

Essential
App Engine

The Developer’s Library Series from Addison-Wesley provides

practicing programmers with unique, high-quality references and

tutorials on the latest programming languages and technologies they

use in their daily work. All books in the Developer’s Library are written by

expert technology practitioners who are exceptionally skilled at organizing

and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-

source programming languages and databases, Linux programming,

Microsoft, and Java, to Web development, social networking platforms,

Mac/iPhone programming, and Android programming.

Visit developers-library.com for a complete list of available products

Developer’s Library Series

Essential
App Engine

Building High-Performance
Java Apps with Google

App Engine

Adriaan de Jonge

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
 publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
 omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
 purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
 interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Jonge, Adriaan de, 1979-
 Essential app engine : building high-performance Java apps with Google App engine /
Adriaan de Jonge.
 p. cm.
 Includes index.
 ISBN 978-0-321-74263-6 (pbk. : alk. paper)
 1. Computer software—Development. 2. Software architecture. 3. Java (Computer pro-
gram language) 4. Google Apps. I. Title.
 QA76.76.D47D425 2012
 005.1—dc23

2011030789

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
 reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-74263-6
ISBN-10: 0-321-74263-X
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, October 2011

Editor-in-Chief
Mark Taub

Acquisitions Editor
Trina MacDonald

Development Editor
Michael Thurston

Managing Editor
John Fuller

Project Editor
Anna V. Popick

Copy Editor
Carol Lallier

Indexer
Jack Lewis

Proofreader
Kelli Brooks

Technical
Reviewers
Joseph Annuzzi
Romin Irani
Alex Moffat

Editorial Assistant
Olivia Basegio

Cover Designer
Gary Adair

Compositor
LaurelTech

❖

To everyone who is chasing their dreams…

❖

This page intentionally left blank

Contents at a Glance
Introduction xix

Acknowledgments xxvii

About the Author xxix

I: An App Engine Overview 1

1 Setting Up a Development Environment 3

2 Improving App Engine Performance 17

II: Application Design Essentials 29

3 Understanding the Anatomy of a Google App Engine
Application 31

4 Data Modeling for the Google App Engine
Datastore 45

5 Designing Your Application 57

III: User Interface Design Essentials 67

6 Presenting the User Interface with HTML5 69

7 Fine-Tuning the Layout Using CSS3 85

8 Adding Static Interactions Using JavaScript 99

9 Adding Dynamic Interactions Using AJAX 113

IV: Using Common App Engine APIs 127

10 Storing Data in the Datastore and Blobstore 129

11 Sending and Receiving E-Mail 155

12 Running Background Work with the Task Queue API
and Cron 171

13 Manipulating Images with the App Engine Image
Service 187

14 Optimizing Performance Using the Memory
Cache 203

15 Retrieving External Data Using URL Fetch 215

16 Securing a Web Application Using Google Accounts,
OpenID, and OAuth 229

17 Sending and Receiving Messages Using XMPP 241

V: Application Deployment 253

18 Improving the Development Process 255

19 Assuring Quality Using Measuring Tools 263

20 Selling Your Application 277

Index 289

Contents

Introduction xix

Acknowledgments xxvii

About the Author xxix

I: An App Engine Overview 1

1 Setting Up a Development Environment 3
Working with Eclipse Tools 3

Installing Plugins in Eclipse 4

Starting a New App Engine Project 7

Starting the Development Server 9

Deploying to the Online App Engine 11

Deploying from the Command Line 14

Starting the Development Server Command Line 15

Deploying to the App Engine Command Line 15

Summary 16

2 Improving App Engine Performance 17
Performing in the Cloud 17

Comparing the App Engine to Traditional Web
Applications 18

Optimizing Payments for Resources 18

Measuring the Cost of Class Loading 18

Timing a Servlet That Contains a Library 19

Timing a Servlet That Does Not Contain a
Library 21

Reducing the Size of web.xml 22

Avoiding Cold Startups 24

Reserving Instances with Always On 24

Preloading Classes Using Warm-Up Requests 24

Handling Concurrent Requests with Thread-Safe
Mode 25

Handling Memory Intensive Requests with
Backends 25

x Contents

Improving Performance in General 25

Optimizing Your Data Model for Performance 25

Avoiding Redundant Processing Using Cache 25

Postponing Long-Running Tasks Using the Task
Queue 26

Improving Page Load Performance in the
Browser 26

Working with Asynchronous APIs 26

Optimizing Your Application before Deployment 27

Summary 27

II: Application Design Essentials 29

3 Understanding the Anatomy of a Google App Engine
Application 31

Uploading Files for Dynamic Deployment 31

Setting Up the Directory Structure 33

Specifying Deployment Parameters 34

Specifying Repeating Tasks 37

Specifying Datastore Indexes 38

Blacklisting IP Ranges 38

Configuring Log Levels 39

Configuring Task Queues 39

Securing URLs 40

Configuring the Administration Panel 41

Setting Application Basics 41

Setting the Current Version 42

Adding Users 42

Enabling Billing 43

Summary 44

4 Data Modeling for the Google App Engine
Datastore 45

Moving Away from Relational Storage 45

Denormalizing Data 45

Aggregating Data without Joins 46

Designing Schemaless Data 47

xiContents

Modeling Data 47

Designing at a Micro Level 47

Choosing Properties 48

Separating Entities 49

Creating and Maintaining Relationships among
Entities 50

Maintaining One-to-Many and Many-to-Many
Relationships 51

Working with Data 52

Performing Transactions 52

Performing Queries 53

Creating Indexes 53

Upgrading When the Datastore Is Involved 54

Summary 55

5 Designing Your Application 57
Gathering Requirements 57

Choosing a Toolkit 58

Choosing a Framework 58

Choosing a Template Engine 60

Choosing Libraries 60

Making Design Choices 61

Modeling Data 62

Modeling URLs 64

Handling Page Flow 65

Summary 65

III: User Interface Design Essentials 67

6 Presenting the User Interface with HTML5 69
Introducing HTML5 69

Using Basic HTML5 Elements 70

Drawing Images Using the Canvas 72

Dragging and Dropping Items into Pages 74

Improving Form Elements 76

xii Contents

Detecting a User’s Geolocation 77

Storing Data on the Client Side 78

Storing Data across Sessions 78

Storing Session Data 80

Querying Structured Data Using a Local SQL
Database 81

Summary 83

7 Fine-Tuning the Layout Using CSS3 85
Selecting Elements Using CSS3 85

Understanding Specificity Calculation 85

Using IDs 86

Selecting Classes 88

Selecting Pseudo-Classes 88

Selecting Attributes 89

Selecting Elements 90

Selecting Pseudo-Elements 91

Using New Graphical Effects in CSS3 92

Rounding Edges 94

Using 2D Animations 94

Using 3D Animations 96

Summary 98

8 Adding Static Interactions Using JavaScript 99
Setting Up a Simplistic Example 99

Cleaning Up HTML Using Unobtrusive JavaScript 102

Reducing JavaScript Dependence by Progressively
Enhancing the HTML 106

Optimizing Performance Using Event Delegation 109

Avoiding Global Variables 110

Summary 112

9 Adding Dynamic Interactions Using AJAX 113
Using Classic AJAX without Frameworks 113

Communicating with the Server Using XML 114

Communicating with the Server Using JSON 116

Communicating with the Server Using HTML 118

xiiiContents

Using Google App Engine’s Channel API 120

Opening a Channel from the Server 120

Handling Messages on the Client 122

Summary 125

IV: Using Common App Engine APIs 127

10 Storing Data in the Datastore and Blobstore 129
Processing Data Synchronously 129

Storing Data Synchronously 130

Querying Data Synchronously 133

Retrieving Data Synchronously 135

Processing Data Asynchronously 136

Storing Data Asynchronously 137

Querying Data Asynchronously 139

Retrieving Data Asynchronously 140

Setting Up Transactions 141

Using Multitenancy to Introduce Namespaces 144

Storing and Retrieving Large Files 146

Storing Large Files in the Blobstore 146

Querying for the Content of Blobstore 149

Retrieving Files from the Blobstore 150

Uploading Bulk Data Using the Remote API 151

Summary 153

11 Sending and Receiving E-Mail 155
Sending Confirmation E-Mails with HTML and

Attachments 155

Parameterizing the Mail Body 158

Securing the Servlet 158

Logging Sent Mails on the Development Server 159

Using the JavaMail API as an Alternative 159

Comparing the Low-Level API to JavaMail 161

Receiving E-Mail 161

Configuring the Servlet to Receive Mail 161

Implementing the Servlet to Store Received
Mail 162

xiv Contents

Reading E-Mail without the JavaMail API 165

Failures 167

Considering Performance and Quota 167

How Long Does It Take to Send an E-Mail? 167

What Is the Overhead on a Cold Instance? 168

How Does the Mail Receiver Perform? 168

Summary 169

12 Running Background Work with the Task Queue API
and Cron 171

Task Queuing 171

Queuing Send Mails 172

Configuring Task Queues 174

Managing Quota 174

Specifying Additional Options 175

Taking Advantage of Task Queues 179

Scheduling Tasks Using Cron 180

Configuring Tasks Using cron.xml 180

Taking Advantage of Cron 182

Reading HTTP Headers 182

Summary 185

13 Manipulating Images with the App Engine Image
Service 187

Minimizing the Use of the Image API 187

Reading and Writing Images 187

Reading from User Input 187

Writing to the Datastore 190

Reading from the Datastore 191

Writing to User Output 193

Reading from a File 193

Performing Simple Manipulations 195

Creating Thumbnails of Large Images 195

Cropping Images 197

Rotating Images 198

Flipping Images 198

xvContents

Performing Advanced Manipulations 198

Summary 201

14 Optimizing Performance Using the Memory
Cache 203

Using the Cache API for Basic Purposes 203

Considering the Pitfalls of a Cache 203

Caching String Values 204

Implementing a Caching Strategy 206

Reducing App Engine Load Using ETag Headers 206

Working with Fine-Grained Cache 209

Implementing Serializable 209

Caching Query Results in Raw Entity Format 210

Maintaining a Cache 210

Invalidating Cache Items 211

Clearing the Cache 212

Using Other Cache Utility Methods 213

Putting and Getting Multiple Values 213

Registering Error Handlers 213

Incrementing Values 213

Using JSR 107 as an Alternative API 214

Summary 214

15 Retrieving External Data Using URL Fetch 215
Reading URLs Using GET Requests 215

Using the Standard URL Fetch API 215

Using the Low-Level URL Fetch API 217

Reading Results 218

Interpreting Results 218

Writing to Memory Cache 219

Writing to the Datastore 219

Adding Options to URL Fetch 219

Controlling Timeouts 219

Handling Exceptions Gracefully 221

Posting Form Data 223

Fetching URLs Asynchronously 224

xvi Contents

Consuming Web Services 226

Accessing RESTful Services 226

Communicating with SOAP 226

Considering Security 226

Using HTTPS 227

Using Open Ports 227

Summary 227

16 Securing a Web Application Using Google Accounts,
OpenID, and OAuth 229

Authenticating Users with Google Accounts 229

Authenticating Users with OpenID 232

Providing Access to Third Parties Using OAuth 235

Securing URLs in web.xml 237

Enforcing Authentication 238

Enforcing Secure Protocols 238

Security Considerations 239

Validating Input 239

Configuring Multitenancy 239

Storing Personal Data 240

Summary 240

17 Sending and Receiving Messages Using
XMPP 241

Sending Messages Using XMPP 241

Receiving Messages Using XMPP 244

Receiving Subscriptions 246

Receiving Presence 249

Summary 251

V: Application Deployment 253

18 Improving the Development Process 255
Optimizing the Development Process for the

Internet 255

Thinking Like a Project Manager 256

Reducing Overhead 256

Knowing Your End Goal 256

xviiContents

Cutting Away Unnecessary Activities 257

Improving Functionality 258

Setting Priorities 259

Planning Iterations 259

Practicing Experiment-Driven Development 260

Making Changes Gradually 260

Measuring Quality 260

Optimizing Developer Productivity 261

Performing Rituals 261

Using New Programming Languages 261

Managing Time and Surroundings 261

Summary 262

19 Assuring Quality Using Measuring Tools 263
Testing on a Production Environment 263

Putting the Added Value of Testing in
Perspective 263

Performing a Sanity Check 264

Minimizing Damage from Failures 264

Thinking Differently about Usability 265

Choosing Functionality over Appearance 265

Optimizing Usability by Analyzing Analytics 265

Checking Availability with the Capabilities API 265

Logging Unexpected Behavior 269

Profiling Continuously on Production 271

Measuring User Response to Your Interface 273

Summary 275

20 Selling Your Application 277
Determining How to Approach Sales 277

Knowing Your Audience 277

Reaching Your Audience 278

Making the News 278

Writing Articles 278

Blogging 279

Writing on Twitter 280

Publishing Facebook Pages 281

Connecting through Facebook Apps 282

xviii Contents

Advertizing on Google Apps Marketplace 282

Using AdWords 284

Optimizing Your App for Search Engines 285

Using Social Bookmarking Sites 285

Attracting Customers Using Mobile App Stores 285

Converting Prospects into Paying Customers 286

Handling the Payment Process 286

Summary 287

Index 289

Introduction

A single hype is not enough to change the world. But multiple hypes together can
change it as long as they are part of a bigger trend.

This book discusses more than one hyped technology: cloud computing, NoSQL, and
HTML5. The technologies in this book combine well with other hyped technologies:
functional languages (Scala) and connected devices (iPhone, iPad, Android).

The Internet is changing the world. That is old news, yes, but because it’s old news, you
may easily overlook the Internet’s ongoing dynamics and influences. A good indicator that
you are missing the cybership is if you are still stuck on Spring and Hibernate. Frameworks
solving yesterday’s problems are blocking the way to handle tomorrow’s challenges.

The Google App Engine is a perfect fit with current Internet trends. Reading this
book gives you a head start with upcoming technologies. This Introduction describes
how both the App Engine and this book fit in the current trends.

Analyzing Internet Trends
To analyze the current Internet trends, you need to take a few steps back in time and see
what has happened in the past two decades.

Starting in the Nineties
Let’s start with the early 1990s. At first, the World Wide Web was used mostly to serve static
HTML pages. The best way to serve a dynamic web application was to configure a /cgi-
bin directory connecting to Perl scripts or binary programs that redirected the output to
the web visitor. Web applications were nowhere near as mature as classic office applications.
By the late nineties, though, developers were incorporating best practices from classic office
automation into web applications, and the Internet soared with the dot-com bubble.

Switching to the New Millennium
In the early 2000s, web programmers realized that a Model-View-Controller pattern was
not such a bad idea after all. And around 2005, Asynchronous JavaScript and XML
(AJAX) helped make web applications more interactive. By 2008, web applications and
office applications were on the same maturity level, sharing many of the same
 technologies, such as SQL databases and heavy application servers. Some UI libraries
even tried to mimic classic Windows interfaces, with the ultimate goal of bringing a
 not-so-user-friendly interface concept into the browser.

xx Introduction

Analyzing Current Developments
Right now, you can see the start of a trend in which Internet technology surpasses the
maturity level of classic office automation. The frontrunners in Internet technology are
critically investigating all parts of their systems and analyzing their designs for fit with
the requirements of the current Internet environment. New technologies are being
developed from scratch with the Internet’s scalability requirements as a first priority.

It won’t be long until office automation will have trouble keeping up with Internet
technologies. That is the point where office automation will start adopting the best
 practices from the Internet instead of the other way around.

Replacing SQL Databases with NoSQL
Relational databases are one of the most widely used technologies in classic office
 automation. They are mature, well standardized, taught in most schools and universities,
and available in all sizes. However, they were designed at a time when storage was still
expensive, the number of users was limited to the number of employees in a single
 company, and the focus of their use was on transaction processing.

Relational databases do not scale well. They were designed as central storages
 operating efficiently enough to handle most of their work alone. In larger environments,
their capabilities can be expanded using horizontally or vertically distributed databases or
load-balanced setups that replicate data among multiple machines. Usually this
 functionality requires expensive software, machinery, and specialized knowledge, though,
so at the end of the day, relational databases are still limited.

Switching to NoSQL with the Google App Engine Datastore
A common characteristic of NoSQL databases is high scalability. NoSQL databases are
designed specifically with the requirements of the Internet in mind. To serve millions of
visitors around the world in a few hundred milliseconds, you need functionality beyond
that of relational databases. If you do not need to serve that many visitors, you may still
consider relational databases because of their consistency and transactional integrity. You
should choose NoSQL only if the advantages match your requirements.

Google App Engine offers the datastore as NoSQL storage. It allows you to store
entities, each with a set of key-value pairs. A value can also consist of an array of values.
Benefits of the App Engine offering are that you need not worry about system
 administration, and its APIs easily integrate with the rest of the platform.

When you start working with the App Engine datastore, you discover that NoSQL
databases have additional advantages over the classic SQL offerings. The APIs are less
awkward to use than JDBC APIs.

Moving Away from Object Relational Mapping
Object relational mapping has always been painful. Doing the mapping yourself is so
cumbersome that it scares developers into using heavy and code-intensive frameworks

xxiComputing in the Cloud

like Hibernate, Java Data Objects (JDO), and the Java Persistence API (JPA). Choosing
not to map relational structures to objects is virtually impossible. It would imply keeping
JDBC connections open longer than necessary.

NoSQL databases relieve you from the burden of object relational mapping. If you
insist, you can still map your datastore’s structures to Java objects. This does not always
make sense though. This book shows many examples of datastore entities being directly
passed to an HTML template. The result is clean, simple, and efficient code.

Considering Alternative NoSQL Solutions
Examples of other NoSQL databases are Amazon SimpleDB, Riak, Voldemort, Microsoft
Trinity, Hadoop, Cassandra, CouchDB, MongoDB, Kyoto Cabinet, Hypertable, GraphDB,
Redis, Google Pregel, and Google BigTable (the underlying platform of the App Engine’s
datastore). Each of these products has its own characteristics. Some are key-value storages,
graph storages, document storages, or variants of these structures.

After reading this book and practicing with App Engine datastore, you should
 investigate the various NoSQL initiatives for your work on platforms other than the App
Engine. Many of the advantages of the datastore on the App Engine platform can also be
found outside the App Engine. This is all part of a larger trend, after all.

Computing in the Cloud
Cloud computing changes the way you write your applications. Classic enterprise
 applications usually optimize performance by taking a performance hit at startup time. If
your application is restarted only once every few months, that can be an acceptable
 strategy. However, on some cloud platforms, including Google App Engine, your
 applications may be started and stopped multiple times an hour. This means that you
should optimize your application to start up extremely fast, which may require throwing
out all heavyweight frameworks, like Spring or Grails.

Maintaining Systems in the Cloud
Hosting applications in the cloud means hosting without worrying about the underlying
infrastructure. In all cloud offerings, you pay only for what you use. This is especially
interesting if your site experiences sudden high spikes in visitors. In classic setups, you
require a machine park that is standing still most of the time, waiting for the exceptional
spike when it really needs to work.

The advantage of the App Engine over other cloud initiatives is that it scales
 automatically. You need not give orders to start up additional instances of your
 application. If you are worried about controlling your budget, you can set a maximum
on your every day expenses. This helps you prevent bankruptcy after a distributed
 denial-of-service (DDOS) attack.

The App Engine does not expose details of the underlying operating system to its
users. Cloud services like Amazon Elastic Compute Cloud (EC2) and Microsoft Azure let

xxii

users maintain their own instance of an operating system. This is a trade-off between
freedom and maintenance costs.

The App Engine could be characterized as a software developer’s cloud platform,
whereas EC2 could be characterized as a system administrator’s cloud platform. Microsoft
Azure is most interesting if your company is already running on a full Microsoft stack. It
fits best with the .Net developer community, although it must be mentioned that
Microsoft also targets Java developers with its Azure platform.

Make an informed decision about which platform you’ll use before you start develop-
ing, because some lock-in is involved. Don’t choose the App Engine just because it’s
Google or because you liked the cover of this book. Choose it because you want a well-
integrated platform that relieves you from the burden of system administration and
 automatically scales to sudden changes in demand even while you sleep.

Connecting with Other Cloud Offerings
You can also consider cloud computing from a nontechnical perspective. When managers
discuss cloud computing, they are usually talking about Google Apps rather than Google
App Engine. Google Apps includes Google Docs, Gmail, Google Calendar, and Google
Sites for Business. The App Engine is just a technical platform on which software vendors
can host their applications. Managers may not be interested in such hosting. They are
interested in the applications.

The Google Apps Marketplace helps software vendors sell applications that integrate
well with Google Apps. The Google App Engine is the ideal platform for hosting
 applications that integrate with Google Apps. Hosting in Google’s cloud may also help
when selling your application to customers who already use Google Apps.

Adopting HTML5
HTML4 and XHTML1 have ruled the world for a long time. Now it is time to move
on. The World Wide Web made a shift from serving documents to serving web
 applications. And even though documents will probably be served until the end of time,
the real technical challenge is in serving user-friendly web applications.

Web interfaces are more easily understood by the average user than classic Windows
interfaces. In operating systems, you can see a trend toward simplifying client-side
 interfaces to work similarly to web interfaces. Smart phones show similar advancements.
Smart phone vendors are trying to keep up with the simplicity of Apple’s iPhone.

HTML4 and XHTML1 have some limitations that quickly become awkward when
using them to offer web applications. A lack of descriptive HTML element names is just
a minor flaw that leads to overly complicated Cascading Style Sheet (CSS) files. HTML5
fixes this problem. More interesting are the additional JavaScript APIs offered with the
HTML5 specification.

Using HTML5 offers many benefits. For example, consider the File Chooser dialog
when uploading a file. HTML5 allows you to drag and drop files into your browser. You

Introduction

xxiiiDiscussing Trends Out of Scope for This Book

can try this by adding an attachment in Gmail using drag and drop. Another example is
the use of cookies or heavy server-side sessions. HTML5 offers session storage, local
 storage, and IndexedDB to store about 5MB of data on the client for later reuse. HTML5
allows you to make drawings on the client side using the Canvas.

Finally, the support for HTML5 on mobile and connected devices is better than you
might expect. Some of the features of HTML5 are particularly useful on handheld
devices. The lack of Flash support on iPhone and iPad is well compensated by HTML5.
And possibly one of the most interesting features of HTML5 on a mobile device is the
ability to ask for the user’s location. If the user allows it, you can use it to customize
search results to the things most relevant in that particular area.

Discussing Trends Out of Scope for This Book
Essential App Engine: Building High-Performance Java Apps with Google App Engine discusses
some of the latest trends in cloud computing with NoSQL and HTML5. Some related
trends are beyond the scope of this book, but with some additional reading, you can
combine these trends with the technologies discussed here.

Serving Apps on Connected Devices
The examples in this book assume that the visitors are accessing the application using a
web browser or a mobile browser. All examples target HTML, CSS, and JavaScript.

In addition to browsers, applications are increasingly served through platform-specific
applications running on the iPhone, iPad, Android, Windows Phone, or BlackBerry.
Numerous books on developing applications for these platforms are available.

From an App Engine perspective, requests from mobile applications are in many ways
similar to AJAX requests made from browsers. You can serve JSON (JavaScript Object
Notation) strings over a RESTful interface, providing the same data in a format that is
easily read by the applications.

Moving to New JVM Languages
Java has been called the Cobol of the 21st century. Without arguing against that, the
examples in this book are nevertheless in Java. A seeming trend away from the Java
 language does not necessarily imply moving away from the Java Virtual Machine (JVM).
Most popular new languages like Scala and Clojure compile to JVM bytecode.

At this point, the Java language is still the largest language on the JVM platform.
Despite its growing popularity, Scala has nowhere near the user base of Java yet. And
even for those who are interested in other JVM languages, the Java language itself
serves well as the lingua franca of JVM languages. This book demonstrates the
Google App Engine API in a language-neutral way, independent of the heavy Java
 framework. Code examples in this book easily translate to Scala, Clojure, Groovy, JRuby,
or Jython.

xxiv

This Book’s Target Audience
Essential App Engine is written for software developers and software architects.

For software developers, this book provides a hands-on approach to developing
 applications for the Google App Engine. It contains many simple, standalone code
 examples that demonstrate the concepts without distractions of unrelated code and
frameworks. Software developers can modify the examples to use as working code,
 realizing their applications.

Software architects can read this book to get a general overview of the characteristics of
the App Engine platform. In addition to the code examples, this book provides in-depth
background knowledge of how the App Engine datastore differs from classic relational
databases. It covers how you should change your design to get the best performance out
of it. In addition, this book provides many pointers on how to change the way you
design web applications to optimize their performance when hosted in the cloud.

Overview of This Book
This book contains twenty chapters divided into five parts. The order of the parts is con-
sistent with a software development project that follows a design-first approach. You can
read the chapters in a different order, though: Chapters are cross-referenced when more
detailed background knowledge is desirable.

 n Part I, “An App Engine Overview,” introduces you to the basics of the App
Engine. It presents a discussion of performance characteristics and a practical guide
to setting up your development environment so that you can continually address
performance.

 n Part II, “Application Design Essentials,” discusses all configuration options in
the App Engine platform. It provides a design philosophy for modeling your data,
targeting the Google App Engine datastore. And it discusses general technical
design choices you should make before you start developing for the App Engine,
such as whether or not to use Java Server Pages.

 n Part III, “User Interface Design Essentials,” focuses on modern browser
 technology rather than on the App Engine itself. HTML5 and CSS3 are great
 companions when developing web applications in the cloud. The added possibilities
in the browser help relieve the server from a lot of work and memory usage,
 ultimately lowering your usage costs while leveraging a responsive and user-friendly
application to your client. In addition to discussion of HTML5 and CSS3, Part III
provides an elaborate explanation of how to use JavaScript and AJAX to continue
programming on the client side.

 n Part IV, “Using Common App Engine APIs,” contains everything you need
to know about the App Engine APIs. This includes the datastore, the Blobstore, the

Introduction

xxvThe Essential App Engine Blog

Mail API, task scheduling, memory cache, URL retrieval, web application security,
and XMPP messaging.

 n Part V, “Application Deployment,” discusses how to improve your development
process, optimize the quality of your web application, and sell it to potential customers.

The Essential App Engine Blog
Google provides frequent updates to the App Engine, adding new features and APIs, in
response to popular demand. To keep you up to date, a companion website to this book,
the Essential App Engine blog, is available at www.essentialappengine.com.

Check this website for the latest updates, the source code for this book, and additional
code examples!

www.essentialappengine.com

This page intentionally left blank

Acknowledgments

Writing a book is impossible without a strong and reliable support team.
First, I’d like to thank everybody at Addison-Wesley for all their help and support.

I owe special thanks to the following people:
 n Trina MacDonald, for helping me through the process, providing practical tips on

project planning, being my conscience for keeping the schedule, and knowing
when to be patient and impatient at exactly the right times.

 n Michael Thurston, for the thorough and detailed feedback on all texts and struc-
ture.

 n Olivia Basegio, for all the work behind the scenes, keeping things running flawless-
ly at all times.

 n The technical editors Joseph Annuzzi, Romin Irani, and Alex Moffat, each with
their own specific area of interest and expertise. This book was greatly improved
thanks to all their feedback, suggestions, and ideas, both high-level and in great
detail.

 n Carol Lallier, for making great improvements in the text while copy editing.

I’d like to thank everybody at ANWB who showed interest in the writing process of
this book. You can hardly imagine the positive effect of your involvement.

Last but not least, great thanks go to all my family and friends. Thank you, first, simply
for being my family and friends. And thank you for bearing with me throughout the
process of writing this book—even if it sometimes meant I spent less time with you.

This page intentionally left blank

About the Author

Adriaan de Jonge is an online specialist in the Netherlands. He has worked in several
roles: researcher, consultant, software architect, and author. He is not planning to settle
down in a single role any time soon.

His areas of interest are Internet, gadgets, buzzwords, programming languages, and
datastores—almost anything as long as it is new, lightweight, and challenging food for
thought.

Adriaan works for ANWB, the Dutch association for tourism, traffic, and roadside
assistance.

Chapter 2
Improving App Engine

Performance

Throughout this book, a lot of attention is given to performance optimization. By
 improving performance, you get the added benefit of lowering the usage costs of your
application when you surpass the App Engine’s free quota. This chapter explains
 performance characteristics specific to the Google App Engine environment. It starts by
 discussing the process of starting and stopping instances in the cloud. The cost of starting an
instance is demonstrated by showing the performance of a servlet using a third-party library
compared to the performance of a plain vanilla servlet. This chapter also offers pointers for
minimizing and, where possible, avoiding cold startups. Finally, it provides a high-level
 overview of performance-related topics you can find in other chapters in this book.

Performing in the Cloud
One of the unique selling points of cloud computing over traditional hosting is high
scalability and flexibility when responding to changes in the demand of your application.
The pricing model of cloud computing is especially convenient if you experience sudden
high spikes in the number of visitors on a regular basis.

In the cloud, you pay for what you use. On the App Engine, this means that if your traffic
is usually below Google’s free daily quota and you have only incidental traffic spikes, you pay
only for the computing power used during the days with high spikes. The advantage of
cloud computing over having a physical machine park capable of handling high-traffic spikes
is that you are not paying for machines that remain idle except during a traffic spike.

This flexibility also introduces a new challenge that might not be apparent at first
sight. Responding to changes in demand means starting and stopping instances multiple
times per hour. The time necessary to respond to a change in demand is directly related
to the time necessary to start your web application. This means that your web application
does not necessarily become flexible and scalable simply because it is deployed on the
App Engine. You need to optimize your application to get the most out of the specific
circumstances of running on the Google App Engine.

18 Chapter 2 Improving App Engine Performance

Comparing the App Engine to Traditional Web Applications
Whereas the lifetime of a typical App Engine instance is measured in minutes and hours,
the lifetime of a traditional web application instance is measured in weeks or months.
Traditional web application here means a web application running on a physical machine
that you maintain yourself rather than an application running in the cloud.

One of the most common approaches to optimizing the performance of a traditional
web application is to take a performance hit on startup of the instance. For example, if
you load a lot of classes and data into memory during startup, you can save loading time
while processing the actual user requests because starting and stopping an application
instance is unrelated to handling a request.

Taking a performance hit during the startup of a new instance is not such a good idea,
though, if a website visitor is waiting while your application is starting. You may lose a
visitor every time a new instance is started.

In addition, the scalability requirements of the App Engine ask for different storage
strategies. Most traditional web applications are based on relational databases. Strategies
for optimal usage of a relational database can sometimes be catastrophic when applied to
NoSQL storages like the Google App Engine datastore.

As a result, web application frameworks originally designed for use with software
stacks can lead to bad results when used on the App Engine without consideration.

Optimizing Payments for Resources
On the App Engine, you pay for the resources you use. This means that optimizing your
application to use fewer resources also leads to cost reductions.

On the App Engine, some resources are more expensive than others. The optimal
usage versus cost ratio depends on the characteristics of your application. How much data
do you store? How much traffic is generated by your visitors? How is the traffic
 distributed over the total data set? How much data processing is involved? How is the
number of visitors distributed over time?

When you consider these questions and look at the current pricing tables on Google’s
site, you quickly find that you may have an optimization challenge. Take a look on
http://code.google.com/appengine/docs/billing.html for more information.

Although there is no silver bullet for an optimal cost reduction, this book aims to give
you the most control over the performance and costs of your web application.

Measuring the Cost of Class Loading
Every library or framework you introduce brings lots of additional classes to load at startup.
For this reason, this book introduces only three third-party JARs to help with the code
 examples: Commons FileUpload, StringTemplate, and ANTLR. Commons FileUpload is used
to process form submits with files as content. StringTemplate is used as a template language to
generate output for the visitors, and it can also be used to generate text for an e-mail. ANTLR
stands for Another Tool for Language Recognition and is a dependency of StringTemplate.

http://code.google.com/appengine/docs/billing.html

19Measuring the Cost of Class Loading

To show you the cost of class loading, this chapter investigates the startup time of the
App Engine instance with StringTemplate and without StringTemplate. In addition, there
is a startup time comparison between a web.xml file of roughly 400 lines and a web.xml
of 21 lines.

Timing a Servlet That Contains a Library
Listing 2.1 shows a very simple servlet that processes a template using the StringTemplate
framework and shows “Hello, World” in the browser window.

Listing 2.1 Writing Hello World with StringTemplate

01 package com.appspot.template;

02

03 import java.io.IOException;

04

05 import javax.servlet.ServletException;

06 import javax.servlet.http.HttpServlet;

07 import javax.servlet.http.HttpServletRequest;

08 import javax.servlet.http.HttpServletResponse;

09

10 import org.antlr.stringtemplate.StringTemplate;

11 import org.antlr.stringtemplate.StringTemplateGroup;

12

13 public class StringTemplateServlet extends HttpServlet {

14

15 protected void doGet(HttpServletRequest request,

16 HttpServletResponse response)

17 throws ServletException, IOException {

18 long startTime = System.currentTimeMillis();

19

20 StringTemplateGroup group = new StringTemplateGroup("xhtml",

21 "WEB-INF/templates/xhtml");

22 StringTemplate hello = group.getInstanceOf("hello-world");

23 hello.setAttribute("name", "World");

24 response.getWriter().write(hello.toString());

25

26 long diff = System.currentTimeMillis() - startTime;

27 response.getWriter().write("time: " + diff);

28

29 }

30 }

Lines 18 and 26 process the timer, while the code loading the StringTemplate and
ANTLR JARs are on lines 20 through 24.

20 Chapter 2 Improving App Engine Performance

Writing the resulting time at the bottom of the HTML (line 27) is not really elegant,
but it works sufficiently for the simple timer required in this example.

Line 22 refers to an external file with an HTML template. This template is shown in
Listing 2.2.

Listing 2.2 Setting Up the HTML Template for StringTemplate

01 <html>

02 <head>

03 <title>Test</title>

04 </head>

05 <body>

06 Hello, $name$ from a file!

07 </body>

08 </html>

Line 6 processes the attribute provided in line 23 of Listing 2.1. The rest of the
HTML template should not require any explanation. The resulting screen just after a new
instance is launched is displayed in Figure 2.1.

Reloading the same servlet when the instance is already started is a lot faster.
Processing the StringTemplate takes 10 to 15 milliseconds on subsequent requests.

Figure 2.1 Displaying the resulting time in the browser screen with
StringTemplate.

21

Timing a Servlet That Does Not Contain a Library
Writing Hello World to a browser screen is simple enough to do without a library like
StringTemplate. If you modify the code to write Hello World directly to the browser, you
get a servlet as shown in Listing 2.3.

Listing 2.3 Writing Hello World without StringTemplate

01 package com.appspot.template;

02

03 import java.io.IOException;

04

05 import javax.servlet.ServletException;

06 import javax.servlet.http.HttpServlet;

07 import javax.servlet.http.HttpServletRequest;

08 import javax.servlet.http.HttpServletResponse;

09

10 public class StringTemplateServlet extends HttpServlet {

11

12 protected void doGet(HttpServletRequest request,

13 HttpServletResponse response)

14 throws ServletException, IOException {

15

16 long startTime = System.currentTimeMillis();

17

18 response.getWriter().write("Hello World without ST! ");

19

20 long diff = System.currentTimeMillis() - startTime;

21 response.getWriter().write("time: " + diff);

22

23 }

24 }

The only difference is in line 18. To avoid wasting too much code, the HTML is left
out. Seven short lines of HTML do not have a significant influence on the loading time:
they account for less than a millisecond.

Figure 2.2 shows the browser window loading the servlet from Listing 2.3 while
 starting a new instance. The decrease in loading time is substantial!

If loading the StringTemplate library increases the loading time of a new App Engine
instance by 300 milliseconds, then why not switch to FreeMarker, Velocity, or Java Server
Pages (JSP), you might ask. Or perhaps you know another template engine not mentioned
here. You are encouraged to investigate and find out for yourself which library has the
most efficient loading times on cold startup.

For any other library or framework you’d like to introduce, you should first investigate
what the effect is on the total load time. Adding an additional JAR is always a big step.

Measuring the Cost of Class Loading

22 Chapter 2 Improving App Engine Performance

Reducing the Size of web.xml
Explicit changes like adding JARs are relatively simple to manage. More tricky is making
changes more gradually over time. For example, this book is full of servlets. As servlets
were added, the web.xml file grew. At the end of the writing, the web.xml file contained
more than 400 lines of configuration setting up all the examples demonstrated in the
book.

The number of servlets declared in web.xml has a significant influence on the class
loading time. To test the difference, the web.xml was reduced to minimal size, as shown
in Listing 2.4. Just a single servlet is included—the servlet from Listings 2.1 and 2.3.

Listing 2.4 Reducing web.xml to an Absolute Minimum

01 <?xml version="1.0" encoding="utf-8"?>

02 <web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

03 xmlns="http://java.sun.com/xml/ns/javaee"

04 xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

05 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

06 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

07 version="2.5">

08

Figure 2.2 Displaying the resulting time in the browser screen without
StringTemplate.

23

Listing 2.4 Reducing web.xml to an Absolute Minimum (Continued)

09 <!-- Template -->

10 <servlet>

11 <servlet-name>StringTemplateServlet</servlet-name>

12 <servlet-class>

13 com.appspot.template.StringTemplateServlet

14 </servlet-class>

15 </servlet>

16 <servlet-mapping>

17 <servlet-name>StringTemplateServlet</servlet-name>

18 <url-pattern>/st</url-pattern>

19 </servlet-mapping>

20

21 </web-app>

Take a look at the log files before and after the web.xml size reduction. Figure 2.3
shows the difference in CPU usage for both scenarios.

As you can see, the difference in load time on cold startup is significant. This is an
indication that you should be careful with the number of servlets you declare in a web
application. On the other hand, one very large servlet is unlikely to perform much better

Figure 2.3 Displaying the logged CPU times before and after a web.xml
reduction.

Measuring the Cost of Class Loading

24 Chapter 2 Improving App Engine Performance

than several smaller ones, so you must consider the trade-off. How do you divide your
code over a number of servlets with the least class loading overhead? Again, there is no
silver bullet for doing so. The important thing is that you think about this trade-off in
your specific situation.

Avoiding Cold Startups
In the early days of the Google App Engine, any request could lead to a new instance
being launched. For applications with low traffic, there was a high risk of long response
times on the first request by a visitor, especially if the application was not optimized for
fast cold startups.

Only high-traffic applications with a relative constant load could serve a large
 percentage of users without confronting them with longer response times. But even those
would lose a few visitors with instance starts and stops.

Later, Google added new features for paying customers that help avoid longer response
times. It should be noted that these strategies may fail when the application experiences
very sudden spikes in traffic.

Reserving Instances with Always On
Paying customers can hire instances that are never turned off. This solves the problem of
low-traffic applications, where almost every visit leads to an instance being launched.

The Always On instances are supplemented with dynamic instances when the demand
exceeds the capabilities of the available Always On instances. This means that just
 switching to Always On does not completely fix the problem with long responses on
cold startups.

Always On can be configured in the admin console, as described in Google’s
 documentation on http://code.google.com/appengine/docs/adminconsole/instances.html.

Preloading Classes Using Warm-Up Requests
When at least one instance is running, either Always On or dynamic instances, the App
Engine can sometimes predict when a new instance will be required.

As long as you haven’t explicitly turned off warm-up requests in the appengine-
web.xml configuration file, the App Engine can send a request to /_ah/warmup
 sometime before a new instance is required. You can configure your own servlet to
listen on that address and make sure that classes and other data are preloaded before a
 visitor starts accessing that instance.

Warm-up requests do not work when no instances are running. They do not add
much value for low-traffic applications unless Always On is used.

Even with instances running, warm-up requests do not always work. The App Engine
is not always capable of predicting traffic in advance.

More information on warm-up requests is found on http://code.google.com/
appengine/docs/adminconsole/instances.html.

http://code.google.com/appengine/docs/adminconsole/instances.html
http://code.google.com/appengine/docs/adminconsole/instances.html
http://code.google.com/appengine/docs/adminconsole/instances.html

25

Handling Concurrent Requests with Thread-Safe Mode
By default, an instance handles only a single request at a time. If an instance takes long to
respond and there are other requests at the same time, the App Engine launches
 additional instances to handle the rest of the traffic.

In some cases, loading new instances can be avoided by allowing concurrent requests.
This requires you to develop thread-safe servlets. More information on thread-safe mode
is found on http://code.google.com/appengine/docs/java/config/appconfig.html.

Handling Memory Intensive Requests with Backends
In addition to Always On instances, you can purchase, for a higher fee, specialized
instances that are optimized for handling requests of a backend nature—that is, requests
that require longer than 30 seconds to finish. Another characteristic of backend
 applications is higher memory consumption.

More information on backend instances can be found on Google’s website at http://
code.google.com/appengine/docs/java/backends/.

Improving Performance in General
The subtitle of this book is Building High-Performance Java Apps with Google App Engine
because this book focuses on performance optimization more than do other books. This
section provides a general overview of possibilities for performance optimization.

Optimizing Your Data Model for Performance
If you model your data for the App Engine datastore the same way you model your data
for a relational database, you can be certain that you will run into performance problems
at some point. The way the App Engine datastore divides data over multiple machines in
the cloud is fundamentally different from the way a relational database stores data on disk.
In many cases, you need to do the exact opposite of what you are used to doing. For
example, you need to denormalize your data instead of normalizing it.

Because you can store arrays of data, there is less need of relationships between tables,
although you should be cautious if you feel the need to index the array, because the size
of your total index may explode.

You should consider the need for transactions before you set up your data model.
Transactions require entity groups, and larger entity groups may harm scalability.

Chapter 4, “Data Modeling for the Google App Engine Datastore,” presents a detailed
discussion of datastore characteristics. Using the APIs is demonstrated in Chapter 10,
“Storing Data in the Datastore and Blobstore.”

Avoiding Redundant Processing Using Cache
Many time-consuming tasks are done repeatedly for subsequent requests—think of tasks
that require gathering data or processing intensive calculations. The same processing
might be repeated for a single visitor or for multiple visitors.

Improving Performance in General

http://code.google.com/appengine/docs/java/config/appconfig.html
http://code.google.com/appengine/docs/java/backends/
http://code.google.com/appengine/docs/java/backends/

26 Chapter 2 Improving App Engine Performance

Proper caching can help avoid repetitive processes. This book explains both
 fine-grained caching using memcache and page-level caching on the Internet. See
Chapter 14, “Optimizing Performance Using the Memory Cache,” for in-depth
 information.

Postponing Long-Running Tasks Using the Task Queue
In many cases, high responsiveness is more important than high performance.
Responding quickly to a visitor’s request can sometimes be done by postponing the
actual work. As long as the visitor can trust that the work will be done eventually, he or
she will be pleased with the quick response.

The Task Queue API can be used in multiple ways. You can preschedule tasks at
 regular intervals, or you can post tasks to the queue on demand. Both methods can help
improve performance and responsiveness.

Details on Task Queue are discussed in Chapter 12, “Running Background Work with
the Task Queue API and Cron.”

Improving Page Load Performance in the Browser
A high-performing server is practically useless if the page loading in the browser ruins
the total response time. For example, if your HTML is full of useless elements, classes, and
IDs, your Cascading Style Sheet (CSS) file beats the size of an average phone book, and
you reach a megabyte of JavaScript files, all server-side efforts are lost. You could make it
even worse by adding one or more Flash files in your page. But then you are clearly
working in the wrong direction.

With HTML5 and CSS3, you hardly need Flash anymore except, perhaps, for an inci-
dental video player being used until HTML5 videos are sufficiently mature. The newly
added elements in HTML5 may help you downsize your CSS files. The less specific your
CSS file, the easier it is to maintain.

The way you load your JavaScript has a large impact on the page load time. Loading
JavaScript unobtrusively at the bottom of the page allows the rest of the page to render
before the JavaScript is interpreted. This improves the responsiveness to the visitor.

Part III, “User Interface Design Essentials,” covers HTML5, CSS3, JavaScript, and
AJAX, providing details on browser optimization from a technical perspective.

Working with Asynchronous APIs
Page loading generally does not entail heavy data processing. Mostly it consists of waiting
for services such as the datastore to respond. If you know in advance that you need to
make multiple backend requests and the backend requests are independent of each other,
you can work with asynchronous APIs.

One of the most important asynchronous APIs is described in Chapter 10, “Storing
Data in the Datastore and Blobstore.”

27

Optimizing Your Application before Deployment
Some performance optimizations are a result of planning and designing. The more
 effective performance improvements usually result from careful experimentation and
measurements.

You can profile calls to Google’s backend services using AppStats. Most of the overhead
in an average App Engine application is in the backend calls. If you do a lot of heavy
 lifting in your own code, you are encouraged to profile this code and optimize where
possible.

AppStats is explained in Chapter 19, “Assuring Quality Using Measuring Tools.”

Summary
Cloud solutions, and specifically the Google App Engine, are designed for scalability and
flexible usage from scratch. However, in the case of the Google App Engine, this design
may mean that some classic performance optimization strategies are counterproductive.
This chapter focused on cold startup time and why you should avoid cold startups when
possible. It also discussed the overhead of frameworks and libraries—also to be avoided
when possible. The end of this chapter presented a few performance questions with cross
references to the chapters where you can find the answers.

Summary

Index

Numbers
2D animations, in CSS3, 94–96

3D animations, in CSS3, 96–98

A
A/B testing, 260

Abstraction, frameworks adding level of, 58–59

Access control. See also Authentication

granting user access to applications,
42–43

providing third party access, 235–237
restricting access at URL level, 238
securing server access, 227

AddThis, 285

Admin interface, logging messages to,
269–270

Administration panel, configuration options
in, 41–43

AdWords, 284

Aggregating data, without joins, 46

AJAX (Asynchronous JavaScript)

Channel API and, 120, 124–125
communicating with server using

HTML, 118–119
communicating with server using

JSON, 116–118

communicating with server using
XML, 115–116

handling messages on client, 122
handling page flow, 65

290 Always On instances, for avoiding cold startups

overview of, 113
returning tokens to visitors, 123–124
sending messages to channels, 121–122
setting up HTML for AJAX examples,

114
setting up new channel from server,

120–121
summary, 125
without frameworks, 113

Always On instances, for avoiding cold
 startups, 24

Animation

2D animations in CSS3, 94–96

3D animations in CSS3, 96–98

Ant build tool, setting up directory structure
with, 34

ANTLR (Another Tool for Language
Recognition), 18, 61

Apache Commons File Upload. See Commons
File Upload

Apache mod_cache, 206

APIs

asynchronous. See Asynchronous APIs

for background work. See Task
Queue API

for blobstores. See Blobstores

for capabilities. See Capabilities API

for channels. See Channel API

for datastores. See Datastores

for e-mail. See E-mail

Fluent API, 175

for geolocation, 77–78

for Google Accounts. See Google
Accounts API

for image manipulating. See Image API
for JavaMail. See JavaMail API
for JavaScript, 70
for local storage, 78–80

low-level. See Low-level API
for memory cache. See JSR 107

JCache API; low-level memory cache
(memcache) API

Objectify API, 129
Pull API, 184–185
Remote API, 151–153
REST API, 184–185
for retrieving external data. See URL

Fetch API
for sending messages. See XMPP

(Extensible Messaging and Presence
Protocol)

for session storage, 80–81
SimpleDS API, 129
synchronous. See Synchronous APIs
for task scheduling. See Cron
Twig Persist API, 129
for web application security. See

Security

App stores, 285–286

appengine-web.xml

configuring inbound e-mail, 162
configuring XMPP services, 245
specifying configuration parameters,

34–35

specifying system properties, 36

Application anatomy

overview of, 31
summary, 43–44

application element, specifying
 deployment parameters, 34

Application Settings screen, Administration
panel, 41

Applications

deploying. See Deployment
designing. See Designing applications

registering, 3

selling. See Selling applications

291Browser Cache, with ETag headers

state and stateless, 78
AppStats, 263, 271–272

Architecture, cutting away unnecessary
 activities, 257

Articles, minimizing on page load, 108

Articles, writing for reaching audience, 278–279

Asynchronous APIs

processing, 136
querying, 139–140
retrieving, 140–141
retrieving URL Fetch responses,

224–226
storing, 137–139
working with, 26

Asynchronous JavaScript. See AJAX
(Asynchronous JavaScript)

Attachments

security constraints and, 159
sending confirmation emails with

HTML and attachments, 155–158
Attributes, selecting in CSS3, 89–90

Audience, knowing, 277–278

Audience, reaching

blogging, 279–280
Facebook, 281–282
Google AdWords, 284
Google Apps marketplace, 282–283
making news and writing articles, 278–

279
mobile app stores, 285–286
overview of, 278
search engine optimization, 285
social bookmarking, 285
Twitter, 280–281

Authentication

enforcing, 237–238
with Google Accounts, 229–232
with OAuth, 226
with OpenID, 232–235

of owner of App Engine instances, 13
of third parties, 235–237

Authorization

with Google Accounts, 231
with OAuth, 235

Availability, checking, 265–269

B
Backends, for handling memory intensive

requests, 25

Background operations. See Cron; Task
Queue API

BigTable, Google, 45

Billing

for blobstores, 147
enabling, 43

Blacklisting IP ranges, 38–39

Blobs

querying metadata for available,
149–150

storing, 147–148
Blobstores

compared with datastore, 191

enabling billing for, 147

overview of, 146

querying content of, 149–150

retrieving files from, 150–151

storing large files in, 146–148

summary, 153

uploading file to, 148–149

Blogger, 279

Blogs/blogging

Essential App Engine blog, xxv
posts. See Posts
reaching your audience, 279–280

border-radius, rounding edges in CSS3, 94

Browser Cache, with ETag headers,
206–208

292 Byte array payload

CIDR (Classless Interdomain Routing), 38

Class white list, JRE (Java Runtime
Environment), 215

Classes

measuring cost of class loading, 18–19
preloading using warm-up requests, 24
removing undesirable, 107
selecting in CSS3, 88

Classless Interdomain Routing (CIDR), 38

click event listeners, 109–110

Clients/client side

communicating with Remote API
from, 152–153

data storage on, 78–81
message handling on, 122
sending XMPP messages to Google

Talk client, 242–243
Cloud computing

application development and, 255
maintaining system in the cloud,

xxi–xxii
overview of, xxi

performance optimization and, 17–18

Code, JavaScript. See JavaScript

Cold startups

avoiding, 24–25

e-mail and, 168

Command-line tools

for deploying directory structure,
14–15

for starting development server, 15

Comments, in data modeling, 62–63

Commons File Upload

libraries required in application design, 61

reading images from user input, 190

third-party JARs, 18

Composite images, 198–201

Byte array payload

reading in task servlet, 178–179
specifying task payloads, 178

C
Cache

avoiding redundant processing, 25–26

JSR 107 JCache API, 214
memcache API. See Low-level memory

cache (memcache) API
writing results of URL Fetch to, 219

Cache keys, 205–206

Canvas element

compared with Image API, 187
drawing images with, 72–74

Capabilities API

checking availability of App Engine
services, 265–267

displaying capabilities in HTML,
268–269

preventing server errors, 263
Cascading Style Sheets. See CSS3 (Cascading

Style Sheets)

Change management, in development
 process, 260

Channel API

example, 124–125

handling messages on client, 122

overview of, 120

returning tokens to visitors, 123–124

sending messages to channels, 121–122

setting up new channel from server,
120–121

Chat

message types in XMPP, 244
XMPP and, 241

Child elements, storing in transactions, 142

293Data models

specifying repeating tasks, 37
specifying start times, 181–182
summary, 182–185

Crontab configuration file, in UNIX, 180

cron.xml

configuring tasks, 180–182
function of, 180
specifying repeating tasks, 37

Cropping images, 197

CSS3 (Cascading Style Sheets)

2D animations in, 94–96
3D animations in, 96–98
attribute selection, 89–90
class selection, 88
element selection, 90–91
extending to allow minimization of

blog posts, 101–102
ID selectors, 86–88
improving page load performance, 26
new graphical effects in, 92–94
overview of, 85
pseudo-class selection, 88–89
pseudo-element selection, 91
rounding edges, 94
specificity calculation, 85–86
summary, 96–98

Customers

converting prospects into, 286
knowing your audience, 277–278
reaching your audience. See Audience,

reaching

D
Data models

aggregating data without joins, 46
choosing properties, 48–49

Configuration

of Administration panel, 41–43

blacklisting IP ranges, 38–39

crontab configuration file, 180

of log levels, 39

of multitenancy, 239

parameters in appengine-web.xml, 34–35

of Remote API on server, 151–152

securing URLs, 40–41

of services, 37

servlet to receive mail, 161–162

setting up directory structure, 33–34

specifying datastore indexes, 38

specifying deployment parameters, 34–37

specifying repeating tasks, 37

of task queues, 39, 174

of tasks using cron.xml, 180–182

uploading files for dynamic
 deployment, 31–32

of URLs with wild card in web.xml,
248–249

of XMPP services, 245

Confirmation e-mails

sending generally, 155–158

sending with JavaMail API, 159–161

Console view, 10

Container objects, reducing number of global
variables and, 111–112

Cookies, 78

Cron

benefits of, 182
configuring, 37
jobs, 32
overview of, 180
reading HTTP headers, 182–185
setting up multiple tasks at different

intervals, 180–181

294 Data replication

storing data asynchronously, 137–139
storing data synchronously, 130–133
storing received XMPP messages in,

244–246
storing XMPP presence notifications

in, 249–251
summary, 153
upgrades involving, 54
uploading bulk data, 151–153
writing images to, 190–191
writing results of URL Fetch to, 219

Date

date input in BlackBerries and Safari
browsers, 76

scheduling tasks, 176
Defensive programming, 204

Delaying tasks, 176

Del.icio.us, 285

Denormalizing data, 45–46

Dependency injection, 257

Deployment

of applications from development
 server to App Engine, 15

of applications to online App Engine,
11–14

development process and. See
Development process

of directory structure, 14–15

optimizing applications prior to, 27

quality assurance and. See Quality
assurance

sales and. See Selling applications

specifying application deployment
parameters, 34–37

uploading files for dynamic deployment,
31–32

Design details, cutting away unnecessary
activities, 257

Designing applications

creating indexes, 53–54
creating/maintaining entity relation-

ships, 50–52
denormalizing data, 45–46

designing applications, 62–63

designing data at micro level, 47–48

designing schemaless data, 47

moving away from relational storage, 45

optimizing performance with, 25

overview of, 45

performing queries, 53

performing transactions, 52–53

separating entities, 49–50
summary, 54
upgrades involving datastores, 54

Data replication, 46

Data storage

across sessions, 78–80
securing personal data, 239
of session data, 80–81

Data transfer objects, 257

DataNucleus, 34

Datastores

compared with blobstores, 191
moving away from relational storage, 45

multitenancy, 144–146

NoSQL databases and, xx

presenting HTML links to posts, 134–135

processing data asynchronously, 136

processing data synchronously, 129–130

querying data asynchronously, 139–140

querying data synchronously, 133–134

reading images from, 191–193

retrieving data asynchronously, 140–141

retrieving data synchronously, 135–136
setting up transactions, 141–144
specifying indexes, 38

295E-mail

overview of, 255

planning iterations, 259

project managers and, 256

quality measures, 260–261

setting priorities, 259

summary, 261–262

Development server

deploying application to App Engine,
15

starting, 9–11

starting from command line, 15

Digg, 285

Directory

command-line tools for deploying,
15

setting up structure of, 33–34

DOM (Document Object Model), 70

Downgrade tasks, 54

Dragging and dropping items, to pages,
74–76

Duplication of data, normalization and, 45–46

Dynamic instances, avoiding cold startups
and, 24

Dynamic interactions on server. See AJAX

E
E-mail

comparing low-level API to JavaMail,
161

configuring servlet to receive mail,
161–162

error handling, 167
how long it takes to send, 167–168
logging sent mail, 158–159
modifying mail queues, 174–175
overhead of cold startups, 168
overview of, 155
parameterizing mail body, 158

choosing framework, 58–59

choosing libraries, 60–61

choosing template engine, 60

data model for, 62–63

handling page flow, 65

overview of, 57

requirements gathering, 57–58

summary, 65
URL model for, 64–65
working without framework, 59–60

Designing data

at micro level, 47–48
schemaless data, 47

Developers

commercial orientation often lacking
in, 256

optimizing productivity of, 261–262
Development environment, setting up

deploying application from development
server to App Engine, 15

deploying application to online App
Engine, 11–14

deploying directory structure, 14–15
overview of, 3
starting development server, 9–11, 15
starting new App Engine project, 7–9
summary, 15
working with Eclipse tools, 3–7

Development process

eliminating unnecessary activities, 257–258
end goal in, 256–257
experiment-driven development, 260
frameworks in, 58
gradual change in, 260

improving functionality, 258

optimizing for Internet, 255–256

optimizing productivity of developers,
261–262

296 Eclipse tools

registering memcache error handlers, 213
URL Fetch API, 221–222

ETag

browser Cache with ETag headers,
206–208

retrieving ETag values from cache, 213
Event bubbling, 109

Event delegation, 109–110

Event handling, 109

Exception handling. See Error handling

Experiment-driven development, 260

Extensible Messaging and Presence Protocol.
See XMPP (Extensible Messaging and
Presence Protocol)

External feeds, in data modeling, 62

External users, in data modeling, 62

F
Facebook

connecting via Facebook Apps, 282
OAuth and, 235
publishing Facebook pages, 281–282

social bookmarking, 285

XMPP and, 241

Fail fast, 264

Failures, minimizing damage from, 264

Files/folders

HTML form for uploading, 148–149

reading images from, 193–195

resizing images, 195–197

retrieving from blobstores, 150–151

setting up directory structure, 33–34

storing large. See Blobstores

Filters, servlet filters, 144

Fine-grained caching, 209–210

Flexibility, advantages of cloud computing, 17

Flipping images, 198

performance and quotas, 167
performance of mail receiver, 168–169
queuing send mails, 172–173
reading without using JavaMail API,

165–166
receiving, 161
securing servlet that sends e-mail,

158–159
sending confirmation e-mails, 155–158
sending confirmation with JavaMail

API, 159–161
storing received mail, 162–164
summary, 169

Eclipse tools

alternatives to, 15
installing plugins, 4–7
launching application deployment from

Eclipse toolbar, 11
tools for working with App Engine, 3

ECMAScript 5, 111

Effective Java, Second Edition (Bloch), 209

Elements, selecting in CSS3, 90–91

Entities

creating/maintaining relationships
among, 50–52

multitenancy affecting, 144

overview of, 47–48

transactions between related, 52

when to separate, 49–50

Entity groups

parent-child relationships and, 52–53

using sparingly, 141

Environment variables, specifying deployment
parameters, 36

Error handling

e-mail, 167
error message types in XMPP, 244
minimizing damage from failures, 264

297Google Apps Marketplace

getAll method, for cache values, 213

getMessageType method, XMPP, 244

GIF format, Image API reading, 187

Global variables, avoiding use of,
110–112

Goals, in development process, 256–257

Google

AdWords, 284
BigTable, 45
blogging and, 280
dynamically starting/stopping

 application servers based on requests
received, 31–32

Gruyere, 239
resource pricing table, 18
search engine optimization, 285
Talk, 241–243
tools for working with App Engine,

3–4
Website Optimizer, 260

Google Accounts API

authenticating users, 229–232
displaying information of logged in

user, 229–231
displaying login/logout URLs, 231–

232
Google Analytics

experiment-driven development and,
260

measuring conversion rate when using
AdWords, 284

measuring user response to interface,
273

optimizing usability, 265
scripting with, 273–275
tracking user actions, 263

Google Apps Marketplace

payment process and, 286–287
reaching your audience, 282–283

Fluent API, 175

Folders. See Files/folders

Forms

fetching and storing in datastore,
130–131

for fetching data, 132

improvements in HTML5, 76–77

posting using low-level URL Fetch
API, 223–224

for uploading files, 148–149

Frameworks

AJAX without, 113

choosing for application design, 58–59

minimizing use of, 99

working with/working without, 59–60,
112

FreeMarker, for generating text from servlets,
60

Frontend, deployment request received by, 31

Functional languages, 106

Functionality, improving

choosing over appearance, 265
experiment-driven development and,

260
making gradual changes, 260
overview of, 258
planning iterations, 259
setting priorities, 259

Functions, assigning to variables, 106

G
Geolocation API, 77–78

GET method

calling tasks, 175
fetching form data, 130–131
handling page flow, 65
sending and reading data returned from

server, 215

298 Google Web Toolkit (GWT)

introduction to, 69–70

page load performance in, 26

querying structured data, 81–83

storing data across sessions, 78–80

storing session data, 80–81

summary, 81–83

HTTP

cron reading HTTP headers, 182–185

POST request, 161, 168–169

posting form data using, 223–224

requests, 32

response codes, 179

scalability of, 206

status codes, 179, 222

task queuing and, 180–182

HTTPS

enforcing secure protocols, 238

POST requests, 223–224

securing server access, 227

I
IDEA, 15

IDEs (integrated development environments), 3

IDs (identifiers)

creating relationships among entities, 50

ID attributes in CSS3, 86–88

Image API

composite images, 198–201

creating thumbnails, 195–197

cropping images, 197

overview of, 187

reading images from datastore, 191–193

reading images from resource file,
193–195

reading images from user input, 187–190

rotating and flipping images, 198

Google Web Toolkit (GWT)

installing Eclipse plugins and, 6
starting new App Engine project and, 8

Grails framework, for application design, 58

Graphical effects, selecting in CSS3, 92–94

Groupchat, XMPP message types, 244

GWT (Google Web Toolkit)

installing Eclipse plugins and, 6
starting new App Engine project and, 8

H
Headline, XMPP message types, 244

High replication mode, 46

HTML

AJAX communicating with server
using, 118–119

cleaning up, 102–106
displaying availability capabilities with,

268–269
form for uploading a file, 148–149

interpreting results of URL Fetch,
216

links to posts, 134–135

presenting posts in, 136

presenting stored data, 132–133

reducing dependence on JavaScript by
enhancing, 106–108

setting up for AJAX examples, 114

storing data asynchronously, 137

HTML5

adopting, xxii–xxiii

basic elements, 70–72

canvas element, 72–74

dragging and dropping items to pages,
74–76

form elements in, 76–77

geolocation options for mobile devices,
77–78

299JavaMail API

pros/cons of upgrading to HTML5,
69–70

IP addresses, blacklisting IP ranges, 38–39

ISO (International Standards Organization),
260

Iterations, in development process, 259

J
Jabber. See XMPP (Extensible Messaging and

Presence Protocol)

Jabber ID (JID), 242

JAR (Java archive) files

deploying with application, 14–15
images in, 193
impact on performance, 21–22
third-party, 18

Java

archive files. See JAR (Java archive) files
profiling tools, 271

Java Data Objects (JDO)

datastores and, 129
minimizing use of libraries, 34

Java Persistence (JPA)

datastores and, 129
minimizing use of libraries, 34

Java Runtime Environment (JRE), 215

Java Server Pages (JSP)

for generating text from servlets, 60
handlers for task requests, 173

Java Specification Request (JSR)

JCache API, 214
minimizing use of libraries, 34

Java Virtual Machine (JVM) languages, 261,
xxiii

JavaDoc, 258

JavaMail API

comparing with low-level API,
161, 167

summary, 201

writing images to datastore, 190–191

writing images to user output, 193

Images, drawing with canvas element, 72–74

IMAP servers

App Engine not allowed to connect to,
168

HTTP POST request as alternative to,
161

increment method, for working with values,
213–214

Incremental development, 259

Indexes

costs vs. other search mechanisms, 49

creating, 53–54

search engine optimization, 285

specifying datastore indexes, 38

Input

HTML5 form elements, 76–77

validating, 239

Instance starts/stops, 24–25

Integrated development environments (IDEs), 3

IntelliJ IDEA, 15

Interactions (server)

dynamic. See AJAX
static. See JavaScript

Interactive web applications, long polls and,
120

International Standards Organization (ISO),
260

Internet

current developments, xx
historic trends, xix
optimizing development process for,

255–256
Internet Explorer

AJAX frameworks in supporting, 122
canvas element in, 74

300 JavaScript

JRE (Java Runtime Environment), 215

JRuby code, 173

JSON (JavaScript Object Notation)

communicating with server using,
116–118

interpreting results of URL Fetch,
216

JSP (Java Server Pages)

for generating text from servlets, 60
handlers for task requests, 173

JSR 107 JCache API, 214

JSR (Java Specification Request), 34

JVM (Java Virtual Machine) languages, 261,
xxiii

K
Key values, creating relationships among enti-

ties, 50

Keywords, specifying in data modeling, 62–63

L
Large files, storing. See Blobstores

Last-Modified values, retrieving from
cache, 213

Layout. See CSS3 (Cascading Style Sheets)

Libraries

designing applications, 60–61
measuring cost of class loading, 18–19
minimizing use of, 99
setting up directory structure, 34
timing a servlet that contains a library,

19–20
timing a servlet that does not contain a

library, 21–22
Licenses, software, 6–7

Links, presenting HTML links to posts,
134–135

Load time

overhead of cold startups, 168
reading mail without using, 165–166
sending confirmation emails, 159–161
storing received mail, 163–164

JavaScript

AJAX as alternative to, 65
avoiding global variables, 110–112
cleaning up HTML, 102–106
cooperation with CSS, 88
event delegation for optimized

 performance, 109–110
HTML5 and, 70
improving page load performance,

26
JavaScript 1.8.5, 111
reducing dependence on, 106–108
setting up example in, 99–102
summary, 112

JavaScript Object Notation (JSON)

communicating with server using,
116–118

interpreting results of URL Fetch, 216
JCache API. See JSR 107 JCache API

JDBC, 210

JDO (Java Data Objects)

datastores and, 129
minimizing use of libraries, 34

JID (Jabber ID), 242

Joins, aggregating data without using, 46

JPA (Java Persistence)

datastores and, 129
minimizing use of libraries, 34

JPEG

compared with PNG, 193
formats read by Image API, 187

jQuery

building modules and, 112
removing class with, 88

301MVC (Model-View-Controller)

Master/slave replication, 46

Maven build tools, setting up directory
 structure, 34

Memory cache APIs

JSR 107 JCache API, 214
low-level memory cache. See Low-level

memory cache (memcache) API
Menus, data elements in data modeling,

62–63

Messages, XMPP. See XMPP (Extensible
Messaging and Presence Protocol)

Metadata, querying for available blobs,
149–150

Micro level, designing data at, 47–48

MIME (Multipurpose Internet Mail Extensions)

Commons File Upload and, 61
sending MIME message using JavaMail

API, 160
Mobile app stores, 285–286

Mobile devices, geolocation options in HTML5,
77–78

Model-View-Controller (MVC)

handlers for task requests, 173
servlets following MVC patterns,

60–61
MoSCoW (must haves, should haves, could

haves, won’t haves), 259

Multipurpose Internet Mail Extensions (MIME)

Commons File Upload and, 61
sending MIME message using JavaMail

API, 160
Multitenancy

configuring, 239
as introduction to namespaces,

144–146
Multithreaded execution, 224

MVC (Model-View-Controller)

handlers for task requests, 173
servlets following MVC patterns,

60–61

improving page load performance, 26
minimizing articles on page load, 108
writing JavaScript code and, 103

Local storage API, 78–80

Logs/logging

configuring log levels, 39
sent mail, 158–159
unexpected behavior, 269–271

Long polls, AJAX requests and, 120

Low-level API

comparing with JavaMail, 161, 167
overhead of cold startups, 168
processing data asynchronously, 136
processing data synchronously, 129–130
sending confirmation e-mails, 155–158

Low-level memory cache (memcache) API

caching query results, 210
caching string values, 204–206
clearing cache, 212–213
fine-grained cache, 209
implementing caching strategy, 206
implementing Serializable, 209–210
invalidating cache items, 211–212
maintaining a cache, 210–211
overview of, 203
pitfalls of a cache, 203–204
summary, 214
using Browser Cache with ETag head-

ers, 206–208
utility methods, 213–214

Low-level URL Fetch API

posting data, 223–224
retrieving data, 217–218

M
Mail service, configuring, 37

Many-to-many relationships, 51

302 Names, property

P
Page flow, handling in application design, 65

Page layout. See also CSS3 (Cascading Style
Sheets), 93

Page load. See Load time

Parameters

launching tasks with hardcoded, 173
parameterizing mail body, 158
reading task details from, 172

Parent-child relationships

creating relationships among entities, 50
reasons for avoiding, 52

Parser generators, ANTLR as, 61

Patterns, memory cache as, 204

Payloads, specifying task, 177–179

Payment service provider (PSP), 286

Payments, handling payment process,
286–287

Performance, of mail receiver, 168–169

Performance optimization

avoiding cold startups, 24–25
class loading and, 18–19
cloud computing and, 17–18
CSS and, 86
e-mail and, 167
event delegation for, 109–110
JSR 107 JCache API, 214
low-level API for memory cache.

See Low-level memory cache
 (memcache) API

overview of, 17
reducing web.xml size to minimum,

22–24
summary, 27
timing a servlet that contains a library,

19–20
timing a servlet that does not contain a

library, 21–22

N
Names, property, 47–48

Namespaces

configuring, 239
multitenancy as, 144–146
setting up, 144–146

NetBeans, 15

News, reaching your audience, 278–279

Normal message type, XMPP, 244

Normalization of data, 45–46

NoSQL databases, xx–xxi

O
OAuth

implementing service provider for,
236

providing third party access, 235–237
RESTful services and, 226

Object-relational mapping (ORM)

caching mechanism in, 206
trend away from, xx–xxi

Objectify API, for working with datastore,
129

onclick handlers, 105–106

One-to-many relationships, 51

Online App Engine, deploying application to,
15

Open source standards

APIs for working with datastore,
129

XMPP as, 241
OpenID, authenticating users with, 232–235

ORM (object-relational mapping)

caching mechanism in, 206
trend away from, xx–xxi

Overhead, reducing in development process,
256–258

303Quality assurance

Press releases, reaching your audience, 278

Priorities, in development process, 259

Privacy guidelines, 240

Processes, avoiding redundant, 25–26

Production environment, testing in, 263–264

Productivity, optimizing developer, 261–262

Profiling, in quality assurance, 271–273

Profit making, as goal, 256

Programming

benefits of frameworks for, 59
languages and productivity, 261

Project managers, development process and,
256

Projects, starting new App Engine project, 7–9

Properties

choosing in data modeling, 48–49
indexing using multivalued properties,

54
overview of, 47
types of, 48

Prospects, converting into customers, 286

Protocols, enforcing secure, 238

Proxy servers, caching and, 208

Pseudo-classes, selecting in CSS3, 88–89

Pseudo-elements, selecting in CSS3, 91

PSP (payment service provider), 286

Pull API, 184–185

Q
Quality assurance

availability checks, 265–269
logging unexpected behavior,

269–271
measuring user response to interface,

273–275
overview of, 263
profiling in, 271–273

tips/possibilities for, 25–27
Permissions, granting user access to

 applications, 42–43

Personal data, privacy guidelines for, 240

Personas, knowing your audience, 278

Plain text formats, in e-mail, 155

PNG

compared with JPEG, 193
formats read by Image API, 187

Polling, long polls and interactive web
 applications, 120

POP3 servers

App Engine not allowed to connect to,
168

HTTP POST request as alternative to,
161

Ports, restricting range, 227

POST method

for handling page flow, 65
for storing data in datastore, 130–131

POST requests, HTTP

e-mail and, 161, 168–169
form data and, 223–224
task queuing and, 180–182

Posts

as data elements in data modeling, 62–63
form data, 223–224

large files to blobstore, 148

minimizing, 100–102

presenting HTML links to, 134–135

presenting in HTML, 136

reading single post asynchronously,
140–141

reading single post from datastore,
135–136

task queuing and, 180–182
Presence notifications, storing XMPP

 messages in datastore, 249–251

304 Quality measures, in development process

Resizing images, 195–197

resource-files, 35–36

Resources, optimizing payment for, 18

REST API, 184–185

RESTful services, 226

ResultSets, caching query results in, 210

Revealing Modules pattern, 111

Rotating images, 198

Rounding edges, in CSS3, 94

RSS (Really Simple Syndication)

cron and, 182
HTTP status codes and, 222
URL Fetch API and, 216

Run As, starting development server, 9

S
Safari browser, 76

Sanity checks, in test environment, 264

SAX (Simple API for XML) parser, 216

Scalability

advantages of cloud computing, 17
of HTTP, 206
separating entities over multiple

machines, 47
transactions and, 52

Scalable vector graphics (SVG), 72

Scheduling tasks

cron. See Cron
specifying repeating tasks, 37
Task Queue API, 176, 180

Schemas, benefits of schemaless data, 47

SDK (Software Development Kit)

Google tools for working with App
Engine, 3

setting up directory structure, 34
Seam framework, in application design, 58

Search engine optimization (SEO), 285

summary, 275
testing in production environment,

263–264
usability and, 265

Quality measures, in development process,
260–261

Queries

of asynchronous data, 139–140
of blobstore content, 149–150
caching results of, 210
indexes speeding up, 54
performing, 53
of structured data, 81–83
of synchronous data, 133–134

Queues. See Task Queue API

queues.xml file, 39, 174–175

Quint2, 260

Quotas, e-mail

managing, 174–175
performance and, 167

R
Ranges, blacklisting IP ranges, 38

Really Simple Syndication. See RSS (Really
Simple Syndication)

Receiving e-mail. See E-mail

Receiving messages, XMPP, 244

RedDit, 285

References, entities and, 47–48

Relational storage, moving away from in data
modeling, 45

Relationships, one-to-many and many-to-
many, 51

Remote API, for uploading bulk data, 151–153

Repeating tasks, specifying, 37

Repository, installing Eclipse plugins from, 5–6

Requirements gathering, in application
design, 57–58

305Servlets

reaching your audience, 278

search engine optimization, 285

social bookmarking, 285

summary, 286–287

Twitter, 280–281

Sending e-mail. See E-mail

Sending messages, using XMPP. See XMPP
(Extensible Messaging and Presence
Protocol)

Sent mail, logging, 158–159

SEO (search engine optimization), 285

Serializable, implementing serializing
objects, 209–210

Servers

AJAX communicating with using
HTML, 118–119

AJAX communicating with using
JSON, 116–118

AJAX communicating with using
XML, 115–116

configuring Remote API on, 151–152

sending GET requests and reading data
returned from, 215

setting up new channel from, 120–121
Services

configuring, 37
overhead costs of invoking, 32

ServletExceptions, 167

Servlets

configuring to receive mail, 161–162
filters for multitenancy, 144
generating text from, 60
reducing web.xml size to minimum,

22–24
securing e-mail Servlet, 158–159,

162
storing received mail, 162–164
timing a servlet that contains a library,

19–20

Searches. See also Queries

full text, 62
indexes speeding up, 54
indexes vs. other search mechanisms, 49
performing, 53

Secure Sockets Layer (SSL), 36–37

Security

of applications, 36–37
authenticating users with Google

Accounts, 229–232
authenticating users with OpenID,

232–235
configuring multitenancy, 239
of e-mail servlet, 158–159, 162
enforcing authentication, 238
enforcing secure protocols, 238
of personal data, 239
providing access to third parties using

OAuth, 235–237
securing URLs in web.xml, 237
URL Fetch API, 226–227

of URL task space, 174

of URLs, 40–41, 237

validating input, 239

Selling applications

approach to, 277

blogging, 279–280

converting prospects into customers,
286

Facebook, 281–282

Google AdWords, 284

Google Apps marketplace, 282–283

handling payment process, 286–287

knowing your audience, 277–278

making news and writing articles, 278–
279

mobile app stores, 285–286

overview of, 277

306 Session storage API

SSL (Secure Sockets Layer), 36–37

Standard URL Fetch API. See URL Fetch API

Startup

avoiding cold startups, 24–25
performance hit at, 18

Stateless applications, 78

static-files, 35–36

Static interactions, on server. See JavaScript

Status, checking availability of App Engine
services, 266–267

Storage

blobstores. See Blobstores
data. See Data storage
datastores. See Datastores
moving away from relational storage, 45

Strings

caching string values, 204–206
hardcoding, 60
specifying as task payload,

177–178
StringTemplate

libraries required in application
design, 61

third-party JARs, 18
timing a servlet that contains a library,

19–20

timing a servlet that does not contain a
library, 21–22

tools for generating text from servlets, 60

Structured data, querying, 81–83

Struts framework, in application design, 58

Subscription notifications, XMPP messages,
246–248

Suggestions, Google Apps Marketplace, 283

SVG (scalable vector graphics), 72

Synchronous APIs

processing, 129–130

querying, 133–134

timing a servlet that does not contain a
library, 21–22

URL spaces handled by, 65
viewing available, 10–11

Session storage API, 80–81

Sessions

settings for, 36
storing data across, 78–80
storing session data, 80–81

Simple API for XML (SAX) parser, 216

Simple Mail Transfer Protocol (SMTP)

HTTP requests, 32
sending e-mail and, 160

Simple Object Access Protocol (SOAP), 226

SimpleDS API, 129

Slashdot, 285

SMTP (Simple Mail Transfer Protocol)

HTTP requests, 32
sending e-mail and, 160

SOAP (Simple Object Access Protocol), 226

Social bookmarking, 285

Software developers. See Developers

Software development. See Development pro-
cess

Software Development Kit (SDK)

Google tools for working with App
Engine, 3

setting up directory structure, 34

Sonar, 260

Spring MVC framework, in application design,
58

Spring Roo framework, in application
design, 58

SQL databases

querying structured data, 81–83

replacing with NoSQL databases,
xx–xxi

Squid page caching, 206, 208

307Twitter

HTML template for presenting stored
data, 132–133

HTML template for storing data
 asynchronously, 137

Test-driven development (TDD)

cutting away unnecessary activities, 258

unit testing in, 257

Tests

A/B testing, 260

in production environment, 263–264

TDD (test-driven development),
257–258

Text

full text search, 62

markup with CSS declarations, 93

tools for generating from servlets,
60

Third-party

access using OAuth, 235–237

JAR (Java archive) files, 18

Thread-safe mode, 25

Thumbnails, of large images, 195–197

Time

optimizing productivity of developers,
261–262

scheduling tasks, 176

Timeouts, controlling in URL Fetch API,
219–221

Traffic spikes, handling in cloud computing,
17

Transactions

performing, 52–53

scheduling tasks in, 179

storing data in, 142–144

using sparingly, 141

Tree structure, entities in, 53

Twig Persist API, 129

Twitter, 280–281

retrieving, 135–136
storing, 130–133

System, specifying system properties, 36

T
Table of contents, in data modeling, 62

Tags, in data modeling, 62–63

Target audience

knowing your audience, 278
of this book, xiii–xiv

Task Queue API

benefits of, 179
calling tasks, 175
configuring, 37
configuring task queues, 174
delaying tasks, 176
managing quotas, 174–175
overview of, 171
postponing long-running tasks, 26
queuing send mails, 172–173
referencing admin user, 131–132
running e-mail in background, 167

scheduling tasks, 176

specifying task payloads, 177–179

summary, 182–185

Task queues

configuring, 39

HTTP requests and, 32

Task scheduling. See Scheduling tasks

TDD (test-driven development)

cutting away unnecessary activities, 258

unit testing in, 257

Template engine, choosing for application
design, 60

Templates

HTML template for presenting links to
posts, 134–135

308 Unit testing

Usability, quality assurance and, 263, 265

User API, 232–235

User interface

measuring user response to, 273–275
presenting with HTML5. See HTML5

Users

authenticating with Google Accounts,
229–232

authenticating with OpenID, 232–235
as data elements, 62–63
granting access to applications, 42–43
information of logged-in user, 229–231
measuring response to interface, 273–275
reading images from user input, 187–190
writing images to user output, 193

UserService, 229–231

V
Validating input, 239

Values

incrementing, 213–214
property, 47–48
storing in datastore, 137–138

Variables

assigning functions to, 106
avoiding use of global, 110–112

Varnish, 206

Velocity text generation tool, 60

Version

setting current, 42
specifying deployment parameters, 34

Views, separating from data model, 49–50

W
W3C (World Wide Web Consortium)

HTML5 specifications, 70
XForms standard, 77

U
Unit testing, 257

Update tasks, 54

Upgrades, involving datastores, 54

Uploading bulk data, Remote API for, 151–153

Uploading files

for dynamic deployment, 31–32
HTML form for, 148–149

URL class, Java API, 215

URL Fetch API

consuming web services, 226

controlling timeouts, 219–221

exception handling, 221–222

overview of, 215

posting form data, 223–224

reading and interpreting results, 218

retrieving data, 215–218

retrieving responses asynchronously,
224–226

security considerations, 226–227

sending GET requests and reading data
returned from server, 215

summary, 227

writing results to cache or to datastore,
219

URLConnection class, Java API, 215

URLs

choosing model for in application
design, 64–65

configuring with wild card, 248–249

displaying login/logout URLs, 231

enforcing confidential communication
at URL level, 238

handling page flow, 65

posting large files to blobstore, 148

restricting access at URL level, 238

securing, 40–41, 174, 237

309XML

logging.properties file, 159

as resource file, 36
Web pages

caching, 206
improving page load performance,

26
Web services, consuming, 226

Weblogs

blogging and, 279–280
designing. See Designing applications

web.xml

configuring URLs with wild card in,
248–249

listening for e-mail addresses,
161–162

minimizing size of, 22–24
restricting access at URL level, 238
securing e-mail Servlets, 162
securing URLs, 237
security-constraints added to,

158–159
Wicket framework, in application design, 58

Wild card, configuring URLs with, 248–249

Wordpress tool, for blogging, 279

World Wide Web Consortium (W3C)

HTML5 specifications, 70
XForms standard, 77

X
XForms standard, 77

XHTML

comparing HTML5 with, 71–72
formatting in e-mail, 155

XML

AJAX communicating with server
using, 115–116

changing to JSON, 117–118

WAR (web archive)

App Engine not accepting, 33
deploying directory as, 15

Warm-up requests, preloading classes using,
24

Web applications

authenticating users with Google
Accounts, 229–232

authenticating users with OpenID,
232–235

caching mechanisms in, 206
comparing App Engine to traditional,

18
enforcing authentication, 238
enforcing secure protocols, 238
providing third party access, 235–237
securing URLs in web.xml, 237
validating input, 239

Web archive (WAR)

App Engine not accepting, 33
deploying directory as, 15

Web browsers

AJAX support, 122
coding details and standards and,

104–105
CSS3 support, 85

ETag support, 208

HTML5. See HTML5

improving page load performance, 26

power of writing code, 99

pros/cons of upgrading to latest, 69

rules for specificity calculations for
CSS, 86

saving images to, 195–197

using Browser Cache with ETag head-
ers, 206–208

/WEB-INF folder

images in, 193

310 XMPP (Extensible Messaging and Presence Protocol)

interpreting results of URL Fetch, 216
XForms standard based on, 77

XMPP (Extensible Messaging and Presence
Protocol)

configuring, 37
configuring services in appengine-web

.xml, 245
configuring URLs with wild card in

web.xml, 248–249
HTTP requests, 32
overview of, 241–242
receiving messages, 244
receiving subscription notifications,

246–248

sending messages, 224
sending messages to Google Talk client,

242–243
storing presence notifications in

 datastore, 249–251
storing received messages in datastore,

244–246
summary, 251

XSLT transformations, for generating text
from servlets, 60

Y
Yahoo! logging in using OpenID, 233–234

This page intentionally left blank

	Contents
	Introduction
	Acknowledgments
	About the Author
	I: An App Engine Overview
	2 Improving App Engine Performance
	Performing in the Cloud
	Measuring the Cost of Class Loading
	Avoiding Cold Startups
	Improving Performance in General
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

