
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321721334
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321721334
https://plusone.google.com/share?url=http://www.informit.com/title/9780321721334
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321721334
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321721334/Free-Sample-Chapter

“This is great stuff! Your descriptions are so vibrant and vivid that I'm rediscovering the truth
buried in OO principles that are otherwise so internalized that I forget to explore them. Your
thoughts on design and knowing the future are especially eloquent.”

—Ian McFarland, President, New Context, Inc.

“As a self-taught programmer, this was an extremely helpful dive into some OOP concepts that I
could definitely stand to become better acquainted with! And, I’m not alone: there’s a sign posted
at work that reads, “WWSMD?—What Would Sandi Metz Do”?

—Jonathan Mukai, Pivotal in NYC

“Meticulously pragmatic and exquisitely articulate, Practical Object Oriented Design in Ruby
makes otherwise elusive knowledge available to an audience which desperately needs it. The pre-
scriptions are appropriate both as rules for novices and as guidelines for experienced professionals.”

—Katrina Owen, developer, Bengler

“I do believe this will be the most important Ruby book of 2012. Not only is the book 100%
on-point, Sandi has an easy writing style with lots of great analogies that drive every point home.”

—Avdi Grimm, Author of Exceptional Ruby and Objects on Rails

“While Ruby is an object-oriented language, little time is spent in the documentation on what
OO truly means or how it should direct the way we build programs. Here Metz brings it to the
fore, covering most of the key principles of OO development and design in an engaging, easy-to-
understand manner. This is a must for any respectable Ruby bookshelf.”

—Peter Cooper, editor, Ruby Weekly

“So good, I couldn’t put it down! This is a must-read for anyone wanting to do object-oriented pro-
gramming in any language, not to mention it has completely changed the way I approach testing.”

—Charles Max Wood, video and audio show host, TeachMeToCode.com

“Distilling scary OO design practices with clear-cut examples and explanations makes this a book
for novices and experts alike. It is well worth the study by anyone interested in OO design being
done right and ‘light.’ I thoroughly enjoyed this book.”

—Manuel Pais, editor, InfoQ.com

“If you call yourself a Ruby programmer, you should read this book. It’s jam-packed with great nuggets
of practical advice and coding techniques that you can start applying immediately in your projects.”

—Ylan Segal, San Diego Ruby User Group

“This is the best OO book I’ve ever read. It’s short, sweet, but potent. It slowly moves from simple
techniques to more advanced, each example improving on the last. The ideas it presents are useful
not just in Ruby but in static languages like C# too. Highly recommended!”

—Kevin Berridge, software engineering manager, Pointe Blank

Solutions, and organizer, Burning River Developers Meetup

Praise for Practical Object-Oriented Design in Ruby

“The book is just perfect! The elegance of Ruby shines but it also works as an A to Z of object-
oriented programming in general.”

—Emil Rondahl, C# & .NET consultant

“This is an exceptional Ruby book, in which Metz offers a practical look at writing maintainable,
clean, idiomatic code in Ruby. Absolutely fantastic, recommended for my Ruby hacker friends.”

—Zachary “Zee” Spencer, freelancer & coach

“This is the best programming book I’ve read in ages. Sandi talks about basic principles, but these
are things we’re probably still doing wrong and she shows us why and how. The book has the per-
fect mix of code, diagrams, and words. I can’t recommend it enough and if you’re serious about
being a better programmer, you’ll read it and agree.

—Derick Hitchcock, senior developer, SciMed Solutions

“I predict this will become a classic. I have an uncomfortable familiarity with programming liter-
ature, and this book is on a completely different level. I am astonished when I find a book that
offers new insights and ideas, and even more surprised when it can do so, not just once, but
throughout the pages. This book is excellently written, well-organized, with lucid explanations of
technical programming concepts.”

—Han S. Kang, software engineer and member of the LA Rubyists

“You should read this book if you write software for a living. The future developers who inherit
your code will thank you.”

—Jose Fernandez, senior software engineer at New Relic

“Metz’s take on the subject is rooted strongly in theory, but the explanation always stays grounded
in real world concerns, which helped me to internalize it. The book is clear and concise, yet
achieves a tone that is more friendly than terse.”

—Alex Strasheim, network administrator, Ensemble Travel Group

“This is an amazing book about just how to do object-oriented thinking when you’re program-
ming in Ruby. Although there are some chapters that are more Ruby-specific, this book could be a
great resource for developers in any language. All in all, I can’t recommend this book enough.”

—James Hwang, thriceprime.com

“Whether you’re just getting started in your software development career, or you’ve been coding for
years (like I have), it’s likely that you’ll learn a lot from Ms. Metz’s book. She does a fantastic job
of explaining the whys of well-designed software along with the hows.”

—Gabe Hollombe, software craftsman, avantbard.com

“In short, this is in my top five programming books I’ve ever read. I believe that in twenty years this
will be considered one of the definitive works on object-oriented programming. I plan to re-read it at
least once a year to keep my skills from falling into atrophy. If you’re a relatively new, intermediate,
or even somewhat advanced OO developer in any language, purchasing this book is the best way
I know to level up your OO design skills.”

—Brandon Hays, freelance software developer

PRACTICAL OBJECT-ORIENTED
DESIGN IN RUBY

T
he Addison-Wesley Professional Ruby Series provides readers

with practical, people-oriented, and in-depth information about

applying the Ruby platform to create dynamic technology solutions.

The series is based on the premise that the need for expert reference

books, written by experienced practitioners, will never be satisfied solely

by blogs and the Internet.

Visit informit.com/ruby for a complete list of available products.

Addison-Wesley

Professional Ruby Series
Obie Fernandez, Series Editor

PRACTICAL OBJECT-ORIENTED
DESIGN IN RUBY
An Agile Primer

Sandi Metz

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibil-
ity for errors or omissions. No liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus,
or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Metz, Sandi.
Practical object-oriented design in Ruby : an agile primer / Sandi Metz.

p. cm.
Includes bibliographical references and index.
ISBN 0-321-72133-0 (alk. paper)

1. Object-oriented programming (Computer science) 2. Ruby (Computer
program language) I. Title.
QA76.64.M485 2013
005.1'17—dc23 2012026008

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication
is protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. To obtain permission to use material from this work, please submit a
written request to Pearson Education, Inc., Permissions Department, One Lake
Street, Upper Saddle River, New Jersey 07458, or you may fax your request to
(201) 236-3290.

ISBN-13: 978-0-321-72133-4
ISBN-10: 0-321-72133-0
Text printed in the United States at RR Donnelley in Crawfordsville, Indiana.
Fourth printing, October 2014

Editor-in-Chief
Mark Taub

Acquisitions Editor
Debra Williams Cauley

Development Editor
Michael Thurston

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Packager
Laserwords

Copy Editor
Phyllis Crittenden

Indexer
Constance A. Angelo

Proofreader
Gina Delaney

Publishing Coordinator
Kim Boedigheimer

Cover Designer
Chuti Prasertsith

Compositor
Laserwords

For Amy, who read everything first

This page intentionally left blank

Contents

Foreword xv

Introduction xvii

Acknowledgments xxi

About the Author xxiii

1 Object-Oriented Design 1
In Praise of Design 2

The Problem Design Solves 2
Why Change Is Hard 3
A Practical Definition of Design 4

The Tools of Design 4
Design Principles 5
Design Patterns 6

The Act of Design 7
How Design Fails 7
When to Design 8
Judging Design 10

A Brief Introduction to Object-Oriented Programming 11
Procedural Languages 12
Object-Oriented Languages 12

Summary 14

2 Designing Classes with a Single Responsibility 15
Deciding What Belongs in a Class 16

Grouping Methods into Classes 16
Organizing Code to Allow for Easy Changes 16

ix

Creating Classes That Have a Single Responsibility 17
An Example Application: Bicycles and Gears 17
Why Single Responsibility Matters 21
Determining If a Class Has a Single Responsibility 22
Determining When to Make Design Decisions 22

Writing Code That Embraces Change 24
Depend on Behavior, Not Data 24
Enforce Single Responsibility Everywhere 29

Finally, the Real Wheel 33
Summary 34

3 Managing Dependencies 35
Understanding Dependencies 36

Recognizing Dependencies 37
Coupling Between Objects (CBO) 37
Other Dependencies 38

Writing Loosely Coupled Code 39
Inject Dependencies 39
Isolate Dependencies 42
Remove Argument-Order Dependencies 46

Managing Dependency Direction 51
Reversing Dependencies 51
Choosing Dependency Direction 53

Summary 57

4 Creating Flexible Interfaces 59
Understanding Interfaces 59
Defining Interfaces 61

Public Interfaces 62
Private Interfaces 62
Responsibilities, Dependencies, and Interfaces 62

Finding the Public Interface 63
An Example Application: Bicycle Touring Company 63
Constructing an Intention 64
Using Sequence Diagrams 65

x Contents

Asking for “What” Instead of Telling “How” 69
Seeking Context Independence 71
Trusting Other Objects 73
Using Messages to Discover Objects 74
Creating a Message-Based Application 76

Writing Code That Puts Its Best (Inter)Face Forward 76
Create Explicit Interfaces 76
Honor the Public Interfaces of Others 78
Exercise Caution When Depending on Private Interfaces 79
Minimize Context 79

The Law of Demeter 80
Defining Demeter 80
Consequences of Violations 80
Avoiding Violations 82
Listening to Demeter 82

Summary 83

5 Reducing Costs with Duck Typing 85
Understanding Duck Typing 85

Overlooking the Duck 87
Compounding the Problem 87
Finding the Duck 90
Consequences of Duck Typing 94

Writing Code That Relies on Ducks 95
Recognizing Hidden Ducks 96
Placing Trust in Your Ducks 98
Documenting Duck Types 98
Sharing Code Between Ducks 99
Choosing Your Ducks Wisely 99

Conquering a Fear of Duck Typing 100
Subverting Duck Types with Static Typing 100
Static versus Dynamic Typing 101
Embracing Dynamic Typing 102

Summary 104

xiContents

6 Acquiring Behavior Through Inheritance 105
Understanding Classical Inheritance 105
Recognizing Where to Use Inheritance 106

Starting with a Concrete Class 106
Embedding Multiple Types 109
Finding the Embedded Types 111
Choosing Inheritance 112
Drawing Inheritance Relationships 114

Misapplying Inheritance 114
Finding the Abstraction 116

Creating an Abstract Superclass 117
Promoting Abstract Behavior 120
Separating Abstract from Concrete 123
Using the Template Method Pattern 125
Implementing Every Template Method 127

Managing Coupling Between Superclasses and Subclasses 129
Understanding Coupling 129
Decoupling Subclasses Using Hook Messages 134

Summary 139

7 Sharing Role Behavior with Modules 141
Understanding Roles 142

Finding Roles 142
Organizing Responsibilities 143
Removing Unnecessary Dependencies 145
Writing the Concrete Code 147
Extracting the Abstraction 150
Looking Up Methods 154
Inheriting Role Behavior 158

Writing Inheritable Code 158
Recognize the Antipatterns 158
Insist on the Abstraction 159
Honor the Contract 159

xii Contents

Use the Template Method Pattern 160
Preemptively Decouple Classes 161
Create Shallow Hierarchies 161

Summary 162

8 Combining Objects with Composition 163
Composing a Bicycle of Parts 164

Updating the Bicycle Class 164
Creating a Parts Hierarchy 165

Composing the Parts Object 168
Creating a Part 169
Making the Parts Object More Like an Array 172

Manufacturing Parts 176
Creating the PartsFactory 177
Leveraging the PartsFactory 178

The Composed Bicycle 180
Deciding Between Inheritance and Composition 184

Accepting the Consequences of Inheritance 184
Accepting the Consequences of Composition 187
Choosing Relationships 188

Summary 190

9 Designing Cost-Effective Tests 191
Intentional Testing 192

Knowing Your Intentions 193
Knowing What to Test 194
Knowing When to Test 197
Knowing How to Test 198

Testing Incoming Messages 200
Deleting Unused Interfaces 202
Proving the Public Interface 203
Isolating the Object Under Test 205
Injecting Dependencies Using Classes 207
Injecting Dependencies as Roles 208

xiiiContents

Testing Private Methods 213
Ignoring Private Methods During Tests 213
Removing Private Methods from the Class Under Test 214
Choosing to Test a Private Method 214

Testing Outgoing Messages 215
Ignoring Query Messages 215
Proving Command Messages 216

Testing Duck Types 219
Testing Roles 219
Using Role Tests to Validate Doubles 224

Testing Inherited Code 229
Specifying the Inherited Interface 229
Specifying Subclass Responsibilities 233
Testing Unique Behavior 236

Summary 240

Afterword 241

Index 243

xiv Contents

Foreword

One of the core truisms of software development is that as your code grows and
requirements for the system that you are building change, additional logic will be
added that is not yet present in the current system. In almost all cases, maintainability
over the life of the code is more important than optimizing its present state.

The promise of using object-oriented design (OOD) is that your code will be easier
to maintain and evolve than otherwise. If you are new to programming, how do you
unlock these secrets to maintainability using OOD? The fact is that many of us have
never had holistic training in writing clean object-oriented code, instead picking up
our techniques through osmosis from colleagues and a myriad of older books and
online sources. Or if we were given a primer in OOD during school, it was done in
languages such as Java or C++. (The lucky ones were taught using Smalltalk!)

Sandi Metz’s Practical Object-Oriented Design in Ruby covers all of the basics of
OOD using the Ruby language, meaning that it’s ready to usher countless Ruby and
Rails newcomers to the next steps in their professional development as mature pro-
grammers.

Ruby itself, like Smalltalk, is a completely object-oriented language. Everything in
it, even primitive data constructs such as strings and numbers, is represented by
objects with behavior. When you write your own applications in Ruby, you do so by
coding your own objects, each encapsulating some state and defining its own behavior.
If you don’t already have OOD experience, it can feel daunting to know how to start
the process. This book guides you every step of the way, from the most basic questions
of what to put in a class, through basic concepts such as the Single Responsibility
Principle, all the way through to making tradeoffs between inheritance and composi-
tion, and figuring out how to test objects in isolation.

The best part, though, is Sandi’s voice. She’s got a ton of experience and is one of
the nicest members of the community you’ll ever meet, and I think she did a great job

xv

getting that feeling across in her writing. I’ve known Sandi for several years now, and I
wondered if her manuscript would live up to the pleasure of actually getting to know
Sandi in real life. I’m glad to say that it does, in spades, which is why I’m glad to wel-
come her as our newest author to the Professional Ruby Series.

—Obie Fernandez, Series Editor
Addison Wesley Professional Ruby Series

xvi Foreword

Introduction

We want to do our best work, and we want the work we do to have meaning. And, all
else being equal, we prefer to enjoy ourselves along the way.

Those of us whose work is to write software are incredibly lucky. Building soft-
ware is a guiltless pleasure because we get to use our creative energy to get things
done. We have arranged our lives to have it both ways; we can enjoy the pure act of
writing code in sure knowledge that the code we write has use. We produce things
that matter. We are modern craftspeople, building structures that make up present-
day reality, and no less than bricklayers or bridge builders, we take justifiable pride in
our accomplishments.

This all programmers share, from the most enthusiastic newbie to the apparently
jaded elder, whether working at the lightest weight Internet startup or the most staid,
long-entrenched enterprise. We want to do our best work. We want our work to have
meaning. We want to have fun along the way.

And so it’s especially troubling when software goes awry. Bad software impedes
our purpose and interferes with our happiness. Where once we felt productive, now
we feel thwarted. Where once fast, now slow. Where once peaceful, now frustrated.

This frustration occurs when it costs too much to get things done. Our internal
calculators are always running, comparing total amount accomplished to overall effort
expended. When the cost of doing work exceeds its value, our efforts feel wasted. If
programming gives joy it is because it allows us to be useful; when it becomes painful
it is a sign that we believe we could, and should, be doing more. Our pleasure follows
in the footsteps of work.

This book is about designing object-oriented software. It is not an academic
tome, it is a programmer’s story about how to write code. It teaches how to arrange
software so as to be productive today and to remain so next month and next year. It
shows how to write applications that can succeed in the present and still adapt to the

xvii

future. It allows you to raise your productivity and reduce your costs for the entire
lifetime of your applications.

This book believes in your desire to do good work and gives you the tools you
need to best be of use. It is completely practical and as such is, at its core, a book about
how to write code that brings you joy.

Who Might Find This Book Useful?
This book assumes that you have at least tried to write object-oriented software. It is
not necessary that you feel you succeeded, just that you made the attempt in any object-
oriented (OO) language. Chapter 1 contains a brief overview of object-oriented
programming (OOP) but its goal is to define common terms, not to teach programming.

If you want to learn OO design (OOD) but have not yet done any object-oriented
programming, at least take a tutorial before reading this book. OO design solves prob-
lems; suffering from those problems is very nearly a prerequisite for comprehending
these solutions. Experienced programmers may be able to skip this step but most readers
will be happier if they write some OO code before starting this book.

This book uses Ruby to teach OOD but you do not need to know Ruby to
understand the concepts herein. There are many code examples but all are quite
straightforward. If you have programmed in any OO language you will find Ruby easy
to understand.

If you come from a statically typed OO language like Java or C++ you have the
background necessary to benefit from reading this book. The fact that Ruby is
dynamically typed simplifies the syntax of the examples and distills the design ideas to
their essence, but every concept in this book can be directly translated to a statically
typed OO language.

How to Read This Book
Chapter 1, Object-Oriented Design, contains a general overview of the whys, whens
and wherefores of OO design, followed by a brief overview of object-oriented
programming. This chapter stands alone. You can read it first, last, or, frankly, skip it
entirely, although if you are currently stuck with an application that suffers from lack
of design you may find it a comforting tale.

If you have experience writing object-oriented applications and want to jump
right in, you can safely start with Chapter 2. If you do so and then stumble upon an

xviii Introduction

unfamiliar term, come back and browse the Introduction to Object-Oriented
Programming section of Chapter 1, which introduces and defines common OO terms
used throughout the book.

Chapters 2 through 9 progressively explain object-oriented design. Chapter 2,
Designing Classes with a Single Responsibility, covers how to decide what belongs in a
single class. Chapter 3, Managing Dependencies, illustrates how objects get entangled
with one another and shows how to keep them apart. These two chapters are focused
on objects rather than messages.

In Chapter 4, Creating Flexible Interfaces, the emphasis begins to shift away from
object-centric towards message-centric design. Chapter 4 is about defining interfaces
and is concerned with how objects talk to one another. Chapter 5, Reducing Costs with
Duck Typing, is about duck typing and introduces the idea that objects of different
classes may play common roles. Chapter 6, Acquiring Behavior Through Inheritance,
teaches the techniques of classical inheritance, which are then used in Chapter 7,
Sharing Role Behavior with Modules, to create duck typed roles. Chapter 8,
Combining Objects with Composition, explains the technique of building objects via
composition and provides guidelines for choosing among composition, inheritance,
and duck-typed role sharing. Chapter 9, Designing Cost-Effective Tests, concentrates
on the design of tests, which it illustrates using code from earlier chapters of the book.

Each of these chapters builds on the concepts of the last. They are full of code and
best read in order.

How to Use This Book
This book will mean different things to readers of different backgrounds. Those
already familiar with OOD will find things to think about, possibly encounter some
new points of view, and probably disagree with a few of the suggestions. Because there
is no final authority on OOD, challenges to the principles (and to this author) will
improve the understanding of all. In the end you must be the arbiter of your own
designs; it is up to you to question, to experiment, and to choose.

While this book should be of interest to many levels of reader, it is written with
the particular goal of being accessible to novices. If you are one of those novices, this
part of the introduction is especially for you. Know this: object-oriented design is not
black magic. It is simply things you don’t yet know. The fact that you’ve read this far
indicates you care about design; this desire to learn is the only prerequisite for benefiting
from this book.

xixIntroduction

Chapters 2 through 9 explain OOD principles and provide very explicit program-
ming rules; these rules will mean different things to novices than they mean to experts.
If you are a novice, start out by following these rules in blind faith if necessary. This
early obedience will stave off disaster until you can gain enough experience to make
your own decisions. By the time the rules start to chafe, you’ll have enough experience
to make up rules of your own and your career as a designer will have begun.

xx Introduction

Acknowledgments

It is a wonder this book exists; the fact that it does is due to the efforts and encourage-
ment of many people.

Throughout the long process of writing, Lori Evans and TJ Stankus provided
early feedback on every chapter. They live in Durham, NC, and thus could not escape
me, but this fact does nothing to lessen my appreciation for their help.

Midway through the book, after it became impossible to deny that its writing
would take approximately twice as long as originally estimated, Mike Dalessio and
Gregory Brown read drafts and gave invaluable feedback and support. Their encour-
agement and enthusiasm kept the project alive during dark days.

As it neared completion, Steve Klabnik, Desi McAdam, and Seth Wax reviewed
the book and thus acted as gracious stand-ins for you, the gentle reader. Their impres-
sions and suggestions caused changes that will benefit all who follow.

Late drafts were given careful, thorough readings by Katrina Owen, Avdi Grimm,
and Rebecca Wirfs-Brock, and the book is much improved by their kind and thought-
ful feedback. Before they pitched in, Katrina, Avdi, and Rebecca were strangers to me;
I am grateful for their involvement and humbled by their generosity. If you find this
book useful, thank them when you next see them.

I am also grateful for the Gotham Ruby Group and for everyone who expressed
their appreciation for the design talks I gave at GoRuCo 2009 and 2011. The folks at
GoRuCo took a chance on an unknown and gave me a forum in which to express
these ideas; this book started there. Ian McFarland and Brian Ford watched those talks
and their immediate and ongoing enthusiasm for this project was both infectious and
convincing.

xxi

The process of writing was greatly aided by Michael Thurston of Pearson Education,
who was like an ocean liner of calmness and organization chugging through the chaotic
sea of my opposing rogue writing waves. You can, I expect, see the problem he faced. He
insisted, with endless patience and grace, that the writing be arranged in a readable
structure. I believe his efforts have paid off and hope you will agree.

My thanks also to Debra Williams Cauley, my editor at Addison-Wesley, who
overheard an ill-timed hallway rant in 2006 at the first Ruby on Rails conference in
Chicago and launched the campaign that eventually resulted in this book. Despite
my best efforts, she would not take no for an answer. She cleverly moved from one
argument to the next until she finally found the one that convinced; this accurately
reflects her persistence and dedication.

I owe a debt to the entire object-oriented design community. I did not make up
the ideas in this book, I am merely a translator, and I stand on the shoulders of
giants. It goes without saying that while all credit for these ideas belongs to others—
failures of translation are mine alone.

And finally, this book owes its existence to my partner Amy Germuth. Before
this project started I could not imagine writing a book; her view of the world as a
place where people did such things made doing so seem possible. The book in your
hands is a tribute to her boundless patience and endless support.

Thank you, each and every one.

xxii Acknowledgments

About the Author

Sandi Metz has 30 years of experience working on projects that survived to grow and
change. She writes code every day as a software architect at Duke University, where her
team solves real problems for customers who have large object-oriented applications
that have been evolving for 15 or more years. She’s committed to getting useful software
out the door in extremely practical ways. Practical Object-Oriented Design in Ruby is
the distillation of many years of whiteboard drawings and the logical culmination of a
lifetime of conversations about OO design. Sandi has spoken at Ruby Nation and several
times at Gotham Ruby User’s Conference and lives in Durham, NC.

xxiii

This page intentionally left blank

CHAPTER 3
Managing Dependencies

Object-oriented programming languages contend that they are efficient and effective
because of the way they model reality. Objects reflect qualities of a real-world problem
and the interactions between those objects provide solutions. These interactions are
inescapable. A single object cannot know everything, so inevitably it will have to talk
to another object.

If you could peer into a busy application and watch the messages as they pass, the
traffic might seem overwhelming. There’s a lot going on. However, if you stand back
and take a global view, a pattern becomes obvious. Each message is initiated by an
object to invoke some bit of behavior. All of the behavior is dispersed among the
objects. Therefore, for any desired behavior, an object either knows it personally,
inherits it, or knows another object who knows it.

The previous chapter concerned itself with the first of these, that is, behaviors
that a class should personally implement. The second, inheriting behavior, will be
covered in Chapter 6, Acquiring Behavior Through Inheritance. This chapter is
about the third, getting access to behavior when that behavior is implemented in
other objects.

Because well designed objects have a single responsibility, their very nature requires
that they collaborate to accomplish complex tasks. This collaboration is powerful and
perilous. To collaborate, an object must know something about others. Knowing
creates a dependency. If not managed carefully, these dependencies will strangle
your application.

35

Understanding Dependencies
An object depends on another object if, when one object changes, the other might be
forced to change in turn.

Here’s a modified version of the Gear class, where Gear is initialized with four fa-
miliar arguments. The gear_inches method uses two of them, rim and tire, to
create a new instance of Wheel. Wheel has not changed since you last you saw it in
Chapter 2, Designing Classes with a Single Responsibility.

1 class Gear

2 attr_reader :chainring, :cog, :rim, :tire

3 def initialize(chainring, cog, rim, tire)

4 @chainring = chainring

5 @cog = cog

6 @rim = rim

7 @tire = tire

8 end

9

10 def gear_inches

11 ratio * Wheel.new(rim, tire).diameter

12 end

13

14 def ratio

15 chainring / cog.to_f

16 end

17 # ...

18 end

19

20 class Wheel

21 attr_reader :rim, :tire

22 def initialize(rim, tire)

23 @rim = rim

24 @tire = tire

25 end

26

27 def diameter

28 rim + (tire * 2)

29 end

30 # ...

31 end

32

33 Gear.new(52, 11, 26, 1.5).gear_inches

36 Chapter 3. Managing Dependencies

Examine the code above and make a list of the situations in which Gear would be
forced to change because of a change to Wheel. This code seems innocent but it’s
sneakily complex. Gear has at least four dependencies on Wheel, enumerated as
follows. Most of the dependencies are unnecessary; they are a side effect of the coding
style. Gear does not need them to do its job. Their very existence weakens Gear and
makes it harder to change.

Recognizing Dependencies
An object has a dependency when it knows

• The name of another class. Gear expects a class named Wheel to exist.

• The name of a message that it intends to send to someone other than self.
Gear expects a Wheel instance to respond to diameter.

• The arguments that a message requires. Gear knows that Wheel.new requires a
rim and a tire.

• The order of those arguments. Gear knows the first argument to Wheel.new
should be rim, the second, tire.

Each of these dependencies creates a chance that Gear will be forced to change
because of a change to Wheel. Some degree of dependency between these two classes
is inevitable, after all, they must collaborate, but most of the dependencies listed above
are unnecessary. These unnecessary dependencies make the code less reasonable.
Because they increase the chance that Gear will be forced to change, these dependen-
cies turn minor code tweaks into major undertakings where small changes cascade
through the application, forcing many changes.

Your design challenge is to manage dependencies so that each class has the fewest
possible; a class should know just enough to do its job and not one thing more.

Coupling Between Objects (CBO)
These dependencies couple Gear to Wheel. Alternatively, you could say that each
coupling creates a dependency. The more Gear knows about Wheel, the more tightly
coupled they are. The more tightly coupled two objects are, the more they behave like
a single entity.

If you make a change to Wheel you may find it necessary to make a change to
Gear. If you want to reuse Gear, Wheel comes along for the ride. When you test
Gear, you’ll be testing Wheel too.

37Understanding Dependencies

Figure 3.1 illustrates the problem. In this case, Gear depends on Wheel and four
other objects, coupling Gear to five different things. When the underlying code was
first written everything worked fine. The problem lies dormant until you attempt to
use Gear in another context or to change one of the classes upon which Gear
depends. When that day comes the cold hard truth is revealed; despite appearances,
Gear is not an independent entity. Each of its dependencies is a place where another
object is stuck to it. The dependencies cause these objects to act like a single thing.
They move in lockstep; they change together.

When two (or three or more) objects are so tightly coupled that they behave as a
unit, it’s impossible to reuse just one. Changes to one object force changes to all. Left
unchecked, unmanaged dependencies cause an entire application to become an entan-
gled mess. A day will come when it’s easier to rewrite everything than to change anything.

Other Dependencies
The remainder of this chapter examines the four kinds of dependencies listed above
and suggests techniques for avoiding the problems they create. However, before going
forward it’s worth mentioning a few other common dependency related issues that
will be covered in other chapters.

One especially destructive kind of dependency occurs where an object knows
another who knows another who knows something; that is, where many messages are
chained together to reach behavior that lives in a distant object. This is the “knowing
the name of a message you plan to send to someone other than self ” dependency, only
magnified. Message chaining creates a dependency between the original object and

38 Chapter 3. Managing Dependencies

Gear depends on wheel, A, B, C and D Gear and its dependencies act like one thing

Gear Gear

Wheel

W
he

el

B

B

A A

C
C

D
D

Figure 3.1 Dependencies entangle objects with one another.

every object and message along the way to its ultimate target. These additional couplings
greatly increase the chance that the first object will be forced to change because a
change to any of the intermediate objects might affect it.

This case, a Law of Demeter violation, gets its own special treatment in Chapter 4,
Creating Flexible Interfaces.

Another entire class of dependencies is that of tests on code. In the world outside
of this book, tests come first. They drive design. However, they refer to code and thus
depend on code. The natural tendency of “new-to-testing” programmers is to write
tests that are too tightly coupled to code. This tight coupling leads to incredible frus-
tration; the tests break every time the code is refactored, even when the fundamental
behavior of the code does not change. Tests begin to seem costly relative to their value.
Test-to-code over-coupling has the same consequence as code-to-code over-coupling.
These couplings are dependencies that cause changes to the code to cascade into the
tests, forcing them to change in turn.

The design of tests is examined in Chapter 9, Designing Cost-Effective Tests.
Despite these cautionary words, your application is not doomed to drown in un-

necessary dependencies. As long as you recognize them, avoidance is quite simple.
The first step to this brighter future is to understand dependencies in more detail;
therefore, it’s time to look at some code.

Writing Loosely Coupled Code
Every dependency is like a little dot of glue that causes your class to stick to the things
it touches. A few dots are necessary, but apply too much glue and your application
will harden into a solid block. Reducing dependencies means recognizing and removing
the ones you don’t need.

The following examples illustrate coding techniques that reduce dependencies by
decoupling code.

Inject Dependencies
Referring to another class by its name creates a major sticky spot. In the version of
Gear we’ve been discussing (repeated below), the gear_inches method contains an
explicit reference to class Wheel:

1 class Gear

2 attr_reader :chainring, :cog, :rim, :tire

3 def initialize(chainring, cog, rim, tire)

4 @chainring = chainring

39Writing Loosely Coupled Code

5 @cog = cog

6 @rim = rim

7 @tire = tire

8 end

9

10 def gear_inches

11 ratio * Wheel.new(rim, tire).diameter

12 end

13 # ...

14 end

15

16 Gear.new(52, 11, 26, 1.5).gear_inches

The immediate, obvious consequence of this reference is that if the name of the
Wheel class changes, Gear’s gear_inches method must also change.

On the face of it this dependency seems innocuous. After all, if a Gear needs to
talk to a Wheel, something, somewhere, must create a new instance of the Wheel
class. If Gear itself knows the name of the Wheel class, the code in Gear must be
altered if Wheel’s name changes.

In truth, dealing with the name change is a relatively minor issue. You likely have
a tool that allows you to do a global find/replace within a project. If Wheel’s name
changes to Wheely, finding and fixing all of the references isn’t that hard. However,
the fact that line 11 above must change if the name of the Wheel class changes is the
least of the problems with this code. A deeper problem exists that is far less visible but
significantly more destructive.

When Gear hard-codes a reference to Wheel deep inside its gear_inches
method, it is explicitly declaring that it is only willing to calculate gear inches for
instances of Wheel. Gear refuses to collaborate with any other kind of object, even if
that object has a diameter and uses gears.

If your application expands to include objects such as disks or cylinders and you
need to know the gear inches of gears which use them, you cannot. Despite the fact
that disks and cylinders naturally have a diameter you can never calculate their gear
inches because Gear is stuck to Wheel.

The code above exposes an unjustified attachment to static types. It is not the
class of the object that’s important, it’s the message you plan to send to it. Gear needs
access to an object that can respond to diameter; a duck type, if you will (see
Chapter 5, Reducing Costs with Duck Typing). Gear does not care and should not
know about the class of that object. It is not necessary for Gear to know about the
existence of the Wheel class in order to calculate gear_inches. It doesn’t need to

40 Chapter 3. Managing Dependencies

know that Wheel expects to be initialized with a rim and then a tire; it just needs
an object that knows diameter.

Hanging these unnecessary dependencies on Gear simultaneously reduces Gear’s
reusability and increases its susceptibility to being forced to change unnecessarily.
Gear becomes less useful when it knows too much about other objects; if it knew less
it could do more.

Instead of being glued to Wheel, this next version of Gear expects to be initialized
with an object that can respond to diameter:

1 class Gear

2 attr_reader :chainring, :cog, :wheel

3 def initialize(chainring, cog, wheel)

4 @chainring = chainring

5 @cog = cog

6 @wheel = wheel

7 end

8

9 def gear_inches

10 ratio * wheel.diameter

11 end

12 # ...

13 end

14

15 # Gear expects a ‘Duck’ that knows ‘diameter’

16 Gear.new(52, 11, Wheel.new(26, 1.5)).gear_inches

Gear now uses the @wheel variable to hold, and the wheel method to access, this object,
but don’t be fooled, Gear doesn’t know or care that the object might be an instance of
class Wheel. Gear only knows that it holds an object that responds to diameter.

This change is so small it is almost invisible, but coding in this style has huge
benefits. Moving the creation of the new Wheel instance outside of Gear decouples
the two classes. Gear can now collaborate with any object that implements diameter.
As an extra bonus, this benefit was free. Not one additional line of code was written;
the decoupling was achieved by rearranging existing code.

This technique is known as dependency injection. Despite its fearsome reputation,
dependency injection truly is this simple. Gear previously had explicit dependencies
on the Wheel class and on the type and order of its initialization arguments, but
through injection these dependencies have been reduced to a single dependency on
the diameter method. Gear is now smarter because it knows less.

41Writing Loosely Coupled Code

Using dependency injection to shape code relies on your ability to recognize that
the responsibility for knowing the name of a class and the responsibility for knowing
the name of a message to send to that class may belong in different objects. Just because
Gear needs to send diameter somewhere does not mean that Gear should know
about Wheel.

This leaves the question of where the responsibility for knowing about the actual
Wheel class lies; the example above conveniently sidesteps this issue, but it is exam-
ined in more detail later in this chapter. For now, it’s enough to understand that this
knowledge does not belong in Gear.

Isolate Dependencies
It’s best to break all unnecessary dependences but, unfortunately, while this is
always technically possible it may not be actually possible. When working on an
existing application you may find yourself under severe constraints about how
much you can actually change. If prevented from achieving perfection, your goals
should switch to improving the overall situation by leaving the code better than
you found it.

Therefore, if you cannot remove unnecessary dependencies, you should isolate
them within your class. In Chapter 2, Designing Classes with a Single Responsibility,
you isolated extraneous responsibilities so that they would be easy to recognize and re-
move when the right impetus came; here you should isolate unnecessary dependencies
so that they are easy to spot and reduce when circumstances permit.

Think of every dependency as an alien bacterium that‘s trying to infect your class.
Give your class a vigorous immune system; quarantine each dependency.
Dependencies are foreign invaders that represent vulnerabilities, and they should be
concise, explicit, and isolated.

Isolate Instance Creation

If you are so constrained that you cannot change the code to inject a Wheel into a
Gear, you should isolate the creation of a new Wheel inside the Gear class. The
intent is to explicitly expose the dependency while reducing its reach into your class.

The next two examples illustrate this idea.
In the first, creation of the new instance of Wheel has been moved from Gear’s

gear_inches method to Gear’s initialization method. This cleans up the gear_inches
method and publicly exposes the dependency in the initialize method. Notice that
this technique unconditionally creates a new Wheel each time a new Gear is created.

42 Chapter 3. Managing Dependencies

1 class Gear

2 attr_reader :chainring, :cog, :rim, :tire

3 def initialize(chainring, cog, rim, tire)

4 @chainring = chainring

5 @cog = cog

6 @wheel = Wheel.new(rim, tire)

7 end

8

9 def gear_inches

10 ratio * wheel.diameter

11 end

12 # ...

The next alternative isolates creation of a new Wheel in its own explicitly defined
wheel method. This new method lazily creates a new instance of Wheel, using Ruby’s
||= operator. In this case, creation of a new instance of Wheel is deferred until
gear_inches invokes the new wheel method.

1 class Gear

2 attr_reader :chainring, :cog, :rim, :tire

3 def initialize(chainring, cog, rim, tire)

4 @chainring = chainring

5 @cog = cog

6 @rim = rim

7 @tire = tire

8 end

9

10 def gear_inches

11 ratio * wheel.diameter

12 end

13

14 def wheel

15 @wheel ||= Wheel.new(rim, tire)

16 end

17 # ...

In both of these examples Gear still knows far too much; it still takes rim and tire as
initialization arguments and it still creates its own new instance of Wheel. Gear is still
stuck to Wheel; it can calculate the gear inches of no other kind of object.

However, an improvement has been made. These coding styles reduce the number
of dependencies in gear_inches while publicly exposing Gear’s dependency on

43Writing Loosely Coupled Code

Wheel. They reveal dependencies instead of concealing them, lowering the barriers to
reuse and making the code easier to refactor when circumstances allow. This change
makes the code more agile; it can more easily adapt to the unknown future.

The way you manage dependencies on external class names has profound effects
on your application. If you are mindful of dependencies and develop a habit of rou-
tinely injecting them, your classes will naturally be loosely coupled. If you ignore this
issue and let the class references fall where they may, your application will be more like
a big woven mat than a set of independent objects. An application whose classes are
sprinkled with entangled and obscure class name references is unwieldy and inflexible,
while one whose class name dependencies are concise, explicit, and isolated can easily
adapt to new requirements.

Isolate Vulnerable External Messages

Now that you’ve isolated references to external class names it’s time to turn your
attention to external messages, that is, messages that are “sent to someone other than
self.” For example, the gear_inches method below sends ratio and wheel to
self, but sends diameter to wheel:

1 def gear_inches

2 ratio * wheel.diameter

3 end

This is a simple method and it contains Gear’s only reference to wheel.diameter.
In this case the code is fine, but the situation could be more complex. Imagine that
calculating gear_inches required far more math and that the method looked
something like this:

1 def gear_inches

2 #... a few lines of scary math

3 foo = some_intermediate_result * wheel.diameter

4 #... more lines of scary math

5 end

Now wheel.diameter is embedded deeply inside a complex method. This complex
method depends on Gear responding to wheel and on wheel responding to diameter.
Embedding this external dependency inside the gear_inches method is unnecessary
and increases its vulnerability.

44 Chapter 3. Managing Dependencies

Any time you change anything you stand the chance of breaking it; gear_inches
is now a complex method and that makes it both more likely to need changing and
more susceptible to being damaged when it does. You can reduce your chance of being
forced to make a change to gear_inches by removing the external dependency and
encapsulating it in a method of its own, as in this next example:

1 def gear_inches

2 #... a few lines of scary math

3 foo = some_intermediate_result * diameter

4 #... more lines of scary math

5 end

6

7 def diameter

8 wheel.diameter

9 end

The new diameter method is exactly the method that you would have written if you
had many references to wheel.diameter sprinkled throughout Gear and you
wanted to DRY them out. The difference here is one of timing; it would normally be
defensible to defer creation of the diameter method until you had a need to DRY
out code; however, in this case the method is created preemptively to remove the de-
pendency from gear_inches.

In the original code, gear_inches knew that wheel had a diameter. This
knowledge is a dangerous dependency that couples gear_inches to an external object
and one of its methods. After this change, gear_inches is more abstract. Gear now
isolates wheel.diameter in a separate method and gear_inches can depend on a
message sent to self.

If Wheel changes the name or signature of its implementation of diameter, the
side effects to Gear will be confined to this one simple wrapping method.

This technique becomes necessary when a class contains embedded references to
a message that is likely to change. Isolating the reference provides some insurance
against being affected by that change. Although not every external method is a candi-
date for this preemptive isolation, it’s worth examining your code, looking for and
wrapping the most vulnerable dependencies.

An alternative way to eliminate these side effects is to avoid the problem from the
very beginning by reversing the direction of the dependency. This idea will be addressed
soon but first there’s one more coding technique to cover.

45Writing Loosely Coupled Code

Remove Argument-Order Dependencies
When you send a message that requires arguments, you, as the sender, cannot avoid
having knowledge of those arguments. This dependency is unavoidable. However,
passing arguments often involves a second, more subtle, dependency. Many method
signatures not only require arguments, but they also require that those arguments be
passed in a specific, fixed order.

In the following example, Gear’s initialize method takes three arguments:
chainring, cog, and wheel. It provides no defaults; each of these arguments is
required. In lines 11–14, when a new instance of Gear is created, the three arguments
must be passed and they must be passed in the correct order.

1 class Gear

2 attr_reader :chainring, :cog, :wheel

3 def initialize(chainring, cog, wheel)

4 @chainring = chainring

5 @cog = cog

6 @wheel = wheel

7 end

8 ...

9 end

10

11 Gear.new(

12 52,

13 11,

14 Wheel.new(26, 1.5)).gear_inches

Senders of new depend on the order of the arguments as they are specified in Gear’s
initialize method. If that order changes, all the senders will be forced to change.

Unfortunately, it’s quite common to tinker with initialization arguments.
Especially early on, when the design is not quite nailed down, you may go through
several cycles of adding and removing arguments and defaults. If you use fixed-order
arguments each of these cycles may force changes to many dependents. Even worse,
you may find yourself avoiding making changes to the arguments, even when your
design calls for them because you can’t bear to change all the dependents yet again.

Use Hashes for Initialization Arguments

There’s a simple way to avoid depending on fixed-order arguments. If you have
control over the Gear initialize method, change the code to take a hash of options
instead of a fixed list of parameters.

46 Chapter 3. Managing Dependencies

The next example shows a simple version of this technique. The initialize
method now takes just one argument, args, a hash that contains all of the inputs.
The method has been changed to extract its arguments from this hash. The hash itself
is created in lines 11–14.

1 class Gear

2 attr_reader :chainring, :cog, :wheel

3 def initialize(args)

4 @chainring = args[:chainring]

5 @cog = args[:cog]

6 @wheel = args[:wheel]

7 end

8 ...

9 end

10

11 Gear.new(

12 :chainring => 52,

13 :cog => 11,

14 :wheel => Wheel.new(26, 1.5)).gear_inches

The above technique has several advantages. The first and most obvious is that it
removes every dependency on argument order. Gear is now free to add or remove
initialization arguments and defaults, secure in the knowledge that no change will
have side effects in other code.

This technique adds verbosity. In many situations verbosity is a detriment, but in
this case it has value. The verbosity exists at the intersection between the needs of the
present and the uncertainty of the future. Using fixed-order arguments requires less
code today but you pay for this decrease in volume of code with an increase in the risk
that changes will cascade into dependents later.

When the code in line 11 changed to use a hash, it lost its dependency on argument
order but it gained a dependency on the names of the keys in the argument hash. This
change is healthy. The new dependency is more stable than the old, and thus this code
faces less risk of being forced to change. Additionally, and perhaps unexpectedly, the
hash provides one new, secondary benefit: The key names in the hash furnish explicit
documentation about the arguments. This is a byproduct of using a hash but the fact
that it is unintentional makes it no less useful. Future maintainers of this code will be
grateful for the information.

The benefits you achieve by using this technique vary, as always, based on your
personal situation. If you are working on a method whose parameter list is lengthy

47Writing Loosely Coupled Code

and wildly unstable, in a framework that is intended to be used by others, it will likely
lower overall costs if you specify arguments in a hash. However, if you are writing a
method for your own use that divides two numbers, it’s far simpler and perhaps
ultimately cheaper to merely pass the arguments and accept the dependency on order.
Between these two extremes lies a common case, that of the method that requires a
few very stable arguments and optionally permits a number of less stable ones. In this
case, the most cost-effective strategy may be to use both techniques; that is, to take a
few fixed-order arguments, followed by an options hash.

Explicitly Define Defaults

There are many techniques for adding defaults. Simple non-boolean defaults can be
specified using Ruby’s || method, as in this next example:

1 # specifying defaults using ||

2 def initialize(args)

3 @chainring = args[:chainring] || 40

4 @cog = args[:cog] || 18

5 @wheel = args[:wheel]

6 end

This is a common technique but one you should use with caution; there are situations
in which it might not do what you want. The || method acts as an or condition; it
first evaluates the left-hand expression and then, if the expression returns false or
nil, proceeds to evaluate and return the result of the right-hand expression. The use
of || above therefore, relies on the fact that the [] method of Hash returns nil for
missing keys.

In the case where args contains a :boolean_thing key that defaults to true, use
of || in this way makes it impossible for the caller to ever explicitly set the final variable
to false or nil. For example, the following expression sets @bool to true when
:boolean_thing is missing and also when it is present but set to false or nil:

@bool = args[:boolean_thing] || true

This quality of || means that if you take boolean values as arguments, or take arguments
where you need to distinguish between false and nil, it’s better to use the fetch
method to set defaults. The fetch method expects the key you’re fetching to be in the
hash and supplies several options for explicitly handling missing keys. Its advantage over
|| is that it does not automatically return nil when it fails to find your key.

48 Chapter 3. Managing Dependencies

In the example below, line 3 uses fetch to set @chainring to the default, 40,
only if the :chainring key is not in the args hash. Setting the defaults in this way
means that callers can actually cause @chainring to get set to false or nil, something
that is not possible when using the || technique.

1 # specifying defaults using fetch

2 def initialize(args)

3 @chainring = args.fetch(:chainring, 40)

4 @cog = args.fetch(:cog, 18)

5 @wheel = args[:wheel]

6 end

You can also completely remove the defaults from initialize and isolate them
inside of a separate wrapping method. The defaults method below defines a second
hash that is merged into the options hash during initialization. In this case, merge
has the same effect as fetch; the defaults will get merged only if their keys are not in
the hash.

1 # specifying defaults by merging a defaults hash

2 def initialize(args)

3 args = defaults.merge(args)

4 @chainring = args[:chainring]

5 # ...

6 end

7

8 def defaults

9 {:chainring => 40, :cog => 18}

10 end

This isolation technique is perfectly reasonable for the case above but it’s especially
useful when the defaults are more complicated. If your defaults are more than simple
numbers or strings, implement a defaults method.

Isolate Multiparameter Initialization

So far all of the examples of removing argument order dependencies have been for
situations where you control the signature of the method that needs to change. You
will not always have this luxury; sometimes you will be forced to depend on a method
that requires fixed-order arguments where you do not own and thus cannot change
the method itself.

49Writing Loosely Coupled Code

Imagine that Gear is part of a framework and that its initialization method
requires fixed-order arguments. Imagine also that your code has many places where
you must create a new instance of Gear. Gear’s initialize method is external to
your application; it is part of an external interface over which you have no control.

As dire as this situation appears, you are not doomed to accept the dependencies.
Just as you would DRY out repetitive code inside of a class, DRY out the creation of
new Gear instances by creating a single method to wrap the external interface. The
classes in your application should depend on code that you own; use a wrapping
method to isolate external dependencies.

In this example, the SomeFramework::Gear class is not owned by your application;
it is part of an external framework. Its initialization method requires fixed-order argu-
ments. The GearWrapper module was created to avoid having multiple dependencies
on the order of those arguments. GearWrapper isolates all knowledge of the external
interface in one place and, equally importantly, it provides an improved interface for
your application.

As you can see in line 24, GearWrapper allows your application to create a new
instance of Gear using an options hash.

1 # When Gear is part of an external interface

2 module SomeFramework

3 class Gear

4 attr_reader :chainring, :cog, :wheel

5 def initialize(chainring, cog, wheel)

6 @chainring = chainring

7 @cog = cog

8 @wheel = wheel

9 end

10 # ...

11 end

12 end

13

14 # wrap the interface to protect yourself from changes

15 module GearWrapper

16 def self.gear(args)

17 SomeFramework::Gear.new(args[:chainring],

18 args[:cog],

19 args[:wheel])

20 end

21 end

22

50 Chapter 3. Managing Dependencies

23 # Now you can create a new Gear using an arguments hash.

24 GearWrapper.gear(

25 :chainring => 52,

26 :cog => 11,

27 :wheel => Wheel.new(26, 1.5)).gear_inches

There are two things to note about GearWrapper. First, it is a Ruby module instead
of a class (line 15). GearWrapper is responsible for creating new instances of
SomeFramework::Gear. Using a module here lets you define a separate and distinct
object to which you can send the gear message (line 24) while simultaneously con-
veying the idea that you don’t expect to have instances of GearWrapper. You may
already have experience with including modules into classes; in the example above
GearWrapper is not meant to be included in another class, it’s meant to directly
respond to the gear message.

The other interesting thing about GearWrapper is that its sole purpose is to
create instances of some other class. Object-oriented designers have a word for objects
like this; they call them factories. In some circles the term factory has acquired a
negative connotation, but the term as used here is devoid of baggage. An object whose
purpose is to create other objects is a factory; the word factory implies nothing more,
and use of it is the most expedient way to communicate this idea.

The above technique for substituting an options hash for a list of fixed-order
arguments is perfect for cases where you are forced to depend on external interfaces
that you cannot change. Do not allow these kinds of external dependencies to permeate
your code; protect yourself by wrapping each in a method that is owned by your own
application.

Managing Dependency Direction
Dependencies always have a direction; earlier in this chapter it was suggested that one
way to manage them is to reverse that direction. This section delves more deeply into
how to decide on the direction of dependencies.

Reversing Dependencies
Every example used thus far shows Gear depending on Wheel or diameter, but the
code could easily have been written with the direction of the dependencies reversed.
Wheel could instead depend on Gear or ratio. The following example illustrates one
possible form of the reversal. Here Wheel has been changed to depend on Gear and

51Managing Dependency Direction

gear_inches. Gear is still responsible for the actual calculation but it expects a
diameter argument to be passed in by the caller (line 8).

1 class Gear

2 attr_reader :chainring, :cog

3 def initialize(chainring, cog)

4 @chainring = chainring

5 @cog = cog

6 end

7

8 def gear_inches(diameter)

9 ratio * diameter

10 end

11

12 def ratio

13 chainring / cog.to_f

14 end

15 # ...

16 end

17

18 class Wheel

19 attr_reader :rim, :tire, :gear

20 def initialize(rim, tire, chainring, cog)

21 @rim = rim

22 @tire = tire

23 @gear = Gear.new(chainring, cog)

24 end

25

26 def diameter

27 rim + (tire * 2)

28 end

29

30 def gear_inches

31 gear.gear_inches(diameter)

32 end

33 # ...

34 end

35

36 Wheel.new(26, 1.5, 52, 11).gear_inches

This reversal of dependencies does no apparent harm. Calculating gear_inches still
requires collaboration between Gear and Wheel and the result of the calculation is

52 Chapter 3. Managing Dependencies

unaffected by the reversal. One could infer that the direction of the dependency
does not matter, that it makes no difference whether Gear depends on Wheel or
vice versa.

Indeed, in an application that never changed, your choice would not matter.
However, your application will change and it’s in that dynamic future where this
present decision has repercussions. The choices you make about the direction of
dependencies have far reaching consequences that manifest themselves for the life of
your application. If you get this right, your application will be pleasant to work on
and easy to maintain. If you get it wrong then the dependencies will gradually take
over and the application will become harder and harder to change.

Choosing Dependency Direction
Pretend for a moment that your classes are people. If you were to give them advice
about how to behave you would tell them to depend on things that change less often
than you do.

This short statement belies the sophistication of the idea, which is based on three
simple truths about code:

• Some classes are more likely than others to have changes in requirements.

• Concrete classes are more likely to change than abstract classes.

• Changing a class that has many dependents will result in widespread consequences.

There are ways in which these truths intersect but each is a separate and distinct notion.

Understanding Likelihood of Change

The idea that some classes are more likely to change than others applies not only to
the code that you write for your own application but also to the code that you use but
did not write. The Ruby base classes and the other framework code that you rely on
both have their own inherent likelihood of change.

You are fortunate in that Ruby base classes change a great deal less often than
your own code. This makes it perfectly reasonable to depend on the * method, as
gear_inches quietly does, or to expect that Ruby classes String and Array will
continue to work as they always have. Ruby base classes always change less often than
your own classes and you can continue to depend on them without another thought.

Framework classes are another story; only you can assess how mature your
frameworks are. In general, any framework you use will be more stable than the code

53Managing Dependency Direction

you write, but it’s certainly possible to choose a framework that is undergoing such
rapid development that its code changes more often than yours.

Regardless of its origin, every class used in your application can be ranked along
a scale of how likely it is to undergo a change relative to all other classes. This rank-
ing is one key piece of information to consider when choosing the direction of
dependencies.

Recognizing Concretions and Abstractions

The second idea concerns itself with the concreteness and abstractness of code. The
term abstract is used here just as Merriam-Webster defines it, as “disassociated from
any specific instance,” and, as so many things in Ruby, represents an idea about code
as opposed to a specific technical restriction.

This concept was illustrated earlier in the chapter during the section on injecting
dependencies. There, when Gear depended on Wheel and on Wheel.new and on
Wheel.new(rim, tire), it depended on extremely concrete code. After the code
was altered to inject a Wheel into Gear, Gear suddenly began to depend on some-
thing far more abstract, that is, the fact that it had access to an object that could
respond to the diameter message.

Your familiarity with Ruby may lead you to take this transition for granted, but
consider for a moment what would have been required to accomplish this same trick
in a statically typed language. Because statically typed languages have compilers that
act like unit tests for types, you would not be able to inject just any random object
into Gear. Instead you would have to declare an interface, define diameter as part of
that interface, include the interface in the Wheel class, and tell Gear that the class you
are injecting is a kind of that interface.

Rubyists are justifiably grateful to avoid these gyrations, but languages that force
you to be explicit about this transition do offer a benefit. They make it painfully,
inescapably, and explicitly clear that you are defining an abstract interface. It is impos-
sible to create an abstraction unknowingly or by accident; in statically typed languages
defining an interface is always intentional.

In Ruby, when you inject Wheel into Gear such that Gear then depends on a Duck
who responds to diameter, you are, however casually, defining an interface. This inter-
face is an abstraction of the idea that a certain category of things will have a diameter.
The abstraction was harvested from a concrete class; the idea is now “disassociated from
any specific instance.”

The wonderful thing about abstractions is that they represent common, stable
qualities. They are less likely to change than are the concrete classes from which they

54 Chapter 3. Managing Dependencies

were extracted. Depending on an abstraction is always safer than depending on a
concretion because by its very nature, the abstraction is more stable. Ruby does not
make you explicitly declare the abstraction in order to define the interface, but for
design purposes you can behave as if your virtual interface is as real as a class. Indeed, in
the rest of this discussion, the term “class” stands for both class and this kind of interface.
These interfaces can have dependents and so must be taken into account during design.

Avoiding Dependent-Laden Classes

The final idea, the notion that having dependent-laden objects has many conse-
quences, also bears deeper examination. The consequences of changing a dependent-
laden class are quite obvious—not so apparent are the consequences of even having a
dependent-laden class. A class that, if changed, will cause changes to ripple through
the application, will be under enormous pressure to never change. Ever. Under any
circumstances whatsoever. Your application may be permanently handicapped by your
reluctance to pay the price required to make a change to this class.

Finding the Dependencies That Matter

Imagine each of these truths as a continuum along which all application code falls.
Classes vary in their likelihood of change, their level of abstraction, and their number
of dependents. Each quality matters, but the interesting design decisions occur at the
place where likelihood of change intersects with number of dependents. Some of the
possible combinations are healthy for your application; others are deadly.

Figure 3.2 summarizes the possibilities.

55Managing Dependency Direction

C
A
B

D
Neutral Zone:

Less

ManyD

e

p

e

n

d

e

n

t

s Few

Likelihood of Requirements Change

More

Changes are unlikely
and have few side
effects.

Neutral Zone:
Changes are likely but
they have few side
effects.

Danger Zone:
These classes WILL
change and the
changes will cascade
into dependents.

Abstract Zone:
Changes are unlikely
but, if they occur, will
have broad effects.

Figure 3.2 Likelihood of change versus number of dependents

The likelihood of requirements change is represented on the horizontal axis. The
number of dependents is on the vertical. The grid is divided into four zones, labeled A
through D. If you evaluate all of the classes in a well-designed application and place
them on this grid, they will cluster in Zones A, B, and C.

Classes that have little likelihood of change but contain many dependents fall
into Zone A. This Zone usually contains abstract classes or interfaces. In a thought-
fully designed application this arrangement is inevitable; dependencies cluster around
abstractions because abstractions are less likely to change.

Notice that classes do not become abstract because they are in Zone A; instead
they wind up here precisely because they are already abstract. Their abstract nature
makes them more stable and allows them to safely acquire many dependents. While
residence in Zone A does not guarantee that a class is abstract, it certainly suggests
that it ought to be.

Skipping Zone B for a moment, Zone C is the opposite of Zone A. Zone C
contains code that is quite likely to change but has few dependents. These classes tend
to be more concrete, which makes them more likely to change, but this doesn’t matter
because few other classes depend on them.

Zone B classes are of the least concern during design because they are almost neutral
in their potential future effects. They rarely change and have few dependents.

Zones A, B, and C are legitimate places for code; Zone D, however, is aptly
named the Danger Zone. A class ends up in Zone D when it is guaranteed to change
and has many dependents. Changes to Zone D classes are costly; simple requests
become coding nightmares as the effects of every change cascade through each
dependent. If you have a very specific concrete class that has many dependents and you
believe it resides in Zone A, that is, you believe it is unlikely to change, think again.
When a concrete class has many dependents your alarm bells should be ringing. That
class might actually be an occupant of Zone D.

Zone D classes represent a danger to the future health of the application. These
are the classes that make an application painful to change. When a simple change has
cascading effects that force many other changes, a Zone D class is at the root of the
problem. When a change breaks some far away and seemingly unrelated bit of code,
the design flaw originated here.

As depressing as this is, there is actually a way to make things worse. You can
guarantee that any application will gradually become unmaintainable by making its
Zone D classes more likely to change than their dependents. This maximizes the con-
sequences of every change.

56 Chapter 3. Managing Dependencies

Fortunately, understanding this fundamental issue allows you to take preemptive
action to avoid the problem.

Depend on things that change less often than you do is a heuristic that stands in for
all the ideas in this section. The zones are a useful way to organize your thoughts but
in the fog of development it may not be obvious which classes go where. Very often
you are exploring your way to a design and at any given moment the future is unclear.
Following this simple rule of thumb at every opportunity will cause your application
to evolve a healthy design.

Summary
Dependency management is core to creating future-proof applications. Injecting
dependencies creates loosely coupled objects that can be reused in novel ways.
Isolating dependencies allows objects to quickly adapt to unexpected changes.
Depending on abstractions decreases the likelihood of facing these changes.

The key to managing dependencies is to control their direction. The road to
maintenance nirvana is paved with classes that depend on things that change less
often than they do.

57Summary

This page intentionally left blank

Index

243

| | = operator, 43, 48–49
Abstract

behavior, promoting, 120–23
classes, 117–20, 235, 237
definition of, 54
superclass, creating, 117–20

Abstractions
extracting, 150–53
finding, 116–29
insisting on, in writing

inheritable code, 159
recognizing, 54–55
separating from concretions,

123–25
supporting, in intentional testing,

194
template method pattern, 125–29

Across-class types, 86
Ad infinitum, 3
Aggregation, 183–84
Agile, 8–10
Antipattern

definition of, 109, 111
recognizing, 158–59

Argument-order dependencies,
removing, 46–51

defaults, explicitly defining, 48–49
hashes for initialization

arguments, using, 46–48
multiparameter initialization,

isolating, 49–51
Automatic message delegation,

105–6

Behaves-like-a relationships, 189
Behavior

acquired through inheritance,
105–39

confirming, 233–36
data structures, hiding, 26–29
depending on, instead of data,

24–29
instance variables, hiding,

24–26
set of, 19
subclass, 233–39
superclass, 234–39
testing, 236–39

Behavior Driven Development
(BDD), 199, 213

Big Up Front Design (BUFD), 8–9
Booch, Grady, 188
Break-even point, 11
Bugs, finding, 193

Case statements that switch on
class, 96–98

kind_of? and is_a?, 97
responds_to?, 97

Category used in class, 111
Class. See also Single responsibility,

classes with
abstract, 117–20, 235, 237
avoiding dependent-laden, 55
bicycle, updating, 164–65
case statements that switch on,

96–98

code, organizing to allow for
changes, 16–17

concrete, 106–9, 209
deciding what belongs in, 16–17
decoupling, in writing inheritable

code, 161
dependent-laden, avoiding, 55
grouping methods into, 16
references to (See Loosely coupled

code, writing)
responsibilities isolated in, 31–33
Ruby based vs. framework,

53–54
type and category used in, 111
virtual, 61

Class-based OO languages, 12–13
Class class, 14
Classical inheritance, 105–6
Class of an object

ambiguity about, 94–95
checking, 97, 111, 146

Class under test, removing private
methods from, 214

Code. See also Inheritable code,
writing; Inherited code,
testing

concrete, writing, 147–50
dependency injection to shape,

41–42
depending on behavior instead of

data, 24–29
embracing change, writing,

24–33

244 Index

initialization, 121
loosely coupled, writing, 39–51
open–closed, 185
organizing to allow for changes,

16–17
putting its best (inter)face

forward, writing, 76–79
relying on duck typing, writing,

95–100
single responsibility, enforcing,

29–33
truths about, 53

Code arrangement technique, 184
Cohesion, 22
Command messages, 197, 216–18
Compile/make cycle, 102, 103, 104
Compiler, 54, 101, 103–4, 118
Composition

aggregation and, 183–84
benefits of, 187
of bicycle, 180–84
of bicycle of parts, 164–68
consequences of, accepting,

187–88
costs of, 187–88
for has-a relationships, 183, 190
inheritance and, deciding

between, 184–90
manufacturing parts, 176–80
objects combined with, 163–90
of parts object, 168–76
summary, 190
use of term, 183–84

Concrete class, 106–9, 209
Concretions

abstractions separated from,
123–25

inheritance and, 106–9
recognizing, 54–55
writing, 147–50

Context
independence, seeking, 71–73
minimizing, 79

Contract, honoring, 159–60
Costs

of composition, 187–88
of duck typing, 85–104
of inheritance, 185–86
of testing, 191–240

Coupling
decoupling classes in writing

inheritable code, 161

decoupling subclasses using hook
messages, 134–38

between superclasses and
subclasses, managing,
129–38

understanding, 129–34
Coupling between objects (CBO),

37–38
C++, 102

Data
depending on behavior instead

of, 24–29
instance variables, hiding, 24–26
structures, hiding, 26–29
types, 12, 13

Decoupling
classes in writing inheritable

code, 161
subclasses using hook messages,

134–38
Defaults, explicitly defining, 48–49
Delegation, 82, 183
Demeter. See Law of Demeter

(LoD)
Demotion failure, 123
Dependencies

argument-order, removing,
46–51

coupling between objects, 37–38
direction of (See Dependency

direction)
finding, 55–57
injecting (See Dependency

injection)
interfaces and, 62–63
isolating, 42–45
loosely coupled code, writing,

39–51
managing, 35–57
objects speaking for themselves,

147
other, 38–39
recognizing, 37
removing unnecessary, 145–47
reversing, 51–53
scheduling duck type,

discovering, 146–47
summary, 57
understanding, 36–39

Dependency direction
abstractions, recognizing, 54–55

change in, likelihood of (See
Likelihood of change)

choosing, 53–57
concretions, recognizing, 54–55
dependent-laden classes,

avoiding, 55
finding, 55–57
managing, 51–57
reversing, 51–53

Dependency injection
failure of, 60
in loosely coupled code, 39–42
as roles, 208–13
to shape code, 41–42
using classes, 207–8

Dependency Inversion Principle, 5
Dependent-laden classes, avoiding,

55
Design

act of, 7–11
definition of, 4
failure in, 7–8
judging, 10–11
patterns, 6–7
principles, 5–6
problems solved by, 2–3
tools, 4–7
when to design, 8–10

Design decisions
deferring, 193
when to make, 22–23

Design flaws, exposing, 194
Design patterns, 6–7
Design Patterns: Elements of

Reusable Object-Oriented
Software (Gamma, Helm,
Johnson, and Vlissides), 6,
188

Design principles, 5–6
Design tools, 4–7
Documentation

of duck types, 98
of roles, testing used in, 212–13
supplying, in testing, 193

Domain objects, 64, 83, 96, 199
Doubles, role tests to validate,

224–29
DRY (Don’t Repeat Yourself), 5,

24, 27, 28, 45, 50, 196
Duck types, 219–29

defining, 85
documenting, 98

245Index

finding, 90–94
hidden, recognizing, 96–98
overlooking, 87
sharing between, 99
testing roles, 219–24
trust in, placing, 98
using role tests to validate

doubles, 224–29
Duck typing

for behaves-like-a relationships, 189
case statements that switch on

class, 96–98
choosing ducks wisely, 99–100
code that relies on, writing, 95–100
consequences of, 94–95
costs reduced with, 85–104
dynamic typing and, 100–104
fear of, conquering, 100–104
problem, compounding, 87–90
scheduling, discovering, 146–47
static typing and, 100–102
summary, 104
understanding, 85–95

Dynamic typing
embracing, 102–4
static typing vs., 100–102

Embedded types of inheritance
finding, 111–12
multiple, 109–11

Explicit interfaces, creating, 76–78
External messages, isolating, 44–45
Extra responsibilities

extracted from methods, 29–31
isolated in classes, 31–33

Factories, 51
File data type, 12
Fixed-order arguments, 46–51
Fixnum class, 13, 14
Fowler, Martin, 191
Framework class, vs. Ruby based

class, 53–54

Gamma, Erich, 6, 188
Gang of Four (Gof), 6, 188
Gear inches, 20–21

has-a relationships, 183, 190
vs. is-a relationships, 188–89

Hashes used for initialization
arguments, 46–48

Helm, Richard, 6, 188

Hidden ducks
finding, 90–94
recognizing, 96–98

Highly cohesive class, 22
Hook messages, 134–38
Hunt, Andy, 5

Incoming messages, testing,
200–213

injecting dependencies as roles,
208–13

injecting dependencies using
classes, 207–8

interfaces, deleting unused,
202–3

isolating object under test, 205–7
proving public interface, 203–4

Inheritable code, writing, 158–62
abstraction, insisting on, 159
antipatterns, recognizing, 158–59
classes, preemptively decouple,

161
contract, honoring, 159–60
shallow hierarchies, creating,

161–62
template method pattern, using,

160
Inheritance

abstract class, finding, 116–29
behavior acquired through,

105–39
benefits of, 184–85
choosing, 112–14
classical, 105–6
composition and, deciding

between, 184–90
concretions and, 106–9
consequences of, accepting,

184–86
costs of, 185–86
embedded types of, 109–12
family tree image of, 112
implying, 117
for is-a relationships, 188–89
misapplying, 114–16
multiple, 112
problem solved by, 112
recognizing where to use, 106–14
relationships, drawing, 114
rules of, 117
single, 112
summary, 139

superclasses and subclasses,
coupling between, 129–38

Inherited code, testing, 229–39
behavior, testing unique, 236–39
inherited interface, specifying,

229–32
subclass responsibilities,

specifying, 233–36
Inherited interface, specifying,

229–32
Inheriting role behavior, 158
Initialization arguments, 41–43

hashes used for, 46–48
in isolation of instance creation,

42–43
Initialization code, 121
Injection of dependencies. See

Dependency injection
Instance variables, hiding, 24–26
Intention, constructing, 64–65
Intentional testing, 192–200
Interface

inherited, specifying, 229–32
Interfaces. See also Private

interfaces; Public interfaces
code putting its best (inter)face

forward, writing, 76–79
defining, 61–63
deleting unused, 202–3
dependencies and, 62–63
explicit, 76–78
flexible, 59–83
Law of Demeter and, 80–83
responsibilities and, 62–63
summary, 83
understanding, 59–61

Interface Segregation Principle, 5
is_a?, 97
is-a relationships, 188–89

vs. has-a relationships, 188–89
Isolation

of dependencies, 42–45
of external messages, 44–45
of instance creation, 42–43, 42–44
of multiparameter initialization,

49–51
of object under test, 205–7
of responsibilities in classes, 31–33

Java, 102, 118
JavaScript, 106
Johnson, Ralph, 6, 188

246 Index

Keywords, 77–78
kind_of?, 97

Law of Demeter (LoD), 5, 80–83
defining Demeter, 80
Demeter project, 5, 80
listening to Demeter, 82–83
violations, 80–82

Likelihood of change, 53–57
in embedded references to

messages, 45
vs. number of dependents, 55–57
understanding, 53–54

Liskov, Barbara, 160
Liskov Substitution Principle (LSP),

5, 160, 230–31, 237, 239
Loosely coupled code, writing,

39–51
inject dependencies, 39–42
isolate dependencies, 42–45
remove argument-order

dependencies, 46–51

Managing dependencies, 3
Message, 15
Message chaining, 38–39, 80–83
Messages. See also Incoming

messages, testing
applications, creating, 76
automatic message delegation,

105–6
command, proving, 216–18
delegating, 82
external, isolating, 44–45
incoming, testing, 200–213
likely to change, embedded

references to, 45
message forwarding via classical

inheritance, 112
objects discovered by, 74–76
query, ignoring, 215–16
testing outgoing, 215–18

Metaprogramming, 102–3
Methods

extra responsibilities extracted
from, 29–31

grouping into classes, 16
wrapper, 24–25, 82

Methods, looking up, 154–58
gross oversimplification, 154–55
more accurate explanation,

155–56

very nearly complete explanation,
156–58

Metrics, 5, 10–11
Meyer, Bertrand, 188
MiniTest, 200
Modules

definition of, 143
role behavior shared with,

141–62
Monkey patching, 100
Multiparameter initialization,

isolating, 49–51
Multiple inheritance, 112

NASA Goddard Space Flight
Center applications, 6

Nil, 48–49, 113
NilClass, 113

Object class
ambiguity about, 94–95
checking, 97, 111, 146

Object-Oriented Analysis and Design
(Booch), 188

Object-oriented design (OOD),
1–14. See also Design

dependencies managed by, 3
masters of, 188
overview of, 1

Object-oriented languages, 12–14
Object-oriented programming,

11–14
object-oriented languages in,

12–14
overview of, 11
procedural languages in, 12

Objects. See also Parts object
combined with composition,

163–90
domain, 64, 83, 96, 199
messages used to discover, 74–76
speaking for themselves, 147
trusting other, 73–74

Object under test, 200, 202, 205–7
Open–closed code, 185
Open-Closed Principle, 5, 185
Overridden methods, 115

Parts object
composition of, 168–76
creating, 169–72

creating PartsFactory, 177–78
hierarchy, creating, 165–68
leveraging PartsFactory, 178–80
making more like array, 172–76
manufacturing, 176–80

Polymorphism, 95
Private interfaces

defining, 61, 62
depending on, caution in, 79

Private keyword, 77–78
Private methods, testing, 213–15

choosing, 214–15
ignoring, 213–14
removing from class under test,

214
Programing languages

statically or dynamically typed,
100–104

syntax in, 118
type used in, 85–86

Promotion failure, 122–23
Protected keyword, 77–78
Public interfaces

context independence, seeking,
71–73

defining, 61, 62
example application: bicycle

touring company, 63–64
finding, 63–76
intention, constructing, 64–65
message-based application,

creating, 76
messages used to discover objects,

74–76
of others, honoring, 78–79
proving, 203–4
sequence diagrams, using, 65–69
trusting other objects, 73–74
“what” vs. “how,” importance of,

69–71
Public keyword, 77–78

Query messages, 196, 197, 215–16

Refactoring
barriers to, reducing, 215
definition of, 191
in extracting extra responsibilities

from methods, 29–31
rule for, 123
strategies, deciding between,

122–23

247Index

testing roles and, 220–21, 226
in writing changeable code,

191–92
Refactoring: Improving the Design of

Existing Code (Fowler), 191
Relationships, 188–90

aggregation and, 183–84
use composition for has-a

relationships, 190
use duck types for behaves-like-a

relationships, 189
use inheritance for is-a

relationships, 188–89
responds_to?, 97
Responsibilities, organizing,

143–45
Responsibility-Driven Design

(RDD), 22
Reversing dependency direction,

51–53
Roles

concrete code, writing, 147–50
finding, 142–43
inheritable code, writing, 158–62
injecting dependencies as, 208–13
role behavior shared with

modules, 141–62
summary, 162
testing, in duck typing, 219–24
testing to document, 212–13
tests to validate doubles, 224–29
understanding, 142–58

Ruby based class vs. framework
class, 53–54

Runtime type errors, 101, 103–4

Sequence diagrams, using, 65–69
Shallow hierarchies in writing

inheritable code, 161–62
Single inheritance, 112
Single responsibility, classes with

benefits of, 31
code embracing change, writing,

24–33
creating, 17–23
design decisions, when to make,

22–23
designing, 15–34
determining, 22

enforcing, 29–33
example application: bicycles and

gears, 17–21
extra responsibilities and,

29–33
importance of, 21
real wheel, 33–34
summary, 34

Single Responsibility Principle, 5
designing classes with, 15–34

SOLID design principles, 5, 160
Source code repository, 59
Source lines of code (SLOC),

10–11
Specializations, 117
Spike a problem, 198
Static typing

duck types and, subverting with,
100–101

vs. dynamic typing, 100–102
String class, 13–14
String data type, 12, 13
String objects, 13–14
Subclass behavior

confirming, 233–34
testing, 236–37

Subclasses
decoupling using hook messages,

134–38
superclasses and, coupling

between, 129–38
Superclass behavior

confirming, 234–36
testing, 237–39

Superclasses
creating, 117–20
subclasses and, coupling between,

129–38
Syntax, 118

Technical debt, 11, 79
Template method pattern

implementing every, 127–29
using, 125–27
in writing inheritable code, 160

Test Driven Development (TDD),
199, 213

Testing
abstractions, supporting, 194

bugs, finding, 193
cost-effective, designing,

191–240
creating test doubles, 210–11
design decisions, deferring, 193
design flaws, exposing, 194
documentation, supplying, 193
duck types, 219–29
incoming messages, 200–213
inherited code, 229–39
intentional testing, 192–200
knowing how to test, 198–200
knowing what to test, 194–97
knowing when to test, 197–98
knowing your intentions, 193–94
outgoing messages, 215–18
private methods, 213–15
summary, 240
to document roles, 212–13

Testing outgoing messages, 215–18
command messages, proving,

216–18
query messages, ignoring, 215–16

Thomas, Dave, 5
Touch of Class: Learning to Program

Well with Objects and
Contracts (Meyer), 188

Train wreck, 80, 82, 83
TRUE code, 17
Types, 85. See also Duck typing

across-class, 86
static vs. dynamic, 100–102
within-class, 63

Type used in class, 111

Unified Modeling Language
(UML), 65–66, 114

Use case, 64, 65, 66, 67, 69, 74

Variables, defining, 12
Virtual class, 61
Vlissides, Jon, 6, 188

“What” vs. “how,” importance of,
69–71

Wilkerson, Brian, 22
Wirfs-Brock, Rebecca, 22
Within-class types, 63
Wrapper method, 24–25, 82

	Contents
	Foreword
	Introduction
	Acknowledgments
	About the Author
	3 Managing Dependencies
	Understanding Dependencies
	Recognizing Dependencies
	Coupling Between Objects (CBO)
	Other Dependencies

	Writing Loosely Coupled Code
	Inject Dependencies
	Isolate Dependencies
	Remove Argument-Order Dependencies

	Managing Dependency Direction
	Reversing Dependencies
	Choosing Dependency Direction

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

