

Praise for Learning Cocos2D

“If you’re looking to create an iPhone or iPad game, Learning Cocos2D should
be the first book on your shopping list. Rod and Ray do a phenomenal
job of taking you through the entire process from concept to app, clearly
explaining both how to do each step as well as why you’re dong it.”
—Jeff LaMarche, Principal, MartianCraft, LLC, and coauthor of Beginning iPhone
Development (Apress, 2009)

“This book provides an excellent introduction to iOS 2D game develop-
ment. Beyond that, the book also provides one of the best introductions to
Box2D available. I am truly impressed with the detail and depth of Box2D
coverage.”
—Erin Catto, creator of Box2D

“Warning: reading this book will make you need to write a game! Learning
Cocos2D is a great fast-forward into writing the next hit game for iOS—
definitely a must for the aspiring indie iOS game developer (regardless of
experience level)! Thanks, Rod and Ray, for letting me skip the learning
curve; you’ve really saved my bacon!”
—Eric Hayes, Principle Engineer, Brewmium LLC (and Indie iOS Developer)

“Learning Cocos2D is an outstanding read, and I highly recommend it to any
iOS developer wanting to get into game development with Cocos2D. This
book gave me the knowledge and confidence I needed to write an iOS game
without having to be a math and OpenGL whiz.”
—Kirby Turner, White Peak Software, Inc.

“Learning Cocos2D is both an entertaining and informative book; it covers
everything you need to know about creating games using Cocos2D.”
—Fahim Farook, RookSoft (rooksoft.co.nz)

“This is the premiere book on Cocos2D! After reading this book you will
have a firm grasp of the framework, and you will be able to create a few
different types of games. Rod and Ray get you quickly up to speed with
the basics in the first group of chapters. The later chapters cover the more
advanced features, such as parallax scrolling, CocosDenshion, Box2D,
Chipmunk, particle systems, and Apple Game Center. The authors’ writing
style is descriptive, concise, and fun to read. This book is a must have!”
—Nick Waynik, iOS Developer

This page intentionally left blank

Learning Cocos2D

Learning Cocos2D

A Hands-On Guide to Building iOS
Games with Cocos2D, Box2D,

and Chipmunk

Rod Strougo

Ray Wenderlich

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Strougo, Rod, 1976-
 Learning Cocos2D : a hands-on guide to building iOS games with
Cocos2D, Box2D, and Chipmunk / Rod Strougo, Ray Wenderlich.
 p. cm.
 Includes index.
 ISBN-13: 978-0-321-73562-1 (pbk. : alk. paper)
 ISBN-10: 0-321-73562-5 (pbk. : alk. paper)
1. iPhone (Smartphone)—Programming. 2. iPad (Computer)—Programming.
3. Computer games—Programming. I. Wenderlich, Ray, 1980- II. Title.
 QA76.8.I64S87 2011
 794.8’1526—dc23
 2011014419

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-73562-1
ISBN-10: 0-321-73562-5
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, July 2011

Editor-in-Chief
Mark Taub

Acquisitions Editor
Chuck Toporek

Managing Editor
John Fuller

Project Editor
Anna Popick

Copy Editor
Carol Lallier

Indexer
Jack Lewis

Proofreader
Lori Newhouse

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
The CIP Group

❖

Dedicated to my wife, Agata.
—Rod

Dedicated to my wife, Vicki.
—Ray

❖

This page intentionally left blank

Contents at a Glance

 Preface xxi

 Acknowledgments xxxiii

 About the Authors xxxvii

I Getting Started with Cocos2D 1

 1 Hello, Cocos2D 3

 2 Hello, Space Viking 23

 3 Introduction to Cocos2D Animations and Actions 57

 4 Simple Collision Detection and the First Enemy 83

II More Enemies and More Fun 115

 5 More Actions, Effects, and Cocos2D Scheduler 117

 6 Text, Fonts, and the Written Word 151

III From Level to Game 167

 7 Main Menu, Level Completed, and Credits
Scenes 169

 8 Pump Up the Volume! 197

 9 When the World Gets Bigger: Adding Scrolling 231

IV Physics Engines 277

 10 Basic Game Physics: Adding Realism with
Box2D 279

 11 Intermediate Game Physics: Modeling, Racing, and
Leaping 333

 12 Advanced Game Physics: Even Better than the Real
Thing 375

 13 The Chipmunk Physics Engine (No Alvin
Required) 419

Contents at a Glancex

V Particle Systems, Game Center, and
Performance 479

 14 Particle Systems: Creating Fire, Snow, Ice, and
More 481

 15 Achievements and Leaderboards with Game
Center 495

 16 Performance Optimizations 545

 17 Conclusion 565

 A Principal Classes of Cocos2D 569

 Index 571

Contents

 Preface xxi

 Acknowledgments xxxiii

 About the Authors xxxvii

I Getting Started with Cocos2D 1

 1 Hello, Cocos2D 3

Downloading and Installing Cocos2D 4

Downloading Cocos2D 4

Installing the Cocos2D Templates 5

Creating Your First Cocos2D HelloWorld 6

Inspecting the Cocos2D Templates 6

Building the Cocos2D HelloWorld Project 7

Taking HelloWorld Further 9

Adding Movement 10

For the More Curious: Understanding the Cocos2D
HelloWorld 11

Scenes and Nodes 11

From the Beginning 14

Looking Further into the Cocos2D Source Code 18

Getting CCHelloWorld on Your iPhone or iPad 20

Letting Xcode Do Everything for You 20

Building for Your iPhone or iPad 21

Summary 22

Challenges 22

 2 Hello, Space Viking 23

Creating the SpaceViking Project 23

Creating the Space Viking Classes 24

Creating the Background Layer 26

The Gameplay Layer: Adding Ole the Viking to the
Game 29

The GameScene Class: Connecting the Layers in a
Scene 31

Creating the GameScene 32

Contentsxii

Commanding the Cocos2D Director 34

Adding Movement 35

Importing the Joystick Classes 35

Adding the Joystick and Buttons 36

Applying Joystick Movements to Ole the Viking 40

Texture Atlases 44

Technical Details of Textures and Texture
Atlases 45

Creating the Scene 1 Texture Atlas 48

Adding the Scene 1 Texture Atlas to Space
Viking 51

For the More Curious: Testing Out
CCSpriteBatchNode 52

Fixing Slow Performance on iPhone 3G and
Older Devices 53

Summary 54

Challenges 54

 3 Introduction to Cocos2D Animations and
Actions 57

Animations in Cocos2D 57

Space Viking Design Basics 62

Actions and Animation Basics in Cocos2D 66

Using Property List Files to Store Animation Data 67

Organization, Constants, and Common Protocols 69

Creating the Constants File 71

Common Protocols File 72

The GameObject and GameCharacter Classes 74

Creating the GameObject 74

Creating the GameCharacter Class 80

Summary 82

Challenges 82

 4 Simple Collision Detection and the First Enemy 83

Creating the Radar Dish and Viking Classes 83

Creating the RadarDish Class 83

Creating the Viking Class 90

Final Steps 105

The GameplayLayer Class 105

Contents xiii

Summary 112

Challenges 113

II More Enemies and More Fun 115

 5 More Actions, Effects, and Cocos2D
Scheduler 117

Power-Ups 118

Mallet Power-Up 118

Health Power-Up 120

Space Cargo Ship 122

Enemy Robot 125

Creating the Enemy Robot 126

Adding the PhaserBullet 137

GameplayLayer and Viking Updates 141

Running Space Viking 144

For the More Curious: Effects in Cocos2D 145

Effects for Fun in Space Viking 146

Running the EffectsTest 148

Returning Sprites and Objects Back to Normal 149

Summary 149

Exercises and Challenges 149

 6 Text, Fonts, and the Written Word 151

CCLabelTTF 151

Adding a Start Banner to Space Viking 152

Understanding Anchor Points and Alignment 153

CCLabelBMFont 155

Using Glyph Designer 156

Using the Hiero Font Builder Tool 156

Using CCLabelBMFont Class 159

For the More Curious: Live Debugging 160

Updating EnemyRobot 160

Updating GameplayLayer 163

Other Uses for Text Debugging 164

Summary 165

Challenges 165

Contentsxiv

III From Level to Game 167

 7 Main Menu, Level Completed, and Credits
Scenes 169

Scenes in Cocos2D 169

Introducing the GameManager 170

Creating the GameManager 172

Menus in Cocos2D 179

Scene Organization and Images 180

Adding Images and Fonts for the Menus 181

Creating the Main Menu 182

Creating the MainMenuScene 182

MainMenuLayer class 183

Additional Menus and GameplayLayer 190

Importing the Intro, LevelComplete, Credits, and
Options Scenes and Layers 190

GameplayLayer 190

Changes to SpaceVikingAppDelegate 192

For the More Curious: The IntroLayer and LevelComplete
Classes 193

LevelCompleteLayer Class 194

Summary 195

Challenges 195

 8 Pump Up the Volume! 197

Introducing CocosDenshion 197

Importing and Setting Up the Audio Filenames 198

Adding the Audio Files to Space Viking 198

Audio Constants 198

Synchronous versus Asynchronous Loading
of Audio 201

Loading Audio Synchronously 201

Loading Audio Asynchronously 203

Adding Audio to GameManager 204

Adding the soundEngine to GameObjects 215

Adding Sounds to RadarDish and
SpaceCargoShip 216

Adding Sounds to EnemyRobot 219

Contents xv

Adding Sound Effects to Ole the Viking 222

Adding the Sound Method Calls in changeState for
Ole 226

Adding Music to the Menu Screen 228

Adding Music to Gameplay 228

Adding Music to the MainMenu 228

For the More Curious: If You Need More Audio
Control 229

Summary 230

Challenges 230

 9 When the World Gets Bigger: Adding
Scrolling 231

Adding the Logic for a Larger World 232

Common Scrolling Problems 234

Creating a Larger World 235

Creating the Second Game Scene 236

Creating the Scrolling Layer 242

Scrolling with Parallax Layers 250

Scrolling to Infinity 252

Creating the Scrolling Layer 254

Creating the Platform Scene 263

Tile Maps 265

Installing the Tiled Tool 266

Creating the Tile Map 267

Cocos2D Compressed TiledMap Class 271

Adding a TileMap to a ParallaxNode 272

Summary 276

Challenges 276

IV Physics Engines 277

 10 Basic Game Physics: Adding Realism with
Box2D 279

Getting Started 279

Mad Dreams of the Dead 281

Creating a New Scene 282

Contentsxvi

Adding Box2D Files to Your Project 284

Box2D Units 288

Hello, Box2D! 289

Creating a Box2D Object 292

Box2D Debug Drawing 295

Putting It All Together 296

Creating Ground 299

Basic Box2D Interaction and Decoration 302

Dragging Objects 304

Mass, Density, Friction, and Restitution 309

Decorating Your Box2D Bodies with Sprites 313

Making a Box2D Puzzle Game 320

Ramping It Up 324

Summary 332

Challenges 332

 11 Intermediate Game Physics: Modeling, Racing, and
Leaping 333

Getting Started 334

Adding the Resource Files 334

Creating a Basic Box2D Scene 335

Creating a Cart with Box2D 346

Creating Custom Shapes with Box2D 346

Using Vertex Helper 348

Adding Wheels with Box2D Revolute Joints 352

Making the Cart Move and Jump 356

Making the Cart Move with the Accelerometer 356

Making It Scrollable 359

Forces and Impulses 368

Fixing the Tipping 368

Making the Cart Jump 369

More Responsive Direction Switching 373

Summary 374

Challenges 374

Contents xvii

 12 Advanced Game Physics: Even Better than the Real
Thing 375

Joints and Ragdolls: Bringing Ole Back
into Action 376

Restricting Revolute Joints 376

Using Prismatic Joints 378

How to Create Multiple Bodies and Joints at the Right
Spots 378

Adding Ole: The Implementation 380

Adding Obstacles and Bridges 386

Adding a Bridge 386

Adding Spikes 390

An Improved Main Loop 394

The Boss Fight! 396

A Dangerous Digger 405

Finishing Touches: Adding a Cinematic Fight
Sequence 411

Summary 417

Challenges 417

 13 The Chipmunk Physics Engine (No Alvin
Required) 419

What Is Chipmunk? 420

Chipmunk versus Box2D 420

Getting Started with Chipmunk 421

Adding Chipmunk into Your Project 426

Creating a Basic Chipmunk Scene 429

Adding Sprites and Making Them Move 438

Jumping by Directly Setting Velocity 444

Ground Movement by Setting Surface Velocity 445

Detecting Collisions with the Ground 445

Chipmunk Arbiter and Normals 446

Implementation—Collision Detection 446

Implementation—Movement and Jumping 450

Chipmunk and Constraints 455

Revolving Platforms 458

Pivot, Spring, and Normal Platforms 460

Contentsxviii

The Great Escape! 467

Following Ole 467

Laying Out the Platforms 468

Animating Ole 469

Music and Sound Effects 473

Adding the Background 474

Adding Win/Lose Conditions 476

Summary 477

Challenges 477

V Particle Systems, Game Center, and
Performance 479

 14 Particle Systems: Creating Fire, Snow, Ice, and
More 481

Built-In Particle Systems 482

Running the Built-In Particle Systems 482

Making It Snow in the Desert 483

Getting Started with Particle Designer 485

A Quick Tour of Particle Designer 486

Creating and Adding a Particle System to
Space Viking 489

Adding the Engine Exhaust to Space Viking 490

Summary 494

Challenges 494

 15 Achievements and Leaderboards with Game
Center 495

What Is Game Center? 495

Why Use Game Center? 497

Enabling Game Center for Your App 497

Obtain an iOS Developer Program Account 497

Create an App ID for Your App 498

Register Your App in iTunes Connect 501

Enable Game Center Support 505

Game Center Authentication 506

Make Sure Game Center Is Available 506

Contents xix

Try to Authenticate the Player 507

Keep Informed If Authentication Status
Changes 508

The Implementation 508

Setting Up Achievements 515

Adding Achievements into iTunes Connect 515

How Achievements Work 517

Implementing Achievements 518

Creating a Game State Class 519

Creating Helper Functions to Load and Save
Data 522

Modifying GCHelper to Send Achievements 524

Using GameState and GCHelper in
SpaceViking 530

Displaying Achievements within the App 534

Setting Up and Implementing Leaderboards 536

Setting up Leaderboards in iTunes Connect 536

How Leaderboards Work 538

Implementing Leaderboards 539

Displaying Leaderboards in-Game 540

Summary 543

Challenges 543

 16 Performance Optimizations 545

CCSprite versus CCSpriteBatchNode 545

Testing the Performance Difference 550

Tips for Textures and Texture Atlases 551

Reusing CCSprites 552

Profiling within Cocos2D 554

Using Instruments to Find Performance
Bottlenecks 557

Time Profiler 558

OpenGL Driver Instrument 560

Summary 563

Challenges 563

Contentsxx

 17 Conclusion 565

Where to Go from Here 567

Android and Beyond 567

Final Thoughts 568

 A Principal Classes of Cocos2D 569

 Index 571

Preface

So you want to be a game developer?
Developing games for the iPhone or iPad can be a lot of fun. It is one of the few

things we can do to feel like a kid again. Everyone, it seems, has an idea for a game,
and what better platform to develop for than the iPhone and iPad?

What stops most people from actually developing a game, though, is that game devel-
opment covers a wide swath of computer science skills—graphics, audio, networking—
and at times it can seem like you are drinking from a fire hose. When you are first
getting started, becoming comfortable with Objective-C can seem like a huge task,
especially if you start to look at things like OpenGL ES, OpenAL, and other lower-
level APIs for your game.

Writing a game for the iPhone and iPad does not have to be that difficult—and it
isn’t. To help simplify the task of building 2D games, look no further than Cocos2D.

You no longer have to deal with low-level OpenGL programming APIs to make
games for the iPhone, and you don’t need to be a math or physics expert. There’s a
much faster and easier way—use a free and popular open source game programming
framework called Cocos2D. Cocos2D is extremely fun and easy to use, and with it
you can skip the low-level details and focus on what makes your game different and
special!

This book teaches you how to use Cocos2D to make your own games, taking you
step by step through the process of making an actual game that’s on the App Store
right now! The game you build in this book is called Space Viking and is the story of a
kick-ass Viking transported to an alien planet. In the process of making the game, you
get hands-on experience with all of the most important elements in Cocos2D and see
how everything fits together to make a complete game.

Download the Game!
You can download Space Vikings from the App Store: http://itunes.apple.com/us/app/
space-vikings/id400657526mt=8. The game is free, so go ahead and download it, start
playing around with it, and see if you’re good enough to get all of the achievements!

Think of this book as an epic-length tutorial, showing you how you can make a
real game with Cocos2D from the bottom up. You’ll be coding along with the book,
and we explain things step by step. By the time you’ve finished reading and working

http://itunes.apple.com/us/app/space-vikings/id400657526mt=8
http://itunes.apple.com/us/app/space-vikings/id400657526mt=8

Prefacexxii

through this book, you’ll have made a complete game. Best of all, you’ll have the con-
fidence and knowledge it takes to make your own.

Each chapter describes in detail a specific component within the game along with
the technology required to support it, be it a tile map editor or some effect we’re cre-
ating with Cocos2D, Box2D, or Chipmunk. Once an introduction to the functional-
ity and technology is complete, the chapter provides details on how the component
has been implemented within Space Viking. This combination of theory and real-world
implementation helps to fill the void left by other game-development books.

What Is Cocos2D?
Cocos2D (www.cocos2d-iphone.org) is an open source Objective-C framework for mak-
ing 2D games for the iOS and Mac OS X, which includes developing for the iPhone,
iPod touch, the iPad, and the Mac. Cocos2D can either be included as a library to
your project in Xcode or automatically added when you create a new game using the
included Cocos2D templates.

Cocos2D uses OpenGL ES for graphics rendering, giving you all of the speed and
performance of the graphics processor (GPU) on your device. Cocos2D includes a host
of other features and capabilities, which you’ll learn more about as you work through
the tutorial in this book.

Cocos2D started life as a Python framework for doing 2D games. In late 2008, it
was ported to the iPhone and rewritten in Objective-C. There are now additional
ports of Cocos2D to Ruby, Java (Android), and even Mono (C#/.NET).

Note
Cocos2D has an active and vibrant community of contributors and supporters. The
Cocos2D forums (www.cocos2d-iphone.org/forum) are very active and an excellent
resource for learning and troubleshooting as well as keeping up to date on the latest
developments of Cocos2D.

Why You Should Use Cocos2D
Cocos2D lets you focus on your core game instead of on low-level APIs. The App
Store marketplace is very f luid and evolves rapidly. Prototyping and developing your
game quickly is crucial for success in the App Store, and Cocos2D is the best tool for
helping you quickly develop your game without getting bogged down trying to learn
OpenGL ES or OpenAL.

Cocos2D also includes a host of utility classes such as the TextureCache, which
automatically caches your graphics, providing for faster and smoother gameplay.
TextureCache operates in the background and is one of the many functions of
Cocos2D that you don’t even have to know how to use; it functions transparently to

www.cocos2d-iphone.org
www.cocos2d-iphone.org/forum

Preface xxiii

you. Other useful utilities include font rendering, sprite sheets, a robust sound system,
and many more.

Cocos2D is a great prototyping tool. You can quickly make a game in as little as
an hour (or however long it takes you to read Chapter 2). You are reading this book
because you want to make games for the iPhone and iPad, and using Cocos2D is the
quickest way to get there—bar none.

Cocos2D Key Features
Still unsure if Cocos2D is right for you? Well, check out some of these amazing fea-
tures of Cocos2D that can make developing your next game a lot easier.

Actions
Actions are one of the most powerful features in Cocos2D. Actions allow you to
move, scale, and manipulate sprites and other objects with ease. As an example, to
smoothly move a space cargo ship across the screen 400 pixels to the right in 5 sec-
onds, all the code you need is:

CCAction *moveAction = [CCMoveBy actionWithDuration:5.0f

 position:CGPointMake(400.0f,0.0f)];

[spaceCargoShipSprite runAction:moveAction];

That’s it; just two lines of code! Figure P.1 illustrates the moveAction on the space
cargo ship.

Figure P.1 Illustrating the effect of the moveAction on the Space
Cargo Ship sprite

There are many kinds of built-in actions in Cocos2D: rotate, scale, jump, blink,
fade, tint, animation, and more. You can also chain actions together and call custom
callbacks for neat effects with very little code.

Built-In Font Support
Cocos2D makes it very easy to deal with text, which is important for games in menu
systems, score displays, debugging, and more. Cocos2D includes support for embedded
TrueType fonts and also a fast bitmap font-rendering system, so you can display text to
the screen with just a few lines of code.

Prefacexxiv

An Extensive Effects Library
Cocos2D includes a powerful particle system that makes it easy to add cool effects such
as smoke, fire, rain, and snow to your games. Also, Cocos2D includes built-in effects,
such as f lip and fading, to transition between screens in your game.

Great for TileMap Games
Cocos2D includes built-in support for tile-mapped games, which is great when you
have a large game world made up of small reusable images. Cocos2D also makes it
easy to move the camera around to implement scrolling backgrounds or levels. Finally,
there is support for parallax scrolling, which gives your game the illusion of 3D depth
and perspective.

Audio/Sound Support
The sound engine included with Cocos2D allows for easy use of the power of OpenAL
without having to dive into the lower level APIs. With Cocos2D’s sound engine, you
can play background music or sound effects with just a single line of code!

Two Powerful Physics Engines
Also bundled with Cocos2D are two powerful physics engines, Box2D and Chipmunk,
both of which are fantastic for games. You can add a whole new level of realism to
your games and create entire new gameplay types by using game physics—without
having to be a math guru.

Important Concepts
Before we get started, it’s important to make sure you’re familiar with some important
concepts about Cocos2D and game programming in general.

Sprite
You will see the term sprite used often in game development. A sprite is an image
that can be moved independently of other images on the screen. A sprite could be
the player character, an enemy, or a larger image used in the background. In practice,
sprites are made from your PNG or PVRTC image files. Once loaded in memory, a
sprite is converted into a texture used by the iPhone GPU to render onscreen.

Singleton
A singleton is a special kind of Objective-C class, which can have only one instance. An
example of this is an iPhone app’s Application Delegate class, or the Director class in
Cocos2D. When you call a singleton instance in your code, you always get back the
one instance of this class, regardless of which class called it.

Preface xxv

OpenGL ES
OpenGL ES is a mobile version (ES stands for Embedded Systems) of the Open Graph-
ics Language (OpenGL). It is the closest you can get on the iPhone or iPad to sending
zeros and ones to the GPU. OpenGL ES is the fastest way to render graphics on the
iPhone or iPad, and due to its origin, it is a low-level API. If you are new to game
development, OpenGL ES can have a steep learning curve, but luckily you don’t need
to know OpenGL ES to use Cocos2D.

The two versions of OpenGL ES supported on the iPhone and iPad are 1.1 and 2.0.
There are plans in the Cocos2D roadmap to support OpenGL ES 2.0, although cur-
rently only version 1.1 is supported.

Languages and Screen Resolutions
Cocos2D is written in Objective-C, the same language as Cocoa Touch and the
majority of the Apple iOS APIs. In Objective-C it is important to understand some
basic memory-management techniques, as it is a good foundation for you to become
an efficient game developer on the iOS platform. Cocos2D supports all of the native
resolutions on the iOS devices, from the original iPhone to the iPad to the retina dis-
play on the iPhone 4.

2D versus 3D
You first learn to walk before you can run. The same is true for game development;
you have to learn how to make 2D games before diving into the deeper concepts of
3D games. There are some 3D effects and transitions in Cocos2D, such as a 3D wave
effect and an orbit camera move; however, most of the functionality is geared toward
2D games and graphics.

Cocos2D is designed for 2D games (hence the 2D in the name), as are the tutorials
and examples in this book. If you want to make 3D games, you should look into dif-
ferent frameworks, such as Unity, the Unreal Engine, or direct OpenGL.

The Game behind the Book: Space Viking
This book takes you through the process of creating a full-featured Cocos2D-based
game for the iPhone and iPad. The game you build in this book is called Space Viking.
If you want to try Space Viking now, you can download a free version of the game
from the App Store (http://itunes.apple.com/us/app/id400657526) and install it on your
iPhone, iPod touch, or iPad.

Of course, if you are more patient, you can build the game yourself and load it
onto your device after working through the chapters in this book. There is no greater
learning experience than having the ability to test a game as you’re building it. Not
only can you learn how to build a game, but you can also go back and tweak the code
a bit to change things around to see what sort of effect something has on the game-
play. Good things come to those who wait.

http://itunes.apple.com/us/app/id400657526

Prefacexxvi

This book teaches you how to use all of the features and capabilities of Cocos2D,
but more important, how to apply them to a real game. By the time you are done, you
will have the knowledge and experience needed to get your own game in the App
Store. The concepts you learn from building Space Viking apply to a variety of games
from action to puzzle.

Space Viking’s Story
Every game starts in the depths of your imagination, with a character and storyline
that gets transformed into a game. This is the story of Space Viking.

In the future, the descendants of Earth are forced into colonizing planets outside
our own solar system. In order to create hospitable environments, huge interplanetary
machines extract giant chunks of ice from Northern Europe and Greenland and send
it across the galaxy to these planets. Unbeknown to the scientists, one of these chunks
contains Ole the Viking, who eons ago fell into an icy river on his way home from
defeating barbarian tribes. Encased in an icy tomb for centuries, Ole awakens thou-
sands of years later—and light years from home—after being warmed by an alien sun,
as shown in Figure P.2.

Figure P.2 Ole awakens on the alien planet

You get to play as Ole the Viking and battle the aliens on this strange world in
hopes of finding a way to return Ole to his native land and time.

You control Ole’s movement to the right and left by using the thumb joystick on
the left side of the screen. On the right side are buttons for jumping and attacking. Ole
starts out with only his fists. In later levels Ole finds his trusty mallet, and you use the
accelerometer to control him in the physics levels.

Space Viking is an action and adventure game, with the emphasis on action. The goal
was to create a real game from the ground up so you could learn not only Cocos2D
but also how to use it in a real full-featured game. The idea for the game came from

Preface xxvii

concept art that Eric Stevens, a graphic artist and fellow game devotee, developed ear-
lier when we were discussing game ideas to make next.

Space Viking consists of a number of levels, each of which demonstrates a specific
area of Cocos2D or gameplay type. For example, the first level is a side-scrolling beat
’em up, and the fourth level is a mine cart racing level that shows off the game physics
found in Box2D and Chipmunk. Our hope is that you can reuse parts of Space Viking
to make your own game once you’ve finished this book! That’s right: you can freely
reuse the code in this book to build your own game.

Organization of This Book
The goal of this book is to teach you about game development using Cocos2D as you
build Space Viking (and learn more about the quest and story of Ole the Viking). You
start with a simple level and some basic game mechanics and work your way up to
creating levels with physics and particle systems and finally to a complete game by the
end of the book.

First you learn the basics of Cocos2D and build a small level with basic running
and jumping movements for Ole. Part II shows you how to add animations, actions,
effects, and even text to Space Viking. Part III takes the game further, adding more
levels and scenes, sounds, and scrolling to the gameplay. In Part IV realism is brought
into the game with the Box2D and Chipmunk physics engines. Finally in Part V, you
learn how to add a particle system, add high scores, connect to social networks, and
debug and optimize Space Viking to round out some best practices for the games you
will build in the future.

There are 17 chapters and one appendix in the book, each dealing with a specific
area of creating Space Viking.

n Part I: Getting Started with Cocos2D

Learn how to get Cocos2D installed and start using it to create Space Viking.
Learn how to add animations and movements to Ole and his enemies.
n Chapter 1: Hello, Cocos2D

This chapter covers how to install Cocos2D framework and templates in
Xcode and some companion tools that make developing games easier. These
tools are freely available and facilitate the creation of the elements used by
Cocos2D.

n Chapter 2: Hello, Space Viking

Here you create the basic Space Viking game, which you build upon through-
out the book. You start out with just a basic Cocos2D template and add the
hero (Ole the Viking) to the scene. In the second part of this chapter, you add
the methods to handle the touch inputs, including moving Ole around and
making him jump.

Prefacexxviii

n Chapter 3: Introduction to Cocos2D Animations and Actions

In this chapter, you learn how to make the game look much more realistic by
adding animations to Ole as he moves around the scene.

n Chapter 4: Simple Collision Detection and the First Enemy

In this chapter, you learn how to implement simple collision detection and
add the first enemy to your Space Viking game, so Ole can start to fight his
way off the planet!

n Part II: More Enemies and More Fun

Learn how to create more complex enemies for Ole to battle and in the process
learn about Cocos2D actions and effects. Finish up with a live, onscreen debug-
ging system using Cocos2D text capabilities.
n Chapter 5: More Actions, Effects, and Cocos2D Scheduler

Actions are a key concept in Cocos2D—they are an easy way to move objects
around, make them grow or disappear, and much more. In this chapter, you
put them in practice by adding power-ups and weapons to the level, and you
learn some other important Cocos2D capabilities, such as effects and the
scheduler.

n Chapter 6: Text, Fonts, and the Written Word

Most games have text in them at some point, and Space Viking is no exception.
In this chapter, you learn how to add text to your games using the different
methods available in Cocos2D.

n Part III: From Level to Game

Learn how to expand the Space Viking level into a full game by adding menus,
sound, and scrolling.
n Chapter 7: Main Menu, Level Completed, and Credits Scenes

Almost all games have more than one screen (or “scene,” as it’s called in
Cocos2D); there’s usually a main menu, main game scene, level completed,
and credits scene at the very least. In this chapter, you learn how to create
multiple scenes by implementing them in Space Viking!

n Chapter 8: Pump Up the Volume!

Adding sound effects and music to a game can make a huge difference.
Cocos2D makes it really easy with the CocosDenshion sound engine, so in
this chapter you give it a try!

n Chapter 9: When the World Gets Bigger: Adding Scrolling

A lot of games have a bigger world than can fit on one screen, so the world
needs to scroll as the player moves through it. This can be tricky to get right,
so this chapter shows you how by converting the beat-’em-up into a side-
scroller, using Cocos2D tile maps for improved performance.

Preface xxix

n Part IV: Physics Engines

With the Box2D and Chipmunk physics engines that come with Cocos2D, you
can add some amazing effects to your games, such as gravity, realistic collisions,
and even ragdoll effects! In these chapters you get a chance to add some physics-
based levels to Space Viking, from simple to advanced!
n Chapter 10: Basic Game Physics: Adding Realism with Box2D

Just as Cocos2D makes it easy to make games for the iPhone without know-
ing low-level OpenGL details, Box2D makes it easy to add physics to your
game objects without having to be a math expert. In this chapter, you learn
how to get started with Box2D by making a fun puzzle game where objects
move according to gravity.

n Chapter 11: Intermediate Game Physics: Modeling, Racing, and
Leaping

This chapter shows you some of the really neat stuff you can do with Box2D
by making the start of a side-scrolling cart-racing game. In the process, you
learn how to model arbitrary shapes, add joints to restrict movement of phys-
ics bodies, and much more!

n Chapter 12: Advanced Game Physics: Even Better than the Real
Thing

In this chapter, you make the cart-racing level even more amazing by adding
spikes to dodge and an epic boss fight at the end. You learn more about joints,
how to detect collisions, and how to add enemy logic as well.

n Chapter 13: The Chipmunk Physics Engine (No Alvin Required)

The second physics engine that comes with Cocos2D, called Chipmunk, is
similar to Box2D. This chapter shows you how to use Chipmunk, compares it
to Box2D, and gives you hands-on practice by making a Metroid-style escape
level.

n Part V: Particle Systems, Game Center, and Performance

Learn how to quickly create and add particle systems to your games, how to
integrate with Apple’s Game Center for online leaderboards and achievements,
and some performance tips and tricks to keep your game running fast.
n Chapter 14: Particle Systems: Creating Fire, Snow, Ice, and More

Using Cocos2D’s particle system, you can add some amazing special effects to
your game—extremely easily! In this chapter, you learn how to use particle
systems to add some special effects to Space Viking, such as ship exhaust.

n Chapter 15: Achievements and Leaderboards with Game Center

With Apple’s Game Center, you can easily add achievements and leaderboards
to your games, which makes things more fun for players and also might help
you sell more copies! This chapter covers how to set things up in Space Viking,
step by step.

Prefacexxx

n Chapter 16: Performance Optimizations

In this chapter, you learn how to tackle some of the most common chal-
lenges and issues you will face in optimizing and getting the most out of your
Cocos2D game. You get hands-on experience debugging the most common
performance issues and applying solutions.

n Chapter 17: Conclusion

This final chapter recaps what you learned and describes where you can go
next: into 3D, using Cocos2D on other platforms such as Android, and more
advanced game-development topics.

n Appendix: Principal Classes of Cocos2D

The Appendix provides an overview of the main classes you will be using and
interacting with in Cocos2D.

By the time you’ve finished reading this book, you’ll have practical experience
making an awesome game from scratch! You can then take the concepts you’ve learned
(and even some of the code!) and use it to turn your own game into a reality.

Audience for This Book
The audience for this book includes developers who are put off by game-making
because they anticipate a long and complex learning curve. Many developers want to
write games but don’t know where to start with game development or the Cocos2D
framework. This book is a hands-on guide, which takes you from the very beginning of
using Cocos2D to applying the advanced physics concepts in Box2D and Chipmunk.

This book is targeted to developers interested in creating games for iOS devices,
including the iPhone, iPad, and iPod touch. The book assumes a basic understanding
of Objective-C, Cocoa Touch, and the Xcode tools. You are not expected to know
any lower-level APIs (Core Audio, OpenGL ES, etc.), as these are used internally by
Cocos2D.

Who This Book Is For
If you are already developing applications for the iPhone of other platform but want to
make a move from utility applications to games, then this book is for you. It builds on
the development knowledge you already have and leads you into game development by
describing the terminology, technology, and tools required as well as providing real-
world implementation examples.

Who This Book Isn’t For
If you already have a grasp of the workf low required to create a game or you have a
firm game idea that you know will require OpenGL ES for 3D graphics, then this is
not the book for you.

Preface xxxi

It is expected that before you read this book you are already familiar with
Objective-C, C, Xcode, and Interface Builder. While the implementations described
in this book have been kept as simple as possible, and the use of C is limited, a firm
foundation in these languages is required.

The following books can help provide you with the grounding you need to work
through this book:

n Cocoa Programming for Mac OS X, Third Edition, by Aaron Hillegass (Addison-
Wesley, 2008)

n Learning Objective-C 2.0 by Robert Clair (Addison-Wesley, 2011)
n Programming in Objective-C 2.0 by Stephen G. Kochan (Addison-Wesley, 2009)
n Cocoa Design Patterns by Erik M. Buck and Donald A. Yacktman (Addison-

Wesley, 2009)
n The iPhone Developer’s Cookbook, Second Edition, by Erica Sadun (Addison-Wesley,

2010)
n Core Animation: Simplified Animation Techniques for Mac and iPhone Development by

Marcus Zarra and Matt Long (Addison-Wesley, 2010)
n iPhone Programming: The Big Nerd Ranch Guide by Aaron Hillegass and Joe

Conway (Big Nerd Ranch, Inc., 2010)
n Learning iOS Game Programming: A Hands-On Guide to Building Your First iPhone

Game by Michael Daley (Addison-Wesley, 2011)

These books, along with other resources you’ll find on the web, will help you learn
more about how to program for the Mac and iPhone, giving you a deeper knowledge
about the Objective-C language and the Cocoa frameworks.

Source Code, Tutorial Videos, and Forums
Access to information is not limited only to the book. The complete, fully commented
source code for Space Viking is also included, along with video tutorials (available at
http://cocos2Dbook.com) that take you visually through the concepts of each chapter.

There is plenty of code to review throughout the book, along with exercises for
you to try out, so it is assumed you have access to the Apple developer tools such as
Xcode and the iPhone SDK. Both of these can be downloaded from the Apple iPhone
Dev Center: http://developer.apple.com/iphone.

If you want to work with your fellow students as you work through the book, feel
free to check out the book’s forums at http://cocos2dbook.com/forums/.

http://cocos2Dbook.com
http://developer.apple.com/iphone
http://cocos2dbook.com/forums/

This page intentionally left blank

Acknowledgments

This book would not have been possible without the hard work, support, and kindness
of the following people:

n First of all, thanks to our editor, Chuck Toporek, and his assistant, Olivia
Basegio. Chuck patiently helped and encouraged us during the entire process
(even though we are both first-time authors!) and has managed all of the work
it takes to convert a simple Word document into the actual book you’re holding
today. Olivia was extremely helpful through the entire process of keeping every-
one coordinated and the tech reviews coming in. Thanks again to both of you in
making this book a reality!

n Another person at Addison-Wesley whom we want to thank is Chuti Prasertsith,
who designed the cover for the book.

n A huge thanks to the lead developer and coordinator of Cocos2D, Ricardo
Quesada (also known as Riq), along with the other Cocos2D contributors,
such as Steve Oldmeadow and many others. Without Riq and his team’s hard
work and dedication to making Cocos2D into the amazing framework and
community that it is today, this book just wouldn’t exist. Also, we believe that
Cocos2D has made a huge positive difference in many people’s lives by enabling
them to accomplish a lifelong dream—to make their own games. Riq maintains
Cocos2D as his full-time job, so if you’d like to make a donation to thank him
for his hard work, you can do so at www.cocos2d-iphone.org/store. Riq also sells
source code for his game Sapus Tongue and a great physics editor called Level-
SVG. You can find out more about both at www.sapusmedia.com.

n Also, thank you to Erin Catto (the lead developer of Box2D) and Scott Lembcke
(the lead developer of Chipmunk) for their work on their amazing physics librar-
ies. Similarly to Riq’s work on Cocos2D, Erin’s and Scott’s work has enabled
countless programmers to create cool physics-based games quickly and easily.
Erin and Scott are extremely dedicated to supporting their libraries and commu-
nity, and even kindly donated their time in reviewing the physics chapters of this
book. If you’d like to donate to Erin or Scott for their hard work on their librar-
ies, you can do so by following the links at www.box2d.org and http://code.google.
com/p/chipmunk-physics.

n A big thanks to Steve Oldmeadow, the lead developer of CocosDenshion, the
sound engine behind Cocos2D. Steve provided assistance and time in reviewing

www.cocos2d-iphone.org/store
www.sapusmedia.com
www.box2d.org
http://code.google.com/p/chipmunk-physics
http://code.google.com/p/chipmunk-physics

Acknowledgmentsxxxiv

the chapter on audio. Steve’s work has allowed many game developers to quickly
and easily add music and sound effects to their games.

n Eric Stevens is an American fine artist who moonlights as a game illustrator.
Years of good times and bad music contributed to the initial concept of Space
Viking. Eric worked closely with us to bring Ole and everything you see in
Space Viking to life. Eric maintains an illustration site at http://imagedesk.org, and
you can see his paintings at several galleries in the Southwest and at http://
ericstevensart.com.

n Mike Weiser is the musician who made the rocking soundtrack and sound effects
for Space Viking. We think the music made a huge difference in Space Viking and
really set the tone we were hoping for. A special thanks to Andrew Peplinski for
the Viking grunts and Rulon Brown for conducting the choir that you hear in
the beginning of the game. Mike has made music for lots of popular iOS games,
and you can check him out at www.mikeweisermusic.com.

n A huge thanks to our technical reviewers: Farim Farook, Marc Hebert, Mark
Hurley, Mike Leonardi, and Nick Waynik. These guys did a great job catching
all of our boneheaded mistakes and giving us some great advice on how to make
each chapter the best it could be. Thank you so much, guys!

Each of us also has some personal “thank yous” to make.

From Rod Strougo
I thank my wife and family for being ever patient while I was working on this book.
There were countless evenings when I was hidden away in my office writing, editing,
coding. Without Agata’s support and understanding, there is no way this book could
exist. Our older son, Alexander, was two and a half during the writing of this book,
and he helped beta test Space Viking, while Anton was born as I was finishing the last
chapters. Thank you for all the encouragement, love, and support, Agata.

I would also like to thank Ray for stepping in and writing the Box2D, Chipmunk,
and Game Center chapters. Ray did a fantastic job on in-depth coverage of Box2D
and Chipmunk, while adding some fun levels to Space Viking.

From Ray Wenderlich
First of all, a huge thank you to my wife and best friend, Vicki Wenderlich, for her
constant support, encouragement, and advice throughout this entire process. Without
her, I wouldn’t be making iOS apps today, and they definitely wouldn’t look as good!
Also, thank you to my amazing family. You believed in me through the ups and
downs of being an indie iOS developer and supported me the entire way. Thank you
so much!

www.mikeweisermusic.com
http://imagedesk.org
http://ericstevensart.com
http://ericstevensart.com

Acknowledgments xxxv

Finally, I thank all of the readers and supporters of my iOS tutorial blog at www.
raywenderlich.com. Without your interest, encouragement, and support, I wouldn’t
have been as motivated to keep writing all the tutorials and might have never had the
opportunity to write this book. Thank you so much for making this possible, and I
hope you enjoy this book!

www.raywenderlich.com
www.raywenderlich.com

This page intentionally left blank

About the Authors

Rod Strougo is the founder and lead developer of the studio Prop Group at
www.prop.gr. Rod’s journey in physics and games started way back with an Apple][,
writing games in Basic. From the early passion in games, Rod’s career moved to enter-
prise software development, spending 10 years writing software for IBM and recently
for a large telecom company. These days Rod enjoys helping others get started on their
paths to making games. Originally from Rio de Janeiro, Brazil, Rod lives in Atlanta,
Georgia, with his wife and sons.

Ray Wenderlich is an iPhone developer and gamer and the founder of Razeware,
LLC. Ray is passionate about both making apps and teaching others the techniques to
make them. He has written a bunch of tutorials about iOS development, available at
www.raywenderlich.com.

www.prop.gr
www.raywenderlich.com

This page intentionally left blank

4
Simple Collision Detection and

the First Enemy

In the previous chapter you learned the basics of Cocos2D animations and actions. You also
started building a f lexible framework for Space Viking. In this chapter you go further and create
the first enemy for Ole to do battle with. In the process you learn how to implement a simple sys-
tem for collision detection and the artificial intelligence brain of the enemies in Space Viking.

There is a significant amount of code necessary in this chapter to drive the behavior of Ole and
the RadarDish. Take your time understanding how these classes work, as they are the foundation
and models for the rest of the classes in Space Viking.

Ready to defeat the aliens?

Creating the Radar Dish and Viking Classes
From just a CCSprite to a fully animated character, Ole the Viking takes the plunge
from simple to advanced from here on out. In this section you create the RadarDish
and Viking classes to encapsulate the logic needed by each, including all of the ani-
mations. The RadarDish class is worth a close look, as all of the enemy characters in
Space Viking are modeled after it.

Creating the RadarDish Class
In this first scene, there is a suspicious radar dish on the right side of the screen. It
scans for foreign creatures such as Ole. Ole needs to find a way to destroy the radar
dish before it alerts the enemy robots of his presence. Fortunately, Ole knows two
ways to deal with such problems: his left and right fists. Create the new RadarDish
class in Xcode by following these steps:

1. In Xcode, right-click on the EnemyObjects group.

2. Select New File, choose the Cocoa Touch category under iOS and
Objective-C class as the file type, and click Next.

Chapter 4 Simple Collision Detection and the First Enemy84

3. For the Subclass field, enter GameCharacter and click Next.

4. Enter RadarDish for the filename and click Finish.

Open the RadarDish.h header file and change the contents to match the code in
Listing 4.1.

Listing 4.1 RadarDish.h header file

// RadarDish.h

// SpaceViking

//

#import <Foundation/Foundation.h>

#import "GameCharacter.h"

@interface RadarDish : GameCharacter {

CCAnimation *tiltingAnim;

CCAnimation *transmittingAnim;

CCAnimation *takingAHitAnim;

CCAnimation *blowingUpAnim;

GameCharacter *vikingCharacter;

}

@property (nonatomic, retain) CCAnimation *tiltingAnim;

@property (nonatomic, retain) CCAnimation *transmittingAnim;

@property (nonatomic, retain) CCAnimation *takingAHitAnim;

@property (nonatomic, retain) CCAnimation *blowingUpAnim;

@end

Looking at Listing 4.1 you can see that the RadarDish class inherits from the
GameCharacter class and that it defines four CCAnimation instance variables. There
is also an instance variable to hold a pointer back to the Viking character.

Why the vikingCharacter Variable Is of Type GameCharacter and Not of Type
Viking Class
If you look carefully at Listing 4.1, you will notice that the vikingCharacter
instance variable is of type GameCharacter and not of type Viking. This is
because the RadarDish class needs access only to the methods defined in
GameCharacter and not to the full Viking class.

Having an instance variable of type GameCharacter here allows for the
RadarDish class to not have to know anything further about the Viking object
except that it is a GameCharacter. You are free to add features to the Viking
class without fear that it will break any functionality in RadarDish. If you were to
change the main character in a future version of Space Viking, the code would still

Creating the Radar Dish and Viking Classes 85

function fine, since that new main character class too would, presumably, be derived
from the GameCharacter class.

Listings 4.2, 4.3, and 4.4 show the contents of the RadarDish.m implementation file.
The changeState and updateStateWithDelta time methods are crucial to under-
stand, as they are the most basic versions of what you will find in all of the characters
in Space Viking. While reading this code, keep in mind that the RadarDish is a simple
enemy that never moves or attacks the Viking. The RadarDish does take damage
from the Viking, eventually blowing up by moving to a dead state. Listing 4.2 covers
the top portion of the RadarDish.m implementation file, including the changeState
method. Open the RadarDish.m implementation file and replace the code so that it
matches the contents in Listings 4.2, 4.3, and 4.4.

Listing 4.2 RadarDish.m implementation file (top portion)

// RadarDish.m

// SpaceViking

#import "RadarDish.h"

@implementation RadarDish

@synthesize tiltingAnim;

@synthesize transmittingAnim;

@synthesize takingAHitAnim;

@synthesize blowingUpAnim;

- (void) dealloc{

 [tiltingAnim release];

 [transmittingAnim release];

 [takingAHitAnim release];

 [blowingUpAnim release];

 [super dealloc];

}

-(void)changeState:(CharacterStates)newState {

 [self stopAllActions];

id action = nil;

 [self setCharacterState:newState];

switch (newState) {

case kStateSpawning:

CCLOG(@"RadarDish->Starting the Spawning Animation");

 action = [CCAnimate actionWithAnimation:tiltingAnim

restoreOriginalFrame:NO];

break;

Chapter 4 Simple Collision Detection and the First Enemy86

case kStateIdle:

CCLOG(@"RadarDish->Changing State to Idle");

 action = [CCAnimate actionWithAnimation:transmittingAnim

restoreOriginalFrame:NO];

break;

case kStateTakingDamage:

CCLOG(@"RadarDish->Changing State to TakingDamage");

characterHealth =

characterHealth - [vikingCharacter getWeaponDamage];

if (characterHealth <= 0.0f) {

 [self changeState:kStateDead];

 } else {

 action = [CCAnimate actionWithAnimation:takingAHitAnim

restoreOriginalFrame:NO];

 }

break;

case kStateDead:

CCLOG(@"RadarDish->Changing State to Dead");

 action = [CCAnimate actionWithAnimation:blowingUpAnim

restoreOriginalFrame:NO];

break;

default:

CCLOG(@"Unhandled state %d in RadarDish", newState);

break;

 }

if (action != nil) {

 [self runAction:action];

 }

}

The changeState method is called when the RadarDish needs to transition
between states. In the beginning of this chapter you were introduced to state
machines, and the changeState method is what allows for transitions to different
states in the miniscule “brain” of the RadarDish. The RadarDish brain can exist in
one of four states: spawning, idle, taking damage, or dead. In the listings that follow,
you will see that the RadarDish is initialized in the spawning state when it is created,
and then through the updateStateWithDeltaTime method it will move through
the four states.

When the updateStateWithDeltaTime determines that the RadarDish needs to
change its state, the changeState method is called. Looking at Listing 4.2, you can
recap what the switch state is doing as follows:

Creating the Radar Dish and Viking Classes 87

n Spawning (kStateSpawning)

Starts up the RadarDish with the tilting animation, which is the dish moving
up and down.

n Idle (kStateIdle)

Runs the transmitting animation, which is the RadarDish blinking.
n Taking Damage (kStateTakingDamage)

Runs the taking damage animation, showing a hit to the RadarDish. The
RadarDish health is reduced according to the type of weapon being used
against it.

n Dead (kStateDead)

The RadarDish plays a death animation of it blowing up. This state occurs once
the RadarDish health is at or below zero.

The next section of the RadarDish implementation file is covered in Listing 4.3,
showing the updateStateWithDeltaTime method.

Listing 4.3 RadarDish.m implementation file (middle portion)

-(void)updateStateWithDeltaTime:(ccTime)deltaTime
andListOfGameObjects:(CCArray*)listOfGameObjects {

if (characterState == kStateDead)

return; // 1

 vikingCharacter =

 (GameCharacter*)[[self parent]

 getChildByTag:kVikingSpriteTagValue]; // 2

 CGRect vikingBoudingBox =

 [vikingCharacter adjustedBoundingBox]; // 3

 CharacterStates vikingState = [vikingCharacter

 characterState]; // 4

// Calculate if the Viking is attacking and nearby

if ((vikingState == kStateAttacking) &&

 (CGRectIntersectsRect([self adjustedBoundingBox],
vikingBoudingBox))) { // 5

if (characterState != kStateTakingDamage) {

// If RadarDish is NOT already taking Damage

 [self changeState:kStateTakingDamage];

return;

 }

 }

Chapter 4 Simple Collision Detection and the First Enemy88

if (([self numberOfRunningActions] == 0) &&

 (characterState != kStateDead)) {

 CCLOG(@"Going to Idle");

 [self changeState:kStateIdle]; // 6

return;

 }

}

Now let’s examine the numbered lines of the code:

1. Checks if the RadarDish is already dead. If it is, this method is short-circuited
and returned. If the RadarDish is dead, there is nothing to update.

2. Gets the Viking character object from the RadarDish parent. All of Space
Viking’s objects are children of the scene SpriteBatchNode, referred to here
as the parent. The Viking in particular was added to the SpriteBatchNode
with a particular tag, referred to by the constant kVikingSpriteTagValue.
By obtaining a reference to the Viking object, the RadarDish can determine
if the Viking is nearby and attacking the RadarDish. (Listing 4.3 contains the
code that sets up the kVikingSpriteTagValue constant.)

3. Gets the Viking character’s adjusted bounding box.

4. Gets the Viking character’s state.

5. Determines if the Viking is nearby and attacking. If the adjusted bounding
boxes for the Viking and the RadarDish overlap, and the Viking is in his
attack phase, the RadarDish can be certain that the Viking is attacking it. The
call to changeState:kStateTakingDamage will alter the RadarDish anima-
tion to ref lect the attack and reduce the RadarDish character’s health.

6. Resets the transmission animation on the RadarDish. If the RadarDish is not
currently playing an animation, and it is not dead, it is reset to idle so that the
transmission animation can restart.

The last part of the RadarDish.m implementation file is the longest but least com-
plicated. There is an initAnimations method, which sets up all of the RadarDish
animations, and an init method that initializes the RadarDish and sets up the
starting values for the instance variables. Add the contents of Listing 4.4 to your
RadarDish.m implementation file.

Listing 4.4 RadarDish.m implementation file (bottom portion)

-(void)initAnimations {

 [self setTiltingAnim:

 [self loadPlistForAnimationWithName:@"tiltingAnim"

andClassName:NSStringFromClass([self class])]];

Creating the Radar Dish and Viking Classes 89

 [self setTransmittingAnim:

 [self loadPlistForAnimationWithName:@"transmittingAnim"

andClassName:NSStringFromClass([self class])]];

 [self setTakingAHitAnim:

 [self loadPlistForAnimationWithName:@"takingAHitAnim"

andClassName:NSStringFromClass([self class])]];

 [self setBlowingUpAnim:

 [self loadPlistForAnimationWithName:@"blowingUpAnim"

 andClassName:NSStringFromClass([self class])]];

}

-(id) init {

if((self=[super init])) {

CCLOG(@"### RadarDish initialized");

 [self initAnimations]; // 1

 characterHealth = 100.0f; // 2

 gameObjectType = kEnemyTypeRadarDish; // 3

 [self changeState:kStateSpawning]; // 4

 }

return self;

}

@end

The initAnimations method calls the loadPlistForAnimationWithName
method you declared in the GameObject class. The name of the animation to load
is passed along with the class name. Note the convenience method NSStringFrom-
Class is used to get an NSString from the class name, in this case RadarDish. The
class name is used to find the correct plist file for the object, since the plist files have a
name corresponding to the class. The following occurs in the init method:

1. Calls the initAnimations method, which sets up all of the animations for
the RadarDish. The frame’s coordinates and textures were already loaded and
cached by Cocos2D when the texture atlas files (scene1atlas.png and scene1atlas.
plist) were loaded by the GameplayLayer class.

2. Sets the initial health of the RadarDish to a value of 100.

3. Sets the RadarDish to be a Game Object of type kEnemyTypeRadarDish.

4. Initializes the state of the RadarDish to spawning. Looking back at Listing 4.2,
you can see that this starts the tilting animation, which is followed by the trans-
mitting animation when the RadarDish moves from spawning to an idle state.

There is a little more work left before you can have this chapter’s game running
on your device. You need to add the Viking class and make some changes to the
GameplayLayer class. It is important to understand how the updateStateWith-
DeltaTime and the changeState methods in RadarDish control the state of the

Chapter 4 Simple Collision Detection and the First Enemy90

AI brain. These same two methods are used to drive the brain of all of the other game
characters, including Ole the Viking.

Creating the Viking Class
In the previous chapter, Ole the Viking was nothing more than a CCSprite. In this
chapter you pull him out into his own class complete with animations and a state
machine to transition him through his various states. If the Viking class code starts to
look daunting, refer back to the RadarDish class: the Viking is simply a game charac-
ter like the RadarDish, albeit with more functionality. Create the new Viking class
in Xcode by:

1. In Xcode, right-click on the GameObjects group.

2. Select Add > New File, choose the Cocoa Touch category under iOS and
Objective-C class as the file type, and click Next.

3. For the Subclass field, enter GameCharacter and click Next.

4. Enter Viking for the filename and click Save.

Open the Viking.h header file and change the contents to match the code in
Listing 4.5.

Listing 4.5 Viking.h header file

// Viking.h

// SpaceViking

#import <Foundation/Foundation.h>

#import "GameCharacter.h"

#import "SneakyButton.h"

#import "SneakyJoystick.h"

typedef enum {

 kLeftHook,

 kRightHook

} LastPunchType;

@interface Viking : GameCharacter {

LastPunchType myLastPunch;

BOOL isCarryingMallet;

CCSpriteFrame *standingFrame;

 // Standing, breathing, and walking

CCAnimation *breathingAnim;

CCAnimation *breathingMalletAnim;

CCAnimation *walkingAnim;

CCAnimation *walkingMalletAnim;

Creating the Viking Class 91

 // Crouching, standing up, and Jumping

CCAnimation *crouchingAnim;

CCAnimation *crouchingMalletAnim;

CCAnimation *standingUpAnim;

CCAnimation *standingUpMalletAnim;

CCAnimation *jumpingAnim;

CCAnimation *jumpingMalletAnim;

CCAnimation *afterJumpingAnim;

CCAnimation *afterJumpingMalletAnim;

 // Punching

CCAnimation *rightPunchAnim;

CCAnimation *leftPunchAnim;

CCAnimation *malletPunchAnim;

 // Taking Damage and Death

CCAnimation *phaserShockAnim;

CCAnimation *deathAnim;

SneakyJoystick *joystick;

SneakyButton *jumpButton ;

SneakyButton *attackButton;

float millisecondsStayingIdle;

}

// Standing, Breathing, Walking

@property (nonatomic, retain) CCAnimation *breathingAnim;

@property (nonatomic, retain) CCAnimation *breathingMalletAnim;

@property (nonatomic, retain) CCAnimation *walkingAnim;

@property (nonatomic, retain) CCAnimation *walkingMalletAnim;

// Crouching, Standing Up, Jumping

@property (nonatomic, retain) CCAnimation *crouchingAnim;

@property (nonatomic, retain) CCAnimation *crouchingMalletAnim;

@property (nonatomic, retain) CCAnimation *standingUpAnim;

@property (nonatomic, retain) CCAnimation *standingUpMalletAnim;

@property (nonatomic, retain) CCAnimation *jumpingAnim;

@property (nonatomic, retain) CCAnimation *jumpingMalletAnim;

@property (nonatomic, retain) CCAnimation *afterJumpingAnim;

@property (nonatomic, retain) CCAnimation *afterJumpingMalletAnim;

// Punching

@property (nonatomic, retain) CCAnimation *rightPunchAnim;

@property (nonatomic, retain) CCAnimation *leftPunchAnim;

@property (nonatomic, retain) CCAnimation *malletPunchAnim;

Chapter 4 Simple Collision Detection and the First Enemy92

// Taking Damage and Death

@property (nonatomic, retain) CCAnimation *phaserShockAnim;

@property (nonatomic, retain) CCAnimation *deathAnim;

@property (nonatomic,assign) SneakyJoystick *joystick;

@property (nonatomic,assign) SneakyButton *jumpButton;

@property (nonatomic,assign) SneakyButton *attackButton;

@end

Listing 4.5 shows the large number of animations that are possible with the Viking
character as well as instance variables to point to the onscreen joystick and button
controls.

The key items to note are the typedef enumerator for the left and right
punches, an instance variable to store what the last punch thrown was, and a float
to keep track of how long the player has been idle. The code for the Viking imple-
mentation file is a bit on the lengthy side, hence it is broken up into four Listings, 4.6
through 4.9. Open the Viking.m implementation file and replace the code so that it
matches the contents in Listings 4.6, 4.7, 4.8, and 4.9.

Listing 4.6 Viking.m implementation file (part 1 of 4)

// Viking.m

// SpaceViking

#import "Viking.h"

@implementation Viking

@synthesize joystick;

@synthesize jumpButton ;

@synthesize attackButton;

// Standing, Breathing, Walking

@synthesize breathingAnim;

@synthesize breathingMalletAnim;

@synthesize walkingAnim;

@synthesize walkingMalletAnim;

// Crouching, Standing Up, Jumping

@synthesize crouchingAnim;

@synthesize crouchingMalletAnim;

@synthesize standingUpAnim;

@synthesize standingUpMalletAnim;

@synthesize jumpingAnim;

@synthesize jumpingMalletAnim;

@synthesize afterJumpingAnim;

@synthesize afterJumpingMalletAnim;

// Punching

@synthesize rightPunchAnim;

Creating the Viking Class 93

@synthesize leftPunchAnim;

@synthesize malletPunchAnim;

// Taking Damage and Death

@synthesize phaserShockAnim;

@synthesize deathAnim;

- (void) dealloc {

joystick = nil;

jumpButton = nil;

attackButton = nil;

 [breathingAnim release];

 [breathingMalletAnim release];

 [walkingAnim release];

 [walkingMalletAnim release];

 [crouchingAnim release];

 [crouchingMalletAnim release];

 [standingUpAnim release];

 [standingUpMalletAnim release];

 [jumpingAnim release];

 [jumpingMalletAnim release];

 [afterJumpingAnim release];

 [afterJumpingMalletAnim release];

 [rightPunchAnim release];

 [leftPunchAnim release];

 [malletPunchAnim release];

 [phaserShockAnim release];

 [deathAnim release];

 [super dealloc];

}

-(BOOL)isCarryingWeapon {

return isCarryingMallet;

}

-(int)getWeaponDamage {

if (isCarryingMallet) {

return kVikingMalletDamage;

 }

return kVikingFistDamage;

}

-(void)applyJoystick:(SneakyJoystick *)aJoystick forTimeDelta:(float)
deltaTime

{

 CGPoint scaledVelocity = ccpMult(aJoystick.velocity, 128.0f);

 CGPoint oldPosition = [self position];

 CGPoint newPosition =

Chapter 4 Simple Collision Detection and the First Enemy94

 ccp(oldPosition.x +

 scaledVelocity.x * deltaTime,

 oldPosition.y); // 1

 [self setPosition:newPosition]; // 2

if (oldPosition.x > newPosition.x) {

self.flipX = YES; // 3

 } else {

self.flipX = NO;

 }

}

-(void)checkAndClampSpritePosition {

if (self.characterState != kStateJumping) {

if ([self position].y > 110.0f)

 [self setPosition:ccp([self position].x,110.0f)];

 }

 [super checkAndClampSpritePosition];

}

At the beginning of the Viking.m implementation file is the dealloc method. Far
wiser Objective-C developers than this author have commented on the benefits of
having your dealloc method up top and near your synthesize statements. The idea
behind this move is to make sure you are deallocating any and all instance variables,
therefore avoiding one of the main causes of memory leaks in Objective-C code.

Following the dealloc method, you have the isCarryingWeapon method, but
since it is self-explanatory, move on to the applyJoystick method. This method is
similar to the one back in Chapter 2, “Hello, Space Viking,” Listing 2.10, but it has
been modified to deal only with Ole’s movement and removes the handling for the
jump or attack buttons. The first change to applyJoystick is the creation of the
oldPosition variable to track the Viking’s position before it is moved. Looking at
the applyJoystick method in Listing 4.6, take a note of the following key lines:

1. Sets the new position based on the velocity of the joystick, but only in the
x-axis. The y position stays constant, making it so Ole only walks to the left or
right, and not up or down.

2. Moves the Viking to the new position.

3. Compares the old position with the new position, f lipping the Viking horizon-
tally if needed. If you look closely at the Viking images, he is facing to the right
by default. If this method determines that the old position is to the right of the
new position, Ole is moving to the left, and his pixels have to be f lipped hori-
zontally. If you don’t f lip Ole horizontally, he will look like he is trying to do
the moonwalk when you move him to the left. It is a cool effect but not useful
for your Viking.

Creating the Viking Class 95

Cocos2D has two built-in functions you will make use of frequently: flipX and
flipY. These functions f lip the pixels of a texture along the x- or y-axis, allowing
you to display a mirror image of your graphics without having to have left- and right-
facing copies of each image for each character. Figure 4.1 shows the effect of flipX
on the Viking texture. This is a really handy feature to have, since it helps reduce the
size of your application, and it keeps you from having to create images for every pos-
sible state.

Figure 4.1 Effects of the flipX function on the Viking texture or graphic

The next section of the Viking.m implementation file covers the changeState
method. As you learned with the RadarDish class, the changeState method is used
to transition the character from one state to another and to start the appropriate ani-
mations for each state. Copy the contents of Listing 4.7 into your Viking.m class.

Listing 4.7 Viking.m implementation file (part 2 of 4)

#pragma mark -

-(void)changeState:(CharacterStates)newState {

 [self stopAllActions];

id action = nil;

id movementAction = nil;

 CGPoint newPosition;

 [self setCharacterState:newState];

switch (newState) {

case kStateIdle:

if (isCarryingMallet) {

 [self setDisplayFrame:[[CCSpriteFrameCache

sharedSpriteFrameCache]

spriteFrameByName:@"sv_mallet_1.png"]];

 } else {

 [self setDisplayFrame:[[CCSpriteFrameCache

sharedSpriteFrameCache]

spriteFrameByName:@"sv_anim_1.png"]];

 }

break;

Chapter 4 Simple Collision Detection and the First Enemy96

case kStateWalking:

if (isCarryingMallet) {

 action =

 [CCAnimate actionWithAnimation:walkingMalletAnim

restoreOriginalFrame:NO];

 } else {

 action =

 [CCAnimate actionWithAnimation:walkingAnim

restoreOriginalFrame:NO];

 }

break;

case kStateCrouching:

if (isCarryingMallet) {

 action =

 [CCAnimate actionWithAnimation:crouchingMalletAnim

 restoreOriginalFrame:NO];

 } else {

 action =

 [CCAnimate actionWithAnimation:crouchingAnim

restoreOriginalFrame:NO];

 }

break;

case kStateStandingUp:

if (isCarryingMallet) {

 action =

 [CCAnimate actionWithAnimation:standingUpMalletAnim

restoreOriginalFrame:NO];

 } else {

 action =

 [CCAnimate actionWithAnimation:standingUpAnim

restoreOriginalFrame:NO];

 }

break;

case kStateBreathing:

if (isCarryingMallet) {

 action =

 [CCAnimate actionWithAnimation:breathingMalletAnim

restoreOriginalFrame:YES];

 } else {

 action =

 [CCAnimate actionWithAnimation:breathingAnim

restoreOriginalFrame:YES];

 }

break;

Creating the Viking Class 97

 case kStateJumping:

newPosition = ccp(screenSize.width * 0.2f, 0.0f);

if ([self flipX] == YES) {

 newPosition = ccp(newPosition.x * -1.0f, 0.0f);

 }

 movementAction = [CCJumpBy actionWithDuration:0.5f

position:newPosition

 height:160.0f

 jumps:1];

if (isCarryingMallet) {

// Viking Jumping animation with the Mallet

 action = [CCSequence actions:

 [CCAnimate

actionWithAnimation:crouchingMalletAnim

restoreOriginalFrame:NO],

 [CCSpawn actions:

 [CCAnimate

actionWithAnimation:jumpingMalletAnim

restoreOriginalFrame:YES],

 movementAction,

nil],

 [CCAnimate

actionWithAnimation:afterJumpingMalletAnim

 restoreOriginalFrame:NO],

nil];

 } else {

// Viking Jumping animation without the Mallet

 action = [CCSequence actions:

 [CCAnimate

actionWithAnimation:crouchingAnim

restoreOriginalFrame:NO],

 [CCSpawn actions:

 [CCAnimate

actionWithAnimation:jumpingAnim

restoreOriginalFrame:YES],

 movementAction,

nil],

 [CCAnimate

actionWithAnimation:afterJumpingAnim

restoreOriginalFrame:NO],

nil];

 }

break;

case kStateAttacking:

if (isCarryingMallet == YES) {

Chapter 4 Simple Collision Detection and the First Enemy98

 action = [CCAnimate

actionWithAnimation:malletPunchAnim

restoreOriginalFrame:YES];

 } else {

if (kLeftHook == myLastPunch) {

// Execute a right hook

myLastPunch = kRightHook;

 action = [CCAnimate

actionWithAnimation:rightPunchAnim

restoreOriginalFrame:NO];

 } else {

// Execute a left hook

myLastPunch = kLeftHook;

 action = [CCAnimate

actionWithAnimation:leftPunchAnim

restoreOriginalFrame:NO];

 }

 }

break;

case kStateTakingDamage:

self.characterHealth = self.characterHealth - 10.0f;

 action = [CCAnimate

actionWithAnimation:phaserShockAnim

restoreOriginalFrame:YES];

break;

case kStateDead:

 action = [CCAnimate

actionWithAnimation:deathAnim

restoreOriginalFrame:NO];

break;

default:

break;

 }

if (action != nil) {

 [self runAction:action];

 }

}

The first part of the changeState method stops any running actions, including
animations. Any running actions would be a part of a previous state of the Viking
and would no longer be valid. Following the first line, the Viking state is set to the
new state value, and a switch statement is used to carry out the animations for the
new state. A few items are important to note:

Creating the Viking Class 99

1. Method variables cannot be declared inside a switch statement, as they would
be out of scope as soon as the code exited the switch statement. Your id
action variable is declared above the switch statement but initialized inside
the switch branches.

2. Most of the states have two animations: one for the Viking with the Mallet
and one without. The isCarryingMallet Boolean instance variable is key in
determining which animation to play.

3. An action in Cocos2D can be made up of other actions in that it can be a com-
pound action. The switch branch taken when the Viking state is kState-
Jumping has a compound action made up of CCSequence, CCAnimate,
CCSpawn, and CCJumpBy actions. The CCJumpBy action provides the parabolic
movement for Ole the Viking, while the CCAnimate actions play the crouching,
jumping, and landing animations. The CCSpawn action allows for more than one
action to be started at the same time, in this case the CCJumpBy and CCAnimate
animation action of Ole jumping. The CCSequence action ties it all together by
making Ole crouch down, then jump, and finally land on his feet in sequence.

4. Taking a closer look at the kStateTakingDamage switch branch, you can see
that after the animation completes, Ole reverts back to the frame that was display-
ing before the animation started. In this state transition, the CCAnimate action
has the restoreOriginalFrame set to YES. The end effect of restore-
OriginalFrame is that Ole will animate receiving a hit, and then return to
looking as he did before the hit took place.

The first line of Listing 4.7 might be rather odd-looking: #pragma mark. The
pragma mark serves as a formatting guide to Xcode and is not seen by the compiler.
After the words #pragma mark you can place any text you would like displayed in
the Xcode pulldown for this file. If you have just a hyphen (-), Xcode will create a
separate section for that portion of the file. Using pragma mark can make your code
easier to navigate. Figure 4.2 shows the effects of the pragma mark statements in the
completed Viking.m file.

Figure 4.2 The effect of the pragma mark statements in the Xcode
pulldown menus

Chapter 4 Simple Collision Detection and the First Enemy100

The next section of the Viking.m file covers the updateStateWithDeltaTime
and the adjustedBoundingBox methods. Copy the contents of Listing 4.8 into your
Viking.m file immediately following the changeState method.

Listing 4.8 Viking.m implementation file (part 3 of 4)

#pragma mark -

-(void)updateStateWithDeltaTime:(ccTime)deltaTime
andListOfGameObjects:(CCArray*)listOfGameObjects {

if (self.characterState == kStateDead)

return; // Nothing to do if the Viking is dead

if ((self.characterState == kStateTakingDamage) &&

 ([self numberOfRunningActions] > 0))

return; // Currently playing the taking damage animation

// Check for collisions

// Change this to keep the object count from querying it each time

CGRect myBoundingBox = [self adjustedBoundingBox];

for (GameCharacter *character in listOfGameObjects) {

// This is Ole the Viking himself

 // No need to check collision with one's self

if ([character tag] == kVikingSpriteTagValue)

continue;

CGRect characterBox = [character adjustedBoundingBox];

if (CGRectIntersectsRect(myBoundingBox, characterBox)) {

// Remove the PhaserBullet from the scene

if ([character gameObjectType] == kEnemyTypePhaser) {

 [self changeState:kStateTakingDamage];

 [character changeState:kStateDead];

 } else if ([character gameObjectType] ==

kPowerUpTypeMallet) {

// Update the frame to indicate Viking is

 // carrying the mallet

isCarryingMallet = YES;

 [self changeState:kStateIdle];

// Remove the Mallet from the scene

 [character changeState:kStateDead];

 } else if ([character gameObjectType] ==

kPowerUpTypeHealth) {

 [self setCharacterHealth:100.0f];

// Remove the health power-up from the scene

 [character changeState:kStateDead];

 }

 }

 }

Creating the Viking Class 101

 [self checkAndClampSpritePosition];

if ((self.characterState == kStateIdle) ||

 (self.characterState == kStateWalking) ||

 (self.characterState == kStateCrouching) ||

 (self.characterState == kStateStandingUp) ||

 (self.characterState == kStateBreathing)) {

if (jumpButton.active) {

 [self changeState:kStateJumping];

 } else if (attackButton.active) {

 [self changeState:kStateAttacking];

 } else if ((joystick.velocity.x == 0.0f) &&

 (joystick.velocity.y == 0.0f)) {

if (self.characterState == kStateCrouching)

 [self changeState:kStateStandingUp];

 } else if (joystick.velocity.y < -0.45f) {

if (self.characterState != kStateCrouching)

 [self changeState:kStateCrouching];

 } else if (joystick.velocity.x != 0.0f) { // dpad moving

if (self.characterState != kStateWalking)

 [self changeState:kStateWalking];

 [self applyJoystick:joystick

forTimeDelta:deltaTime];

 }

 }

if ([self numberOfRunningActions] == 0) {

// Not playing an animation

if (self.characterHealth <= 0.0f) {

 [self changeState:kStateDead];

 } else if (self.characterState == kStateIdle) {

millisecondsStayingIdle = millisecondsStayingIdle +

 deltaTime;

if (millisecondsStayingIdle > kVikingIdleTimer) {

 [self changeState:kStateBreathing];

 }

 } else if ((self.characterState != kStateCrouching) &&

 (self.characterState != kStateIdle)){

millisecondsStayingIdle = 0.0f;

 [self changeState:kStateIdle];

 }

 }

}

#pragma mark -

-(CGRect)adjustedBoundingBox {

// Adjust the bouding box to the size of the sprite

// without the transparent space

Chapter 4 Simple Collision Detection and the First Enemy102

CGRect vikingBoundingBox = [self boundingBox];

float xOffset;

float xCropAmount = vikingBoundingBox.size.width * 0.5482f;

float yCropAmount = vikingBoundingBox.size.height * 0.095f;

if ([self flipX] == NO) {

// Viking is facing to the rigth, back is on the left

 xOffset = vikingBoundingBox.size.width * 0.1566f;

 } else {

// Viking is facing to the left; back is facing right

 xOffset = vikingBoundingBox.size.width * 0.4217f;

 }

 vikingBoundingBox =

CGRectMake(vikingBoundingBox.origin.x + xOffset,

 vikingBoundingBox.origin.y,

 vikingBoundingBox.size.width - xCropAmount,

 vikingBoundingBox.size.height - yCropAmount);

if (characterState == kStateCrouching) {

// Shrink the bounding box to 56% of height

// 88 pixels on top on iPad

 vikingBoundingBox = CGRectMake(vikingBoundingBox.origin.x,

 vikingBoundingBox.origin.y,

 vikingBoundingBox.size.width,

 vikingBoundingBox.size.height * 0.56f);

 }

return vikingBoundingBox;

}

In the same manner as the RadarDish updateStateWithDeltaMethod worked,
this method also returns immediately if the Viking is dead. There is no need to
update a dead Viking because he won’t be going anywhere.

If the Viking is in the middle of playing, the taking damage animation is played.
This method again short-circuits and returns. The taking damage animation is block-
ing in that the player cannot do anything else while Ole the Viking is being shocked.

If the Viking is not taking damage or is dead, then the next step is to check what
objects are coming in contact with the Viking. If there are objects in contact with the
Viking, he checks to see if they are:

n Phaser: Changes the Viking state to taking damage.
n Mallet power-up: Gives Ole the Viking the mallet, a fearsome weapon.
n Health power-up: Ole’s health is restored back to 100.

After checking for contacts, often called collisions, a quick call is made to the
checkAndClampSpritePosition method to ensure that the Viking sprite stays
within the boundaries of the screen.

Creating the Viking Class 103

The next if statement block checks the state of the joystick, jump, and attack but-
tons and changes the state of the Viking to ref lect which controls are being pressed.
The if statement executes only if the Viking is not currently carrying out a blocking
animation, such as jumping.

Lastly the Viking class reaches a section of the updateStateWithDeltaTime
method that handles what happens when there are no animations currently running.
Cocos2D has a convenience method on CCNodes that reports back the number of
actions running against a particular CCNode object. If you recall from the beginning
of this chapter, all animations have to be run by a CCAnimate action. Once the ani-
mation for a state completes, the numberOfRunningActions will return zero for the
Viking, and this block of code will reset the Viking’s state.

If the health is zero or less, the Viking will move into the dead state. Otherwise, if
Viking is idle, a counter is incremented indicating how many seconds the player has
been idle. Once that counter reaches a set limit, the Viking will play a heavy breath-
ing animation. Finally, if the Viking is not already idle or crouching, he will move
back into the idle state.

Note
The breathing animation is just a little bonus move to try to get the player to focus back
on the game. If the joystick has been idle for more than 3 seconds, the Viking will let
out a few deep breaths as if to say “Come on! I have aliens to fight here, let’s get going!”

After the updateStateWithDeltaTime method, there is the adjustedBounding-
Box method you declared inside the GameObject class. In Chapter 3, “Introduction
to Cocos2D Animations and Actions,” Figure 3.6 illustrated the transparent space in
the Viking texture between the actual Viking and the edges of the image/texture.
This method compensates for the transparent pixels by returning an adjusted bound-
ing box that does not include the transparent pixels. The flipX parameter is used to
determine which side the Viking is facing, as fewer pixels are trimmed off the back of
the Viking image than the front.

The last part of the Viking.m implementation file sets up the animations inside the
initAnimations method and the instance variables inside the init method. Once
more, copy the contents of Listing 4.9 into your Viking.m implementation file immedi-
ately following the end of the adjustedBoundingBox method.

Listing 4.9 Viking.m implementation file (part 4 of 4)

#pragma mark -

-(void)initAnimations {

 [self setBreathingAnim:[self loadPlistForAnimationWithName:
@"breathingAnim" andClassName:NSStringFromClass([self class])]];

 [self setBreathingMalletAnim:[self loadPlistForAnimationWithName:
@"breathingMalletAnim" andClassName:NSStringFromClass([self class])]];

Chapter 4 Simple Collision Detection and the First Enemy104

 [self setWalkingAnim:[self loadPlistForAnimationWithName:
@"walkingAnim" andClassName:NSStringFromClass([self class])]];

 [self setWalkingMalletAnim:[self loadPlistForAnimationWithName:
@"walkingMalletAnim" andClassName:NSStringFromClass([self class])]];

 [self setCrouchingAnim:[self loadPlistForAnimationWithName:
@"crouchingAnim" andClassName:NSStringFromClass([self class])]];

 [self setCrouchingMalletAnim:[self loadPlistForAnimationWithName:
@"crouchingMalletAnim" andClassName:NSStringFromClass([self class])]];

 [self setStandingUpAnim:[self loadPlistForAnimationWithName:
@"standingUpAnim" andClassName:NSStringFromClass([self class])]];

 [self setStandingUpMalletAnim:[self loadPlistForAnimationWithName:
@"standingUpMalletAnim" andClassName:NSStringFromClass([self class])]];

 [self setJumpingAnim:[self loadPlistForAnimationWithName:
@"jumpingAnim" andClassName:NSStringFromClass([self class])]];

 [self setJumpingMalletAnim:[self loadPlistForAnimationWithName:
@"jumpingMalletAnim" andClassName:NSStringFromClass([self class])]];

 [self setAfterJumpingAnim:[self loadPlistForAnimationWithName:
@"afterJumpingAnim" andClassName:NSStringFromClass([self class])]];

 [self setAfterJumpingMalletAnim:[self loadPlistForAnimationWithName:
@"afterJumpingMalletAnim" andClassName:NSStringFromClass([self class])]];

// Punches

 [self setRightPunchAnim:[self loadPlistForAnimationWithName:
@"rightPunchAnim" andClassName:NSStringFromClass([self class])]];

 [self setLeftPunchAnim:[self loadPlistForAnimationWithName:
@"leftPunchAnim" andClassName:NSStringFromClass([self class])]];

 [self setMalletPunchAnim:[self loadPlistForAnimationWithName:
@"malletPunchAnim" andClassName:NSStringFromClass([self class])]];

// Taking Damage and Death

 [self setPhaserShockAnim:[self loadPlistForAnimationWithName:
@"phaserShockAnim" andClassName:NSStringFromClass([self class])]];

 [self setDeathAnim:[self loadPlistForAnimationWithName:
@"vikingDeathAnim" andClassName:NSStringFromClass([self class])]];

}

Final Steps 105

#pragma mark -

-(id) init {

if((self=[super init])) {

joystick = nil;

jumpButton = nil;

attackButton = nil;

 self.gameObjectType = kVikingType;

myLastPunch = kRightHook;

millisecondsStayingIdle = 0.0f;

isCarryingMallet = NO;

 [self initAnimations];

 }

return self;

}

@end

The initAnimation method, while quite long, is very basic in that it only initial-
izes all of the Viking animations based on the display frames already loaded from the
scene1atlas.plist file in the GameplayLayer class. The init method sets up the instance
variables to their starting values.

Final Steps
The final step for this chapter is to make some changes to the GameplayLayer class
so it loads the RadarDish and Viking onto the layer. Once these changes are made
to the GameplayLayer files, you will have a working and playable version of Space
Viking in your hands.

The GameplayLayer Class
The GameplayLayer class has a few changes to the header file. There is an additional
import for the CommonProtocols.h file and the vikingSprite has been removed;
instead there is a CCSpriteBatchNode called sceneSpriteBatchNode. Move your
GameplayLayer.h and GameplayLayer.m files into the Layers Group folder in Xcode and
ensure that your GameplayLayer.h header file has the same contents as Listing 4.10.

Listing 4.10 GameplayLayer.h header file

// GameplayLayer.h

// SpaceViking

#import <Foundation/Foundation.h>

#import "cocos2d.h"

#import "SneakyJoystick.h"

Chapter 4 Simple Collision Detection and the First Enemy106

#import "SneakyButton.h"

#import "SneakyButtonSkinnedBase.h"

#import "SneakyJoystickSkinnedBase.h"

#import "Constants.h"

#import "CommonProtocols.h"

#import "RadarDish.h"

#import "Viking.h"

@interface GameplayLayer : CCLayer <GameplayLayerDelegate> {

CCSprite *vikingSprite;

SneakyJoystick *leftJoystick;

SneakyButton *jumpButton;

SneakyButton *attackButton;

 CCSpriteBatchNode *sceneSpriteBatchNode;

}

@end

The initJoystickAndButtons method of GameplayLayer stays the same as
in Chapter 3. The rest of the GameplayLayer class requires changes to use the new
CCSpriteBatchNode instance. Listings 4.11, 4.12, 4.13, and 4.14 cover the code for
GameplayLayer.m. Replace the code in your GameplayLayer.m implementation file with
the code in the next four listings.

Listing 4.11 GameplayLayer.m implementation file (part 1 of 4)

// GameplayLayer.m

// SpaceViking

#import "GameplayLayer.h"

@implementation GameplayLayer

- (void) dealloc {

 [leftJoystick release];

 [jumpButton release];

 [attackButton release];

 [super dealloc];

}

-(void)initJoystickAndButtons {

CGSize screenSize = [CCDirector sharedDirector].winSize; // 1

 // 2

CGRect joystickBaseDimensions = CGRectMake(0, 0, 128.0f, 128.0f);

CGRect jumpButtonDimensions = CGRectMake(0, 0, 64.0f, 64.0f);

CGRect attackButtonDimensions = CGRectMake(0, 0, 64.0f, 64.0f);

 // 3

CGPoint joystickBasePosition;

Final Steps 107

CGPoint jumpButtonPosition;

CGPoint attackButtonPosition;

 // 4

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 // The device is an iPad running iPhone 3.2 or later.

CCLOG(@"Positioning Joystick and Buttons for iPad");

 joystickBasePosition = ccp(screenSize.width*0.0625f,

 screenSize.height*0.052f);

 jumpButtonPosition = ccp(screenSize.width*0.946f,

 screenSize.height*0.052f);

 attackButtonPosition = ccp(screenSize.width*0.947f,

 screenSize.height*0.169f);

 } else {

 // The device is an iPhone or iPod touch.

CCLOG(@"Positioning Joystick and Buttons for iPhone");

 joystickBasePosition = ccp(screenSize.width*0.07f,

 screenSize.height*0.11f);

 jumpButtonPosition = ccp(screenSize.width*0.93f,

 screenSize.height*0.11f);

 attackButtonPosition = ccp(screenSize.width*0.93f,

 screenSize.height*0.35f);

 }

SneakyJoystickSkinnedBase *joystickBase =

 [[[SneakyJoystickSkinnedBase alloc] init] autorelease];

 joystickBase.position = joystickBasePosition;

 joystickBase.backgroundSprite =

 [CCSprite spriteWithFile:@"dpadDown.png"];

 joystickBase.thumbSprite =

 [CCSprite spriteWithFile:@"joystickDown.png"];

 joystickBase.joystick = [[SneakyJoystick alloc]

initWithRect:joystickBaseDimensions];

leftJoystick = [joystickBase.joystick retain];

 [self addChild:joystickBase];

SneakyButtonSkinnedBase *jumpButtonBase =

 [[[SneakyButtonSkinnedBase alloc] init] autorelease];

 jumpButtonBase.position = jumpButtonPosition;

 jumpButtonBase.defaultSprite =

 [CCSprite spriteWithFile:@"jumpUp.png"];

 jumpButtonBase.activatedSprite =

 [CCSprite spriteWithFile:@"jumpDown.png"];

Chapter 4 Simple Collision Detection and the First Enemy108

 jumpButtonBase.pressSprite =

 [CCSprite spriteWithFile:@"jumpDown.png"];

 jumpButtonBase.button = [[SneakyButton alloc]

initWithRect:jumpButtonDimensions];

jumpButton = [jumpButtonBase.button retain];

jumpButton.isToggleable = NO;

 [self addChild:jumpButtonBase];

SneakyButtonSkinnedBase *attackButtonBase = [[[SneakyButtonSkinnedBase
alloc] init] autorelease];

 attackButtonBase.position = attackButtonPosition;

 attackButtonBase.defaultSprite = [CCSprite spriteWithFile:
@"handUp.png"];

 attackButtonBase.activatedSprite = [CCSprite
spriteWithFile:@"handDown.png"];

 attackButtonBase.pressSprite = [CCSprite spriteWithFile:
@"handDown.png"];

 attackButtonBase.button = [[SneakyButton alloc] initWithRect:
attackButtonDimensions];

attackButton = [attackButtonBase.button retain];

attackButton.isToggleable = NO;

 [self addChild:attackButtonBase];

}

The initJoystick method remains unchanged from previous chapters. The
directional pad (DPad) as well as the jump and attack buttons are set up and added to
the GameplayLayer. The high z values ensure that the joystick controls appear on
top of all the other graphical elements in the GameplayLayer.

Listing 4.12 GameplayLayer.m implementation file (part 2 of 4)

#pragma mark –

#pragma mark Update Method

-(void) update:(ccTime)deltaTime {

CCArray *listOfGameObjects =

 [sceneSpriteBatchNode children]; // 1

for (GameCharacter *tempChar in listOfGameObjects) { // 2

 [tempChar updateStateWithDeltaTime:deltaTime andListOfGameObjects:
 listOfGameObjects]; // 3

 }

}

The update method is the run loop for the entire GameplayLayer. The
CCSpriteBatchNode object contains a list of all of the CCSprites for which it will
handle the rendering, batching their OpenGL ES draw calls. The update method
does the following:

Final Steps 109

1. Gets the list of all of the children CCSprites rendered by the CCSpriteBatch-
Node. In Space Viking this is a list of all of the GameCharacters, including the
Viking and his enemies.

2. Iterates through each of the Game Characters, calls their updateStateWith-
DeltaTime method, and passes a pointer to the list of all Game Characters. If
you look back at the updateStateWithDeltaTime code in Viking.m, you can
see the list of Game Characters used to check for power-ups and phaser blasts.
Power-ups and aliens with phaser beams are covered in the next chapter.

3. Calls the updateStateWithDeltaTime method on each of the Game
Characters. This call allows for all of the characters to update their individual
states to determine if they are colliding with any other objects in the game.

The next section of code in GameplayLayer.m (Listing 4.13) contains the methods
for creating the enemies and a placeholder for creating the phaser blast.

Listing 4.13 GameplayLayer.m implementation file (part 3 of 4)

#pragma mark -

-(void)createObjectOfType:(GameObjectType)objectType

 withHealth:(int)initialHealth

 atLocation:(CGPoint)spawnLocation

 withZValue:(int)ZValue {

if (objectType == kEnemyTypeRadarDish) {

CCLOG(@"Creating the Radar Enemy");

RadarDish *radarDish = [[RadarDish alloc] initWithSpriteFrameName:
@"radar_1.png"];

 [radarDish setCharacterHealth:initialHealth];

 [radarDish setPosition:spawnLocation];

 [sceneSpriteBatchNode addChild:radarDish

z:ZValue

tag:kRadarDishTagValue];

 [radarDish release];

 }

}

-(void)createPhaserWithDirection:(PhaserDirection)phaserDirection
andPosition:(CGPoint)spawnPosition {

CCLOG(@"Placeholder for Chapter 5, see below");

return;

}

The createObjectOfType method sets up the RadarDish object using the
CCSpriteBatchNode and adds it to the layer. This method is expanded upon in

Chapter 4 Simple Collision Detection and the First Enemy110

Chapter 5, “More Actions, Effects, and Cocos2D Scheduler,” to include the other
enemies in the Space Viking world.

The last code listing for GameplayLayer.m covers the init method. Copy the con-
tents of Listing 4.14 into your GameplayLayer.m file.

Listing 4.14 GameplayLayer.m implementation file (part 4 of 4)

-(id)init {

self = [super init];

if (self != nil) {

CGSize screenSize = [CCDirector sharedDirector].winSize;

// enable touches

self.isTouchEnabled = YES;

srandom(time(NULL)); // Seeds the random number generator

 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 [[CCSpriteFrameCache sharedSpriteFrameCache]

addSpriteFramesWithFile:@"scene1atlas.plist"]; // 1

sceneSpriteBatchNode =

 [CCSpriteBatchNode batchNodeWithFile:@"scene1atlas.png"]; // 2

 } else {

 [[CCSpriteFrameCache sharedSpriteFrameCache]

 addSpriteFramesWithFile:@"scene1atlasiPhone.plist"]; // 1

 sceneSpriteBatchNode =

 [CCSpriteBatchNode

batchNodeWithFile:@"scene1atlasiPhone.png"]; // 2

 }

 [self addChild:sceneSpriteBatchNode z:0]; // 3

 [self initJoystickAndButtons]; // 4

Viking *viking = [[Viking alloc]

initWithSpriteFrame:[[CCSpriteFrameCache

sharedSpriteFrameCache]

spriteFrameByName:@"sv_anim_1.png"]]; // 5

 [viking setJoystick:leftJoystick];

 [viking setJumpButton:jumpButton];

 [viking setAttackButton:attackButton];

 [viking setPosition:ccp(screenSize.width * 0.35f,

 screenSize.height * 0.14f)];

 [viking setCharacterHealth:100];

 [sceneSpriteBatchNode

addChild:viking

 z:kVikingSpriteZValue

tag:kVikingSpriteTagValue]; // 6

Final Steps 111

 [self createObjectOfType:kEnemyTypeRadarDish

withHealth:100

 atLocation:ccp(screenSize.width * 0.878f,

 screenSize.height * 0.13f)

withZValue:10]; // 7

 [self scheduleUpdate]; // 8

 }

return self;

}

@end

Some key lines have been added since Chapter 2; they support the use of the
CCSpriteBatchNode class and texture atlas:

1. Adds all of the frame dimensions specified in scene1atlas.plist to the Cocos2D
Sprite Frame Cache. This will allow any CCSprite to be created by referencing
one of the frames/images in the texture atlas. This line is also key in loading up
the animations, since they reference spriteFrames loaded by the CCSprite-
FrameCache here.

2. Initializes the CCSpriteBatchNode with the texture atlas image. The image
scene1atlas.png becomes the master texture used by all of the CCSprites under
the CCSpriteBatchNode. In Space Viking these are all of the GameObjects in
the game, from the Viking to the Mallet power-up and the enemies.

3. Adds the CCSpriteBatchNode to the layer so it and all of its children (the
GameObjects) are rendered onscreen.

4. Initializes the Joystick DPad and buttons.

5. Creates the Viking character using the already cached sprite frame of the
Viking standing.

6. Adds the Viking to the CCSpriteBatchNode. The CCSpriteBatchNode
does all of the rendering for the GameObjects. Therefore, the objects have
to be added to the CCSpriteBatchNode and not to the layer. It is important
to remember that the objects drawn from the texture atlas are added to the
CCSpriteBatchNode and only the CCSpriteBatchNode is added to the
CCLayer.

7. Adds the RadarDish to the CCSpriteBatchNode. The RadarDish health is
set to 100 and the location as 87% of the screen width to the right (900 pixels
from the left of the screen on the iPad) and 13% of the screen height (100 pixels
from the bottom).

The percentages are used instead of hard point values so that the same game will
work on the iPhone, iPhone 4, and iPad. Although the screen width and height

Chapter 4 Simple Collision Detection and the First Enemy112

ratios between the iPhones and iPad are a little different, they are close enough
to work for the placement of objects in Space Viking.

8. Sets up a scheduler call that will fire the update method in GameplayLayer.m on
every frame.

Now that you have added code to handle the RadarDish, the Viking, and the
texture atlas, it is time to test out Space Viking. If you select Run from Xcode, you
should see the Space Viking game in the iPad Simulator, as shown in Figure 4.3.

Figure 4.3 Space Viking with the RadarDish in place

Summary
If you made it through, great work—you’ve gotten a simple Cocos2D game working,
and you’ve learned a lot in the process! You learned about texture atlases, actions, and
animations. You utilized the texture atlas you created in the previous chapter to ren-
der all of the GameObjects in Space Viking. You created the enemy RadarDish and
gave Ole the power to go over there and destroy it to bits. In the process you learned
how to implement a simple state machine brain (AI) for the RadarDish and for the
Viking. You have also set up the groundwork for Space Viking to have multiple ene-
mies onscreen at once, each with its own AI state machines. The CCArray of objects
you pass in GameplayLayer to each character on the updateStateWithDeltaTime

Challenges 113

call will allow for the enemy objects to send messages to each other and even coordi-
nate attacks against the Viking.

Since you just wrote so much code, you might want to take a few moments
to examine the code in more detail and make sure you understand how it all fits
together. It’s important to make sure you understand how things work so far, since
you’ll be building more on top of what you’ve built here in the rest of the chapters.

In the next chapter, you will dive deeper into Cocos2D actions, learn to use some
of the built-in effects, and add more enemies to Space Viking. When you are ready,
turn the page and learn how to add a mean alien robot that shoots phaser beams.

Challenges
1. Try changing the RadarDish animation delay on the takingAHitAnim to

1.0f seconds instead of 0.2f in the RadarDish.plist file. What happens when you
click Run and Ole attacks the RadarDish?

2. How would you add another instance of the RadarDish on the left side of the
screen facing in the opposite direction?

Hint
You can use the CCFlipX action to flip the RadarDish pixels horizontally.

3. How would you detect when the RadarDish object is destroyed and alert the
player that the level is complete?

Hint
You can extract the RadarDish object from the sceneSpriteBatchNode by using
the unique tag assigned to the RadarDish.

This page intentionally left blank

Index

Symbols and Numbers
? (Ternary operator), 134–135
3D

2D vs., xxv
extensions to Cocos2D, 567
z values in, 33

A
AABB (axis-aligned bounding boxes)

avoiding object overlap, 77
searching for objects in Box2D world,

305–307
Accelerometer

cart movement example, 355–358
commenting out, 319
enabling support for, 302–303
implementing movement in Box2D, 281
implementing movement in Chipmunk,

451, 454–455
Accounts

iOS Developer Program account, 497–498
iPhone Developer account, 20
Sandbox accounts, 514

Achievements
adding to iTunes Connect, 515–517
displaying within apps, 534–536
GameState class and, 519–521
helper function for sending achievement

data, 524–530
helper functions for loading/saving

achievement data, 522–524
how they work, 517–518
implementing, 518
overview of, 515
using GameState and GCHelper classes

in Space Viking, 530–534
Action layer, getting started with Chipmunk,

423–425

Actions. See also Animation (CCAnimation)
CCMoves and CCScale actions in Space

Cargo ship, 123
compound, 99
effects packaged as, 145
GameplayLayer class and, 127
key features in Cocos 2D, xxiii
numberOfRunningActions method, 135
overview of, 66–67
space cargo ship and, 125

addChild method, CCParallaxNode,
251–252

addEnemy method, 143–144
addScrollingBackground method, 245
addScrollingBackgroundWithParallax

method, 250–252
addScrollingBackground-

withTileMapInsideParallax

method, 272–275
adjustedBoundingBox method

enemy robot, 137
Ole the Viking, 100–103

adjustLayer method, 245–247
AI (artif icial intelligence)

design basics, 65
game logic and, 63

Anchor points
for Game Start banner, 153–154
overview of, 153
for rotation and other effects, 154

Android, Coscos2D-Android, 567
Angular impulses, Box2D

controlling f lipping of cart, 368–369
overview of, 368

Animation (CCAnimate)
actions and, 66
approaches to animation, 57
creating actions, 58
delays between frames and frame list, 61

Index572

Animation (CCAnimation)
actions and, 66–67
animating sprites generally, 57–60
animating sprites rendered by

CCSpriteBatchNode, 60–61
caching, 62
delays between frames and frame list, 61
frame rate in, 61
overview of, 57
storing animation data in plist f iles, 61,

67–69
Animation, generally

adding background animation that inter-
acts with game, 122

of breathing, 103
changeState method for starting, 95–98
helper methods for, 411
initiating for RadarDish class, 88–89
initiating for Viking class, 103–105
of Ole the Viking in Chipmunk, 469–473
repeating, 67, 120

App ID, creating, 498–501
App Store, 497
Application Delegate (AppDelegate)

ApplicationDidFinishLaunching

method, 14–15
commanding director to run game scene,

34–35
in HelloWorld app, 15–18

ApplicationDidFinishLaunching

method, AppDelegate class, 14–15
applyJoystick method, Viking class, 94
Apps

creating App ID, 498–501
displaying achievements in, 534–536
enabling support in Game Center,

505–506
registering in iTunes Connect, 501–505

Arbiters, collision events and, 446
ARCH_OPTIMAL_PARTICLE_SYSTEM,

482
artificial intelligence (AI)

design basics, 65
game logic and, 63

Assignment operator, combining if state-
ment with, 134–135

Attack buttons, added to GameplayLayer
class, 108

Attack phase, RadarDish class and Viking
class and, 88

Attack state, enemy robot and, 132–133
Audio

adding audio files, 198
additions to game manager header and

implementation files, 204–205
audio constants, 198–201
CocosDenshion sound engine, 197–198
getting list of sound effects, 208–211
initAudioAsync method, 206–207
initializing audio manager (CDAudio-

Manager), 207–208
loading asynchronously, 203–204
loading sound effects, 211–213
loading synchronously, 201–203
loading/unloading audio files, 214–215
music added to GameplayLayer, 228
music added to MainMenu, 228–229
music and sound effects in Chipmunk,

473–474
playbackgroundTrack, stopSound-

Effect, and playSoundEffect
methods, 213–214

setting up audio engine, 205–206
SimpleAudioEngine, 229–230
sound engine in Cocos2D, xxiv
sounds added to EnemyRobot, 219–222
sounds added to game objects, 215–216
sounds added to Ole the Viking, 222–228
sounds added to RadarDish, 216–217
sounds added to SpaceCargoShip,

217–219
Audio constants, 198–201
Audio engines

setting up, 205–206
SimpleAudioEngine, 229–230

Audio files
adding to Space Viking project, 198
loading/unloading, 214–215

Authentication
notification of changes to authentication

status, 508–514
of players in Game Center, 507–508

Index 573

AVAudioPlay, audio framework for iOS
devices, 197

Axis-aligned bounding boxes (AABB)
avoiding object overlap, 77
searching for objects in Box2D world,

305–307

B
Background color, Particle Designer controls,

487
Background layer

adding background music in Chipmunk,
473–474

adding in Chipmunk, 474–476
addScrollingBackground method,

245
connecting background and game layers

to a scene, 31–32
creating for Space Viking project, 26–29
creating wave action in, 146–148
splitting into static and scrolling layers,

237–239
Background threads

adding audio asynchronously in, 201
managing, 204

begin events, collision-related events in
Chipmunk, 445, 448–449

Bind calls, OpenGL ES, 45, 48
Bit depth, performance tips and, 551
Bitmapped fonts, 155, 179
Bodies, Box2D

createBodyAtLocation method, 338
creating, 292–295
creating drill sensor for Digger Robot,

401–402
creating for Ole and connecting with

joints, 376
creating ground body in PuzzleLayer,

299–302
creating multiple bodies and joints,

378–380
decorating, 313–320
good and bad ways for placing, 379–380
setLinearVelocity method, 415

Bodies, Chipmunk
adding, 420
adding box to Chipmunk space, 431–433

constraints acting on, 457–458
creating revolving platform, 459–460
directly setting velocity, 444

Bottlenecks, finding, 557–558
Bounding boxes

for avoiding object overlap, 77
EyesightBoundingBox method, for

enemy robot, 129
Box2D

bodies. See bodies, Box2D
Chipmunk compared with, 420–421
source code, 18
template, 7

Box2D, advanced physics
adding dangerous methods to Digger,

405–411
bridges in, 386–389
creating cinematic fight sequence,

411–416
creating multiple bodies and joints,

378–380
joints in, 376
Ole leaping with ragdoll effect, 381–386
overview of, 375
pitting Ole against Digger in fight,

396–405
prismatic joints, 378
restricting revolute joints, 376–377
spike obstacle in, 390–394
summary and challenges, 417
variable and fixed rate timestamps in,

394–396
Box2D, basic physics

adding files to project, 284–288
creating ground body in PuzzleLayer,

299–302
creating new scene in PuzzleLayer,

282–284
creating objects, 292–295
creating world, 289–292
debug drawing, 295–296
decorating using sprites, 313–320
dragging objects, 304–309
getting started with, 279–281
interaction and decoration in, 302–304
mass, density, friction, and restitution in,

309–313
overview of, 279

Index574

Box2D, basic physics (continued)
puzzle game example, 320–324
ramping up puzzle game, 324–332
units in, 288–289
viewing PuzzleLayer, 296–298

Box2D, intermediate physics
adding resource files, 334–335
adding wheels to cart using revolute

joints, 352–355
controlling f lipping of cart, 368–369
creating cart scene for, 335–346
creating custom shapes, 346–348
forces and impulses, 368
getting started with, 334
making cart jump, 369–373
making cart move using accelerometer,

355–358
making cart scene scrollable, 358–368
overview of, 333
responsive direction switching, 373–374
Vertex Helper, 348–352

Box2DSprite class, subclasses for Digger
Robot, 398

Bridges, creating in Box2D, 386–389
Build (z-B), testing build of Space Viking, 33
Buttons

adding to Space Viking, 36–40
connecting button controls to Ole the

Viking, 245

C
C++, Box2D written in, 280, 420
C language, Chipmunk written in, 420
Caching

animations, 62, 411
textures, 17

Callback functions, collision detection and,
446

Cargo ship. See Space cargo ship
Cart

adding wheels using revolute joints,
352–355

controlling f lipping, 368–369
creating cart scene, 335–346
creating custom shapes, 346–348
header and implementation files, 337–338

making cart jump, 369–373
making cart scene scrollable, 358–368
moving using accelerometer, 355–358

categoryBits, setting object categories,
381–382

CCAnimate. See Animation (CCAnimate)
CCAnimation. See Animation

(CCAnimation)
CCAnimationCache, 62, 411
CCCallFunc action, 132–133
CCDirector. See Director (CCDirector)
CCFollow action, 249
CCJumpBy action, 66
CCLabel class. See Labels (CCLabel)
CCLabelIBMFont class

overview of, 155
using, 159

CCLabelTTF class
adding Game Start banner, 152–153
anchor points for Game Start banner,

153–154
fonts, 155
overview of, 151

CCLayer class. See Layers (CCLayer)
CCLOG macro, for NSLOG method, 41
CCMenu class. See also Menus, 179
CCMenuAtlasFont, 179
CCMenuItemFont, 180
CCMenuItemImage, 180
CCMenuItemLabel, 180
CCMenuItemSprite, 180
CCMenuItemToggle, 180
CCMoves action, 123
CCNode class. See Nodes (CCNode)
ccp macro, shortcut to CGPointMake

method, 20
CCParallaxNode

addChild method, 251–252
adding TileMap to, 272–275
addScrollingBackgroundWithParal-

lax method, 250–251
CCParticleSystemPoint, 481–482
CCParticleSystemQuad, 482
CCRepeat, 120
CCRepeatForever, 67, 120
CCScale action, 123
CCScenes. See Scenes (CCScenes)

Index 575

CCSequence, 67
CCSpawn, 67
CCSprite (Sprites). See Sprites (CCSprite)
CCSpriteBatchNode

animating sprites rendered by, 60–61
GameplayLayer class and, 111
performance benefits of, 255, 545–550
testing use in game layer, 52–53
using texture atlases and, 44–45

CCSpriteFrame, 60
CCSpriteSheet, 134–135
CCTMXTiledMap, 271
ccTouchBegan method, 304–308, 344
ccTouchEnded method, 344
ccTouchesBegan method, 262
ccTouchMoved method, 308–309, 344
CCWaves action, creating wave action in

background, 146–148
CDAudioManager, initializing, 207–208
CGSize, 232–233
changeState method

enemy robot, 129–133
Ole the Viking, 95–98
radar dish, 85–86

Characters. See Game characters
(GameCharacter)

checkAndClampSpritePosition method
ensuring enemy robot remains within

screen boundaries, 134
ensuring Viking sprite remains within

screen boundaries, 102
gameCharacter class and, 233–234

Chipmunk
adding backgrounds, 474–476
adding music and sound effects, 473–474
adding sprites, 438–444
adding to Xcode project, 426–429
adding win/lose conditions, 476–477
animating Ole, 469–473
Box2D compared with, 420–421
collision detection in, 445–450
constraints in, 455–458
creating a scene, 430–438
following Ole, 467–468
getting started with, 421–426
implementing velocity of sprite, 444
initializing, 429–430

laying out platforms, 468–469
movement and jumping, 450–455
overview of, 419–420
pivot, spring, and normal platforms in,

460–466
revolving platform in, 458–460
summary and challenges, 477
surface velocity for ground movement,

445
template, 7
viewing source code, 18

Cinematic fight sequence, creating, 411–416
Classes

converting objects into, 63
creating for Space Viking project, 24–26
creating GameCharacter class, 80–82
creating GameObject class, 74–80
of game objects, 64–65
grouping as organization technique, 70
importing joystick class for Space Viking,

35–36
loose coupling, 117–118
principal classes in Cocos2D, 569–570

Cocos2D-Android, 567
Cocos2D Application template, 7, 284
Cocos2D Box2D Application template, 284
Cocos2D Director. See Director

(CCDirector)
Cocos2D, introduction to

important concept, xiv–xxv
key features, xxiii–xiv
what it is, xxii
why you should use it, xxii–xxiii

Cocos2D-JavaScript, 568
Cocos2D-X, 567–568
CocosDenshion

importing SimpleAudioEngine, 205
initializing audio manager (CDAudioMan-

ager), 207–208
loading audio asynchronously, 203–204
loading sound effects, 211–213
sound engine, 197–198
viewing source code, 18

Collision filters, Box2D, 381–382
Collisions

checking for, 102
comparing Box2D with Chipmunk, 421

Index576

Collisions (continued)
detecting in Chipmunk, 445–450
Digger Robot and, 408
optimizing collision detection in Chip-

munk, 431
Common protocols. See Protocols
Compression formats, 43
Constants

audio, 198–201
for static values used in more than one

class, 71–72
Constraints, in Chipmunk

compared with joints, 420–421
creating pivot platforms and, 462
creating spring platforms and, 463–464
steps in use of, 456–458
types of, 455–456

ControlLayer, connecting joystick and but-
ton controls to Viking, 245

Coordinate systems, converting UIKIT to/
from OpenGL ES, 29

cpArbiter, collision events and, 446
cpPolyShapeNew, 448
CPRevolvePlatform, subclass for revolving

platform, 458–460
CPSprite (Sprites). See Sprites (CPSprite)
CPU utilization, Time Profiler capturing

data related to, 558–560
CPViking, animating Ole in Chipmunk,

469–473
createBodyAtLocation method, Box2D,

338
createCartAtLocation method, Box2D,

344
createCloud method, platformScroll-

ingLayer class, 257–258
createGround method, carts, 344
createObjectType method, adding

objects to gameplayLayer class,
141–142

createPhaserWithDirection method,
142–143

createStaticBackground method, in
platformScrollingLayer, 257

createVikingAndPlatform method, in
platformScrollingLayer, 261–262

createWheelWithSprite, 354

Credits
scene types and, 170
setting up menus, 190

Ctrl-z-D (Jump to Definition), for viewing
source code, 18–19

Cut-scene
creating group for, 252–253
creating scrolling layer in, 254–262

D
Damage taking state

(kStateTakingDamage)
Digger Robot and, 407–408
for enemy robot, 133
spike obstacle and, 391–392
taking a hit and being restored to previ-

ous state, 99
Damped rotary spring

constraints in Chipmunk, 457
creating pivot platform, 462

Damped spring
constraints in Chipmunk, 457
creating spring platform, 463

Database, loading/saving achievement data to
GCDatabase, 522–524

Dead state (kStateDead)
for enemy robot, 133
health at zero level, 103
state transition in RadarDish class, 87

dealloc method, Viking class, 94
Debug draw

in Box2D, 295–296
in Chipmunk, 434–436

Debugging, creating debug label, 160–165
Decoration, Box2D, 302–304
#define statement

setting object categories, 382
setting up audio filenames as, 199–200

Delegate classes, 118
deltaTime, scheduler and, 145
density property

for cart wheels, 354
for fixtures, 309–313

Design basics
artif icial intelligence and, 65
caching and, 62

Index 577

classes of game objects, 64–65
object-orientation in, 63
overview of, 62–63

Devices, older
fixing slow performance, 53–54
power-of-two support, 46

Digger robot
adding dangerous methods to, 405–411
creating cinematic fight sequence,

411–416
pitting Ole against, 396–405

Direction switching, in Box2D, 373–374
Directional pad (DPad)

added to GameplayLayer class, 108
initializing, 111

Director (CCDirector)
running loops and rendering graphics,

16–18
running scenes, 11, 34–35
types of, 569

Directory, adding Chipmunk files to Xcode
project, 426–429

Distance joints
in Box2D, 304
Chipmunk damped spring compared

with, 457
Chipmunk pin joint compared with, 456

Downloading Cocos2D, 4–5
DPad (directional pad)

added to GameplayLayer class, 108
initializing, 111

Dragging objects, in Box2D, 304–309
Drill sensors, creating for Digger Robot,

401–402
dropCargo method, space cargo ship, 125
dropWithLowPerformanceItemWithID

method, reusing sprites and, 553–554
Dynamic bodies, Box2D, 293

E
EAGLView, rendering game with, 16
Effects, 145–149

anchor points for, 154
comparing Box2D with Chipmunk, 421
creating wave action in background,

146–148

packaged as actions, 145
returning sprites and objects to nonaltered

state, 149
running EffectsTest, 148
screen shake, 467–468
subtypes of, 146

Effects library, key features in Cocos 2D, xxiv
Elasticity, setting for ground in Chipmunk

space, 433
Emitters

adding engine exhaust to space cargo
ship, 490–494

Particle Designer controls for, 487–488
in particle systems, 481

enableLimit, restricting revolute joints
and, 377

Enemy characters
Digger Robot. See Enemy robot
enemy robot. See Enemy robot
methods for creating in GameplayLayer

class, 109
RadarDish class. See RadarDish class

Enemy robot
adding as long as radar dish is not dead,

143–144
adding sounds to, 219–222
animating, 58–59
changeState method and, 129–133
checking if Viking is attacking, 135
header file, 126–127
implementation file, 127–137
overview of, 125
setting up to update debug label, 160–163
steps in creation of, 126
teleport graphic for, 132
texture atlases and robot size, 61
updateStateWithDeltaTime method

for, 133–135
Engine exhaust effect, adding to space cargo

ship, 490–494
EyesightBoundingBox method, for enemy

robot, 129

F
FBO (frame buffer object), 145–146
Fight sequence, creating, 411–416

Index578

Files
Add New File dialog, 26
adding Box2D files to project, 334–335
adding Chipmunk files to project,

426–429
audio files, 198, 214–215
constants file for static values used in

more than one class, 71–72
format for fonts, 155
formats for images, 43
GLES-Render files, 295–296
header. See Header files
implementation. See Implementation files
PNG files, 43, 270
property list. See plist f iles
TMX files, 270–271

Fixed rate timestamps
game loops and, 434
improving main loop and, 394–396

Fixtures
of Box2D bodies, 292–294
compared with Chipmunk shapes, 420
creating drill sensor for Digger Robot,

401–402
properties, 309–313

flipX/flipY functions
for mirroring graphic views, 95
reversing images, 552

fnt file format, 155
Fonts

adding for menus, 181–182
built-in support for, xxiii
CCLabelIBMFont class, 155, 159
CCLabelTTF class, 155
CCMenuAtlasFont, 179
CCMenuItemFont, 180
Hiero Font Builder Tool, 156–159

Forces, Box2D, 368
FPS (Frames Per Second), managing frame

rate in animation, 16, 61
Frame buffer object (FBO), 145–146
friction property

fixtures, 309–313
setting for cart wheels, 354
setting for ground, 433

G
Game Center

achievements. See Achievements
authenticating players, 507–508
checking availability of, 506–507
creating App ID, 498–501
enabling support for apps, 505–506
leaderboards. See Leaderboards
notification of changes to authentication

status, 508–514
obtaining iOS Developer Program

account, 497–498
overview of, 495–497
reasons for using, 497
registering apps in iTunes Connect,

501–505
sending scores to, 538
summary and challenges, 543

Game characters (GameCharacter)
checkAndClampSpritePosition

method, 233–234
in class hierarchy, 64
creating, 80–82
enemy robot inheriting from, 126–127
RadarDish class inheriting from, 84–85
Viking class inheriting from, 90

Game layers. See Layers (CCLayer)
Game logic, behind game objects, 63
Game manager (GameManager)

adding last level completed property to,
532–534

adding support to GameplayLayer class
for, 190–192

additions for audio to header and imple-
mentation files, 204–205

changing level width, 234–235
connecting to Chipmunk scene with,

425–426
creating, 172–179
getDimensionsOfCurrentScene

method, 232–233
getting list of sound effects, 208–211
header file, 172–173
implementation file, 174–177
initAudioAsync method, 206–207

Index 579

initializing audio manager (CDAudio-
Manager), 207–208

IntroLayer class and, 193
LevelCompleteLayer class and, 194–195
loading audio asynchronously, 203–204
loading sound effects, 211–213
loading/unloading audio files, 214–215
overview of, 170–172
playbackgroundTrack, stopSound-

Effect, and playSoundEffect
methods, 213–214

running new cart scene, 345
setting up audio engine, 205–206
SpaceVikingAppDelegate supporting,

192–193
switching to win/lose conditions,

476–477
Game objects (GameObject). See also Objects

adding sound to game objects, 215–216
in class hierarchy, 64–65
creating, 74–80
Mallet class inheriting from, 119

Game physics. See Physics engines
Game Start banner

adding, 152–153
anchor points for, 153–154

GameControlLayer, as subclass of CCLayer,
239–242

GameManager class. See Game manager
(GameManager)

Gameplay scenes, 170
GameplayLayer class

adding music to, 228
adding support for game manager,

190–192
addScrollingBackgroundWith-

Parallax method, 250–252
associating debug label with, 163–165
header file, 105–106
implementation file, 106–111, 138–140
importing updates for Viking, 141–144
loadAudio method, 201–203
overview of, 105

GameplayScrollingLayer class
adjustLayer method, 245–247
connecting joystick and button controls to

Viking, 245

subclass of CCLayer, 243–245
update method, 247–248

GameState class
adding to Space Viking project, 530–534
creating to track user achievements,

519–521
GCDatabase, loading/saving achievement

data to, 522–524
GCHelper. See also Helper methods

adding to Space Viking project, 530–534
creating helper class for Game Center,

508–510
implementing leaderboards, 539–540
keeping track of player authentication

status, 511–512
modifying for sending achievements,

524–530
GetWorldPoint helper method, 379–380
GKScore object, creating, 538
GLES-Render files, 295–296
Glyph Designer, creating font texture atlas,

156
GPU, checking performance of, 560–563
Gravity property

initializing in Chipmunk space, 431
Particle Designer controlling, 488

Groove joint
constraints in Chipmunk, 456
creating spring platforms and, 463–464

Ground
creating for Chipmunk space, 432–433
detecting collisions with, 445–450
setting collision type for, 447–448
surface velocity, 445

GroundLayer, of TileMap, 269
groupIndex f ield, 382
Groups

creating for scenes, 236
organizing classes by, 70
organizing scenes, 180–181

H
Header files

additions for audio to, 204–205
cart, 337–338
enemy robot, 126–127

Index580

Header files (continued)
game manager, 172–173
GameplayLayer class, 105–106
health, 121
Main Menu, 182–183
mallet, 118
Ole the Viking, 90–92
phaser, 138
PlatformScene, 263–264
PlatformScrollingLayer, 254–255
radar dish, 84
space cargo ship, 123

Health (Health class)
in class hierarchy, 65
enemy robot, 134
moving into dead state, 103
power-up, 120–122
restoring Ole's health, 102

HelloWorld apps
adding movement to cargo ship, 10–11
adding space cargo ship to app, 9–10
adding to iPhone or iPad, 20–21
applicationDidFinishLaunching

method in, 14–15
building, 7–9
Director's role in running game loop and

rendering graphics, 16–18
Hello, Box2D, 289–292
initializing UIWindow, 15–16
inspecting Cocos2D templates, 6–7
scenes and nodes in application template,

11–14
Helper methods

for creating animations, 411
for loading/saving achievement data,

522–524
overview of, 19–20
for sending achievement data, 524–530

Hiero Font Builder Tool, 156–159

I
Idle state (kStateIdle)

for enemy robot, 132
for radar dish, 87

if statement, combining with assignment
operator, 134–135

Images
adding for menus, 181–182
adding to Space Viking project, 24–26
advantages of texture atlases for, 47
loading image files, 43
performance tips and, 551

Implementation files
additions to for audio, 204–205
enemy robot, 127–137
game manager (GameManager), 174–177
GameplayLayer class, 106–111
gameplayLayer class, 138–140
health, 121
@interface declaration in, 256
mallet, 119–120
phaser, 138–140
PlatformScene, 263–264
radar dish, 85–89
space cargo ship, 123–125

Implementation files, Viking class
changeState method for animation,

95–98
dealloc method, 94
effect of pragma mark statements in

Xcode pulldown menus, 99
f lipping graphic views, 95
initAnimations method, 103–105
joystick methods, 94–95
updateStateWithDeltaTime and

adjustedBoundingBox methods,
100–103

Importing updates, for Space Viking project,
141–144

Impulses
Box2D, 368
controlling f lipping of cart, 368–369
making cart jump, 369–373
for responsive direction switching,

373–374
Infinite scrolling

creating group for cut-scene, 252–253
creating platform scene, 263–265
creating scrolling layer in cut-scene,

254–262
creating texture atlas for cloud images,

254
overview of, 252–253

Index 581

Inheritance, class hierarchy and, 64–65
init method

for Chipmunk, 429–430
in game layer of Space Viking, 41–42
for HelloWorld app, 13
for PerformanceTestGame, 546–549
of platformScrollingLayer, 255–256

initAnimations method
Mallet class, 120
RadarDish class, 88–89
Viking class, 103–105

InitAudioAsync method, GameManager
class, 206–207

initJoystick method, 108
InitWithScene4UILayer method, carts,

344
Installing Cocos2D templates, 5–6
Instance variables

adding to CPViking, 450–451
for sprite positions, 43

Instruments tool
for checking GPU, 560–563
for finding bottlenecks, 557–558

Interaction, in Box2D, 302–304
@interface declaration, inside implementa-

tion files, 256
Intro class, setting up menus, 190
IntroLayer class, images displayed before

game play, 193
iOS

audio framework for, 197
fonts available in, 155
Game Center app, 495
making games in, xxii

iOS Developer Program account, 497–498
iPad

adding HelloWorld app to, 20–21
power-of-two support on older devices,

46
running performance test game on, 546,

550
running Space Viking on iPad Simulator,

144–145
simulator in Particle Designer, 485–486

iPhone
adding HelloWorld app to, 20–21

fixing slow performance on older devices,
53–54

power-of-two support on older devices, 46
simulator in Particle Designer, 485–486

iPhone Developer account, 20
iPhone Developer Portal, 497
iPod, power-of-two support on older

devices, 46
isCarryingWeapon method, Viking class,

94
iTunes Connect

adding achievements to, 515–517
registering apps in, 497, 501–505
setting up leaderboards in, 536–538

J
JavaScript, Coscos2D-JavaScript, 568
Joints

adding wheels using revolute joints,
352–355

breaking Ole's body into pieces, 376
compared with Chipmunk constraints,

420–421
creating multiple bodies and joints,

378–380
dragging objects in Box2D, 304
motor settings for revolute joint, 385
prismatic, 378
restricting revolute joints, 376–377

Joysticks
adding, 36–40
applying joystick movement, 40–44
connecting to Space Viking, 245
importing joystick class, 35–36
initializing, 111
initJoystick method, 108
Viking class methods, 94–95

JPEG files, 43
Jump buttons, adding GameplayLayer class,

108
Jump to Definition (Ctrl-z-D), for viewing

source code, 18–19
Jumping, in Chipmunk

implementing, 450–455
by setting velocity, 444

Index582

K
Kinematic bodies, Box2D, 293
kStateDead. See Dead state (kStateDead)
kStateIdle (idle state)

for enemy robot, 132
for radar dish, 87

kStateSpawning (Spawning state)
for enemy robot, 132
for radar dish, 87

kStateTaking Damage (Taking damage
state), 87

kStateTakingDamage. See Damage taking
state (kStateTakingDamage)

L
Labels (CCLabel)

adding to scenes, 13–14
CCLabelIBMFont class, 155, 159
CCLabelTTF class, 151–155
in layers, 12

Layers (CCLayer)
adding, 29–31
allocating sprites when layer is initialized,

552
connecting background and game layers

to a scene, 31–32
creating background layer, 26–29
GameControlLayer as subclass of,

239–242
GameplayScrollingLayer as subclass

of, 243–245
principal classes in Cocos2D, 570
Scene4UILayer as subclass of, 335
scenes as container for, 12, 33
z values and, 33

Leaderboards
displaying, 540–542
how they work, 538
implementing, 539–540
overview of, 536
setting up in iTunes Connect, 536–538

LevelComplete class
scene types and, 170
setting up menus, 190

LevelCompleteLayer class
achievements and, 530–534
displaying leaderboards, 540–542
scenes and, 194–195

Levels
accounting for level width when scrolling,

233–234
creating in Chipmunk, 432–433
creating with LevelSVG tool, 380
getting dimension of current level,

232–233
LevelSVG tool, 380
Linear impulses, Box2D

making cart jump, 369–373
overview of, 368

LinkTypes, URLs and, 172
loadAudio method, GameplayLayer class,

201–203
Loops

Director running, 16–18
update loop, 279–280, 394–396
variable and fixed rate timestamps and,

394–396, 434
Loosely coupled classes, 117–118
lowerAngle method, restricting revolute

joints, 377

M
Mac OS X

Cocos2D native support for, 568
downloading particle system to, 485
making games in, xxii

Macros, 20
Main Menu (MainMenu)

adding music to, 228–229
creating, 182–190
header file for, 182–183
MainMenuLayer class, 183–190
scene types and, 169

Mallet (Mallet class)
dropping from space cargo ship, 125
powering up, 102, 118–120

Manager. See Game manager
(GameManager)

mass property, fixtures, 309–313

Index 583

Mekanimo tool, for working with bodies, 380
Member variables, for body part sprites,

380–381
Memory

benefits of texture atlases, 48
managing memory footprint, 17
textures and, 45–47

Menus
adding images and fonts for, 181–182
in addition to Main Menu, 190
classes in, 179–180
Main Menu. See Main Menu

(MainMenu)
Options Menu, 170

Meters, converting points to, 420–421, 430
Methods, declaring in Objective-C, 117
Metroid-style platform. See Platforms, in

Chipmunk
Motors

in Chipmunk, 456
settings for revolute joint, 385

Mouse joint
dragging objects in Box2D, 304–309
supporting in Chipmunk, 436–437

Movement
adding movement to cargo ship, 10–11
adding to Space Viking project, 35
implementing n Chipmunk, 450–455
jumping, 444
surface velocity, 445

Music. See also Audio
adding in Chipmunk, 473–474
adding to GameplayLayer, 228

N
New Group (Option-z-N), 70
Nodes (CCNode)

in application templates, 11–14
in Cocos2D hierarchy, 12
principal classes in Cocos2D, 570
tags, 71–72

Normal platform, creating in Chipmunk,
464–466

NSCoding protocol, loading/saving achieve-
ment data to GCDatabase, 522–524

NSDictionary objects, storing animation
settings in, 67

NSOperationQueues

adding audio asynchronously in back-
ground thread, 201

managing background threads, 204
NSTimer, scheduler compared with, 145
numberOfRunningActions, 135

O
Object-Oriented Programming (Coad and Nic-

ola), 63
Objective-C framework

Cocos2D and, xxii, xxv
protocols in, 117

Objects. See also Game objects
(GameObject)

adding sound to, 215–216
converting into classes, 63
creating Box2D, 292–295
creating C++, 280
creating game objects, 74–80
GameObject in class hierarchy, 64–65
GKScore object, 538
Mallet class inheriting from GameOb-

ject class, 119
plist f iles and, 67
positioning using anchor points, 153
positioning using point system, 82
returning to nonaltered state after effects,

146–148
update method added to, 443
use in design, 63

Obstacles, creating spikes in Box2D,
390–394

Offsets, restricting prismatic joints, 379–380
Ole the Viking. See also Viking class

adding sounds to, 222–228
adding subclass for, 440–443
adjustedBoundingBox method,

100–103
animating in Chipmunk, 469–473
breaking body into pieces using joints,

376
changeState method, 95–98

Index584

Ole the Viking (continued)
connecting button controls to, 245
creating cinematic fight sequence, 411–416
following in Chipmunk, 467–468
Header files, 90–92
leaping with ragdoll effect, 381–386
pitting against Digger in fight, 396–405
restoring health of, 102

OpenAL audio framework, for iOS devices,
197

OpenGL Driver Instrument, for checking
GPU, 560–563

OpenGL ES
benefits of batching bind calls, 45
converting UIKIT to OpenGL ES coor-

dinate system, 29
EAGLView and, 16
FBO (frame buffer object), 145–146
for graphics rendering in Cocos2D, xxii
references for, 567
support in Cocos2D, xxv

Option-z-N (New Group), 70
Options Menu

scene types and, 170
setting up menus, 190

OptionsLayer, displaying achievements
within apps, 534–536

Organizing source code
constants file for static values used in

more than one class, 71–72
grouping classes, 70
protocols in implementation of class

methods, 72–74

P
Parallax scrolling

adding background to cart layer, 364–368
defined, 231
overview of, 250–252

ParallaxBackgrounds folder, importing,
235–236

Particle Designer
application in cinematic fight sequence,

413
controls, 487–488
creating particle system, 489–490

downloading to Mac, 485
engine exhaust effect, 490–494
features of, 486–488
toolbar, 486

Particle systems
creating, 489–490
engine exhaust added to space cargo ship,

490–494
running built-in system, 482–483
snow effect, 483–485
summary and challenges, 494
terminology related to, 481–482
tour of Particle Designer, 486–488

Particles
controls for, 487–488
defined, 481

Performance optimization
bottlenecks and, 557–558
capturing CPU utilization data, 558–560
CCSprite vs. CCSpriteBatchNode,

545–550
checking GPU, 560–563
on older devices, 53–54
overview of, 545
profiling tool for, 554–557
reusing sprites, 552–554
running performance test game, 550
summary and challenges, 563
textures and texture atlases and, 551–552

PerformanceTestGame
adding profiling tool to, 554–557
capturing CPU utilization data, 558–560
checking GPU, 560–563
init method, 546–549
opening and running on iPad, 545–546
reusing sprites, 552–554
running, 550
update method for, 549–550

Phaser (Phaser class)
adding phaser bullet, 137–141
createPhaserWithDirection method,

142–143
header file, 138
implementation file, 138–140
placeholder for creating phaser blast, 109
protocols for creating in GameplayLayer

class, 127

Index 585

shootPhaser method, 129, 132–133
taking damage from, 102

Physics Editor, 380
Physics engines

advanced. See Box2D, advanced physics
basic. See Box2D, basic physics
bundled with Cocos2D, xxiv
Chipmunk. See Chipmunk
intermediate. See Box2D, intermediate

physics
Pin joint, constraints in Chipmunk, 456
Pivot joint

constraints in Chipmunk, 455
creating pivot platform, 462

Pixels, in object positioning, 82
Platforms, in Chipmunk

laying out, 468–469
normal platform, 464–466
pivot platform, 460–462
revolving platform, 458–460
spring platform, 463–464

PlatformScene

header and implementation files, 263–264
playScene method, 264

PlatformScrollingLayer

ccTouchesBegan method, 262
createCloud method, 257–258
createStaticBackground method,

257
createVikingAndPlatform method,

261–262
declarations and init method, 255–256
header file, 254–255
resetCloudWithNode method, 258–261

playbackgroundTrack method, audio,
213–214

playScene method, platform scene, 264
playSoundEffect method, audio, 213–214
plist f iles

phaser bullet effect, 137
sound effects in, 198–201
storing animation data in, 61, 67–69

PNG files
file formats for images, 43
using in TileMap, 270

Point-to-meter (PTM) ratio, 420–421, 430
Pointers, C++, 281

Points
converting to meters, 420–421, 430
in object positioning, 82

postSolve events, collision events in Chip-
munk, 445

Power-of-two, textures and, 45–47
Power-up objects

Health class, 120–122
Mallet class, 118–120
overview of, 118
protocols for creating in GameplayLayer

class, 127
Pragma mark statements, in Xcode pulldown

menus, 99
preSolve events, collision events in Chip-

munk, 445, 448–449
Prismatic joints

Chipmunk groove joint compared with,
456

offsets for restricting, 379
overview of, 378

Profiling
capturing CPU utilization data, 558–560
finding bottlenecks, 557–558
for performance optimization, 554–557

Project setup
background and game layers connected to

a scene, 31–32
background layer created, 26–29
CCSpriteBatchNode in, 52–53
classes for, 24–26
creating new project, 23–24
director running game scene, 34–35
fixing slow performance on older devices,

53–54
game layer added, 29–31
game scene for, 32–33
joystick class imported for, 35–36
joystick movement in, 40–44
joysticks and buttons added, 36–40
movement added, 35
summary and challenges, 54–55
texture atlas added to scene, 48–51

Property list f iles. See plist f iles
Protocols

common protocol class, 72–74
in implementation of class methods, 72–74

Index586

Protocols (continued)
in Objective-C, 117
use with enemy robot, 127

PTM (point-to-meter) ratio, 420–421, 430
Puzzle game example, in Box2D, 320–324
PuzzleLayer

box created for, 293
createBoxAtLocation method,

294–295
debug drawing, 295–296
decorating bodies using sprites, 313–320
dragging objects in Box2D, 304–309
ground body created for, 299–302
interaction and decoration in, 302–304
mass, density, friction, and restitution

properties, 309–313
puzzle game example, 320–324
scene created for, 282–284
viewing on screen, 296–298
world created for, 290–292

PVR TC
compression format, 43
performance tips for textures, 551

Q
Queries, searching for objects in Box2D

world, 305–307

R
RadarDish class

adding sounds to, 216–217
changeState method, 86
in class hierarchy, 64
header file, 84
implementation file, 85–89
inheriting from GameCharacter class,

84–85
initAnimations method, 88–89
plist f iles for, 68–69
steps in creation of, 83–84
updateStateWithDeltaTime method,

86
Ragdoll effect

adding action to Ole, 376
leaping effect and, 381–386

resetCloudWithNode method, platform-
ScrollingLayer, 258–261

Responsive direction switching, Box2D,
373–374

restitution property, fixtures, 309–313
Revolute joints

in Box2D, 304
for bridge, 386–389
for cart wheels, 352–355
Chipmunk pivot joint compared with,

455
for Digger Robot wheels, 400
motor settings for, 385
restricting, 376–377

Revolving platform, creating in Chipmunk,
458–460

Rigid body physics simulation, 292
Robots

Digger Robot. See Digger Robot
enemy robot. See Enemy robot

RockBoulderLayer, of TileMap, 270
RockColumnsLayer, of TileMap, 269
RootViewController, for device orienta-

tion, 53–54
Rotary limit joint

constraints in Chipmunk, 456
creating pivot platform, 462

Rotation, anchor points for, 154
Running state, Digger Robot, 407

S
Sandbox accounts, in Game Center, 514
Scaling images, performance tips and, 551
Scenes (CCScenes)

ActionLayer of Scene4, 339–343
adding images and fonts, 181–182
additional menu types, 190
in application template, 11–14
background and game layers connected

to, 31–32
basic Box2D scene, 335–346
basic Chipmunk scene, 429–438
CCScenes as principal class in Cocos2D,

570
changing SpaceVikingAppDelegate to

support game manager, 192–193

Index 587

classes in menu system, 179–180
creating for Space Viking, 32–33
creating new Chipmunk scene, 421–425
creating new scene (PuzzleLayer),

282–284
creating second game scene, 236–242
director running game scene, 34–35
game manager connected to Chipmunk

scene, 425–426
game manager for switching between,

170–172
GameplayLayer class and, 190–192
group for cut-scene, 253
group for scene2, 236
IntroLayer class and, 193
LevelCompleteLayer class, 194–195
Main Menu, 182–190
organizing, 180–181
texture atlases for, 48–51
types of, 169–170
UILayer of Scene4, 335–336

SceneTypes, 172
Scheduler, for timed events and call, 145
Scores, sending to Game Center, 538
Screen resolution, support in Cocos2D, xxv
Screen shake effect, 467–468
Scrolling. See also Tile maps

accounting for level width, 233–234
background, 271–272
common problems in, 234–235
creating scrolling layer, 242–249
in cut-scene, 254–262
getting dimension of current level,

232–233
to infinity, 252–253
new scene for, 236–242
overview of, 231
parallax layers and, 250–252
in platform scene, 263–265

ScrollingCloudsBackground folder, 254
ScrollingCloudsTextureAtlases folder, 254
Selection techniques, three-finger swipe, 27
separate events, collision events in Chip-

munk, 445, 448–449
SetLinearVelocity function, for Box2D

bodies, 415
setupDebugDraw method, cart, 344

setupWorld method, cart, 344
Shapes, Chipmunk

adding, 420
box shaped added, 431–433
converting dynamic shape into static plat-

form, 447–448
Shapes, custom shapes with Box2D, 346–348
ShootPhaser method, 129
Simple motor, constraints in Chipmunk, 456
SimpleAudioEngine, in CocosDenshion,

197, 229–230
Singletons

for game manager, 195
important concepts in Cocos2D, xxiv

SneakyInput joystick project, 35–36
Snow effect, creating with particle system,

483–485
Social gaming network. See Game Center
Sound effects. See also Audio

adding in Chipmunk, 473–474
getting list of, 208–211
loading, 211–213
in plist f iles, 198

Sounds folder, 198
Source code

availability of, 18–20
constants file and, 71–72
grouping classes and, 70
protocols in implementation of class

methods, 72–74
Space cargo ship (SpaceCargoShip class)

adding sounds to, 217–219
in class hierarchy, 64
creating, 122
engine exhaust effect for, 490–494
header file, 123
implementation file, 123–125

Space Viking
basic setup. See Project setup
downloading, xxi
introduction to, xxv–xxvi
storyline in, xxvi–xxvii

Spaces, Chipmunk
box added to, 431–432
creating, 429–431
creating a physics world, 420
creating the level and ground, 432–433

Index588

SpaceVikingAppDelegate, 192–193
Spawning state (kStateSpawning)

for enemy robot, 132
for radar dish, 87

Spikes, creating obstacles in Box2D, 390–394
Spring platform, creating in Chipmunk,

462–463
Sprite Frame Cache, 111
SpriteBatchNode, 88
Sprites (CCSprite)

allocating during layer initialization, 552
animating sprites rendered by CCSprite-

BatchNode, 60–61
basic animation, 57–60
batching (CCSpriteBatchNode), 44–45
Box2D bodies, 380–381
CCSprite as principal classes in

Cocos2D, 570
CCSprite vs. CCSpriteBatchNode,

545–550
containing within screen boundaries, 102
decorating bodies, 313–320
important concepts in Cocos2D, xxiv
in layers, 12
listed in CCSpriteBatchNode object,

108
returning to nonaltered state after effects,

146–148
reusing, 552–554
Sprite Frame Cache, 111

Sprites (CPSprite)
adding, 438
defining body and shape for, 438–440
implementing velocity of, 444
subclass for Ole, 440–443
subclass for revolving platform, 458–460

startFire method, 415
State transitions. See also Animation

Ole the Viking, 471–473
radar dish, 86–87
spike obstacle and, 392–393
Viking class and, 95–98
visual effects and, 410

Static bodies, Box2D, 293
StaticBackgroundLayer, splitting back-

ground into static and scrolling layers,
237–239

stopSoundEffect method, audio, 213–214
Surface velocity, for ground movement in

Chipmunk, 445
switch statement

method variables not declared in, 99
state transitions and, 98

T
Taking damage state. See Damage taking

state (kStateTakingDamage)
Teleport graphic, for enemy robot, 132
Templates

inspecting, 6–7
installing, 5–6
SpaceViking based on, 23–24
working of scenes and nodes in applica-

tion template, 11–14
Ternary operator (?), combining if state-

ment with assignment operator,
134–135

Text. See also Labels (CCLabel)
adding Game Start banner, 152–153
anchor points for Game Start banner,

153–154
CCLabelIBMFont class, 155, 159
CCLabelTTF class, 151
creating debug label, 160–165
font texture atlas for, 156–159
fonts, 155

Texture atlases
CCSpriteBatchNode initialized with

image from, 111
for cloud images, 254
combining textures into, 44
downloading tiles texture atlas, 266
for fonts, 156–159
overview of, 44–45
performance optimization and, 551–552
reasons for using, 48
for Space Viking Scene 1, 48–51
steps in use of, 53
technical details of, 45–47

Texture padding, 45–47
TexturePacker

creating texture atlas for Space Viking
Scene 1, 49–51

Index 589

texture atlas software, 47
trial version, 380

Textures
caching, 17
combining into texture atlases, 43
f lushing unused, 552
loading images into RAM and, 43
performance optimization and, 551–552

Tile maps. See also Scrolling
adding to ParalaxNode, 272–275
built-in support for, xxiv
compressed TiledMap class, 271–272
creating, 267–268
defined, 232
installing Tiled tool on Mac, 266–267
overview of, 265–266
three-layered, 268–270

Tiled tool
creating three-layered tile map, 268–270
creating TileMap for iPad, 267–268
Installing on Mac, 266–267

Tiles
defined, 231
of repeating images, 265–266

TileSets, 232
Time Profiler, for capturing CPU utilization

data, 558–560
TMX files, 270–271
Touch-handling code, helper methods for,

436–437
typedef enumerator

getting list of sound effects, 210–211
for left and right punches, 92

U
UIFont class, 155
UIKit, converting to OpenGL ES coordinate

system, 29
UILayer, in Chipmunk, 421–423
UIViewController, for device orientation,

53–54
UIWindow, initialization of, 15–16
Units

Box2D, 288–289
converting points to meters in Chipmunk,

430

Unity3D, 567
Update functions, scheduler and, 145
update loop

Box2D, 279–280
improving main loop, 394–396

update method
adding to game objects, 443
cart methods, 344
in game layer of Space Viking, 41–42
GameplayScrollingLayer, 247–248
for PerformanceTestGame, 549–550

updateStateWithDeltaTime method
animating Ole, 471–473
for Chipmunk sprite, 452–454
Digger Robot and, 406
enemy robot and, 133–137
radar dish and, 85–86
Viking class, 100–103

upperAngle, restricting revolute joints,
377

URLs, 172
Utilities, 19–20

V
Variable rate timestamps, 394–396
Variables, method variables not declared in

switch statement, 99
Vectors, for direction and magnitude, 291
Velocity

of ground movement in Chipmunk, 445
of sprite in Chipmunk, 444

Vertex Helper
creating vertices for Digger Robot,

399–401
creating vertices with, 348–352
making cart scene scrollable, 359–362

Vertices
for Box2D shapes, 347–348
creating shapes with arbitrary vertices,

448
for Digger Robot, 399–401
making cart scene scrollable, 359–362
Vertex Helper and, 348–352

View controller
displaying achievements, 534–536
displaying leaderboards, 540–542

Index590

Viking class. See also Ole the Viking
adding sounds to, 222–228
applying joystick movement to, 40–44
changeState method for animations in,

95–98
checking to see if attacking enemy robot,

135
in class hierarchy, 64
dealloc method, 94
effect of pragma mark statements in

Xcode pulldown menus, 99
f lipping graphic views, 95
header file, 90–92
initAnimations method, 103–105
joystick methods, 94–95
pitting Digger against Ole, 396–405
referencing from SpriteBatchNode, 88
retrieving from CCSpriteSheet,

134–135
subclass for in Chipmunk, 440–443
updateStateWithDeltaTime and

adjustedBoundingBox methods,
100–103

in Xcode, 90
Visual effects, state transitions and, 410

W
Walking state

Digger Robot, 407–408
enemy robot, 132

Wheels
adding to cart, 352–355
creating for Digger Robot, 399–400

Win/lose conditions, adding in Chipmunk,
476–477

World, Box2D
Chipmunk space compared with, 430
creating, 289–292
searching for objects in, 305–307

X
Xcode

Add New File dialog, 26
build management for iOS devices, 20–21
Chipmunk files added to Xcode project,

426–429
classes as organization technique in, 70
HelloWorld app, 7–9
inspecting Cocos2D templates, 6–7
Instruments tool, 557–558
location of Cocos2D templates in, 23–24
pragma mark statements in pull down

menus, 99
RadarDish class created with, 83–84
texture atlases added to, 51

Z
z values, in 3D engines, 33
Zwoptex, 47–49

	Contents
	Preface
	Acknowledgments
	About the Authors
	4 Simple Collision Detection and the First Enemy
	Creating the Radar Dish and Viking Classes
	Creating the Viking Class
	Final Steps
	Summary
	Challenges

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

