

Learning
MonoTouch

00_9780321719928_FM.qxd 6/28/11 11:31 AM Page i

The Addison-Wesley Learning Series is a collection of hands-on programming
guides that help you quickly learn a new technology or language so you can
apply what you’ve learned right away.

Each title comes with sample code for the application or applications built in
the text. This code is fully annotated and can be reused in your own projects
with no strings attached. Many chapters end with a series of exercises to
encourage you to reexamine what you have just learned, and to tweak or
adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and
leave you with the ability to walk off and build your own application and apply
the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

Addison-Wesley Learning Series

00_9780321719928_FM.qxd 6/28/11 11:31 AM Page ii

Learning
MonoTouch

A Hands-On Guide to Building iOS
Applications with C# and .NET

Michael Bluestein

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

00_9780321719928_FM.qxd 6/28/11 11:31 AM Page iii

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Bluestein, Michael, 1970-
Learning MonoTouch : a hands-on guide to building iOS applications with C# and .NET /

Michael Bluestein.
p. cm.

Includes bibliographical references and index.
ISBN-13: 978-0-321-71992-8 (pbk. : alk. paper)
ISBN-10: 0-321-71992-1 (pbk. : alk. paper) 1. iPad (Computer)—Programming. 2.

Application software—Development. 3. iOS (Electronic resource) 4. C# (Computer program
language) 5. Microsoft .NET. I. Title.

QA76.8.I863B626 2012
006.7’882—dc23

2011018222
Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-71992-8
ISBN-10: 0-321-71992-1

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor,
Michigan.

First printing July 2011

Editor-in-Chief
Mark Taub

Acquisitions Editor
Chuck Toporek

Development
Editor
Sheri Cain

Managing Editor
Kristy Hart

Project Editor
Anne Goebel

Copy Editor
Bart Reed

Indexer
Erika Millen

Proofreader
Williams Woods
Publishing
Services

Publishing
Coordinator
Olivia Basegio

Cover Designer
Chuti Prasertsith

Senior Compositor
Gloria Schurick

00_9780321719928_FM.qxd 6/28/11 11:31 AM Page iv

❖

For Rose, Lilly, and Joshua
❖

00_9780321719928_FM.qxd 6/28/11 11:31 AM Page v

Contents at a Glance

Introduction 1

Chapter 1: Hello MonoTouch 5

Chapter 2: iOS SDK via MonoTouch 33

Chapter 3: Views and View Controllers 57

Chapter 4: Common iOS Classes 81

Chapter 5: Tables and Navigation 117

Chapter 6: Graphics and Animation 157

Chapter 7: Core Location 195

Chapter 8: MapKit 217

Chapter 9: Connecting to Web Services 241

Chapter 10: Networking 255

Chapter 11: Saving Application Data 283

Chapter 12: iPad Development 307

00_9780321719928_FM.qxd 6/28/11 11:31 AM Page vi

Table of Contents

Preface xiii
The Audience for This Book xiii

About the Sample Code xiv

Acknowledgments xv

About the Author xvi

Introduction 1
How This Book Is Organized 1

Chapter 1: Hello MonoTouch 1

Chapter 2: iOS SDK via MonoTouch 2

Chapter 3: Views and View Controllers 2

Chapter 4: Common iOS Classes 2

Chapter 5: Tables and Navigation 2

Chapter 6: Graphics and Animation 2

Chapter 7: Core Location 3

Chapter 8: MapKit 3

Chapter 9: Connecting to Web Services 3

Chapter 10: Networking 3

Chapter 11: Saving Application Data 3

Chapter 12: iPad Development 3

Chapter 1 Hello MonoTouch 5
Setting Up Your Environment 5

Installing the iOS SDK and Apple Developer Tools 5

Installing MonoTouch 10

Creating a MonoTouch Application 14

Creating the User Interface 14

Adding Outlets 16

Developing on the Device 24

Provisioning for Development 24

Using the MonoTouch Debugger 29

Summary 31

00_9780321719928_FM.qxd 6/28/11 11:31 AM Page vii

viii Contents

Chapter 2 iOS SDK via MonoTouch 33
iOS SDK Overview 33

Objective-C Versus MonoTouch By Example 35

Getting the App Started from Xcode 36

Implementing the Same Functionality
with MonoTouch 41

Comparing the AppDelegate Implementations 43

Implementing UIActionSheet via Xcode 46

Implementing UIActionSheet in MonoTouch 48

How MonoTouch Works 52

Memory Management 54

Summary 56

Chapter 3 Views and View Controllers 57
Structuring a MonoTouch Application to MVC 57

Working with Views and Controllers in Interface
Builder 59

Adding Functionality to a View Controller and Its View 67

Working with Multiple Views and Controllers 71

Implementing a Custom UIView 75

Summary 80

Chapter 4 Common iOS Classes 81
User Interface Views and Controls 81

UISegmentedControl 81

UISlider 85

UISwitch 88

UIPageControl and UIScrollView 89

UIActivityIndicatorView 92

UIProgressView 94

UIImageView 95

UIWebView 97

ADBannerView 100

Device Capabilities 103

MFMailComposeViewController 103

MPMediaPickerController and
MPMusicPlayerController 105

00_9780321719928_FM.qxd 6/28/11 11:31 AM Page viii

ixContents

Address Book 108

UIImagePickerController 111

Summary 116

Chapter 5 Tables and Navigation 117
Introduction to UITableView and
UITableViewController 117

What Are Tables Used For? 117

Displaying Data in a UITableView 119

UITableViewCell Parts and Styles 125

Using Tables and Navigation 128

Additional UITableView Customizations 144

Customizing Tables Further with Custom Cells 144

Adding Multiple Sections 148

MonoTouch.Dialog 153

Summary 155

Chapter 6 Graphics and Animation 157
Core Graphics 157

Core Graphics Fundamentals 157

Drawing Images 165

Drawing PDFs 170

Animation 180

UIView Animation 181

Core Animation 185

Summary 194

Chapter 7 Core Location 195
Introducing Core Location 195

Standard Location Service 197

Retrieving Heading Updates 207

Significant Location Changes 209

Region Monitoring 211

Background Location 214

Summary 216

00_9780321719928_FM.qxd 6/28/11 11:31 AM Page ix

x Contents

Chapter 8 MapKit 217
Introducing MapKit 217

Adding Annotations 224

Map Overlays 233

Summary 240

Chapter 9 Connecting to Web Services 241
Connecting to REST-based Web Services 241

Connecting over HTTP 241

Parsing XML Results 244

Parsing JSON Results 247

Consuming SOAP-based Web Services 248

Using a .NET 2.0 Client Proxy 248

WCF under MonoTouch 250

Using CocoaTouch HTTP Classes 251

Using NSUrlConnection and Friends 252

Summary 254

Chapter 10 Networking 255
GameKit Networking 255

Core GameKit Networking Classes 255

Using GKPeerPickerController 264

GameKit Voice Chat 268

Bonjour 272

Summary 281

Chapter 11 Saving Application Data 283
The Notes Sample Application 283

SQLite 289

Serialization 295

Settings Bundle and NSUserDefaults 297

Summary 306

00_9780321719928_FM.qxd 6/28/11 11:31 AM Page x

xiContents

Chapter 12 iPad Development 307
Porting to iPad 307

iPhone Applications with Pixel Doubling 307

Universal Applications 308

Designing for the iPad 311

UISplitViewController 312

UIPopoverController 323

Summary 326

Index 327

00_9780321719928_FM.qxd 6/28/11 11:31 AM Page xi

00_9780321719928_FM.qxd 6/28/11 11:31 AM Page xii

Preface

I first learned of the iPhone work being done by the Mono team while attending
Miguel de Icaza’s Mono presentation at Microsoft’s Professional Developer Conference
in 2008. Miguel talked about how they were bringing .NET and C# development to
the iPhone as part of the Unity3D game platform. I found it fascinating that they were
able to achieve this. I was already working with the iPhone at the time with Xcode and
Objective-C and, like many people, saw it as an amazing platform. Having spent many
years working with .NET and C#, the idea of being able to use those technologies on
the iPhone intrigued me.This would be the combination of two of my favorite tech-
nologies, .NET and the iPhone. However, my focus has never been on game develop-
ment, so I didn’t pursue it at the time.

The next year, Joseph Hill came to our local .NET code camp and gave a presenta-
tion on Mono in general. By this point, the Mono team had already started developing
the product that would become MonoTouch. Joseph mentioned that a private beta
would be coming up soon and to contact him if interested. I thought this would be
great even if they could offer a fraction of what’s available from Objective-C, or from
.NET in general, because it would offer additional options for solving iPhone problems,
such as garbage collection and perhaps a bit of code reuse.

Little did I know they would bring to the table everything I was able to do with
Objective-C on the iPhone and most of .NET as well.Also, as it turned out, the Mono-
Touch team and community is full of knowledgeable people that are truly passionate
about what they do.The story around MonoTouch is a powerful one because while
increasing your toolset to solve problems on iOS, you don’t sacrifice user-experience or
platform capabilities. I’ve enjoyed every moment I’ve had working with MonoTouch
and am sure you will as well.

The Audience for This Book
This book is primarily for .NET/C# developers with several years of application devel-
opment experience, but little to no iPhone or Mac development experience. It assumes
intermediate-level knowledge of C#/.NET. However, if you’re an Objective-C devel-
oper, it covers many core iOS concepts that are language agnostic, so there’s something
here for you, too.This book teaches C#/.NET developers how to take their existing
skills to the iPhone to build iOS applications using MonoTouch.

00_9780321719928_FM.qxd 6/28/11 11:31 AM Page xiii

About the Sample Code
All of the code examples are available on my Github account at https://github.com/
mikebluestein.

00_9780321719928_FM.qxd 6/28/11 11:31 AM Page xiv

https://github.com/mikebluestein
https://github.com/mikebluestein

Acknowledgments
I’d like to first thank my wife and kids for putting up with the time I spent away from
them to write this book.Without their encouragement, I wouldn’t have been able to do
this.As you can imagine, lots of people are involved in the creation of a book.Thanks to
the team at Pearson for supporting this effort, including Chuck Toporek, Sheri Cain,
Olivia Basegio, Bart Reed, and Anne Goebel, as well as all the people behind the scenes.
I’d also like to thank everyone on the awesome Mono and MonoTouch team for creat-
ing such an amazing platform, particularly Joseph Hill for all the support and encourage-
ment he has consistently offered from the moment I got involved in the MonoTouch
community and Miguel de Icaza for the amazing work he does for developers every-
where. I’d especially like to thank Geoff Norton for leading the creation of MonoTouch
and the unparalleled support and guidance he gives to everyone. I can’t tell you how
many times I’ve been up late at night stuck on something and he has been there to sup-
port me—and anyone else—in any way he can.Also, thanks to Geoff, Chris Hardy, and
Robert Kozak for their technical review of the book. It has been a pleasure working on
a book about MonoTouch, and I hope you enjoy reading it as much as I have writing it.

00_9780321719928_FM.qxd 6/28/11 11:31 AM Page xv

About the Author
Michael Bluestein has been working with MonoTouch since the first private beta
release and is an active member of the MonoTouch community. His applications are
among the first using MonoTouch to be published in Apple’s App Store.A former
Principal Software Engineer at Dassault Systèmes Solidworks Corporation, he has
developed software professionally since the early 1990s. His blog on various development
topics, including MonoTouch, can be found at mikebluestein.wordpress.com.

00_9780321719928_FM.qxd 6/28/11 11:31 AM Page xvi

Introduction

Welcome to Learning MonoTouch. If you are a .NET developer interested in building
native applications for iOS devices, MonoTouch is a great choice. It blends the Cocoa-
Touch frameworks and Objective-C language concepts elegantly with C# and .NET,
resulting in a very well designed technology that is a pleasure to work with.You can use
MonoTouch for App Store deployment and enterprise deployment as well (assuming you
have the appropriate license).There is even a simulator-only, free version, so you can get
started learning and trying it out without any additional cost.Also, if you’re a student, a
discounted student edition is available.

MonoTouch allows you to create applications using the same APIs available in
Objective-C, while at the same time offering many of the language and API features from
Mono, C#, and .NET. In addition to nicely abstracted Objective-C memory manage-
ment, you get garbage collection, reuse of non-UI code,ADO.NET wrappers on SQLite,
web services, Linq, and generics—to name just a few things.

MonoTouch is great because it complements and builds upon the technologies from
Apple while adding a plethora of extra functionality to help you in developing applica-
tions.The team and community around MonoTouch are also worth taking note of.You
can participate in forums, a mailing list, and the very active IRC channel to get support
from members of the MonoTouch team and the community, discuss your ideas, or just
hang out.The community is one of the best things about MonoTouch. Jump on IRC and
you will find everyone from new MonoTouch developers to the creators of Mono and
MonoTouch themselves actively working to make developers’ experiences great.

How This Book Is Organized
Learning MonoTouch has 12 instructional chapters to help you learn everything you need
to know about using MonoTouch for iOS development; the chapters are described in the
following sections.

Chapter 1: Hello MonoTouch
This chapter starts off with a walkthrough of how to get the development environment
set up, along with a basic discussion of the various development tools used in Mono-
Touch development. It then presents the development of a simple application, followed by
an explanation of its internals.The chapter concludes with instructions on getting the app
deployed on a device and debugging it with the MonoTouch soft-debugger.

01_9780321719928_Intro.qxd 6/28/11 11:40 AM Page 1

2 Introduction

Chapter 2: iOS SDK via MonoTouch
This chapter explains how MonoTouch abstracts the iOS SDK to allow development
against native classes from C#. Starting off with an overview of the iOS SDK, a simple
example is presented in Objective-C and then contrasted against its C# counterpart.
Using this example, this chapter explains how to work with outlets and compares
common iOS development patterns, showing how to use them from C#.The chapter
concludes with an overview of memory management in Objective-C versus garbage col-
lection in MonoTouch, showing how MonoTouch takes care of this for you and when
you need to consider the Objective-C model from C# code.

Chapter 3: Views and View Controllers
This chapter shows how to structure a MonoTouch application for the Model-View-
Controller (MVC) design pattern. It introduces the UIView and UIViewController
classes and shows how to work with them in code as well as from Interface Builder by
way of examples that demonstrate touch support and the accelerometer.

Chapter 4: Common iOS Classes
This chapter explains how to use several basic classes common in iOS development. It
presents many of the views and controls that ship with the iOS SDK to aid in creating
user interfaces, as well as several controllers that abstract various capabilities such as the
address book, camera access, sending email, and playing music from the iPod library.

Chapter 5: Tables and Navigation
This chapter introduces the UITableView and UITableViewController and presents
some common usage scenarios where tables are typically used.A discussion of the basic
pattern for using UITableViewController is presented along with a few ways to
customize the UITableView to provide a richer experience, both visually and in
performance.This chapter also introduces UINavigationController and shows you
how to use it in conjunction with UITableViewController.

Chapter 6: Graphics and Animation
This chapter discusses the graphics and animation subsystems—Core Graphics and Core
Animation, respectively—and explains how they are used under UIKit to form the basis
for much of what you see in iOS.

01_9780321719928_Intro.qxd 6/28/11 11:40 AM Page 2

3How This Book Is Organized

Chapter 7: Core Location
This chapter presents the Core Location framework and shows how you can use it
directly to get location data using a variety of positioning technologies such as cell tower
triangulation,Wi-Fi, and GPS. It then delves into some of the newer location technolo-
gies such as significant location changes and region monitoring.

Chapter 8: MapKit
This chapter discusses the MapKit framework, including the MKMapViewControl, and
shows how to create interactive maps in your applications. It explains MapKit’s integra-
tion with Core Location, along with how to add annotations and overlays to maps to
build customized mapping experiences.

Chapter 9: Connecting to Web Services
This chapter shows how to consume web services from MonoTouch using several avail-
able technologies. It discusses how to consume SOAP-based web services, REST services,
as well as JSON, XML, RSS, and WCF as they apply to MonoTouch development. In
addition to .NET, the chapter also shows how to use the CocoaTouch HTTP stack from
MonoTouch.

Chapter 10: Networking
This chapter presents the networking features offered by the GameKit framework for
providing service discovery and networking over Bluetooth, including how to create
voice communication between devices. It then shows how to use Bonjour directly to
publish and discover services, along with using familiar .NET networking technologies
such as TcpClient.

Chapter 11: Saving Application Data
This chapter shows how to use several of the data storage technologies available under
iOS when using MonoTouch, such as the ADO.NET provider to SQLite, .NET serializa-
tion, and NSUserDefaults. It also begins a sample application that is used in the follow-
ing chapter on iPad development as well.

Chapter 12: iPad Development
This chapter covers several of the classes offered specifically for developing iPad applica-
tions. It continues on the sample application from the previous chapter, demonstrating
how to take an iPhone application and extend it into a universal application targeting the
iPad, in addition to the iPhone and iPod Touch.

01_9780321719928_Intro.qxd 6/28/11 11:40 AM Page 3

01_9780321719928_Intro.qxd 6/28/11 11:40 AM Page 4

4
Common iOS Classes

iOS contains a number of controls and classes that help you considerably when building
applications.The user interface elements range from the buttons and labels we have
already seen, to sliders, progress views, and paging controls—to name just a few.There are
also classes to abstract various system capabilities, such as playing music and sending email.
In this chapter, we’ll survey several of the more common classes you’ll use when building
applications.

User Interface Views and Controls
UIKit contains various UIControl subclasses. UIControl itself derives from UIView and
adds a variety of events to deal with user interaction.An example of a control we’ve
already seen is the UIButton class. UIKit additionally contains a number of other controls.

UISegmentedControl
The UISegmentedControl is basically a tabbed interface control within a view. It is typi-
cally used to allow users to specify a particular set of subviews to interact with, effectively
grouping them together, although it could also be used to create a menu structure of
sorts.The control is composed of several buttons, broken into segments. Each button can
have a title and an image, and the control itself can take on multiple styles.

To create a UISegmentedControl and add segments to it, you simply pass the titles you
want for each segment to the constructor. For example, here is one way to create a
UISegmentedControl with four segments, with their respective titles set:

public partial class ControlDemoViewController : UIViewController

{

UISegmentedControl _segmentedControl;

...

public override void ViewDidLoad ()

{

base.ViewDidLoad ();

_segmentedControl = new UISegmentedControl(new object[]{"one",

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 81

82 Chapter 4 Common iOS Classes

"two", "three", "four"});

_segmentedControl.Frame =

new RectangleF (10, 10, View.Frame.Width - 20, 50);

View.AddSubview(_segmentedControl);

}

}

Note
In the examples here we have added a view controller named
ControlDemoViewController.

This results in the default UISegmentedControl (UISegmentedControlStyle.Plain)
shown in Figure 4.1.

Figure 4.1 Default UISegmentedControl with
segment titles

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 82

83User Interface Views and Controls

Setting the ControlStyle to any of the values in the UISegmentedControlStyle enu-
meration can change the style of the control.As mentioned, you can use an image for
each segment.Additionally, you can easily set the selected segment and tint color. Here is
an example that sets a bezeled style with a black tint color and an image set on the first
segment, which is also set as “selected” (see Figure 4.2):

_segmentedControl = new UISegmentedControl (new object[] { "one",

"two", "three", "four" });

_segmentedControl.ControlStyle = UISegmentedControlStyle.Bezeled;

_segmentedControl.TintColor = UIColor.Black;

_segmentedControl.SetImage (UIImage.FromFile ("Star.png"), 0);

_segmentedControl.SelectedSegment = 0;

_segmentedControl.Frame = new RectangleF (10, 10,

View.Frame.Width - 20, 50);

Figure 4.2 UISegmented control with additional
customizations

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 83

84 Chapter 4 Common iOS Classes

You can also set images via the constructor in the same way you set titles.Additionally,
you can set each title directly via the SetTitle method.You can even mix images and
titles into the constructor because the array it takes is an array of objects. For example, the
following will result in the same UISegementedControl shown in Figure 4.2:

_segmentedControl = new UISegmentedControl (new object[] {

UIImage.FromFile ("Star.png"), "two", "three", "four" });

_segmentedControl.ControlStyle = UISegmentedControlStyle.Bezeled;

_segmentedControl.TintColor = UIColor.Black;

_segmentedControl.SelectedSegment = 0;

_segmentedControl.Frame = new RectangleF (10, 10,

View.Frame.Width - 20, 50);

To handle the changes to the selected segment, you can register for the ValueChanged
event. In the handler, you can do whatever you like based on the current selected seg-
ment, such as hiding certain views or changing some state. For example, here we simply
added a UILabel as a subview of the UISegmentedControl and set its text as the selected
segment changes (see Figure 4.3):

string _text;

UILabel _testLabel;

...

_testLabel = new UILabel(){Frame = new RectangleF(10, 200, 100, 50)};

_segmentedControl = new UISegmentedControl (new object[] {

UIImage.FromFile ("Star.png"), "two", "three", "four" });

_segmentedControl.ControlStyle = UISegmentedControlStyle.Bezeled;

_segmentedControl.TintColor = UIColor.Black;

_segmentedControl.Frame = new RectangleF (10, 10,

View.Frame.Width - 20, 50);

_segmentedControl.ValueChanged += (o, e) => {

_selectedTitle = _segmentedControl.TitleAt

(_segmentedControl.SelectedSegment) ?? "Title not set";

_testLabel.Text = _text;

};

_segmentedControl.SelectedSegment = 0;

_segmentedControl.AddSubview(_testLabel);

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 84

85User Interface Views and Controls

Figure 4.3 Handling UISegmentedControl
ValueChanged

UISlider
The UISlider control is similar to slider controls found on other platforms, except it
allows you to move the slider via touch.You can initialize a slider with the minimum,
maximum, and initial values.The default slider appearance is shown in Figure 4.4. Here,
we are capturing the value as it is changed and assigning it to a label’s text in the slider’s
ValueChanged event:

UISlider _slider;

...

_slider = new UISlider { Frame = new RectangleF (10, 10,

View.Frame.Width - 20, 50) };

_slider.MinValue = 0.0f;

_slider.MaxValue = 20.0f;

_slider.SetValue (10.0f, false);

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 85

86 Chapter 4 Common iOS Classes

_slider.ValueChanged += delegate {

_text = _slider.Value.ToString ();

_testLabel.Text = _text;

};

Figure 4.4 UISlider default appearance

The slider can also be customized to set thumb images, track images, and min/max
value images (see Figure 4.5).

_slider = new UISlider { Frame = new RectangleF (10, 10,

View.Frame.Width - 20, 50) };

_slider.MinValue = 0.0f;

_slider.MaxValue = 20.0f;

_slider.SetValue (10.0f, false);

_slider.ValueChanged += delegate {

_text = _slider.Value.ToString ();

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 86

87User Interface Views and Controls

Figure 4.5 UISlider with customized look and feel

_testLabel.Text = _text;

};

// Customize the look and feel of the slider

_slider.SetThumbImage (UIImage.FromFile("Thumb0.png"),

UIControlState.Normal);

_slider.SetThumbImage (UIImage.FromFile("Thumb1.png"),

UIControlState.Highlighted);

_slider.SetMaxTrackImage (UIImage.FromFile("MaxTrack.png"),

UIControlState.Normal);

_slider.SetMinTrackImage (UIImage.FromFile("MinTrack.png"),

UIControlState.Normal);

_slider.MaxValueImage = UIImage.FromFile("Max.png");

_slider.MinValueImage = UIImage.FromFile("Min.png");

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 87

88 Chapter 4 Common iOS Classes

UISwitch
The UISwitch control is used to toggle between two states, such as on or off. It’s basically
designed to simulate a physical on/off switch.You’ll find it commonly used in application
settings.The control itself defaults to an off state, but you can set its value programmati-
cally using the SetState method, with the first argument being the on/off value and the
second whether the switch animates initially from off to on (if the initial value is set to
on).To capture changes in the switch value, you handle the ValueChanged event.The
switch’s On property is a Boolean containing the on/off value, which will be true when
on. Even though a UISwitch ultimately is a UIView, it is designed to always be the same
size.You can set the position of its frame, but the size is ignored. Figure 4.6 shows a
UISwitch where changes to its value are written to a UILabel.

Figure 4.6 UISwitch value written to a
UILabel

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 88

89User Interface Views and Controls

UISwitch _switch;

...

_switch = new UISwitch {Frame = new RectangleF (

new PointF(10,10), SizeF.Empty)};

_switch.SetState (true, false);

_switch.ValueChanged += delegate {

_text = _switch.On.ToString ();

_testLabel.Text = _text;

};

UIPageControl and UIScrollView
The UIPageControl is used to designate which page you are on in an application where
the pages typically slide horizontally across the screen.The actual paging can be imple-
mented with a UIScrollView, where the UIPageControl tracks the current page via a
series of dots.This is the experience you see on the home screen of an iOS device when
moving across pages of applications.

The UIScrollView supports adding content that is too large to fit in a designated area
of the screen and have it be scrollable either horizontally, vertically, or both. It is well
suited for implementing a paged experience, where each view that acts logically as
a page is added as a subview of the UIScrollView.The UIScrollView even includes a
PageEnabled property that when set to true will cause the scrolling to snap to each page.
To make scrolling happen, you set the ContentSize of the UIScrollView to something
larger than the frame of the UIScrollView. Combined with setting PageEnabled, the
UIScrollView will determine the physical page size internally. For any subviews you add
to act as pages, you simply set their position offset appropriately within the content size of
the scroll view. Listing 4.1 shows an example of adding basic views, each with a single
label containing the page number, where sliding the views left or right will allow you to
page between them.

Listing 4.1 Paging with a UIScrollView

public partial class PagingController : UIViewController

{

UIScrollView _scroll;

List<UIView> _pages;

int _numPages = 4;

float _padding = 10;

float _pageHeight = 400;

float _pageWidth = 300;

...

public override void ViewDidLoad ()

{

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 89

90 Chapter 4 Common iOS Classes

base.ViewDidLoad ();

View.BackgroundColor = UIColor.Black;

_pages = new List<UIView> ();

_scroll = new UIScrollView {

Frame = View.Frame,

PagingEnabled = true,

ContentSize = new SizeF (

_numPages * _pageWidth + _padding

+ 2 * _padding * (_numPages - 1),

View.Frame.Height)

};

View.AddSubview (_scroll);

for (int i = 0; i < _numPages; i++) {

UIView v = new UIView ();

v.Add(new UILabel{

Frame = new RectangleF (100, 50, 100, 25),

Text = String.Format ("Page {0}", i+1)}

);

_pages.Add (v);

v.BackgroundColor = UIColor.Gray;

v.Frame = new RectangleF (

i * + _pageWidth + _padding + (2 * _padding * i),

0, _pageWidth, _pageHeight);

_scroll.AddSubview (v);

}

}

}

To keep track of the current page, you can use the UIPageControl.This control shows
a series of dots, where the number of dots represents the page count and the current page
number is denoted by the highlighted dot.The control itself is not physically connected to
the scroll view, so it is up to you to add the code for the page count and to track the cur-
rent page.The UIPageControl’s Pages property sets the page count.The formula for the
current page in the scroll view is simply the current offset, available via the scroll view’s
ContentOffset property, divided by the page width. Setting this to the UIPageControl’s
CurrentPage changes the highlighted dot to the proper page (see Figure 4.7).

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 90

91User Interface Views and Controls

Figure 4.7 Paging with UIScrollView and
UIPageControl

public partial class PagingController : UIViewController

{

UIPageControl _pager;

...

public override void ViewDidLoad ()

{

...

_scroll.Scrolled += delegate {

_pager.CurrentPage =

(int)Math.Round(_scroll.ContentOffset.X/_pageWidth);

};

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 91

92 Chapter 4 Common iOS Classes

_pager = new UIPageControl();

_pager.Pages = _numPages;

_pager.Frame = new RectangleF(0, 420, View.Frame.Width, 50);

View.AddSubview(_pager);

}

}

In addition to UIControl subclasses, UIKit has a number of classes that derive directly
from UIView, such as the UIScrollView.Additional classes present rich information dis-
plays such as advertisements, web pages, maps, and tables.We’ll cover some of these classes
here. Others, such as UIMapView and UITableView, are covered in later chapters.

UIActivityIndicatorView
The UIActivityIndicatorView is used to indicate some operation is in progress in an
indeterminate fashion. It presents itself as an animated rotating circle of sorts while the
operation is happening.To use a UIActivityIndicatorView, you add it as a subview like
any other view.To make it actually appear and start animating, you call its Start
Animating method. Likewise, to stop the animation and make the activity indicator disap-
pear, you call StopAnimating. It’s worth noting that any long-running operation you are
performing would need to happen on a different thread; otherwise, you’ll block the main
thread and you would never see the activity indicator. Listing 4.2 demonstrates how to
create a UIActivityIndicatorView to indicate an operation, implemented in the
DoSomething method, is in progress.The result is shown in Figure 4.8.

Listing 4.2 UIActivityIndicatorView Implementation

...

UIActivityIndicatorView _activityView;

public override void ViewDidLoad ()

{

base.ViewDidLoad ();

showActivityButton.TouchUpInside +=

HandleShowActivityButtonTouchUpInside;

}

void HandleShowActivityButtonTouchUpInside (object sender, EventArgs e)

{

_activityView = new UIActivityIndicatorView ();

_activityView.Frame = new RectangleF (0, 0, 50, 50);

_activityView.Center = View.Center;

_activityView.ActivityIndicatorViewStyle =

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 92

93User Interface Views and Controls

Figure 4.8 UIActivityIndicatorView

UIActivityIndicatorViewStyle.WhiteLarge;

View.AddSubview (_activityView);

_activityView.StartAnimating ();

Thread t = new Thread (DoSomething);

t.Start ();

}

void DoSomething ()

{

Thread.Sleep (3000);

using (var pool = new NSAutoreleasePool ()) {

this.InvokeOnMainThread (delegate {

_activityView.StopAnimating (); });

}

}

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 93

94 Chapter 4 Common iOS Classes

UIProgressView
Similar to the UIActivityIndicatorView, the UIProgressView is used to indicate some
operation is underway. However, the UIProgressView is determinate because it displays the
percentage of work that has been completed by filling in a portion of a horizontal bar.The
progress is set using the Progress property and a floating-point value between 0 and 1,
where 1 indicates 100% completion. Listing 4.3 implements a simulated operation whose
progress is tracked with a UIProgressView, the result of which is shown in Figure 4.9.

Listing 4.3 Example of a UIProgressView

...

UIProgressView _progressView;

void HandleShowActivityButtonTouchUpInside (object sender, EventArgs e)

{

_progressView = new UIProgressView ();

_progressView.Frame = new RectangleF (0, 0, View.Frame.Width - 20,

100);

_progressView.Center = View.Center;

_progressView.Style = UIProgressViewStyle.Default;

View.AddSubview (_progressView);

Thread t = new Thread (DoSomethingElse);

t.Start ();

}

void DoSomethingElse ()

{

int n = 3;

for (int i = 0; i < n; i++) {

Thread.Sleep (1000);

using (var pool = new NSAutoreleasePool ()) {

this.InvokeOnMainThread (delegate {

_progressView.Progress = (float)(i + 1) / n; });

}

}

}

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 94

95User Interface Views and Controls

Figure 4.9 UIProgressView

UIImageView
We used UIImageView previously in Chapter 2,“iOS SDK via MonoTouch.”You’ll recall
its purpose in life is to present a UIImage on the screen.The simplest example of a
UIImageView sets the Image property and adds the view to the screen via a subview. For
example, assuming the project has a file named monkey.png with a build action of Con-
tent, you would fill the screen with the image (see Figure 4.10) like this:

UIImageView _imageView;

...

_imageView = new UIImageView ();

_imageView.Frame = new RectangleF(0,0,

View.Frame.Width, View.Frame.Height);

_imageView.Image = UIImage.FromFile("monkey.png");

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 95

96 Chapter 4 Common iOS Classes

Figure 4.10 UIImageView displaying a
UIImage

To control how the view lays out its contents (for example, to preserve the image’s
aspect ratio), you use the ContentMode property:

_imageView = new UIImageView ();

_imageView.Frame = new RectangleF(0,0,

View.Frame.Width, View.Frame.Height);

_imageView.Image = UIImage.FromFile("monkey.png");

imageView.ContentMode = UIViewContentMode.ScaleAspectFit;

Here, we set the ContentMode to ScaleAspectFit, resulting in the image layout
shown in Figure 4.11.Additionally, you can experiment with several other settings for
ContentMode to control the layout to your liking.

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 96

97User Interface Views and Controls

UIWebView
UIWebView is a wrapper around WebKit that you can use in your applications.You can use
it to render HTML content either from the Internet or from a local resource.To demon-
strate how to use it, let’s build a simple browser application. Create a new window-based
application and add a new view controller with a view. I named mine LMT4-5 and
SimpleBrowserController, respectively.After going through the steps to load the
SimpleBrowserController’s view when the app finishes launching as usual, open the
SimpleBrowserViewController in Interface Builder, where we’ll do some of the work
for this example.

For this example of a web browser, we’ll support back, forward, and refresh functional-
ity.We’ll allow URL entry using a UITextField with a keyboard type of URL and a
return key of “Go,” which we can set in the Text Input Traits section of IB.Also, we’ll nest
all the navigation controls in a UIToolbar. Figure 4.12 shows the final setup of everything
in IB, including the required outlet connections.

Figure 4.11 UIImageView with ContentMode
set to ScaleAspectFit

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 97

98 Chapter 4 Common iOS Classes

We want the URL entered in the UITextField to result in navigation to the web page
when the user selects Go on the keyboard.To achieve this we use ShouldReturn on the
UITextField.The function we assign to ShouldReturn takes care of building the
NSUrlRequest from the URL entered by the user.The UIWebview’s LoadRequest method
takes an NSUrlRequest, which it uses to load the web page.Also, to make the keyboard
disappear, we call ResignFirstResponder on the UITextField.

urlTextField.ShouldReturn = textField =>

{

textField.ResignFirstResponder ();

string url = textField.Text;

if (!url.StartsWith ("http"))

url = String.Format ("http://{0}", url);

NSUrl nsurl = new NSUrl (url);

NSUrlRequest req = new NSUrlRequest (nsurl);

webView.LoadRequest (req);

return true;

};

Figure 4.12 SimpleBrowserController’s view in Interface Builder

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 98

99User Interface Views and Controls

In addition to LoadRequest, the UIWebView comes with other features to control navi-
gation, such as moving back and forward through the page history and reloading the cur-
rent page.These are implemented with the methods GoBack, GoForward, and Reload,
respectively. In our example, we wire these up to the appropriate buttons:

backButton.Clicked += delegate { webView.GoBack (); };

forwardButton.Clicked += delegate { webView.GoForward (); };

refreshButton.Clicked += delegate { webView.Reload ();

Putting these snippets together in the SimpleBrowserController’s ViewDidLoad
implementation gives us a simple running browser application where we can navigate to
web pages and scroll them. However, our implementation does not support pinch zoom-
ing and does not fit the page to the screen by default.To include zoom support and fit-
the-page functionality, simply set the ScalesPageToFit property to true.The resulting
application is shown in Figure 4.13.

Figure 4.13 Simple browser application

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 99

100 Chapter 4 Common iOS Classes

Figure 4.14 Changing the simulator target in
MonoDevelop

Working with the ADBannerView is just like working with any other view. For call-
backs, you can use the ADBannerViewDelegate or the .NET events that abstract it.
Because this is a universal app, you’ll need to add an iPad view with a controller in addi-
tion to an iPhone view with a controller.The process for adding the controller’s view to
the screen is the same as in previous examples, where you added the controller to Main-
Window.xib, set the class and xib name, connected an outlet to the controller from the

Tip
You can switch between the iPhone and iPad simulator for the project by setting the iPhone
Simulator Target option under MonoDevelop’s Project menu (see Figure 4.14).

ADBannerView
With iOS 4,Apple introduced the iAds program, which allows developers to easily
include advertisements in their applications.The technology you use to include them is
the ADBannerView, found in the MonoTouch.iAd namespace. iAds are supported on any
device running iOS 4.x. Initially, this meant only iPhone and iPod Touch, but as of iOS
4.2, the iPad is also included.

For this example, we’ll build a universal application for both the iPhone and iPad.
Universal apps include support for native UI optimized for both the iPhone and iPad in a
single executable, as opposed to the pixel doubling you’ll get on the iPad if you only tar-
get the iPhone.We’ll discuss this at length later in the book. For now, we’re just making a
universal app to demonstrate iAds on both devices.

Create a new project named LMT4-6 using the Universal Window-based Project tem-
plate. Note that two files are added to this project.The MainWindowIPad.xib file is used
when running the app on an iPad and the MainWindowIPhone.xib file is used on an
iPhone.Along with these files are separate AppDelegate files for each target.

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 100

101User Interface Views and Controls

Note
When you drop an ADBannerView onto the design surface in IB, if you get an error, denoted
by a red error icon in the lower right of the xib window, click the icon and set the deployment
target version to 4.2.

First, in the event an ad doesn’t load, you need to take care of hiding the banner. Subse-
quently, any further successful loading of ads needs to ensure the banner is visible.You can
handle these situations using the FailedToReceiveAd and AdLoaded events, respectively.

Second, if you want to support multiple orientations in your applications, you will
need to size the adBanner appropriately.You never should size it directly, though.You
should size it implicitly by setting the CurrentContentSizeIdentifier.Also, the orienta-
tions you need are specified via the RequireSizeIdentifiers property, which defaults to
both landscape and portrait.This property controls what banner view images are actually
downloaded. For example, if you don’t support multiple orientations in your application,
you can tune the ad content to only download ad images for what you need.

To support rotating your view to both landscape and portrait orientations here, we
simply override ShouldRotateToInterfaceOrientation, returning true.To introduce the
aforementioned code to set the ADBannerView’s currentContentSizeidentifier, you
override WillRotate, setting the value appropriately for the orientation that is about to
be rotated to. Listing 4.4 shows the controller implementation for the iPhone, with the
iPad’s implementation being identical.The resulting app, running on both the iPad and
iPhone simulators, is shown in Figure 4.15, along with the test ad you’ll get when touch-
ing the ADBannerView.

Tip
When submitting applications containing iAds to the App Store, don’t include the test ad in
your screenshots.

Listing 4.4 View Controller Implementing iAD Support

public partial class DemoADIPhone : UIViewController

{

...

public override void ViewDidLoad ()

{

base.ViewDidLoad ();

AppDelegate, and loaded the controller’s view in FinishedLaunching.The only differ-
ence here is you’ll have to do it for both the iPad version of the various classes as well as
the iPhone version.

For the view controllers, use the names DemoADIPad and DemoADIPhone, respectively.
Using IB, add an ADBannerView to the views for each, associating connections named
adBanner in both cases.Without any additional code, this would result in a test ad load-
ing. However, there are a couple things you need to handle.

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 101

102 Chapter 4 Common iOS Classes

adBanner.AdLoaded += (s, e) => {

Console.WriteLine ("Ad Loaded");

((ADBannerView)s).Hidden = false;

};

adBanner.FailedToReceiveAd += delegate(object sender,

AdErrorEventArgs e)

{

Console.WriteLine("Ad failed to load. Error code = {0}",

e.Error.Code);

((ADBannerView)sender).Hidden = true;

};

}

public override void WillRotate (

UIInterfaceOrientation toInterfaceOrientation, double duration)

{

base.WillRotate (toInterfaceOrientation, duration);

if ((toInterfaceOrientation ==

UIInterfaceOrientation.LandscapeLeft) ||

(toInterfaceOrientation ==

UIInterfaceOrientation.LandscapeRight))

{

adBanner.CurrentContentSizeIdentifier =

ADBannerView.SizeIdentifierLandscape;

}

else

{

adBanner.CurrentContentSizeIdentifier =

ADBannerView.SizeIdentifierPortrait;

}

}

public override bool ShouldAutorotateToInterfaceOrientation

(UIInterfaceOrientation toInterfaceOrientation)

{

return true;

}

}

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 102

103Device Capabilities

Figure 4.15 ADBannerView along with a test ad display

Device Capabilities
iOS devices have various capabilities. On the iPhone, for example, you can do everything
from taking pictures and video with the camera to sending email and playing music.
Much of the system is made available to integrate in your applications through a variety of
built-in controllers.

MFMailComposeViewController
iOS includes built-in support for sending email from within your applications using the
MFMailComposeViewController, found in the MonoTouch.MessageUI namespace. Simply
check if the device is able to send mail using the CanSendMail property, and if it is true,
bring up an MFMailComposeViewController.The controller has properties to add attach-
ments (using the AddAttachmentData method), set the message body, send HTML mail,
add CC recipients, and so on.After hydrating the MFMailComposeViewController and
presenting its view, you can listen for completion results by subscribing to the Finished
event or by overriding the Finished virtual function of MFMailComposeViewController
Delegate. In the callback, you get back a result object, an error object, and the controller

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 103

104 Chapter 4 Common iOS Classes

Figure 4.16 Sending email with
MFMailComposeViewController

itself via the MFComposeResultEventArgs, which you can use to present the completion
status and dismiss the controller. Figure 4.16 shows a simple example of sending a string in
the email message’s body, using the code from Listing 4.5.

Listing 4.5 MFMailComposeViewController Example

MFMailComposeViewController _mail;

...

public override void ViewDidLoad ()

{

base.ViewDidLoad ();

mailButton.TouchUpInside += (o, e) =>

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 104

105Device Capabilities

{

if (MFMailComposeViewController.CanSendMail) {

_mail = new MFMailComposeViewController ();

_mail.SetToRecipients (new string[] { "person1@foo.com",

"person2@foo.com" });

_mail.SetCcRecipients (new string[] { "person3@foo.com" });

_mail.SetBccRecipients (new string[] { "person4@foo.com" })

_mail.SetMessageBody ("body of the email", false);

_mail.SetSubject ("test email");

_mail.Finished += HandleMailFinished;

this.PresentModalViewController(_mail, true);

} else {

var alert = new UIAlertView("Mail Alert",

"Mail Not Sent", null, "Mail Demo", null);

alert.Show();

}

};

}

void HandleMailFinished (object sender, MFComposeResultEventArgs e)

{

if (e.Result == MFMailComposeResult.Sent)

{

var alert = new UIAlertView("Mail Alert", "Mail Sent",

null, "Mail Demo", null);

alert.Show();

}

e.Controller.DismissModalViewControllerAnimated(true);

}

MPMediaPickerController and
MPMusicPlayerController
To select and play audio from your iPod library, you can use the
MPMediaPickerController and MPMusicPlayerController, respectively.The
MPMediaPickerController presents a view of your iPod library using a system view like
the iPod application, but from within your application.You can use it to query and select
items from your collection.

To determine the items that a user selects, you implement the
MPMediaPickerControllerDelegate.This delegate’s MediaItemsPicked method receives
the items the user selects, as an MPMediaItemCollection.An MPMediaItem encapsulates
metadata about the media item. For example, it contains artist and title information,
among other things.You can use this to display the item’s metadata in your app.

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 105

106 Chapter 4 Common iOS Classes

To play music, you can use the MPMusicPlayerController.This controller maintains a
queue of items to play.Therefore, to play an item with it, you simply add items to the
queue and subsequently call the Play method.The MPMusicPlayerController has a
SetQueue method that you can use to pass along the MPMediaItemCollection sent to the
MPMediaPickerControllerDelegate.There are also methods to control playback by per-
forming actions such as pausing, stopping, and adjusting volume, making it easy to imple-
ment audio player functionality from within your applications.

Let’s build a simple music player to demonstrate.After creating a new window-based
iPhone application, add a view controller with a view named MusicDemoController and
wire it up such that the view loads at startup, as usual. For this example, we’ll support
opening the iPod library for song selection, playback, stopping and pausing, as well as vol-
ume control.Also, we’ll include labels to display the song’s artist and title. Figure 4.17
shows the application’s user interface in IB along with the various connections.

Figure 4.17 MusicDemoController view in Interface Builder

We use a slider for the volume control and add the various buttons to a toolbar, which
is available via the UIToolbar class. For the bar button items, we get stock icon support
by setting the appropriate identifier in the Attribute Inspector.When the user selects the

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 106

107Device Capabilities

Note
This example only works on a device.

At this point, we will have queued up the song in the MPMusicPlayerController, so
we can play, pause, and stop it, along with change the volume. Listing 4.6 shows the
implementation of the MusicDemoController to make all this happen.

Listing 4.6 MusicDemoController Implementation

public partial class MusicDemoController : UIViewController

{

// Constructors omitted for brevity ...

MPMusicPlayerController _musicPlayer;

MPMediaPickerController _mediaController;

MediaPickerDelegate _mpDelegate;

public override void ViewDidLoad ()

{

base.ViewDidLoad ();

_musicPlayer = new MPMusicPlayerController ();

_musicPlayer.Volume = volumeSlider.Value;

_mediaController = new MPMediaPickerController

(MPMediaType.MPMediaTypeMusic);

_mediaController.AllowsPickingMultipleItems = false;

_mpDelegate = new MediaPickerDelegate (this);

_mediaController.Delegate = _mpDelegate;

volumeSlider.ValueChanged += delegate {

_musicPlayer.Volume = volumeSlider.Value; };

open.Clicked += (o, e) => {

this.PresentModalViewController(_mediaController, true); };

play.Clicked += (o, e) => { _musicPlayer.Play (); };

pause.Clicked += (o, e) => { _musicPlayer.Pause (); };

stop.Clicked += (o, e) => { _musicPlayer.Stop (); };

}

public class MediaPickerDelegate : MPMediaPickerControllerDelegate

{

open button, denoted by the Action identifier (the one furthest to the left in Figure 4.17),
we open the MPMediaPickerController.After selecting a song, we close the picker and
populate the labels with the artist and title metadata.

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 107

108 Chapter 4 Common iOS Classes

MusicDemoController _viewController;

public MediaPickerDelegate (

MusicDemoController viewController) : base()

{

_viewController = viewController;

}

public override void MediaItemsPicked (MPMediaPickerController

sender, MPMediaItemCollection mediaItemCollection)

{

_viewController._musicPlayer.SetQueue

(mediaItemCollection);

_viewController.DismissModalViewControllerAnimated (true);

MPMediaItem mediaItem = mediaItemCollection.Items[0];

//See MPMediaItem.h for various string property names

//(Search for MPMediaItem.h in Mac Spotlight)

string artist =

mediaItem.ValueForProperty ("artist").ToString ();

string title =

mediaItem.ValueForProperty ("title").ToString ();

_viewController.artistLabel.Text = artist;

_viewController.titleLabel.Text = title;

}

public override void MediaPickerDidCancel

(MPMediaPickerController sender)

{

_viewController.DismissModalViewControllerAnimated (true);

}

}

}

Note
Future versions of MonoTouch will expose the real NSString fields, such as
MPMediaItem.ArtistProperty, so you won’t have to search in MPMediaItem.h.

Address Book
iOS also includes support for interacting with the data you store in your system address
book.This is the data you commonly access in the Phone, Contacts, and Mail applications.
Much like the interaction you are afforded with iPod data, you have similar access to the
address book from within your applications.

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 108

109Device Capabilities

The address book is modeled in the ABAddressBook class. Using this class, you can
enumerate objects that represent the people in your contact list and their associated data,
such as phone numbers and email addresses, as shown here:

ABAddressBook ab = new ABAddressBook ();

ABPerson[] people = ab.GetPeople ();

foreach (ABPerson person in people) {

Console.WriteLine("{0} {1}", person.FirstName, person.LastName);

var phones = person.GetPhones ();

if (phones.Count > 0) {

foreach(var phone in phones)

Console.WriteLine (" {0}, {1}", phone.Label, phone.Value);

}

}

In addition to taking the approach of using ABAddressBook directly, you can use the
ABPeoplePickerNavigationController to interact with the address book via the stock
user interface.You can either use it simply to select a contact from the address book or
navigate to contact details.To handle contact selection, you register for the SelectPerson
event. From within your event handler, you can choose to allow navigation to contact
details by setting the Continue property of the ABPeoplePickerSelectPersonEventArgs
argument that is passed to the event handler. Setting Continue to true causes person selec-
tion to navigate to the contact details.The default setting is false, which you would use to
simply pick the contact and subsequently dismiss the controller.The event argument also
has a Person property, which is an ABPerson.Therefore, you can use the Person property
to retrieve additional information, such as phones, as we did earlier. Listing 4.7 shows an
example of using the ABPeoplePickerNavigationController to select a contact and add
some of the person’s information to a view, as well as dialing the contact’s number.

Listing 4.7 Using ABPeoplePickerNavigationController

...

ABPeoplePickerNavigationController _peoplePicker;

ABPerson _person;

string _phoneNumber;

public override void ViewDidLoad ()

{

base.ViewDidLoad ();

_peoplePicker = new ABPeoplePickerNavigationController ();

showPeoplePicker.TouchUpInside += delegate {

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 109

110 Chapter 4 Common iOS Classes

this.PresentModalViewController (_peoplePicker, true); };

_peoplePicker.Cancelled += delegate {

this.DismissModalViewControllerAnimated (true); };

_peoplePicker.SelectPerson += delegate(object sender,

ABPeoplePickerSelectPersonEventArgs e) {

// Setting Continue to true would allow navigation to the

// contact’s details, in which case you wouldn’t dismiss the

// controller below.

//

//e.Continue = true;

_person = e.Person;

nameLabel.Text = String.Format ("{0} {1}", _person.FirstName,

_person.LastName);

var phones = _person.GetPhones ();

if (phones.Count > 0) {

//just using the first phone for demo

_phoneNumber = phones[0].Value;

phoneLabel.Text = _phoneNumber;

} else {

_phoneNumber = String.Empty;

}

this.DismissModalViewControllerAnimated (true);

};

callPerson.TouchUpInside += delegate {

if (!String.IsNullOrEmpty (_phoneNumber)) {

NSUrl phoneUrl = new NSUrl (String.Format ("tel:{0}",

EscapePhoneNumber (_phoneNumber)));

if (UIApplication.SharedApplication.CanOpenUrl (phoneUrl))

UIApplication.SharedApplication.OpenUrl (phoneUrl);

}

};

}

string EscapePhoneNumber (string phoneNum)

{

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 110

111Device Capabilities

return phoneNum.Replace (" ", "-").Replace ("(", "")

.Replace (")", "");

}

Here, we create a new ABPeoplePickerNavigation controller and display its view
modally in response to the TouchUpInsideEvent of a UIButton named
showPeoplePicker.When the user selects a person, we handle the selection in the
SelectPerson event handler, populating labels with the person’s name and the first phone
number from the address book, after which we dismiss the controller.When the user
touches another button named callPerson, we create an NSUrl using the system URL
scheme for a phone number. Passing an NSUrl with this scheme to the OpenUrl method
causes the phone application to launch and dial the number.

Note
In addition to the telephone, there are other URL schemes in iOS for things such as SMS
text, iTunes, and maps—to name a few. See the Apple URL Scheme Reference for more
details.

UIImagePickerController
The UIImagePickerController supports selecting images and videos from files stored on
the device’s photo library and albums, as well as capturing images and videos directly from
the camera (for devices capable of image or video capture).The controller’s view adapts to
a stock user interface for library selection or camera interaction based on which scenario
you ask for and which media types are available on the device. Subsequent callbacks are
sent to the UIImagePickerControllerDelegate, where you can use the image or video
in your application.

Note
Camera and video support varies based on the actual device. Newer-generation devices
such as the iPhone 4 and the latest version of the iPod Touch support both.

The process of selecting or capturing images and videos is similar when using the
UIImagePickerController.You simply create the controller and set the source and
media types.The source type distinguishes between selecting media from the device and
capturing it with the camera.The media type determines whether you are selecting or
capturing images, video, or both.When you are selecting media from the device photo
library, the media types you set will cause the content list to filter images and videos
appropriately. Likewise, when you are capturing from the camera, the media types will
direct the camera view into video or photo capture mode, or present a toggle button to
switch between them if you set both image and video media types.

Let’s look at an example. Here we will open an action sheet to allow the user to
choose between either selecting media from the library or capturing it with the camera.
Upon selection or capture of a photo, we will close the UIImagePickerController and

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 111

112 Chapter 4 Common iOS Classes

Listing 4.8 Using a UIImagePickerController for Photos or Video

public partial class CameraDemoController : UIViewController

{

UIImagePickerController _picker;

PickerDelegate _pickerDel;

UIActionSheet _actionSheet;

MPMoviePlayerController _mp;

// constructors ...

public override void ViewDidLoad ()

{

base.ViewDidLoad ();

Figure 4.18 CameraDemoController in Interface Builder

show the resulting image in a UIImageView. For video, we’ll display a preview image of
the first frame and provide a button to launch video playback using an
MPMediaPlayerController. Figure 4.18 shows the setup in IB, with the implementation
in Listing 4.8.

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 112

113Device Capabilities

_picker = new UIImagePickerController ();

_pickerDel = new PickerDelegate (this);

_picker.Delegate = _pickerDel;

_actionSheet = new UIActionSheet ();

_actionSheet.AddButton ("Library");

_actionSheet.AddButton ("Camera");

_actionSheet.AddButton ("Cancel");

_actionSheet.CancelButtonIndex = 2;

_actionSheet.Delegate = new ActionSheetDelegate (this);

showPicker.TouchUpInside += delegate {

_actionSheet.ShowInView (this.View); };

playMovie.Hidden = true;

playMovie.TouchUpInside += delegate {

if (_mp != null) {

View.AddSubview (_mp.View);

_mp.SetFullscreen (true, true);

_mp.Play ();

}

};

}

class ActionSheetDelegate : UIActionSheetDelegate

{

CameraDemoController _controller;

public ActionSheetDelegate (CameraDemoController controller)

{

_controller = controller;

}

void ShowPicker (UIImagePickerControllerSourceType sourceType)

{

if (!UIImagePickerController

.IsSourceTypeAvailable (sourceType)) {

var alert = new UIAlertView ("Image Picker",

"Source type not available", null, "Close");

alert.Show ();

} else {

_controller._picker.SourceType = sourceType;

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 113

114 Chapter 4 Common iOS Classes

string[] availableMediaTypes = UIImagePickerController

.AvailableMediaTypes (sourceType);

string[] requestedMediaTypes = new string[] {

"public.image", "public.movie" };

List<string> mediaTypes = new List<string> ();

foreach (string mediaType in requestedMediaTypes) {

if (availableMediaTypes.Contains (mediaType))

mediaTypes.Add (mediaType);

}

_controller._picker.MediaTypes = mediaTypes.ToArray ();

_controller.PresentModalViewController

(_controller._picker, true);

}

}

public override void Clicked (UIActionSheet actionSheet,

int buttonIndex)

{

switch (buttonIndex) {

case 0:

ShowPicker (UIImagePickerControllerSourceType

.PhotoLibrary);

break;

case 1:

ShowPicker (UIImagePickerControllerSourceType

.Camera);

break;

}

actionSheet.DismissWithClickedButtonIndex (buttonIndex,

true);

}

}

class PickerDelegate : UIImagePickerControllerDelegate

{

CameraDemoController _controller;

public PickerDelegate (CameraDemoController controller)

{

_controller = controller;

}

public override void FinishedPickingMedia

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 114

115Device Capabilities

(UIImagePickerController picker, NSDictionary info)

{

picker.DismissModalViewControllerAnimated (true);

string mediaType = info[new NSString

("UIImagePickerControllerMediaType")].ToString ();

UIImage img = null;

if (mediaType == "public.image") {

img = (UIImage)info[new NSString

("UIImagePickerControllerOriginalImage")];

_controller.playMovie.Hidden = true;

} else if (mediaType == "public.movie") {

NSUrl videoUrl = (NSUrl)info[new NSString

("UIImagePickerControllerMediaURL")];

_controller._mp =

new MPMoviePlayerController (videoUrl);

img = _controller._mp.ThumbnailImageAt (0,

MPMovieTimeOption.NearestKeyFrame);

_controller.playMovie.Hidden = false;

}

if (img != null)

_controller.imageView.Image = img;

}

}

}

For the action sheet, we add buttons to either choose the library or camera, or to
cancel, handling the selection in the action sheet’s delegate. Because capabilities vary
between devices, you need to check that a particular source type is available using
UIImagePickerController’s IsSourceTypeAvailable method. Once you know a
source type is available, you can pass in available media types by setting them in a string
array assigned to the UIImagePickerController’s MediaTypes property. Once this is
done, with the UIImagePickerController’s delegate having been previously assigned,
you can present the UIImagePickerController.

The view displayed by the UIImagePickerController varies based on the aforemen-
tioned settings. Once you select or capture a video or image, the resulting media can be
harvested in the UIImagePickerControllerDelegate’s FinishedPickingMedia method.
The media type is available in the NSDictionary that is passed into this method via the
UIImagePickerControllerMediaType key.You can use this to run the appropriate code
for either image or video post-processing.

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 115

116 Chapter 4 Common iOS Classes

Here, we simply display an image in an ImageView or, for video, display a preview
image. Notice the preview image can be extracted from the video using the Thumbnail
ImageAt method of an MPMoviePlayerController, which we can also use to play the
video after it is selected.

Summary
iOS contains a plethora of classes that make it easier to create applications. In this chapter,
we looked at some of the more common classes that provide user interface capabilities, as
well as more intricate view controllers that abstract device capabilities, such as the camera.
As you’ve seen, most classes in iOS follow similar design patterns, making learning addi-
tional features more approachable.Although in some cases these classes may be a bit more
involved to work with, you’ll find the basic design principles typically still apply. In the
next chapter, we’ll cover two such classes used in many iOS application scenarios:
UITableViewController and UINavigationController.

05_9780321719928_ch04.qxd 6/28/11 11:47 AM Page 116

A
ADBannerView, 100-103

Adding CustomersViewController to a
UINavigationController listing (5.5), 131

Adding UIViewControllers to a
UITabBarController listing (3.4), 72

address book, iOS, 108-111

Animating the Layer’s Transform listing
(6.13), 191

animation, 157

Core Animation, 185-193
UIView, 181-185

Animation Using a CABasicAnimation listing
(6.11), 189

animations

grouping, 191
keyframe animations, creating, 190

annotations, maps, adding, 224-233

AppDelegate, outlets, 16-19

AppDelegate Showing a GKVoiceChatService
ReceivedData Call listing (10.5), 269-270

AppDelegateIPad Creating a
UISplitViewController listing (12.3), 313

Apple Developer Center, 7

AppleDelegate class, 43-45, 63, 309-310

Application Awoken by a Significant Location
Change listing (7.4), 211

applications

devices, developing on, 24-25
Hello MonoTouch application

adding outlets, 16-24
creating user interface, 14-16
debugging, 29-31
device development, 24-29

iPads
designing for, 311-326
porting to, 307-311

14_9780321719928_Index.qxd 6/28/11 11:53 AM Page 327

saving data
MTNotes, 283-289
serialization, 295-297
settings, 297-306
SQLite, 289-295

sending email within, 103-105
starting from Xcode, 36-40

Attaching the PDF to an Email listing
(6.5), 173

audio, iPod library, playing from, 105-108

B
background locations, Core Location,

214-216

BingServiceGateway, 245

Bonjour, networking, 272-281

C
CABasicAnimation, 189

CALayer, implicitly animating, 185

Calling Bing with WCF Client listing (9.6),
251

Calling the Bing SOAP Web Service listing
(9.5), 250

Calling the Web Service with Linq to XML
listing (9.3), 246-247

cell positioning, Core Location, 195-196

cells, customizing, UITableView, 144-148

Centering on the User’s Location upon
Selection listing (8.1), 222-223

Certificate Signing Request (CSR), 24

ChangePictureActionSheetDelegate Class
Implementing Clicked listing (2.7), 49

ChatController’s ViewDidLoad
Implementation listing (10.3), 265-266

classes, 111-116

AppDelegate, 43-45, 63
BingServiceGateway, 245

Core Animation, CABasicAnimation,
189

Customer, 145
CustomerCell, 146-147
GKSession, 255-256
HTTP, CocoaTouch, 251-254
iOS, 81

ADBannerView, 100-103
MFMailComposeViewController,

103-105
MPMediaPickerController,

105-108
MPMusicPlayerController, 105-108
UIAccelerometer, 69
UIActivityIndicatorView, 92-93
UIActionSheet, implementing,

46-52
UIImagePickerController, 111-116
UIImageView, 95-97
UIKit, 57
UINavigationController, 131
UIPageControl, 89-92
UIProgressView, 94-95
UIResponder, 78
UIScrollView, 89-92
UISegmentedControl, 81-85
UISlider, 85-87
UISplitViewController, 312-322
UISwitch, 88
UITabBarController, 72
UITableView, 117-127
UITableViewController, 117-119
UIView, 57, 75-80
UIViewController, 57-67
UIWebView, 97-99

NSUrlConnection, 252-254
NSUserDefaults, 302-306

328 applications

14_9780321719928_Index.qxd 6/28/11 11:53 AM Page 328

CLError Enumeration listing (7.2), 205

CLLocationManager listing (7.1), 204

CocoaTouch, HTTP classes, web services,
251-254

code listings

Adding CustomersViewController to
a UINavigationController (5.5), 131

Adding UIViewControllers to a
UITabBarController (3.4), 72

Animating the Layer’s Transform
(6.13), 191

Animation Using a
CABasicAnimation (6.11), 189

AppDelegate Showing a
GKVoiceChatService ReceivedData
Call (10.5), 269-270

AppDelegateIPad Creating a
UISplitViewController (12.3), 313

Application Awoken by a Significant
Location Change (7.4), 211

Attaching the PDF to an Email
(6.5), 173

Calling Bing with WCF Client
(9.6), 251

Calling the Bing SOAP Web Service
(9.5), 250

Calling the Web Service with Linq to
XML (9.3), 246-247

Centering on the User’s Location
upon Selection (8.1), 222-223

ChangePictureActionSheetDelegate
Class Implementing Clicked
(2.7), 49

ChatController’s ViewDidLoad
Implementation (10.3), 265-266

CLError Enumeration (7.2), 205
CLLocationManager (7.1), 204
Code to Create a UIActionSheet

(2.4), 46
Completed ChatController (10.2),

262-264

Creating a Keyframe Animation
(6.12), 190

Custom Drawing a UIView (3.6),
75-76

Custom Overlay Class (8.88), 237-238
Customer Class with the IsFavorite

Property (5.6), 145
CustomerCell Class (5.7), 146-147
CustomersTableViewSource

Implementing GetCell (5.2), 123
CustomersTableViewSource Using the

CustomerCell Class (5.8), 147
Displaying a UIActionSheet with

MonoTouch (2.6), 49
Drawing a Dashed, Gradient Star

(6.2), 161-162
Drawing an Image from Code

(6.3), 169
Example of a UIProgressView

(4.3), 94
Final Version of Main.cs (2.8), 50-52
FirstResponder Code in

CustomerDetailViewController
(5.4), 129

Generating a PDF Dynamically
(6.4), 173

Get Cell Implementation with
Different Cells Styles (5.3), 126

GetViewForAnnotation (8.3),
231-232

GKPeerConnectionState Enumeration
(10.1), 259

GKPeerPicker and
GKPeerPickerDelegate (10.4),
266-267

Grouping Animations (6.14), 191
Handling a Touch in a UIView

Subclass (3.8), 80
Handling UIButton TouchUpInside

Event in AppDelegate (1.2), 22

329code listings

14_9780321719928_Index.qxd 6/28/11 11:53 AM Page 329

Helper Class to Serialize Notes (11.5),
295-296

Implement GetHeightForRow to
Control Cell Height (5.9), 148

Implementation for
actionSheet:clickedButtonAtIndex:
(2.5), 47

Implicitly Animating a CALayer
(6.9), 185

Initial AppDelegateIPad
Implementation (12.2), 310-311

LMT2_AppDelegate.m (2.2), 39
LocationEventArgs Containing

CLLocation (7.6), 215
MainWindow.xib.designer.cs (1.1),

20-21
Making a Request Using

NSUrlConnection (9.7), 252
MFMailComposeViewController

Example (4.5), 104-105
MKOverlayView Subclass with

Custom Drawing (8.5), 238-239
Model Class Representing a

Customer (5.1), 121
MonoTouch AppDelegate Class (2.3),

44-45
MTNotes Root.plist for Setting the

Table Background Color (11.7),
301-302

MusicDemoController
Implementation (4.6), 107-108

Network Client with Bonjour Service
Resolution (10.7), 279-281

Note Class with Create, Read,
Update, and Delete Code (11.4),
293-294

NoteDetailController (11.2), 287-288
NotesCoordinator Class (12.4),

314-315
NotesTableController (11.1), 285-287
NotesTableControllerIPad

Implementation (12.5), 315-317

NSNetService Published Using
Bonjour (10.6), 273-276

NSUrlConnectionDelegate Subclass
(9.8), 253-254

Objective-C Header File with Outlets
and an Action (2.1), 37

Observer for
NSUserDefaultsDidChangeNotifica-
tion (11.8), 303-304

Overriding the Draw Method to
Create a Star (6.1), 159

Paging with a UIScrollView (4.1),
89-90

PDFViewController Paging and
Setting AnnotationText (6.7),
178-179

Platform-Independent
BingServiceGateway Class (9.1), 245

Portion of MainWindow.xib XML
Showing UILabel Settings (1.3), 23

Preliminary PDFView Loading the
CGPDFDocument (6.6), 175-176

Providing Layer Content with a
CALayerDelegate (6.15), 192

Refactoring to AppDelegateBase
(12.1), 309-310

RestaurantAnnotation Class (8.2),
224-225

Restoring the ImageView’s Position
after the Animation (6.8), 183-184

Retrieving Heading Information in
LocationHelper (7.3), 208

Sample Root.plist (11.6), 298-300
SampleViewController Property

Generated in AppDelegate (3.1), 63
Setting Background Location in

Info.plist (7.5), 214
Shell of the Note Class (11.3),

288-289
Specifying Duration and Timing on

Implicit Animations (6.10), 188

330 code listings

14_9780321719928_Index.qxd 6/28/11 11:53 AM Page 330

SynchronizerDelegate Function in
BingSearchController (9.2), 245-246

UIAccelerometer and
UIAccelerometerDelegate (3.2), 69

UIAccelerometer Using a C# Event
(3.3), 71

UIActivityIndicatorView
Implementation (4.2), 92

UIResponder Virtual Function to
Handle Touch (3.7), 78

UITableViewController Supporting
Multiple Sections (5.10), 150-152

Using a UIImagePickerController for
Photos or Video (4.8), 112-115

Using ABPeoplePickerNavigation-
Controller (4.7), 109-111

Using System.Json Classes with Linq
(9.4), 247-248

View Controller Implementing iAD
Support (4.4), 101-102

View Life-cycle Methods In
SampleViewController (3.5), 74

Code to Create a UIActionSheet listing
(2.4), 46

Completed ChatController listing (10.2),
262-264

controllers

IB (Interface Builder), 59-67
view, 71-75

adding functionality to, 67-71
controls

ADBannerView, 100-103
UIActivityIndicatorView, 92-93
UIImageView, 95-97
UIPageControl, 89-92
UIProgressView, 94-95
UIScrollView, 89-92
UISegmentedControl, 81-85
UISlider, 85-87

UISwitch, 88
UIWebView, 97-99
user interfaces, 81-103

Copy File dialog (MonoDevelop), 50

Core Animation, 185-194

Core Graphics, 157-165, 194

dashed, gradient star, drawing,
161-162

images, drawing, 165-170
PDFs, drawing, 170-180

Core Location, 195-197, 216, 224-240

background locations, 214-216
cell positioning, 195-196
GPS positioning, 196
heading updates, retrieving, 207-209
MapKit, 217-223

adding annotations, 224-233
map overlays, 233-240

region monitoring, 211-213
significant-change location service,

209-211
standard location service, 197-207
Wi-Fi positioning, 196

Creating a Keyframe Animation listing
(6.12), 190

CSR (Certificate Signing Request), 24

Custom Drawing a UIView listing (3.6), 75-76

Custom Overlay Class listing (8.88), 237-238

Custom UIView, implementing, 75-80

Customer class, 145

Customer Class with the IsFavorite Property
listing (5.6), 145

CustomerCell class, 146-147

CustomerCell Class listing (5.7), 146-147

CustomersTableViewSource Implementing
GetCell listing (5.2), 123

CustomersTableViewSource Using the
CustomerCell Class listing (5.8), 147

331CustomersTableViewSource Using the CustomerCell Class listing (5.8)

14_9780321719928_Index.qxd 6/28/11 11:53 AM Page 331

D
dashed, gradient star, drawing, Core

Graphics, 161-162

de Icaza, Miguel, 153

debugging, Hello MonoTouch application,
29-31

designing applications for iPads, 311-326

device capabilities, iOS, 103-116

Displaying a UIActionSheet with MonoTouch
listing (2.6), 49

displaying data, UITableView, 119-127

Draw method, 159

drawing

dashed, gradient star, Core Graphics,
161-162

images, Core Graphics, 165-170
PDFs, Core Graphics, 170-180

Drawing a Dashed, Gradient Star listing
(6.2), 161-162

Drawing an Image from Code listing
(6.3), 169

E
email

PDFs, attaching to, 173
sending within applications, 103-105

Example of a UIProgressView listing
(4.3), 94

F
Final Version of Main.cs listing (2.8), 50-52

FirstResponder Code in
CustomerDetailViewController listing
(5.4), 129

functionality, view controllers, adding to,
67-71

G
GameKit, 255

networking classes, 255-268
voice chat, 268-271

Generating a PDF Dynamically listing
(6.4), 173

generating PDFs dynamically, Core
Graphics, 173

Get Cell Implementation with Different Cells
Styles listing (5.3), 126

GetViewForAnnotation listing (8.3), 231-232

GKPeerConnectionState Enumeration listing
(10.1), 259

GKPeerPicker and GKPeerPickerDelegate
listing (10.4), 266-267

GKSession class, 255, 256

Google Maps, MapKit, 217-223

adding annotations, 224-233
map overlays, 233-240

GPS positioning, Core Location, 196

gradient star, drawing, Core Graphics,
161-162

graphics, 157

Core Graphics, 157-165
drawing, 165-170

grouping animations, 191

Grouping Animations listing (6.14), 191

H
Handling a Touch in a UIView Subclass

listing (3.8), 80

Handling UIButton TouchUpInside Event in
AppDelegate listing (1.2), 22

heading updates, Core Location, retrieving,
207-209

Hello MonoTouch application, 14

debugging, 29-31
device development, 24-29

332 dashed, gradient star, drawing, Core Graphics

14_9780321719928_Index.qxd 6/28/11 11:53 AM Page 332

outlets, adding, 16-24
user interface, creating, 14-16

Helper Class to Serialize Notes listing (11.5),
295-296

HTTP (Hypertext Transport Protocol), REST-
based web services, connecting over,
241-243

HTTP classes, CocoaTouch, web services,
251-254

I-J-K
IB (Interface Builder)

adding outlets, 16-24
controllers, 59-67
creating user interface, 14-16
views, 59-67

images

Core Graphics, 158-165
drawing, 165-170

selecting, 111-116
imageView outlet, UIImageView, connecting

to, 40

Implement GetHeightForRow to Control Cell
Height listing (5.9), 148

Implementation for
actionSheet:clickedButtonAtIndex: listing
(2.5), 47

implicit animations, duration and timing,
specifying, 188

Implicitly Animating a CALayer listing
(6.9), 185

Initial AppDelegateIPad Implementation
listing (12.2), 310-311

installation

iOS SDK, 6-10
MonoTouch, 10-13

Interface Builder (IB). See IB (Interface
Builder)

interfaces

controls, 81-103
Hello MonoTouch application,

creating, 14-16
views, 81-103

iOS

address book, 108-111
classes, 81

ADBannerView, 100-103
MFMailComposeViewController,

103-105
MPMediaPickerController,

105-108
MPMusicPlayerController, 105-108
UIAccelerometer, 69
UIActivityIndicatorView, 92-93
UIActionSheet, implementing,

46-52
UIImagePickerController, 111-116
UIImageView, 95-97
UIKit, 57
UINavigationController, 131
UIPageControl, 89-92
UIProgressView, 94-95
UIScrollView, 89-92
UISegmentedControl, 81-85
UISlider, 85-87
UISwitch, 88
UITabBarController, 72
UITableView, 117-127
UITableViewController, 117-119
UIView, 57, 75-80
UIViewController, 57-67
UIWebView, 97-99

UIResponder, 78

UISplitViewController, 312-322

device capabilities, 103-116

333UISplitViewController

14_9780321719928_Index.qxd 6/28/11 11:53 AM Page 333

iOS Provisioning Portal, 25

iOS SDK, 33-35

installing, 5-10
tables, 117

iPads

designing applications for, 311-326
porting applications to, 307-311

iPhone applications, iPads, porting to, 307

iPod library, playing audio from, 105-107

JSON results, REST-based web services,
parsing, 247-248

keychain access certificates, 25

keyframe animations, creating, 190

L
listings

Adding CustomersViewController to
a UINavigationController (5.5), 131

Adding UIViewControllers to a
UITabBarController (3.4), 72

Animating the Layer’s Transform
(6.13), 191

Animation Using a
CABasicAnimation (6.11), 189

AppDelegate Showing a
GKVoiceChatService ReceivedData
Call (10.5), 269-270

AppDelegateIPad Creating a
UISplitViewController (12.3), 313

Application Awoken by a Significant
Location Change (7.4), 211

Attaching the PDF to an Email
(6.5), 173

Calling Bing with WCF Client (9.6),
251

Calling the Bing SOAP Web Service
(9.5), 250

Calling the Web Service with Linq to
XML (9.3), 246-247

Centering on the User’s Location
upon Selection (8.1), 222-223

ChangePictureActionSheetDelegate
Class Implementing Clicked
(2.7), 49

ChatController’s ViewDidLoad
Implementation (10.3), 265-266

CLError Enumeration (7.2), 205
CLLocationManager (7.1), 204
Code to Create a UIActionSheet

(2.4), 46
Completed ChatController (10.2),

262-264
Creating a Keyframe Animation

(6.12), 190
Custom Drawing a UIView (3.6),

75-76
Custom Overlay Class (8.88), 237-238
Customer Class with the IsFavorite

Property (5.6), 145
CustomerCell Class (5.7), 146-147
CustomersTableViewSource

Implementing GetCell (5.2), 123
CustomersTableViewSource Using the

CustomerCell Class (5.8), 147
Displaying a UIActionSheet with

MonoTouch (2.6), 49
Drawing a Dashed, Gradient Star

(6.2), 161-162
Drawing an Image from Code

(6.3), 169
Example of a UIProgressView

(4.3), 94
Final Version of Main.cs (2.8), 50-52
FirstResponder Code in

CustomerDetailViewController
(5.4), 129

Generating a PDF Dynamically
(6.4), 173

Get Cell Implementation with
Different Cells Styles (5.3), 126

334 iOS Provisioning Portal

14_9780321719928_Index.qxd 6/28/11 11:53 AM Page 334

GetViewForAnnotation (8.3),
231-232

GKPeerConnectionState Enumeration
(10.1), 259

GKPeerPicker and
GKPeerPickerDelegate (10.4),
266-267

Grouping Animations (6.14), 191
Handling a Touch in a UIView

Subclass (3.8), 80
Handling UIButton TouchUpInside

Event in AppDelegate (1.2), 22
Helper Class to Serialize Notes (11.5),

295-296
Implement GetHeightForRow to

Control Cell Height (5.9), 148
Implementation for

actionSheet:clickedButtonAtIndex:
(2.5), 47

Implicitly Animating a CALayer
(6.9), 185

Initial AppDelegateIPad
Implementation (12.2), 310-311

LMT2_AppDelegate.m (2.2), 39
LocationEventArgs Containing

CLLocation (7.6), 215
MainWindow.xib.designer.cs (1.1),

20-21
Making a Request Using

NSUrlConnection (9.7), 252
MFMailComposeViewController

Example (4.5), 104-105
MKOverlayView Subclass with

Custom Drawing (8.5), 238-239
Model Class Representing a

Customer (5.1), 121
MonoTouch AppDelegate Class (2.3),

44-45
MTNotes Root.plist for Setting the

Table Background Color (11.7),
301-302

MusicDemoController
Implementation (4.6), 107-108

Network Client with Bonjour Service
Resolution (10.7), 279-281

Note Class with Create, Read,
Update, and Delete Code (11.4),
293-294

NoteDetailController (11.2), 287-288
NotesCoordinator Class (12.4),

314-315
NotesTableController (11.1), 285-287
NotesTableControllerIPad

Implementation (12.5), 315-317
NSNetService Published Using

Bonjour (10.6), 273-276
NSUrlConnectionDelegate Subclass

(9.8), 253-254
Objective-C Header File with Outlets

and an Action (2.1), 37
Observer for NSUserDefaultsDid-

ChangeNotification (11.8), 303-304
Overriding the Draw Method to

Create a Star (6.1), 159
Paging with a UIScrollView (4.1),

89-90
PDFViewController Paging and

Setting AnnotationText (6.7),
178-179

Platform-Independent BingService-
Gateway Class (9.1), 245

Portion of MainWindow.xib XML
Showing UILabel Settings (1.3), 23

Preliminary PDFView Loading the
CGPDFDocument (6.6), 175-176

Providing Layer Content with a
CALayerDelegate (6.15), 192

Refactoring to AppDelegateBase
(12.1), 309-310

RestaurantAnnotation Class (8.2),
224-225

Restoring the ImageView’s Position
after the Animation (6.8), 183-184

335listings

14_9780321719928_Index.qxd 6/28/11 11:53 AM Page 335

Retrieving Heading Information in
LocationHelper (7.3), 208

Sample Root.plist (11.6), 298-300
SampleViewController Property

Generated in AppDelegate (3.1), 63
Setting Background Location in

Info.plist (7.5), 214
Shell of the Note Class (11.3),

288-289
Specifying Duration and Timing on

Implicit Animations (6.10), 188
SynchronizerDelegate Function in

BingSearchController (9.2), 245-246
UIAccelerometer and

UIAccelerometerDelegate (3.2), 69
UIAccelerometer Using a C# Event

(3.3), 71
UIActivityIndicatorView

Implementation (4.2), 92
UIResponder Virtual Function to

Handle Touch (3.7), 78
UITableViewController Supporting

Multiple Sections (5.10), 150-152
Using a UIImagePickerController for

Photos or Video (4.8), 112-115
Using ABPeoplePickerNavigation-

Controller (4.7), 109-111
Using System.Json Classes with Linq

(9.4), 247-248
View Controller Implementing iAD

Support (4.4), 101-102
View Life-cycle Methods In

SampleViewController (3.5), 74
LMT2_AppDelegate.m listing (2.2), 39

location services, Core Location

significant-change, 209-211
standard, 197-207

LocationEventArgs Containing CLLocation
listing (7.6), 215

LocationHelper, 208

Lowy, Juval, 250

M
MainWindow.xib XML Showing UILabel

Settings listing (1.3), 23

MainWindow.xib.designer.cs listing (1.1),
20-21

Making a Request Using NSUrlConnection
listing (9.7), 252

MapKit, 217-223

maps
adding annotations, 224-233
overlays, 233-240

maps

adding annotations, 224-233
overlays, 233-240

memory management, 54-56

MFMailComposeViewController, 103-105

MFMailComposeViewController Example
listing (4.5), 104-105

MKOverlayView Subclass with Custom
Drawing listing (8.5), 238-239

Model Class Representing a Customer listing
(5.1), 121

MonoDevelop, 12-13

debug mode, 29-31
deployment feedback, 28

MonoTouch, 1, 52-56

installing, 10-13
memory management, 54-56
versus Objective-C, 35-52
requirements, 5-13

MonoTouch AppDelegate Class listing (2.3),
44-45

MonoTouch.Dialog, 153-155

MPMediaPickerController, 105-108

MPMusicPlayerController, 105-108

MTNotes, saving application data, 283-289

MTNotes Root.plist for Setting the Table
Background Color listing (11.7), 301-302

336 listings

14_9780321719928_Index.qxd 6/28/11 11:53 AM Page 336

MusicDemoController Implementation listing
(4.6), 107-108

MVC (Model-View-Controller) design pattern,
57-58

N
navigation, tables, 128-143

.NET 2.0 client proxy, SOAP-based web
services, 248-250

.NET serialization, saving application data,
295-297

Network Client with Bonjour Service
Resolution listing (10.7), 279-281

networking, 255

Bonjour, 272-281
GameKit, 255

classes, 255-268
voice chat, 268-271

networking classes, GameKit, 255-268

Note Class with Create, Read, Update, and
Delete Code listing (11.4), 293-294

NoteDetailController listing (11.2), 287-288

Notes application, saving application data,
283-289

NotesCoordinator Class listing (12.4),
314-315

NotesTableController listing (11.1), 285-287

NotesTableControllerIPad Implementation
listing (12.5), 315-317

NSNetService Published Using Bonjour
listing (10.6), 273-276

NSUrlConnection class, 252-254

NSUrlConnectionDelegate Subclass listing
(9.8), 253-254

NSUserDefaults, application settings,
reading, 302-306

O
Objective-C

header files, 37
versus MonoTouch, 35-52

Objective-C Header File with Outlets and an
Action listing (2.1), 37

Observer for
NSUserDefaultsDidChangeNotification
listing (11.8), 303-304

outlets

Hello MonoTouch application,
adding, 16-24

imageView outlet, 40
overlays, maps, 233-240

Overriding the Draw Method to Create a Star
listing (6.1), 159

P-Q
Paging with a UIScrollView listing (4.1),

89-90

parsing JSON results, REST-based web
services, 247-248

parsing XML results, REST-based web
services, 244-247

PDFs, drawing, Core Graphics, 170-180

PDFViewController Paging and Setting
AnnotationText listing (6.7), 178-179

pixel doubling, iPhone applications, 307

Platform-Independent BingServiceGateway
Class listing (9.1), 245

porting applications to iPad, 307-311

Portion of MainWindow.xib XML Showing
UILabel Settings listing (1.3), 23

Preliminary PDFView Loading the
CGPDFDocument listing (6.6), 175-176

Programming WCF Services, 9.51

Providing Layer Content with a
CALayerDelegate listing (6.15), 192

337Providing Layer Content with a CALayerDelegate listing (6.15)

14_9780321719928_Index.qxd 6/28/11 11:53 AM Page 337

R
Reenskaug, Trygve, 57

Refactoring to AppDelegateBase listing
(12.1), 309-310

region monitoring, Core Location, 211-213

RestaurantAnnotation Class listing (8.2),
224-225

REST-based web services

connecting to, 241-248
HTTP, 241-243

JSON results, parsing, 247-248
XML results, parsing, 244-247

Restoring the ImageView’s Position after the
Animation listing (6.8), 183-184

Retrieving Heading Information in
LocationHelper listing (7.3), 208

S
Sample Root.plist listing (11.6), 298-300

SampleViewController Property Generated in
AppDelegate listing (3.1), 63

SampleViewController view, 66

saving application data

MTNotes, 283-289
serialization, 295-297
Settings.bundle, 297-306
SQLite, 289-295

sections, tables, adding, 148-153

serialization, saving application data,
295-297

Setting Background Location in Info.plist
listing (7.5), 214

Settings.bundle, 297-306

Shell of the Note Class listing (11.3),
288-289

significant-change location service, Core
Location, 209-211

SOAP-based web services, 248

.NET 2.0 client proxy, 248-250
Specifying Duration and Timing on Implicit

Animations listing (6.10), 188

SQLite, saving application data, 289-295

standard location service, Core Location,
197-207

starting applications, Xcode, 36-40

SynchronizerDelegate Function in
BingSearchController listing (9.2), 245-246

T
tables, 117-119

cells, customizing, 144-148
MonoTouch.Dialog, 153-155
navigation, 128-143
sections, adding, 148-153
UITableView, 117

U
UDID, Xcode Organizer, 26-27

UIAccelerometer, 69

UIAccelerometer and
UIAccelerometerDelegate listing (3.2), 69

UIAccelerometer Using a C# Event listing
(3.3), 71

UIAccelerometerDelegate, 69

UIActionSheet class

implementing, 48-52
Xcode, implementing via, 46-48

UIActivityIndicatorView, 92-93

UIActivityIndicatorView Implementation
listing (4.2), 92

UIButton TouchUpInside Event in
AppDelegate listing (1.2), 22

UIImagePickerController, 111-116

338 Reenskaug, Trygve

14_9780321719928_Index.qxd 6/28/11 11:53 AM Page 338

UIImageView, 95-97

imageView outlet, connecting to, 40
UIKit, 34-35-57

UINavigationController, 131

UIPageControl, 89-92

UIProgressView, 94-95

UIResponder, 78

UIResponder Virtual Function to Handle
Touch listing (3.7), 78

UIScrollView, 89-92

UISegmentedControl, 81-85

UISlider, 85-87

UISplitViewController, 312-322

UISwitch, 88

UITabBarController, 72

UITableView, 118-119

custom cells, 144-148
displaying data in, 119-127

UITableViewCell, 125-127

UITableViewController, 118-119

UITableViewController Supporting Multiple
Sections listing (5.10), 150-152

UIView, 57

animating, 181-185
custom, implementing, 75-80

UIViewController, 57, 67

adding, IB (Interface Builder), 61
UIViewControllers, 72

UIWebView, 97-99

universal applications, iPads, porting to,
308-311

user interfaces

controls, 81-103
Hello MonoTouch application,

creating, 14-16
views, 81-103

Using a UIImagePickerController for Photos
or Video listing (4.8), 112-115

Using ABPeoplePickerNavigationController
listing (4.7), 109-111

Using System.Json Classes with Linq listing
(9.4), 247-248

V
videos, selecting, 111-116

View Controller Implementing iAD Support
listing (4.4), 101-102

view controllers, 71-75

adding functionality to, 67-71
MVC (Model-View-Controller)

design pattern, 57-58
SampleViewController, 66
UIViewController, 57, 67

IB (Interface Builder), 61
View Life-cycle Methods In

SampleViewController listing (3.5), 74

views, 71-75

IB (Interface Builder), 59-67
UIView, implementing custom, 75-80
user interfaces, 81-103

voice chat, GameKit, 268-271

W
WCF web services, 250-251

web services, 241, 254

CocoaTouch HTTP classes, 251-254
REST-based web services, connecting

to, 241-248
SOAP-based web services, 248

.NET 2.0 client proxy, 248-250
WCF, 250-251

Wi-Fi positioning, Core Location, 196

339Wi-Fi positioning, Core Location

14_9780321719928_Index.qxd 6/28/11 11:53 AM Page 339

X-Y-Z
Xcode

starting applications, 36-40
UIActionSheet class, implementing,

46-48
Xcode Organizer, UDID, 26-27

XML results, REST-based web services,
parsing, 244-247

340 Xcode

14_9780321719928_Index.qxd 6/28/11 11:53 AM Page 340

	Table of Contents
	Preface
	The Audience for This Book
	About the Sample Code

	Acknowledgments
	About the Author
	Introduction
	How This Book Is Organized
	Chapter 1: Hello MonoTouch
	Chapter 2: iOS SDK via MonoTouch
	Chapter 3: Views and View Controllers
	Chapter 4: Common iOS Classes
	Chapter 5: Tables and Navigation
	Chapter 6: Graphics and Animation
	Chapter 7: Core Location
	Chapter 8: MapKit
	Chapter 9: Connecting to Web Services
	Chapter 10: Networking
	Chapter 11: Saving Application Data
	Chapter 12: iPad Development

	Chapter 4 Common iOS Classes
	User Interface Views and Controls
	UISegmentedControl
	UISlider
	UISwitch
	UIPageControl and UIScrollView
	UIActivityIndicatorView
	UIProgressView
	UIImageView
	UIWebView
	ADBannerView

	Device Capabilities
	MFMailComposeViewController
	MPMediaPickerController and MPMusicPlayerController
	Address Book
	UIImagePickerController

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I-J-K
	L
	M
	N
	O
	P-Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

