

Stunning CSS3: A project-based guide to the latest in CSS
Zoe Mickley Gillenwater

New Riders
1249 Eighth Street
Berkeley, CA 94710
(510) 524-2178
Fax: (510) 524-2221

Find us on the Web at www.newriders.com
To report errors, please send a note to errata@peachpit.com
New Riders is an imprint of Peachpit, a division of Pearson Education
Copyright © 2011 by Zoe Gillenwater

Acquisitions Editor: Wendy Sharp
Production Editor: Hilal Sala
Project/Copy Editor: Wendy Katz
Technical Editor: Chris Mills
Cover design: Charlene Charles-Will
Interior design: Mimi Heft, Charlene Charles-Will
Compositor: Danielle Foster
Indexer: Emily Glossbrenner

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by
any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the publisher. For information on getting permission for reprints and
excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of the book, neither the author nor New Riders
shall have any liability to any person or entity with respect to any loss or damage caused or
alleged to be caused directly or indirectly by the instructions contained in this book or by the
computer software and hardware products described in it.

Trademarks
Acrobat, Dreamweaver, Fireworks, and Photoshop are all trademarks or registered trade-
marks of Adobe Systems, Inc. Many of the designations used by manufacturers and sellers
to distinguish their products are claimed as trademarks. Where those designations appear
in this book, and Peachpit was aware of a trademark claim, the designations appear as
requested by the owner of the trademark. All other product names and services identified
throughout this book are used in editorial fashion only and for the benefit of such compa-
nies with no intention of infringement of the trademark. No such use, or the use of any trade
name, is intended to convey endorsement or other affiliation with this book.

ISBN 13: 978-0-321-72213-3
ISBN 10: 0-321-72213-2

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.newriders.com

This page intentionally left blank

TABLE OF CONTENTS vii

Table of Contents

Introduction . xiii

CHAPTER 1 The CSS3 Lowdown 1

What is CSS3? . 2

Overview of What’s New 2

Where CSS3 Stands 4

Use CSS3 Now . 5

The State of Browser Support 6

Browser Market Share. 7

How the Major Players Stack Up 8

Progressive Enhancement 11

Advantages . 11

Let Me Put it This Way... 13

Benefits of CSS3 . 15

Reduced Development and Maintenance
Time . 16

Increased Page Performance 16

Better Search Engine Placement 18

Increased Usability and Accessibility 19

Staying at the Front of the Pack 19

Case Study: The Highway Safety Research
Center . 19

Before CSS3 . 20

After CSS3 . .22

TABLE OF CONTENTSviii

Using CSS3 Wisely . 25

Browser Prefixes .25

Dealing with Non-supporting Browsers 30

Filtering IE with Conditional Comments 36

Dealing with Unsupportive Clients or Bosses . . . 41

Don’t Tell Them Everything 41

Educate Them About Progressive Enhancement
Up Front . 42

Manage Expectations from Design Mockups . 43

CHAPTER 2 Speech Bubbles 47

The Base Page . 48

Corralling Long Text. 49

Graphic Effects Sans Graphics 51

Rounding the Corners 51

Adding the Bubble’s Tail55

Semitransparent Backgrounds with RGBA
or HSLA . 62

Image-free Gradients72

Image-free Drop Shadows 81

Image-free Text Shadows 85

Transforming the Avatars 89

What are Transforms? 89

Rotating the Avatars. 92

The Finished Page . 96

TABLE OF CONTENTS ix

CHAPTER 3 Notebook Paper 99

The Base Page . 100

Beyond the Basic Background 101

Scaling the Background Image 101

Multiple Background Images on
One Element . 109

Adding a Graphic Border. 114

Adding a Drop Shadow. 125

Embedding Unique Fonts 126

What is @font-face? 127

Choosing Acceptable Fonts 128

Browser Support. 134

Converting Fonts. 135

Using @font-face 137

The Finished Page .146

CHAPTER 4 Styling Images and Links by Type 149

The Base Page .150

What are Attribute Selectors?. 151

Indicating File Types with Dynamically Added
Icons . 153

Alternative Icon Ideas 156

Fixing IE 6 . 157

Styling Full-size Photos and Thumbnails
Differently . 160

The Trouble with Classes 160

Using Attribute Selectors to Target by Type . . 164

The Finished Page .165

TABLE OF CONTENTSx

CHAPTER 5 Improving Efficiency Using Pseudo-classes 167

Targeting Specific Elements Without Using IDs
or Classes .168

New Structural Pseudo-classes 169

Back to the Speech Bubbles: Alternating
Colors . 171

Back to the Photos: Random Rotation 176

Dynamically Highlighting Page Sections 180

The :target Pseudo-class 181

Adding the Table of Contents. 182

Changing Background Color on the
Jumped-to Section 188

Animating the Change with Pure CSS 191

CHAPTER 6 Different Screen Size, Different Design 205

The Base Page . 206

What are Media Queries? 208

Changing the Layout for Large Screens 209

From Horizontal Nav Bar to Vertical Menu . . . 213

Multi-column Text 214

Changing the Layout for Small Screens 220

Changing the Layout for Mobile Devices 226

What is Device Width? 227

The Third Media Query. 228

Improving the Look on High-resolution
Displays . 233

The Viewport meta Tag 235

Workarounds for Non-supporting Browsers. . . 240

The Finished Page .241

TABLE OF CONTENTS xi

CHAPTER 7 Flexing Your Layout Muscles 243

Changes on the Horizon 244

Creating Multi-column Layouts Without
Floats or Positioning 245

Making Blocks Flex. 248

Adding Columns. 253

Reordering Columns 255

Equal-height Columns 258

Vertical and Horizontal Centering 261

Reality Check: What Works Now 266

Flexible Form Layout268

Sticky Footers. . 272

Alternatives to the Flexible Box Model 277

The box-sizing Property 277

Future Layout Systems284

APPENDIX A Browser Support 287

Conclusion . 289

Index . .291

Credits . .301

This page intentionally left blank

INTRODUCTION xiii

Introduction

CSS3, the newest version of the style sheet language of the web, is less
about creating new effects and more about accomplishing the beauti-
ful web design effects you’re familiar with in fantastic new ways—ways
that are more efficient and produce more usable and flexible results
than the techniques we’ve been using for the last decade.

CSS3 is still changing and evolving, as are browsers to support it and
web designers to figure out how best to use it. CSS3 can create some
stunningly beautiful and cool effects, as you’ll see throughout this
book. But if these effects aren’t practical for real-world sites right
now, what’s the point? In this book, I’ll focus on teaching you the
cutting-edge CSS techniques that can truly improve your sites and are
ready to be used in your work right away.

This book is not an encyclopedia or reference guide to CSS3; it won’t
teach you every single property, selector, and value that’s new to CSS
since version 2.1. Instead, it will teach you the most popular, useful,
and well-supported pieces of CSS3 through a series of practical but
innovative projects. Each chapter (after Chapter 1) walks you through
one or more exercises involving the new techniques of CSS3 to pro-
duce a finished web page or section of a page. You can adapt these
exercises to your own projects, or use them as inspiration for com-
pletely different ways to creatively use the new properties, selectors,
and values you’ve learned.

In some ways, CSS3 is a new way of thinking as much as a new way of
developing your pages. It can be hard to think of how to use the new
border-image property, for instance, when you’ve been making web
sites for years and aren’t used to having the option of using an image
for the border of a box. Because of this, I’ve included a list of ideas for
how to use each CSS3 property, selector, and value I cover, beyond
just the single way we use it in the exercise. I hope to provide you with
plenty of inspiration for how to put the CSS3 techniques you’re learn-
ing to work in your own projects, plus the technical know-how to
make sure you can use CSS3 comfortably and efficiently.

INTRODUCTIONxiv

Who Should Read this Book

This book is meant for anyone who already has experience using CSS,
but wants to take their sites and skills to the next level. I assume that
you know HTML and CSS syntax and terminology, but you don’t need
to be a CSS expert, and you certainly don’t need to have any experi-
ence using anything that’s new to CSS3. Whether you’ve just started
using CSS or have been developing sites with it for years, this book
will teach you powerful new techniques to add to your CSS toolkit.

Exercise Files

Each of the chapters is made up of at least one exercise where you will
have the opportunity to implement the techniques in a real page, step
by step. You can download the files for these exercises at the book’s
companion site at www.stunningcss3.com and work along in them as
you go through the steps of each exercise. I’ve provided both a starter
file and final file for each exercise, as well as a few intermediate steps
for the longer exercises, so you can check in periodically and make
sure you’ve made the correct changes to your own files.

You can use whatever code editor you like when working with
the exercise files. There are no tools in particular that you must
have in order to work with and create CSS. I personally use Adobe
Dreamweaver, but do all of my CSS development in code view by
hand. If you’re using Dreamweaver or a similar editor, I recommend
you too work on the CSS by hand.

Although a great deal of effort has been made to check the code in
this book, there are bound to be a few errors. Please report any errors
to me through the email form on the book’s web site, and I’ll be sure
to note them on the site and update the exercise files if needed.

Links

Each chapter contains several links to related resources, articles, tuto-
rials, tools, and examples that I think would be useful for you. And it’s
certainly easier to click on a live link than painstakingly type out a URL
that you’re copying from a printed book, so I’ve provided a compen-
dium of all the links from each chapter on www.stunningcss3.com.

www.stunningcss3.com
www.stunningcss3.com

INTRODUCTION xv

CSS3 is a rapidly changing topic, so in a few cases, I’ll be updating
these link lists as new resources come out. You’ll see a note in the
book every time one of these continually updated lists of resources is
present, pointing you to the book site to find the latest information.

Browsers

The exercises in this book have been tested in the latest versions of
the major browsers. At the time of this writing, these browser ver-
sions are Chrome 6, Firefox 3.6, Internet Explorer 8, Opera 10.6, and
Safari 5. The exercises were also tested in the beta versions of Internet
Explorer 9 and Firefox 4 available at the time of this writing, but
behavior may be different from what’s described in the book by the
time these browsers are finalized and released.

The exercises have also been tested in older browser versions that
are still in significant use today (such as Internet Explorer 7 and 6). In
many cases, the CSS3 effects we’ll be adding that work in the newest
browsers also work in older versions of those same browsers; even
when they don’t, the pages still work, are always perfectly usable, and
look fine. We’ll always go over possible ways to provide workarounds
or fallbacks for non-supporting browsers for each technique.

For information on which browsers a given technique works in, I’ve
provided a table of browser-support information for each property or
selector introduced in each chapter. Each browser is set to “yes,” “par-
tial,” or “no.” A value of “yes” means the browser supports all of the
syntax and behavior; it may have very minor bugs or inconsistencies
with the spec, but overall it’s compliant. A value of “partial” means the
browser supports some of the syntax and behavior, but not all, or not
without significant bugs or inconsistencies.

Some CSS3 properties work only using a vendor-specific prefixed
version of the property (you’ll learn about these prefixed properties
in Chapter 1). I’ve indicated which browsers require the prefixes on a
given property in the browser support tables.

In cases where support in a given browser is relatively new and there’s
a chance that some users of the older, non-supporting versions of
that browser are still out there, I’ve provided the version number of
the browser in the browser support table, indicating which version
was the earliest to support the property or selector. If the browser
has supported the property or selector for the last few versions and

N OT E : On the flip side,

I’ve also occasionally

included the browser

version number in the

support table when it’s

particularly notable

how early the property

or selector was sup-

ported—for instance,

the fact that IE 4 sup-

ports @font-face!

INTRODUCTIONxvi

it’s unlikely that there’s any significant number of users of the non-
supporting versions, I have not included the earliest version number
in the support table; you can feel safe that all versions of that browser
in use support it.

Conventions Used Throughout this Book

This book uses a few terms that are worth noting at the outset.

 � W3C refers to the World Wide Web Consortium, the organization
that creates the official standards and specifications of the web,
including CSS3.

 � IE refers to the Windows Internet Explorer browser. IE 8 and ear-
lier means IE 8, 7, and 6.

 � Webkit-based browsers means Safari (both on desktop and on mobile
devices), Chrome, and any other browsers that use a recent ver-
sion of the Webkit browser-rendering engine.

 � Occasionally, you’ll see a reference to “all browsers.” This means all
browsers that are in significant use today, not literally every single
obscure browser that may have a fractional piece of market share.

All of the exercises in this book are written in HTML5 markup.
However, all that means in this case is that I’ve used the short and
sweet HTML5 doctype, <!DOCTYPE html>, as well as the shorter meta
character encoding, style, and script tags. I haven’t included any of
the new elements that HTML5 introduces, such as section or article,
so the pages will work without any trouble in IE 8 and earlier, but
you’re welcome to change the markup for your own pages in whatever
way you like. All the exercises will also work in HTML 4.01 or XHTML 1.

All CSS examples shown should be placed in an external style sheet or in
the head of an HTML or XHTML document. The exercise files have their
CSS contained in the head of the page, for ease of editing, but it’s best to
move that CSS to an external style sheet for actual production files.

Some code examples will contain characters or lines colored teal-blue.
This indicates that content has been added or changed since the last
time you saw that same code snippet, or, in a new code snippet, that
there is a particular part that you need to focus on. In some cases. you’ll
see a ¬ character at the beginning of a line of code, indicating that the
text has had to wrap to a new line within the confines of the layout of
this book—but this doesn’t mean you have to break the line there.

INTRODUCTION xvii

Each property or selector introduced in this book has a “lowdown”
sidebar providing a brief overview of its syntax, behavior, and use
cases. Not every detail of syntax could be included, of course, but the
most essential information you need is there for quick reference. I’ve
also provided a link to whichever CSS3 module the property or selec-
tor is a part of on the W3C site so you can refer to the full specification
when needed.

This page intentionally left blank

33333333333333333333333333
Notebook Paper
Chapter 2 was all about creating graphic effects without any

graphics. In this chapter, we’ll use plenty of images, but new

CSS3 properties allow us to use them with more streamlined

markup and to make them behave in ways not possible with

CSS 2.1. You’ll also learn how to use unique, non-web-safe

fonts in your pages without resorting to Flash, images, or

scripting—even in Internet Explorer. Altogether, we’ll be able to

use these image and font techniques to make a web page look

like a realistic piece of notebook paper.

CHAPTER 3: NOTEBOOK PAPER100

WHAT YOU’LL LEARN

We’ll create the appearance of a piece of notebook paper using these CSS3 properties and

concepts:

 � The background-size property to scale a background image with the text

 � Multiple background images on one element

 � The border-image property to create graphic borders

 � The background-clip property to move a background image out from under a border

 � The @font-face rule to embed unique fonts in the page

The Base Page
Creating the appearance of real objects, like sticky notes and file fold-
ers, has always been popular in web design. If you wanted an article
to look like it was written on a piece of real paper, the first step might
be to apply a simple lined paper background image to it. Figure 3.1
shows this starting point.

F I G U R E 3 .1 The article
with a single back-
ground image, before
any CSS3 is applied.

BEYOND THE BASIC BACKGROUND 101

Beyond the Basic Background
To make the web page shown in Figure 3.1 look more like a realistic piece
of paper, you would want to add some extra graphic details beyond the
lined background, like a torn edge or a coffee stain. Without CSS3, it’s
certainly possible to add these graphic details. But new properties in
CSS3 make it easier and keep your markup cleaner. Let’s add some of
these new properties now to enhance the background.

Scaling the Background Image

One thing that would make the background look more realistic is if the
text were aligned to the notebook paper lines, instead of overlapping
them indiscriminately. To fix this without CSS3, you would need to set
a base font-size and line-height in pixels, and then adjust the spacing
between the lines in your background image to match. This would work
for most users. But if anyone resized the text, or had non-standard user
settings to override the pixel font sizes, the text would become mis-
aligned. The text could scale, but the background image couldn’t.

But that was then—before the CSS3 background-size property was
introduced. With background-size, you can control the horizontal
and vertical scaling of a background image as well as how it stretches
to cover the background area and gets clipped.

H OW background-size WO R KS

Before we apply background-size to our page, let’s look at a couple of
simple examples to get a better grip on how the property works.

Figure 3.2 shows an image 200 pixels wide by 120 pixels tall. Figure
3.3 shows how the image looks when set as a normal repeating back-
ground of a div that’s 500 pixels wide by 200 pixels tall; since the div’s
dimensions aren’t an even multiple of the image’s dimensions, some
of the image gets cut off on the right and bottom.

CHAPTER 3: NOTEBOOK PAPER102

F I G U R E 3 . 2 An image
that’s 200 pixels wide
by 120 pixels tall

F I G U R E 3 . 3 When the image is repeated
across the background of the div, some of
it gets cut off on the right and bottom.

We can use the background-size property to scale the image down
from 200 pixels to 100 pixels wide:

div {
 width: 500px;
 height: 200px;
 border: 1px solid #999;
 background-image: url(images/stars.gif);
 background-size: 100px auto;
}

The first value in the background-size property, 100px, sets the width
of the background image. The second value, auto, sets the height. A
value of auto makes the height whatever it needs to be to preserve
the aspect ratio of the image. If you leave the second value off, the
browser assumes it to be auto, so a value of background-size: 100px;
would have worked identically here. Compare Figure 3.4 to Figure
3.3 to see how the background image has been shrunk but kept its
aspect ratio.

If you use percentages in the background-size property, they’re rela-
tive to the box the background is on, not to the background image
itself. If you wanted exactly two copies of the image to show in the
div, with neither cut off at all, you could use this CSS:

F I G U R E 3 . 4

The browser has scaled
the image to 100 pix-
els wide, so it now fits
in the div exactly five
times and doesn’t get
cut off on the right.

BEYOND THE BASIC BACKGROUND 103

div {
 width: 500px;
 height: 200px;
 border: 1px solid #999;
 background-image: url(images/stars.gif);
 background-size: 50% 100%;
}

The image is stretched to fill half the width of the div and all of its
height, and then repeated (Figure 3.5). In this case, the browser
has to both distort the shape of the image and scale it up, making
the edges in the image look a little blurry or pixelated. As with any
browser-based scaling, background sizing is not going to look good
with all images, but can work quite well with grungy, abstract, or very
simple images that don’t have super-clean edges—such as our lined-
paper background.

MORE NEW WAYS TO TILE BACKGROUNDS

Besides setting background-size to a value that fits perfectly within the

width of a box, another way to keep background image tiles from getting

cut off on one or more sides is to use the values of round and space in

the background-repeat property. These values are new to CSS3, and

can be used in conjunction with background-size or without it.

A value of round repeats the background image but rescales it so it will

fit an even number of times without getting cut off. A value of space

repeats the background image as often as it will fit without getting cut

off, and then spaces the tiles out to fill any leftover room.

Unfortunately, at the time of this writing, the only browsers that support

these values are IE 9 and Opera, but Opera does so incompletely and

incorrectly. Until these background-repeat values have better support,

background-size is your best bet for ensuring background images

don’t get cut off, though it’s not as flexible as round and space are.

F I G U R E 3 . 5

The browser has
scaled the image
to fit twice across
the width and once
across the height,
distorting it but keep-
ing it from cutting off.

CHAPTER 3: NOTEBOOK PAPER104

M A K I N G T H E PA P E R L I N E S S C A L E W I T H T H E T E X T

In order to make our paper background image scale with the text,
we need to set its dimensions not in percentages or pixels, but in
ems. Ems are a relative unit of measurement based on the current
font height.

To get started, download the exercise files for this chapter at www.
stunningcss3.com, and open paper_start.html in your code editor of
choice. Its CSS is contained in a style element in the head of the page.

Find the #paper rule in the CSS, and add the background-size prop-
erty, plus the Mozilla and Webkit equivalents:

#paper {
 float: left;
 margin: 40px;
 padding: 3.2em 1.6em 1.6em 1.6em;
 background: url(images/paperlines.gif) #FBFBF9;
 -moz-background-size: auto 1.6em;
 -webkit-background-size: auto 1.6em;
 background-size: auto 1.6em;
}

Opera, Chrome, Safari 5, Firefox 4, and IE 9 use the standard back-
ground-size property; Firefox 3.6 and Safari 4 and earlier use the
-moz- and -webkit- versions of the property, respectively. In each
property, we’re telling the browser that we want the height of the
image to be 1.6 ems and that we want the width to just size itself pro-
portionally. The image depicts one line on the paper, so that means
that the space between every line will now be 1.6 ems tall. Why 1.6
ems? The height of each line of text is 1.6, specified by the line-
height already in place on the body element:

body {
 margin: 0;
 padding: 40px;
 background: #CCC url(images/background.gif);
 color: #333;
 font-size: 87.5%;
 font-family: Georgia, “Times New Roman”, Times, serif;
 line-height: 1.6;
}

www.stunningcss3.com
www.stunningcss3.com

BEYOND THE BASIC BACKGROUND 105

Figure 3.6 shows that the background image’s size has indeed changed,
but the text is still not lining up with the lines in the image. This is
because we haven’t set all the text sizes and margins to line up with a
regular spacing of 1.6 ems. The paragraph and list text have the correct
spacing for the background image, since their line-height is already 1.6
and their bottom margins are 1.6 ems, as you’ll see in the CSS. But the
headings need to have their margins tweaked to fall in line.

F I G U R E 3 . 6 The background image lines are closer together after applying background-size.

h1 {
 margin: -.3em 0 .14em 0;
 color: #414141;
 font-family: Helvetica, “Helvetica Neue”, Arial,
 ¬ sans-serif;
 font-size: 3.5em;
 font-weight: normal;
}
h2 {
 clear: left;
 color: #414141;
 margin: 0 0 -.14em 0;
 font-family: Helvetica, “Helvetica Neue”, Arial,
 ¬ sans-serif;
 font-size: 2.17em;
 font-weight: bold;
}

These margin values are based on trial and error. Unlike with absolute
pixel-based measurements, you’re not going to be able to find values
that work perfectly for all browsers; each browser has different ways
of rounding and translating relative measurements like ems into
the pixels displayed on the screen. In this case, these margin values
work well for Firefox, Safari, and Chrome. Everything is spaced out at
regular intervals of 1.6 ems, keeping the text aligned to the lines in the
background image (Figure 3.7).

CHAPTER 3: NOTEBOOK PAPER106

But in Opera, the text isn’t aligned, as Opera sizes the background
image just slightly smaller than the other browsers. If we were to
adjust the font sizes and margins to make everything line up in Opera,
it would mess up the alignment in the other browsers. You’ll have to
decide which browsers are more important to you, based on your
own site’s visitor statistics, and cater your measurements to those.

Once the text is aligned with the background image, if the user has a
different default text size from the norm, or scales the text size up or
down, the background image scales with it, keeping the lines always
aligned with the text (Figure 3.8). Also, if you were to later change the
base font size on the body element, everything would scale to match,
without your having to remake the background image.

F I G U R E 3 .7 The text
is now aligned to
the lines in the back-
ground image, shown
here in Firefox 3.6.

BEYOND THE BASIC BACKGROUND 107

WO R K A R O U N D S FO R I E

The background-size property doesn’t work in IE 8 and earlier,
and there are no workarounds to directly emulate it. In this case,
it’s a minor visual effect, so I think we can chalk it up as progressive
enhancement and not worry about its lack in IE.

You can, however, provide alternate styles using Modernizr, which
does detect for support of the background-size property. For
instance, you could provide a different background image altogether,
or you could provide an alternate version of the lined paper back-
ground image that has been designed to fit with a particular pixel
font size; you would set this pixel font size only for browsers that
don’t support background-size. I don’t recommend doing this here,
as pixel-based font sizes are bad for accessibility. However, Modernizr
is a good option in general for providing alternate styles when you’re
trying to scale a background image using background-size.

F I G U R E 3 . 8 Even if
the user has a larger
text size, the text stays
aligned with the back-
ground image lines.

CHAPTER 3: NOTEBOOK PAPER108

THE LOWDOWN ON THE background-size PROPERT Y

The background-size property is part of the Backgrounds and Borders module, found at www.

w3.org/TR/css3-background. Its value can be a width and height in any unit, or it can be auto.

Alternately, background-size can be set to either contain or cover. Both make the browser scale

the image proportionally. A value of contain scales it to the largest size where both its width and

height will fit inside the background area, so it doesn’t get cut off at all, but often leaves some area

with no background on it. A value of cover scales it to the smallest size where one tile of it will com-

pletely cover the background area, but allows it to get cut off where necessary to make sure the

whole area has a background image covering it.

Other than scaling lines to match text spacing, you might want to use background-size for:

 � Making the non-repeating background of the header of a page scale in a liquid or elastic layout

to always fill the whole header width

 � Making a repeating background image tile a full number of times instead of the tiles getting cut

off on the edges of the box

 � Making a large background image always fill the entire page; see www.alistapart.com/articles/

supersize-that-background-please

 � Scaling a faux-columns background image in a liquid layout; see www.css3.info/liquid-faux-

columns-with-background-size

 � Scaling a link or list item’s background image icon with its text

 � Scaling background images for the iPhone 4’s high-resolution display down by half, so that

when it doubles the pixels, as it always does, the images won’t look blurry; see http://dryan.com/

articles/posts/2010/6/25/hi-res-mobile-css-iphone-4

 � Changing the size of background images based on the size of the user’s window, using media

queries, which you’ll learn about in Chapter 6

TA B L E 3 .1 background-size browser support

IE FIREFOX OPERA SAFARI CHROME

Yes, 9+ Yes, 4+;

3.6 with -moz-

Yes Yes, 5+;

3+ with -webkit-

Yes

www.w3.org/TR/css3-background
www.w3.org/TR/css3-background
www.alistapart.com/articles/supersize-that-background-please
www.alistapart.com/articles/supersize-that-background-please
www.css3.info/liquid-faux-columns-with-background-size
www.css3.info/liquid-faux-columns-with-background-size
http://dryan.com/articles/posts/2010/6/25/hi-res-mobile-css-iphone-4
http://dryan.com/articles/posts/2010/6/25/hi-res-mobile-css-iphone-4

BEYOND THE BASIC BACKGROUND 109

Multiple Background Images on One Element

One of the changes to CSS that has brought web designers the most
joy is the ability to apply multiple background images to a single ele-
ment. In our example, we’ll be able to use this function to make the
paper look a little more realistic—we’ll beat it up a bit by adding some
stain images, as well as adding a thumbtack at the top.

Before CSS3, only one background image per box was allowed, so
you’d have to add an extra div for each extra image and apply one
image to each div. If you could count on other particular blocks
already being inside your divs, such as a h3 element always being the
first nested element, you could apply background images to these
other blocks instead of adding extra divs. However, doing so could be
risky, as you would be relying on certain types of content always being
present and in particular places; if those pieces of content weren’t
there, of course their background images wouldn’t show up.

This nesting divs method wasn’t difficult, but it was messy. It junked
up your markup and increased the pages’ file size. To add more images
later, you’d need to not only change the CSS, but the HTML as well.

With CSS3, you can leave the HTML alone and instead simply list each
background image in the background-image or background property,
separated by commas. Each image can be positioned, repeated, sized,
and otherwise controlled independently.

Figure 3.9 shows the extra images we want to apply to our article div.
To apply them, add a new background declaration under the existing
one in the #paper rule:

#paper {
 float: left;
 margin: 40px;
 padding: 3.2em 1.6em 1.6em 1.6em;
 background: url(images/paperlines.gif) #FBFBF9;
 background: url(images/thumbtack.png),
 url(images/stains1.png),
 url(images/stains2.png),
 url(images/stains3.png),
 url(images/stains4.png),
 url(images/paperlines.gif) #FBFBF9;
 -moz-background-size: auto 1.6em;
 -webkit-background-size: auto 1.6em;
 background-size: auto 1.6em;
}

N OT E : The line breaks

and indentions in the

background prop-

erty are just there to

make the CSS easier

to read. You can write

everything on one line,

or not—it works the

same regardless.

CHAPTER 3: NOTEBOOK PAPER110

The first background declaration will continue to be used by IE and
other browsers that don’t support multiple background images.
Because they don’t understand the syntax of the second background
declaration, they’ll ignore it. Browsers that do support multiple back-
ground images will override the first declaration with the second.

The background images are layered on top of each other, with the
first declared image put on top of the stack. That’s why the thumbtack
image is listed first and the lines image is listed last.

We’re not quite done yet, though. We haven’t told the browser how we
want to repeat, position, and size each image. To do this, treat each
snippet between the commas as if it were its own standalone back-
ground shorthand property, and write each of the background-related
properties in it accordingly. Figure 3.10 shows all the pieces that can
go in the background shorthand property. The order matters for some
and not for others, so I recommend sticking with the order shown
in 3.10 just so you don’t get confused or accidentally make a mistake.
(I know I would otherwise!)

Using the order shown in the diagram in Figure 3.10, add the position-
ing and repeat values after each image in the background property:

background: url(images/thumbtack.png) 50% 5px no-repeat,
 url(images/stains1.png) 90% -20px no-repeat,
 url(images/stains2.png) 30% 8% no-repeat,
 url(images/stains3.png) 20% 50% no-repeat,
 url(images/stains4.png) 40% 60% no-repeat,
 url(images/paperlines.gif) #FBFBF9;

F I G U R E 3 .9 The five
extra background
images to add
graphic detail to the
notebook paper

N OT E : The water stain

images shown in Figure

3.9 were created with

the Photoshop brushes

by Obsidian Dawn from

www.obsidiandawn.

com/water-stains-

photoshop-gimp-

brushes.

F I G U R E 3 .1 0

The background short-
hand property can
contain multiple layers;
the top layer of this
diagram includes all
the possible pieces of
the property (minus
color, which can go only
into the final layer).

www.obsidiandawn.com/water-stainsphotoshop-gimpbrushes
www.obsidiandawn.com/water-stainsphotoshop-gimpbrushes
www.obsidiandawn.com/water-stainsphotoshop-gimpbrushes
www.obsidiandawn.com/water-stainsphotoshop-gimpbrushes

BEYOND THE BASIC BACKGROUND 111

Next, modify the background-size properties to tell the browser that
each image should be sized using its native dimensions, except for the
last (the lines image):

-moz-background-size: auto, auto, auto, auto, auto,
 auto 1.6em;
webkit-background-size: auto, auto, auto, auto, auto,
 auto 1.6em;
background-size: auto, auto, auto, auto, auto, auto 1.6em;

Each comma-separated value matches up with the comma-separated
value at the same spot in the background property’s value list.

Although you can technically include background-size informa-
tion in the background shorthand property, it won’t work right now.
Older versions of Firefox and Safari need background-size declared
using the vendor-prefixed properties, and although Opera, Chrome,
Safari 5, Firefox 4, and IE 9 might accept background-size in the
background property, adding it would break those older versions of
Firefox and Safari. So, to keep it working everywhere, and to keep
yourself from confusing the values for background-position and
background-size (very easy to do!), keep background-size written
separately from background.

Save your page and view it in an up-to-date browser. You should still see
the text aligned with the notebook paper lines, but also see four stains
scattered across the paper and a thumbtack at the top (Figure 3.11).

F I G U R E 3 .1 1 All six background images show at various points across the div.

The nice thing about setting each of these images independently,
instead of combining them into one big image that you set on a single
nested div, is that the images can move around based on the size of the
div. No matter what size or dimensions the div has, there will be stain
images distributed nicely across it, instead of clustered in one spot.

N OT E : The page with

all the changes to this

point is named paper_1.

html in the exercise files

that you downloaded

for this chapter.

CHAPTER 3: NOTEBOOK PAPER112

THE LOWDOWN ON MULTIPLE BACKGROUND IMAGES

Multiple background images are a new feature of the background and background-image proper-

ties, not a new property itself. These properties are part of the Backgrounds and Borders module,

found at www.w3.org/TR/css3-background.

List each background image in the background-image or background property, separated by com-

mas. The background images are layered on top of each other, with the first declared image put on

top of the stack.

Each image can be positioned, repeated, sized, and otherwise controlled independently. To do so,

include this background styling information with each image URL in the background property, or

add a comma-separated list of values to each independent background property, such as back-

ground-repeat: no-repeat, no-repeat, repeat-x, repeat. Each value in the list matches

up with a value in the list of background images.

Other than layering stain images over a paper background pattern, you might want to use multiple

background images for:

 � Flexible boxes with fancy or irregular corners or edges that other CSS3 properties like border-

radius can’t handle, such as ornate buttons that would still need images; see http://css-tricks.

com/css3-multiple-backgrounds-obsoletes-sliding-doors

 � Opening and closing quotation mark images on a blockquote; see http://css.dzone.com/news/

multiple-backgrounds-oh-what-beautiful-thing

 � The parallax effect, where resizing a window or hovering over a div makes the images appear

to move at different speeds in relation to each other; see www.paulrhayes.com/2009-04/

auto-scrolling-parallax-effect-without-javascript

 � Making what appears to be a single image stretch across the whole width of a box or page,

while it’s really made up of multiple pieces, such as a landscape image with a sun that you

always want to appear in the top right corner and a tree that you always want to appear in the

bottom left corner

 � Distributing images across the full width or height of a box, using percentage positions to keep

them spaced out from each other, such as multiple cloud images over a blue background color

 � Creating the appearance of an object from real life, using a top image slice, repeating middle

slice, and bottom slice, all on the same box

 � Applying a CSS3-generated gradient (remember, it goes in the background-image property, not

background-color) along with a background image, to fade out a texture, blend the edges of

an image into a solid color, or reveal portions of an image as the user scrolls down the page; see

http://atomicrobotdesign.com/blog/htmlcss/make-the-thinkgeek-background-effect-using-css3

www.w3.org/TR/css3-background
www.paulrhayes.com/2009-04/auto-scrolling-parallax-effect-without-javascript
www.paulrhayes.com/2009-04/auto-scrolling-parallax-effect-without-javascript
http://css-tricks.com/css3-multiple-backgrounds-obsoletes-sliding-doors
http://css-tricks.com/css3-multiple-backgrounds-obsoletes-sliding-doors
http://css.dzone.com/news/multiple-backgrounds-oh-what-beautiful-thing
http://css.dzone.com/news/multiple-backgrounds-oh-what-beautiful-thing
http://atomicrobotdesign.com/blog/htmlcss/make-the-thinkgeek-background-effect-using-css3

BEYOND THE BASIC BACKGROUND 113

TA B L E 3 . 2 Multiple background images browser support

IE FIREFOX OPERA SAFARI CHROME

Yes, 9+ Yes, 3.6+ Yes, 10.5+ Yes Yes

WO R K A R O U N D S FO R N O N - S U P P O RT I N G B R OWS E R S

IE 8 and earlier plus older versions of Firefox and Opera don’t support
multiple background images. In a case like this, where the additional
images are just extra decoration, you don’t have to worry about provid-
ing workarounds. They’ll still see the lined-paper background, which is
a complete image in itself, with no clue that anything’s lacking.

However, there may be times when missing out on the extra images
would create an overall effect that looks incomplete or broken. For
instance, if you’re using multiple background images to create a com-
plex button, with a left, middle, and right slice, the button will look
broken if only one slice can be seen. Be careful about using multiple
background images in cases like these, as you only have a few options
for workarounds:

 � Use a single fallback image. The simplest workaround for non-
supporting browsers is to provide it with a single background
image, either in a separate background-image declaration listed
before the one using multiple images (the method we’ve used
here) or by using Modernizr. Make sure this single image can stand
on its own. This is easy to implement and doesn’t harm support-
ing browsers, but it won’t provide a sufficient appearance in cases
where the page truly looks broken without the extra images.

 � Nest divs to hold extra images. A more robust but work-intensive
workaround than the single fallback image is to go back to the old
method of nesting divs and applying separate images to separate
boxes. If you do this, you’ll need to use Modernizr or IE condi-
tional comments to feed different rules to browsers with different
support. Otherwise, you’d get double the backgrounds in brows-
ers that support multiple background images. Of course, if you’re
going to be adding the extra divs and background rules anyway,
you might as well stop using multiple background images at all
and just use this old technique for all browsers, regardless of sup-
port. So I’m not sure that this workaround makes a lot of sense.

 � Generate the extra elements to hold extra images. A cleaner way
of implementing the “Nest divs” workaround is to use the :before

CHAPTER 3: NOTEBOOK PAPER114

and :after pseudo-elements to generate extra elements, to which
you can then apply extra background images. The article “Multiple
Backgrounds and Borders with CSS 2.1” by Nicolas Gallagher
(http://nicolasgallagher.com/multiple-backgrounds-and-borders-
with-css2) explains how to do this. This would work well for IE 8
and Firefox 3.5, for instance, but IE 6 and 7 don’t support these
pseudo-elements, making this technique fail to work in those
browsers—unless you also added a script to force older versions of
IE to support these selectors. And you’d need to make sure brows-
ers that do support multiple background images don’t see the
images on the pseudo-elements. At this point, the workaround
would be getting pretty complicated! Again, you’ll have to decide
if what may amount to simply extra decoration is worth it for you
and your users.

 � Use canvas. If you’re comfortable with scripting, you can use the
HTML5 canvas element to draw multiple images on a single ele-
ment. IE 8 and earlier don’t support canvas, but Google’s “explorer-
canvas” script (http://code.google.com/p/explorercanvas) can
make it work. Explaining how to use canvas is beyond the scope
of this book, but Hans Pinckaers’ mb.js script (http://github.com/
HansPinckaers/mb.js) has already done the work for you, making
multiple backgrounds work in IE and older non-IE browsers.

Adding a Graphic Border

Another graphic detail that would be nice to add is a border on the left
side of the paper to make it look like it was torn from a spiral notebook
(Figure 3.12). There are a couple ways we can do this with CSS3.

U S I N G B AC KG R O U N D I M AG E S

One way to add the torn paper edge is by adding it as another back-
ground image, set to repeat down only. But the edge image has trans-
parent areas in it (the holes in the paper), so the lines background
image below it will show through. If our page had a solid background
color instead of a pattern, we could fill the transparent areas of the
edge image with that solid color, obscuring the lines background
image and blending into the page background color seamlessly. But
that won’t work in our page.

Without a solid background color on the page, your only option is to
wrap another div around the paper div, and set the edge image as

F I G U R E 3 .1 2 Torn spiral
notebook-paper edge

http://nicolasgallagher.com/multiple-backgrounds-and-borderswith-css2
http://nicolasgallagher.com/multiple-backgrounds-and-borderswith-css2
http://code.google.com/p/explorercanvas
http://github.com/HansPinckaers/mb.js
http://github.com/HansPinckaers/mb.js

BEYOND THE BASIC BACKGROUND 115

the background on this wrapper div. You could then give the wrap-
per enough left padding to keep the inner div from overlapping the
edge image and obscuring it. This wouldn’t be ideal, since it would
add extra markup, but it would work in all browsers and with all page
backgrounds.

One small disadvantage of setting the edge image as a background is
that we can’t control how it gets clipped at the bottom of the div. It’s
possible that the div would end in the middle of one of the holes in
the edge, which isn’t what a full sheet of real spiral notebook paper
looks like (Figure 3.13). I will admit this is hardly a tragedy—it’s a very
minor, nitpicky problem. But if we can fix the problem easily with
CSS, why not fix it?

The CSS3 solution is to set background-repeat on the edge image to
round—a new value for the property introduced in CSS3. This makes
the browser repeat the image as many times as it will fit, and if it
doesn’t fit a whole number of times, the browser rescales the image
so that it will fit without clipping off at the end.

Unfortunately, only IE 9 and Opera support the round value at the
time of this writing, and Opera does so imperfectly. So, background-
repeat: round is not a usable solution right now. Luckily, we can
forgo using a background image entirely and use the new border-
image property instead.

U S I N G border-image

CSS3 allows you to assign an image to a border, in addition to (or instead
of) a color and line style. The browser will take a single image, slice it
into pieces, and stretch or tile each of those pieces across each border.

For instance, let’s say that Figure 3.14 is the image we want to use for
the borders on a div. We want to use the top 30 pixels of the image
for the top border, the right 25 pixels for the right border, the bot-
tom 27 pixels for the bottom border, and the left 34 pixels for the left
border (Figure 3.15). We need to use these values as both our border
widths and our border image slice locations.

.clouds {
 width: 400px;
 height: 150px;
 border-width: 30px 25px 27px 34px;
 border-image: url(clouds.png) 30 25 27 34 stretch;
}

F I G U R E 3 .1 3

With the edge image
as a repeating back-
ground image, it can
get cut off in the middle
of one of the holes.

N OT E : You can actu-

ally use different values

for the border widths

and the correspond-

ing image slice loca-

tions. The browser

will scale each image

slice to fit the border

width it’s applied to.

CHAPTER 3: NOTEBOOK PAPER116

30 px

34 px

27 px

25 px

F I G U R E 3 .1 5 The lines indicate where we want
to virtually slice the image into pieces that
can be tiled or stretched across the borders.

F I G U R E 3 .1 4 This image
has irregular borders that
can be stretched and tiled
using border-image.

The first part of the border-image value is the path to the image,
which works just like any other path in CSS.

Next comes one or more numbers to specify where the browser
should slice the image. In this case, we’re using four numbers, since
we want four different amounts sliced off from each edge. The first
number, 30, is the inward offset from the top edge of the image, in
pixels. The second number, 25, is the inward offset from the right
edge, the third is the offset from the bottom, and the fourth is the
offset from the left. The browser will slice the image at each of these
lines, creating nine images that it applies to each border, each corner,
and the middle of the box.

THE CENTER SLICE

The center slice of the border image is used to cover the entire middle

area of the box, inside the border area. This doesn’t seem very intui-

tive, but it does give you more styling options. If you don’t want the

middle of the border image to obscure the background image or color

beneath it, use your graphics program to make the middle portion of

the image you’re using transparent, and save the image as a transpar-

ent GIF or PNG.

The spec says that this center slice should be discarded by default,

unless you add the word fill to your border-image value. However,

right now no browser seems to support the fill keyword, and they all

“fill” by default, with no option to “not fill.”

N OT E : Strangely, you

must leave the “px”

unit off the slice values

in the border-image

property. Or, you can

use percentages for slice

values, relative to the

image itself; in this case,

you must include the %

sign after the number.

BEYOND THE BASIC BACKGROUND 117

THE LOWDOWN ON THE border-image PROPERT Y

The border-image property is part of the Backgrounds and Borders module, found at www.w3.org/

TR/css3-background. It’s a shorthand property, but you can’t use the individual properties right now,

since no browser supports them declared outside of the shorthand border-image property.

In the border-image property, you specify an image, how far in from each edge you want the

browser to slice the image, and how to repeat each image (except the corners) across its border.

You can use one to four slice values, depending on whether each side needs to be sliced differently.

One value applies the same slice offset to all four sides; two values applies the first to the top and bot-

tom and the second to the right and left; three values applies the first to the top, second to the right

and left, and third to bottom; and four values applies each to an individual side, starting at the top

edge and going clockwise. See Figure 3.15 for a diagram of where the browser slices a border image.

The repeat value can be set to stretch, repeat, round, or space. Using one repeat value will apply

the value to all four sides, while two repeat values applies the first value to the top and bottom

borders and the second value to the left and right sides. A value of repeat will tile all four edges

plus the center; stretch will stretch them to fill the area; round will tile and scale them so each fits

a whole number of times; and space will tile them so each fits a whole number of times and then

evenly distribute the extra space between the tiles.

Remember to always set border-width in conjunction with border-image to create a border area

for the image to draw onto. There is also a border-image-width property, but no browser cur-

rently supports it, nor does any browser currently support border-image-outset.

Sadly, border images don’t conform to curved borders created by border-radius.

Other than creating a torn-edge look, you might want to use border-image for:

 � Buttons; see http://ejohn.org/blog/border-image-in-firefox

 � Gradient backgrounds

 � Scalloped edges to create the effect of a stamp or raffle ticket

 � Graphic edges to create the effect of a picture frame or certificate; see www.norabrowndesign.

com/css-experiments/border-image-frame.html

 � A curved or angled edge of a box

 � Box drop shadows that are curved or angled (box-shadow can do only straight drop shadows,

but you can create an image of an irregular shadow and apply it as a border image)

www.w3.org/TR/css3-background
www.w3.org/TR/css3-background
http://ejohn.org/blog/border-image-in-firefox
www.norabrowndesign.com/css-experiments/border-image-frame.html
www.norabrowndesign.com/css-experiments/border-image-frame.html

CHAPTER 3: NOTEBOOK PAPER118

TA B L E 3 . 3 border-image browser support

IE FIREFOX OPERA SAFARI CHROME

No Partial with

-moz-, 3.5+

Partial, 10.5+ Partial with

-webkit-

Partial

How exactly the browser applies these images depends on the third
part of the border-image property: the repeat value. In this example,
we’re using a value of stretch, which will make the browser stretch
all four border images, plus the center (but not the corners), to
fill the available space (Figure 3.16). You can also set it to repeat
(Figure 3.17), round (Figure 3.18), or space. (The round value is sup-
ported only by Firefox and Opera currently.) No browser currently
supports the space value, so I can’t show you a screenshot!

F I G U R E 3 .1 6 This border-image has been stretched. F I G U R E 3 .1 7 This border-image has been repeated.

F I G U R E 3 .1 8 This border-image has been rounded.

BEYOND THE BASIC BACKGROUND 119

A P P LY I N G T H E TO R N - E D G E I M AG E

Let’s put border-image to use in our page to apply the torn-paper
edge image, shown in Figure 3.12, to the article div. We want to apply
the image only to the left border, so we’ll make that border 50 pixels
wide—the width of the image—and set the other borders to zero:

#paper {
 float: left;
 margin: 40px;
 padding: 3.2em 1.6em 1.6em 1.6em;
 border-width: 0 0 0 50px;
 background: url(images/paperlines.gif) #FBFBF9;
 background: url(images/thumbtack.png) 50% 5px no-repeat,
 url(images/stains1.png) 90% -20px no-repeat,
 url(images/stains2.png) 30% 8% no-repeat,
 url(images/stains3.png) 20% 50% no-repeat,
 url(images/stains4.png) 40% 60% no-repeat,
 url(images/paperlines.gif) #FBFBF9;
 -moz-background-size: auto, auto, auto, auto, auto,
 auto 1.6em;
 -webkit-background-size: auto, auto, auto, auto, auto,
 auto 1.6em;
 background-size: auto, auto, auto, auto, auto,
 auto 1.6em;
}

PL AYING WITH BORDER IMAGES

The border-image property is pretty confusing—I won’t deny it. If, after

walking through the examples provided, you’re still feeling a little unsure, I

highly recommend you check out these border image web tools:

 � “border-image-generator” by Kevin Decker (http://border-image.

com) allows you to upload any image to see how it will look when

applied as a border image. You can change the slice offsets, bor-

der widths, and repeat method and instantly see how your border

image changes.

 � “Grokking CSS3 border-image” by Nora Brown (www.norabrowndesign

.com/css-experiments/border-image-anim.html) uses five preset

images and lets you change between a few preset border-image

values to see how the images are affected.

Getting to change values on the fly and see how they affect the visual

output is one of the best ways to learn how a piece of CSS works.

http://border-image.com
http://border-image.com
www.norabrowndesign.com/css-experiments/border-image-anim.html
www.norabrowndesign.com/css-experiments/border-image-anim.html

CHAPTER 3: NOTEBOOK PAPER120

Next, we’ll apply the border image, using the standard border-image
property for Chrome and Opera and the prefixed properties for
Firefox and Safari:

#paper {
 float: left;
 margin: 40px;
 padding: 3.2em 1.6em 1.6em 1.6em;
 border-width: 0 0 0 50px;
 -moz-border-image: url(images/edge.png) 0 0 0 50 round;
 -webkit-border-image: url(images/edge.png) 0 0 0 50
 ¬ round;
 border-image: url(images/edge.png) 0 0 0 50 round;
 background: url(images/paperlines.gif) #FBFBF9;
 background: url(images/thumbtack.png) 50% 5px no-repeat,
 url(images/stains1.png) 90% -20px no-repeat,
 url(images/stains2.png) 30% 8% no-repeat,
 url(images/stains3.png) 20% 50% no-repeat,
 url(images/stains4.png) 40% 60% no-repeat,
 url(images/paperlines.gif) #FBFBF9;
 -moz-background-size: auto, auto, auto, auto, auto,
 auto 1.6em;
 -webkit-background-size: auto, auto, auto, auto, auto,
 auto 1.6em;
 background-size: auto, auto, auto, auto, auto,
 auto 1.6em;
}

We’ve set each of the slice locations to zero except for the left one;
we don’t want to slice off any from the top, right, or bottom, but we
do want to slice in from the left edge by 50 pixels so that the entire
50-pixel-width of the image is used for the left border.

For the repeat value, we’ve used round to repeat the image but keep it
from ending in the middle of a hole. Since Safari and Chrome don’t
support this value, they treat it as repeat instead, which is an accept-
able second choice.

U S I N G background-clip TO P O S I T I O N I M AG E S

Our edge image is now repeating down the left side of the div, but the
background image is showing through it (Figure 3.19). That’s because,
by default, borders are drawn on top of the background area. You
may have never noticed it before, because usually your borders are
just solid lines, without any transparent pieces. But change your

BEYOND THE BASIC BACKGROUND 121

border-style to dashed and you’ll see what I mean. Border images are
placed the same way.

ORDER OF THE BACKGROUND PROPERTIES

Normally, the order I write the properties in each rule is irrelevant; it’s

just a standard order that I always use, and you can feel free to reorder

the properties however you like. In the case of background-clip, how-

ever, make sure to write it after the shorthand background property, as

shown, because background-clip can be included in the shorthand

background property (see Figure 3.10). If you write background-clip

separately first, and then write the background property without

any background-clip information in it, you’re effectively telling the

browser you want to use the default value of border-box, overriding

the earlier background-clip values.

So why not just include the background-clip value we want in the

shorthand background property? We can’t, for the same reasons we

can’t include the background-size values in the background property

right now: some browsers need prefixes and don’t yet understand the

standard property, by itself or in the background shorthand property.

F I G U R E 3 .1 9 The torn-edge
image repeats down the left side,
but overlaps the background.

CHAPTER 3: NOTEBOOK PAPER122

THE LOWDOWN ON THE
background-clip PROPERT Y

The background-clip property is part of the Backgrounds and

Borders module, found at www.w3.org/TR/css3-background. It controls

under which sections of a box the background is painted.

The allowed values are border-box (the default value to paint back-

grounds under borders), padding-box (to clip backgrounds at the

outer edge of the padding area and not extend under borders), and

content-box (to clip backgrounds at the outer edge of the content

area and not extend under padding or borders). Firefox 3.6 and earlier

don’t support content-box, and use values of border and padding,

not border-box and padding-box; Firefox 4 doesn’t have these

issues. Safari 5 supports the border-box and padding-box values in

the standard background-clip property, but supports only content-

box in the -webkit-background-clip property.

Webkit also supports a value of text, available only in the -webkit-

prefixed property, which makes the text act like a mask on the back-

ground image, obscuring whatever parts of the background image are

not behind the text. It’s a cool effect, but probably won’t make it into

the spec. For more information and examples, see www.css3.info/web-

kit-introduces-background-cliptext, http://trentwalton.com/2010/03/24/

css3-background-clip-text, and http://trentwalton.com/2010/04/06/

css3-background-clip-font-face.

Other than moving a background out from under a border image, you

might want to use background-clip for:

 � Moving a background color or image out from under a dashed or

dotted border

 � Creating the appearance of a double border, one made from

the actual border and one made from the padding, by using

content-box

 � Keeping the background color from bleeding outside the edges

of rounded corners, as sometimes happens in Webkit-based

browsers, by using padding-box; see http://tumble.sneak.co.nz/

post/928998513/fixing-the-background-bleed

www.w3.org/TR/css3-background
www.css3.info/webkit-introduces-background-cliptext
www.css3.info/webkit-introduces-background-cliptext
http://trentwalton.com/2010/03/24/css3-background-clip-text
http://trentwalton.com/2010/03/24/css3-background-clip-text
http://trentwalton.com/2010/04/06/css3-background-clip-font-face
http://trentwalton.com/2010/04/06/css3-background-clip-font-face
http://tumble.sneak.co.nz/post/928998513/fixing-the-background-bleed
http://tumble.sneak.co.nz/post/928998513/fixing-the-background-bleed

BEYOND THE BASIC BACKGROUND 123

TA B L E 3 . 4 background-clip browser support

IE FIREFOX OPERA SAFARI CHROME

Yes, 9+ Yes, 4+;

Partial, 1+,

with -moz-

Yes Yes, 3+,

with -webkit-;

Partial, 5+

Yes

Luckily, we can change this default behavior with CSS3. CSS3 lets you
control where backgrounds are placed relative to the borders with
the new background-clip property. The default value, border-box,
makes backgrounds extend under the borders as they’ve always done.
Setting background-clip to padding-box starts the backgrounds inside
the borders, under the padding area:

#paper {
 float: left;
 margin: 40px;
 padding: 3.2em 1.6em 1.6em 1.6em;
 border-width: 0 0 0 50px;
 -moz-border-image: url(images/edge.png) 0 0 0 50 round;
 -webkit-border-image: url(images/edge.png) 0 0 0 50
 ¬ round;
 border-image: url(images/edge.png) 0 0 0 50 round;
 background: url(images/paperlines.gif) #FBFBF9;
 background: url(images/thumbtack.png) 50% 5px no-repeat,
 url(images/stains1.png) 90% -20px no-repeat,
 url(images/stains2.png) 30% 8% no-repeat,
 url(images/stains3.png) 20% 50% no-repeat,
 url(images/stains4.png) 40% 60% no-repeat,
 url(images/paperlines.gif) #FBFBF9;
 -moz-background-size: auto, auto, auto, auto, auto,
 auto 1.6em;
 -webkit-background-size: auto, auto, auto, auto, auto,
 auto 1.6em;
 background-size: auto, auto, auto, auto, auto,
 auto 1.6em;
 -moz-background-clip: padding;
 -webkit-background-clip: padding-box;
 background-clip: padding-box;
}

Chrome, Safari 5, Firefox 4, and Opera use the standard property,
while Firefox 3.6 and earlier and Safari 4 and earlier use the prefixed
versions. Note also that the -moz-background-clip property takes a
value of padding instead of the standard padding-box.

CHAPTER 3: NOTEBOOK PAPER124

Making this change moves the lines background image out from
under the border image (Figure 3.20).

WO R K A R O U N D S FO R N O N - S U P P O RT I N G B R OWS E R S

Browsers that don’t support border-image won’t know what they’re
missing, in this case, as they’ll still see the regular lined-background
image. If you must have the torn edge, you can go back to using a
background image for it on an additional wrapper div, as described
earlier.

If you do this, you’ll either need to remove the border-image from all
the other browsers, or you’ll need to hide the background image from
the browsers that support border-image. I like the second approach,
as it allows you the extra flexibility of having border images without
too much extra work. Simply use Modernizr or IE conditional com-
ments to create a wrapper rule that only certain browsers can see.
This rule would assign left padding and the edge background image:

#wrapper {
 padding-left: 50px;
 background: url(images/edge.png) repeat-y;
}

F I G U R E 3 . 2 0

The background-clip
property moves the
background image
out from under the
border image.

BEYOND THE BASIC BACKGROUND 125

The other browsers wouldn’t see this rule at all. They’d still see the
wrapper div in the HTML, of course, but they wouldn’t apply any
styles to it.

Alternately, you could combine the lined paper image with the torn
edge image and apply this merged image to the existing div named
paper. That would allow you to do away with the extra wrapper div,
but it may be more work-intensive to have to maintain different
images for different browsers. Again, you’d need to make sure that
browsers that do support border-image continue to use the two sepa-
rate images—one as the background and one as the border image.

There are a few ways to make border-image work through script-
ing, rather than ditching it in favor of background images. However,
the scripting solutions work only when you’re stretching the border
images, not repeating or rounding them, so a script won’t do in our
case. But if your own project just needs stretched border images,
check out:

 � PIE by Jason Johnston (http://css3pie.com), described in Chapter 2.
PIE also includes limited support for the border-image property in
IE 6 through 8.

 � borderImage by Louis-Rémi Babé (http://github.com/lrbabe/bor-
derimage), a jQuery plugin that emulates border-image using VML
for IE and canvas for non-IE browsers. You can find more descrip-
tion of how to use it at www.lrbabe.com/sdoms/borderImage.

Adding a Drop Shadow

In Chapter 2, you learned about the box-shadow property to create
drop shadows beneath boxes. Our notebook-paper article seems like
a good place for it as well, so let’s add it. But we have to be careful—the
drop shadow won’t conform to the ragged edge of the border image,
but rather to the box as a whole. That means that if the drop shadow
shows on the left side of the box, you’ll end up with a strange-looking
straight-edged shadow that’s slightly offset from the jagged paper
edge (Figure 3.21).

F I G U R E 3 . 2 1

Drop shadows conform
to the div’s straight
edge, not to any jagged
lines within border or
background images.

http://css3pie.com
http://github.com/lrbabe/borderimage
http://github.com/lrbabe/borderimage
www.lrbabe.com/sdoms/borderImage

CHAPTER 3: NOTEBOOK PAPER126

To avoid this problem, place the shadow far enough to the right to not
peek out at all on the left edge. Add the following three lines to the
#paper rule:

-moz-box-shadow: 6px 5px 3px hsla(0,0%,0%,.2);
-webkit-box-shadow: 6px 5px 3px hsla(0,0%,0%,.2);
box-shadow: 6px 5px 3px hsla(0,0%,0%,.2);

This creates a shadow below the right and bottom edges of the paper
(Figure 3.22).

Since Safari and Chrome don’t support round for the repeat value
on the border image, it’s possible to get a cut-off hole at the bottom
of the paper, making the shadow underneath it look a little strange
(Figure 3.23). It’s not very noticeable, but if this really bothers you,
remove the -webkit-box-shadow declaration. (Sometimes it’s nice
having each browser declared separately, isn’t it!)

Of course, now the drop shadow will be gone in Webkit-based brows-
ers. To create a drop shadow in Safari and Chrome without using
-webkit-box-shadow, you could create an image of a shadow and
apply it as a border image to the right and bottom borders, using the
-webkit-border-image property.

Embedding Unique Fonts
We’ve done a lot of work on the background of the article so far. Now
let’s apply some extra styling to the actual content. We can use @font-
face rules to make the headings look like they are handwritten—and
this trick even lets IE in on the fun.

N OT E : The page with

all the changes to this

point is named paper_2.

html in the exercise files

that you downloaded

for this chapter.

F I G U R E 3 . 2 2 This drop
shadow works bet-
ter, showing on the
right side of the div.

F I G U R E 3 . 2 3 The drop
shadow in Safari or
Chrome might show up
under an empty hole.

EMBEDDING UNIQUE FONTS 127

What is @font-face?

The @font-face rule is a way of linking to fonts on your server (just
as you can link to images) that the browser downloads into its cache
and uses to style the text on the page. It’s often called font embedding
(though the fonts aren’t truly embedded anywhere), and the fonts
that are “embedded” are called web fonts.

The @font-face rule was actually part of CSS 2 back in 1998, but was
removed from the CSS 2.1 specification. It’s now back, in CSS3, and
finally has widespread browser support.

Until now, without web fonts, web designers have been limited to
the small handful of common fonts installed on all users’ comput-
ers, called web-safe fonts. Designers who didn’t want to use just Arial,
Verdana, or Georgia (among a few more) would have to resort to
images, Flash, or scripting to create their text using unique fonts.
These font-replacement techniques all suffer from accessibility and
usability problems to varying degrees. They’re also much more work-
intensive to implement and maintain, and they can degrade the per-
formance of your pages.

Using @font-face, on the other hand, keeps real text in the page. You
don’t have to depend on the user having the Flash plugin installed or
JavaScript operating. You don’t have to create any images or scripts,
and your users don’t have to download them. The work involved to
implement it can be as simple as writing CSS like this:

@font-face {
 font-family: Raleway;
 src: url(fonts/raleway_thin.otf);
}
h1 {
 font-family: Raleway, “HelveticaNeueLt Std Thin”,
 ¬ “Helvetica Neue Light”, “HelveticaNeue-Light”,
 ¬ “Helvetica Neue”, Helvetica, Arial, sans-serif;
}

This tells the browser to use the raleway_thin.otf font file to render
the text inside the h1 element (Figure 3.24). If the user’s browser
doesn’t support @font-face or can’t download the file for some rea-
son, the browser simply works through the font stack for a fallback.
The font stack is the list of fonts declared in the font-family property,
which the browser tries to load from the user’s machine, in order,
until it finds a font it can use.

N OT E : For the

considerations that

should go into craft-

ing a good font stack,

as well as many links

to proven font stacks

and other resources,

see http://nicewebtype.

com/notes/2009/04/23/

css-font-stacks.

http://nicewebtype.com/notes/2009/04/23/css-font-stacks
http://nicewebtype.com/notes/2009/04/23/css-font-stacks
http://nicewebtype.com/notes/2009/04/23/css-font-stacks

CHAPTER 3: NOTEBOOK PAPER128

As you might have suspected, however, using @font-face is more
complicated in the real world.

Choosing Acceptable Fonts

One of the big issues with web fonts is that not every font ought to be
used in web pages. Some fonts have licensing restrictions that forbid
such a use, while others simply don’t look good on the web.

L I C E N S I N G I S S U E S

When choosing a font to use, read its license—often called an end-user
license agreement (EULA) or terms of use—to see if it allows web font
embedding. Many fonts’ licenses don’t, because when you use @font-
face, the font file is downloaded into the user’s cache, just like images.
The user could go into her cache, take the font file, and install it on
her system. Most font vendors are not interested in simply giving their
products away to the thousands of people who browse your web site.

Of course, not many users are really going to go to this trouble.
But Richard Fink describes the bigger problem font vendors have
with font embedding in his article “Web Fonts at the Crossing”
(www.alistapart.com/articles/fonts-at-the-crossing):

The fear is that once fonts are on the web, they will become a com-
modity, the current model will break, and a devaluation of fonts, in
general, will occur. The fear is that font designers will no longer be
able to charge a print customer, say, $420 for a four-style font family
with a 6–10 user license in a world where fonts are being delivered on
web sites to virtually unlimited numbers of “users” who don’t have to
pay anything at all. What if the web drives down prices in the print
sector and doesn’t generate much revenue on its own?

F I G U R E 3 . 2 4

Using @font-face,
you can display a
non-standard font.

N OT E : There are

ways you can make

your font files more

secure. See http://

subjectiveobject.

com/2009/10/28/

securing-font-face

for a brief discussion

of options, as well as

http://typefront.com.

www.alistapart.com/articles/fonts-at-the-crossing
http://subjectiveobject.com/2009/10/28/securing-font-face
http://subjectiveobject.com/2009/10/28/securing-font-face
http://subjectiveobject.com/2009/10/28/securing-font-face
http://subjectiveobject.com/2009/10/28/securing-font-face
http://typefront.com

EMBEDDING UNIQUE FONTS 129

Unfortunately, most fonts’ licenses were not written with @font-face
in mind, so when you read through a font’s license, it may not say
anything about not embedding fonts. Lack of a restriction doesn’t
mean you have a free pass to use the font. It’s best to err on the side of
caution and not use the font unless it explicitly says that web embed-
ding or redistribution is OK.

This is the case even with free fonts. Just because the font vendor gave
you the font for free doesn’t mean you can redistribute it. Same thing
with the fonts that came with your computer. Again, you have to
check the license to be sure.

Luckily, there are many places online to find fonts whose licenses
allow web font embedding:

 � The League of Moveable Type (www.theleagueofmoveabletype.
com) is a small but growing collection of free, open-source fonts
that are specifically provided for @font-face use. The Raleway font
used in Figure 3.24 is one of these fonts.

 � The Webfonts.info wiki has a page called “Fonts available for
@font-face embedding” (http://webfonts.info/wiki/index.
php?title=Fonts_available_for_%40font-face_embedding) that lists
fonts (mostly free) whose licenses permit embedding. But like
most wiki pages, it’s not always as up-to-date and comprehensive
as it could be.

 � Font Squirrel (www.fontsquirrel.com) provides a large collec-
tion of free fonts whose licenses allow embedding. It also provides
some handy tools for working with @font-face, as we’ll talk about
in a bit.

 � Google has a library of free fonts for embedding called Google
Font Directory (http://code.google.com/webfonts). You link to one
of the fonts on their server using the Google Fonts API, which has a
number of advantages (see http://mindgarden.de/benefit-of-the-
google-font-api). But you can also download the fonts at http://
code.google.com/p/googlefontdirectory/source/browse and host
them yourself.

 � Most of the fonts available at Kernest (www.kernest.com) are free,
and all are specifically provided for @font-face use. Some are
hosted by Kernest, but most you can download and host yourself.

 � exljbris (www.josbuivenga.demon.nl) and Fontfabric (http://
fontfabric.com) both provide a number of fonts for free that

N OT E : Although you

still ought to look at

each font’s license to be

sure, a general guide as

to which foundries allow

font embedding and

font replacement meth-

ods is available at http://

webfonts.info/wiki/

index.php?title=Web_WW

fonts_licensing_overview.

www.theleagueofmoveabletype.com
www.theleagueofmoveabletype.com
http://webfonts.info/wiki/index.php?title=Fonts_available_for_%40font-face_embedding
http://webfonts.info/wiki/index.php?title=Fonts_available_for_%40font-face_embedding
www.fontsquirrel.com
http://code.google.com/webfonts
http://mindgarden.de/benefit-of-thegoogle-font-api
http://mindgarden.de/benefit-of-thegoogle-font-api
http://code.google.com/p/googlefontdirectory/source/browse
http://code.google.com/p/googlefontdirectory/source/browse
www.kernest.com
www.josbuivenga.demon.nl
http://fontfabric.com
http://fontfabric.com
http://webfonts.info/wiki/index.php?title=Web_fonts_licensing_overview
http://webfonts.info/wiki/index.php?title=Web_fonts_licensing_overview
http://webfonts.info/wiki/index.php?title=Web_fonts_licensing_overview
http://webfonts.info/wiki/index.php?title=Web_fonts_licensing_overview

CHAPTER 3: NOTEBOOK PAPER130

can be embedded on the web, as long as you provide attribution
according to the terms in the EULAs.

 � All of the fonts at Fonthead (www.fonthead.com) are allowed to be
used with @font-face as well as other text replacement methods.

 � FontSpring (www.fontspring.com/fontface) sells fonts that can
be used both in a traditional way on your computer and in print
work, as well as embedded on the web with @font-face.

 � FontShop has created web versions of several fonts, called Web
FontFonts (www.fontshop.com/fontlist/n/web_fontfonts), that you
can buy separately from the traditional versions.

N OT E : As you can

imagine, the list of

resources shown here

is likely to change and

grow. To see the mostTT

up-to-date list of web

font sources, go to

www.stunningcss3.

com/resources.

LETTING OTHERS DO THE HEAV Y LIFTING

All the sources I listed for @font-face-ready fonts are places where you

can download fonts to host on your own servers and then do the cod-

ing yourself. Another option is to let others do all this work for you using

a font-embedding service, also called a type delivery service or font

hosting and obfuscation service (FHOS).

These services offer a collection of fonts that their distributors have

approved for web use through the service, getting around the licensing

issues of @font-face. These fonts are hosted by the service, making

them difficult or impossible to download and redistribute.

Font-embedding services are easy to use because they provide all the

different font file formats needed for different browsers, as well as

the code for you to add the fonts to your sites. This code may include

JavaScript in addition to CSS in order to make the real fonts impossible

to reuse or speed up their rendering. Most of these services are not free,

though some have free options, and the pricing models vary, such as

subscribing to a collection or paying per font and per site.

These services are popping up all over the place—many type vendors

are creating their own services for their fonts only—but here are the

major players:

 � Typekit (http://typekit.com) is a subscription-based service where

you pay yearly for access to a collection of fonts, which come from

multiple foundries. The smallest collection is free, but has other

use restrictions.

www.fonthead.com
www.fontspring.com/fontface
www.fontshop.com/fontlist/n/web_fontfonts
www.stunningcss3.com/resources
www.stunningcss3.com/resources
http://typekit.com

EMBEDDING UNIQUE FONTS 131

 � Fontdeck (http://fontdeck.com) is a subscription-based service, but

you pay for each font you want per year and per site, instead of

paying a yearly fee for a collection of fonts. The fonts come from

multiple foundries.

 � Kernest (www.kernest.com) has a subscription model similar to

Fontdeck, but nearly all of the fonts are free. The fonts come from

multiple foundries. Some are hosted by Kernest, and most you can

download and host yourself.

 � Ascender offers two services: Web Fonts from Ascender (www.

ascenderfonts.com/webfonts) and FontsLive (www.fontslive.com).

Both have a subscription model similar to Fontdeck, and the fonts

come from multiple foundries.

 � WebINK (www.extensis.com/en/WebINK) has a subscription model

similar to Typekit, but you pay a monthly fee based on the fonts’

pricing tier and your bandwidth usage. The fonts come from mul-

tiple foundries.

 � Webtype (www.webtype.com) has a subscription model similar to

Fontdeck, but pricing varies based on the bandwidth you use. The

fonts come from multiple foundries. You can also purchase tradi-

tional versions of the fonts to download and use on your desktop.

 � Typotheque (www.typotheque.com/webfonts) offers a service for

fonts from only its foundry, where you pay a one-time fee per font.

 � Just Another Foundry (http://justanotherfoundry.com/webfonts)

also offers a service for fonts from its foundry only, but you pay a

yearly subscription fee.

 � Fonts.com Web Fonts (http://webfonts.fonts.com) has a subscrip-

tion model similar to Typekit, but you pay monthly. The highest-

priced plan allows you to also download fonts to use on your

desktop, but you can use the installed font only so long as it’s being

used in a web site through their service.

If you’re thinking about using one of these services, read and use the

list of buyer considerations at the end of the article “Web Fonts at the

Crossing” at www.alistapart.com/articles/fonts-at-the-crossing before

choosing. To see the most up-to-date list of font-embedding services,

go to www.stunningcss3.com/resources.

http://fontdeck.com
www.kernest.com
www.ascenderfonts.com/webfonts
www.ascenderfonts.com/webfonts
www.fontslive.com
www.extensis.com/en/WebINK
www.webtype.com
www.typotheque.com/webfonts
http://justanotherfoundry.com/webfonts
http://webfonts.fonts.com
www.alistapart.com/articles/fonts-at-the-crossing
www.stunningcss3.com/resources

CHAPTER 3: NOTEBOOK PAPER132

R E A DA B I L I T Y A N D R E N D E R I N G I S S U E S

Once you’ve cleared the licensing hurdle, don’t go crazy and start
loading up your pages with all sorts of bizarre fonts. Every time you
choose to use a web font, have a specific reason for picking that font,
beyond just that it looks cool. Make sure that the font truly enhances
the text and doesn’t make it less readable.

Test your web fonts with your actual content to make sure they will
work. The Raleway font shown in Figure 3.24 might work well for
large headings but be too thin to render well and be readable for
body copy. Most commercial fonts were not designed to be viewed at
small sizes on a screen, so in many cases it makes the most sense to
reserve @font-face for headings and continue to use web-safe fonts
like Georgia and Lucida for body copy.

Another aspect of web fonts that can affect legibility is how they are
anti-aliased and hinted. Right now, web fonts are generally more jag-
ged around the edges than traditional fonts, even when anti-aliased,
usually because most were not designed to be viewed on screen.
Higher quality fonts, as well as fonts that were designed for the web,
have better hinting, which, in a nutshell, is a set of instructions in
the font file that adjusts the edges of the characters to line up better
with the pixel grids of our computer screens so they look better to
the human eye. Font format plays a role in this too; TrueType fonts
are generally better hinted than OpenType CFF fonts. The degree of
jaggedness depends not only on the font but on the operating sys-
tem and sometimes the browser; Mac is generally smoother than
Windows, but can look blurry. Windows XP in particular can look
quite bad if the user hasn’t enabled ClearType (Microsoft’s current
technology for improving text rendering on screen).

Not only is the readability of your web fonts important, but so too is
the readability of the fallback fonts in your font stacks. Make sure to
test the fallback fonts so that if the web font doesn’t load, the user still
gets readable and attractive text. You usually want to choose fallback
fonts that have similar proportions to the web font you’re putting at
the front of your font stack. That way, the font size, weight, and other
styles you apply to the text will work well with whatever font the
user sees.

T I P : The Soma

FontFriend bookmarklet

(http://somadesign.

ca/projects/fontfriend)

lets you easily test out

the fonts in your font

stacks, including web

fonts, so you can quickly

see how each one will

look on your page.

N OT E : It’s possible to

force differently sized

fonts to match up in size

using the font-size-

adjust property, but

currently only Firefox

supports it. See http://

webdesignernotebook.

com/css/the-little-

known-font-size-adjust-

css3-property, as well

as the links at the

end of the article, for

more information.

http://somadesign.ca/projects/fontfriend
http://somadesign.ca/projects/fontfriend
http://webdesignernotebook.com/css/the-littleknown-font-size-adjustcss3-property
http://webdesignernotebook.com/css/the-littleknown-font-size-adjustcss3-property
http://webdesignernotebook.com/css/the-littleknown-font-size-adjustcss3-property
http://webdesignernotebook.com/css/the-littleknown-font-size-adjustcss3-property
http://webdesignernotebook.com/css/the-littleknown-font-size-adjustcss3-property

EMBEDDING UNIQUE FONTS 133

MORE ON FONT HINTING AND ANTI-ALIASING

Font hinting and anti-aliasing is a big, technical topic beyond the

scope of this book, but if you’d like to learn more about it, check out

these articles:

 � “The Ails Of Typographic Anti-Aliasing” by Thomas Giannattasio

(www.smashingmagazine.com/2009/11/02/the-ails-of-typographic-

anti-aliasing) gives a good overview of anti-aliasing, hinting, sub-

pixel rendering, and how various operating systems and browsers

handle rendering web fonts.

 � “Font Hinting Explained By A Font Design Master” by Richard Fink

(http://readableweb.com/font-hinting-explained-by-a-font-design-

master) and “Font Hinting” by Peter Bil’ak (www.typotheque.com/

articles/hinting) give more detail on how hinting works.

 � “Font smoothing, anti-aliasing, and sub-pixel rendering” by

Joel Spolsky (www.joelonsoftware.com/items/2007/06/12.html)

compares Apple and Microsoft’s methods for smoothing

on-screen text.

 � “Browser Choice vs Font Rendering” by Thomas Phinney (www.

thomasphinney.com/2009/12/browser-choice-vs-font-rendering)

explains how browsers’ text rendering is dependent on the operat-

ing system.

 � Webkit-based browsers let you control the anti-aliasing mode

using their proprietary -webkit-font-smoothing property. See

“-webkit-font-smoothing” by Tim Van Damme (http://maxvoltar.

com/archive/-webkit-font-smoothing) for examples and “Font

Smoothing” by Dmitry Fadeyev (www.usabilitypost.com/2010/08/26/

font-smoothing) for an argument against the property.

N OT E : Luckily, web font

rendering is improving.

For instance, IE 9 uses

Microsoft’s DirectWrite

API to handle text ren-

dering, making web

fonts look very smooth;

Firefox has said it will

use DirectWrite in its

Windows versions as

well. Also, more and

more font vendors are

now selling web fonts,

so as @font-face

grows in popularity

we will undoubtedly

see more fonts for sale

that are hinted aggres-

sively for web use.

www.smashingmagazine.com/2009/11/02/the-ails-of-typographic-anti-aliasing
www.smashingmagazine.com/2009/11/02/the-ails-of-typographic-anti-aliasing
http://readableweb.com/font-hinting-explained-by-a-font-designmaster
http://readableweb.com/font-hinting-explained-by-a-font-designmaster
www.typotheque.com/articles/hinting
www.typotheque.com/articles/hinting
www.joelonsoftware.com/items/2007/06/12.html
www.thomasphinney.com/2009/12/browser-choice-vs-font-rendering
www.thomasphinney.com/2009/12/browser-choice-vs-font-rendering
http://maxvoltar.com/archive/-webkit-font-smoothing
http://maxvoltar.com/archive/-webkit-font-smoothing
www.usabilitypost.com/2010/08/26/font-smoothing
www.usabilitypost.com/2010/08/26/font-smoothing

CHAPTER 3: NOTEBOOK PAPER134

Browser Support

So once you’ve chosen a font that has the correct license and is leg-
ible on the web, all you need to do is link to it in an @font-face rule as
shown earlier and you’re done, right? Well, not quite. The @font-face
rule has good browser support, but different browsers want you to
use different font file types.

TrueType (TTF) and OpenType (OTF) font files, such as the ones you
probably already have on your computer, work in most browsers.

IE supports @font-face as far back as version 4, but IE 4 through 8
support it only if you use a proprietary font format called Embedded
OpenType (EOT). EOT is technically not a font format; it’s a com-
pressed copy of a TTF font that uses digital rights management (DRM)
to keep the font from being reused.

The only type of font file that works on Safari on iOS (the browser on the
iPhone, iPod Touch, and iPad, and often called “Mobile Safari”) is SVG
(Scalable Vector Graphics). SVG also works on Chrome, desktop Safari,
and Opera, but not Firefox. You’re probably most familiar with SVG as
a vector graphics format, but an SVG file can contain font information
too—after all, each character in a font is really just a vector drawing.

Using these three formats—TTF or OTF, EOT, and SVG—will make your
unique fonts show up in every browser that supports @font-face. But
you should also include a fourth format, WOFF, for future compatibility.

WOFF, which stands for Web Open Font Format, was introduced in
2009. Like EOT, WOFF is not technically a font format, but rather a
compressed wrapper for delivering TTF or OTF fonts. Unlike EOT,
however, WOFF contains no DRM. So far, the only browsers that

F I G U R E 3 . 2 5 Arial
(center) and Calibri
(bottom) are too small
to be the best fall-
backs for the Junction
(top) web font.

F I G U R E 3 . 2 6

Trebuchet MS matches
up well with Junction,
with Lucida Sans
Unicode being a
good runner-up.

N OT E : For more infor-

mation on SVG fonts,

see “About Fonts in

SVG” by Divya Manian

(http://nimbupani.com/

about-fonts-in-svg.html).

N OT E : Learn more

about WOFF at www.

w3.org/Fonts/WOFF-FAQ.FF

http://nimbupani.com/about-fonts-in-svg.html
http://nimbupani.com/about-fonts-in-svg.html
www.w3.org/Fonts/WOFF-FAQ
www.w3.org/Fonts/WOFF-FAQ

EMBEDDING UNIQUE FONTS 135

support WOFF are Firefox 3.6 and later, Chrome 6, and IE 9, but the
other major browsers are all working on adding support for it, and
many font vendors have also expressed support. The WOFF specifica-
tion became a W3C working draft in July 2010, so it’s now officially on
its way to becoming the standard web font format. Going forward, it’s
the one to use.

But don’t get too overwhelmed by all these acronyms and browsers.
As you’ll learn in the next section, it’s easy to create all the differ-
ent formats you need. Check out Table 3.5 for a summary of which
browsers support which font types.

TA B L E 3 . 5 @font-face file types browser support

WOFF OTF TTF SVG EOT

IE 9 no 9 no 4

Firefox 3.6 3.5 3.5 no no

Opera no 10 10 10 no

Opera Mobile no 9.7 9.7 9.7 no

Safari no 3.1 3.1 3.1 no

Chrome 6 4* 4* 0.3 no

Safari on iOS no no no 3.1 no

* Chrome 3 supported OTF and TTF fonts, but not by default—you had to do a command-line switch to
enable it.

Each browser version number noted in Table 3.5 is the earliest—not the only—version of that browser to
support that type.

Converting Fonts

Some providers of @font-face-ready fonts supply you with all the dif-
ferent font formats you need for the different browsers. For instance,
Font Squirrel offers something they call “@font-face kits,” each of
which includes the original TTF or OTF font, an SVG version, a WOFF
version, an EOT version, and a sample style sheet and HTML page
showing the @font-face rules you need to place in your CSS. You can
download these kits at www.fontsquirrel.com/fontface.

Even better is Font Squirrel’s @font-face Kit Generator (www.
fontsquirrel.com/fontface/generator). You can upload your font
and convert it to whichever formats you wish. You can also control
the CSS syntax it outputs, subset the characters to reduce file size,
and use more options to fine-tune the fonts (Figure 3.27).

N OT E : The compres-

sion in EOT and WOFF

files is lossless. These

fonts should look just

as good as their TTF

or OTF originals.

N OT E : This is a rapidly

changing area of CSS

support. See http://

webfonts.info/wiki/

index.php?title=%40font-

face_browser_support

and www.stunningcss3.

com/resources for the

latest information.

http://webfonts.info/wiki/index.php?title=%40fontface_browser_support
http://webfonts.info/wiki/index.php?title=%40fontface_browser_support
http://webfonts.info/wiki/index.php?title=%40fontface_browser_support
http://webfonts.info/wiki/index.php?title=%40fontface_browser_support
www.stunningcss3.com/resources
www.stunningcss3.com/resources
www.fontsquirrel.com/fontface
www.fontsquirrel.com/fontface/generator
www.fontsquirrel.com/fontface/generator

CHAPTER 3: NOTEBOOK PAPER136

The files Font Squirrel produces are usually all you’ll need, but there
are a couple of other tools worth mentioning that will optimize your
EOT and SVG files even further. EOTFAST is free desktop software
(download at http://eotfast.com) that converts TTF files into com-
pressed but lossless EOT files; the EOT files that Font Squirrel pro-
duces are not compressed. The command-line tool ttf2svg (http://
xmlgraphics.apache.org/batik/tools/font-converter.html) converts
TTF files into same size or smaller SVG files; you need to have Java and
the Java SVG toolkit Batik installed on your system to run it.

F I G U R E 3 . 2 7

Font Squirrel’s
@font-face Kit
Generator

http://eotfast.com
http://xmlgraphics.apache.org/batik/tools/font-converter.html
http://xmlgraphics.apache.org/batik/tools/font-converter.html

EMBEDDING UNIQUE FONTS 137

Using @font-face

Let’s finally put @font-face to use in our page. Since it looks like note-
book paper, a font that simulates handwriting seems appropriate. I
picked Prelude, a casual cursive font, for the headings (Figure 3.28).
We’re not going to apply a casual cursive font to the body copy, how-
ever, as that kind of font at small sizes doesn’t look very good and
decreases legibility.

In the exercise files for this chapter, you’ll find a folder named “fonts” that
contains all the eight versions of Prelude that we’ll need for our page: EOT,
SVG, TTF, and WOFF files for both the regular and bold weight of the font.
I created these versions using Font Squirrel’s Generator tool, using the set-
tings shown in Figure 3.27. I then remade the EOT files using EOTFAST to
cut the file size of each EOT roughly in half.

F I G U R E 3 . 2 8

The Prelude font on
the Font Squirrel site

CHAPTER 3: NOTEBOOK PAPER138

L I N K I N G TO T H E FO N TS W I T H T H E @font-face R U L E S

You may notice in Figure 3.27 that there are three choices in the Font
Squirrel Generator for CSS Formats. These refer to three variations
of the @font-face syntax used in the CSS. As with almost everything
in CSS, there are multiple ways to code @font-face to get the same
effect; all three syntaxes use valid, standards-compliant CSS and will
work in the same browsers.

The rationale behind each of these three syntaxes is too complicated
to fully explain here, and not terribly important. Any of the three will
work for our purposes, and the choice really boils down to personal
preference. My preference is the “Bulletproof Smiley” version.

Here’s what the Bulletproof Smiley syntax for the Prelude font
looks like:

@font-face {
 font-family: ‘Prelude’;
 src: url(‘fonts/preludeflf-webfont.eot’);
 src: local(‘ ’),
 url(‘fonts/preludeflf-webfont.woff’) format(‘woff’),
 url(‘fonts/preludeflf-webfont.ttf’)
 ¬ format(‘truetype’),
 url(‘fonts/preludeflf-webfont.svg#webfont’)
 ¬ format(‘svg’);
}
@font-face {
 font-family: ‘Prelude’;
 src: url(‘fonts/preludeflf-bold-webfont.eot’);
 src: local(‘ ’),
 url(‘fonts/preludeflf-bold-webfont.woff’)
 ¬ format(‘woff’),
 url(‘fonts/preludeflf-bold-webfont.ttf’)
 ¬ format(‘truetype’),
 url(‘fonts/preludeflf-bold-webfont.svg#webfont’)
 ¬ format(‘svg’);
 font-weight: bold;
}

Put this Bulletproof Smiley syntax before any of the other CSS rules;
it will work anywhere you put it, but you’ll learn later in the chapter
how putting it at the top of your styles can improve your page’s per-
formance.” You can copy and paste it from paper_final.html in the
exercise files.

N OT E : If you want the

details, click the blue

links under each CSS

format name in the

Font Squirrel Generator

to read the three

articles explaining all

the whys and hows.

EMBEDDING UNIQUE FONTS 139

These two @font-face rules group the regular and bold font faces
into a single font family by declaring them with the same font-family
name, Prelude. Each @font-face rule gives the path to the font files
and, optionally, the style characteristics of an individual face (such as
font-weight: bold or font-style: italic).

Let’s look at just the first @font-face rule for now and go through it
line by line.

The first part of the rule—font-family: ‘Prelude’;—assigns a name
to the font you’re linking to so that you can later refer to this font in
your font stacks. You can make the name whatever you want; it’s just
a shorthand way of referring to a whole bunch of font information
at once.

The second part of the rule—src: url(‘fonts/preludeflf-webfont.
eot’);—gives the path to the EOT version of the font for IE 8 and ear-
lier. This is separated out from the other versions of the fonts because
IE can’t understand a src descriptor with multiple comma-separated
values. It thinks it’s one big path, preventing it from noticing the EOT
and being able to use it when grouped with the other files.

The next part of the rule is a second src value that lists all the font
files for non-IE browsers. Each browser will go through the list until
it finds a format it can use, and then download that file, and only that
file, to display the text. Each font includes a path to the font file, such
as url(‘fonts/preludeflf-webfont.woff’), and a format hint, such
as format(‘woff’). The format hint is optional, but including it alerts
the browsers about the format of each font to keep them from down-
loading ones they can’t use, which would waste bandwidth and slow
page loading.

HITTING THE SERVER

All browsers but IE8 and earlier don’t actually download any font files until one is called for in a font

stack elsewhere in the CSS. So you can declare lots of @font-face rules in your style sheet, but if one

particular page doesn’t have elements that use most of those fonts, for instance, you won’t incur the

hit of a bunch of extra HTTP requests.

IE8 and earlier, on the other hand, download every EOT file as soon as they encounter it. While

you’re testing font embedding, it’s common to include a lot of extra @font-face rules in your style

sheet so you can compare fonts. Be sure to remove any @font-face rules that you don’t end up

using so IE 8 and earlier don’t download the EOT files unnecessarily.

N OT E : There are

more nitty-gritty details

about how this syntax

works in Paul Irish’s

original article at http://

paulirish.com/2009/

bulletproof-font-face-

implementation-

syntax. They’re not

essential to know, but

are interesting if you’re

a web geek like me.

N OT E : The WOFF

format is listed first

because it’s the stan-

dard that we want all

browsers to use when

they can. It’s also the

smallest file, so you want

to make sure browsers

that can use it see it first

and therefore do use it.

http://paulirish.com/2009/bulletproof-font-faceimplementationsyntax
http://paulirish.com/2009/bulletproof-font-faceimplementationsyntax
http://paulirish.com/2009/bulletproof-font-faceimplementationsyntax
http://paulirish.com/2009/bulletproof-font-faceimplementationsyntax
http://paulirish.com/2009/bulletproof-font-faceimplementationsyntax

CHAPTER 3: NOTEBOOK PAPER140

But you probably noticed that at the start of the second src value is
local(‘ ’). What in the world does this smiley face do?

The local(‘ ’) part of the src value is there to protect IE. Without it
there, IE would try to read the second src descriptor as one big path,
as explained earlier, which would lead it to get a 404 error. While this
doesn’t stop @font-face from working—IE can still use the separate
EOT—it’s an extra, pointless hit on your server that you don’t want. IE
doesn’t understand the local() syntax, and putting it at the start of
the src value stops it from moving any further into the src value, see-
ing the url() value, and then trying to parse the path.

PROBLEMS WITH local()

Letting users skip downloading a font they already have installed sounds

like such a good and helpful idea—so why not put the real font name in

local() instead of a smiley face character? This is certainly an option.

It’s what Paul Irish’s original “Bulletproof @font-face syntax” did, and you

can still choose to download this syntax from the Font Squirrel Generator.

But before you use the real font name in local(), you should be aware

of a few problems you might run into:

 � Different fonts sometimes have the same names. It’s possible that the

user will end up seeing a completely different font from the one you

intend. (See http://typophile.com/node/63992 for a discussion of this.)

It’s a very small chance, but some argue that, regardless, giving con-

trol over type to the user’s machine and browser is not wise.

 � In Chrome, all characters might be displayed as As in boxes if

the local font that you’re referring to was installed on the user’s

system using the font management software FontExplorer X. (Go to

http://snook.ca/archives/html_and_css/font-face-in-chrome to see a

screenshot of this weirdness.)

 � In Safari, the user might get a dialog box asking permission to use

the local font if it’s being managed by FontExplorer X.

None of these problems are likely to happen very often, but if they do

happen, the effect could be pretty bad. Many web font experts recom-

mend never using local(), or using it only when the font file you’re try-

ing to keep the user from downloading is particularly large.

http://typophile.com/node/63992
http://snook.ca/archives/html_and_css/font-face-in-chrome

EMBEDDING UNIQUE FONTS 141

The local() syntax is perfectly valid CSS, by the way. Its real purpose
in a @font-face rule is to point to a locally installed version of the font
on the user’s machine, so that if the user has the same font as you’re
embedding, he doesn’t have to download the extra file. That’s why
Paul Irish, who came up with the syntax, recommends using a smiley
face: we don’t want to call for a font that might actually exist, and it’s
very unlikely that anyone will ever release a font named .

The second @font-face rule declares the bold versions of the Prelude
font family. It gives the paths to all the bold font files and also sets
the font-weight to bold inside the rule. But the font-family name is
Prelude (not PreludeBold or some other variation), matching the first
@font-face rule. Assigning the same name tells the browser that the
file is the bold version of the same Prelude font family. Now, any time
the browser needs to have bold Prelude text (because of a strong ele-
ment in the HTML or font-weight: bold in the CSS), it doesn’t have
to synthesize the boldness by making the characters thicker, but can
instead use the true bold font files. Using a true bold or italic font face
looks better than having the browser simulate it for you.

D EC L A R I N G T H E FO N T

Adding @font-face rules to your CSS doesn’t actually make the fonts
show up anywhere; it simply links them, so they’re ready to be down-
loaded and used when you need them. Let’s call them up in our h1
and h2 elements. Add Prelude, the name of the font we assigned in
the @font-face rule, to the start of the existing font-family values in
the h1 and h2 rules:

h1 {
 margin: -.3em 0 .14em 0;
 color: #414141;
 font-family: Prelude, Helvetica, “Helvetica Neue”,
 Arial, sans-serif;
 font-size: 3.5em;
 font-weight: normal;
}
h2 {
 clear: left;
 margin: 0 0 -.14em 0;
 color: #414141;
 font-family: Prelude, Helvetica, “Helvetica Neue”,
 Arial, sans-serif;
 font-size: 2.17em;
 font-weight: bold;
}

N OT E : IE doesn’t

always handle this font

style switching within

the @font-face rules

correctly. IE 8 and earlier

don’t use the font when

font-style: italic

is in the @font-face

rule. IE 9 does, but it

synthesizes italic ren-

dering anyway, even if

the font you’re calling

isn’t actually italic.

CHAPTER 3: NOTEBOOK PAPER142

The sans-serif fallback fonts in the font stacks don’t look anything like
the cursive Prelude script, of course. I chose to do this because there
aren’t really any cursive web-safe fonts we can rely on as fallbacks. If
someone is using a browser that can’t do font embedding, I’d rather
they see some nice, clean Helvetica or Arial text than whatever ran-
dom cursive font they might have on their computers.

Note that the h1 rule sets the font-weight to normal and the h2 rule
sets it to bold. This tells the browser to use the regular member of the
Prelude font family (the first @font-face rule) for the h1 elements and
the bold member of the Prelude font family (the second @font-face
rule) for the h2 elements (Figure 3.29).

We now have handwritten cursive text showing in our headings that
is resizable, selectable, and indexable. There are differences in the
anti-aliasing and hinting of the text between browsers and between
Windows and Mac, but the advantages of real text outweigh the
inconvenience of its slight jaggedness in some browsers (Figure 3.30).

TA B L E 3 . 6 @font-face browser support

IE FIREFOX OPERA SAFARI CHROME

Yes Yes, 3.5+ Yes, 10+ Yes Yes

F I G U R E 3 . 2 9

The cursive Prelude
font in the head-
ings on our page

EMBEDDING UNIQUE FONTS 143

THE LOWDOWN ON THE @font-face RULE

The @font-face rule is part of the Fonts module, found at www.

w3.org/TR/css3-fonts.

A @font-face rule gives a font family name (using the font-family

descriptor) that you make up and the path to one or more font files

(using the src descriptor). Optionally, it can also include the style char-

acteristics of an individual face (using font-weight, font-style, and

font-stretch). You can use multiple @font-face rules with the same

font-family name to group faces into one family.

To access the fonts in your @font-face rules, simply add each font

family name to your font stacks in the font-family property.

Other than making text look like handwriting, you might want to use

@font-face for:

 � Creating a look and feel not possible with standard web-safe fonts

 � Keeping branding consistent between printed materials (such as a

logo or brochure) and their related web site

 � Displaying text using non-Latin characters, which often don’t render

well in browser default fonts. Using a font designed for the lan-

guage ensures all the characters display correctly.

A tempting use of @font-face is to use dingbat fonts to create icons

without images. But this has serious accessibility problems. See http://

filamentgroup.com/lab/dingbat_webfonts_accessibility_issues and

http://jontangerine.com/log/2010/08/web-fonts-dingbats-icons-and-

unicode for a discussion of the problems and potential solutions.

F I G U R E 3 . 3 0 Different
platforms and browsers,
such as Firefox 3.6 (left)
and IE 9 (right), display
the anti-aliasing of the
headings differently.

www.w3.org/TR/css3-fonts
www.w3.org/TR/css3-fonts
http://filamentgroup.com/lab/dingbat_webfonts_accessibility_issues
http://filamentgroup.com/lab/dingbat_webfonts_accessibility_issues
http://jontangerine.com/log/2010/08/web-fonts-dingbats-icons-andunicode
http://jontangerine.com/log/2010/08/web-fonts-dingbats-icons-andunicode

CHAPTER 3: NOTEBOOK PAPER144

I M P R OV I N G P E R FO R M A N C E

If you view your page in a browser now, you may notice a lag between
when most of the page loads and when the handwritten font displays.
Webkit-based browsers don’t show the @font-face-styled text until
they’ve finished downloading the font file (Figure 3.31).

In Firefox and Opera, the fallback fonts show for a moment while
the font file is downloaded, and then the browser re-renders the text
with the new font. This is called the Flash of Unstyled Text, or FOUT, a
term quippishly coined by Paul Irish.

These font-loading lags are usually a minor annoyance, but in some
cases they can be quite noticeable and problematic. Fonts for non-
Western languages, such as Chinese and Japanese, can contain thou-
sands of characters and be several megabytes in size; these huge font
files take a long time to download, of course. Also, users on mobile
devices in areas with poor coverage, or at hotels with notoriously slow
connection speeds, may be left waiting for the web fonts to appear for
quite a while.

There are a number of things you can do to minimize or do away with
the FOUT or the invisible text problem in Webkit:

 � Keep your font file sizes as small as possible to begin with.
Subsetting the characters within each font to include only the
characters that you need can really help in this regard; the Font
Squirrel Generator lets you do this.

 � Put your @font-face rules at the top of your style sheets. This
increases the chance that the browser will download them before
the other files called for in your CSS, such as background images.

F I G U R E 3 . 3 1

The headings are invis-
ible while Safari or
Chrome downloads
the font files it needs.

T I P : The font-size-

adjust property, men-

tioned earlier, doesn’t

lessen the FOUT, but it TT

makes it less noticeable

because it makes the

size of the fallback font

match up better with the

web font. Again, though,

it works only in Firefox.

EMBEDDING UNIQUE FONTS 145

 � Get the browser to download the font file as soon as possible by,
for instance, calling it on a hidden element at the very start of your
page. You can adapt many image preloading techniques, such as
the many listed at http://perishablepress.com/press/tag/preload-
images, to work with font files.

 � Host your fonts elsewhere. By serving your fonts from one com-
mon location, you increase the chance that the visitor already has
the font file in his or her cache, instead of having to download the
same exact font file again from a new location. The font-embed-
ding services listed earlier allow you to do this, as does Google’s
Font Directory, but you can also upload fonts you personally own
to the TypeFront service (http://typefront.com). TypeFront hosts
the fonts you give it, converts them to all the needed formats, and
serves them only to the sites you specify.

 � Set the Expires header in .htaccess to a date far in the future so
that when a font is downloaded once, it’s cached by the browser
and not requested again for a very long time. This doesn’t help
with the initial page load when the browser first downloads the
font, but it should help on subsequent loads. (See “HTTP Caching”
by Steve Lamm at http://code.google.com/speed/articles/caching.
html for more information.)

 � Gzip your font files. Stoyan Stefanov found average file-size savings
to be from 40 to 45 percent (see www.phpied.com/gzip-your-font-
face-files). But he also found that this doesn’t really help WOFF
files, which are already very compressed, so this may not help you
much with the FOUT in Firefox (see www.phpied.com/font-face-
gzipping-take-ii). However, gzipping should help Opera avoid or
minimize the FOUT and Safari and Chrome show the text sooner.

 � Use scripting to hide all the content for a couple seconds while
the browser downloads the fonts. This doesn’t actually speed
up downloading the fonts, of course, but it keeps the user from
ever seeing the FOUT’s disorienting shift in fonts. Paul Irish pro-
vides two different JavaScript options to do this, one of which
uses Google’s WebFont Loader JavaScript library (http://paulirish.
com/2009/fighting-the-font-face-fout).

Our font files already use a subset of all characters and are called at the
top of the CSS, so we’ve covered the most basic @font-face performance
best practices. It’s beyond the scope of this book to add any of the script-
ing or server-side techniques to our page, but this gives you a number of
things to try if you’re having trouble with web font loading times.

http://code.google.com/speed/articles/caching.html
http://code.google.com/speed/articles/caching.html
www.phpied.com/gzip-your-fontface-files
www.phpied.com/gzip-your-fontface-files
www.phpied.com/font-facegzipping-take-ii
www.phpied.com/font-facegzipping-take-ii
http://paulirish.com/2009/fighting-the-font-face-fout
http://paulirish.com/2009/fighting-the-font-face-fout
http://perishablepress.com/press/tag/preloadimages
http://perishablepress.com/press/tag/preloadimages
http://typefront.com

CHAPTER 3: NOTEBOOK PAPER146

The Finished Page
We’ve completed all the styling for the article to make it look like a
piece of notebook paper. In any up-to-date, non-IE browser, you
should see something like Figure 3.32. Compare it to Figure 3.1.

F I G U R E 3 . 3 2

The page with all
CSS3 applied, shown
here in Firefox 3.6.

THE FINISHED PAGE 147

The preview version of IE 9 doesn’t show the torn paper edge, but
otherwise looks like Figure 3.32. IE 8 and earlier are missing most of
the graphic effects, but since they show the lined background image
and the handwritten font, the overall appearance is still attractive and
notebook-paper-like (Figure 3.33). Also, in this case, all versions of IE
up to 8 display almost identically—even 5.5 looks like the screenshot
shown in Figure 3.33.

N OT E : The com-

pleted page showing

all of these effects is

named paper_final.

html in the exercise

files for this chapter.

F I G U R E 3 . 3 3

IE (version 8 shown
here) doesn’t show
all the CSS3 graphic
effects, but does show
the handwritten fonts.

This page intentionally left blank

This page intentionally left blank

INDEX 291

Index

:: (double colons), 57
(pound sign), 181
: (single colon), 57
 , 57
* attribute selector, 164
2D transforms, 35, 90, 91
3D buttons, 84
3D cubes, 91
3D transforms, 90, 91
37signals, 191

A
absolute positioning, 60
accessibility, 19, 92, 143
access keys, 163
Acrobat Reader, 153
::after pseudo-element,

57, 169
alistapart.com articles

font embedding, 128, 131
mobile style sheets, 240
Modernizr, 34
prefix or posthack, 26, 27
supersizing background

images, 108
zebra striping, 172

Alpha filter, 35
alpha transparency, 62
alpha-transparent PNGs,

62, 69–70, 79
alt attribute, 151
alternating colors, 171–176
alternative text, 163
ancestor elements, 169
Android, 25, 226, 235, 236
angled elements, 91, 92
animatable properties, 196
animated GIFs, 204
animation property, 200, 202
animations, 3, 96, 191–204
anti-aliasing, 132, 133, 143
Ascender, 131
Ates�, Faruk, 34
attribute presence and value

selectors, 152, 162
attribute selectors

adding file-type indicators
with, 153–156

assigning classes to, 160, 161
browser support, 163
combining multiple, 157
combining with other

selectors, 151
exercise files, 153, 155,

158, 165
finished page, 165–166
for “not matching”, 153
purpose of, 151
quotation marks in, 154
styling photos with, 160–165
targeting image types with,

164–165
types of, 152, 163
values in, 162
ways of using, 162–163
workarounds for IE 6,

157–158, 161
avatars, 89, 92–96

B
Babé, Louis-Rémi, 125
background

changing color of, 188–191
fading color in/out, 191–204
images (See background

images)
semitransparent, 31, 62–72

background-clip property,
35, 120–125

background images
applying multiple, 109–114
filling entire page with, 108
scaling, 101–107, 108
for spiral-notebook effect,

114–125
tiling, 62, 103, 108

background-origin property,
35

background-position property,
21

background-repeat property,
103, 115

Backgrounds and Borders
module, 53, 84, 108, 112,
117, 122

background shorthand property,
69, 110, 111, 121, 196

background-size property,
101–108

browser support, 104, 108, 111

how it works, 101–103
purpose of, 101
vs. background-repeat

property, 103
ways of using, 108, 156
workarounds for IE, 107

backslash, 58
Bakaus, Paul, 96
bakery site

base page for, 206–207
finished page for, 241–242
large-screen layout, 209–219
mobile-device layout,

226–240
small-screen layout, 220–225

bar charts, 53
Basecamp, 191
BasicImage filter, 35
Basic User Interface module,

283
::before pseudo-element,

57, 59, 169
Bester, Michael, 71
Bil’ak, Peter, 133
blocks, aligning, 3
blog comments, 47, 48–49

See also speech bubbles
Blur filter, 35, 85
bold font, 141
border-box value, 122, 123, 280,

283
border-image generator, 119
borderImage plugin, 125
border-image property, 115–120
border images, 115, 116, 121, 125
border-radius property,

22, 23, 35, 52–54, 89, 186
borders

creating triangles out of,
55–56

flowing across columns, 217
simulating, 84

bosses, dealing with
unsupportive, 41–45

box-align property, 258–260,
261, 263, 277

box-direction property,
255–258, 277

boxes
angled, 91, 92
disappearing, 264

INDEX292

boxes (continued)
flexible, 112, 246

See also flexible box
layout model

skewed, 91
stretching, 283
transforming, 2

See also transforms
wrapping children of, 265

box-flex-group property, 277
box-flex property, 248–252,

272–275, 277
box-lines property, 265, 277
box model, 244, 277
box-ordinal-group property,

256–257, 277
box-orient property, 277
box-pack property, 261, 265,

266, 277
box-shadow generator, 83
box-shadow property

adding drop shadow with,
81–85

benefits of using, 16
browser support, 84, 164
declaring color in, 82
emulating, 35
ways of using, 84
workarounds for IE, 85

box-sizing property, 9, 280,
282–283

break-word value, 49
Brown, Nora, 119
browser-based color pickers, 64
browser prefixes, 25–30
browsers. See also specific

browsers
and animations, 192, 202
and attribute selectors, 163
and background-clip

property, 122, 123,
124–125

and background-repeat
property, 115

and background-size
property, 104, 108, 111

and border-image property,
118

and border-radius property,
54

and box-shadow property,
84

and box-sizing property,
282

and calc function, 281
and CSS3, 8–11
designing in, 43–45
and flexible box layout model,

276
and @font-face rules,

9, 135, 139, 142
and font rendering, 133
and generated content, 187
and gradients, 77
market share, 7–8
and media queries, 212
mobile, 236
and multi-column layouts,

218, 219
and multiple background

images, 113
and :nth-child()

pseudo-class, 174
and :nth-of-type()

pseudo-class, 179
providing workarounds for

older, 11–14, 24, 30–41
and RGBA/HSLA, 67
and :target pseudo-class,

190, 191
and text-shadow

property, 88
and transforms, 91
and transitions, 192, 198
and word-wrap

property, 49–50
browser sniffing, 33
bulleted lists, 163
Bulletproof Smiley syntax,

138–141
buttons, 53, 84, 113, 192

C
calc function, 281
Camino, 25
Campaign Monitor, 10
Candidate Recommendation

status, 5, 25
canvas element, 114
cards, folding, 91
Casciano, Chris, 85
centering, 261–266, 268
Chao, Ingo, 71
child elements, 169

Chrome. See also browsers
and anti-aliasing, 92
and background-size

property, 104, 111
and border-image property,

120
and box-shadow property,

164
browser prefix, 25
CSS3 support, 8–9
and drop shadows, 126
and float property, 264
and @font-face rules, 135
and local() syntax, 140
market share, 7
and round value, 126
and spread radius, 164

circles, 52
circular badges, 53
citations, 163
Clark, Keith, 34, 159
Clarke, Andy, 44, 218
classes, 160–161
ClearType, 132
clients, dealing with

unsupportive, 41–45
CMS, 154, 160
Code Converter, Unicode, 57
colons, single vs. double, 57
color converter tools, 64
Color module, 67
color picker tools, 63–64
colors, alternating, 171–176
Colors app, 63
column-count property,

214–215, 219
column-gap property, 215, 219
Columnizer plugin, 218
columns. See also multi-column

layouts
adding, 253–255
breaking text into, 214–215
creating equal-height,

258–260
problems with, 217–218
reordering, 255–258

Column script, 218
column-width property,

214, 219
comments, 30. See also blog

comments; conditional
comments

comps, 43–45

INDEX 293

conditional comments,
36–41, 55

content
breaking across columns,

217
CSS-generated, 56–57, 61,

156, 184
overflowing, 217

content-box model, 277
content-box value, 122, 280,

283
content management system,

154. See also CMS
Converter, Unicode Code, 57
counters, 184–186
Coyier, Chris, 185
CSS. See also specific versions

browser prefixes, 25–30
properties. See properties
pseudo-elements, 169
putting comments in, 30
sprites. 21, 22, 185
transforming objects with.

89
vs. other technologies. 17

CSS 2, 127
CSS 2.1

attribute selectors, 152, 162
box model, 244, 277
CSS3 as extension of, 2
and @font-face rules, 127
and generated content,

56–57
layout tools, 243

CSS3
attribute selectors, 152, 162
benefits of, 15–19
best practices, 25–41
browser support, 7, 8–11, 30
case study, 19–24
creating speech bubbles with,

47–48
declaring color in, 31
detecting support for,

32–34
emulating, 34–35
and @font-face rules, 127
gradients. See gradients
layout tools, 243, 277, 284–285

See also layouts
managing expectations about,

43–45
as marketable career skill, 19

maturity levels, 4–6
modules, 2, 4
new features, 2–3
and non-supporting

browsers, 30–41
and readability, 19
recommendations on using,

5–6, 25–41
RGBA/HSLA syntax, 62–64
strategies for gaining

acceptance of, 39–45
structural pseudo-classes,

169–171
styling images/links with,

149–166
transforms. See transforms

CSS-generated content, 56–57, 61
CSS Infos, 10
cssSandpaper script, 34, 96
Cuadra, Jimmy, 192
cursive font, 137
“curved corner” script, 54

D
“DD_roundies” script, 55
Decker, Kevin, 119
degradation, graceful, 12, 15
descendants, 169
Designing with Progressive

Enhancement, 11, 15
design mockups, 43–45
Deveria, Alexis, 285
device width, 227
dialog boxes, 53
digital rights management, 134
Diller, Drew, 55
dingbat fonts, 143
DirectWrite, 133
disappearing boxes, 264
display property, 246, 284
document object model, 170
document tree, 169–170
DOM, 170
DOMAssistant, 176
Dorward, David, 191
double colons, 57
Doughnut Color Picker, 64
DRM, 134
DropShadow filter, 35, 85, 89
drop shadows, 81–85, 125–126
dynamic highlighting, 180–181

E
eCSStender, 27
Edwards, Dean, 34, 157, 176, 284
elliptical corners, 52
email

links, 163
newsletters, 10
sign-up form, 268–272

:empty pseudo-class, 170
ems, 104, 105
Enders, Jessica, 172
end-user licensing agreements,

128–129
EOTFAST, 136, 137
EOT font files, 134, 135, 136
equal-height columns, 258–260
escape character, 58
EULAs, 128–129
exercise files

attribute selectors, 153, 155,
158, 165

box-sizing property, 283
flexible box layout model,

245, 265, 283
media queries, 209, 224, 241
notebook paper, 104
speech bubbles, 49, 61, 70, 81,

87, 96
sticky footers, 275
:target pseudo-class, 189
zebra striping, 172

exljbris, 129–130
Expires header, 145
“explorer-canvas” script, 114

F
fade-out animation, 198–204
Fadeyev, Dmitry, 133
famfamfam icons, 155
faux columns. See equal-height

columns
Fetchak, Nick, 55
FHOS, 130
file folders, 100
file-type indicators, 154
file types, styling links for

specific, 153–159
fill keyword, 116
filter property, 35, 94
filters IE, 35–36
FindMeByIP, 10
Fink, Richard, 128, 133

INDEX294

Firefox. See also browsers
and anti-aliasing, 143
and background-clip

property, 122
and background-size

property, 104, 111
and border-radius property,

89
browser prefix, 25
and calc function, 281
CSS3 support, 9
and @font-face rules,

135, 144
and gradients, 73
market share, 7
and multiple background

images, 113–114
Rainbow extension, 64
and transitions, 192
and W3C syntax, 73–74
Web Developer extension,

238
:first-child pseudo-class,

169, 170, 171
::first-letter pseudo-

element, 169
::first-line pseudo-element,

169
:first-of-type pseudo-class

170
Fisher, Meagan, 44
Flash, 194
Flash of Unstyled Text, 144
flexible boxes, 112, 246
flexible box layout model

adding columns with,
253–255

alternatives to, 277–285
browser support, 247, 266–

268, 276
creating equal-height

columns with,
258–260

creating layouts with,
245–266

disadvantages of, 246
exercise files, 245, 257, 265
laying out forms with,

268–272
properties, 277
purpose of, 244, 276
reordering columns with,

255–258

and sticky footers, 272–275
vertical/horizontal centering

with, 261–266
ways of using, 268, 276
and wrapping of box’s

children, 265
Flexible Box Layout module,

3, 276
Flexible Web Design, 207, 214
floats, 217, 229, 245, 264, 265
Flock, 25
fluid layouts, 206
folding cards, 91
Fontdeck, 131
Font Directory, Google, 129, 145
font embedding, 127, 129
font-embedding services,

130–131, 145
FontExplorer X, 140
Fontfabric, 129–130
@font-face Kit Generator,

135–136, 137
@font-face rules

accessing fonts in, 143
adding to CSS, 141
browser support, 9, 134–135,

142
and font licenses, 128–129
linking to fonts with, 138–141
performance issues, 17–18,

144–145
purpose of, 3, 127, 143
syntax variations, 138
ways of using, 143
and Webkit-based browsers,

144
font-family descriptor, 127,

141, 143
font-generator tool, 135–136,

137, 144
Fonthead, 130
font hinting, 132, 133
font hosting, 130, 145
font-loading lags, 144
Font module, 143
font-replacement techniques,

127, 129
fonts. See also text

and anti-aliasing, 132, 133,
142

choosing acceptable, 128–134
compressing, 145
converting, 135–136

declaring, 141–145
embedding, 127
gzipping, 145
hosting of, 130, 145
licensing issues, 128–129
linking to, 127, 134, 138–141
for non-Western languages,

144
performance issues, 144–145
readability issues, 132–134
rendering issues, 132, 133
security issues, 128
sources of free, 129–130
testing, 132
web, 127, 128, 132
web-safe, 127

Fonts.com Web Fonts, 131
FontShop, 130
font-size-adjust property,

132
FontsLive, 131
Fonts module, 3
font smoothing, 133
font-smoothing property, 133
FontSpring, 130
Font Squirrel, 129, 135–136, 137,

144
font stacks, 127
footers, sticky, 272–275
form fields, 162
form layouts, 268–272
FOUT, 144, 145
“Fragment Highlight” script, 191
fragment identifiers, 181–182
Franquet, Alix, 75

G
Gallagher, Nicolas, 114
Gasston, Peter, 75, 79
generated content, 56–57, 61,

156, 184
Giannattasio, Thomas, 133
GIFs, animated, 204
Glow filter, 35, 85, 89
Google

downloading IE7 script from,
157

“explorer-canvas” script, 114
Font Directory, 129, 145
and page-loading speed, 18
WebFont Loader JavaScript

library, 145

INDEX 295

graceful degradation, 12, 15
Gradient filter, 35, 70, 71, 81
gradient-generator tools, 78, 112
gradients

browser support, 77
image-free, 72–81
linear, 35, 72–73, 76–77
radial, 72–73, 75
simulating, 84
using prefixed versions of, 29
ways of using, 77
workarounds, 78–81

graphic effects, 51
graphics programs, 44
grid positioning, 3, 285
Griffiths, Patrick, 191
Gzip, 145

H
h2:target selector, 188–189
hacks, 36
handheld media type, 240
handwritten font, 126, 137, 142,

144, 147
hash mark, 181
hasLayout, 71
Hawryluk, Zoltan, 34, 93, 96
Hazaël-Massieux, Dominique,

240
headings

fading in/out, 191–204
targeting, 188–189

hex color values, 63
highlighting, dynamic, 180–181
Highway Safety Research Center,

19–24
hinting, font, 132, 133
horizontal centering, 261,

263–266
horizontal nav bars, 213–214
href attribute, 155, 158
HSB values, 63
HSLA

browser support, 67
converting to Gradient filter,

71
emulating, 35
hue values cheat sheet, 65
meaning of acronym, 62
semitransparent backgrounds

with, 31, 62–72
syntax, 62–64

vs. RGBA, 65–67
ways of using, 67
workarounds for IE, 69–72

HSL color picker, 63
HSL values, 63, 64, 65
HSV values, 63
.htaccess, 145
HTML

adding classes to, 160
comments, 36–37
hierarchical structure, 169
targeting, 3, 16, 149, 168–180

html tag, 39–41
“HTTP Caching” article, 145
HTTP requests, 16–18, 21, 38

I
Icon Eden, 223
icons

creating number, 184–187
indicating file types with,

153–159
resizing, 231
scaling, 156
using dingbat fonts to create,

143
IE. See also specific versions

and animation property, 202
and attribute selectors, 163
and background-clip

property, 123
and background-size

property, 107, 108
and border-image

property, 118
and border-radius

property, 54
and box-shadow

property, 84–85
and box-sizing

property, 283–284
browser prefix, 25
CSS3 support, 9
feeding rules/scripts to, 36
filtering with conditional

comments, 36–41
filters, 35–36, 70, 71, 81, 93, 96
and flexible box layout model,

276
and @font-face rules, 9, 134,

135, 141, 142
and generated content, 61

and gradients, 77
hacks, 36
hiding content from, 38–39,

55
market share, 7–8
and media queries, 212
and multi-columns, 219
and multiple background

images, 113–114
and :nth-child()

pseudo-class, 174, 176
and :nth-of-type()

pseudo-class, 179
and RGBA/HSLA, 67, 69
and rounded corners,

24, 54–55
and :target pseudo-class,

190
and text-shadow property,

88, 89
and transforms, 91, 92–96
and transition property,

198
and word-wrap property, 49

IE 5, 8, 49
IE 6, 7–8, 9, 157–158, 161, 163
IE 7, 7–8, 9, 61, 163, 283–284
IE7 script, 34, 157–158, 176, 284
IE 8. See also IE

and background-size
property, 107

and box-shadow property, 85
and conditional comments,

38
CSS3 support, 9
and @font-face rules,

139, 141
and HSLA/RGBA, 69–72
market share, 7
and multiple background

images, 113–114
and :nth-child()

pseudo-class, 176
and rounded corners, 54–55

IE 9. See also IE
and anti-aliasing, 143
and background-repeat

property, 103, 115
and background-size

property, 104, 111
and border-radius property,

186
CSS3 support, 9

INDEX296

IE 9 (continued)
and flexible box layout model,

247
and @font-face rules, 141
and :nth-child()

pseudo-class, 176
and :nth-of-type()

pseudo-class, 179
and web font rendering, 133

IE-CSS3 script, 55, 85
IE-only style sheets, 37
image-free gradients, 72–81
image-free text shadows, 85–89
image-free visual effects, 2
image galleries, 91, 190, 276
images

angled, 91
assigning to borders, 115
background. See background

images
border. See border images
displaying alternative text for,

163
positioning, 120–125
repeating, 118
revealing portions of, 112
rounding, 118
scaling, 101–107
slicing, 116, 117
stretching, 112, 118
styling, 149, 150, 151, 160–165
targeting by type, 164–165

image slideshows, 91
image tabs, 22
img[alt] selector, 151–152
Internet Explorer. See IE
intrinsic sizing, 248
invisible content, 57
iPad, 227, 239
iPhone, 108, 226, 227, 233–234,

235, 239
iPod Touch, 227, 233, 239
Irish, Paul, 39, 139, 141, 144, 145
italic font, 141

J
Jaeger, Jason J. 218
James, Mark 155
JavaScript

and box-sizing property,
284

dynamic highlighting with,
181

emulating CSS3 with, 34–35
for fading background color,

191–192
libraries, 145, 159, 176
and media queries, 241
and :nth-child()

pseudo-class, 176
and :target pseudo-class,

190, 191, 204
and template layout, 285

Johanssen, Roger, 218
Johnston, Jason, 35, 54, 125
jQuery, 159, 176, 241, 285
Just Another Foundry, 131

K
Kernest, 129, 131
@keyframes rule, 199
KHTML, 25
Koch, Peter-Paul, 235, 236
Konqueror, 25

L
Lamm, Steve, 145
Last Call status, 5
:last-child pseudo-class,

170, 183–184
:last-of-type pseudo-class,

170
Lawson, Bruce, 191
layouts

for large screens, 209–219
liquid, 206–207
for mobile devices, 226–240
multi-column, 3, 245–266
for small screens, 220–225

layout viewports, 235–236
Lazaris, Louis, 39, 185
League of Moveable Type, 129
left value, 60
licensing agreements, font,

128–129
linear gradients, 35, 72–73, 76–77
line breaks, 73
lined-paper background

image, 100
line length, 214
links. See also URLs

checking for empty, 163
displaying access key for,

163

styling, 149, 150, 151,
153–156, 163

liquid layouts, 206
lists, 184
Little Pea Bakery, 206

See also bakery site
local() syntax, 140–141

M
Mac

color picker, 63
font considerations, 132

Manion, Divya, 134
margins, 217
Matrix filter, 93, 96
maturity levels, CSS3 module,

4–5
mb.js script, 114
media features, 208, 212, 227
media queries

exercise files, 209, 224, 241
improving usability with, 19
for large-screen layouts,

209–219
for mobile-device layouts,

226–240
purpose of, 3, 208–209
for small-screen layouts,

220–225
testing, 238
ways of using, 209, 212
workarounds, 240–241

Media Queries module, 3
@media rule, 212
menus, vertical, 213–214
meta tag, 235–240
Meyer, Eric, 27–28
Microsoft

ClearType, 132
DirectWrite, 133
filters, 35–36
Internet Explorer. See IE
and word-wrap property, 49

min-height attribute, 154, 156
mobile browsers, 236
mobile devices, 207, 209,

226–240
Mobile Safari, 227, 236, 239
mobile viewports, 236
mockups, 43–45
Modernizr, 32–34, 55, 107, 113,

203, 266

INDEX 297

MooColumns, 218
MooTools, 89, 153, 159, 176
Moveable Type, League of, 129
Mozilla, 10, 25. See also Firefox
-ms-filter property, 94, 95
multicol elements, 215
Multi-column Layout module,

3, 219
multi-column layouts

adding columns to, 253–255
browser support, 219
creating, 245–252
equal-height columns in,

258–260
horizontal centering in,

263–266
and line length, 214
problems with, 217–218
reordering columns in,

255–258
vertical centering in,

261–263
workarounds for

non-supporting
browsers, 218–219

Multi-column script, 218
multi-column text, 214–219. See

also multi-column layouts
multi-row layouts, 245

N
nav bars, 213–214, 263–266, 276
nested divs, 109, 111, 113, 246
Net Applications, 7
newspaper layouts, 3
Nintendo, 25
nodes, 169
non-breaking space, 57–59
notebook paper, 99–147

adding drop shadow to,
125–126

adding graphic border to,
114–125

adding stain images to,
109–111

aligning text to lines in, 101
applying multiple background

images to, 109–114
base page for, 100
embedding fonts in, 126–145
exercise files, 104, 111
finished page for, 146–147

scaling background image for,
101–108

“not matching” selector, 153
:not selector, 153
:nth-child() pseudo-class

how it works, 170, 171–172
negative values in, 175
online tools, 172
rotating photos with, 176–180
ways of using, 168, 175
workarounds for IE, 176
zebra striping with, 172–176

:nth-last-child()
pseudo-class, 168, 170

:nth-last-of-type()
pseudo-class, 168

:nth-of-type() pseudo-class,
168, 170, 179

number icons, 184–187
number sign, 181
Nyman, Robert, 71

O
Obsidian Dawn, 110
octothorps, 181
ol element, 184
online color tools, 64
:only-child pseudo-class, 170
:only-of-type

pseudo-class, 170
opacity property, 63
OpenType, 132, 134
Opera. See also browsers

and background-repeat
property, 103, 115

and background-size
property, 104, 106, 111

and border-image property,
120

browser prefix, 25
CSS3 support, 9, 10
and @font-face rules, 135
market share, 7
and multiple background

images, 113–114
navigation div bug, 210
and transitions, 192

Opera Mobile, 135
ordered lists, 184
OTF font files, 132, 134–135
overflows, 217, 264, 265
overlapping elements, 232–233

P
padding, 217
padding-box value, 122, 123, 283
page performance, 16–18, 21
pagination, 217
parallax effect, 112
parent elements, 169
Patenaude, Matt, 63
PDF files, 153, 156
Phinney, Thomas, 133
photos. See also images

angled, 91
rotating, 176–180
styling full-size vs. thumbnails,

160–165
Photoshop, 63
photo slideshows, 91
PIE script, 25, 35, 54, 70, 80, 85
Pinckaers, Hans, 114
pixel-based measurements,

105
PNGs, alpha-transparent,

62, 69–70, 79
Polaroid-style photos, 164–165
pound sign, 181
prefixes, browser, 25–30
Prelude font, 137, 141–142
presentational-behavior effects,

192–193
Presto, 25
progressive enhancement,

11–15, 40–41
properties. See also specific

properties
animatable, 196
browser-specific prefixes for,

25
properties

flexible box layout model,
277

providing more than one
value for, 32

using browser-specific, 28–30
Proposed Recommendation

status, 5
ProtoFluid, 238
pseudo-classes, 168–171
pseudo-elements, 57, 168, 169

Q
QuirksMode, 10
quotation marks, 112, 154

INDEX298

R
radial gradients, 72–73, 75, 76
Rahnas, Remiz, 54
Rainbow Firefox extension,

64, 65
Raleway font, 127, 129, 132
readability, 19, 86, 89, 92,

132–134
Recommendation status, 5
rendering engines, 25, 30
repeat value, 118
retina display, 233
RGBA

browser support, 67
converting to Gradient filter,

71
emulating, 35
meaning of acronym, 62
semitransparent backgrounds

with, 31, 62–72
syntax, 62–64
vs. HSLA, 65–67
ways of using, 67
workarounds for IE, 69–72

RGB values, 63, 64
Roberts, Harry, 179
:root pseudo-class, 170
rotate transform function,

90, 93
rotation, random, 176–180
rounded corners, 51–55
round value, 118, 126
Ruter, Weston, 80
Rutter, Richard 218

S
Safari. See also browsers

and background-clip
property, 122

and background-size
property, 104, 111

and border-image property,
120

and box-shadow property,
164

browser prefix, 25
CSS3 support, 8–9, 10
and drop shadows, 126
and float property, 264
and @font-face rules, 135
and local() syntax, 140
market share, 7

and round value, 126
and spread radius, 164

Safari on iOS, 135
Sass, 27
Savarese, Cédric, 218
scale transform function, 90
scaling

background images, 101–107,
108

border images, 115
icons, 156

screen sizes
accommodating different,

205, 206–207
targeting specific, 226

scripts
for attribute selectors,

157–158, 159
for box-sizing property,

284
CSS3 emulation, 34–35
for media queries, 241
for multi-column text, 218
for rounded corners, 54–55
for stretching border images,

125
for :target pseudo-class,

191, 204
for zebra striping, 176

search engine placement, 18
Selectivizr, 34, 159
SelectORacle, 152
selectors, 3, 149, 159, 167.

See also attribute selectors
Selectors module, 3, 162, 175,

179, 190
Selector Utility, YUI, 159
semitransparent backgrounds,

31, 62–72, 82
Shadow filter, 35, 85, 89
shadows

drop, 81–85
text, 85–89

sibling elements, 169
sideways text, 91
Silk icon set, 155
Simons, Randy, 218
Sizzle, 159
skewed boxes, 91
skew transform function, 90
slideshows, 91, 190
Sly, 159

smartphones, 235.
See also specific devices

smiley faces, 53
Soma Fontfriend, 132
space value, 118
special character code, 58
speech bubbles, 47–97

adding alternating colors to,
171–176

adding drop shadows behind,
81–85

adding tails to, 55–61
applying gradients to, 72–81
base page for, 48–49
creating semitransparent

backgrounds for, 68–72
exercise files, 49, 61, 70, 81,

87, 96
finished page for, 96–97
increasing 3D appearance of,

83
making text stand out in,

86–89
rotating photos in, 176–180
rounding corners of, 51–55
transforming avatars for,

89–96
wrapping text in, 49–51

spiral notebook-paper effect,
114–116

Spolsky, Joel, 133
spread radius, 164
sprites, 21, 22, 185
src attribute, 164
stability status, CSS3, 4
stain images, 109–111
Standardista, 10
star html hack, 36
Stefanov, Stoyan, 145
sticky footers, 272–275
sticky notes, 100
Storey, David, 185
stretch value, 258, 259, 260
structural pseudo-classes,

169–171
stunningcss3.com

CSS3 emulation scripts, 35
flex-box exercise files, 245
font-embedding resources,

131
media queries exercise files,

209

INDEX 299

notebook paper exercise files,
104

selectors exercise files, 153
speech bubbles exercise files,

49
web font resources, 130, 135
zebra striping exercise files,

172
style sheets, 37, 163, 212
styling

numbers, 186
table of contents, 183–184
type-based, 151

subscription form, 268–272
substring matching attribute

selectors, 152, 162
“Suckerfish :target” script, 191
SuperSelectors plugin, 159
SVG fonts, 134, 135, 136
Swan, Elliot, 193

T
table of contents, 182–187, 204
tabs, 53
tag clouds, 91
tails, speech bubble, 55–61
targeting HTML elements,

3, 16, 149, 168–180.
See also selectors

:target pseudo-class, 181–182,
188–191, 204

template layout, 284–285
Template Layout module, 3
text. See also fonts

displaying alternative, 163
multi-column, 214–219
real vs. images of, 19
sideways, 91
wrapping, 9, 49–51

Text module, 88
text-shadow generator, 87
text-shadow property, 35,

85–89
text-shadow script, 89
text-wrap property, 50
thumbnails, 160–165
thumbtack image, 110
title attribute, 163
TOC, 182–187, 204
top value, 60
torn-edge effect, 114–125, 147

transform functions, 89, 90
Transformie script, 96
transform-origin property,

90, 92
transform property, 92
transforms

benefits of using, 92
browser support, 91
defined, 89
purpose of, 2
rotating avatars with, 92–93
scripting changes in, 96
syntax for, 92
using multiple, 90
ways of using, 91
workarounds for IE, 92–96

transforms generator, 92
Transforms Translator, 93, 94
transition property, 194–198
transitions, 3, 192–204
Transitions module, 197
translate transform function,

90
transparency, 62.

See also semitransparent
backgrounds

triangles, 55–56
Trident, 25
TrueType, 132, 134–135
ttf2svg, 136
TTF fonts, 132, 134–135
Twitter, 31
type-based styling, 151
type delivery services, 130–131
TypeFront, 128, 129
Typekit, 130
typography, 3. See also fonts
Typotheque, 131, 133

U
ul element, 184
UNC Highway Safety Research

Center, 19–24
Unicode Code Converter, 57
Unicode code points, 58
unordered lists, 184
URLs, 49, 163, 181–182.

See also links
usability, 19, 92, 172, 218
user style sheets, 163

V
Van Damme, Tim, 133
van der Graaf, Wouter, 241
van Ouwerkerk, Michael, 218
vendor prefixes, 25–26
Verou, Lea, 172
vertical centering, 261–263
vertical menus, 213–214
viewport meta tag, 235–240
virtual viewports, 235
visual effects, 2
visual viewports, 235

W
W3C

and attribute selectors, 152
box model, 277
and CSS3 maturity levels,

4–5
and Firefox, 73
and WOFF specification,

134, 135
water stain images, 110
Webb, Dan, 191
web-based color tools , 64
web browsers. See browsers
Web Developer extension,

Firefox, 238
Web FontFonts, 130
WebFont Loader JavaScript

library, 145
web fonts, 127, 128, 132.

See also fonts
Web Fonts from Ascender, 131
Webfonts.info, 129
WebINK, 131
Webkit

and anti-aliasing, 133
and background-clip

property, 122
browser prefix, 25
and @font-face rules, 144
and font smoothing, 133
and gradients, 73
linear gradient syntax, 75, 79
and long URLs, 49
and transitions, 192

Web Open Font Format, 134–135

INDEX300

web pages
choosing fonts for, 128–134
hiding ads on, 163
highlighting sections

of, 180–204
how people view, 205
improving search engine

placement for, 18
progressive enhancement of,

11
speeding up, 16, 21

web-safe fonts, 127
Webtype, 131
Wii, 25

Wikipedia, 7, 10, 180–182
Windows fonts, 132
wireframes, 44
WOFF files, 134–135, 139, 145
word-wrap property, 9, 49–50
Working Draft status, 5
Wroblewski, Luke, 234
Wulf, Adam, 218

X
XHTML Character Entity

Reference, 58

Y
Yahoo, 159
Yellow Fade Technique, 191–192,

204
YUI Selector Utility, 159
Yummy icon set, 223

Z
zebra striping, 172–176

	Table of Contents
	Introduction
	CHAPTER 3 Notebook Paper
	The Base Page
	Beyond the Basic Background
	Scaling the Background Image
	Multiple Background Images on One Element
	Adding a Graphic Border
	Adding a Drop Shadow

	Embedding Unique Fonts
	What is @font-face?
	Choosing Acceptable Fonts
	Browser Support
	Converting Fonts
	Using @font-face

	The Finished Page

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

