
and is undefined otherwise. 

• __FAST_RELAXED_MATH__ is used to determine if the –cl-fast-
relaxed-math optimization option is specified in build options 
given to clBuildProgram. This is an integer constant of 1 if the –
cl-fast-relaxed-math build option is specified and is undefined 
otherwise.

The macro names defined by the C99 specification but not currently sup-
ported by OpenCL are reserved for future use.

Restrictions
OpenCL C implements the following restrictions. Some of these restric-
tions have already been described in this chapter but are also included 
here to provide a single place where the language restrictions are 
described.

• Kernel functions have the following restrictions:

• Arguments to kernel functions that are pointers must use the 
global, constant, or local qualifier.

• An argument to a kernel function cannot be declared as a pointer 
to a pointer(s).

• Arguments to kernel functions cannot be declared with the 
following built-in types: bool, half, size_t, ptrdiff_t,
intptr_t, uintptr_t, or event_t.

• The return type for a kernel function must be void.

• Arguments to kernel functions that are declared to be a struct can-
not pass OpenCL objects (such as buffers, images) as elements of 
the struct.
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• Bit field struct members are not supported.

• Variable-length arrays and structures with flexible (or unsized) arrays 
are not supported.

• Variadic macros and functions are not supported.

• The extern, static, auto, and register storage class specifiers are 
not supported.

• Predefined identifiers such as __func__ are not supported.

• Recursion is not supported.

• The library functions defined in the C99 standard headers—
assert.h, ctype.h, complex.h, errno.h, fenv.h, float.h,
inttypes.h, limits.h, locale.h, setjmp.h, signal.h,
stdarg.h, stdio.h, stdlib.h, string.h, tgmath.h, time.h,
wchar.h, and wctype.h—are not available and cannot be included 
by a program.

• The image types image2d_t and image3d_t can be specified only as 
the types of a function argument. They cannot be declared as local 
variables inside a function or as the return types of a function. An 
image function argument cannot be modified. An image type can-
not be used with the private, local, and constant address space 
qualifiers. An image type cannot be used with the read_write access 
qualifier, which is reserved for future use. An image type cannot 
be used to declare a variable, a structure or union field, an array of 
images, a pointer to an image, or the return type of a function.

• The sampler type sampler_t can be specified only as the type of a 
function argument or a variable declared in the program scope or 
the outermost scope of a kernel function. The behavior of a sampler 
variable declared in a non-outermost scope of a kernel function is 
implementation-defined. A sampler argument or a variable cannot be 
modified. The sampler type cannot be used to declare a structure or 
union field, an array of samplers, a pointer to a sampler, or the return 
type of a function. The sampler type cannot be used with the local
and global address space qualifiers.

• The event type event_t can be used as the type of a function argu-
ment except for kernel functions or a variable declared inside a func-
tion. The event type can be used to declare an array of events. The 
event type can be used to declare a pointer to an event, for example, 
event_t *event_ptr. An event argument or variable cannot be 
modified. The event type cannot be used to declare a structure or 
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union field, or for variables declared in the program scope. The event 
type cannot be used with the local, constant, and global address 
space qualifiers.

• The behavior of irreducible control flow in a kernel is implementa-
tion-defined. Irreducible control flow is typically encountered in code 
that uses gotos. An example of irreducible control flow is a goto
jumping inside a nested loop or a Duff’s device.



   581

Symbols
-- (pre-increment) unary operator, 131
- (subtract) operator, 124–126
?: (ternary selection) operator, 129
- or -- (unary) operators, 131
| or || (or) operators, 127–128
+ (addition) operator, 124–126
+ or ++ (post-increment) unary operator, 

131
!= (not equal) operator, 127
== (equal) operator, 127
% (remainder) operator, 124–126
& or && (and) operators, 127–128
* (multiply) operator, 124–126
^ (exclusive or) operator, 127–128
^^ (exclusive) operator, 128
~ (not) operator, 127–128
> (greater than) operator, 127
>= (greater than or equal) operator, 127
>> (right shift) operator, 129–130

Numbers
0 value, 64–65, 68
2D composition, in DFT, 457–458
64-bit integers, embedded profile, 

385–386
754 formats, IEEE floating-point arith-

metic, 34

A
accelerator devices

defined, 69
tiled and packetized sparse matrix 

design, 523, 534
access qualifiers

as keywords in OpenCL C, 141
overview of, 140–141
reference guide, 576

add (+) arithmetic operator, 124–126
address space qualifiers

casting between address spaces, 
139–140

constant, 137–138
global, 136
as keywords in OpenCL C, 141
local, 138–139
overview of, 135–136
private, 139
reference guide, 554
supported, 99

addressing mode, sampler objects, 282, 
292–295

ALL_BUILD project, Visual Studio, 43
AltiVec Technology Programming Interface 

Manual, 111–113
AMD

generating project in Linux, 40–41
generating project in Windows, 

40–41
storing binaries in own format, 233

and (& or &&) operators, 127–128
Apple

initializing contexts for OpenGL 
interoperability, 338

querying number of platforms, 64
storing binaries in own format, 233

application data types, 103–104
ARB_cl_event extension, OpenGL, 

349–350
architecture diagram, OpenCL device, 577
arguments

context, 85
device, 68
enqueuing commands, 313
guassian_kernel(), 296–297
kernel function restrictions, 146
reference guide for kernel, 548
setting kernel, 55–57, 237–240

Index



582 Index

arithmetic operators
overview of, 124–126
post- and pre-increment (++ and --)

unary, 131
symbols, 123
unary (+ and -), 131

arrays
parallelizing Dijkstra’s algorithm, 

412–414
representing sparse matrix with 

binary data, 516
as_type(), 121–123
as_typen(), 121–123
ASCII File, representing sparse matrix, 

516–517
assignment (=) operator, 124, 132
async copy and prefetch functions, 

191–195, 570
ATI Stream SDK

generating project in Linux and 
Eclipse, 44–45

generating project in Visual Studio, 
42–44

generating project in Windows, 40
querying and selecting platform, 

65–66
querying context for devices, 89
querying devices, 70

atomic built-in functions
embedded profile options, 387
overview of, 195–198
reference guide, 568–569

_attribute_ keyword, kernel qualifier, 
133–134

attributes, specifying type, 555
automatic load balancing, 20

B
barrier synchronization function, 

190–191
batches

executing cloth simulation on GPU, 
433–441

SpMV implementation, 518
behavior description, optional exten-

sion, 144
bilinear sampling object, optical flow, 

476

binaries, program
creating, 235–236
HelloBinaryWorld example, 229–230
HelloWorld.cl (NVIDIA) example, 

233–236
overview of, 227–229
querying and storing, 230–232

binary data arrays, sparse matrix, 516
bit field numbers, 147
bitwise operators, 124, 127–128
blocking enqueue calls, and callbacks, 

327
blocking_read, executing kernel, 56
bool, rank order of, 113
border color, built-in functions, 209–210
bracket() operator, C++ Wrapper API, 

370–371
buffers and sub-buffers

computing Dijkstra’s algorithm, 415
copying, 274–276
copying from image to, 299, 303–304
creating, 249–256
creating from OpenGL, 339–343
creating kernel and memory objects, 

377–378
direct translation of matrix multipli-

cation into OpenCL, 502
executing Vector Add kernel, 377–

378, 381
mapping, 276–279
in memory model, 21
Ocean application, 451
OpenCL/OpenGL sharing APIs, 

446–448, 578
overview of, 247–248
querying, 257–259
reading and writing, 259–274
reference guide, 544–545

building program objects
reference guide, 546–547
using clBuildProgram(). see

clBuildProgram()
built-in data types

other, 108–109
reference guide, 550–552
scalar, 99–101
vector, 102–103

built-in functions
async copy and prefetch, 191–195



Index 583

atomic, 195–198, 387, 568–569
border color, 209–210
common, 172–175, 559
floating-point constant, 162–163
floating-point pragma, 162
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cl_khr_gl_event extension, 342, 348
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218–219, 222
reference guide, 546

clCreateSampler(), 292–294, 576
clCreateSubBuffer(), 253–256, 544
clCreateUserEvent()

generating events on host, 321–322
how to use, 323–324
reference guide, 549

clEnqueueAcquireD3D10Ob-
jectsKHR(), 580

clEnqueueAcquireGLObjects()
creating OpenCL buffers from 

OpenGL buffers, 341–342
explicit synchronization, 349
implicit synchronization, 348–349
reference guide, 579

clEnqueueBarrier()
function of, 316–317
ordering constraints between 

commands, 313
reference guide, 549

clEnqueueCopyBuffer(), 275–276, 545
clEnqueueCopyBufferToImage()

copying from buffer to image, 
303–305

defined, 299
reference guide, 574

clEnqueueCopyImage()
copy image objects, 302–303
defined, 299
reference guide, 575

clEnqueueCopyImageToBuffer()
copying from image to buffer, 

303–304
defined, 299
reference guide, 574

clEnqueueMapBuffer()
mapping buffers and sub-buffers, 

276–278

moving data to and from buffer, 
278–279

reference guide, 545
clEnqueueMapImage()

defined, 299
mapping image objects into host 

memory, 305–308
reference guide, 574

clEnqueueMarker(), 314–317, 549
clEnqueueMarker()

defining synchronization points, 314
function of, 315–317

clEnqueueNativeKernel(), 548
clEnqueueNDRangeKernel()

events and command-queues, 312
executing kernel, 56–57
reference guide, 548
work-items, 150

clEnqueueReadBuffer()
reading buffers, 260–261, 268–269
reading results back from kernel, 48, 

56–57
reference guide, 544

clEnqueueReadBufferRect(),
269–272, 544

clEnqueueReadImage()
defined, 299–301
mapping image results to host 

memory pointer, 307–308
reference guide, 575

clEnqueueReleaseD3D10ObjectsKHR(),
580

clEnqueueReleaseGLObjects()
implicit synchronization, 348–349
reference guide, 579
releasing objects acquired by 

OpenCL, 341–342
synchronization between OpenCL/

OpenGL, 351
clEnqueueTask(), 150, 548
clEnqueueUnmapMapImage(),

305–306
clEnqueueUnmapMemObject()

buffer mapping no longer required, 
277–278

moving data to and from buffer, 
278–279

reference guide, 545
releasing image data, 308
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clEnqueueWaitForEvents(), 314–317, 
549

clEnqueueWriteBuffer()
reference guide, 544
writing buffers, 259–260, 267

clEnqueueWriteBufferRect(),
272–273, 544–545

clEnqueueWriteImage()
defined, 299
reference guide, 575
writing images from host to device 

memory, 301–302
cles_khr_int64 extension string, 

embedded profile, 385–386
clFinish()

creating OpenCL buffers from 
OpenGL buffers, 342–343

OpenCL/OpenGL synchronization 
with, 348

OpenCL/OpenGL synchronization 
without, 351

preprocessor error macro for, 327
reference guide, 549

clFlush()
preprocessor error macro for, 327
reference guide, 549
using callbacks with events, 327

cl.get_platforms(), PyOpenCL, 493
clGetCommandQueueInfo(), 543
clGetContextInfo()

HelloWorld example, 50–51
querying context properties, 86–87
querying list of associated devices, 88
reference guide, 542

clGetDeviceIDs()
convolution signal example, 91
querying devices, 68–69
translation of matrix multiplication 

into OpenCL, 502
clGetDeviceIDsFromD3D10KHR(), 542
clGetDeviceInfo()

determining images supported, 290
embedded profile, 384
matrix multiplication, 506–509
querying context for associated 

devices, 88
querying device information, 70–78
querying embedded profile device 

support for images, 386–387

querying for OpenGL sharing 
extension, 336–337

reference guide, 542–543, 579
steps in OpenCL usage, 83

clGetEventInfo(), 319–320, 549
clGetEventProfilingInfo()

direct translation of matrix multipli-
cation, 502

errors, 329–330
extracting timing data, 328
placing profiling functions inside 

callbacks, 332
profiling information and return 

types, 329
reference guide, 549

clGetGLContextInfoKHR(), 579
clGetGLObjectInfo(), 347–348, 578
clGetGLTextureInfo(), 578
clGetImageInfo(), 286
clGetKernelInfo(), 242–243, 548
clGetKernelWorkGroupInfo(),

243–244, 548
clGetMemObjectInfo()

querying buffers and sub-buffers, 
257–259

querying image object, 286
reference guide, 545

clGetPlatformIDs()
querying context for associated 

devices, 88
querying platforms, 63–64
reference guide, 542

clGetPlatformInfo()
embedded profile, 384
querying and selecting platform, 

65–67
reference guide, 542

clGetProgramBuildInfo()
creating and building program object, 

52–53
detecting build error, 220–221, 222
direct translation of matrix multipli-

cation, 502
reference guide, 547

clGetProgramInfo()
getting program binary back from 

built program, 227–228
reference guide, 547

clGetSamplerInfo(), 294–295, 576
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clGetSupportedImageFormats(), 291, 
574

clGetXXInfo(), use of in this book, 70
CLK_GLOBAL_MEM_FENCE value, barrier 

functions, 190–191
CLK_LOCAL_MEM_FENCE value, barrier 

functions, 190–191
cl::Kernel(), 378
cl::Kernel:setArg(), 378
cloth simulation in Bullet Physics SDK

adding OpenGL interoperation, 
446–448

executing on CPU, 431–432
executing on GPU, 432–438
introduction to, 425–428
optimizing for SIMD computation 

and local memory, 441–446
overview of, 425
of soft body, 429–431
two-layered batching, 438–441

cl::Program(), 377
clReleaseCommandQueue(), 543
clReleaseContext(), 89, 542
clReleaseEvent(), 318–319, 549
clReleaseKernel(), 244–245, 548
clReleaseMemObject()

reference guide, 545
release buffer object, 339
release image object, 284

clReleaseProgram(), 236, 546
clReleaseSampler(), 294, 576
clRetainCommandQueue(), 543
clRetainContext(), 89, 541
clRetainEvent(), 318, 549
clRetainKernel(), 245, 548
clRetainMemObject(), 339, 545
clRetainProgram(), 236–237, 546
clRetainSampler(), 576
clSetEventCallback()

events impacting execution on host, 
325–326

placing profiling functions inside 
callbacks, 331–332

reference guide, 549
clSetKernelArg()

creating buffers and sub-buffers, 250, 
255

executing kernel, 55–56
executing Vector Add kernel, 378

matrix multiplication using local 
memory, 509–511

reference guide, 548
sampler declaration fields, 577
setting kernel arguments, 56, 237–240
thread safety and, 241–242

clSetMemObjectDestructor-
Callback(), 545

clSetUserEventStatus()
generating events on host, 322
how to use, 323–324
reference guide, 549

clUnloadCompiler(), 237, 547
clWaitForEvents(), 323–324, 549
CMake tool

generating project in Linux and 
Eclipse, 44–45

generating project in Visual Studio, 
42–44

installing as cross-platform build tool, 
40–41

Mac OS X and Code::Blocks, 40–41
cmake-gui, 42–44
Code::Blocks, 41–42
color, cloth simulation

executing on GPU, 433–438
in two-layered batching, 438–441

color images. see image histograms
comma operator (,), 131
command-queue

acquiring OpenGL objects, 341–342
as core of OpenCL, 309–310
creating, 50–52
creating after selecting set of devices, 

377
creating in PyOpenCL, 493
defining consistency of memory 

objects on, 24
direct translation of matrix multipli-

cation into OpenCL, 502
events and, 311–317
executing kernel, 56–57
in execution model, 18–21
execution of Vector Add kernel, 378, 

380
OpenCL runtime reference guide, 543
runtime API setting up, 31–32
transferring image objects to, 

299–300
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common functions, 172–175
compiler

directives for optional extensions, 
143–145

unloading OpenCL, 547
component selection syntax, vectors, 

106–107
components, vector data type, 106–108
compute device, platform model, 12
compute units, platform model, 12
concurrency, 7–8

exploiting in command-queues, 310
kernel execution model, 14
parallel algorithm limitations, 28–29

conditional operator, 124, 129
const type qualifier, 141
constant (_constant) address space 

qualifier, 137–138, 141
constant memory

device architecture diagram, 577
memory model, 21–23

contexts
allocating memory objects against, 248
choosing platform and creating, 375
convolution signal example, 89–97
creating, 49–50, 84–87
creating in PyOpenCL, 492–493
defining in execution model, 17–18
incrementing and decrementing 

reference count, 89
initializing for OpenGL interoperabil-

ity, 338–339
OpenCL platform layer, 541–542
overview of, 83
querying properties, 85–87
steps in OpenCL, 84

convergence, simulating soft body, 430
conversion

embedded profile device support 
rules, 386–387

explicit, 117–121, 132
vector component, 554

convert_int(), explicit conversions, 118
convolution signal example, 89–97
coordinate mode, sampler objects, 282, 

292–295
copy

buffers and sub-buffers, 274–276, 545
image objects, 302–305, 308, 575

costArray:, Dijkstra’s algorithm, 
413–414, 415–417

CPUs
executing cloth simulation on, 

431–432
heterogeneous future of multicore, 

4–7
matrix multiplication and perfor-

mance results, 511–513
SpMV implementation, 518–519

CreateCommandQueue(), 50–51
CreateContext(), 49–50, 375
CreateMemObjects(), 54–55
CSR format, sparse matrix, 517

D
DAG (directed acyclic graph), command-

queues and, 310
data load and store functions, vectors, 

181–189
data structure, Dijkstra’s algorithm, 

412–414
data types

explicit casts, 116–117
explicit conversions, 117–121
implicit type conversions, 110–115
reference guide for supported, 

550–552
reinterpreting data as other, 121–123
reserved as keywords in OpenCL C, 

141
scalar. see scalar data types
specifying attributes, 555
vector. see vector data types

data-parallel programming model
overview of, 8–9
parallel algorithm limitations, 28–29
understanding, 25–27
writing kernel using OpenCL C, 

97–99
decimation kernel, optical flow, 474
declaration fields, sampler, 577
default device, 69
#define preprocessor directive, 142, 145
denormalized numbers, 34, 388
dense matrix, 499
dense optical flow, 469
derived types, OpenCL C, 109–110
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design, for tiled and packetized sparse 
matrix, 523–524

device_type argument, querying 
devices, 68

devices
architecture diagram, 577
choosing first available, 50–52
convolution signal example, 89–97
creating context in execution model, 

17–18
determining profile support by, 390
embedded profile for hand held, 

383–385
executing kernel on, 13–17
execution of Vector Add kernel, 380
full profile for desktop, 383
in platform model, 12
querying, 67–70, 78–83, 375–377, 

542–543
selecting, 70–78
steps in OpenCL, 83–84

DFFT (discrete fast Fourier transform), 
453

DFT. see discrete Fourier transform 
(DFT), Ocean simulation

Dijkstra’s algorithm, parallelizing
graph data structures, 412–414
kernels, 414–417
leveraging multiple compute devices, 

417–423
overview of, 411–412

dimensions, image object, 282
Direct3D, interoperability with. see

interoperability with Direct3D
directed acyclic graph (DAG), command-

queues and, 310
directional edge detector filter, Sobel, 

407–410
directories, sample code for this book, 41
DirectX Shading Language (HLSL), 

111–113
discrete fast Fourier transform (DFFT), 453
discrete Fourier transform (DFT), Ocean 

simulation
avoiding local memory bank con-

flicts, 463
determining 2D composition, 457–458
determining local memory needed, 

462

determining sub-transform size, 
459–460

determining work-group size, 460
obtaining twiddle factors, 461–462
overview of, 457
using images, 463
using local memory, 459

distance(), geometric functions, 
175–176

divide (/) arithmetic operator, 124–126
doublen, vector data load and store, 181
DRAM, modern multicore CPUs, 6–7
dynamic libraries, OpenCL program vs., 97

E
early exit, optical flow algorithm, 483
Eclipse, generating project in, 44–45
edgeArray:, Dijkstra’s algorithm, 

412–414
“Efficient Sparse Matrix-Vector Multipli-

cation on CUDA” (Bell and 
Garland), 517

embedded profile
64-bit integers, 385–386
built-in atomic functions, 387
determining device supporting, 390
full profile vs., 383
images, 386–387
mandated minimum single-precision 

floating-point capabilities, 
387–389

OpenCL programs for, 35–36
overview of, 383–385
platform queries, 65

_EMBEDDED_PROFILE_macro, 390
enumerated type

rank order of, 113
specifying attributes, 555

enumerating, list of platforms, 66–67
equal (==) operator, 127
equality operators, 124, 127
error codes

C++ Wrapper API exceptions, 371–374
clBarrier(), 313
clCreateUserEvent(), 321–322
clEnqueueMarker(), 314
clEnqueueWaitForEvents(),

314–315
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error codes (continued )
clGetEventProfilingInfo(),

329–330
clGetProgramBuildInfo, 220–221
clRetainEvent(), 318
clSetEventCallback(), 326
clWaitForEvents(), 323
table of, 57–61

ERROR_CODE value, command-queue, 311
.even suffix, vector data types, 107–108
event data types, 108, 147–148
event objects

OpenCL/OpenGL sharing APIs, 579
overview of, 317–320
reference guide, 549–550

event_t async_work_group_copy(),
192, 332–333

event_t async_work_group_
strided_copy(), 192, 332–333

events
command-queues and, 311–317
defined, 310
event objects. see event objects
generating on host, 321–322
impacting execution on host, 

322–327
inside kernels, 332–333
from outside OpenCL, 333
overview of, 309–310
profiling using, 327–332
in task-parallel programming model, 

28
exceptions

C++ Wrapper API, 371–374
execution of Vector Add kernel, 379

exclusive (^^) operator, 128
exclusive or (^) operator, 127–128
execution model

command-queues, 18–21
contexts, 17–18
defined, 11
how kernel executes OpenCL device, 

13–17
overview of, 13
parallel algorithm limitations, 28–29

explicit casts, 116–117
explicit conversions, 117–121, 132
explicit kernel, SpMV, 519
explicit memory fence, 570–571

explicit model, data parallelism, 26–27
explicit synchronization, 349
exponent, half data type, 101
expression, assignment operator, 132
extensions, compiler directives for 

optional, 143–145

F
fast Fourier transform (FTT). see Ocean 

simulation, with FFT
fast_ variants, geometric functions, 175
FBO (frame buffer object), 347
file, creating 2D image from, 284–285
filter mode, sampler objects, 282, 292–295
float channels, 403–406
float data type, converting, 101
float images, 386
float type, math constants, 556
floating-point arithmetic system, 33–34
floating-point constants, 162–163
floating-point data types, 113, 119–121
floating-point options

building program object, 224–225
full vs. embedded profiles, 387–388

floating-point pragmas, 143, 162
floatn, vector data load and store 

functions, 181, 182–186
fma, geometric functions, 175
formats, image

embedded profile, 387
encapsulating information on, 282
mapping OpenGL texture to OpenCL 

image, 346
overview of, 287–291
querying list of supported, 574
reference guide for supported, 576

formats, of program binaries, 227
FP_CONTRACT pragma, 162
frame buffer object (FBO), 347
FreeImage library, 283, 284–285
FreeSurfer. see Dijkstra’s algorithm, 

parallelizing
FTT (fast Fourier transform). see Ocean 

simulation, with FFT
full profile

built-in atomic functions, 387
determining profile support by 

device, 390
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embedded profile as strict subset of, 
383–385

mandated minimum single-precision 
floating-point capabilities, 
387–389

platform queries, 65
querying device support for images, 

386–387
function qualifiers

overview of, 133–134
reference guide, 554
reserved as keywords, 141

functions. see built-in functions

G
Gaussian filter, 282–283, 295–299
Gauss-Seidel iteration, 432
GCC compiler, 111–113
general-purpose GPU (GPGPU), 10, 29
gentype

barrier functions, 191–195
built-in common functions, 173–175
integer functions, 168–171
miscellaneous vector functions, 

199–200
vector data load and store functions, 

181–189
work-items, 153–161

gentyped
built-in common functions, 173–175
built-in geometric functions, 175–176
built-in math functions, 155–156
defined, 153

gentypef
built-in geometric functions, 175–177
built-in math functions, 155–156, 

160–161
defined, 153

gentypei, 153, 158
gentypen, 181–182, 199–200
geometric built-in functions, 175–177, 

563–564
get_global_id(), data-parallel kernel, 

98–99
getInfo(), C++ Wrapper API, 375–377
gl_object_type parameter, query 

OpenGL objects, 347–348
glBuildProgram(), 52–53

glCreateFromGLTexture2D(), 344–345
glCreateFromGLTexture3D(), 344–345
glCreateSyncFromCLeventARB(),

350–351
glDeleteSync() function, 350
GLEW toolkit, 336
glFinish()

creating OpenCL buffers from 
OpenGL buffers, 342

OpenCL/OpenGL synchronization 
with, 348

OpenCL/OpenGL synchronization 
without, 351

global (_global) address space 
qualifier, 136, 141

global index space, kernel execution 
model, 15–16

global memory
device architecture diagram, 577
matrix multiplication, 507–509
memory model, 21–23

globalWorkSize, executing kernel, 
56–57

GLSL (OpenGL Shading Language), 
111–113

GLUT toolkit, 336, 450–451
glWaitSync(), synchronization, 

350–351
GMCH (graphics/memory controller), 6–7
gotos, irreducible control flow, 147
GPGPU (general-purpose GPU), 10, 29
GPU (graphics processing unit)

advantages of image objects. see
image objects

defined, 69
executing cloth simulation on, 

432–438
leveraging multiple compute devices, 

417–423
matrix multiplication and perfor-

mance results, 511–513
modern multicore CPUs as, 6–7
OpenCL implementation for NVIDIA, 

40
optical flow performance, 484–485
optimizing for SIMD computation 

and local memory, 441–446
querying and selecting, 69–70
SpMV implementation, 518–519
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GPU (graphics processing unit) (continued )
tiled and packetized sparse matrix 

design, 523–524
tiled and packetized sparse matrix 

team, 524
two-layered batching, 438–441

graph data structures, parallelizing 
Dijkstra’s algorithm, 412–414

graphics. see also images
shading languages, 111–113
standards, 30–31

graphics processing unit. see GPU 
(graphics processing unit)

graphics/memory controller (GMCH), 
6–7

grayscale images, applying Sobel 
OpenCL kernel to, 409–410

greater than (>) operator, 127
greater than or equal (>=) operator, 127

H
half data type, 101–102
half_ functions, 153
half-float channels, 403–406
half-float images, 386
halfn, 181, 182–186
hand held devices, embedded profile for. 

see embedded profile
hardware

mapping program onto, 9–11
parallel computation as concurrency 

enabled by, 8
SpMV kernel, 519
SpMV multiplication, 524–538

hardware abstraction layer, 11, 29
hardware linear interpolation, optical 

flow algorithm, 480
hardware scheduling, optical flow 

algorithm, 483
header structure, SpMV, 522–523
height map, Ocean application, 450
HelloWorld sample

checking for errors, 57–61
choosing device and creating com-

mand-queue, 50–52
choosing platform and creating 

context, 49–50

creating and building program object, 
52–53

creating kernel and memory objects, 
54–55

downloading sample code, 39
executing kernel, 55–57
Linux and Eclipse, 44–45
Mac OS X and Code::Blocks, 41–42
Microsoft Windows and Visual 

Studio, 42–44
overview of, 39, 45–48
prerequisites, 40–41

heterogeneous platforms, 4–7
.hi suffix, vector data types, 107–108
high-level loop, Dijkstra’s algorithm, 

414–417
histogram. see image histograms
histogram_partial_image_rgba_

unorm8 kernel, 400
histogram_partial_results_rgba_

unorm8 kernel, 400–402
histogram_sum_partial_results_

unorm8kernel, 400
HLSL (DirectX Shading Language), 

111–113
host

calls to enqueue histogram kernels, 
398–400

creating, writing and reading buffers 
and sub-buffers, 262–268

device architecture diagram, 577
events impacting execution on, 

322–327
execution model, 13, 17–18
generating events on, 321–322
kernel execution model, 13
matrix multiplication, 502–505
platform model, 12

host memory
memory model, 21–23
reading image back to, 300–301
reading image from device to, 

299–300
reading region of buffer into, 

269–272
writing region into buffer from, 

272–273
hybrid programming models, 29
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I
ICC compiler, 111–113
ICD (installable client driver) model, 49, 

375
IDs, kernel execution model, 14–15
IEEE standards, floating-point arithme-

tic, 33–34
image channel data type, image formats, 

289–291
image channel order, image formats, 

287–291
image data types, 108–109, 147
image difference, optical flow algorithm, 

472
image functions

border color, 209–210
querying image information, 214–215
read and write, 201–206
samplers, 206–209
writing to images, 210–213

image histograms
additional optimizations to parallel, 

400–402
computing, 393–395, 403–406
overview of, 393
parallelizing, 395–400

image objects
copy between buffer objects and, 574
creating, 283–286, 573–574
creating in OpenCL from OpenGL 

textures, 344–347
Gaussian filter example, 282–283
loading to in PyOpenCL, 493–494
mapping and ummapping, 305–308, 

574
memory model, 21
OpenCL and, 30
OpenCL C functions for working 

with, 295–299
OpenCL/OpenGL sharing APIs, 578
overview of, 281–282
querying, 575
querying list of supported formats, 

574
querying support for device images, 

291
read, write, and copy, 575
specifying image formats, 287–291
transferring data, 299–308

image pyramids, optical flow algorithm, 
472–479

image3d_t type, embedded profile, 386
ImageFIlter2D example, 282–291, 

488–492
images

access qualifiers for read-only or 
write-only, 140–141

describing motion between. see
optical flow

DFT, 463
embedded profile device support for, 

386–387
formats. see formats, image
as memory objects, 247
read and write built-in functions, 

572–573
Sobel edge detection filter for, 407–410
supported by OpenCL C, 99

Image.tostring() method, PyO-
penCL, 493–494

implicit kernel, SpMV, 518–519
implicit model, data parallelism, 26
implicit synchronization, OpenCL/

OpenGL, 348–349
implicit type conversions, 110–115
index space, kernel execution model, 

13–14
INF (infinity), floating-point arithmetic, 

34
inheritance, C++ API, 369
initialization

Ocean application overview, 450–451
OpenCL/OpenGL interoperability, 

338–340
parallelizing Dijkstra’s algorithm, 415

in-order command-queue, 19–20, 24
input vector, SpMV, 518
installable client driver (ICD) model, 49, 

375
integer built-in functions, 168–172, 

557–558
integer data types

arithmetic operators, 124–216
explicit conversions, 119–121
rank order of, 113
relational and equality operators, 127

intellectual property, program binaries 
protecting, 227
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interoperability with Direct3D
acquiring/releasing Direct3D objects 

in OpenCL, 361–363
creating memory objects from 

Direct3D buffers/textures, 
357–361

initializing context for, 354–357
overview of, 353
processing D3D vertex data in 

OpenCL, 366–368
processing Direct3D texture in 

OpenCL, 363–366
reference guide, 579–580
sharing overview, 353–354

interoperability with OpenGL
cloth simulation, 446–448
creating OpenCL buffers from 

OpenGL buffers, 339–343
creating OpenCL image objects from 

OpenGL textures, 344–347
initializing OpenCL context for, 

338–339
optical flow algorithm, 483–484
overview of, 335
querying for OpenGL sharing 

extension, 336–337
querying information about OpenGL 

objects, 347–348
reference guide, 577–579
sharing overview, 335–336
synchronization, 348–351

irreducible control flow, restrictions, 
147

iterations
executing cloth simulation on CPU, 

431–432
executing cloth simulation on GPU, 

434–435
pyramidal Lucas-Kanade optical flow, 

472
simulating soft body, 429–431

K
kernel attribute qualifiers, 134–135
kernel execution commands, 19–20
kernel objects

arguments and object queries, 548
creating, 547–548

creating, and setting kernel argu-
ments, 237–241

executing, 548
managing and querying, 242–245
out-of-order execution of memory 

object command and, 549
overview of, 237
program objects vs., 217–218
thread safety, 241–242

_kernel qualifier, 133–135, 141, 217
kernels

applying Phillips spectrum, 453–457
constant memory during execution 

of, 21
creating, writing and reading buffers/

sub-buffers, 262
creating context in execution model, 

17–18
creating memory objects, 54–55, 

377–378
in data-parallel programming model, 

25–27
data-parallel version of, 97–99
defined, 13
in device architecture diagram, 577
events inside, 332–333
executing and reading result, 55–57
executing Ocean simulation applica-

tion, 463–468
executing OpenCL device, 13–17
executing Sobel OpenCL, 407–410
executing Vector Add kernel, 381
in execution model, 13
leveraging multiple compute devices, 

417–423
in matrix multiplication program, 

501–509
parallel algorithm limitations, 28–29
parallelizing Dijkstra’s algorithm, 

414–417
programming language and, 32–34
in PyOpenCL, 495–497
restrictions in OpenCL C, 146–148
in task-parallel programming model, 

27–28
in tiled and packetized sparse matrix, 

518–519, 523
keywords, OpenCL C, 141
Khronos, 29–30
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L
learning OpenCL, 36–37
left shift (<<) operator, 129–130
length(), geometric functions, 175–177
less than (<) operator, 127
less than or equal (<=) operator, 127
library functions, restrictions in OpenCL 

C, 147
links

cloth simulation using two-layered 
batching, 438–441

executing cloth simulation on CPU, 
431–432

executing cloth simulation on GPU, 
433–438

introduction to cloth simulation, 
426–428

simulating soft body, 429–431
Linux

generating project in, 44–45
initializing contexts for OpenGL 

interoperability, 338–339
OpenCL implementation in, 41

.lo suffix, vector data types, 107–108
load balancing

automatic, 20
in parallel computing, 9

loading, program binaries, 227
load/store functions, vector data, 

567–568
local (_local) address space qualifier, 

138–139, 141
local index space, kernel execution 

model, 15
local memory

device architecture diagram, 577
discrete Fourier transform, 459, 

462–463
FFT kernel, 464
memory model, 21–24
optical flow algorithm, 481–482
optimizing in matrix multiplication, 

509–511
SpMV implementation, 518–519

localWorkSize, executing kernel, 
56–57

logical operators
overview of, 128
symbols, 124

unary not(!), 131
Lucas-Kanade. see pyramidal Lucas-

Kanade optical flow algorithm
luminosity histogram, 393
lvalue, assignment operator, 132

M
Mac OS X

OpenCL implementation in, 40
using Code::Blocks, 41–42

macros
determining profile support by 

device, 390
integer functions, 172
OpenCL C, 145–146
preprocessor directives and, 555
preprocessor error, 372–374

mad, geometric functions, 175
magnitudes, wave, 454
main() function, HelloWorld OpenCL 

kernel and, 44–48
mandated minimum single-precision 

floating-point capabilities, 
387–389

mantissa, half data type, 101
mapping

buffers and sub-buffers, 276–279
C++ classes to OpenCL C type, 

369–370
image data, 305–308
image to host or memory pointer, 299
OpenGL texture to OpenCL image 

formats, 346
markers, synchronization point, 314
maskArray:, Dijkstra’s algorithm, 

412–414, 415
masking off operation, 121–123
mass/spring model, for soft bodies, 

425–427
math built-in functions

accuracy for embedded vs. full 
profile, 388

floating-point constant, 162–163
floating-point pragma, 162
overview of, 153–161
reference guide, 560–563
relative error as ulps in, 163–168

math constants, reference guide, 556



596 Index

math intrinsics, program build options, 
547

math_ functions, 153
Matrix Market (MM) exchange format, 

517–518
matrix multiplication

basic algorithm, 499–501
direct translation into OpenCL, 

501–505
increasing amount of work per kernel, 

506–509
overview of, 499
performance results and optimizing 

original CPU code, 511–513
sparse matrix-vector. see sparse 

matrix-vector multiplication 
(SpMV)

using local memory, 509–511
memory access flags, 282–284
memory commands, 19
memory consistency, 23–24, 191
memory latency, SpMV, 518–519
memory model, 12, 21–24
memory objects

buffers and sub-buffers as, 247–248
creating context in execution model, 

17–18
creating kernel and, 54–55, 377–378
matrix multiplication and, 502
in memory model, 21–24
out-of-order execution of kernels and, 

549
querying to determine type of, 

258–259
runtime API managing, 32

mesh
executing cloth simulation on CPU, 

431–432
executing cloth simulation on GPU, 433
introduction to cloth simulation, 

425–428
simulating soft body, 429–431
two-layered batching, 438–441

MFLOPS, 512–513
Microsoft Windows

generating project in Visual Studio, 
42–44

OpenCL implementation in, 40
OpenGL interoperability, 338–339

mismatch vector, optical flow algorithm, 
472

MM (Matrix Market) exchange format, 
517–518

multicore chips, power-efficiency of, 4–5
multiplication

matrix. see matrix multiplication
sparse matrix-vector. see sparse 

matrix-vector multiplication 
(SpMV)

multiply (*) arithmetic operator, 
124–126

N
n suffix, 181
names, reserved as keywords, 141
NaN (Not a Number), floating-point 

arithmetic, 34
native kernels, 13
NDRange

data-parallel programming model, 25
kernel execution model, 14–16
matrix multiplication, 502, 506–509
task-parallel programming model, 27

normalize(), geometric functions, 
175–176

not (~) operator, 127–128
not equal (!=) operator, 127
NULL value, 64–65, 68
num_entries, 64, 68
numeric indices, built-in vector data 

types, 107
numpy, PyOpenCL, 488, 496–497
NVIDIA GPU Computing SDK

generating project in Linux, 41
generating project in Linux and 

Eclipse, 44–45
generating project in Visual Studio, 42
generating project in Windows, 40
OpenCL/OpenGL interoperability, 

336

O
objects, OpenCL/OpenGL sharing API, 

579
Ocean simulation, with FFT

FFT kernel, 463–467
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generating Phillips spectrum, 
453–457

OpenCL DFT. see discrete Fourier 
transform (DFT), Ocean 
simulation

overview of, 449–453
transpose kernel, 467–468

.odd suffix, vector data types, 107–108
OpenCL, introduction

conceptual foundation of, 11–12
data-parallel programming model, 

25–27
embedded profile, 35–36
execution model, 13–21
graphics, 30–31
heterogeneous platforms of, 4–7
kernel programming language, 32–34
learning, 36–37
memory model, 21–24
other programming models, 29
parallel algorithm limitations, 28–29
platform API, 31
platform model, 12
runtime API, 31–32
software, 7–10
summary review, 34–35
task-parallel programming model, 

27–28
understanding, 3–4

OpenCL C
access qualifiers, 140–141
address space qualifiers, 135–140
built-in functions. see built-in 

functions
derived types, 109–110
explicit casts, 116–117
explicit conversions, 117–121
function qualifiers, 133–134
functions for working with images, 

295–299
implicit type conversions, 110
kernel attribute qualifiers, 134–135
as kernel programming language, 

32–34
keywords, 141
macros, 145–146
other data types supported by, 

108–109
overview of, 97

preprocessor directives, 141–144
reinterpreting data as another type, 

121–123
restrictions, 146–148
scalar data types, 99–102
type qualifiers, 141
vector data types, 102–108
vector operators. see vector operators
writing data-parallel kernel using, 

97–99
OPENCL EXTENSION directive, 143–145
OpenGL

interoperability between OpenCL 
and. see interoperability with 
Direct3D; interoperability with 
OpenGL

Ocean application, 450–453
OpenCL and graphics standards, 30
reference guide for sharing APIs, 

577–579
synchronization between OpenCL, 

333
OpenGL Shading Language (GLSL), 

111–113
operands, vector literals, 105
operators, vector. see vector operators
optical flow

application of texture cache, 480–481
early exit and hardware scheduling, 

483
efficient visualization with OpenGL 

interop, 483–484
performance, 484–485
problem of, 469–479
sub-pixel accuracy with hardware 

linear interpolation, 480
understanding, 469
using local memory, 481–482

optimization options
clBuildProgram(), 225–226
partial image histogram, 400–402
program build options, 546

“Optimizing Power Using Transforma-
tions” (Chandrakasan et al.), 4–5

“Optimizing Sparse Matrix-Vector 
Multiplication on GPUs” (Baskaran 
and Bordawekar), 517

optional extensions, compiler directives 
for, 143–145
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or (|) operator, 127–128
or (||) operator, 128
out-of-order command-queue

automatic load balancing, 20
data-parallel programming model, 24
execution model, 20
reference guide, 549
task-parallel programming model, 28

output, creating 2D image for, 285–286
output vector, SpMV, 518
overloaded function, vector literal as, 

104–105

P
packets

optimizing sparse matrix-vector 
multiplication, 538–539

tiled and packetized sparse matrix, 
519–522

tiled and packetized sparse matrix 
design, 523–524

tiled and packetized sparse matrix 
team, 524

pad to 128-boundary, tiled and pack-
etized sparse matrix, 523–524

parallel algorithm limitations, 28–29
parallel computation

as concurrency enabled by software, 8
of image histogram, 395–400
image histogram optimizations, 

400–402
parallel programming, using models for, 8
parallelism, 8
param_name values, querying platforms, 

64–65
partial histograms

computing, 395–397
optimizing by reducing number of, 

400–402
summing to generate final histogram, 

397–398
partitioning workload, for multiple 

compute devices, 417–423
Patterns for Parallel Programming (Matt-

son), 20
performance

heterogeneous future of, 4–7
leveraging multiple compute devices, 

417–423

matrix multiplication results, 511–513
optical flow algorithm and, 484–485
soft body simulation and, 430–431
sparse matrix-vector multiplication 

and, 518, 524–538
using events for profiling, 327–332
using matrix multiplication for high. 

see matrix multiplication
PEs (processing elements), platform 

model, 12
phillips function, 455–457
Phillips spectrum generation, 453–457
platform API, 30–31
platform model, 11–12
platforms

choosing, 49–50
choosing and creating context, 375
convolution signal example, 89–97
embedded profile, 383–385
enumerating and querying, 63–67
querying and displaying specific 

information, 78–83
querying list of devices associated 

with, 68
reference guide, 541–543
steps in OpenCL, 83–84

pointer data types, implicit conversions, 
111

post-increment (++ ) unary operator, 131
power

efficiency of specialized core, 5–6
of multicore chips, 4–5

#pragma directives, OpenCL C, 143–145
predefined identifiers, not supported, 

147
prefetch functions, 191–195, 570
pre-increment (-- ) unary operator, 131
preprocessor build options, 223–224
preprocessor directives

OpenCL C, 141–142
program object build options, 

546–547
reference guide, 555

preprocessor error macros, C++ Wrapper 
API, 372–374

private (_private) address space 
qualifier, 139, 141

private memory, 21–23, 577
processing elements (PEs), platform 

model, 12



Index 599

profiles
associated with platforms, 63–67
commands for events, 327–332
embedded. see embedded profile
reference guide, 549

program objects
build options, 222–227
creating and building, 52–53, 377
creating and building from binaries, 

227–236
creating and building from source 

code, 218–222
creating and building in PyOpenCL, 

494–495
creating context in execution model, 

17–18
kernel objects vs., 217–218
managing and querying, 236–237
reference guide, 546–547
runtime API creating, 32

programming language. see also OpenCL 
C; PyOpenCL, 32–34

programming models
data-parallel, 25–27
defined, 12
other, 29
parallel algorithm limitations, 28–29
task-parallel, 27–28

properties
device, 70
querying context, 85–87

PyImageFilter2D, PyOpenCL, 488–492
PyOpenCL

context and command-queue 
creation, 492–493

creating and building program, 
494–495

introduction to, 487–488
loading to image object, 493–494
overview of, 487
PyImageFilter2D code, 488–492
reading results, 496
running PyImageFilter2D example, 

488
setting kernel arguments/executing 

kernel, 495–496
pyopencl vo-92+, 488
pyopencl.create_some_context(),

492

pyramidal Lucas-Kanade optical flow 
algorithm, 469, 471–473

Python, using OpenCL in. see
PyOpenCL

Python Image Library (PIL), 488, 
493–494

Q
qualifiers

access, 140–141
address space, 135–140
function, 133–134
kernel attribute, 134–135
type, 141

queries
buffer and sub-buffer, 257–259, 545
device, 542–543
device image support, 291
event object, 319–320
image object, 214–215, 286, 575
kernel, 242–245, 548
OpenCL/OpenGL sharing APIs, 578
OpenGL objects, 347–348
platform, 63–66, 542–543
program object, 241–242, 547
storing program binary and, 230–232
supported image formats, 574

R
R,G, B color histogram

computing, 393–395, 403–406
optimizing, 400–402
overview of, 393
parallelizing, 395–400

rank order, usual arithmetic conversions, 
113–115

read
buffers and sub-buffers, 259–268, 544
image back to host memory, 300–301
image built-in functions, 201–206, 

298, 572–573
image from device to host memory, 

299–300
image objects, 575
memory objects, 248
results in PyOpenCL, 496–497

read_imagef(), 298–299
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read-only qualifier, 140–141
read-write qualifier, 141
recursion, not supported in OpenCL C, 

147
reference counts

buffers and sub-buffers, 256
contexts, 89
event objects, 318

regions, memory model, 21–23
relational built-in functions, 175, 

178–181, 564–567
relational operators, 124, 127
relaxed consistency model, memory 

objects, 24
remainder (%) arithmetic operator, 

124–126
render buffers, 346–347, 578
rendering of height map, Ocean applica-

tion, 450
reserved data types, 550–552
restrict type qualifier, 141
restrictions, OpenCL C, 146–148
return type, kernel function restrictions, 

146
RGB images, applying Sobel OpenCL 

kernel to, 409
RGBA-formatted image, loading in 

PyOpenCL, 493–494
right shift (>>) operator, 129–130
rounding mode modifier

explicit conversions, 119–121
vector data load and store functions, 

182–189
_rte suffix, 183, 187
runCLSimulation(), 451–457
runtime API, 30–32, 543

S
sampler data types

determining border color, 209–210
functions, 206–209
restrictions in OpenCL C, 108–109, 

147
sampler objects. see also image objects

creating, 292–294
declaration fields, 577
functions of, 282
overview of, 281–282

reference guide, 576–577
releasing and querying, 294–295

_sat (saturation) modifier, explicit 
conversions, 119–120

SaveProgramBinary(), creating 
programs, 230–231

scalar data types
creating vectors with vector literals, 

104–105
explicit casts of, 116–117
explicit conversions of, 117–121
half data type, 101–102
implicit conversions of, 110–111
integer functions, 172
reference guide, 550
supported by OpenCL C, 99–101
usual arithmetic conversions with, 

113–115
vector operators with. see vector 

operators
scalar_add (), writing data-parallel 

kernel, 97–98
754 formats, IEEE floating-point arith-

metic, 34
sgentype

integer functions, 172
relational functions, 181

shape matching, soft bodies, 425
sharing APIs, OpenCL/OpenGL, 577–579
shift operators, 124, 129–130
shuffle, illegal usage of, 214
shuffle2, illegal usage of, 214
sign, half data type, 101
SIMD (Single Instruction Multiple Data) 

model, 26–27, 465
simulation

cloth. see cloth simulation in Bullet 
Physics SDK

ocean. see Ocean simulation, with 
FFT

Single Instruction Multiple Data (SIMD) 
model, 26–27, 465

Single Program Multiple Data (SPMD) 
model, 26

single-source shortest-path graph 
algorithm. see Dijkstra’s algorithm, 
parallelizing

64-bit integers, embedded profile, 
385–386
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sizeof operator, 131–132
slab, tiled and packetized sparse matrix, 

519
Sobel edge detection filter, 407–410
soft bodies

executing cloth simulation on CPU, 
431–432

executing cloth simulation on GPU, 
432–438

interoperability with OpenGL, 
446–448

introduction to cloth simulation, 
425–428

simulating, 429–431
software, parallel, 7–10
solveConstraints, cloth simulation on 

GPU, 435
solveLinksForPosition, cloth simulation 

on GPU, 435
source code

creating and building programs from, 
218–222

program binary as compiled version 
of, 227

sparse matrix-vector multiplication 
(SpMV)

algorithm, 515–517
defined, 515
description of, 518–519
header structure, 522–523
optional team information, 524
other areas of optimization, 538–539
overview of, 515
tested hardware devices and results, 

524–538
tiled and packetized design, 523–524
tiled and packetized representation 

of, 519–522
specify type attributes, 555
SPMD (Single Program Multiple Data) 

model, 26
SpMV. see sparse matrix-vector multipli-

cation (SpMV)
storage

image layout, 308
sparse matrix formats, 517

strips, tiled and packetized sparse 
matrix, 519

struct type
restrictions on use of, 109–110, 146
specifying attributes, 555

sub-buffers. see buffers and sub-buffers
sub-pixel accuracy, optical flow algo-

rithm, 480
subregions, of memory objects, 21
subtract (-) arithmetic operator, 124–126
sub-transform size, DFT, 459–460
suffixes, vector data types, 107–108
synchronization

commands, 19–21
computing Dijkstra’s algorithm with 

kernel, 415–417
explicit memory fence, 570–571
functions, 190–191
OpenCL/OpenGL, 342, 348–351
primitives, 248

synchronization points
defining when enqueuing com-

mands, 312–315
in out-of-order command-queue, 24

T
T1 to T3 data types, rank order of, 114
task-parallel programming model

overview of, 9–10
parallel algorithm limitations, 28–29
understanding, 27–28

team information, tiled and packetized 
sparse matrix, 524

ternary selection (?:) operator, 129
Tessendorf, Jerry, 449, 454
tetrahedra, soft bodies, 425–428
texture cache, optical flow algorithm, 

480–482
texture objects, OpenGL. see also image 

objects
creating image objects in OpenCL 

from, 344–347
Ocean application creating, 451
OpenCL/OpenGL sharing APIs, 578
querying information about, 347–348

thread safety, kernel objects, 241–242
tiled and packetized sparse matrix

defined, 515
design considerations, 523–524
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tiled and packetized sparse matrix 
(continued )

header structure of, 522–523
overview of, 519–522
SpMV implementation, 517–518

timing data, profiling events, 328
traits, C++ template, 376
transpose kernel, simulating ocean, 

467–468
twiddle factors, DFT

FFT kernel, 464–466
obtaining, 461–462
using local memory, 463

2D composition, in DFT, 457–458
two-layered batching, cloth simulation, 

438–441
type casting, vector component, 554
type qualifiers, 141

U
ugentype, 168–169, 181
ugentypen, 214–215
ulp values, 163–168
unary operators, 124, 131–132
union type, specifying attributes, 555
updatingCostArray:, Dijkstra’s 

algorithm, 413–417
usual arithmetic conversions, 113–115

V
vadd() kernel, Vector Add kernel, 378
variable-length arrays, not supported in 

OpenCL C, 147
variadic macros and functions, not 

supported in OpenCL C, 147
VBO (vertex buffer object), 340–344, 

446–448
vbo_cl_mem, creating VBO in OpenGL, 

340–341
Vector Add example. see C++ Wrapper 

API, Vector Add example
vector data types

application, 103–104
built-in, 102–103
components, 106–108, 552–554
data load and store functions, 

181–189

explicit casts, 116–117
explicit conversions, 117–121
implicit conversions between, 

110–113
literals, 104–105
load/store functions reference, 

567–568
miscellaneous built-in functions, 

199–200, 571
operators. see vector operators
optical flow algorithm, 470–472
reference guide, 550

supported by OpenCL C, 99
usual arithmetic conversions with, 

113–115
vector literals, 104–105
vector operators

arithmetic operators, 124–126
assignment operator, 132
bitwise operators, 127–128
conditional operator, 129
logical operators, 128
overview of, 123–124
reference guide, 554
relational and equality operators, 127
shift operators, 129–130
unary operators, 131–132

vertex buffer object (VBO), 340–344, 
446–448

vertexArray:, Dijkstra’s algorithm, 
412–414

vertical filtering, optical flow, 474
vertices

introduction to cloth simulation, 
425–428

simulating soft body, 429–431
Visual Studio, generating project in, 

42–44
vload_half(), 101, 182, 567
vload_halfn(), 182, 567
vloada_half(), 185–186, 568
vloadn(), 181, 567
void return type, kernel functions, 146
void wait_group_events(), 193, 

332–333
volatile type qualifier, 141
voltage, multicore chip, 4–5
vstore_half()

half data type, 101
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reference guide, 568
vector store functions, 183, 187

vstore_halfn(), 184, 186–188, 568
vstorea_halfn(), 186, 188–189, 568
vstoren(), 182, 567
VSTRIDE, FFT kernel, 464

W
wave amplitudes, 454
weightArray:, Dijkstra’s algorithm, 

412–414
Windows. see Microsoft Windows
work-group barrier, 25–27
work-groups

data-parallel programming model, 
25–27

global memory for, 21
kernel execution model, 14–16
local memory for, 21, 23
SpMV implementation, 518
tiled and packetized sparse matrix 

team, 524
work-items

barrier functions, 190–191
built-in functions, 557

data-parallel programming model, 
25–27

functions, 150–152
global memory for, 21
kernel execution model, 13–15
local memory for, 23
mapping get_global_id to, 98–99
matrix multiplication, 501–509
private memory for, 21
task-parallel programming model, 

27
write

buffers and sub-buffers, 259–268, 
544–545

image built-in functions, 210–213, 
298–299, 572–573

image from host to device memory, 
301–302

image objects, 575
memory objects, 248

write_imagef(), 298–299
write-only qualifier, 140–141

Z
0 value, 64–65, 68
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