
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321714633
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321714633
https://plusone.google.com/share?url=http://www.informit.com/title/9780321714633
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321714633
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321714633/Free-Sample-Chapter

Praise for
The Ruby Way, Third Edition

“Sticking to its tried and tested formula of cutting right to the techniques the modern
day Rubyist needs to know, the latest edition of The Ruby Way keeps its strong
reputation going for the latest generation of the Ruby language.”

Peter Cooper
Editor of Ruby Weekly

“The authors’ excellent work and meticulous attention to detail continues in this lat-
est update; this book remains an outstanding reference for the beginning Ruby pro-
grammer—as well as the seasoned developer who needs a quick refresh on Ruby.
Highly recommended for anyone interested in Ruby programming.”

Kelvin Meeks
Enterprise Architect

Praise for Previous Editions of
The Ruby Way

“Among other things, this book excels at explaining metaprogramming, one of the
most interesting aspects of Ruby. Many of the early ideas for Rails were inspired by
the first edition, especially what is now Chapter 11. It puts you on a rollercoaster ride
between ‘How could I use this?’ and ‘This is so cool!’ Once you get on that roller-
coaster, there’s no turning back.”

David Heinemeier Hansson
Creator of Ruby on Rails,
Founder at Basecamp

“The appearance of the second edition of this classic book is an exciting event for
Rubyists—and for lovers of superb technical writing in general. Hal Fulton brings a
lively erudition and an engaging, lucid style to bear on a thorough and meticulously
exact exposition of Ruby. You palpably feel the presence of a teacher who knows a
tremendous amount and really wants to help you know it too.”

David Alan Black
Author of The Well-Grounded Rubyist

“This is an excellent resource for gaining insight into how and why Ruby works. As
someone who has worked with Ruby for several years, I still found it full of new tricks
and techniques. It’s accessible both as a straight read and as a reference that one can
dip into and learn something new.”

Chet Hendrickson
Agile software pioneer

“Ruby’s a wonderful language—but sometimes you just want to get something done.
Hal’s book gives you the solution and teaches a good bit about why that solution is
good Ruby.”

Martin Fowler
Chief Scientist, ThoughtWorks
Author of Patterns of Enterprise
Application Architecture

THE RUBY WAY

Third Edition

Hal Fulton
with André Arko

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations
appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all
capitals.
The authors and publisher have taken care in the preparation of this
book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.
For information about buying this title in bulk quantities, or for
special sales opportunities (which may include electronic versions;
custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-
3419.
For government sales inquiries, please contact
governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact
international@pearsoned.com.
Visit us on the Web: informit.com/aw
Library of Congress Control Number: 2014945504
Copyright © 2015 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publica-
tion is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval sys-
tem, or transmission in any form or by any means, electronic, mechani-
cal, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to (201) 236-
3290.
ISBN-13: 978-0-321-71463-3
ISBN-10: 0-321-71463-6
Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana
First printing: March 2015

Editor-in-Chief
Mark Taub
Executive Editor
Debra Williams-Cauley
Development Editor
Songlin Qiu
Managing Editor
Kristy Hart
Project Editor
Andy Beaster
Copy Editor
Bart Reed
Indexer
Ken Johnson
Proofreader
Sarah Kearns
Cover Designer
Chuti Prasertsith
Senior Compositor
Gloria Schurick

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com

To my parents, without whom I would not be possible
—Hal

This page intentionally left blank

Contents

Foreword xxiv
Acknowledgments xxviii
About the Authors xxxii
Introduction xxxiii

1 Ruby in Review 1
1.1 An Introduction to Object Orientation 2

1.1.1 What Is an Object? 2
1.1.2 Inheritance 4
1.1.3 Polymorphism 6
1.1.4 A Few More Terms 7

1.2 Basic Ruby Syntax and Semantics 8
1.2.1 Keywords and Identifiers 9
1.2.2 Comments and Embedded Documentation 10
1.2.3 Constants, Variables, and Types 11
1.2.4 Operators and Precedence 13
1.2.5 A Sample Program 14
1.2.6 Looping and Branching 17
1.2.7 Exceptions 22

1.3 OOP in Ruby 25
1.3.1 Objects 26
1.3.2 Built-in Classes 26
1.3.3 Modules and Mixins 28
1.3.4 Creating Classes 29
1.3.5 Methods and Attributes 34

vii

1.4 Dynamic Aspects of Ruby 36
1.4.1 Coding at Runtime 36
1.4.2 Reflection 38
1.4.3 Missing Methods 40
1.4.4 Garbage Collection 40

1.5 Training Your Intuition: Things to Remember 41
1.5.1 Syntax Issues 41
1.5.2 Perspectives in Programming 44
1.5.3 Ruby’s FDVH Statement 47
1.5.4 Rubyisms and Idioms 50
1.5.5 Expression Orientation and Other Miscellaneous Issues 57

1.6 Ruby Jargon and Slang 59
1.7 Conclusion 62

2 Working with Strings 63
2.1 Representing Ordinary Strings 64
2.2 Representing Strings with Alternate Notations 65
2.3 Using Here-Documents 65
2.4 Finding the Length of a String 67
2.5 Processing a Line at a Time 68
2.6 Processing a Character or Byte at a Time 68
2.7 Performing Specialized String Comparisons 69
2.8 Tokenizing a String 71
2.9 Formatting a String 73
2.10 Using Strings as IO Objects 74
2.11 Controlling Uppercase and Lowercase 74
2.12 Accessing and Assigning Substrings 75
2.13 Substituting in Strings 78
2.14 Searching a String 79
2.15 Converting Between Characters and ASCII Codes 80
2.16 Implicit and Explicit Conversion 80
2.17 Appending an Item onto a String 83
2.18 Removing Trailing Newlines and Other Characters 83
2.19 Trimming Whitespace from a String 84
2.20 Repeating Strings 85
2.21 Embedding Expressions within Strings 85

viii Contents

2.22 Delayed Interpolation of Strings 86
2.23 Parsing Comma-Separated Data 86
2.24 Converting Strings to Numbers (Decimal and Otherwise) 87
2.25 Encoding and Decoding URW�� Text 89
2.26 Encrypting Strings 90
2.27 Compressing Strings 91
2.28 Counting Characters in Strings 92
2.29 Reversing a String 92
2.30 Removing Duplicate Characters 93
2.31 Removing Specific Characters 93
2.32 Printing Special Characters 93
2.33 Generating Successive Strings 94
2.34 Calculating a 32-Bit CRC 94
2.35 Calculating the SHA-256 Hash of a String 95
2.36 Calculating the Levenshtein Distance Between Two Strings 96
2.37 Encoding and Decoding Base64 Strings 98
2.38 Expanding and Compressing Tab Characters 98
2.39 Wrapping Lines of Text 99
2.40 Conclusion 100

3 Working with Regular Expressions 101
3.1 Regular Expression Syntax 102
3.2 Compiling Regular Expressions 104
3.3 Escaping Special Characters 105
3.4 Using Anchors 105
3.5 Using Quantifiers 106
3.6 Positive and Negative Lookahead 109
3.7 Positive and Negative Lookbehind 110
3.8 Accessing Backreferences 111
3.9 Named Matches 114
3.10 Using Character Classes 116
3.11 Extended Regular Expressions 118
3.12 Matching a Newline with a Dot 119
3.13 Using Embedded Options 119
3.14 Using Embedded Subexpressions 120

3.14.1 Recursion in Regular Expressions 121

Contents ix

3.15 A Few Sample Regular Expressions 122
3.15.1 Matching an IP Address 122
3.15.2 Matching a Keyword-Value Pair 123
3.15.3 Matching Roman Numerals 124
3.15.4 Matching Numeric Constants 125
3.15.5 Matching a Date/Time String 125
3.15.6 Detecting Doubled Words in Text 126
3.15.7 Matching All-Caps Words 127
3.15.8 Matching Version Numbers 127
3.15.9 A Few Other Patterns 127

3.16 Conclusion 128

4 Internationalization in Ruby 129
4.1 Background and Terminology 131
4.2 Working with Character Encodings 135

4.2.1 Normalization 136
4.2.2 Encoding Conversions 139
4.2.3 Transliteration 141
4.2.4 Collation 141

4.3 Translations 144
4.3.1 Defaults 146
4.3.2 Namespaces 147
4.3.3 Interpolation 148
4.3.4 Pluralization 149

4.4 Localized Formatting 151
4.4.1 Dates and Times 151
4.4.2 Numbers 152
4.4.3 Currencies 153

4.5 Conclusion 153

5 Performing Numerical Calculations 155
5.1 Representing Numbers in Ruby 156
5.2 Basic Operations on Numbers 157
5.3 Rounding Floating Point Values 158
5.4 Comparing Floating Point Numbers 160
5.5 Formatting Numbers for Output 162

x Contents

5.6 Formatting Numbers with Commas 162
5.7 Working with Very Large Integers 163
5.8 Using %LJ'HFLPDO 163
5.9 Working with Rational Values 166
5.10 Matrix Manipulation 167
5.11 Working with Complex Numbers 171
5.12 Using PDWKQ 172
5.13 Finding Prime Factorization, GCD, and LCM 173
5.14 Working with Prime Numbers 174
5.15 Implicit and Explicit Numeric Conversion 175
5.16 Coercing Numeric Values 176
5.17 Performing Bit-Level Operations on Numbers 177
5.18 Performing Base Conversions 179
5.19 Finding Cube Roots, Fourth Roots, and So On 180
5.20 Determining the Architecture’s Byte Order 181
5.21 Numerical Computation of a Definite Integral 182
5.22 Trigonometry in Degrees, Radians, and Grads 183
5.23 Finding Logarithms with Arbitrary Bases 184
5.24 Finding the Mean, Median, and Mode of a Data Set 185
5.25 Variance and Standard Deviation 187
5.26 Finding a Correlation Coefficient 187
5.27 Generating Random Numbers 189
5.28 Caching Functions with Memoization 190
5.29 Conclusion 191

6 Symbols and Ranges 193
6.1 Symbols 193

6.1.1 Symbols as Enumerations 195
6.1.2 Symbols as Metavalues 196
6.1.3 Symbols, Variables, and Methods 197
6.1.4 Converting to/from Symbols 197

6.2 Ranges 199
6.2.1 Open and Closed Ranges 199
6.2.2 Finding Endpoints 200
6.2.3 Iterating Over Ranges 200
6.2.4 Testing Range Membership 201
6.2.5 Converting to Arrays 202

Contents xi

6.2.6 Backward Ranges 202
6.2.7 The Flip-Flop Operator 203
6.2.8 Custom Ranges 206

6.3 Conclusion 209

7 Working with Times and Dates 211
7.1 Determining the Current Time 212
7.2 Working with Specific Times (Post-Epoch) 212
7.3 Determining the Day of the Week 214
7.4 Determining the Date of Easter 215
7.5 Finding the Nth Weekday in a Month 215
7.6 Converting Between Seconds and Larger Units 217
7.7 Converting to and from the Epoch 217
7.8 Working with Leap Seconds: Don’t! 218
7.9 Finding the Day of the Year 219
7.10 Validating a Date or Time 219
7.11 Finding the Week of the Year 220
7.12 Detecting Leap Years 221
7.13 Obtaining the Time Zone 222
7.14 Working with Hours and Minutes Only 222
7.15 Comparing Time Values 223
7.16 Adding Intervals to Time Values 223
7.17 Computing the Difference in Two Time Values 224
7.18 Working with Specific Dates (Pre-Epoch) 224
7.19 Time, Date, and DateTime 225
7.20 Parsing a Date or Time String 225
7.21 Formatting and Printing Time Values 226
7.22 Time Zone Conversions 227
7.23 Determining the Number of Days in a Month 228
7.24 Dividing a Month into Weeks 229
7.25 Conclusion 230

8 Arrays, Hashes, and Other Enumerables 231
8.1 Working with Arrays 232

8.1.1 Creating and Initializing an Array 232
8.1.2 Accessing and Assigning Array Elements 233
8.1.3 Finding an Array’s Size 235

xii Contents

8.1.4 Comparing Arrays 235
8.1.5 Sorting an Array 237
8.1.6 Selecting from an Array by Criteria 240
8.1.7 Using Specialized Indexing Functions 242
8.1.8 Implementing a Sparse Matrix 244
8.1.9 Using Arrays as Mathematical Sets 244
8.1.10 Randomizing an Array 248
8.1.11 Using Multidimensional Arrays 249
8.1.12 Finding Elements in One Array But Not Another 250
8.1.13 Transforming or Mapping Arrays 250
8.1.14 Removing QLO Values from an Array 251
8.1.15 Removing Specific Array Elements 251
8.1.16 Concatenating and Appending onto Arrays 253
8.1.17 Using an Array as a Stack or Queue 254
8.1.18 Iterating over an Array 254
8.1.19 Interposing Delimiters to Form a String 255
8.1.20 Reversing an Array 256
8.1.21 Removing Duplicate Elements from an Array 256
8.1.22 Interleaving Arrays 256
8.1.23 Counting Frequency of Values in an Array 257
8.1.24 Inverting an Array to Form a Hash 257
8.1.25 Synchronized Sorting of Multiple Arrays 258
8.1.26 Establishing a Default Value for New Array Elements 259

8.2 Working with Hashes 260
8.2.1 Creating a New Hash 260
8.2.2 Specifying a Default Value for a Hash 261
8.2.3 Accessing and Adding Key-Value Pairs 262
8.2.4 Deleting Key-Value Pairs 264
8.2.5 Iterating Over a Hash 264
8.2.6 Inverting a Hash 265
8.2.7 Detecting Keys and Values in a Hash 265
8.2.8 Extracting Hashes into Arrays 266
8.2.9 Selecting Key-Value Pairs by Criteria 266
8.2.10 Sorting a Hash 267
8.2.11 Merging Two Hashes 268
8.2.12 Creating a Hash from an Array 268

Contents xiii

8.2.13 Finding Difference or Intersection of Hash Keys 268
8.2.14 Using a Hash as a Sparse Matrix 269
8.2.15 Implementing a Hash with Duplicate Keys 270
8.2.16 Other Hash Operations 273

8.3 Enumerables in General 273
8.3.1 The LQMHFW Method 274
8.3.2 Using Quantifiers 275
8.3.3 The SDUWLWLRQ Method 276
8.3.4 Iterating by Groups 277
8.3.5 Converting to Arrays or Sets 278
8.3.6 Using Enumerator Objects 278

8.4 More on Enumerables 280
8.4.1 Searching and Selecting 280
8.4.2 Counting and Comparing 281
8.4.3 Iterating 282
8.4.4 Extracting and Converting 283
8.4.5 Lazy Enumerators 284

8.5 Conclusion 285

9 More Advanced Data Structures 287
9.1 Working with Sets 288

9.1.1 Simple Set Operations 288
9.1.2 More Advanced Set Operations 290

9.2 Working with Stacks and Queues 291
9.2.1 Implementing a Stricter Stack 293
9.2.2 Detecting Unbalanced Punctuation in Expressions 294
9.2.3 Understanding Stacks and Recursion 295
9.2.4 Implementing a Stricter Queue 297

9.3 Working with Trees 298
9.3.1 Implementing a Binary Tree 298
9.3.2 Sorting Using a Binary Tree 300
9.3.3 Using a Binary Tree as a Lookup Table 302
9.3.4 Converting a Tree to a String or Array 303

9.4 Working with Graphs 304
9.4.1 Implementing a Graph as an Adjacency Matrix 304
9.4.2 Determining Whether a Graph Is Fully Connected 307

xiv Contents

9.4.3 Determining Whether a Graph Has an Euler Circuit 308
9.4.4 Determining Whether a Graph Has an Euler Path 309
9.4.5 Graph Tools in Ruby 310

9.5 Conclusion 310

10 I/O and Data Storage 311
10.1 Working with Files and Directories 313

10.1.1 Opening and Closing Files 313
10.1.2 Updating a File 314
10.1.3 Appending to a File 315
10.1.4 Random Access to Files 315
10.1.5 Working with Binary Files 316
10.1.6 Locking Files 318
10.1.7 Performing Simple I/O 318
10.1.8 Performing Buffered and Unbuffered I/O 320
10.1.9 Manipulating File Ownership and Permissions 321
10.1.10 Retrieving and Setting Timestamp Information 323
10.1.11 Checking File Existence and Size 325
10.1.12 Checking Special File Characteristics 326
10.1.13 Working with Pipes 328
10.1.14 Performing Special I/O Operations 329
10.1.15 Using Nonblocking I/O 330
10.1.16 Using UHDGSDUWLDO 331
10.1.17 Manipulating Pathnames 331
10.1.18 Using the 3DWKQDPH Class 333
10.1.19 Command-Level File Manipulation 334
10.1.20 Grabbing Characters from the Keyboard 336
10.1.21 Reading an Entire File into Memory 336
10.1.22 Iterating Over a File by Lines 337
10.1.23 Iterating Over a File by Byte or Character 337
10.1.24 Treating a String As a File 338
10.1.25 Copying a Stream 339
10.1.26 Working with Character Encodings 339
10.1.27 Reading Data Embedded in a Program 339
10.1.28 Reading Program Source 340
10.1.29 Working with Temporary Files 340

Contents xv

10.1.30 Changing and Setting the Current Directory 341
10.1.31 Changing the Current Root 342
10.1.32 Iterating Over Directory Entries 342
10.1.33 Getting a List of Directory Entries 342
10.1.34 Creating a Chain of Directories 342
10.1.35 Deleting a Directory Recursively 343
10.1.36 Finding Files and Directories 343

10.2 Higher-Level Data Access 344
10.2.1 Simple Marshaling 345
10.2.2 “Deep Copying” with 0DUVKDO 346
10.2.3 More Complex Marshaling 346
10.2.4 Marshaling with <$0/ 347
10.2.5 Persisting Data with -621 349
10.2.6 Working with CSV Data 350
10.2.7 SQLite3 for SQL Data Storage 352

10.3 Connecting to External Data Stores 353
10.3.1 Connecting to MySQL Databases 354
10.3.2 Connecting to PostgreSQL Databases 356
10.3.3 Object-Relational Mappers (ORMs) 358
10.3.4 Connecting to Redis Data Stores 359

10.4 Conclusion 360

11 OOP and Dynamic Features in Ruby 361
11.1 Everyday OOP Tasks 362

11.1.1 Using Multiple Constructors 362
11.1.2 Creating Instance Attributes 364
11.1.3 Using More Elaborate Constructors 366
11.1.4 Creating Class-Level Attributes and Methods 368
11.1.5 Inheriting from a Superclass 372
11.1.6 Testing Classes of Objects 374
11.1.7 Testing Equality of Objects 377
11.1.8 Controlling Access to Methods 378
11.1.9 Copying an Object 381
11.1.10 Using LQLWLDOL]HBFRS\ 383
11.1.11 Understanding DOORFDWH 384

xvi Contents

11.1.12 Working with Modules 384
11.1.13 Transforming or Converting Objects 388
11.1.14 Creating Data-Only Classes (Structs) 390
11.1.15 Freezing Objects 391
11.1.16 Using WDS in Method Chaining 393

11.2 More Advanced Techniques 394
11.2.1 Sending an Explicit Message to an Object 394
11.2.2 Specializing an Individual Object 396
11.2.3 Nesting Classes and Modules 399
11.2.4 Creating Parametric Classes 400
11.2.5 Storing Code as 3URF Objects 403
11.2.6 Storing Code as 0HWKRG Objects 405
11.2.7 Using Symbols as Blocks 406
11.2.8 How Module Inclusion Works 406
11.2.9 Detecting Default Parameters 409
11.2.10 Delegating or Forwarding 409
11.2.11 Defining Class-Level Readers and Writers 412
11.2.12 Working in Advanced Programming Disciplines 414

11.3 Working with Dynamic Features 416
11.3.1 Evaluating Code Dynamically 416
11.3.2 Retrieving a Constant by Name 418
11.3.3 Retrieving a Class by Name 418
11.3.4 Using GHILQHBPHWKRG 419
11.3.5 Obtaining Lists of Defined Entities 423
11.3.6 Removing Definitions 425
11.3.7 Handling References to Nonexistent Constants 427
11.3.8 Handling Calls to Nonexistent Methods 429
11.3.9 Improved Security with WDLQW 430
11.3.10 Defining Finalizers for Objects 432

11.4 Program Introspection 433
11.4.1 Traversing the Object Space 434
11.4.2 Examining the Call Stack 435
11.4.3 Tracking Changes to a Class or Object Definition 435
11.4.4 Monitoring Program Execution 439

11.5 Conclusion 441

Contents xvii

12 Graphical Interfaces for Ruby 443
12.1 Shoes 4 444

12.1.1 Starting Out with Shoes 444
12.1.2 An Interactive Button 445
12.1.3 Text and Input 446
12.1.4 Layout 448
12.1.5 Images and Shapes 450
12.1.6 Events 450
12.1.7 Other Notes 451

12.2 Ruby/Tk 452
12.2.1 Overview 452
12.2.2 A Simple Windowed Application 453
12.2.3 Working with Buttons 455
12.2.4 Working with Text Fields 459
12.2.5 Working with Other Widgets 463
12.2.6 Other Notes 467

12.3 Ruby/GTK3 467
12.3.1 Overview 467
12.3.2 A Simple Windowed Application 468
12.3.3 Working with Buttons 469
12.3.4 Working with Text Fields 471
12.3.5 Working with Other Widgets 474
12.3.6 Other Notes 479

12.4 QtRuby 480
12.4.1 Overview 480
12.4.2 A Simple Windowed Application 480
12.4.3 Working with Buttons 481
12.4.4 Working with Text Fields 483
12.4.5 Working with Other Widgets 485
12.4.6 Other Notes 490

12.5 Swing 491
12.6 Other GUI Toolkits 493

12.6.1 UNIX and X11 493
12.6.2 FXRuby (FOX) 493

xviii Contents

12.6.3 RubyMotion for iOS and Mac OS X 494
12.6.4 The Windows Win32API 494

12.7 Conclusion 494

13 Threads and Concurrency 495
13.1 Creating and Manipulating Threads 497

13.1.1 Creating Threads 497
13.1.2 Accessing Thread-Local Variables 498
13.1.3 Querying and Changing Thread Status 500
13.1.4 Achieving a Rendezvous (and Capturing a Return Value) 505
13.1.5 Dealing with Exceptions 506
13.1.6 Using a Thread Group 508

13.2 Synchronizing Threads 509
13.2.1 Performing Simple Synchronization 511
13.2.2 Synchronizing Access with a Mutex 512
13.2.3 Using the Built-in Queue Classes 515
13.2.4 Using Condition Variables 517
13.2.5 Other Synchronization Techniques 518
13.2.6 Setting a Timeout for an Operation 522
13.2.7 Waiting for an Event 524
13.2.8 Collection Searching in Parallel 525
13.2.9 Recursive Deletion in Parallel 526

13.3 Fibers and Cooperative Multitasking 527
13.4 Conclusion 530

14 Scripting and System Administration 531
14.1 Running External Programs 532

14.1.1 Using V\VWHP and H[HF 532
14.1.2 Capturing Command Output 533
14.1.3 Manipulating Processes 534
14.1.4 Manipulating Standard Input and Output 537

14.2 Command-Line Options and Arguments 538
14.2.1 Working with $5*9 538
14.2.2 Working with $5*) 539
14.2.3 Parsing Command-Line Options 540

Contents xix

14.3 The 6KHOO Library 542
14.3.1 Using 6KHOO for I/O Redirection 542
14.3.2 Other Notes on 6KHOO 544

14.4 Accessing Environment Variables 545
14.4.1 Getting and Setting Environment Variables 545
14.4.2 Storing Environment Variables as an Array or Hash 546

14.5 Working with Files, Directories, and Trees 547
14.5.1 A Few Words on Text Filters 547
14.5.2 Copying a Directory Tree 548
14.5.3 Deleting Files by Age or Other Criteria 549
14.5.4 Determining Free Space on a Disk 550

14.6 Other Scripting Tasks 551
14.6.1 Distributing Ruby Programs 551
14.6.2 Piping into the Ruby Interpreter 552
14.6.3 Testing Whether a Program Is Running Interactively 553
14.6.4 Determining the Current Platform or Operating System 554
14.6.5 Using the (WF Module 554

14.7 Conclusion 555

15 Ruby and Data Formats 557
15.1 Parsing JSON 558

15.1.1 Navigating JSON Data 559
15.1.2 Handling Non-JSON Data Types 560
15.1.3 Other JSON Libraries 560

15.2 Parsing XML (and HTML) 561
15.2.1 Document Parsing 561
15.2.2 Stream Parsing 564

15.3 Working with RSS and Atom 566
15.3.1 Parsing Feeds 567
15.3.2 Generating Feeds 568

15.4 Manipulating Image Data with RMagick 569
15.4.1 Common Graphics Tasks 570
15.4.2 Special Effects and Transformations 573
15.4.3 The Drawing API 576

xx Contents

15.5 Creating PDF Documents with Prawn 579
15.5.1 Basic Concepts and Techniques 579
15.5.2 An Example Document 580

15.6 Conclusion 584

16 Testing and Debugging 585
16.1 Testing with RSpec 586
16.2 Testing with Minitest 589
16.3 Testing with Cucumber 594
16.4 Using the E\HEXJ Debugger 596
16.5 Using SU\ for Debugging 600
16.6 Measuring Performance 601
16.7 Pretty-Printing Objects 606
16.8 Not Covered Here 608
16.9 Conclusion 609

17 Packaging and Distributing Code 611
17.1 Libraries and Rubygems 612

17.1.1 Using Rubygems 612
17.1.2 Creating Gems 613

17.2 Managing Dependencies with Bundler 614
17.2.1 Semantic Versioning 615
17.2.2 Dependencies from Git 616
17.2.3 Creating Gems with Bundler 617
17.2.4 Private Gems 617

17.3 Using RDoc 618
17.3.1 Simple Markup 620
17.3.2 Advanced Documentation with Yard 622

17.4 Conclusion 623

18 Network Programming 625
18.1 Network Servers 627

18.1.1 A Simple Server: Time of Day 627
18.1.2 Implementing a Threaded Server 629
18.1.3 Case Study: A Peer-to-Peer Chess Server 630

Contents xxi

18.2 Network Clients 638
18.2.1 Retrieving Truly Random Numbers from the Web 638
18.2.2 Contacting an Official Timeserver 641
18.2.3 Interacting with a POP Server 642
18.2.4 Sending Mail with SMTP 644
18.2.5 Interacting with an IMAP Server 647
18.2.6 Encoding/Decoding Attachments 649
18.2.7 Case Study: A Mail-News Gateway 651
18.2.8 Retrieving a Web Page from a URL 657
18.2.9 Using the Open-URI Library 658

18.3 Conclusion 658

19 Ruby and Web Applications 661
19.1 HTTP Servers 662

19.1.1 A Simple HTTP Server 662
19.1.2 Rack and Web Servers 664

19.2 Application Frameworks 667
19.2.1 Routing in Sinatra 668
19.2.2 Routing in Rails 669
19.2.3 Parameters in Sinatra 671
19.2.4 Parameters in Rails 672

19.3 Storing Data 673
19.3.1 Databases 674
19.3.2 Data Stores 676

19.4 Generating HTML 677
19.4.1 ERB 678
19.4.2 Haml 680
19.4.3 Other Templating Systems 681

19.5 The Asset Pipeline 681
19.5.1 CSS and Sass 682
19.5.2 JavaScript and CoffeeScript 683

19.6 Web Services via HTTP 686
19.6.1 JSON for APIs 686
19.6.2 REST (and REST-ish) APIs 687

xxii Contents

19.7 Generating Static Sites 688
19.7.1 Middleman 688
19.7.2 Other Static Site Generators 690

19.8 Conclusion 690

20 Distributed Ruby 691
20.1 An Overview: Using GUE 692
20.2 Case Study: A Stock Ticker Simulation 695
20.3 Rinda: A Ruby Tuplespace 698
20.4 Service Discovery with Distributed Ruby 703
20.5 Conclusion 704

21 Ruby Development Tools 705
21.1 Using Rake 706
21.2 Using LUE 710
21.3 The Basics of SU\ 715
21.4 The UL Utility 716
21.5 Editor Support 717

21.5.1 Vim 717
21.5.2 Emacs 718

21.6 Ruby Version Managers 719
21.6.1 Using UYP 719
21.6.2 Using UEHQY 720
21.6.3 Using FKUXE\ 721

21.7 Conclusion 722

22 The Ruby Community 723
22.1 Web Resources 723
22.2 Mailing Lists, Podcasts, and Forums 724
22.3 Ruby Bug Reports and Feature Requests 724
22.4 IRC Channels 725
22.5 Ruby Conferences 725
22.6 Local Ruby Groups 726
22.7 Conclusion 726

Index 727

Contents xxiii

Foreword

Foreword to the Third Edition
Yesterday I was reading an article about geek fashion in :LUHG�FRP. According to it,
wearing a Rubyconf 2012 t-shirt these days signals to people: “I work for Oracle.”

Wow. How far we’ve come in the last 10 years!
For quite some time, using Ruby set you apart from the mainstream. Now it

seems we are the mainstream. And what a long, strange journey it has been to get
there.

Ruby adoption took a long time by today’s standards. I read this book in 2005,
and at that point, the first edition was over four years old. Ruby had just begun its sec-
ond wave of adoption thanks to DHH and the start of Rails mania. It seemed like
there might be a couple hundred people in the entire (English-speaking) world that
used Ruby. Amazingly, at that point, the first edition of this book was already four
years old. That’s how ahead of its time it was.

This new edition keeps the writing style that has made the book such a hit with
experienced programmers over the years. The long first chapter covers fundamental
basics of object-orientation and the Ruby language. It’s a must read for anyone new to
the language. But it does so in concise, fast-moving narrative that assumes you already
know how to create software.

From there, the chapters follow a distinctive pattern. A bit of backstory narrative,
followed by rapid-fire bits of knowledge about the Ruby language. Snippets of exam-
ple code are abundant and help to illuminate the concept under discussion. You can
lift code samples verbatim into your programs. Especially once you get into the more
practical applications chapters later in the book.

A brief bit of personal backstory seems appropriate. I owe a huge debt of grati-
tude to Hal for this book and the way that he wrote it. In 2005, I started work on a
manuscript for Addison Wesley about the use of Ruby on Rails in the enterprise. It
was my first attempt at authoring a book, and after penning about two chapters, I got
stuck. Few people were using Ruby or Rails in the enterprise at that time and I had to
remind myself that I was attempting to write non-fiction.

After discussing options with my editor, we determined that the best course of
action might be to ditch the idea and start on a new one. The Rails Way was to cover
the nascent Ruby on Rails framework in the style of this book. I employed terse nar-
rative accompanying plentiful code examples. Instead of long listings, I interspersed
commentary between sprinkles of code that provided just enough samples of the
framework to make sense.

Like The Ruby Way, I aimed for breadth of coverage rather than depth. I wanted
The Rails Way to claim permanent real estate on the desk of the serious Rails pro-
grammer. Like The Ruby Way, I wanted my book to be a default go-to reference.
In contrast to other Rails books, I skipped tutorial material and ignored complete
beginners.

And it was a huge success! Safe to say that without Hal’s book, my own book
would not exist and my career would have taken a less successful trajectory.

But enough congratulatory retrospective! Let’s get back to the present day and the
newest edition of The Ruby Way that you’re currently reading. The immensely talented
André Arko joins Hal this time around. What a great team! They deliver a painstak-
ing revision that brings the book up to date with the latest edition of our beloved
Ruby language.

My personal highlights of this edition include the following:

• A whole chapter of in-depth coverage of the new Onigmo regular expression
engine. I love its beautiful and concise explanations of concepts such as positive
and negative lookahead and lookbehind.

• The Internationalization chapter tackles thorny issues around String encoding
and Unicode normalization. Bloggers have covered the subject in spotty fashion
over the years, but having it all presented in one place is invaluable.

• The Ruby and Web Applications chapter manages to squeeze a crash-course in
Rack, Sinatra, and Rails into less than 30 pages.

Foreword xxv

* Want proof of André’s ingenuity? See how he cuts the load time for a real Rails app down to
500ms or less at http://andre.arko.net/2014/06/27/rails-in-05-seconds/.

http://andre.arko.net/2014/06/27/rails-in-05-seconds/

I predict that this edition of The Ruby Way will be as successful as its predecessors.
It gives me great joy to make it the latest addition to our Professional Ruby Series.

Obie Fernandez
September 15, 2014

Foreword to the Second Edition
In ancient China, people, especially philosophers, thought that something was hidden
behind the world and every existence. It can never be told, nor explained, nor
described in concrete words. They called it Tao in Chinese and Do in Japanese. If you
translate it into English, it is the word for Way. It is the Do in Judo, Kendo, Karatedo,
and Aikido. They are not only martial arts, but they also include a philosophy and a
way of life.

Likewise, Ruby the programming language has its philosophy and way of think-
ing. It enlightens people to think differently. It helps programmers have more fun in
their work. It is not because Ruby is from Japan but because programming is an
important part of the human being (well, at least some human beings), and Ruby is
designed to help people have a better life.

As always, “Tao” is difficult to describe. I feel it but have never tried to explain it
in words. It’s just too difficult for me, even in Japanese, my native tongue. But a guy
named Hal Fulton tried, and his first try (the first edition of this book) was pretty
good. This second version of his trial to describe the Tao of Ruby becomes even bet-
ter with help from many people in the Ruby community. As Ruby becomes more pop-
ular (partly due to Ruby on Rails), it becomes more important to understand the
secret of programmers’ productivity. I hope this book helps you to become an efficient
programmer.

Happy Hacking.

Yukihiro “Matz” Matsumoto
August 2006, Japan

Foreword to the First Edition
Shortly after I first met with computers in the early 80s, I became interested in pro-
gramming languages. Since then I have been a “language geek.” I think the reason for
this interest is that programming languages are ways to express human thought. They
are fundamentally human-oriented.

xxvi Foreword

Despite this fact, programming languages have tended to be machine-oriented.
Many languages were designed for the convenience of the computer.

But as computers became more powerful and less expensive, this situation gradu-
ally changed. For example, look at structured programming. Machines do not care
whether programs are structured well; they just execute them bit by bit. Structured
programming is not for machines, but for humans. This is true of object-oriented pro-
gramming as well.

The time for language design focusing on humans has been coming.
In 1993, I was talking with a colleague about scripting languages, about their

power and future. I felt scripting to be the way future programming should be—
human-oriented.

But I was not satisfied with existing languages such as Perl and Python. I wanted
a language that was more powerful than Perl and more object-oriented than Python.
I couldn’t find the ideal language, so I decided to make my own.

Ruby is not the simplest language, but the human soul is not simple in its natu-
ral state. It loves simplicity and complexity at the same time. It can’t handle too many
complex things, nor too many simple things. It’s a matter of balance.

So to design a human-oriented language, Ruby, I followed the Principle of Least
Surprise. I consider that everything that surprises me less is good. As a result, I feel a
natural feeling, even a kind of joy, when programming in Ruby. And since the first
release of Ruby in 1995, many programmers worldwide have agreed with me about
the joy of Ruby programming.

As always I’d like to express my greatest appreciation to the people in the Ruby
community. They are the heart of Ruby’s success.

I am also thankful to the author of this book, Hal E. Fulton, for declaring the
Ruby Way to help people.

This book explains the philosophy behind Ruby, distilled from my brain and the
Ruby community. I wonder how it can be possible for Hal to read my mind to know
and reveal this secret of the Ruby Way. I have never met him face to face; I hope to
meet him soon.

I hope this book and Ruby both serve to make your programming fun and happy.

Yukihiro “Matz” Matsumoto
September 2001, Japan

Foreword xxvii

Acknowledgments

Acknowledgments for the Third Edition
As can be expected by now, the process of updating this book for the third edition
turned out to be somewhat monumental. Ruby has changed dramatically since the
days of 1.8, and being a Ruby programmer is far more popular now than it has ever
been before.

Verifying, updating, and rewriting this book took quite some time longer than
expected. Ruby has progressed from 1.9 through 2.0 and 2.1, and this book has pro-
gressed through at least as many edits and rewrites along the way.

Many people contributed to making this book possible. At Addison-Wesley,
Debra Williams Cauley, Songlin Qiu, Andy Beaster, and Bart Reed provided the
encouragement, coordination, and editing needed to complete this edition. The con-
tributions of Russ Olsen and André Arko were absolutely invaluable.

This edition was technically edited by Russ Olsen and Steve Klabnik, providing
feedback and suggestions that made the book more accurate and understandable. Russ
also provided the Ruby libraries and scripts that compiled the latest version of the
book itself. As always, any errors are mine, not theirs.

Suggestions, code samples, or simply helpful explanations were provided by Dave
Thomas, David Alan Black, Eric Hodel, Chad Fowler, Brad Ediger, Sven Fuchs, Jesse
Storimer, Luke Francl, and others over the years.

Special thanks go to Paul Harrison and the rest of my colleagues at Simpli.fi for
their encouragement and support.

I also wish to honor the memory of Guy Decoux and more recently Jim Weirich.
Jim in particular made significant contributions to this book and to our community.

Final thanks are owed, as always, to Matz himself for creating Ruby, and to you,
the reader of this book. I hope it is able to teach, inform, and maybe even amuse you.

Acknowledgments for the Second Edition
Common sense says that a second edition will only require half as much work as the
first edition required. Common sense is wrong.

Even though a large part of this book came directly from the first edition, even
that part had to be tweaked and tuned. Every single sentence in this book had to pass
through (at the very least) a filter that asked: Is what was true in 2001 still true in
2006? And that, of course, was only the beginning.

In short, I put in many hundreds of hours of work on this second edition—nearly
as much time as on the first. And yet I am “only the author.”

A book is possible only through the teamwork of many people. On the publisher’s
side, I owe thanks to Debra Williams-Cauley, Songlin Qiu, and Mandie Frank for
their hard work and infinite patience. Thanks go to Geneil Breeze for her tireless copy
editing and picking bits of lint from my English. There are also others I can’t name
because their work was completely behind the scenes, and I never talked with them.

Technical editing was done primarily by Shashank Date and Francis Hwang.
They did a great job, and I appreciate it. Errors that slipped through are my responsi-
bility, of course.

Thanks go to the people who supplied explanations, wrote sample code, and
answered numerous questions for me. These include Matz himself (Yukihiro
Matsumoto), Dave Thomas, Christian Neukirchen, Chad Fowler, Curt Hibbs, Daniel
Berger, Armin Roehrl, Stefan Schmiedl, Jim Weirich, Ryan Davis, Jenny W., Jim
Freeze, Lyle Johnson, Martin DeMello, Matt Lawrence, the infamous why the lucky
stiff, Ron Jeffries, Tim Hunter, Chet Hendrickson, Nathaniel Talbott, and Bil Kleb.

Special thanks goes to the heavier contributors. Andrew Johnson greatly enhanced
my regular expression knowledge. Paul Battley made great contributions to the inter-
nationalization chapter. Masao Mutoh added to that same chapter and also con-
tributed material on GTK. Austin Ziegler taught me the secrets of writing PDF files.
Caleb Tennis added to the Qt material. Eric Hodel added to the Rinda and Ring
material, and James Britt contributed heavily to the web development chapter.

Thanks and appreciation again must go to Matz, not only for his assistance but
for creating Ruby in the first place. Domo arigato gozaimasu !

Again I have to thank my parents. They have encouraged me without ceasing and
are looking forward to seeing this book. I will make programmers of them both yet.

And once again, I have to thank all of the Ruby community for their tireless
energy, productivity, and community spirit. I particularly thank the readers of this
book (in both editions). I hope you find it informative, useful, and perhaps even
entertaining.

Acknowledgments xxix

Acknowledgments for the First Edition
Writing a book is truly a team effort; this is a fact I could not fully appreciate until I
wrote one myself. I recommend the experience, although it is a humbling one. It is a
simple truth that without the assistance of many other people, this book would not
have existed.

Thanks and appreciation must first go to Matz (Yukihiro Matsumoto), who
created the Ruby language in the first place. Domo arigato gozaimasu!

Thanks goes to Conrad Schneiker for conceiving the overall idea for the book and
helping to create its overall structure. He also did me the service of introducing me to
the Ruby language in 1999.

Several individuals have contributed material to the body of the book. The fore-
most of these was Guy Hurst, who wrote substantial parts of the earlier chapters as
well as two of the appendices. His assistance was absolutely invaluable.

Thanks also goes to the other contributors, whom I’ll name in no particular order.
Kevin Smith did a great job on the GTK section of Chapter 6, saving me from a
potentially steep learning curve on a tight schedule. Patrick Logan, in the same chap-
ter, shed light on the mysteries of the FOX GUI. Chad Fowler, in Chapter 9, plumbed
the depths of XML and also contributed to the CGI section.

Thanks to those who assisted in proofreading or reviewing or in other miscella-
neous ways: Don Muchow, Mike Stok, Miho Ogishima, and others already men-
tioned. Thanks to David Eppstein, the mathematics professor, for answering questions
about graph theory.

One of the great things about Ruby is the support of the community. There were
many on the mailing list and the newsgroup who answered questions and gave me
ideas and assistance. Again in no particular order, these are Dave Thomas, Andy Hunt,
Hee-Sob Park, Mike Wilson, Avi Bryant, Yasushi Shoji (“Yashi”), Shugo Maeda, Jim
Weirich, “arton,” and Masaki Suketa. I’m sorry to say I have probably overlooked
someone.

To state the obvious, a book would never be published without a publisher. Many
people behind the scenes worked hard to produce this book; primarily I have to thank
William Brown, who worked closely with me and was a constant source of encour-
agement; and Scott Meyer, who delved deeply into the details of putting the material
together. Others I cannot even name because I have never heard of them. You know
who you are.

xxx Acknowledgments

I have to thank my parents, who watched this project from a distance, encouraged
me along the way, and even bothered to learn a little bit of computer science for my
sake.

A writer friend of mine once told me, “If you write a book and nobody reads it,
you haven’t really written a book.” So, finally, I want to thank the reader. This book
is for you. I hope it is of some value.

Acknowledgments xxxi

About the Authors

Hal Fulton first began using Ruby in 1999. In 2001, he started work on The Ruby
Way, which was the second Ruby book published in English. Fulton was an attendee
at the very first Ruby conference in 2001 and has presented at numerous other Ruby
conferences on three continents, including the first European Ruby Conference in
2003. He holds two degrees in computer science from the University of Mississippi
and taught computer science for four years. He has worked for more than 25 years
with various forms of UNIX and Linux. He is now at Simpli.fi in Fort Worth, Texas,
where he works primarily in Ruby.

André Arko first encountered Ruby as a student in 2004, and reading the first edition
of this book helped him decide to pursue a career as a Ruby programmer. He is team
lead of Bundler, the Ruby dependency manager, and has created or contributes to
dozens of other open source projects. He works at Cloud City Development as a con-
sultant providing team training and expertise on Ruby and Rails as well as developing
web applications.

André enjoys sharing hard-won knowledge and experience with other developers,
and has spoken at over a dozen Ruby conferences on four continents. He is a regular
volunteer at RailsBridge and RailsGirls programming outreach events, and works to
increase diversity and inclusiveness in both the Ruby community and technology as a
field. He lives in San Francisco, California.

Introduction

The way that can be named is not the true Way.

—Lao Tse, Tao Te Ching

The title of this book is The Ruby Way. This is a title that begs for a disclaimer.
It has been my aim to align this book with the philosophy of Ruby as well as I

could. That has also been the aim of the other contributors. Credit for success must
be shared with these others, but the blame for any mistakes must rest solely with me.

Of course, I can’t presume to tell you with exactness what the spirit of Ruby is all
about. That is primarily for Matz to say, and I think even he would have difficulty
communicating all of it in words.

In short, The Ruby Way is only a book, but the Ruby Way is the province of the
language creator and the community as a whole. This is something difficult to capture
in a book.

Still, I have tried in this introduction to pin down a little of the ineffable spirit of
Ruby. The wise student of Ruby will not take it as totally authoritative.

About the Third Edition
Everything changes, and Ruby is no exception. There are many changes and much
new material in this edition. In a larger sense, every single chapter in this book is
“new.” I have revised and updated every one of them, making hundreds of minor
changes and dozens of major changes. I deleted items that were obsolete or of lesser
importance; I changed material to fit changes in Ruby itself; I added examples and
commentary to every chapter.

As the second Ruby book in the English language (after Programming Ruby, by
Dave Thomas and Andy Hunt), The Ruby Way was designed to be complementary to
that book rather than overlap with it; that is still true today.

There have been numerous changes between Ruby 1.8, covered in the second edi-
tion, and Ruby 2.1, covered here. It’s important to realize, however, that these were
made with great care, over several years. Ruby is still Ruby. Much of the beauty of
Ruby is derived from the fact that it changes slowly and deliberately, crafted by the
wisdom of Matz and the other developers.

Today we have a proliferation of books on Ruby and more articles published than
we can bother to notice. Web-based tutorials and documentation resources abound.

New tools and libraries have appeared. The most common of these seem to be
tools by developers for other developers: web frameworks, blogging tools, markup
tools, and interfaces to exotic data stores. But there are many others, of course—GUIs,
number-crunching, web services, image manipulation, source control, and more.

Ruby editor support is widespread and sophisticated. IDEs are available that are
useful and mature (and which share some overlap with the GUI builders).

It’s also undeniable that the community has grown and changed. Ruby is by no
means a niche language today; it is used in government departments such as NASA
and NOAA, enterprise companies such as IBM and Motorola, and well-known web-
sites such as Wikipedia, GitHub, and Twitter. It is used for graphics work, database
work, numerical analysis, web development, and more. In short—and I mean this in
the positive sense—Ruby has gone mainstream.

Updating this book has been a labor of love. I hope it is useful to you.

How This Book Works
You probably won’t learn Ruby from this book. There is relatively little in the way of
introductory or tutorial information. If you are totally new to Ruby, you might want
start with another book.

Having said that, programmers are a tenacious bunch, and I grant that it might
be possible to learn Ruby from this book. Chapter 1, “Ruby in Review,” does contain
a brief introduction and some tutorial information.

Chapter 1 also contains a comprehensive “gotcha” list (which has been difficult to
keep up to date). The usefulness of this list in Chapter 1 will vary widely from one
reader to another because we cannot all agree on what is intuitive.

This book is largely intended to answer questions of the form “How do I…?.” As
such, you can expect to do a lot of skipping around. I’d be honored if everyone read
every page from front to back, but I don’t expect that. It’s more my expectation that

xxxiv Introduction

you will browse the table of contents in search of techniques you need or things you
find interesting.

As it turns out, I have talked to many people since the first edition, and they did
in fact read it cover to cover. What’s more, I have had more than one person report to
me that they did learn Ruby here. So anything is possible.

Some things this book covers may seem elementary. That is because people vary
in background and experience; what is obvious to one person may not be to another.
I have tried to err on the side of completeness. On the other hand, I have tried to keep
the book at a reasonable size (obviously a competing goal).

This book can be viewed as a sort of “inverted reference.” Rather than looking up
the name of a method or a class, you will look things up by function or purpose. For
example, the 6WULQJ class has several methods for manipulating case: FDSLWDOL]H,
XSFDVH, FDVHFPS, GRZQFDVH, and VZDSFDVH. In a reference work, these would quite
properly be listed alphabetically, but in this book they are all listed together.

Of course, in striving for completeness, I have sometimes wandered onto the turf
of the reference books. In many cases, I have tried to compensate for this by offering
more unusual or diverse examples than you might find in a reference.

I have tried for a high code-to-commentary ratio. Overlooking the initial chapter,
I think I’ve achieved this. Writers may grow chatty, but programmers always want to
see the code. (If not, they should want to.)

The examples here are sometimes contrived, for which I must apologize. To illus-
trate a technique or principle in isolation from a real-world problem can be difficult.
However, the more complex or high level the task was, the more I attempted a real-
world solution. Thus, if the topic is concatenating strings, you may find an unimagi-
native code fragment involving �IRR� and �EDU�, but when the topic is something
like parsing XML, you will usually find a much more meaningful and realistic piece
of code.

This book has two or three small quirks to which I’ll confess up front. One is the
avoidance of the “ugly” Perl-like global variables such as �B and the others. These are
present in Ruby, and they work fine; they are used daily by most or all Ruby pro-
grammers. But in nearly all cases, their use can be avoided, and I have taken the lib-
erty of omitting them in most of the examples.

Another quirk is that I avoid using standalone expressions when they don’t have
side effects. Ruby is expression oriented, and that is a good thing; I have tried to take
advantage of that feature. But in a code fragment, I prefer to not write expressions that
merely return a value that is not usable. For example, the expression �DEF� � �GHI�
can illustrate string concatenation, but I would write something like VWU �DEF� �
�GHI� instead. This may seem wordy to some, but it may seem more natural to you

Introduction xxxv

if you are a C programmer who really notices when functions are void or nonvoid (or
an old-time Pascal programmer who thinks in procedures and functions).

My third quirk is that I don’t like the “pound” notation to denote instance meth-
ods. Many Rubyists will think I am being verbose in saying “instance method FU\SW
of class 6WULQJ” rather than saying 6WULQJ�FU\SW, but I think no one will be con-
fused. (Actually, I am slowly being converted to this usage, as it is obvious the pound
notation is not going away.)

I have tried to include “pointers” to outside resources whenever appropriate. Time
and space did not allow putting everything into this book that I wanted, but I hope I
have partially made up for that by telling you where to find related materials. The
ruby-doc.org and rdoc.info websites are probably the foremost of these sources; you
will see them referenced many times in this book.

Here, at the front of the book, there is usually a gratuitous reference to the type-
faces used for code, and how to tell code fragments from ordinary text. But I won’t
insult your intelligence; you’ve read computer books before.

I want to point out that roughly 10 percent of this book was written by other peo-
ple. That does not even include tech editing and copy editing. You should read the
acknowledgments in this (and every) book. Most readers skip them. Go read them
now. They’re good for you, like vegetables.

About the Book’s Source Code
Every significant code fragment has been collected into an archive for the reader to
download. Look for this archive on the informit.com site or at the book’s own site,
therubyway.io.

It is offered both as a �WJ] file and as a �]LS file. Code fragments that are very
short or can’t be run “out of context” will usually not appear in the archive.

What Is the “Ruby Way”?

Let us prepare to grapple with the ineffable itself, and see if we may not eff it after all.

—Douglas Adams, Dirk Gently’s Holistic Detective Agency

What do we mean by the Ruby Way? My belief is that there are two related aspects:
One is the philosophy of the design of Ruby; the other is the philosophy of its usage.
It is natural that design and use should be interrelated, whether in software or

xxxvi Introduction

hardware; why else should there be such a field as ergonomics? If I build a device and
put a handle on it, it is because I expect someone to grab that handle.

Ruby has a nameless quality that makes it what it is. We see that quality present
in the design of the syntax and semantics of the language, but it is also present in the
programs written for that interpreter. Yet as soon as we make this distinction, we
blur it.

Clearly Ruby is not just a tool for creating software, but it is a piece of software
in its own right. Why should the workings of Ruby programs follow laws different
from those that guide the workings of the interpreter? After all, Ruby is highly dynamic
and extensible. There might be reasons that the two levels should differ here and there,
probably for accommodating to the inconvenience of the real world. But in general,
the thought processes can and should be the same. Ruby could be implemented in
Ruby, in true Hofstadter-like fashion, though it is not at the time of this writing.

We don’t often think of the etymology of the word way, but there are two impor-
tant senses in which it is used. On the one hand, it means a method or technique, but
it can also mean a road or path. Obviously these two meanings are interrelated, and I
think when I say “the Ruby Way,” I mean both of them.

So what we are talking about is a thought process, but it is also a path that we fol-
low. Even the greatest software guru cannot claim to have reached perfection but only
to follow the path. And there may be more than one path, but here I can only talk
about one.

The conventional wisdom says that form follows function. And the conventional
wisdom is, of course, conventionally correct. But Frank Lloyd Wright (speaking in his
own field) once said, “Form follows function—that has been misunderstood. Form
and function should be one, joined in a spiritual union.”

What did Wright mean? I would say that this truth is not something you learn
from a book, but from experience.

However, I would argue that Wright expressed this truth elsewhere in pieces eas-
ier to digest. He was a great proponent of simplicity, saying once, “An architect’s most
useful tools are an eraser at the drafting board and a wrecking bar at the site.”

So, one of Ruby’s virtues is simplicity. Shall I quote other thinkers on the subject?
According to Antoine de St. Exupéry, “Perfection is achieved, not when there is noth-
ing left to add, but when there is nothing left to take away.”

But Ruby is a complex language. How can I say that it is simple?
If we understood the universe better, we might find a “law of conservation of

complexity”—a fact of reality that disturbs our lives like entropy so that we cannot
avoid it but can only redistribute it.

Introduction xxxvii

And that is the key. We can’t avoid complexity, but we can push it around. We can
bury it out of sight. This is the old “black box” principle at work; a black box performs
a complex task, but it possesses simplicity on the outside.

If you haven’t already lost patience with my quotations, a word from Albert
Einstein is appropriate here: “Everything should be as simple as possible, but no
simpler.”

So in Ruby, we see simplicity embodied from the programmer’s view (if not from
the view of those maintaining the interpreter). Yet we also see the capacity for com-
promise. In the real world, we must bend a little. For example, every entity in a Ruby
program should be a true object, but certain values such as integers are stored as
immediate values. In a trade-off familiar to computer science students for decades, we
have traded elegance of design for practicality of implementation. In effect, we have
traded one kind of simplicity for another.

What Larry Wall said about Perl holds true: “When you say something in a small
language, it comes out big. When you say something in a big language, it comes out
small.” The same is true for English. The reason that biologist Ernst Haeckel could say
“Ontogeny recapitulates phylogeny” in only three words was that he had these pow-
erful words with highly specific meanings at his disposal. We allow inner complexity
of the language because it enables us to shift the complexity away from the individual
utterance.

I would state this guideline this way: Don’t write 200 lines of code when ten
will do.

I’m taking it for granted that brevity is generally a good thing. A short program
fragment will take up less space in the programmer’s brain; it will be easier to grasp as
a single entity. As a happy side effect, fewer bugs will be injected while the code is
being written.

Of course, we must remember Einstein’s warning about simplicity. If we put
brevity too high on our list of priorities, we will end up with code that is hopelessly
obfuscated. Information theory teaches us that compressed data is statistically similar
to random noise; if you have looked at C or APL or regular expression notation—
especially badly written—you have experienced this truth firsthand. “Simple, but not
too simple”; that is the key. Embrace brevity, but do not sacrifice readability.

It is a truism that both brevity and readability are good. But there is an underly-
ing reason for this—one so fundamental that we sometimes forget it. The reason is
that computers exist for humans, not humans for computers.

In the old days, it was almost the opposite. Computers cost millions of dollars and
ate electricity at the rate of many kilowatts. People acted as though the computer was

xxxviii Introduction

a minor deity and the programmers were humble supplicants. An hour of the com-
puter’s time was more expensive than an hour of a person’s time.

When computers became smaller and cheaper, high-level languages also became
more popular. These were inefficient from the computer’s point of view but efficient
from the human perspective. Ruby is simply a later development in this line of
thought. Some, in fact, have called it a VHLL (Very High-Level Language); though
this term is not well-defined, I think its use is justified here.

The computer is supposed to be the servant, not the master, and, as Matz has said,
a smart servant should do a complex task with a few short commands. This has been
true through all the history of computer science. We started with machine languages
and progressed to assembly language and then to high-level languages.

What we are talking about here is a shift from a machine-centered paradigm to a
human-centered one. In my opinion, Ruby is an excellent example of human-centric
programming.

I’ll shift gears a little. There was a wonderful little book from the 1980s called The
Tao of Programming (by Geoffrey James). Nearly every line is quotable, but I’ll repeat
only this: “A program should follow the ‘Law of Least Astonishment.’ What is this
law? It is simply that the program should always respond to the user in the way that
astonishes him least.” (Of course, in the case of a language interpreter, the user is the
programmer.)

I don’t know whether James coined this term, but his book was my first intro-
duction to the phrase. This is a principle that is well known and often cited in the
Ruby community, though it is usually called the Principle of Least Surprise, or POLS.
(I myself stubbornly prefer the acronym LOLA.)

Whatever you call it, this rule is a valid one, and it has been a guideline through-
out the ongoing development of the Ruby language. It is also a useful guideline for
those who develop libraries or user interfaces.

The only problem, of course, is that different people are surprised by different
things; there is no universal agreement on how an object or method “ought” to
behave. We can strive for consistency and strive to justify our design decisions, and
each person can train his own intuition.

For the record, Matz has said that “least surprise” should refer to him as the
designer. The more you think like him, the less Ruby will surprise you. And I assure
you, imitating Matz is not a bad idea for most of us.

No matter how logically constructed a system may be, your intuition needs to be
trained. Each programming language is a world unto itself, with its own set of assump-
tions, and human languages are the same. When I took German, I learned that all

Introduction xxxix

nouns were capitalized, but the word deutsch was not. I complained to my professor;
after all, this was the name of the language, wasn’t it? He smiled and said, “Don’t
fight it.”

What he taught me was to let German be German. By extension, that is good
advice for anyone coming to Ruby from some other language. Let Ruby be Ruby.
Don’t expect it to be Perl, because it isn’t; don’t expect it to be LISP or Smalltalk,
either. On the other hand, Ruby has common elements with all three of these. Start
by following your expectations, but when they are violated, don’t fight it (unless Matz
agrees it’s a needed change).

Every programmer today knows the orthogonality principle (which would better
be termed the orthogonal completeness principle). Suppose we have an imaginary pair of
axes with a set of comparable language entities on one and a set of attributes or capa-
bilities on the other. When we talk of “orthogonality,” we usually mean that the space
defined by these axes is as “full” as we can logically make it.

Part of the Ruby Way is to strive for this orthogonality. An array is in some ways
similar to a hash, so the operations on each of them should be similar. The limit is
reached when we enter the areas where they are different.

Matz has said that “naturalness” is to be valued over orthogonality. But to fully
understand what is natural and what is not may take some thinking and some coding.

Ruby strives to be friendly to the programmer. For example, there are aliases or
synonyms for many method names; VL]H and OHQJWK will both return the number
of entries in an array. Some consider this sort of thing to be an annoyance or anti-fea-
ture, but I consider it a good design.

Ruby strives for consistency and regularity. There is nothing mysterious about
this; in every aspect of life, we yearn for things to be regular and parallel. What makes
it a little more tricky is learning when to violate this principle.

For instance, Ruby has the habit of appending a question mark (") to the name
of a predicate-like method. This is well and good; it clarifies the code and makes the
namespace a little more manageable. But what is more controversial is the similar use
of the exclamation point in marking methods that are “destructive” or “dangerous” in
the sense that they modify their receivers. The controversy arises because not all of the
destructive methods are marked in this way. Shouldn’t we be consistent?

No, in fact we should not. Some of the methods by their very nature change their
receiver (such as the $UUD\ methods UHSODFH and FRQFDW). Some of them are
“writer” methods allowing assignment to a class attribute; we should not append an
exclamation point to the attribute name or the equal sign. Some methods arguably
change the state of the receiver, such as UHDG; this occurs too frequently to be marked

xl Introduction

Introduction xli

in this way. If every destructive method name ended in a �, our programs soon would
look like sales brochures for a multilevel marketing firm.

Do you notice a kind of tension between opposing forces, a tendency for all rules
to be violated? Let me state this as Fulton’s Second Law: Every rule has an exception,
except Fulton’s Second Law. (Yes, there is a joke there, a very small one.)

What we see in Ruby is not a “foolish consistency” nor a rigid adherence to a set
of simple rules. In fact, perhaps part of the Ruby Way is that it is not a rigid and inflex-
ible approach. In language design, as Matz once said, you should “follow your heart.”

Yet another aspect of the Ruby philosophy is, do not fear change at runtime; do not
fear what is dynamic. The world is dynamic; why should a programming language be
static? Ruby is one of the most dynamic languages in existence.

I would also argue that another aspect is, do not be a slave to performance issues.
When performance is unacceptable, the issue must be addressed, but it should nor-
mally not be the first thing you think about. Prefer elegance over efficiency where effi-
ciency is less than critical. Then again, if you are writing a library that may be used in
unforeseen ways, performance may be critical from the start.

When I look at Ruby, I perceive a balance between different design goals, a com-
plex interaction reminiscent of the n-body problem in physics. I can imagine it might
be modeled as an Alexander Calder mobile. It is perhaps this interaction itself, the har-
mony, that embodies Ruby’s philosophy rather than just the individual parts.
Programmers know that their craft is not just science and technology but art. I hesi-
tate to say that there is a spiritual aspect to computer science, but just between you
and me, there certainly is. (If you have not read Robert Pirsig’s Zen and the Art of
Motorcycle Maintenance, I recommend that you do so.)

Ruby arose from the human urge to create things that are useful and beautiful.
Programs written in Ruby should spring from the same source. That, to me, is the
essence of the Ruby Way.

This page intentionally left blank

63

CHAPTER 2
Working with Strings

Atoms were once thought to be fundamental, elementary building blocks of
nature; protons were then thought to be fundamental, then quarks. Now we
say the string is fundamental.

—David Gross, professor of theoretical physics, Princeton University

A computer science professor in the early 1980s started out his data structures class
with a single question. He didn’t introduce himself or state the name of the course; he
didn’t hand out a syllabus or give the name of the textbook. He walked to the front of
the class and asked, “What is the most important data type?”

There were one or two guesses. Someone guessed “pointers,” and he brightened
but said no, that wasn’t it. Then he offered his opinion: The most important data type
was character data.

He had a valid point. Computers are supposed to be our servants, not our mas-
ters, and character data has the distinction of being human readable. (Some humans
can read binary data easily, but we will ignore them.) The existence of characters (and
therefore strings) enables communication between humans and computers. Every
kind of information we can imagine, including natural language text, can be encoded
in character strings.

A string is simply a sequence of characters. Like most entities in Ruby, strings are
first-class objects. In everyday programming, we need to manipulate strings in many

ways. We want to concatenate strings, tokenize them, analyze them, perform searches
and substitutions, and more. Ruby makes most of these tasks easy.

For much of the history of Ruby, a single byte was considered a character. That is
not true of special characters, emoji, and most non-Latin scripts. For a more detailed
discussion of the ways that bytes and characters are often not the same, refer to
Chapter 4, “Internationalization in Ruby.”

2.1 Representing Ordinary Strings
A string in Ruby is composed simply of a sequence of 8-bit bytes. It is not null ter-
minated as in C, so it may contain null characters. Strings containing bytes above
0xFF are always legal, but are only meaningful in non-ASCII encodings. Strings are
assumed to use the UTF-8 encoding. Before Ruby 2.0, they were assumed to be sim-
ple ASCII. (For more information on encodings, refer to Chapter 4.)

The simplest string in Ruby is single quoted. Such a string is taken absolutely lit-
erally; the only escape sequences recognized are the single quote (\') and the escaped
backslash itself (\\). Here are some examples:

s1 = 'This is a string' # This is a string

s2 = 'Mrs. O\'Leary' # Mrs. O'Leary

s3 = 'Look in C:\\TEMP' # Look in C:\TEMP

A double-quoted string is more versatile. It allows many more escape sequences,
such as backspace, tab, carriage return, and linefeed. It allows control characters to be
embedded as octal numbers, and Unicode code points to be embedded via their hexa-
decimal reference number. Consider these examples:

s1 = "This is a tab: (\t)"

s2 = "Some backspaces: xyz\b\b\b"

s3 = "This is also a tab: \011"

s4 = "And these are both bells: \a \007"

s5 = "This is the unicode snowman: \u2603"

Non-ASCII characters will be shown “backslash escaped” when their string is
inspected, but will print normally. Double-quoted strings also allow expressions to be
embedded inside them. See Section 2.21, “Embedding Expressions within Strings.”

64 2. Working with Strings

2.2 Representing Strings with Alternate Notations
Sometimes we want to represent strings that are rich in metacharacters, such as single
quotes, double quotes, and more. For these situations, we have the %q and %Q nota-
tions. Following either of these is a string within a pair of delimiters; I personally favor
square brackets ([]).

The difference between the %q and %Q variants is that the former acts like a
single-quoted string, and the latter like a double-quoted string:

S1 = %q[As Magritte said, "Ceci n'est pas une pipe."]

s2 = %q[This is not a tab: (\t)] # same as: 'This is not a tab: \t'

s3 = %Q[This IS a tab: (\t)] # same as: "This IS a tab: \t"

Both kinds of notation can be used with different delimiters. Besides brackets,
there are other paired delimiters (parentheses, braces, and angle brackets):

s1 = %q(Bill said, "Bob said, 'This is a string.'")

s2 = %q{Another string.}

s3 = %q<Special characters '"[](){} in this string.>

There are also “nonpaired” delimiters. Basically any character may be used that is
printable, but not alphanumeric, not whitespace, and not a paired character:

s1 = %q:"I think Mrs. O'Leary's cow did it," he said.:

s2 = %q*\r is a control-M and \n is a control-J.*

2.3 Using Here-Documents
If you want to represent a long string spanning multiple lines, you can certainly use a
regular quoted string:

str = "Once upon a midnight dreary,

While I pondered, weak and weary..."

However, the indentation will be part of the string.
Another way is to use a here-document, a string that is inherently multiline. (This

concept and term are borrowed from older languages and contexts.) The syntax is the
<< symbol, followed by an end marker, then zero or more lines of text, and finally the
same end marker on a line by itself:

2.3 Using Here-Documents 65

str = <<EOF

Once upon a midnight dreary,

While I pondered weak and weary,...

EOF

Be careful about things such as trailing spaces on the final end marker line.
Current versions of Ruby will fail to recognize the end marker in those situations.

Note that here-documents may be “stacked”; for example, here is a method call
with three such strings passed to it:

some_method(<<STR1, <<STR2, <<STR3)

first piece

of text...

STR1

second piece...

STR2

third piece

of text.

STR3

By default, a here-document is like a double-quoted string—that is, its contents
are subject to interpretation of escape sequences and interpolation of embedded
expressions. But if the end marker is single-quoted, the here-document behaves like a
single-quoted string:

str = <<'EOF'

This isn't a tab: \t

and this isn't a newline: \n

EOF

If a here-document’s end marker is preceded by a hyphen, the end marker may be
indented. Only the spaces before the end marker are deleted from the string, not those
on previous lines:

str = <<-EOF

Each of these lines

starts with a pair

of blank spaces.

EOF

66 2. Working with Strings

To delete the spaces from the beginning of each line, we need another method.
The ActiveSupport gem (included in Rails) defines a strip_heredoc method that
works similarly to this one:

class String

def strip_heredoc

Find the margin whitespace on the first line

margin = self[/\A\s*/]

Remove margin-sized whitespace from each line

gsub(/\s{#{margin.size}}/,"")

end

end

The amount of whitespace before the start of the first line is detected, and that
amount of whitespace is then stripped off of each line. It’s used in this way:

str = <<end.strip_heredoc

This here-document has a "left margin"

set by the whitespace on the first line.

We can do inset quotations here,

hanging indentions, and so on.

end

The word end is used naturally enough as an end marker. (This, of course, is a
matter of taste. It looks like the reserved word end but is really just an arbitrary
marker.) Many text editors use the end marker as a hint for syntax highlighting. As a
result, using <<SQL or <<RUBY can make it dramatically easier to read blocks of code
inside here-docs in those editors.

2.4 Finding the Length of a String
The method length can be used to find a string’s length. A synonym is size:

str1 = "Carl"

x = str1.length # 4

str2 = "Doyle"

x = str2.size # 5

2.4 Finding the Length of a String 67

2.5 Processing a Line at a Time
A Ruby string can contain newlines. For example, a file can be read into memory and
stored in a single string. Strings provide an iterator, each_line, to process a string
one line at a time:

str = "Once upon\na time...\nThe End\n"

num = 0

str.each_line do |line|

num += 1

print "Line #{num}: #{line}"

end

The preceding code produces three lines of output:

Line 1: Once upon

Line 2: a time...

Line 3: The End

Iterators (such as each_line) can be chained together with other iterators (such
as with_index). Connecting function outputs and inputs in a line like this is a tech-
nique sometimes called function composition (or method chaining). Instead of tracking
the line number manually, with_index can be composed with each_line to produce
the exact same output:

str = "Once upon\na time...\nThe End\n"

str.each_line.with_index do |line, num|

print "Line #{num + 1}: #{line}"

end

2.6 Processing a Character or Byte at a Time
Ruby used to treat each byte as a character, but that is no longer the case. The bytes
in a string are available as an array via the bytes method. To process the bytes, one at
a time, use the each_byte iterator:

str = "ABC"

str.each_byte {|byte| print byte, " " }

puts

Produces output: 65 66 67

68 2. Working with Strings

A character is essentially the same as a one-character string. In multibyte encod-
ings, a one-character string may be more than one byte:

str = "ABC"

str.each_char {|char| print char, " " }

puts

Produces output: A B C

In any version of Ruby, you can break a string into an array of one-character
strings by using scan with a simple wildcard regular expression matching a single
character:

str = "ABC"

chars = str.scan(/./)

chars.each {|char| print char, " " }

puts

Produces output: A B C

2.7 Performing Specialized String Comparisons
Ruby has built-in ideas about comparing strings; comparisons are done lexicographi-
cally, as we have come to expect (that is, based on character set order). But if we want,
we can introduce rules of our own for string comparisons, and these can be of arbi-
trary complexity.

For example, suppose that we want to ignore the English articles a, an, and the at
the front of a string, and we also want to ignore most common punctuation marks.
We can do this by overriding the built-in method <=> (which is called for <, <=, >,
and >=). Listing 2.1 shows how we do this.

Listing 2.1 Specialized String Comparisons

class String

alias old_compare <=>

def <=>(other)
a = self.dup
b = other.dup
Remove punctuation
a.gsub!(/[\,\.\?\!\:\;]/, "")
b.gsub!(/[\,\.\?\!\:\;]/, "")

2.7 Performing Specialized String Comparisons 69

Remove initial articles
a.gsub!(/^(a |an |the)/i, "")
b.gsub!(/^(a |an |the)/i, "")
Remove leading/trailing whitespace
a.strip!
b.strip!
Use the old <=>
a.old_compare(b)

end

end

title1 = "Calling All Cars"
title2 = "The Call of the Wild"

Ordinarily this would print "yes"

if title1 < title2
puts "yes"

else
puts "no" # But now it prints "no"

end

Note that we “save” the old <=> with an alias and then call it at the end. This is
because if we tried to use the < method, it would call the new <=> rather than the old
one, resulting in infinite recursion and a program crash.

Note also that the == operator does not call the <=> method (mixed in from
Comparable). This means that if we need to check equality in some specialized way,
we will have to override the == method separately. But in this case, == works as we
want it to anyhow.

Suppose that we wanted to do case-insensitive string comparisons. The built-in
method casecmp will do this; we just have to make sure that it is used instead of the
usual comparison.

Here is one way:

class String

def <=>(other)

casecmp(other)

end

end

But there is a slightly easier way:

70 2. Working with Strings

class String

alias <=> casecmp

end

However, we haven’t finished. We need to redefine == so that it will behave in the
same way:

class String

def ==(other)

casecmp(other) == 0

end

end

Now all string comparisons will be strictly case insensitive. Any sorting operation
that depends on <=> will likewise be case insensitive.

2.8 Tokenizing a String
The split method parses a string and returns an array of tokenized strings. It accepts
two parameters: a delimiter and a field limit (which is an integer).

The delimiter defaults to whitespace. Actually, it uses $; or the English equiva-
lent $FIELD_SEPARATOR. If the delimiter is a string, the explicit value of that string
is used as a token separator:

s1 = "It was a dark and stormy night."

words = s1.split # ["It", "was", "a", "dark", "and",

"stormy", "night"]

s2 = "apples, pears, and peaches"

list = s2.split(", ") # ["apples", "pears", "and peaches"]

s3 = "lions and tigers and bears"

zoo = s3.split(/ and /) # ["lions", "tigers", "bears"]

The limit parameter places an upper limit on the number of fields returned,
according to these rules:

• If it is omitted, trailing null entries are suppressed.

• If it is a positive number, the number of entries will be limited to that number
(stuffing the rest of the string into the last field as needed). Trailing null entries
are retained.

2.8 Tokenizing a String 71

• If it is a negative number, there is no limit to the number of fields, and trailing
null entries are retained.

These three rules are illustrated here:

str = "alpha,beta,gamma,,"

list1 = str.split(",") # ["alpha","beta","gamma"]

list2 = str.split(",",2) # ["alpha", "beta,gamma,,"]

list3 = str.split(",",4) # ["alpha", "beta", "gamma", ","]

list4 = str.split(",",8) # ["alpha", "beta", "gamma", "", ""]

list5 = str.split(",",-1) # ["alpha", "beta", "gamma", "", ""]

Similarly, the scan method can be used to match regular expressions or strings
against a target string:

str = "I am a leaf on the wind..."

A string is interpreted literally, not as a regex

arr = str.scan("a") # ["a","a","a"]

A regex will return all matches

arr = str.scan(/\w+/)

["I", "am", "a", "leaf", "on", "the", "wind"]

A block will be passed each match, one at a time

str.scan(/\w+/) {|x| puts x }

The StringScanner class, from the standard library, is different in that it main-
tains state for the scan rather than doing it all at once:

require 'strscan'

str = "Watch how I soar!"

ss = StringScanner.new(str)

loop do

word = ss.scan(/\w+/) # Grab a word at a time

break if word.nil?

puts word

sep = ss.scan(/\W+/) # Grab next non-word piece

break if sep.nil?

end

72 2. Working with Strings

2.9 Formatting a String
Formatting a string is done in Ruby as it is in C: with the sprintf method. It takes
a string and a list of expressions as parameters and returns a string. The format string
contains essentially the same set of specifiers available with C’s sprintf (or printf):

name = "Bob"

age = 28

str = sprintf("Hi, %s... I see you're %d years old.", name, age)

You might ask why we would use this instead of simply interpolating values into
a string using the #{expr} notation. The answer is that sprintf makes it possible to
do extra formatting, such as specifying a maximum width, specifying a maximum
number of decimal places, adding or suppressing leading zeroes, left-justifying, right-
justifying, and more:

str = sprintf("%-20s %3d", name, age)

The String class has the method %, which does much the same thing. It takes a
single value or an array of values of any type:

str = "%-20s %3d" % [name, age] # Same as previous example

We also have the methods ljust, rjust, and center; these take a length for the
destination string and pad with spaces as needed:

str = "Moby-Dick"

s1 = str.ljust(13) # "Moby-Dick"

s2 = str.center(13) # " Moby-Dick "

s3 = str.rjust(13) # " Moby-Dick"

If a second parameter is specified, it is used as the pad string (which may possibly
be truncated as needed):

str = "Captain Ahab"

s1 = str.ljust(20,"+") # "Captain Ahab++++++++"

s2 = str.center(20,"-") # "----Captain Ahab----"

s3 = str.rjust(20,"123") # "12312312Captain Ahab"

2.9 Formatting a String 73

2.10 Using Strings as IO Objects
Besides sprintf and scanf, there is another way to fake input/output to a string—
the StringIO class.

Because this is a very IO-like object, we cover it in a later chapter. See Section
10.1.24, “Treating a String as a File.”

2.11 Controlling Uppercase and Lowercase
Ruby’s String class offers a rich set of methods for controlling case. This section
offers an overview of these.

The downcase method converts a string to all lowercase. Likewise, upcase con-
verts it to all uppercase. Here is an example each:

s1 = "Boston Tea Party"

s2 = s1.downcase # "boston tea party"

s3 = s2.upcase # "BOSTON TEA PARTY"

The capitalize method capitalizes the first character of a string while forcing
all the remaining characters to lowercase:

s4 = s1.capitalize # "Boston tea party"

s5 = s2.capitalize # "Boston tea party"

s6 = s3.capitalize # "Boston tea party"

The swapcase method exchanges the case of each letter in a string:

s7 = "THIS IS AN ex-parrot."

s8 = s7.swapcase # "this is an EX-PARROT."

There is also the casecmp method, which acts like the <=> method but ignores
case:

n1 = "abc".casecmp("xyz") # -1

n2 = "abc".casecmp("XYZ") # -1

n3 = "ABC".casecmp("xyz") # -1

n4 = "ABC".casecmp("abc") # 0

n5 = "xyz".casecmp("abc") # 1

74 2. Working with Strings

Each of these also has an in-place equivalent (upcase!, downcase!,
capitalize!, and swapcase!).

There are no built-in methods for detecting case, but this is easy to do with reg-
ular expressions, as shown in the following example:

if string =~ /[a-z]/

puts "string contains lowercase characters"

end

if string =~ /[A-Z]/

puts "string contains uppercase characters"

end

if string =~ /[A-Z]/ and string =~ /a-z/

puts "string contains mixed case"

end

if string[0..0] =~ /[A-Z]/

puts "string starts with a capital letter"

end

Regular expressions of this sort will only match ASCII characters. To match
Unicode uppercase or lowercase characters, use a named character class, as shown here:

if string =~ /\p{Upper}/

puts "string contains uppercase Unicode characters like Ü"

end

For more information about regular expressions, see Chapter 3, “Working with
Regular Expressions.”

2.12 Accessing and Assigning Substrings
In Ruby, substrings may be accessed in several different ways. Normally the bracket
notation is used, as for an array, but the brackets may contain a pair of Fixnums, a
range, a regex, or a string. Each case is discussed in turn.

If a pair of Fixnum values is specified, they are treated as an offset and a length,
and the corresponding substring is returned:

2.12 Accessing and Assigning Substrings 75

str = "Humpty Dumpty"

sub1 = str[7,4] # "Dump"

sub2 = str[7,99] # "Dumpty" (overrunning is OK)

sub3 = str[10,-4] # nil (length is negative)

It is important to remember that these are an offset and a length (number of char-
acters), not beginning and ending offsets.

A negative index counts backward from the end of the string. In this case,
the index is one based, not zero based, but the length is still added in the forward
direction:

str1 = "Alice"

sub1 = str1[-3,3] # "ice"

str2 = "Through the Looking-Glass"

sub3 = str2[-13,4] # "Look"

A range may be specified. In this case, the range is taken as a range of indices into
the string. Ranges may have negative numbers, but the numerically lower number
must still be first in the range. If the range is “backward” or if the initial value is out-
side the string, nil is returned, as shown here:

str = "Winston Churchill"

sub1 = str[8..13] # "Church"

sub2 = str[-4..-1] # "hill"

sub3 = str[-1..-4] # nil

sub4 = str[25..30] # nil

If a regular expression is specified, the string matching that pattern will be
returned. If there is no match, nil will be returned:

str = "Alistair Cooke"

sub1 = str[/l..t/] # "list"

sub2 = str[/s.*r/] # "stair"

sub3 = str[/foo/] # nil

If a string is specified, that string will be returned if it appears as a substring (or
nil if it does not):

str = "theater"

sub1 = str["heat"] # "heat"

sub2 = str["eat"] # "eat"

76 2. Working with Strings

sub3 = str["ate"] # "ate"

sub4 = str["beat"] # nil

sub5 = str["cheat"] # nil

Finally, in the trivial case, using a Fixnum as the index will yield a single charac-
ter (or nil if out of range):

str = "Aaron Burr"

ch1 = str[0] # "A"

ch1 = str[1] # "a"

ch3 = str[99] # nil

It is important to realize that the notations described here will serve for assigning
values as well as for accessing them:

str1 = "Humpty Dumpty"

str1[7,4] = "Moriar" # "Humpty Moriarty"

str2 = "Alice"

str2[-3,3] = "exandra" # "Alexandra"

str3 = "Through the Looking-Glass"

str3[-13,13] = "Mirror" # "Through the Mirror"

str4 = "Winston Churchill"

str4[8..13] = "H" # "Winston Hill"

str5 = "Alistair Cooke"

str5[/e$/] ="ie Monster" # "Alistair Cookie Monster"

str6 = "theater"

str6["er"] = "re" # "theatre"

str7 = "Aaron Burr"

str7[0] = "B" # "Baron Burr"

Assigning to an expression evaluating to nil will have no effect.

2.12 Accessing and Assigning Substrings 77

2.13 Substituting in Strings
We’ve already seen how to perform simple substitutions in strings. The sub and gsub
methods provide more advanced pattern-based capabilities. There are also sub! and
gsub!, their in-place counterparts.

The sub method substitutes the first occurrence of a pattern with the given sub-
stitute-string or the given block:

s1 = "spam, spam, and eggs"

s2 = s1.sub(/spam/,"bacon")

"bacon, spam, and eggs"

s3 = s2.sub(/(\w+), (\w+),/,'\2, \1,')

"spam, bacon, and eggs"

s4 = "Don't forget the spam."

s5 = s4.sub(/spam/) { |m| m.reverse }

"Don't forget the maps."

s4.sub!(/spam/) { |m| m.reverse }

s4 is now "Don't forget the maps."

As this example shows, the special symbols \1, \2, and so on may be used in a
substitute string. However, special variables (such as $& or its English equivalent
$MATCH) may not.

If the block form is used, the special variables may be used. However, if all you
need is the matched string, it will be passed into the block as a parameter. If it is not
needed at all, the parameter can of course be omitted.

The gsub method (global substitution) is essentially the same except that all
matches are substituted rather than just the first:

s5 = "alfalfa abracadabra"

s6 = s5.gsub(/a[bl]/,"xx") # "xxfxxfa xxracadxxra"

s5.gsub!(/[lfdbr]/) { |m| m.upcase + "-" }

s5 is now "aL-F-aL-F-a aB-R-acaD-aB-R-a"

The method Regexp.last_match is essentially identical to $& or $MATCH.

78 2. Working with Strings

2.14 Searching a String
Besides the techniques for accessing substrings, there are other ways of searching
within strings. The index method returns the starting location of the specified sub-
string, character, or regex. If the item is not found, the result is nil:

str = "Albert Einstein"

pos1 = str.index(?E) # 7

pos2 = str.index("bert") # 2

pos3 = str.index(/in/) # 8

pos4 = str.index(?W) # nil

pos5 = str.index("bart") # nil

pos6 = str.index(/wein/) # nil

The method rindex (right index) starts from the right side of the string (that is,
from the end). The numbering, however, proceeds from the beginning, as usual:

str = "Albert Einstein"

pos1 = str.rindex(?E) # 7

pos2 = str.rindex("bert") # 2

pos3 = str.rindex(/in/) # 13 (finds rightmost match)

pos4 = str.rindex(?W) # nil

pos5 = str.rindex("bart") # nil

pos6 = str.rindex(/wein/) # nil

The include? method, shown next, simply tells whether the specified substring
or character occurs within the string:

str1 = "mathematics"

flag1 = str1.include? ?e # true

flag2 = str1.include? "math" # true

str2 = "Daylight Saving Time"

flag3 = str2.include? ?s # false

flag4 = str2.include? "Savings" # false

The scan method repeatedly scans for occurrences of a pattern. If called without
a block, it returns an array. If the pattern has more than one (parenthesized) group,
the array will be nested:

str1 = "abracadabra"

sub1 = str1.scan(/a./)

sub1 now is ["ab","ac","ad","ab"]

2.14 Searching a String 79

str2 = "Acapulco, Mexico"

sub2 = str2.scan(/(.)(c.)/)

sub2 now is [["A","ca"], ["l","co"], ["i","co"]]

If a block is specified, the method passes the successive values to the block, as
shown here:

str3 = "Kobayashi"

str3.scan(/[^aeiou]+[aeiou]/) do |x|

print "Syllable: #{x}\n"

end

This code produces the following output:

Syllable: Ko

Syllable: ba

Syllable: ya

Syllable: shi

2.15 Converting Between Characters and ASCII
Codes
Single characters in Ruby are returned as one-character strings. Here is an example:

str = "Martin"

print str[0] # "M"

The Integer class has a method called chr that will convert an integer to a char-
acter. By default, integers will be interpreted as ASCII, but other encodings may be
specified for values greater than 127. The String class has an ord method that is in
effect an inverse:

str = 77.chr # "M"

s2 = 233.chr("UTF-8") # "é"

num = "M".ord # 77

2.16 Implicit and Explicit Conversion
At first glance, the to_s and to_str methods seem confusing. They both convert an
object into a string representation, don’t they?

80 2. Working with Strings

There are several differences, however. First, any object can in principle be con-
verted to some kind of string representation; that is why nearly every core class has a
to_s method. But the to_str method is never implemented in the core.

As a rule, to_str is for objects that are really very much like strings—that can
“masquerade” as strings. Better yet, think of the short name to_s as being explicit con-
version and the longer name to_str as being implicit conversion.

You see, the core does not define any to_str methods. But core methods do call
to_str sometimes (if it exists for a given class).

The first case we might think of is a subclass of String; but, in reality, any object
of a subclass of String already “is a” String, so to_str is unnecessary there.

In real life, to_s and to_str usually return the same value, but they don’t have
to do so. The implicit conversion should result in the “real string value” of the object;
the explicit conversion can be thought of as a “forced” conversion.

The puts method calls an object’s to_s method in order to find a string repre-
sentation. This behavior might be thought of as an implicit call of an explicit conver-
sion. The same is true for string interpolation. Here’s a crude example:

class Helium

def to_s

"He"

end

def to_str

"helium"

end

end

e = Helium.new

print "Element is "

puts e # Element is He

puts "Element is " + e # Element is helium

puts "Element is #{e}" # Element is He

So you can see how defining these appropriately in your own classes can give you
a little extra flexibility. But what about honoring the definitions of the objects passed
into your methods?

For example, suppose that you have a method that is “supposed” to take a String
as a parameter. Despite our “duck typing” philosophy, this is frequently done and is
often completely appropriate. For example, the first parameter of File.new is
“expected” to be a string.

2.16 Implicit and Explicit Conversion 81

The way to handle this is simple. When you expect a string, check for the exis-
tence of to_str and call it as needed:

def set_title(title)

if title.respond_to? :to_str

title = title.to_str

end

...

end

Now, what if an object doesn’t respond to to_str? We could do several things. We
could force a call to to_s, we could check the class to see whether it is a String or a
subclass thereof, or we could simply keep going, knowing that if we apply some mean-
ingless operation to this object, we will eventually get an ArgumentError anyway.

A shorter way to do this is

title = title.to_str if title.respond_to?(:to_str)

which replaces the value of title only if it has a to_str method.
Double-quoted string interpolation will implicitly call to_s, and is usually the

easiest way to turn multiple objects into strings at once:

e = Helium.new

str = "Pi #{3.14} and element #{e}

str is now "3.14 and element He"

Implicit conversion would allow you to make strings and numbers essentially
equivalent. You could, for example, do this:

class Fixnum

def to_str

self.to_s

end

end

str = "The number is " + 345 # The number is 345

However, I don’t recommend this sort of thing. There is such a thing as “too much
magic”; Ruby, like most languages, considers strings and numbers to be different, and
I believe that most conversions should be explicit for the sake of clarity.

82 2. Working with Strings

There is nothing magical about the to_str method. It is intended to return a
string, but if you code your own, it is your responsibility to see that it does.

2.17 Appending an Item onto a String
The append operator (<<) can be used to append a string onto another string. It is
“stackable” in that multiple operations can be performed in sequence on a given
receiver:

str = "A"

str << [1,2,3].to_s << " " << (3.14).to_s

str is now "A123 3.14"

2.18 Removing Trailing Newlines and Other
Characters
Often we want to remove extraneous characters from the end of a string. The prime
example is a newline on a string read from input.

The chop method removes the last character of the string (typically a trailing
newline character). If the character before the newline is a carriage return (\r), it will
be removed also. The reason for this behavior is the discrepancy between different sys-
tems’ conceptions of what a newline is. On systems such as UNIX, the newline char-
acter is represented internally as a linefeed (\n). On others, such as Windows, it is
stored as a carriage return followed by a linefeed (\r\n):

str = gets.chop # Read string, remove newline

s2 = "Some string\n" # "Some string" (no newline)

s3 = s2.chop! # s2 is now "Some string" also

s4 = "Other string\r\n"

s4.chop! # "Other string" (again no newline)

Note that the “in-place” version of the method (chop!) will modify its receiver.
It is also important to note that in the absence of a trailing newline, the last char-

acter will be removed anyway:

str = "abcxyz"

s1 = str.chop # "abcxy"

2.18 Removing Trailing Newlines and Other Characters 83

Because a newline may not always be present, the chomp method may be a better
alternative:

str = "abcxyz"

str2 = "123\n"

str3 = "123\r"

str4 = "123\r\n"

s1 = str.chomp # "abcxyz"

s2 = str2.chomp # "123"

With the default record separator, \r and \r\n are removed

as well as \n

s3 = str3.chomp # "123"

s4 = str4.chomp # "123"

There is also a chomp! method, as we would expect.
If a parameter is specified for chomp, it will remove the set of characters specified

from the end of the string rather than the default record separator. Note that if the
record separator appears in the middle of the string, it is ignored, as shown here:

str1 = "abcxyz"

str2 = "abcxyz"

s1 = str1.chomp("yz") # "abcx"

s2 = str2.chomp("x") # "abcxyz"

2.19 Trimming Whitespace from a String
The strip method removes whitespace from the beginning and end of a string,
whereas its counterpart, strip!, modifies the receiver in place:

str1 = "\t \nabc \t\n"

str2 = str1.strip # "abc"

str3 = str1.strip! # "abc"

str1 is now "abc" also

Whitespace, of course, consists mostly of blanks, tabs, and end-of-line characters.
If we want to remove whitespace only from the beginning or end of a string, we

can use the lstrip and rstrip methods:

84 2. Working with Strings

str = " abc "

s2 = str.lstrip # "abc "

s3 = str.rstrip # " abc"

There are in-place variants (rstrip! and lstrip!) also.

2.20 Repeating Strings
In Ruby, the multiplication operator (or method) is overloaded to enable repetition of
strings. If a string is multiplied by n, the result is n copies of the original string con-
catenated together. Here is an example:

etc = "Etc. "*3 # "Etc. Etc. Etc. "

ruler = "+" + ("."*4+"5"+"."*4+"+")*3

"+....5....+....5....+....5....+"

2.21 Embedding Expressions within Strings
The #{} notation makes embedding expressions within strings easy. We need not
worry about converting, appending, and concatenating; we can interpolate a variable
value or other expression at any point in a string:

puts "#{temp_f} Fahrenheit is #{temp_c} Celsius"

puts "The discriminant has the value #{b*b - 4*a*c}."

puts "#{word} is #{word.reverse} spelled backward."

Bear in mind that full statements can also be used inside the braces. The last eval-
uated expression will be the one returned:

str = "The answer is #{ def factorial(n)

n==0 ? 1 : n*factorial(n-1)

end

answer = factorial(3) * 7}, of course."

The answer is 42, of course.

There are some shortcuts for global, class, and instance variables, in which case
the braces can be dispensed with:

puts "$gvar = #$gvar and ivar = #@ivar."

2.21 Embedding Expressions within Strings 85

Note that this technique is not applicable for single-quoted strings (because their
contents are not expanded), but it does work for double-quoted here-documents and
regular expressions.

2.22 Delayed Interpolation of Strings
Sometimes we might want to delay the interpolation of values into a string. There is
no perfect way to do this.

A naive approach is to store a single-quoted string and then evaluate it:

str = '#{name} is my name, and #{nation} is my nation.'

name, nation = "Stephen Dedalus", "Ireland"

s1 = eval('"' + str + '"')

Stephen Dedalus is my name, and Ireland is my nation.

However, using eval is almost always the worst option. Any time you use eval,
you are opening yourself up to many problems, including extremely slow execution
and unexpected security vulnerabilities, so it should be avoided if at all possible.

A much less dangerous way is to use a block:

str = proc do |name, nation|

"#{name} is my name, and #{nation} is my nation."

end

s2 = str.call("Gulliver Foyle", "Terra")

Gulliver Foyle is my name, and Terra is my nation.

2.23 Parsing Comma-Separated Data
The use of comma-delimited data is common in computing. It is a kind of “lowest
common denominator” of data interchange used (for example) to transfer information
between incompatible databases or applications that know no other common format.

We assume here that we have a mixture of strings and numbers and that all strings
are enclosed in quotes. We further assume that all characters are escaped as necessary
(commas and quotes inside strings, for example).

The problem becomes simple because this data format looks suspiciously like a
Ruby array of mixed types. In fact, we can simply add brackets to enclose the whole
expression, and we have an array of items:

86 2. Working with Strings

string = gets.chop!

Suppose we read in a string like this one:

"Doe, John", 35, 225, "5'10\"", "555-0123"

data = eval("[" + string + "]") # Convert to array

data.each {|x| puts "Value = #{x}"}

This fragment produces the following output:

Value = Doe, John

Value = 35

Value = 225

Value = 5' 10"

Value = 555-0123

For a more heavy-duty solution, refer to the CSV library (which is a standard
library).

2.24 Converting Strings to Numbers (Decimal and
Otherwise)
Basically there are two ways to convert strings to numbers: the Kernel method
Integer and Float and the to_i and to_f methods of String. (Capitalized
method names such as Integer are usually reserved for special data conversion func-
tions like this.)

The simple case is trivial, and these are equivalent:

x = "123".to_i # 123

y = Integer("123") # 123

When a string is not a valid number, however, their behaviors differ:

x = "junk".to_i # silently returns 0

y = Integer("junk") # error

to_i stops converting when it reaches a non-numeric character, but Integer
raises an error:

x = "123junk".to_i # 123

y = Integer("123junk") # error

2.24 Converting Strings to Numbers (Decimal and Otherwise) 87

Both allow leading and trailing whitespace:

x = " 123 ".to_i # 123

y = Integer(" 123 ") # 123

Floating point conversion works much the same way:

x = "3.1416".to_f # 3.1416

y = Float("2.718") # 2.718

Both conversion methods honor scientific notation:

x = Float("6.02e23") # 6.02e23

y = "2.9979246e5".to_f # 299792.46

to_i and Integer also differ in how they handle different bases. The default, of
course, is decimal or base ten; but we can work in other bases also. (The same is not
true for floating point.)

When talking about converting between numeric bases, strings always are
involved. After all, an integer is an integer, and they are all stored in binary.

Base conversion, therefore, always means converting to or from some kind of
string. Here, we’re looking at converting from a string. (For the reverse, see Section
5.18, “Performing Base Conversions,” and Section 5.5, “Formatting Numbers for
Output.”)

When a number appears in program text as a literal numeric constant, it may have
a “tag” in front of it to indicate base. These tags are 0b for binary, a simple 0 for octal,
and 0x for hexadecimal.

These tags are honored by the Integer method but not by the to_i method, as
demonstrated here:

x = Integer("0b111") # binary - returns 7

y = Integer("0111") # octal - returns 73

z = Integer("0x111") # hexadecimal - returns 291

x = "0b111".to_i # 0

y = "0111".to_i # 0

z = "0x111".to_i # 0

to_i, however, allows an optional parameter to indicate the base. Typically, the
only meaningful values are 2, 8, 10 (the default), and 16. However, tags are not rec-
ognized even with the base parameter:

88 2. Working with Strings

x = "111".to_i(2) # 7

y = "111".to_i(8) # octal - returns 73

z = "111".to_i(16) # hexadecimal - returns 291

x = "0b111".to_i # 0

y = "0111".to_i # 0

z = "0x111".to_i # 0

Because of the “standard” behavior of these methods, a digit that is inappropriate
for the given base will be treated differently:

x = "12389".to_i(8) # 123 (8 is ignored)

y = Integer("012389") # error (8 is illegal)

Although it might be of limited usefulness, to_i handles bases up to 36, using all
letters of the alphabet. (This may remind you of the Base64 encoding; for informa-
tion on that, see Section 2.37, “Encoding and Decoding Base64 Strings.”)

x = "123".to_i(5) # 66

y = "ruby".to_i(36) # 1299022

It’s also possible to use the scanf standard library to convert character strings to
numbers. This library adds a scanf method to Kernel, to IO, and to String:

str = "234 234 234"

x, y, z = str.scanf("%d %o %x") # 234, 156, 564

The scanf methods implement all the meaningful functionality of their C coun-
terparts: scanf, sscanf, and fscanf. However, scanf does not handle binary.

2.25 Encoding and Decoding rot13 Text
The rot13 method is perhaps the weakest form of encryption known to humankind.
Its historical use is simply to prevent people from “accidentally” reading a piece of text.
It was commonly seen in Usenet posts; for example, a joke that might be considered
offensive might be encoded in rot13, or you could post the entire plot of Star Wars:
Episode 12 on the day before the premiere.

The encoding method consists simply of “rotating” a string through the alphabet,
so that A becomes N, B becomes O, and so on. Lowercase letters are rotated in the
same way; digits, punctuation, and other characters are ignored. Because 13 is half of

2.25 Encoding and Decoding rot13 Text 89

26 (the size of our alphabet), the function is its own inverse; applying it a second time
will “decrypt” it.

The following example is an implementation as a method added to the String
class. We present it without further comment:

class String

def rot13

self.tr("A-Ma-mN-Zn-z","N-Zn-zA-Ma-m")

end

end

joke = "Y2K bug"

joke13 = joke.rot13 # "L2X oht"

episode2 = "Fcbvyre: Naanxva qbrfa'g trg xvyyrq."

puts episode2.rot13

2.26 Encrypting Strings
There are times when we don’t want strings to be immediately legible. For example,
passwords should not be stored in plaintext, no matter how tight the file permissions
are.

The standard method crypt uses the standard function of the same name to
DES-encrypt a string. It takes a “salt” value as a parameter (similar to the seed value
for a random number generator). On non-UNIX platforms, this parameter may be
different.

A trivial application for this follows, where we ask for a password that Tolkien fans
should know:

coded = "hfCghHIE5LAM."

puts "Speak, friend, and enter!"

print "Password: "

password = gets.chop

if password.crypt("hf") == coded

puts "Welcome!"

90 2. Working with Strings

else

puts "What are you, an orc?"

end

It is worth noting that you should never use encryption to store passwords.
Instead, employ password hashing using a hashing algorithm designed specifically for
passwords, such as bcrypt. Additionally, never rely on encryption of this nature for
communications with a server-side web application. To secure web applications, use
the HTTPS protocol and Secure Sockets Layer (SSL) to encrypt all traffic. Of course,
you could still use encryption on the server side, but for a different reason—to pro-
tect the data as it is stored rather than during transmission.

2.27 Compressing Strings
The Zlib library provides a way of compressing and decompressing strings and files.

Why might we want to compress strings in this way? Possibly to make database
I/O faster, to optimize network usage, or even to obscure stored strings so that they
are not easily read.

The Deflate and Inflate classes have class methods named deflate and
inflate, respectively. The deflate method (which obviously compresses) has an
extra parameter to specify the style of compression. The styles show a typical trade-off
between compression quality and speed; BEST_COMPRESSION results in a smaller
compressed string, but compression is relatively slow; BEST_SPEED compresses faster
but does not compress as much. The default (DEFAULT_COMPRESSION) is typically
somewhere in between in both size and speed.

require 'zlib'

include Zlib

long_string = ("abcde"*71 + "defghi"*79 + "ghijkl"*113)*371

long_string has 559097 characters

s1 = Deflate.deflate(long_string,BEST_SPEED) # 4188 chars

s2 = Deflate.deflate(long_string) # 3568 chars

s3 = Deflate.deflate(long_string,BEST_COMPRESSION) # 2120 chars

Informal experiments suggest that the speeds vary by a factor of two, and the
compression amounts vary inversely by the same amount. Speed and compression are
greatly dependent on the contents of the string. Speed, of course, also is affected by
hardware.

2.27 Compressing Strings 91

Be aware that there is a “break-even” point below which it is essentially useless to
compress a string (unless you are trying to make the string unreadable). Below this
point, the overhead of compression may actually result in a longer string.

2.28 Counting Characters in Strings
The count method counts the number of occurrences of any of a set of specified char-
acters:

s1 = "abracadabra"

a = s1.count("c") # 1

b = s1.count("bdr") # 5

The string parameter is like a simple regular expression. If it starts with a caret,
the list is negated:

c = s1.count("^a") # 6

d = s1.count("^bdr") # 6

A hyphen indicates a range of characters:

e = s1.count("a-d") # 9

f = s1.count("^a-d") # 2

2.29 Reversing a String
A string may be reversed simply by using the reverse method (or its in-place coun-
terpart reverse!):

s1 = "Star Trek"

s2 = s1.reverse # "kerT ratS"

s1.reverse! # s1 is now "kerT ratS"

Suppose that you want to reverse the word order (rather than character order).
You can use String#split, which gives you an array of words. The Array class also
has a reverse method, so you can then reverse the array and join to make a new
string:

phrase = "Now here's a sentence"

phrase.split(" ").reverse.join(" ") # "sentence a here's Now"

92 2. Working with Strings

2.30 Removing Duplicate Characters
Runs of duplicate characters may be removed using the squeeze method. If a para-
meter is specified, only those characters will be squeezed.

s1 = "bookkeeper"

s2 = s1.squeeze # "bokeper"

s3 = "Hello..."

s4 = s3.squeeze # "Helo."

If a parameter is specified, only those characters will be squeezed.
s5 = s3.squeeze(".") # "Hello."

This parameter follows the same rules as the one for the count method (see
Section 2.28, “Counting Characters in Strings,” earlier in this chapter); that is, it
understands the hyphen and the caret.

There is also a squeeze! method.

2.31 Removing Specific Characters
The delete method removes characters from a string if they appear in the list of char-
acters passed as a parameter:

s1 = "To be, or not to be"

s2 = s1.delete("b") # "To e, or not to e"

s3 = "Veni, vidi, vici!"

s4 = s3.delete(",!") # "Veni vidi vici"

This parameter follows the same rules as the one for the count method (see
Section 2.28, “Counting Characters in Strings,” earlier in this chapter); that is, it
understands the hyphen and the caret.

There is also a delete! method.

2.32 Printing Special Characters
The dump method (like inspect) provides explicit printable representations of char-
acters that may ordinarily be invisible or print differently. Here is an example:

s1 = "Listen" << “\007\007\007” # Add three ASCII BEL characters

puts s1.dump # Prints: Listen\007\007\007

s2 = "abc\t\tdef\tghi\n\n"

puts s2.dump # Prints: abc\t\tdef\tghi\n\n

s3 = "Double quote: \""

puts s3.dump # Prints: Double quote: \"

2.32 Printing Special Characters 93

2.33 Generating Successive Strings
On rare occasions, we may want to find the “successor” value for a string; for exam-
ple, the successor for "aaa" is "aab" (then "aad", "aae", and so on).

Ruby provides the method succ (successor) for this purpose:

droid = "R2D2"

improved = droid.succ # "R2D3"

pill = "Vitamin B"

pill2 = pill.succ # "Vitamin C"

We don’t recommend the use of this feature unless the values are predictable and
reasonable. If you start with a string that is esoteric enough, you will eventually get
strange and surprising results.

There is also an upto method that applies succ repeatedly in a loop until the
desired final value is reached:

"Files, A".upto "Files, X" do |letter|

puts "Opening: #{letter}"

end

Produces 24 lines of output

Again, we stress that this is not used frequently, and you use it at your own risk.
In addition, there is no corresponding “predecessor” function.

2.34 Calculating a 32-Bit CRC
The Cyclic Redundancy Check (CRC) is a well-known way of obtaining a “signature”
for a file or other collection of bytes. The CRC has the property that the chance of
data being changed and keeping the same CRC is 1 in 2**N, where N is the number
of bits in the result (most often 32 bits).

The zlib library, created by Ueno Katsuhiro, enables you to do this.
The method crc32 computes a CRC given a string as a parameter:

require 'zlib'

include Zlib

crc = crc32("Hello") # 4157704578

crc = crc32(" world!",crc) # 461707669

crc = crc32("Hello world!") # 461707669 (same as above)

94 2. Working with Strings

A previous CRC can be specified as an optional second parameter; the result will
be as if the strings were concatenated and a single CRC was computed. This can be
used, for example, to compute the checksum of a file so large that we can only read it
in chunks.

2.35 Calculating the SHA-256 Hash of a String
The Digest::SHA256 class produces a 256-bit hash or message digest of a string of
arbitrary length. This hashing function is one-way, and does not allow for the discov-
ery of the original message from the digest. There are also MD5, SHA384, and SHA512
classes inside Digest for each of those algorithms.

The most commonly used class method is hexdigest, but there are also digest
and base64digest. They all accept a string containing the message and return the
digest as a string, as shown here:

require 'digest'

Digest::SHA256.hexdigest("foo")[0..20] # "2c26b46b68f"

Digest::SHA256.base64digest("foo")[0..20] # "LCa0a2j/xo/"

Digest::SHA256.digest(“foo")[0..5] # ",&\xB4kh\xFF"

Although the digest method provides a 64-byte string containing the 512-bit
digest, the hexdigest method is actually the most useful. It provides the digest as an
ASCII string of 64 hex characters representing the 64 bytes.

Instances and the update method allow the hash to be built incrementally, per-
haps because the data is coming from a streaming source:

secret = Digest::SHA256.new

source.each { |chunk| secret.update(chunk) }

Repeated calls are equivalent to a single call with concatenated arguments:

These two statements...

cryptic.update("Data...")

cryptic.update(" and more data.")

...are equivalent to this one.

cryptic.update("Data... and more data.”)

cryptic.hexdigest[0..20] # "50605ba0a90"

2.35 Calculating the SHA-256 Hash of a String 95

2.36 Calculating the Levenshtein Distance Between
Two Strings
The concept of distance between strings is important in inductive learning (AI), cryp-
tography, proteins research, and in other areas.

The Levenshtein distance is the minimum number of modifications needed to
change one string into another, using three basic modification operations: del(-etion),
ins(-ertion), and sub(-stitution). A substitution is also considered to be a combination
of a deletion and insertion (indel).

There are various approaches to this, but we will avoid getting too technical.
Suffice it to say that this Ruby implementation (shown in Listing 2.2) allows you to
provide optional parameters to set the cost for the three types of modification opera-
tions and defaults to a single indel cost basis (cost of insertion = cost of deletion).

Listing 2.2 The Levenshtein distance

class String

def levenshtein(other, ins=2, del=2, sub=1)
ins, del, sub are weighted costs
return nil if self.nil?
return nil if other.nil?
dm = [] # distance matrix

Initialize first row values
dm[0] = (0..self.length).collect { |i| i * ins }
fill = [0] * (self.length - 1)

Initialize first column values
for i in 1..other.length

dm[i] = [i * del, fill.flatten]
end

populate matrix
for i in 1..other.length

for j in 1..self.length
critical comparison

dm[i][j] = [
dm[i-1][j-1] +

(self[j-1] == other[i-1] ? 0 : sub),
dm[i][j-1] + ins,

dm[i-1][j] + del
].min

end
end

96 2. Working with Strings

The last value in matrix is the
Levenshtein distance between the strings
dm[other.length][self.length]

end

end

s1 = "ACUGAUGUGA"
s2 = "AUGGAA"
d1 = s1.levenshtein(s2) # 9

s3 = "pennsylvania"
s4 = "pencilvaneya"
d2 = s3.levenshtein(s4) # 7

s5 = "abcd"
s6 = "abcd"
d3 = s5.levenshtein(s6) # 0

Now that we have the Levenshtein distance defined, it’s conceivable that we could
define a similar? method, giving it a threshold for similarity. Here is an example:

class String

def similar?(other, thresh=2)

self.levenshtein(other) < thresh

end

end

if "polarity".similar?("hilarity")

puts "Electricity is funny!"

end

Of course, it would also be possible to pass in the three weighted costs to the sim-
ilar? method so that they could in turn be passed into the levenshtein method.
We have omitted these for simplicity.

2.36 Calculating the Levenshtein Distance Between Two Strings 97

2.37 Encoding and Decoding Base64 Strings
Base64 is frequently used to convert machine-readable data into a text form with no
special characters in it. For example, images and fonts stored inline inside CSS files are
encoded with Base64.

The easiest way to do a Base64 encode/decode is to use the built-in Base64 mod-
ule. The Base64 class has an encode64 method that returns a Base64 string (with a
newline appended). It also has the method decode64, which changes the string back
to its original bytes, as shown here:

require "base64"

str = "\xAB\xBA\x02abdce"

encoded = Base64.encode64(str) # "q7oCYWJkY2U=\n"

original = Base64.decode64(encoded) # "\xAB\xBA\x02abdce"

2.38 Expanding and Compressing Tab Characters
Occasionally we have a string with tabs in it and we want to convert them to spaces
(or vice versa). The two methods shown here do these operations:

class String

def detab(ts=8)

str = self.dup

while (leftmost = str.index("\t")) != nil

space = " "*(ts-(leftmost%ts))

str[leftmost]=space

end

str

end

def entab(ts=8)

str = self.detab

areas = str.length/ts

newstr = ""

for a in 0..areas

temp = str[a*ts..a*ts+ts-1]

if temp.size==ts

if temp =~ / +/

match=Regexp.last_match[0]

98 2. Working with Strings

endmatch = Regexp.new(match+"$")

if match.length>1

temp.sub!(endmatch,"\t")

end

end

end

newstr += temp

end

newstr

end

end

foo = "This is only a test. "

puts foo

puts foo.entab(4)

puts foo.entab(4).dump

Note that this code is not smart enough to handle backspaces.

2.39 Wrapping Lines of Text
Occasionally we may want to take long text lines and print them within margins of
our own choosing. The code fragment shown here accomplishes this, splitting only on
word boundaries and honoring tabs (but not honoring backspaces or preserving tabs):

str = <<-EOF

When in the Course of human events it becomes necessary

for one people to dissolve the political bands which have

connected them with another, and to assume among the powers

of the earth the separate and equal station to which the Laws

of Nature and of Nature's God entitle them, a decent respect

for the opinions of mankind requires that they should declare

the causes which impel them to the separation.

EOF

max = 20

line = 0

out = [""]

2.39 Wrapping Lines of Text 99

input = str.gsub(/\n/," ")

words = input.split(" ")

while input != ""

word = words.shift

break if not word

if out[line].length + word.length > max

out[line].squeeze!(" ")

line += 1

out[line] = ""

end

out[line] << word + " "

end

out.each {|line| puts line} # Prints 24 very short lines

The ActiveSupport gem includes similar functionality in a method named
word_wrap, along with many other string manipulation helpers. Search for it online.

2.40 Conclusion
In this chapter, we have seen the basics of representing strings (both single-quoted
strings and double-quoted strings). We’ve seen how to interpolate expressions into
double-quoted strings, and how the double quotes also allow certain special characters
to be inserted with escape sequences. We’ve seen the %q and %Q forms, which permit
us to choose our own delimiters for convenience. Finally, we’ve seen the here-docu-
ment syntax, carried over from older contexts such as UNIX shells.

This chapter has demonstrated all the important operations a programmer wants
to perform on a string, including concatenation, searching, extracting substrings, tok-
enizing, and much more. We have seen how to iterate over a string by line or by byte.
We have seen how to transform a string to and from a coded form such as Base64 or
compressed form.

It’s time now to move on to a related topic—regular expressions. Regular expres-
sions are a powerful tool for detecting patterns in strings. We’ll cover this topic in the
next chapter.

100 2. Working with Strings

Index

727

Symbols
& operator, 45
&& operator, 45
* (array expansion operator), 60
** operator, 157
@@ prefix, 45
` (backtick), 11, 533-534
- (set difference) operator, arrays as mathemati-

cal sets, 245
-= operator, 52
$0 == __FILE__ idiom, 53
$SAFE global variable and threads, 502
$SAFE levels (security), 430-432
=end markers, syntax issues, 43
== operator

specialized string comparisons, 70
testing object equality, 377

=== (threequal) operator, 18, 48, 59, 376
=~ operator, testing object equality, 378
! (exclamation points), syntax issues, 43
!= operator, testing object equality, 378
!~ operator, testing object equality, 378
<< >> (append operator)

appending arrays, 253
appending items to strings, 83
arrays as queues, 254

<=> method
modules as mixins, 388
testing object equality, 377

%Q notation and strings, 65
.. range operator, 50

… range operator, 50
| operator, 45
|| operator, 45
|| operator, 16
+ (concatenation) operator, arrays as mathemati-

cal sets, 245
+= operator, 52
(pound sign)

instance methods and, 51
strings, 43
syntax issues, 43

{} notation, embedding expressions within
strings, 85-86

#dup method, 381-382
? (question mark), syntax issues, 43
/m multiline modifier, 58

Numbers
32-bit CRC (Cyclic Redundancy Checksum)

calculations in strings, 94-95
2001: A Space Odyssey, 585

A
abstract classes, defining, 7
accessing

files randomly, 315-316
methods, controlling access, 378-381

728 Index

queues, securing queues against illegal access,
297

stacks, securing stacks against illegal access,
293

accessors, 59
accidental object attribute assignments, prevent-

ing, 367
ACL (Access Control Lists), drb, 694
actions in Rake utility (development tools),

707-708
ActiveRecord library

databases and, 674-676
online resources, 676

Adams, Ansel, 443
adding items to sets, 289
adjacency matrices, graphs as, 304-307
administration (system)

command-line
ARGF global constant, 539
ARGV global variable, 538
parsing, 540-541

current platform/OS, determining, 554
deleting files based on criteria, 549-550
directory trees, copying, 548-549
distributing Ruby programs, 551
environment variables

retrieving/setting, 545-546
storing as arrays, 546
storing as hashes, 546

Etc module, 554-555
external programs, running

capturing command output, 533-534
exec method, 533
process manipulation, 534-538
system method, 532-533

free space on disks, determining, 550-551
interactivity testing, 553
piping into Ruby interpreter, 552-553
Shell library

file method, 544
fileUtils method, 544
foreach iterator, 544
I/O redirection, 542-543
popdir method, 544
pushdir method, 544
Transact method, 544

text filters, 547-548

age, deleting files by, 549-550
agile language, Ruby as, 8
airline ticket example (Ruby/GTK3 GUI

toolkit), 474-477
alert dialog box and button example (Shoes 4

GUI toolkit), 445
alias keyword, 34, 50
all-caps words, matching in regular expressions,

127
all? quantifier and enumerators, 275
allocate method, 384
ancestors (nodes), 298
anchors, regular expressions, 105-106
and-or operators, 45
Anglocentric bias in computer development,

129
Animal Farm, 377
any? quantifier and enumerators, 275
AOP (Aspect-Oriented Programming), 414
API (Application Programming Interface), 686

drawing API (RMagick image manipulation),
576-579

JSON and, 686
REST API, 687

append operator (<< >>)
appending arrays, 253
arrays as queues, 254
items to strings, 83

appending
arrays, 253
files, 315

application layer (networking), 625
applications (web)

asset pipeline
CoffeeScript and JavaScript, 683-685
Sass and CSS, 682-683

data storage
data stores, 676
databases, 674-676

HTML
ERB, 678-679
Haml library, 680
layouts, 677
Liquid templates, 681
Mustache library, 681
partials, 677
templates, 677

Index 729

templates and ERB, 677-679
templates and Haml library, 679-680
templates and Liquid, 681
templates and Mustache library, 681

HTTP servers
Rack library, 664-666
simple server example, 662-663

Rails framework, 667
asset pipeline, 681-685
CoffeeScript and JavaScript, 683-685
ERB and HTML, 678-679
Haml library and HTML, 680
parameters, 671-672
Rails 4 Way, The, 673, 676
routing, 668-670
Sass and CSS, 682-683

Ramaze framework, 667
Sinatra framework, 666

parameters, 671
routing, 668-669
Sinatra: Up and Running, 673

static sites
Jekyll, 690
Middleman, 689-690
Nanoc, 690
Octopress, 690

web services and HTTP, 686
JSON for API, 686
REST API, 687

architecture byte orders, 181
ARGF global constant, 539
arguments, symbols as arguments, 197
ARGV global variable, 538
ARGV [0] command-line parameter, 45
Aristotle, 723
arrays, 11, 231-232

* (array expansion operator), 60
appending, 253-254
associative arrays. See hashes
comparing, 281-282
concatenating, 253-254
converting

enumerators to arrays, 278
hashes to arrays, 266
objects to arrays, 389-390
ranges to arrays, 202
trees, to strings, 303-304

counting, 281-282
creating, 232
defining, 260
delimiters, interposing to form strings, 255
elements

accessing, 233-234
assigning, 233-234
finding elements in one array but not

another, 250
removing duplicate elements, 256
removing specific elements, 251-252
selecting from criteria, 240-241

enumerator objects, 278-280
enumerators, converting to arrays, 278
environment variables, storing as arrays, 546
extracting, 283-284
hashes

converting to arrays, 266
inverting arrays to form hashes, 257

heterogenous design, 232
indexing functions, 242-244
initializing, 232
inject method, 274-275
interleaving, 256
inverting, 257
iterating, 254-255, 277, 282
“lazy” arrays, 284
mapping, 250-251
mathematical sets, 244-248
multidimensional arrays, 249-250
nil values, removing, 251
objects, converting to arrays, 389-390
partition method, 276
quantifiers, 275
queues, 254, 291
randomizing, 248-249
range operators versus, 51
ranges, converting to arrays, 202
reversing, 256
searching, 280-281
selecting, 280-281
size of, finding, 235
sorting, 237-240, 258-259
space matrices, 244
stacks, 254, 291
strings, creating arrays from, 69
symbol arrays, 27

730 Index

transforming, 250-251
trees, converting to strings, 303-304
values

counting frequency of, 257
default values for new elements, 259-260

ASCII (American Standard Code for
Information Interchange)

ASCII codes, converting characters to in
strings, 80

collation, 142
internationalization, 131-134
UTF-8, 134

asctime method, 226
assertions and testing, 591-592
asset pipeline

CoffeeScript and JavaScript, 683-685
Sass and CSS, 682-683

assignment operators, 46
assignments (multiple), 16
associative arrays. See hashes
ATK library (Ruby/GTK3 GUI toolkit), 479
Atom feeds, 566

generating, 568-569
parsing, 567-568

attachments, encoding/decoding, 649-651
attr method, creating instance methods, 364
attributes, 59

class attributes, defining, 3
defining, 2
object attributes, defining, 3
OOP attributes

class-level attributes, 368-372
instance attributes, 364-366
preventing accidental assignments, 367

attr_accessor method, 365-366
attr_reader method, 365
attr_writer method, 365

B
Babbage, Charles, 155
back-quotes in command output strings, 11
backreferences and regular expressions, 111-115
backtick (`), 11, 533-534
backward ranges, 202
“bare” scope operator, 53
Barry, Dave, 611

base classes. See superclasses
base conversion, 88
Base64 strings, encoding/decoding, 98
Basho, 400
BEGIN keyword, 43
begin keyword, 43
begin-end blocks, 23
big-endians/little-endians, 181
Bigdecimal standard library and large integers,

163-166
Bignum, large integers, 163
binary files, 316-317
binary numbers, 177-179
binary set operators, 289
binary trees

breadth-first insertion, 299
implementing, 298-300
lookup tables, 302-303
sorting data via, 300-302
traversing, 299-300

bit level number operations, 177-179
Black, David, 60
blank spaces, syntax issues, 42
blocks

iterators
calling within blocks, 58
passing blocks to, 54

multiline blocks, 54
single-line blocks, 54
symbols as blocks, 406
syntax issues, 43

Boolean operations, 45
Bouchard, Mathieu, 493
bounding boxes, Prawn and PDF documents,

580
branches, 18
breadth-first insertion, binary trees, 299
break keyword and loops, 22
Britt, James, 723
Browning, Robert, 691
buffered/unbuffered I/O operations, 320-321
bug reports (online resources), 724
built-in classes, 26-28
Bundler

gems, managing
creating gems, 617
Gemfile.lock files, 614

Index 731

Gemfiles, 614
git dependencies, 616
private gems, 617
requiring gems, 615
running gem commands, 615
semantic versioning, 616
updating gems, 616

buttons
QtRuby GUI toolkit, 481-482
Ruby/GTK3 GUI toolkit, 469-471, 476
Ruby/Tk GUI toolkit, 455-459, 463-466
Shoes 4 GUI toolkit, 445
Swing GUI toolkit, 492-493

Byebug debugging library, 596-599
bytes

byte orders, 181
characters and, 134
defining, 132
file iteration, 337
internationalization, 132, 134

C
C++ and QtRuby GUI toolkit, 490-491
caching mathematic functions via memoization,

190-191
calendars

day of the week, determining, 214
day of the year, finding, 219
Easter, determining the date, 211, 215
Gregorian calendar, 211, 224
Julian calendar, 211
leap years, 221
months, dividing into weeks, 229
Nth weekday, finding in a month, 215-216
number of days in a month, determining, 228
Ruby/Tk GUI toolkit calendar example,

453, 455
weeks

dividing months into, 229
finding week of the year, 220

call stacks, program introspection, 435
capturing constants globally, 427
case comparison (threequel) operator (===),18,

48, 59, 376
case statements, 16-19, 47-50

chaining
directories, 342
methods, 393

characters
bytes and, 134
character classes, regular expressions, 116-118
character data and strings, 63
character encodings, 135

collation, 141-143
encoding conversions, 139-140
normalization, 136-139
transliteration, 141

codepoints, composing/decomposing, 136
commas, formatting numbers with, 162
converting to ASCII codes in strings, 80
defining, 133
diaresis (dieresis), 137
file iteration, 337
grabbing from a keyboard (I/O), 336
internationalization, 133
regular expressions, escaping special characters,

105
strings

counting characters in, 92
printing special characters, 93
removing duplicate characters from strings,

83-84, 93
removing specific characters from strings,

83-84, 93
tab characters, expanding/compressing in

strings, 98-99
umlauts, 137

chats (IRC), 725
check boxes

check boxes example (Ruby/Tk GUI toolkit),
463-464

QtRuby GUI toolkit, 486
Ruby/GTK3 GUI toolkit, 476

Chelimsky, David, 586
chess server (peer-to-peer) networking example,

630-637
child classes. See subclasses
children (nodes), 298
chomp! method, removing newlines/characters

from strings, 84
chomp! operations, 16

732 Index

chop method, removing newlines/characters
from strings, 83

chruby utility, version management, 721
Clark, Jason R., 444
class attributes, defining, 3
class hierarchies (networking), partial inheritance

hierarchy, 626
class instance variables, 31, 56, 62, 371
class methods

class associations, 51
defining, 3

class variables, 45, 62
class-level attributes (OOP), creating,

368-370, 372
class-level methods (OOP)

creating, 368-372
private_class_method, 372

classes
abstract classes, defining, 7
built-in classes, 26, 28
class attributes, defining, 3
class method associations, 51
concrete type classes, defining, 7
creating, 29-32, 34
data-only classes (structs), creating, 390-391,

399
defining, 3
definitions, tracking changes, 435-438
instances versus, 51
modules, inclusion, 406-408
nesting, 399-400
new method and instatiating new objects, 362
object classes, testing, 374-377
open classes, 62
parametric classes, creating, 400-403
queue classes, thread synchronization, 515-516
readers/writers, defining, 412-413
removing, 427
retrieving by name, 418
singleton classes, 61, 396-397
singletons, 53
structs (data-only classes), creating, 390-391,

399
subclasses, 4, 53
superclasses

defining, 4
inheriting from, 372-374

Symbol class, symbols as blocks, 406
TracePoint class, monitoring program execu-

tion, 439
variables, 45

classify method and sets, 290
classless (prototype-based) OOP, 414
clear method, removing specific elements from

arrays, 253
click event (Shoes 4 GUI toolkit), 451
clients (networking)

attachments, encoding/decoding, 649-651
IMAP server interactions, 647-649
mail-news gateway example, 651-656
NTP servers, contacting, 641
Open-URI library, 658
POP server interactions, 642-643
random number generator example, 638-641
SMTP, sending email with, 644-647
timeservers (official), contacting, 641
web pages, retrieving from a URL, 657

cliques in graphs, 308
clone method, 381-382
closed/open ranges, 199
closing/opening files, 313-314
closure variable, 55
closures, creating, 54
code

code coverage tools, 608
DBC concept, 415
evaluating dynamically, 416-418
irb utility (development tools)

adding code to, 712-713
xmpfilter library, 714

poetry mode, 59
reflection, 38-40
reusing. See inheritance
runtime coding, 36-38
source code, viewing with pry utility (develop-

ment tools), 716
static code analysis tools, 608
storing as

Method objects, 405-406
Proc objects, 403-405

thread-safe code, 496
codepoints

composing/decomposing, 136
defining, 132

Index 733

internationalization, 132-136
normalization, 136-138
Unicode codepoints, 133

coefficiants (correlation), 187-189
coercing numeric values, 176-177
CoffeeScript and JavaScript, 683-685
Cohens, Danny, 181
collation, 141-143
collect method, mapping arrays, 250-251
collection searches, thread synchronization,

525-526
comma-separated data, parsing in strings, 86-87
command output strings, 11
command-line

ARGF global constant, 539
ARGV global variable, 538
parameters, 45
parsing, 540-541

commands
pry utility (development tools)

basic commands list, 715
finding help, 716
sending commands, 716

rbenv utility, 720
commas, formatting numbers with, 162
comments, 10
communities (resources)

bug reports, 724
conferences, 725-726
feature requests, 724
forums, 724
IRC, 725
local Ruby groups, 726
mailing lists, 724
podcasts, 724
websites, 723

compact method, removing nil values from
arrays, 251

Comparable module and mixins, 388
comparing

arrays, 281-282
enumerators, 281-282
files, 334
floating point numbers, 160-161
hashes, 281-282

strings
case sensitivity, 71
specialized comparisons, 69

time values, 223
compiling regular expressions, 104-105
complex numbers, 171-172
composing/decomposing codepoints, 136
compressing/decompressing strings, 91
compressing/expressing tab characters in strings,

98-99
concatenating

arrays, 253-254
strings, syntax issues, 44

concatenation operator (+), arrays as mathemati-
cal sets, 245

concrete type classes, defining, 7
concurrency and threads

$SAFE global variable, 502
creating, 497

accessing thread-local variables, 498-500
changing thread status, 500-503
querying thread status, 500-501
strings, 499

deadlocks, 505
debugging threads, 507-508
defining, 495
disadvantages of, 496
exception-handling, 504-508
exiting threads, 501
fibers and cooperative multitasking, 527-530
grouping threads, 508-509
JRuby and, 496
killing threads, 501
passing threads, 503
performance and, 496
prioritizing threads, 502
race conditions, 496
rendezvous, 505
return values, capturing, 505
Rubinius and, 496
stopping threads, 501
synchronizing threads, 509-510

collection searches in parallel, 525-526
condition variables, 517-518
monitored queues, 520-521
mutexes, 512-514
nested locks, 518-519

734 Index

queue classes, 515-516
recursive deletion in parallel, 526-527
simple synchronization, 511-512
timeouts, 522-523
unsynchronized threads, 496
waiting for events, 524-525

thread-safe code, 496
unsynchronized threads, 496
uses for, 496
waking stopped threads, 503

condition variables, thread synchronization,
517-518

conferences, 725-726. See also online resources
Confucius, 193
“connected” graphs, 307-308
constants, 51

capturing globally, 427
ENV global constant, retrieving/setting envi-

ronment variables, 545-546
global constants, ARGF, 539
nonexistent constants, handling references to,

427-428
numeric constants, 11
retrieving by name, 418

constructors (OOP)
defining, 3
elaborate constructors, 366-368
multiple constructors, 362-363
objects, creating without constructors, 384

const_get method, retrieving classes and con-
stants by name, 418

control characters, internationalization, 131
converting

base conversion, 88
characters to ASCII codes in strings, 80
dates/times, 151
enumerables to sets, 288
enumerators to arrays or sets, 278
epochs, converting to/from, 217
hashes to arrays, 266
images via RMagick image manipulation, 572
numbers

base conversions, 179-180
implicit/explicit conversions, 175-176

objects to
arrays, 389-390
printable representations, 390
strings, 388-389

ranges to arrays, 202
seconds into larger units of time, 217
strings

implicit/explicit conversions, 80-82
to numbers, 87-89
to/from symbols, 197-199
to_s method, 80-82
to_str method, 80-82

symbols, 197-199
time zones, 227-228
trees to

arrays, 303-304
strings, 303-304

Conway, Damian, 6
cooperative multitasking and fibers, 527-530
coordinates (page), Prawn and PDF documents,

580
copying

“deep copying”, 346
directory trees, 548-549
files, 335
objects, 381-384
streams, 339

correlation coefficients, 187-189
count method

counting characters in strings, 92
counting frequency of values in arrays, 257

counting
arrays, 281-282
enumerators, 281-282
hashes, 281-282

covector method, vector conversion, 170
coverage tools (code), 608
Cowan, John, 144
CRC (Cyclic Redundancy Checksum) calcula-

tions in strings, 94-95
crypt method, string encryption, 90
CSS (Cascading Style Sheets)

online resources, 682
Sass and, 682-683

CSV (Comma-Separated Values) data format,
350-352

cube roots, 180
Cucumber Book, The, 596
Cucumber testing tool, 594-596
currencies, formatting (localized) and interna-

tionalization, 153

Index 735

current directory, changing/setting, 341
current root, changing, 342
cursors, Prawn and PDF documents, 580
customizing

data marshalling, 346-347
ranges, 206-209
widgets in QtRuby GUI toolkit, 487-489

D
Dale, Richard, 480
dangling pointers, 41
data formats, 557

Atom feeds, 566
generating, 568-569
parsing, 567-568

HTML, parsing
document parsing, 561-564
stream parsing, 564-566

JSON, parsing
libraries, 560-561
navigating data, 559-560
non-JSON data types, 560
objects, 558

Prawn and PDF documents
basic concepts/techniques, 579-580
bounding boxes, 580
cursors, 580
document example, 580-583
margin boxes, 580
page coordinates, 580
points (unit of measurement), 580

RMagick image manipulation, 569
converting images, 572
drawing API, 576-579
resizing images, 572-573
retrieving image information, 570-572
special effects/transformations, 573-576

RSS feeds, 566
generating, 568-569
parsing, 567-568

XML, parsing
document parsing, 561-564
stream parsing, 564-566

data hiding, 3
data link layer (networking), 625

data sets
mean/median/mode, finding, 185-186
standard deviation, determining, 187
variance, determining, 187

data storage, 311-312, 673
CSV data, 350-352
data stores, 676
databases, 674-676
directories

chaining, 342
current directory, 341
current root, 342
defining, 313
deleting, 343
differentiating files from, 326
finding, 343-344
iteration, 342
listing entries, 342

external data storage, 353
MySQL databases, 354-356
PostgreSQL databases, 356-358

files
appending, 315
binary files, 316-317
command-level manipulation, 334
comparing, 334
copying, 335
copying streams, 339
defining, 313
deleting, 334-335
determining size of, 325
differentiating directories from, 326
finding, 343-344
finding statistics on, 327
hard links, 327, 334
installing, 335
iteration by bytes, 337
iteration by characters, 337
iteration by lines, 337
locking, 318
moving, 335
opening/closing, 313-314
ownership, 321-323
pathnames, 332-334
permissions, 321-323
randomly accessing, 315-316
reading embedded data, 339

736 Index

reading into memory, 336
reading program sources, 340
renaming, 334
streams and, 326
strings as files, 338-339
symbolic links, 327, 334
temporary files, 340-341
testing characteristics of, 326
timestamps, 323-324
truncating, 334
updating, 314
verifying existence of, 325

impedence mismatches, 358
marshalling data, 344-345

customizing, 346-347
“deep copying”, 346
YAML, 347-349

ORM, 358-359
persisting data via JSON, 349-350
Redis data stores, 359-360
SQL data storage via SQLite3, 352-353

data stores, 359-360, 676
data-only classes (structs), creating, 390-391,

399
databases, 674-676
dates/times

asctime method, 226
converting, 151

seconds to larger units of time, 217
to/from epochs, 217

current time, determining, 212
Date class, 225
Date standard library, 224, 226
date/time strings

matching in regular expressions, 125-126
parsing, 225-226

DateTime class, 225
Daylight Savings Time, 212
days

days_in_month method, 228
determining day of the week, 214
determining number of days in a month,

228
finding day of the year, 219

Easter, determining the date of, 211, 215
epochs, 212, 217

formatting (localized) and internationalization,
151

GMT, 212-213, 224
Gregorian calendar, 211, 224
hours, working with, 222
Julian calendar, 211
leap seconds, 218
leap years, 221
minutes, working with, 222
mktime method, 213
months

determining number of days in a month,
228

dividing into weeks, 229
finding Nth weekday in a month, 215-216

printing dates, 151
seconds

converting to larger units of time, 217
leap seconds, 218

specific dates (pre-epoch), working with, 224
specific times (post-epoch), handling, 212-214
strftime method, 214, 222, 227
Time class, 225
Time standard library, 226
time values

adding intervals to, 223
comparing, 223
computing the difference between two time

values, 224
formatting, 226
printing, 226

time zones, 222, 227-228
UTC, 212-213, 227
validating, 219-220
weeks

dividing months into, 229
finding week of the year, 220

Davis, Ryan, 589
day of the year, finding, 219
Daylight Savings Time, 212
days_in_month method, 228
DBC (Design by Contract) concept, 415
deadlocks (threads), 505
debugging

bug reports (online resources), 724
Byebug debugging library, 596-599
objects, 390

Index 737

Pry debugging tool, 600-601
Redmine bug tracking system, 724
threads, 507-508

decoding/encoding
attachments, 649-651
Base64 strings, 98
rot13 text, 89

decomposing/composing codepoints, 136
decompressing/compressing strings, 91
“deep copying”, 346
deep_copy method, 382
defaults (translations), 146-147
defined entities lists, obtaining, 423-425
define_method method, 419-422
definite integral computations, 182-183
definitions

class definitions, tracking, 435-438
executing, 53
objects definitions, tracking, 435-438
removing

classes, 427
methods, 425-426

deflate method, string compression, 91
degrees (trigonometry), calculating, 183-184
delayed interpolation of strings, 86
delegating method calls, 409-412
delete method

removing specific characters from strings, 93
removing specific elements from arrays, 251

delete_at method, removing specific elements
from arrays, 251

delete_if method, removing specific elements
from arrays, 252

deleting
directories, 343
files, 334-335
files based on criteria, 549-550
key-value pairs from hashes, 264
recursive deletion and thread synchronization,

526-527
delimiters, forming strings from arrays, 255
dependencies (gems)

Bundler, managing dependencies via
creating gems, 617
Gemfile.lock files, 614
Gemfiles, 614
git dependencies, 616

private gems, 617
requiring gems, 615
running gem commands, 615
semantic versioning, 616
updating gems, 616

git dependencies, 616
installing via Rubygems, 612

dequeue operator, 292
derived classes. See subclasses
descendants (nodes), 298
Design Patterns, 695
destructors, defining, 3
detect method, selecting elements from arrays by

criteria, 240
detect_hardware method, 368-369
development tools

editor support
Emacs, 718
graphical text editors, 717
Vim, 717-718

irb utility, 710-711
adding code to, 712-713
initializing, 712
lexer capabilities, 714-715
subsessions, 713
tab completion, 712
xmpfilter library, 714

pry utility
basic commands list, 715
documentation, 716
evaluating expressions, 715
finding help, 716
keyboard input, 715
sending commands, 716
shell-mode feature, 716
viewing source code, 716

Rake utility
actions, 707-708
documentation, 710
online resources, 710
Rakefiles, 706-710
tasks, 706
terminology of, 706
uses for, 706

ri utility, 716-717
version management

chruby utility, 721

738 Index

rbenv utility, 720-721
rvm, 719-720

deviation (standard) of data sets, determining,
187

diamond inheritance problem, defining, 5
diaresis (dieresis), 137
dictionaries. See hashes
digest method, SHA-256 hash calculations of

strings, 95
digraphs (directed graphs), 304. See also graphs
directories

chaining, 342
current directory, 341
defining, 313
deleting, 343
files, differentiating directories from, 326
finding, 343-344
gem directories in Rubygems, 612
iteration, 342
listing entries, 342
roots, changing current root, 342

directory trees, copying, 548-549
disks, determining free space, 550-551
distributing code

Bundler
creating gems, 617
Gemfile.lock files, 614
Gemfiles, 614
git dependencies, 616
private gems, 617
requiring gems, 615
running gem commands, 615
semantic versioning, 616
updating gems, 616

Rubygems
creating gems, 613
directory of gems, 612
installing dependencies, 612
installing gems, 612

distributing code via drb (Distributed Ruby),
692

ACL, 694
components of, 692
DRbObjects, creating, 693
overview of, 692
Rinda

class matches in tuplespaces, 702
creating tuplespaces, 699

defining tuplespaces, 698
development of, 698
examples of tuples, 698
expiring/renewing tuples, 702
nil values as wildcards, 702
notify operations on tuplespaces, 701
read all operations on tuplespaces, 700
read operations on tuplespaces, 699
synchronizing tuplespaces, 700
take operations on tuplespaces, 700
write operations on tuplespaces, 700

Rinda::Ring service discovery, 703-704
security, 693-694
stock ticker simulation case study, 695-698
threaded drb and server joins, 693

distributing Ruby programs, 551
divide method and sets, 290-291
division (numerical calculations), 157
document parsing (XML and HTML), 561-564
documentation

code documentation via RDoc, 618-619
advanced documentation with YARD, 622
simple markup example, 620-622

comments, 10
embedded documentation, 10
online resources, 723
PDF documents and Prawn

basic concepts/techniques, 579-580
bounding boxes, 580
cursors, 580
document example, 580-583
margin boxes, 580
page coordinates, 580
points (unit of measurement), 580

pry utility (development tools), 716
Rake utility (development tools), 710

dot and newline matches in regular expressions,
119

dotted decimal strings, 122
dotted quad strings, 122
double-quoted strings, 11, 64
doubled words, detecting in regular expressions,

126
drawing API (RMagick image manipulation),

576-579
drb (Distributed Ruby)

ACL, 694
components of, 692

Index 739

DRbObjects, creating, 693
overview of, 692
Rinda

class matches in tuplespaces, 702
creating tuplespaces, 699
defining tuplespaces, 698
development of, 698
examples of tuples, 698
expiring/renewing tuples, 702
nil values as wildcards, 702
notify operations on tuplespaces, 701
read all operations on tuplespaces, 700
read operations on tuplespaces, 699
synchronizing tuplespaces, 700
take operations on tuplespaces, 700
write operations on tuplespaces, 700

Rinda::Ring service discovery, 703-704
security, 693-694
stock ticker simulation case study, 695-698
threaded drb and server joins, 693

duck typing, 60
dump method, printing special characters from

strings, 93
dynamic functionality of Ruby

GC, 40
missing methods, 40
reflection, 38-40
runtime coding, 36-38

dynamic OOP (Object-Oriented Programming).
See OOP

dynamicity (dynamic features)
$SAFE levels, 430-432
classes

removing, 427
retrieving by names, 418

code evaluations, 416-418
constants

capturing globally, 427
handling references to nonexistent constants,

427-428
defined entities lists, obtaining, 423-425
define_method, 419-422
definitions, removing, 425-427
methods

handling calls to nonexistent methods,
429-430

removing, 425-426

objects, defining finalizers, 432-433
retrieving classes and constants by name, 418
security, 430-432
undefining

classes, 427
methods, 425-426

E
Easter, determining the date of, 211, 215
editors

QtRuby GUI toolkit text editor example,
483-484

Ruby/GTK3 GUI toolkit text editor example,
471-473

support for
Emacs, 718
graphical text editors, 717
Vim, 717-718

Eiffel and DBC, 415
eigenclasses. See singleton classes
Emacs, 718
email, sending email with SMTP, 644-647
embedded data, reading, 339
embedded documentation, 10
embedded expressions within strings, 85-86
embedded options in regular expressions,

119-120
embedded subexpressions in regular expressions,

120-122
encapsulation, defining, 2
encoding/decoding

attachments, 649-651
Base64 strings, 98
conversions, 139-140
rot13 text, 89

encryption
password hashing, 91
rot13 text, 89
strings, 90

END keyword, 43
end keyword, 43
endpoints (ranges), finding, 200
enqueue operator, 292
ensure clauses, 25

740 Index

enumerables
arrays, 231-232

accssing elements, 233-234
appending, 253-254
as queues, 291
as stacks, 291
assigning elements, 233-234
concatenating, 253-254
creating, 232
finding elements in one array but not

another, 250
finding size of, 235
heterogeneous design, 232
indexing functions, 242-244
initializing, 232
interposing delimiters to form strings, 255
iterating, 254-255
mapping, 250-251
mathematical sets, 244-248
multidimensional arrays, 249-250
queues, 254
randomizing, 248-249
removing nil values, 251
removing specific elements, 251-252
selecting elements from criteria, 240-241
sorting, 237-240
space matrices, 244
stacks, 254
transforming, 250-251

defining, 273
Enumerable module and mixins, 388
hashes, 231
sets, converting enumerables to, 288

enumerators
arrays

comparing, 281-282
counting, 281-282
counting frequency of values, 257
default values for new elements, 259-260
defining, 260
enumerator conversion to arrays, 278
enumerator objects, 278-280
extracting, 283-284
hashes and, 257
inject method, 274-275
interleaving, 256
inverting, 257

iterating, 277, 282
“lazy” arrays, 284
partition method, 276
quantifiers, 275
removing duplicate elements, 256
reversing, 256
searching, 280-281
selecting, 280-281
sorting, 258-259

comparing, 281-282
converting to arrays or sets, 278
counting, 281-282
extracting, 283-284
hashes

accessing key-value pairs, 262-263
adding key-value pairs, 262-263
comparing, 281-282
converting to arrays, 266, 278
counting, 281-282
creating, 260-261, 268
creating by inverting arrays, 257
creating from arrays, 268
defining, 260
deleting key-value pairs, 264
detecting keys and values, 265-266
enumerator objects, 278-280
extracting, 283-284
finding difference/intersection of hash keys,

268
implementing with duplicate keys, 270-272
indexing, 273
inject method, 274-275
inverting, 265
inverting arrays to form hashes, 257
iterating, 264-265, 277, 282
key values, 273
keys, 260
“lazy” hashes, 284
merging, 268
partition method, 276
quantifiers, 275
searching, 280-281
selecting, 280-281
selecting key-value pairs by criteria, 266-267
sorting, 267
sparse matrices, 269
specifying a default value, 261-262

Index 741

inject method, 274-275
iterating, 277, 282
“lazy” enumerators, 284
objects, 278-280
partition method, 276
quantifiers, 275
searching, 280-281
selecting, 280-281
sets, converting enumerators to sets, 278
symbols as, 195

ENV global constant, retrieving/setting environ-
ment variables, 545-546

environment variables
arrays, storing as, 546
hashes, storing as, 546
retrieving/setting, 545-546

epochs, 212, 217
Eppstein, Chris, 683
eql? method, testing object equality, 377-378
equal? method, testing object equality, 377
ERB and HTML generation, 678-679
err variable, 24
Etc module, 554-555
Euler circuits, graphs, 308-309
Euler paths, graphs, 309
EuRuKo (European Ruby Conference), 725
evaluating code dynamically, 416-418
events

Shoes 4 GUI toolkit, 450-451
thread synchronization, 524-525

exception-handling
retry keyword, 53
threads, 504, 506-508

exceptions, 22, 24-25
exclamation points (!), syntax issues, 43
exec method, running external systems, 533
executing programs, monitoring, 439-441
exist? method and files, 325
exit method, process manipulation, 536
exiting threads, 501
expectation expressions, 588
expiring/renewing tuples (Rinda), 702
explicit messages, sending to objects, 394-395
explicit/implicit numeric conversions, 175-176
explicit/implicit string conversions, 80-82
exponentiation, 157
expressing/compressing tab characters in strings,

98-99

expressions
extended regular expressions, 118-119
named matches, 114-115
orientation, 57
regular expressions, 135
Ruby as expression-oriented language, 8
strings, embedding expressions within, 85-86

external data storage, 353
MySQL databases, 354-356
PostgreSQL databases, 356-358

external programs, running
command output, capturing, 533-534
exec method, 533
IO (standard), manipulating, 537-538
processes, manipulating, 534

exit method, 536
fork method, 535-536
Kernel.trap method, 537
kill method, 536
pid method, 536
ppid method, 536
trap method, 537

system method, 532-533
extracting

arrays, 283-284
enumerators, 283-284
hashes, 283-284

F
false values, representing, 45
Faustino, Kevin, 673
fcntl method and I/O, 330
feature requests (online resources), 724
Fernandez, Obie, 673
fibers and cooperative multitasking, 527-530
Fielding, Roy, 687
FIFO (First-In, First-Out) data structures.

See queues
file formats, 557

Atom feeds, 566
generating, 568-569
parsing, 567-568

HTML, parsing
document parsing, 561-564
stream parsing, 564-566

JSON, parsing

742 Index

libraries, 560-561
navigating data, 559-560
non-JSON data types, 560
objects, 558

Prawn and PDF documents
basic concepts/techniques, 579-580
bounding boxes, 580
cursors, 580
document example, 580-583
margin boxes, 580
page coordinates, 580
points (unit of measurement), 580

RMagick image manipulation, 569
converting images, 572
drawing API, 576-579
resizing images, 572-573
retrieving image information, 570-572
special effects/transformations, 573-576

RSS feeds, 566
generating, 568-569
parsing, 567-568

XML, parsing
document parsing, 561-564
stream parsing, 564-566

file method, Shell library, 544
fileno method and I/O, 330
files

appending, 315
binary files, 316-317
characteristics of, testing, 326
command-level manipulation, 334
comparing, 334
copying, 335
defining, 313
deleting, 334-335
deleting based on criteria, 549-550
directories, differentiating from files, 326
embedded data, reading, 339
existence of, verifying, 325
finding, 343-344
hard links, 327, 334
installing, 335
iteration, 337
locking, 318
memory, reading files into, 336
moving, 335
opening/closing, 313-314
ownership, 321-323

pathnames, 332-334
permissions, 321-323
program sources, reading, 340
randomly accessing, 315-316
renaming, 334
size of, determining, 325
statistics, finding, 327
streams and, 326, 339
strings as files, 338-339
symbolic links, 327, 334
temporary files, 340-341
timestamps, 323-324
truncating, 334
updating, 314

fileUtils method, Shell library, 544
filters (text), 547-548
finalizers, defining for objects, 432-433
find method, selecting elements from arrays by

criteria, 240
finding

directories, 343-344
files, 343-344

find_all method, selecting elements from arrays
by criteria, 240

Fixnum, 45
bit-level number operations, 177-179
large integers, 163

flat_map method, arrays as mathematical sets,
248

flip-flop operator and ranges, 203-206
Float method, converting strings to numbers,

87-89
floating point numbers, 156-157

comparing, 160-161
rounding, 158-160

floating point ranges, 201
for construct, 53
for loops, 21, 46
foreach iterator, Shell library, 544
fork method, process manipulation, 534-536
formatting

localized formatting and internationalization
currencies, 153
dates/times, 151
numbers, 152

numbers, 162
strings, 73
time values, 226

Index 743

forums (online resources), 724
forwarding method calls, 409-412
fourth roots, 180
FOX (Free Objects for X), FXRuby GUI

toolkit, 493
frameworks

Rails, 667
asset pipeline, 681-685
CoffeeScript and JavaScript, 683-685
ERB and HTML, 678-679
Haml library and HTML, 680
parameters, 671-672
Rails 4 Way, The, 673, 676
routing, 668-670
Sass and CSS, 682-683

Ramaze, 667
Sinatra, 668

parameters, 671
routing, 668-669
Sinatra: Up and Running, 673

Franklin, Benjamin, 705
free space, determining on disks, 550-551
freeze method, 27
freezing

objects, 391-393
strings, 392

Friedl, Jeffrey, 104
“fully connected” graphs, determining, 307-308
function composition, 68
functions

indexing functions and arrays, 242-244
mathematical functions, caching via memoiza-

tion, 190-191
FXRuby GUI toolkit, 493
FXRuby: Create Lean and Mean GUIs with Ruby,

494

G
GC (Garbage Collection), 40
GCD (Greatest Common Divisors), 173
GDK library (Ruby/GTK3 GUI toolkit), 479
GdkPixbuf library (Ruby/GTK3 GUI toolkit),

479

gems
Bundler, managing dependencies via

creating gems, 617
Gemfile.lock files, 614
Gemfiles, 614
git dependencies, 616
private gems, 617
requiring gems, 615
running gem commands, 615
semantic versioning, 616
updating gems, 616

creating
Bundler, 617
Rubygems, 613

dependencies
git dependencies, 616
installing, 612
managing, 614-617

Gemfile.lock files in Bundler, 614
Gemfiles in Bundler, 614
online resources, 613
private gems, 617
Rubygems, packaging/distributing code via

creating gems, 613
directory of gems, 612
installing dependencies, 612
installing gems, 612

semantic versioning, 616
updating, 616

geometry managers, Ruby/Tk GUI toolkit, 453
getters and setters, 56, 59
Gherkin notation language, 594
Gibson, William, 287
Gilbert, W. S., 182
GIMP (GNU Image Manipulation Program),

Ruby/GTK3 GUI toolkit, 467
GIO library (Ruby/GTK3 GUI toolkit), 479
git dependencies and gems, 616
Glib library (Ruby/GTK3 GUI toolkit), 479
global constants

ARGF, 539
ENV, retrieving/setting environment variables,

545-546
global variables, ARGV, 538
glyphs, internationalization, 132
GMT (Greenwich Mean Time), 212-213, 224

744 Index

GNOME (GNU Network Object Model
Environment), Ruby-GNOME2 project,
479

Golden Gate RubyConf, 726
Gotham RubyConf, 726
grads (trigonometry), calculating, 183-184
grapheme, internationalization, 132
graphical interfaces. See GUI toolkits
graphical text editors, 717
graphics

resizing, 572-573
RMagick image manipulation, 569

converting graphics, 572
drawing API, 576-579
resizing images, 572-573
retrieving graphics information, 570-572
special effects/transformations, 573-576

Shoes 4 GUI toolkit, 450
graphs, 287. See also digraphs (directed graphs)

adjacency matrices, 304-307
cliques, 308
Euler circuits, 308-309
Euler paths, 309
fully connected graphs, determining, 307-308
iteration, 307
libraries, 310
unicursive graphs, 308
vertices, 304, 307
weighted graphs, 304

grave accents in command output strings, 11
Gray III, James Edward, 350
Gregorian calendar, 211, 224
grep method, selecting elements from arrays by

criteria, 240
Gross, David, 63
grouping threads, 508-509
groups (local), Ruby communities, 726
gsub method, string substitutions, 78
GTK. See Ruby/GTK3 GUI toolkit
GUI toolkits, 443

FXRuby GUI toolkit, 493
QtRuby

buttons, 481-482
C++ and, 490-491
check boxes, 486
development of, 480
licensing, 480

overview of, 480
radio buttons, 486
text, 483-484
widgets, 480-489
windowed application example, 480-481

Ruby/GTK3
airline ticket example, 474-477
buttons, 469-471, 476
check boxes, 476
development of, 467-468
libraries, 479
menus, 477-478
overview of, 467-468
radio buttons, 476
scrolling, 473
strings, 468
text, 471-473
widgets, 469-478
windowed application example, 468-469

Ruby/Tk, 467
buttons, 455-459, 463-466
calendar example, 453, 455
check boxes example, 463-464
geometry managers, 453
images, 458-459, 466
list boxes, 466
menus, 466
overview of, 452-453
radio buttons example, 465-466
roots, 452
scrolling, 466
telnet client example, 460-463
text, 459-463
thermostat example, 456-459
Tk development, 452
widgets, 452, 455-466
windowed application example, 453-455

Ruby/X11, 493
RubyMotion, 494
Shoes 4, 444

alert dialog box and button example, 445
buttons, 445
events, 450-451
graphics, 450
images, 450
installing, 445
JRuby installation, 444

Index 745

layouts, 448-449
online resources, 452
popularity of, 452
Quatrain generator example, 449
shapes, 450
sizing window, 445
text, 446-448

Swing
buttons, 492-493
windowed application example, 491-492

Win32API as a GUI, 494

H
Haase, Konstantin, 673
HAL 9000, 2001: A Space Odyssey, 585
Haml library and HTML generation, 680
Hansson, David Heinemeier, 661
hard links and files, 327, 334
hardware, detect_hardware method, 368-369
Harris, Alan, 673
hashes, 12, 231

arrays
converting hashes into arrays, 266
converting hashes to, 278
creating hashes from arrays, 268
inverting to form hashes, 257

comparing, 281-282
counting, 281-282
creating, 257, 260-261, 268
default value, specifying, 261-262
defining, 260
enumerator objects, 278-280
environment variables, storing as hashes, 546
extracting, 283-284
implementing with duplicate keys, 270-272
indexing, 273
inject method, 274-275
inverting, 265
iterating, 264-265, 277, 282
key-value pairs

accessing, 262-263
adding, 262-263
deleting, 264
selecting by criteria, 266-267

keys, 260
detecting, 265-266
finding difference/intersection of, 268
implementing hashes with duplicate keys,

270-272
values of, 273

“lazy” hashes, 284
merging, 268
partition method, 276
password hashing, 91
quantifiers, 275
searching, 280-281
selecting, 280-281
sorting, 267
sparse matrices, 269
syntax issues, 42
values, detecting, 265-266

heckle testing tool, 608
Hellesøy, Aslak, 596
Hello, world! programs. See sample programs
here-documents

strings and, 65-67
whitespace in, 67

heterogeneous design of arrays, 232
hexadecimal numbers, 177-179
hexdigest method, SHA-256 hash calculations of

strings, 95
hiding data, 3
hierarchies (class), partial inheritance hierarchy

and networking, 626
Hodel, Eric, 618
hours, working with, 222
hover event (Shoes 4 GUI toolkit), 451
HTML (Hypertext Markup Language)

layouts, 677
parsing

document parsing, 561-564
stream parsing, 564-566

partials, 677
templates

ERB and, 678-679
Haml library and, 680
Liquid and, 681
Mustache library and, 681

HTTP (Hypertext Transfer Protocol)
API, 686

JSON and, 686
REST API, 687

746 Index

HTTP servers
HTTP Responses, 662
Rack library, 664-666
simple server example, 662-663

Net::HTTP library, 686
web services and, 686

JSON for API, 686
REST API, 687

Hunt, Andy, 712
Hunter, Tim, 569

I
i18n

internationalization, 132
string interpretation, 132
translations, 144-145

IBM, 231
IBM Austin, 414
identifiers

rules for, 9
syntax issues, 42

idioms and Rubyisms list, 50-56
if statements, 16-17, 42
if-modifiers, 15
illegal access, securing against

queues, 297
stacks, 293

images
ImageMagick library, 569
resizing, 572-573
RMagick image manipulation, 569

converting images, 572
drawing API, 576-579
resizing images, 572-573
retrieving image information, 570-572
special effects/transformations, 573-576

Ruby/Tk GUI toolkit, 458-459, 466
Shoes 4 GUI toolkit, 450

IMAP servers, 647-649
impedence mismatches. See ORM
implicit/explicit numeric conversions, 175-176
implicit/explicit string conversions, 80-82
in operator, 247
include operations and modules, 28
include? method, string searches, 79
included method and modules, 385-386

index method
selecting elements from arrays by criteria, 241
string searches, 79

index variables, modifying, 46
indexing

hashes, 273
indexing functions and arrays, 242-244

inflate method, string compression, 91
inheritance, 53

defining, 4
diamond inheritance problem, 5
inheritance polymorphism, defining, 6
MI, 5, 372
partial inheritance hierarchy, networking, 626
single inheritance with implementation

sharing, 7
superclasses, inheriting from, 372-374

initialize method, 53
elaborate (complex) constructors, 366
initializing object attributes, 362

initialize_copy method, 383-384
initializing

arrays, 232
irb utility (development tools), 712

inject method, 274-275
inspect method

converting objects to printable representations,
390

debugging objects, 390
installing

files, 335
JRuby, 444
Shoes 4 GUI toolkit, 445

instances
class instance variables, 31, 56, 62
class versus, 51
instance attributes (OOP), creating, 364-366
instance methods

modules and, 385-387
pound sign and, 51

instance_eval method, preventing accidental
object attribute assignments, 367

instance_of? method, testing object classes,
375

instantiated objects, defining, 3
Integer method, converting strings to numbers,

87-89

Index 747

integers
definite integral computations, 182-183
large integers, 163-166

interactivity, testing, 553
interface polymorphism, defining, 6
interleaving arrays, 256
International Ruby Conference (RubyConf),

725
internationalization

Anglocentric bias in computer development,
129

ASCII, 131-132
collation, 142
UTF-8, 134

background of, 131-134
bytes, 132-134
character encodings, 135

collation, 141-143
encoding conversions, 139-140
normalization, 136-139
transliteration, 141

characters, defining, 133
codepoints, 135

composing/decomposing codepoints, 136
defining, 132
Unicode codepoints, 133

collation, 141-143
control characters, 131
defining, 130
development of, 131-134
encoding conversions, 139-140
glyphs, defining, 132
grapheme, defining, 132
i18n, 132
ISO-8859-1 (Latin-1), 134
Latin-1 (ISO-8859-1), 134
localization, defining, 130
localized formatting

currencies, 153
dates/times, 151
numbers, 152

Lojban, 144
m17n, 135
multibyte characters, 131
multilingualization, defining, 130
normalization, 136-139
precomposed notation, 133

strings, interpreting, 134
terminology, 132-134
translations

defaults, 146-147
i18n, 144-145
interpolation, 148
keys, 144
messages, 144
namespaces, 147
pluralization, 149-150
YAML, 144-145

transliteration, 141
UCS-2, 133
Unicode, 131, 133
UTF-8, 133

ASCII compatibility, 134
collation, 142

UTF-16, 133
wide characters, 131

interpolation, 86, 148
interpreted language, Ruby as, 8
interpreter, piping into, 552-553
intersections, sets, 288
introspection (program), 433

call stacks, 435
classes, tracking definitions, 435-438
objects

space, 434
tracking definitions, 435-438

program execution, monitoring, 439-441
inverting

arrays to form hashes, 257
hashes, 265

I/O (Input/Output), 311-312
buffered/unbuffered operations, 320-321
characters, grabbing from a keyboard, 336
CSV data format, 350-352
directories

chaining, 342
current directory, 341
current root, 342
defining, 313
deleting, 343
differentiating files from, 326
finding, 343-344
iteration, 342
listing entries, 342

748 Index

embedded data, reading, 339
external data storage, 353

MySQL databases, 354-356
PostgreSQL databases, 356-358

fcntl method, 330
fileno method, 330
files

appending, 315
binary files, 316-317
command-level manipulation, 334
comparing, 334
copying, 335
copying streams, 339
defining, 313
deleting, 334-335
determining size of, 325
differentiating directories from, 326
finding, 343-344
finding statistics on, 327
hard links, 327, 334
installing, 335
iteration by bytes, 337
iteration by characters, 337
iteration by lines, 337
locking, 318
moving, 335
opening/closing, 313-314
ownership, 321-323
pathnames, 332-334
permissions, 321-323
randomly accessing, 315-316
reading embedded data, 339
reading into memory, 336
reading program sources, 340
renaming, 334
streams and, 326
strings as files, 338-339
symbolic links, 327, 334
temporary files, 340-341
testing characteristics of, 326
timestamps, 323-324
truncating, 334
updating, 314
verifying existence of, 325

impedence mismatches, 358
ioctl (I/O control) method, 330
marshalling data, 344-345

customizing, 346-347
“deep copying”, 346
YAML, 347-349

nonblocking I/O, 330-331
ORM, 358-359
pathnames, 332-334
persisting data via JSON, 349-350
pipes, 328-329
program sources, reading, 340
readpartial method, 331
redirecting via Shell library, 542-543
Redis data stores, 359-360
select method, 330
simple I/O routines, 318-320
special operations, 330
SQL data storage via SQLite3, 352-353
streams

copying, 339
readpartial method, 331

syscall method, 330
IO (standard), manipulating, 537-538
IO objects, strings as, 74
ioctl (I/O control) method, 330
iOS, RubyMotion GUI toolkit, 494
IP (Internet Protocol)

IP addresses, matching in regular expressions,
122-123

networking and, 625
irb (interactive Ruby) utility (development

tools), 710-711
adding code to, 712-713
initializing, 712
lexer capabilities, 714-715
subsessions, 713
tab completion, 712
xmpfilter library, 714

IRC (Internet Relay Chats), 725
is_a? method, testing object classes, 375
Ishitsuka, Keiju, 172
ISO-8859-1 (Latin-1), internationalization, 134
iteration

arrays, 254-255, 282
directories, 342
enumerators, 277, 282
files, 337
graphs, 307
hashes, 264-265, 282

Index 749

iterators, 22
blocks, calling iterators in, 58
chaining together, 68
foreach iterator, Shell library, 544
function composition, 68
passing blocks to, 54
retry keyword, 53

ranges, 200-201
sets, 290

iwanttolearnruby.com website, 724

J
James, Geoffrey, 531
Java and Swing GUI toolkit

buttons, 492-493
windowed application example, 491-492

JavaScript
CoffeeScript and, 683-685
JSON and API, 686

Jekyll static site generator, 690
Johnson, Andrew

lookbehinds, 110
recursion in regular expressions, 121-122

Johnson, Lyle, 493
JRuby

installing, 444
threads and concurrency, 496

JSON (JavaScript Object Notation)
API and, 686
libraries

json standard library, 560
json-stream library, 560
Oj library, 560-561
yajl-ruby library, 561

objects, 558
parsing, 558

libraries, 560-561
navigating data, 559-560
non-JSON data types, 560

persisting data, 349-350
Julian calendar, 211

K
Katsuhiro, Ueno, 94
Kernel#trace_var method, monitoring program

execution, 440

Kernel.trap method, process manipulation, 537
keyboard, grabbing characters from (I/O), 336
keypress event (Shoes 4 GUI toolkit), 451
keys (translations), 144
keyword arguments. See named parameters
keyword-value pairs, matching in regular expres-

sions, 123
keywords

alias keyword, 34, 50
BEGIN keyword, 43
begin keyword, 43
break keyword and loops, 22
END keyword, 43
end keyword, 43
list of, 9
method names as keywords, 43
next keyword and loops, 22
redo keyword and loops, 22
retry keyword, 53
syntax issues, 43
then keyword, 43
yield keyword, 22, 52

Khayyam, Omar, 218
kill method and process manipulation, 536
killing threads, 501
Kilmer, Alfred Joyce, 298
kind_of? method, testing object classes, 375
Klabnik, Steve, 444
Kosako, K., 110-111

L
Latin-1 (ISO-8859-1), internationalization, 134
Lay of the Last Minstrel, The, 661
layouts

HTML templates, 677
Shoes 4 GUI toolkit, 448-449

“lazy” enumerators, 284
LCM (Least Common Multiples), 173
leap seconds, 218
leave event (Shoes 4 GUI toolkit), 451
length of strings, finding, 67
Levenshtein distance, calculating between two

strings, 96-97
lexers, irb utility (development tools), 714-715

750 Index

libraries
ActiveRecord library

databases and, 674-676
online resources, 676

Byebug debugging library, 596-599
graph libraries, 310
Haml library and HTML generation, 680
ImageMagick library, 569
JSON libraries

json standard library, 560
json-stream library, 560
Oj library, 560-561
yajl-ruby library, 561

Mustache library and HTML generation, 681
Net::FTP library, 627
Net::HTTP library, 686
Oj library (JSON), 560-561
Open-URI library, 658
Open3 library, IO (standard) manipulation,

537-538
OptionParser library, command-line parsing,

540-541
pp library, printing readable objects, 606-608
Rack library, 664-666
RSS standard library, 569
Ruby/GTK3 GUI toolkit, 479
Shell library

file method, 544
fileUtils method, 544
foreach iterator, 544
I/O redirection, 542-543
popdir method, 544
pushdir method, 544
Transact method, 544

yajl-ruby library (JSON), 561
licensing QtRuby, 480
LIFO (Last-In, First-Out) data structures.

See stacks
lightweight processes. See threads
line-oriented language, Ruby as, 8
links

hard links, 327, 334
symbolic links, 327, 334

Liquid templates and HTML generation, 681
list boxes, Ruby/Tk GUI toolkit, 466
listing

defined entities, 423-425
directory entries, 342

little-endians/big-endians, 181
load operations and modules, 29
Lobachevsky, Nikolai, 308
local Ruby groups, 726
local variables versus object attributes, 46
localization, defining, 130
localized formatting and internationalization

currencies, 153
dates/times, 151
numbers, 152

locking files, 318
locks (nested), thread synchronization, 518-519
logarithms, 184-185
Lojban, 144
Lone Star Ruby Conference, 726
lookaheads, 109
lookbehinds, 110-111
lookup tables, binary trees as, 302-303
loops, 45

break keyword, 22
for loops, 21, 46
loop method, 19
next keyword, 22
pretest loops, 19
redo keyword, 22
until loops, 21-22, 58
while loops, 21-22, 58

Love’s Labours Lost, 495
Lowell, Amy, 101
lowercase/uppercase characters

regular expressions, controlling in, 75
strings, controlling in, 74

Lucas, Edouard, 295

M
m17n, internationalization, 135
Mac OS X, RubyMotion GUI toolkit, 494
MacRuby project, 494
Madison+Ruby conference, 726
mail-news gateway network client example,

651-656
mailing lists (online resources), 724
mapping arrays, 250-251
margin boxes, Prawn and PDF documents, 580

Index 751

marshalling data, 344-345
customizing, 346-347
“deep copying”, 346
YAML, 347-349

Marx, Groucho, 644
Masatoshi, Seki, 692
Mastering Regular Expressions, 104
Math.sqrt function, 180
mathematical functions, caching via memoiza-

tion, 190-191
mathematical sets

arrays as, 244-248
universal sets, 247

mathn library, 172
prime factorization, 173
prime numbers, 174-175

matrices, 167-169. See also vectors
adjacency matrices, graphs as, 304-307
space matrices and arrays, 244
sparse matrices, hashes as, 269

Matusimoto, Yukihiro, 7
max method, selecting elements from arrays by

criteria, 241
McDonald, Ian, 409
mean/median/mode (data sets), finding,

185-186
median/mean/mode (data sets), finding,

185-186
membership tests, sets, 289
memberships (range), testing, 201
memoization, 190-191
memory

conserving, UTF-8, 134
files, reading into memory, 336
leaks, 41

menus
Ruby/GTK3 GUI toolkit, 477-478
Ruby/Tk GUI toolkit, 466

merging
hashes, 268
items in sets, 289

messages (explicit), sending to objects, 394-395
messages (translations), 144
metaclasses. See singleton classes
metavalues, symbols as, 196
Method objects, storing code as, 405-406

methods, 34-35
accessing, controlling access, 378-381
asctime method, 226
chaining, 393
chomp! method, removing newlines/characters

from strings, 84
chop method, removing newlines/characters

from strings, 83
class methods

class associations, 51
defining, 3

classify method and sets, 290
clear method, removing specific elements from

arrays, 253
collect method, mapping arrays, 250-251
compact method, removing nil values from

arrays, 251
controlling access, 378-381
count method

counting characters in strings, 92
counting frequency of values in arrays, 257

covector method, vector conversion, 170
days_in_month method, 228
defining, 2
deflate method, string compression, 91
delegating calls, 409-412
delete method

removing specific characters from strings, 93
removing specific elements from arrays, 251

delete_at method, removing specific elements
from arrays, 251

delete_if method, removing specific elements
from arrays, 252

detect method, selecting elements from arrays
by criteria, 240

digest method, SHA-256 hash calculations of
strings, 95

divide method and sets, 290-291
dump method, printing special characters from

strings, 93
exec method, running external systems, 533
exist? method and files, 325
exit method, process manipulation, 536
fcntl method and I/O, 330
file method, Shell library, 544
fileno method and I/O, 330
fileUtils method, Shell library, 544

752 Index

find method, selecting elements from arrays by
criteria, 240

find_all method, selecting elements from
arrays by criteria, 240

flat_map method, arrays as mathematical sets,
248

Float method, converting strings to numbers,
87-89

fork method, process manipulation, 534-536
forwarding calls, 409-412
freeze method, 27
grep method, selecting elements from arrays by

criteria, 240
gsub method, string substitutions, 78
hexdigest method, SHA-256 hash calculations

of strings, 95
include? method, string searches, 79
index method

selecting elements from arrays by criteria,
241

string searches, 79
inflate method, string compression, 91
initialize methods, 53
inject method, 274-275
instance methods

modules and, 385, 387
pound sign and, 51

Integer method, converting strings to num-
bers, 87-89

ioctl (I/O control) method and I/O, 330
Kernel.trap method, process manipulation,

537
Kernel#trace_var method, monitoring program

execution, 440
keywords as method names, 43
kill method, process manipulation, 536
loop method, 19
max method, selecting elements from arrays by

criteria, 241
min method, selecting elements from arrays by

criteria, 241
missing methods, 40
mktime method, 213
named parameters, 35
naming, 47
nonexistent methods, handling calls to,

429-430

operators as methods, 45
overriding methods, defining, 4
parentheses in method calls, 42
partition method, 276
pid method, process manipulation, 536
pop method, removing specific elements from

arrays, 252
popdir method, Shell library, 544
ppid method, process manipulation, 536
printf method, formatting numbers for

output, 162
private methods, 378-379
protected methods, 380-381
public methods, 381
push method, appending arrays, 253
pushdir method, Shell library, 544
quadratic method

Cucumber testing, 594-595
Minitest testing, 592-594
RSpec testing, 586-588

readpartial method, I/O and streams, 331
reject method

removing specific elements from arrays, 252
selecting elements from arrays by criteria,

241
removing, 425-426
returning expressions, 58
rewind method, randomly accessing files, 316
rindex method, string searches, 79
scan method

matching strings against a target string, 72
string searches, 79

searching for, 40
select method and I/O, 330
setter method, 53
shift method, removing specific elements from

arrays, 252
shuffle method, randomizing arrays, 248-249
singleton method, 35-36, 61, 396-397
size? method and files, 325
slice! method, removing specific elements from

arrays, 252
split method, tokenizing strings, 71-72
squeeze method, removing duplicate characters

from strings, 93
strftime method, 214, 222, 227
string method and crypt method, 90

Index 753

strip method, removing whitespace from
strings, 84

strip! method, removing whitespace from
strings, 84

sub method, string substitutions, 78
succ method

generating successive strings, 94
prime numbers, 174

symbols and, 197
syntax issues, 42
syscall method and I/O, 330
system method, running external systems,

532-533
top level methods, 53
to_f method, 16, 87-89
to_i method, converting strings to numbers,

87-89
to_s method, 27, 80-82
to_str method, string conversions, 80-82
Transact method, Shell library, 544
trap method, process manipulation, 537
unshift method, appending arrays, 253
update method, SHA-256 hash calculations of

strings, 95
upto method, generating successive strings, 94
word_wrap method, wrapping text lines in

strings, 100
zero method, matrices, 168

methods (OOP)
class-level methods, 368-370, 372
define_method, 419-422
private_class_method, 372

Meyer, Bertrand, 6
MI (Multiple Inheritance), 5, 372
Middleman static site generator, 688-689
middleware, 665
min method, selecting elements from arrays by

criteria, 241
Minitest testing tool, 589-594, 606
minutes, working with, 222
missing methods, 40
mixins, 28-29, 385, 388. See also modules
mktime method, 213
mode strings, opening/closing files, 313
mode/mean/median (data sets), finding,

185-186
modifiers, if-modifier, 15

modules. See also mixins
defined entities lists, obtaining, 423-425
defining, 7
Etc module, 554-555
include operations, 28
included method and, 385-386
inclusion, 406-408
instance methods and, 385-387
load operations, 29
mixins, modules as, 385, 388
namespace management, 384
nesting, 399-400
require operations, 29

modulus operator, 44
money (currencies), formatting (localized) and

internationalization, 153
monitoring

program executions, 439-441
thread synchronization via monitored queues,

520-521
“monkey-patching”, 62
months

dividing into weeks, 229
Nth weekday, finding in a month, 215-216
number of days in a month, determining, 228

motion event (Shoes 4 GUI toolkit), 451
MountainWest RubyConf, 726
moving files, 335
multibyte characters, internationalization, 131
multidimensional arrays, 249-250
multiline blocks, 54
multilingualization, defining, 130
multiple assignments, 16
multitasking, fibers and cooperative multitask-

ing, 527-530
Mustache library and HTML generation, 681
mutexes (mutual exclusions), thread synchro-

nization, 512-514
MySQL databases, data storage, 354-356

N
Nakada, Nobu, 409
named matches, 114-115
named parameters, 35
namespaces

in translations, 147
managing via modules, 384

754 Index

naming
files, 334
methods, 47
variables, 47

Nanoc static site generator, 690
NArray library, 167
negative/positive lookaheads, 109
negative/positive lookbehinds, 110-111
nesting

classes, 399-400
modules, 399-400
nested locks, thread synchronization, 518-519

network layer (networking), 625
networking

application layer, 625
clients

contacting NTP servers, 641
contacting timeservers (official), 641
encoding/decoding attachments, 649-651
IMAP server interactions, 647-649
mail-news gateway example, 651-656
Open-URI library, 658
POP server interactions, 642-643
retrieving random number generator exam-

ple, 638-641
sending email with SMTP, 644-647
web pages, retrieving from a URL, 657

data link layer, 625
IP, 625
network layer, 625
Net::FTP library, 627
Net::Protocol class, 627
Net::Telnet class, 627
servers

contacting NTP servers, 641
HTTP servers, 662-666
IMAP server interactions, 647-649
peer-to-peer chess server example, 630-637
POP server interactions, 642-643
simple server example, 627-629
threaded servers, 629-630
time of day simple server example, 627-629

TCP, 626
transport layer, 625
UDP, 626

Net::HTTP library, 686
Neukirchen, Christian, 664

new method, classes and instantiating new
objects, 362

newlines
dot matches in regular expressions, 119
removing from strings, 83-84

news-mail gateway network client example,
651-656

next keyword and loops, 22
NFC (Normalization Form KC), 137
Nicholas, Nick, 144
nil values

arrays, removing from, 251
as wildcards in tuplespaces, 702

nil variables, 51
nodes (trees), 298
Nokogiri, XML and HTML parsing

document parsing, 561-564
stream parsing, 564-566

nonblocking I/O, 330-331
noncapturing groups, regular expressions, 112
normalization, 136-139
notify operations on tuplespace (Rinda), 701
Nth weekday, finding in a month, 215-216
NTP (Network Time Protocol) servers, contact-

ing, 641
null characters, representing, 45
null set tests, 289
null strings, 45
numbered global variables, 50
numbers

** operator, 157
architecture byte order, 181
base conversions, 179-180
big-endians, 181
Bigdecimal standard library and large integers,

163-166
Bignum large integers, 163
binary numbers, 177-179
bit-level operations, 177-179
coercing values, 176-177
comparing, 160-161
complex numbers, 171-172
converting strings to numbers, 87-89
correlation coefficients, 187-189
data sets

finding mean/median/mode, 185-186
standard deviation, 187
variance, 187

Index 755

definite integral computations, 182-183
degrees (trigonometry), calculating, 183-184
division, 157
exponentiation, 157
Fixnum

bit-level operations, 177-179
large integers, 163

floating point numbers, 156-157
comparing, 160-161
rounding, 158-160

formatting
for output, 162
with commas, 162

formatting (localized) and internationalization,
152

GCD, 173
grads (trigonometry), calculating, 183-184
hexadecimal numbers, 177-179
implicit/explicit conversions, 175-176
large integers, 163-166
LCM, 173
little-endians, 181
logarithms with arbitrary bases, 184-185
Math.sqrt function, 180
mathematic functions, caching via memoiza-

tion, 190-191
mathn library, 172

prime factorization, 173
prime numbers, 174-175

matrices, 167-171
memoization, 190-191
octal numbers, 177-179
prime factorization, 173
prime numbers, 174-175
radians (trigonometry), calculating, 183-184
random number generation, 189, 638-641
rational numbers, 166-167
rounding, 158-160
Ruby’s representation of, 156
square roots, 180
trigonometry, 183-184
vectors, 170-171

numeric constants, 11, 125

O
object literals, 26
Object#clone method, 381-382
Object-Oriented Perl, 6
objects

attributes
defining, 2-3
local variables versus attributes, 46
preventing accidental assignments, 367

class attributes, defining, 3
class methods, defining, 3
classes

defining, 3
testing, 374-377

constructors, defining, 3
converting to

arrays, 389-390
printable representations, 390
strings, 388-389

copying, 381-384
creating without constructors, 384
debugging, 390
defining, 2
definitions, tracking changes, 435-438
destructors, defining, 3
encapsulation, defining, 2
enumerator objects, 278-280
equality of, testing, 377-378
explicit messages, sending to objects, 394-395
finalizers, defining, 432-433
freezing, 391-393
initialize methods, 53
instantiated objects, defining, 3
JSON objects, 558
Method objects, storing code as, 405-406
methods, defining, 2
object attributes, defining, 3
printing readable objects, 606-608
Proc object, 54, 403-405
Ruby, 26
space and program introspection, 434
specializing an individual object, 396-399

octal numbers, 177-179
Octopress static site generator, 690
Oj library (JSON), 560-561
Old King Cole, 517
Omnibus, distributing Ruby programs, 551

756 Index

Once in a Lifetime, 435
Onigmo and regular expressions, 101
online resources. See also conferences

ActiveRecord library, 676
bug reports, 724
CoffeeScript, 685
CSS, 682
feature requests, 724
forums, 724
gems, 613
IRC, 725
JavaScript, 685
mailing lists, 724
Middleman static site generator, 689
Minitest testing tool, 594
Nokogiri, 564-566
podcasts, 724
Puma web server, 666
Rake utility (development tools), 710
RMagick image manipulation, 576, 579
Ruby-GNOME2 project, 479
Sass, 683
Shoes 4 GUI toolkit, 452
Unicorn web server, 666
websites, 723
YARD, 622

OOP (Object-Oriented Programming)
abstract classes, defining, 7
allocate method, 384
AOP, 414
attributes

class-level attributes, 3, 368-372
defining, 2
instance attributes, 364-366

blocks, symbols as, 406
class methods, defining, 3
classes

built-in classes, 26, 28
creating, 29-32, 34
creating data-only classes (structs), 390-391,

399
creating structs (data-only classes), 390-391,

399
defining, 3
defining class-level readers/writers, 412-413
inheriting from superclasses, 372-374
module inclusion, 406-408

nesting, 399-400
parametric classes, 400-403
testing object classes, 374-377

classless (prototype-based) OOP, 414
concrete type classes, defining, 7
constructors

creating objects without constructors, 384
defining, 3
elaborate (complex) constructors, 366-367
elaborate constructors, 368
multiple constructors, 362-363

DBC, 415
destructors, defining, 3
diamond inheritance problem, defining, 5
encapsulation, defining, 2
inheritance

defining, 4
single inheritance with implementation

sharing, 7
inheritance polymorphism, defining, 6
instantiated objects, defining, 3
interface polymorphism, defining, 6
methods

accessing, 378-381
chaining, 393
class-level methods, 368-372
controlling access, 378-381
defining, 2
delegating calls, 409-412
forwarding calls, 409-412
private methods, 378-379
protected methods, 380-381
public methods, 381
Ruby, 34-36

MI, defining, 5
mixins, Ruby, 28-29
modules

defining, 7
included method and, 385-386
inclusion, 406-408
instance methods and, 385-387
mixins, 385, 388
namespace management, 384
nesting, 399-400
Ruby, 28-29

named parameters, 35

Index 757

objects
attributes, 3
converting to arrays, 389-390
converting to printable representations, 390
converting to strings, 388-389
copying, 381-384
debugging, 390
defining, 2
freezing, 391-393
Method objects, 405-406
Proc objects, 403-405
Ruby, 26
sending explicit messages to objects, 394-395
specializing and individual object, 396-399
storing code as Method objects, 405-406
storing code as Proc objects, 403-405
testing equality of objects, 377-378
testing object classes, 374-377

overriding methods, defining, 4
parameters, detecting default parameters, 409
polymorphism, defining, 6
prototype-based (classless) OOP, 414
readers/writers (class-level), defining, 412-413
Ruby

built-in classes, 26-28
creating classes, 29-34
methods, 34-36
mixins, 28-29
modules, 28-29
named parameters, 35
objects, 26
symbols, 27
variables, 27

strings, freezing, 392
subclasses, defining, 4
superclasses

defining, 4
inheriting from, 372-374

symbols
blocks as, 406
Ruby, 27

variables, Ruby, 27
writers/readers (class-level), defining, 412-413

OOPSLA and Ruby, 725
open classes, 62
open/closed ranges, 199
Open-URI library, 658

Open3 library, IO (standard) manipulation,
537-538

opening/closing files, 313-314
operators, 44

& operator, 45
&& operator, 45
* (array expansion operator), 60
** operator, 157
== operator, specialized string comparisons, 70
=== (threequal) operator, 18, 48, 59, 376
<< >> (append operator)

appending arrays, 253
appending items to strings, 83
arrays as queues, 254

- (set difference operator), arrays as mathemat-
ical sets, 245

-= operator, 52
.. operator, 50
… range operator, 50
| operator, 45
|| operator, 16, 45
+ (concatenation operator), arrays as mathe-

matical sets, 245
+= operator, 52
and-or operators, 45
assignment operators, 46
“bare” scope, 53
binary set operators, 289
dequeue operator, 292
enqueue operator, 292
flip-flop operator and ranges, 203-206
in operator, 247
list of, 13-14
methods, operators as, 45
modulus operator, 44
overloading, 33, 52
pop operator

arrays as stacks, 254
stacks and, 292

push operator
arrays as stacks, 254
stacks and, 292

range operators, 50-51
reflexive assignment operators, 52
scope operator, 56
shift operator, arrays as queues, 254
ternary decision operator, 58
unshift operator, arrays as queues, 254

758 Index

optimizing performance, measuring and,
601-606

OptionParser library, command-line parsing,
540-541

ordinary strings, representing, 64
ORM (Object-Relational Mapper), 358-359

ActiveRecord library
databases and, 674-676
online resource, 676

data stores and, 676
Orwell, George, 377
OS (current), determining, 554
OSCON (Open Source Convention) and Ruby,

725
overloading operators, 33, 52
overriding methods, defining, 4
ownership of files, 321-323

P
packaging/distributing code

Bundler
creating gems, 617
Gemfile.lock files, 614
Gemfiles, 614
git dependencies, 616
private gems, 617
requiring gems, 615
running gem commands, 615
semantic versioning, 616
updating gems, 616

Rubygems
creating gems, 613
directory of gems, 612
installing dependencies, 612
installing gems, 612

page coordinates, Prawn and PDF documents,
580

Pango library (Ruby/GTK3 GUI toolkit), 479
parameters

default parameters, detecting, 409
passing via yield keyword, 22
Rails framework, 671-672
Sinatra framework, 671

parametric classes, creating, 400-403
parent classes. See superclasses
parentheses in method calls, 42

parents (nodes), 298
Parley forum, 724
parsing

Atom feeds, 567-568
comma-separated data in strings, 86-87
command-line, 540-541
HTML

document parsing, 561-564
stream parsing, 564-566

JSON, 558
libraries, 560-561
navigating data, 559-560
non-JSON data types, 560

RSS feeds, 567-568
time/date strings, 225-226
XML

document parsing, 561-564
stream parsing, 564-566

partial inheritance hierarchy, networking, 626
partials (HTML templates), 677
partition method, 276
passing threads, 503
password hashing, 91
pathnames, 332-334
PDF documents and Prawn

basic concepts/techniques, 579-580
bounding boxes, 580
cursors, 580
document example, 580-583
margin boxes, 580
page coordinates, 580
points (unit of measurement), 580

peer-to-peer chess server networking example,
630-637

performance
measuring, 601-606
threads and, 496
permissions (files), 321-323

persisting data via JSON, 349-350
Pfeiffer, Tobias, 444
pid (process ID), 534
pid method, process manipulation, 536
pipes, 328-329
piping into Ruby interpreter, 552-553
platforms, determining current platform, 554
plug-ins (Vim), 718
pluralization in translations, 149-150
podcasts (online resources), 724

Index 759

poetry mode, 59
pointers (dangling), 41
points (unit of measurement), Prawn and PDF

documents, 580
Politics, 723
polymorphism, defining, 6
POP (Post Office Protocol) servers, 642-643
pop method, removing specific elements from

arrays, 252
pop operator

arrays as stacks, 254
stacks and, 292

popdir method, Shell library, 544
Pope, Tim, 718
positive/negative lookaheads, 109
positive/negative lookbehinds, 110-111
PostgreSQL databases, data storage, 356-358
pound sign (#)

instance methods and, 51
strings, 43
syntax issues, 43

pp library, printing readable objects, 606-608
ppid method, process manipulation, 536
Prawn and PDF documents

basic concepts/techniques, 579-580
bounding boxes, 580
cursors, 580
document example, 580-583
margin boxes, 580
page coordinates, 580
points (unit of measurement), 580

precomposed notation, internationalization, 133
pretest loops, 19
prime factorization of numbers, 173
prime numbers, 174-175
printf method, formatting numbers for output,

162
printing

dates, 151
readable objects, 606-608
special characters in strings, 93
time values, 226

prioritizing threads, 502
private gems, 617
private methods, 378-379
private_class_method, 372
Proc object, 54, 403-405

processes
defining, 495
lightweight processes. See threads
manipulating, 534

exit method, 536
fork method, 535-536
Kernel.trap method, 537
kill method, 536
pid method, 536
ppid method, 536
trap method, 537

pid, 534
Process module, 537
threads and, 495

program introspection, 433
call stacks, 435
classes, tracking definitions, 435-438
objects

space, 434
tracking definitions, 435-438

program execution, monitoring, 439-441
program sources, reading, 340
programming perspectives in Ruby, 44-47
Programming Ruby, 712
programs

monitoring executions, 439-441
sample programs, 14-15

protected method, 367, 380-381
prototype-based (classless) OOP, 414
Pry debugging tool, 600-601
pry utility (development tools)

basic commands list, 715
documentation, 716
evaluating expressions, 715
help, finding, 716
keyboard input, 715
sending commands, 716
shell-mode feature, 716
viewing source code, 716

pseudovariables, 44
public methods, 381
Puma web server, 666
punctuation (unbalanced), detecting in stacks,

294
push method, appending arrays, 253
push operator

arrays as stacks, 254
stacks and, 292

pushdir method, Shell library, 544

760 Index

Q
QtRuby GUI toolkit

buttons, 481-482
C++ and, 490-491
check boxes, 486
development of, 480
licensing, 480
overview of, 480
radio buttons, 486
text, 483-484
widgets, 485

button building example, 482
check boxes, 486
customizing widgets, 487-489
radio buttons, 486
text editor example, 483-484
TimerClock custom widget example,

487-489
windowed application example, 480-481

quadratic method
Cucumber testing, 594-595
Minitest testing, 592-594
RSpec testing, 586-588

quantifiers
enumerators and, 275
regular expressions, 106-109

Quatrain generator example (Shoes 4 GUI
toolkit), 449

queries (thread status), 500-501
question mark (?), syntax issues, 43
queue classes, thread synchronization, 515-516
queues, 287

arrays as, 254, 291
dequeue operator, 292
enqueue operator, 292
illegal access, securing against, 297
thread synchronization and monitored queues,

520-521

R
race conditions and threads, 496
Rack library, 664-666
radians (trigonometry), calculating, 183-184
radio buttons

QtRuby GUI toolkit, 486
Ruby/GTK3 GUI toolkit, 476

radio buttons example (Ruby/Tk GUI toolkit),
465-466

Rails, 667
asset pipeline, 681-685
CoffeeScript and JavaScript, 683-685
HTML

ERB and, 678-679
Haml library and, 680

parameters, 671-672
Rails 4 Way, The, 673, 676
routing, 668-670
Sass and CSS, 682-683

RailsConf, 725
raise statements, exceptions, 23
Rake utility (development tools)

actions, 707-708
command-line options, 710
documentation, 710
online resources, 710
Rakefiles, 706-709
tasks, 706
terminology of, 706
uses for, 706

Ramaze, 667
random number generation, 189, 638-641
randomizing arrays, 248-249
randomly accessing files, 315-316
range operators, 50-51
ranges

backward ranges, 202
converting to arrays, 202
custom ranges, 206-209
defining, 193, 199
endpoints, finding, 200
flip-flop operator and, 203-206
floating point ranges, 201
iterating over, 200-201
memberships, testing, 201
open/closed ranges, 199

rational numbers, 166-167
rbenv utility, version management, 720-721
RDoc, documenting code via, 618-619

advanced documentation with YARD, 622
simple markup example, 620-622

rdoc.info website, 723
read all operations on tuplespace (Rinda), 700
read operations on tuplespace (Rinda), 699

Index 761

readers/writers (class-level), defining, 412-413
reading

embedded data, 339
files into memory, 336
program sources, 340

readpartial method, I/O and streams, 331
recursion

regular expressions, 121-122
stacks, 295-296

recursive deletion, thread synchronization,
526-527

Redis data stores, 359-360
Redmine bug tracking system, 724
redo keyword and loops, 22
reflection, 38-40
reflexive assignment operators, 52
regular expressions, 11, 16, 101, 127-128, 135

anchors, 105-106
backreferences, 111-115
characters

character classes, 116-118
escaping special characters, 105

compiling, 104-105
doubled words, detecting in text, 126
embedded options, 119-120
embedded subexpressions, 120-122
extended regular expressions, 118-119
lookaheads, 109
lookbehinds, 110-111
matching

all-caps words, 127
date/time strings, 125-126
IP addresses, 122-123
keyword-value pairs, 123
numeric constants, 125
Roman numerals, 124
version numbers, 127

named matches, 114-115
newline and dot matches, 119
noncapturing groups, 112
Onigmo engine, 101
quantifiers, 106-109
recursion in, 121-122
symbols/notations list, 102, 104
syntax of, 102, 104
uppercase/lowercase characters, controlling, 75
zero-length matches in, 58

Rehn, Arno, 480
reject method

removing specific elements from arrays, 252
selecting elements from arrays by criteria, 241

relationship operator. See threequal operator
(===)

relationship tests, sets, 289
release event (Shoes 4 GUI toolkit), 451
removing

characters from strings, 83-84, 93
classes, 427
duplicate elements from arrays, 256
methods, 425-426
newlines from strings, 83-84
nil values from arrays, 251
specific elements from arrays, 251-252
whitespace from strings, 84

renaming files, 334
rendezvous (threads), 505
renewing expired tuples (Rindas), 702
repeating strings, 85
REPL (Read-Eval-Print-Loop) tools. See Pry

debugging tool
requesting features (online resources), 724
require operations and modules, 29
rescue clauses, 23
resizing images, 572-573
resources (online). See also conferences

ActiveRecord library, 676
bug reports, 724
CoffeeScript, 685
CSS, 682
feature requests, 724
forums, 724
gems, 613
IRC, 725
JavaScript, 685
mailing lists, 724
Middleman static site generator, 689
Minitest testing tool, 594
Nokogiri, 564, 566
podcasts, 724
Puma web server, 666
Rake utility (development tools), 710
RMagick image manipulation, 576, 579
Ruby-GNOME2 project, 479
Sass, 683

762 Index

Shoes 4 GUI toolkit, 452
Unicorn web server, 666
websites, 723
YARD, 622

respond_to? method, testing object classes, 376
REST (Representational State Transfer) API,

687
retrieving

classes by name, 418
constants by name, 418

retry keyword, 53
return values in threads, capturing, 505
reusing code. See inheritance
reversing

arrays, 256
strings, 92

rewind method, randomly accessing files, 316
ri (Ruby Index) utility (development tools),

716-717
Rinda

development of, 698
Rinda::Ring and service discovery, 703-704
tuples, examples of, 698
tuplespace

class matches, 702
creating, 699
defining, 698
expiring/renewing tuples, 702
nil values as wildcards, 702
notify operations, 701
read all operations, 700
read operations, 699
synchronization, 700
take operations, 700
write operations, 700

rindex (right index) method, string searches, 79
RMagick image manipulation, 569

drawing API, 576-579
image conversions, 572
image information, retrieving, 570-572
resizing images, 572-573
special effects/transformations, 573-576

Roman numerals, matching in regular expres-
sions, 124

roots, 298
cube roots, 180
current root, changing, 342

fourth roots, 180
Ruby/Tk GUI toolkit, 452

rot13 text, encoding/decoding, 89
rounding floating point numbers, 158-160
routing

Rails framework, 669-671
Sinatra framework, 668-669

RSpec testing tool, 586-589, 606
RSS feeds, 566

generating, 568-569
parsing, 567-568

Rubaiyat, The, 218
Rubinius, threads and concurrency, 496
rubocop consistent styling tool, 609
Ruby

agile language, Ruby as, 8
arrays, 11
attributes of, 8
blocks, 43
classes

built-in classes, 26, 28
creating, 29-32, 34

comments, 10
constants (numeric), 11
distributing programs, 551
dynamic functionality

GC, 40
missing methods, 40
reflection, 38-40
runtime coding, 36-38

embedded documentation, 10
exceptions, 22-25
expression-oriented language, Ruby as, 8
GC, 40
hashes, 12
identifiers, rules for, 9
interpreted language, Ruby as, 8
iterators, 22
keywords list, 9
line-oriented language, Ruby as, 8
methods, 34-36, 40
mixins, 28-29
modules, 28-29
named parameters, 35
objects, 26
OOP

built-in classes, 26, 28
creating classes, 29-32, 34

Index 763

methods, 34-36
mixins, 28-29
modules, 28-29
named parameters, 35
objects, 26
symbols, 27
variables, 27

operators list, 13-14
programming perspectives, 44-47
pseudovariables, 44
reflection, 38-40
regular expressions, 11, 16
runtime coding, 36-38
sample program, 14-15
strings, 11
symbols, 27
syntax issues, 41-44
syntax sugar, 12
variables, 11, 27

pseudovariables, 44
rules for, 9

VHLL, Ruby as, 8
Ruby Central conference, 725
Ruby interpreter, piping into, 552-553
Ruby Rogues podcast, 724
Ruby Weekly mailing list, 724
ruby-doc.org website, 723
Ruby-GNOME2 project, 479
ruby-lang.org website, 723
ruby-talk mailing list, 724
Ruby/ATK library (Ruby/GTK3 GUI toolkit),

479
Ruby/GDK library (Ruby/GTK3 GUI toolkit),

479
Ruby/GdkPixbuf library (Ruby/GTK3 GUI

toolkit), 479
Ruby/GIO library (Ruby/GTK3 GUI toolkit),

479
Ruby/Glib library (Ruby/GTK3 GUI toolkit),

479
Ruby/GTK library (Ruby/GTK3 GUI toolkit),

479
Ruby/GTK3 GUI toolkit

airline ticket example, 474-477
buttons, 469-471, 476
check boxes, 476
development of, 467-468

libraries, 479
menus, 477-478
overview of, 467-468
radio buttons, 476
scrolling, 473
strings, 468
text, 471-473
widgets

airline ticket example, 474-477
button building example, 471
menus, 478
text editor example, 472-473
windowed application example, 469

windowed application example, 468-469
Ruby/Pango library (Ruby/GTK3 GUI toolkit),

479
Ruby/Tk GUI toolkit, 467

buttons, 455-459, 463-466
calendar example, 453-455
check boxes example, 463-464
geometry managers, 453
images, 458-459, 466
list boxes, 466
menus, 466
overview of, 452-453
radio buttons example, 465-466
roots, 452
scrolling, 466
telnet client example, 460-463
text, 459-463
thermostat example, 456-459
Tk development, 452
widgets, 452

button building example, 455-459
check boxes example, 463-464
images, 466
list boxes, 466
menus, 466
radio buttons example, 465-466
scrolling, 466
text example, 459-463

windowed application example, 453, 455
Ruby/X11 GUI toolkit, 493
RubyConf (International Ruby Conference),

725
RubyConf Brasil, 725

764 Index

Rubygems
creating, 613
dependencies, 612
directory of gems, 612
installing, 612

Rubyisms and idioms list, 50-56
RubyMine graphical text editor, 717
RubyMotion GUI toolkit, 494
runtime coding, 36-38
Russell, Bertrand, 396
rvm (Ruby Version Manager), 719-720

S
sample programs, 14-15
Sansonetti, Laurent, 494
Sass and CSS, 682-683
scan method

matching strings against a target string, 72
string searches, 79

scope operator, 56
Scott, Sir Walter, 661
scripts

command-line
ARGF global constant, 539
ARGV global variable, 538
parsing, 540-541

directory trees, copying, 548-549
disks, determining free space on, 550-551
environment variables

retrieving/setting, 545-546
storing as arrays, 546
storing as hashes, 546

Etc module, 554-555
external programs, running

capturing command output, 533-534
exec method, 533
IO (standard) manipulation, 537-538
process manipulation, 534-537
system method, 532-533

files, deleting based on criteria, 549-550
interactivity testing, 553
OS (current), determining, 554
platforms (current), determining, 554
Ruby interpreter, piping into, 552-553
Ruby programs, distributing, 551

Shell library
file method, 544
fileUtils method, 544
foreach iterator, 544
I/O redirection, 542-543
popdir method, 544
pushdir method, 544
Transact method, 544

system administration
ARGF global constant, 539
ARGV global variable, 538
copying directory trees, 548-549
deleting files based on criteria, 549-550
determining current platform/OS, 554
determining free space on disks, 550-551
distributing Ruby programs, 551
environment variables, 545-546
Etc module, 554-555
interactivity testing, 553
parsing command-line, 540-541
piping into Ruby interpreter, 552-553
running external programs, 532-538
Shell library, 542-544
text filters, 547-548

scrolling
Ruby/GTK3 GUI toolkit, 473
Ruby/Tk GUI toolkit, 466

SCSS (Syntactically Awesome Style Sheets) and
Sass, 682-683

searches
arrays, 280-281
collection searches and thread synchronization,

525-526
enumerators, 280-281
hashes, 280-281
strings, 79-80

seconds
converting to larger units of time, 217
leap seconds, 218

security
$SAFE levels, 430-432
drb, 693-694
dynamicity (dynamic features), 430-432
illegal access, preventing in

queues, 297
stacks, 293

taint levels, 430-432

Index 765

select method and I/O, 330
selecting

arrays, 280-281
enumerators, 280-281
hashes, 280-281

semantic versioning and gems, 616
servers (networking)

HTTP servers
HTTP Responses, 662
Rack library, 664-666
simple server example, 662-663

IMAP server interactions, 647-649
NTP server, contacting, 641
peer-to-peer chess server example, 630-637
POP server interactions, 642-643
simple server example, 627-629
threaded servers, implementing, 629-630
time of day simple server example, 627-629
web servers

Puma web server, 666
Rack library and, 664-666
Unicorn web server, 666

service discovery, drb and Rinda::Ring, 703-704
sessions, subsessions in irb utility (development

tools), 713
set difference operator (-), arrays as mathemati-

cal sets, 245
sets, 287

adding items to, 289
binary set operators, 289
classify method, 290
converting enumerators to sets, 278
creating, 288
divide method, 290-291
enumerables, converting to sets, 288
intersections, 288
iteration, 290
membership tests, 289
merging items in, 289
null set tests, 289
relationship tests, 289
unions, 288

setter and getter actions, 56, 59
setter methods, 53
Shakespeare, William, 361, 495
shapes, Shoes 4 GUI toolkit, 450

Shell library
file method, 544
fileUtils method, 544
foreach iterator, 544
I/O redirection, 542-543
popdir method, 544
pushdir method, 544
Transact method, 544

shell-mode (pry utility), 716
shift method, removing specific elements from

arrays, 252
shift operator, arrays as queues, 254
Shoes 4 GUI toolkit

alert dialog box and button example, 445
buttons, 445
events, 450-451
graphics, 450
images, 450
installing, 445
JRuby installation, 444
layouts, 448-449
online resources, 452
popularity of, 452
Quatrain generator example, 449
shapes, 450
text, 446-448
window, sizing, 445

shuffle method, randomizing arrays, 248-249
Silicon Valley Ruby Conference, 726
simple-cov code coveraging tool, 608
Sinatra, 668

parameters, 671
routing, 668-669
Sinatra: Up and Running, 673

single inheritance with implementation
sharing, 7

single-line blocks, 54
single-quoted strings, 11, 64
singleton classes, 61, 396-397
singleton methods, 61, 396-397
Singleton Pattern, 61
singletons, 35-36, 53, 61
size? method and files, 325
sizing images, 572-573
slice! method, removing specific elements from

arrays, 252

766 Index

SMTP (Simple Mail Transfer Protocol), sending
email with, 644-647

Snow Crash, 557
Sonnet 113, 361
sorting

arrays, 237-240, 258-259
data via binary trees, 300-302
hashes, 267

source code, viewing with pry utility (develop-
ment tools), 716

sources (program), reading, 340
sparse matrices

arrays and, 244
hashes as, 269

special characters, escaping in regular expres-
sions, 105

special effects/transformations in images,
573-576

special variables, 50
specialized string comparisons, 69
splat operator. See array expansion operator (*)
split method, tokenizing strings, 71-72
SQL (Structured Query Language), data storage,

352-353
square roots, 180
squeeze method, removing duplicate characters

from strings, 93
stacks, 287

arrays as, 254, 291
illegal access, securing against, 293
pop operator, 292
program introspection, 435
push operator, 292
recursion, 295-296
unbalanced punctuation, detecting, 294

standard deviation (data sets), determining, 187
star operator. See array expansion operator (*)
statements

case statements, 16-19, 47-50
if statements, 16-17, 42
raise statements, exceptions, 23
unless statements, 17

static code analysis tools, 608
static sites

Jekyll, 690
Middleman, 689
Nanoc, 690
Octopress, 690

Steel, Jr., Thomas, 311
step definitions and Cucumber testing, 595
Stephenson, Neal, 557
stock ticker simulation case study and drb,

695-698
stopping threads, 501
storing code

Method objects, 405-406
Proc objects, 403-405

storing data, 311-312
CSV data, 350-352
data stores, 676
databases, 674-676
directories

chaining, 342
current directory, 341
current root, 342
defining, 313
deleting, 343
differentiating files from, 326
finding, 343-344
iteration, 342
listing entries, 342

external data storage, 353
MySQL databases, 354-356
PostgreSQL databases, 356-358

files
appending, 315
binary files, 316-317
command-level manipulation, 334
comparing, 334
copying, 335
copying streams, 339
defining, 313
deleting, 334-335
determining size of, 325
differentiating directories from, 326
finding, 343-344
finding statistics on, 327
hard links, 327, 334
installing, 335
iteration by bytes, 337
iteration by characters, 337
iteration by lines, 337
locking, 318
moving, 335
opening/closing, 313-314
ownership, 321-323

Index 767

pathnames, 332-334
permissions, 321-323
randomly accessing, 315-316
reading embedded data, 339
reading into memory, 336
reading program sources, 340
renaming, 334
streams and, 326
strings as files, 338-339
symbolic links, 327, 334
temporary files, 340-341
testing characteristics of, 326
timestamps, 323-324
truncating, 334
updating, 314
verifying existence of, 325

impedence mismatches, 358
marshalling data, 344-345

customizing, 346-347
“deep copying”, 346
YAML, 347-349

ORM, 358-359
persisting data via JSON, 349-350
Redis data stores, 359-360
SQL data storage via SQLite3, 352-353

streams
copying, 339
files and, 326
I/O and streams, readpartial method, 331
parsing (XML and HTML), 564-566

strftime method, 214, 222, 227
strings

%q notation, 65
32-bit CRC calculations, 94-95
appending items to strings, 83
arrays

creating from strings, 69
interposing delimiters to form strings, 255

Base64 strings, encoding/decoding, 98
characters

counting, 92
data and, 63
printing special characters, 93
removing duplicate characters, 93
removing specific characters, 93

chomp! operations, 16
comma-separated data, parsing, 86-87

command output strings, 11
comparing

case sensitivity, 71
specialized comparisons, 69

compressing/decompressing, 91
concatenating strings, syntax issues, 44
converting

characters to ASCII codes, 80
implicit/explicit conversions, 80-82
to numbers, 87-89
to_s method, 80-82
to_str method, 80-82

date/time strings, matching in regular expres-
sions, 125-126

dotted decimal strings, 122
dotted quad strings, 122
double-quoted strings, 11, 64
embedding expressions within, 85-86
encryption, 90
files as strings, 338-339
formatting, 73
freezing, 392
here-documents, 65-67
i18n interpretation, 132
internationalization, 134
interpolating (delayed), 86
interpreting, 134
IO objects, strings as, 74
length of, finding, 67
Levenshtein distance, calculating between two

strings, 96-97
lookaheads, 109
lookbehinds, 110-111
mode strings, opening/closing files, 313
null strings, 45
objects, converting to strings, 388-389
one-character strings, creating, 69
ordinary strings, representing, 64
pound signs in, 43
printing, special characters, 93
processing

one character (byte) at a time, 68-69
one line at a time, 68

removing
duplicate characters, 93
specific characters, 93
trailing newlines/characters, 83-84
whitespace, 84

768 Index

repeating, 85
reversing, 92
rot13 text, encoding/decoding, 89
Ruby/GTK3 GUI toolkit, 468
scanning, 72
searching, 79-80
single-quoted strings, 11, 64
substitutions in, 78
substrings

accessing, 75-77
assigning, 77

successive strings, generating, 94
symbols, 27, 197-199
syntax issues, 43
tab characters, expanding/compressing, 98-99
text lines, wrapping, 99-100
threads and, 499
time/date strings, parsing, 225-226
tokenizing, 71-72
trees, converting to strings, 303-304
uppercase/lowercase characters, controlling, 74
whitespace, removing, 84

strip method, removing whitespace from
strings, 84

strip! method, removing whitespace from
strings, 84

Stroustrup, Bjarne, 6-7
structs (data-only classes), creating, 390-391,

399
style, rubocop consistent styling tool, 609
sub method, string substitutions, 78
subclasses, 4, 53
subexpressions, embedded subexpressions in reg-

ular expressions, 120-122
SublimeText 3 graphical text editor, 717
subscripted variables. See arrays
subsessions, irb utility (development tools), 713
substitutions (string), 78
substrings

accessing, 75-77
assigning, 77

subtrees, 298
succ (successor) method

prime numbers, 174
successive strings, generating, 94

superclass method, testing object classes, 377

superclasses
defining, 4
inheriting from, 372-374

swapping variables, 51
Swing GUI toolkit

buttons, 492-493
windowed application example, 491-492

Symbol class, symbols as blocks, 406
symbolic links and files, 327, 334
symbols

arguments, symbols as, 197
arrays, 27
built-in classes, 27
class attributes, defining, 197
converting to/from, 197-199
defining, 193-195
enumerations, symbols as, 195
metavalues, symbols as, 196
methods and, 197
names and, 194
strings, 27
syntax, 194
variables and, 197

synchronizing
array sorting, 258-259
threads, 509-510

collection searches in parallel, 525-526
condition variables, 517-518
monitored queues, 520-521
mutexes, 512-514
nested locks, 518-519
queue classes, 515-516
recursive deletion in parallel, 526-527
simple synchronization, 511-512
timeouts, 522-523
unsynchronized threads, 496
waiting for events, 524-525

tuplespace (Rinda), 700
syntax

Ruby syntax issues, 41-44
syntax sugar, 12, 52

syscall method and I/O, 330
system administration

command-line
ARGF global constant, 539
ARGV global variable, 538
parsing, 540-541

Index 769

deleting files based on criteria, 549-550
determining current platform/OS, 554
determining free space on disks, 550-551
directory trees, copying, 548-549
distributing Ruby programs, 551
environment variables

retrieving/setting, 545-546
storing as arrays, 546
storing as hashes, 546

Etc module, 554-555
external programs, running

capturing command output, 533-534
exec method, 533
process manipulation, 534-538
system method, 532-533

interactivity testing, 553
piping into Ruby interpreter, 552-553
Shell library

file method, 544
fileUtils method, 544
foreach iterator, 544
I/O redirection, 542-543
popdir method, 544
pushdir method, 544
Transact method, 544

text filters, 547-548
system method, running external systems,

532-533

T
tab characters, expanding/compressing in

strings, 98-99
tab completion via irb utility (development

tools), 712
tables (lookup), binary trees as, 302-303
taint levels (security), 430-432
take operations on tuplespace (Rinda), 700
Talking Heads, 435
Tanaka, Akira, 658
Tanaka, Masahiro, 167
Tanenbaum, Andrew S., 625
Tao of Programming, The, 531
tap method, chaining methods, 393
tasks (Rake utility), 706
TCP (Transmission Control Protocol) and net-

working, 626

telnet client example (Ruby/Tk GUI toolkit),
460-463

templates (HTML)
ERB and, 678-679
Haml library and, 680
Liquid and, 681
Mustache library and, 681

temporary files, 340-341
Terminator 2: Judgment Day, 416
ternary decision operator, 58
testing

assertions and, 591-592
classes, object classes, 374-377
Cucumber testing tool, 594-596
development of, 585
expectation expressions, 588
file characteristics, 326
heckle testing tool, 608
interactivity, 553
Minitest testing tool, 589-594, 606
objects

equality of objects, 377-378
object classes, 374-377

range memberships, 201
RSpec testing tool, 586-589, 606

text
all-caps words, matching in regular expres-

sions, 127
doubled words, detecting in regular expres-

sions, 126
QtRuby GUI toolkit, 483-484
Ruby/GTK3 GUI toolkit, 471-473
Ruby/Tk GUI toolkit, 459-463
Shoes 4 GUI toolkit, 446-448
text editors (graphical), 717
text filters, 547-548
wrapping in strings, 99-100

TextMate 2 graphical text editor, 717
then keyword, syntax issues, 43
thermostat example (Ruby/Tk GUI toolkit),

456-459
Thomas, Dave, 60, 618, 652, 712
threaded servers (networking), implementing,

629-630
threads

$SAFE global variable, 502
creating, 497

770 Index

accessing thread-local variables, 498-500
changing thread status, 500-503
querying thread status, 500-501
strings, 499

deadlocks, 505
debugging, 507-508
defining, 495
disadvantages of, 496
exception-handling, 504-508
exiting, 501
fibers and cooperative multitasking, 527-530
grouping, 508-509
JRuby and, 496
killing, 501
passing, 503
performance and, 496
prioritizing, 502
race conditions, 496
rendezvous, 505
return values, capturing, 505
Rubinius and, 496
stopping, 501
synchronizing, 509-510

collection searches in parallel, 525-526
condition variables, 517-518
monitored queues, 520-521
mutexes, 512-514
nested locks, 518-519
queue classes, 515-516
recursive deletion in parallel, 526-527
simple synchronization, 511-512
timeouts, 522-523
unsynchronized threads, 496
waiting for events, 524-525

thread-safe code, 496
unsynchronized threads, 496
uses for, 496
waking stopped threads, 503

threequel operator (===), 18, 48, 59, 376
ticket (airline) example, Ruby/GTK3 GUI

toolkit, 474-477
time of day simple server example (networking),

627-629
timeouts, thread operation/synchronization,

522-523
TimerClock custom widget example (QtRuby

GUI toolkit), 487-489

times/dates
asctime method, 226
converting, 151

seconds to larger units of time, 217
to/from epochs, 217

current time, determining, 212
Date class, 225
Date standard library, 224-226
DateTime class, 225
Daylight Savings Time, 212
days

day of the week, determining, 214
day of the year, finding, 219
number of days in a month, determining,

228
days_in_month method, 228
Easter, determining the date of, 211, 215
epochs, 212, 217
formatting (localized) and internationalization,

151
GMT, 212-213, 224
Gregorian calendar, 211, 224
hours, working with, 222
Julian calendar, 211
leap seconds, 218
leap years, 221
minutes, working with, 222
mktime method, 213
months, dividing into weeks, 229
Nth weekday, finding in a month, 215-216
printing dates, 151
seconds

converting to larger units of time, 217
leap seconds, 218

specific dates (pre-epoch), working with, 224
specific times (post-epoch), handling, 212-214
strftime method, 214, 222, 227
Time class, 225
Time standard library, 226
time values

adding intervals to, 223
comparing, 223
computing the difference between two time

values, 224
formatting, 226
printing, 226

time zones, 222, 227-228

Index 771

time/date strings, parsing, 225-226
UTC, 212-213, 227
validating, 219-220
week of the year, finding, 220
weeks

dividing months into, 229
finding a week of the year, 220

years
finding a week of the year, 220
leap years, 221

timeservers (official), contacting, 641
timestamps and files, 323-324
Tk development, 452. See also Ruby/Tk GUI

toolkit
to_ary method, converting objects to arrays,

389-390
to_f method, 16, 87-89
to_i method, converting strings to numbers,

87-89
to_s method, 27

converting objects to strings, 388-389
string conversions, 80-82

to_str method
converting objects to strings, 388-389
string conversions, 80-82

tokenizing strings, 71-72
top level variables, 17
Tower of Hanoi puzzle, 295
TracePoint class, monitoring program execution,

439
tracking

class definitions, 435-438
object definitions, 435-438

transact method, Shell library, 544
transformations/special effects in images,

573-576
transforming arrays, 250-251
translations

defaults, 146-147
i18n, 144-145
interpolation, 148
keys, 144
messages, 144
namespaces, 147
pluralization, 149-150
YAML, 144-145

transliteration, 141

transport layer (networking), 625
trap method, process manipulation, 537
traversing trees, 298-300, 303
trees, 287

arrays, converting to, 303-304
binary trees

as lookup tables, 302-303
breadth-first insertion, 299
implementing, 298-300
sorting data via, 300-302
traversing, 299-300

directory trees, copying, 548-549
nodes

ancestors, 298
children, 298
descendants, 298
parents, 298

roots, 298
strings, converting to, 303-304
subtrees, 298
traversing, 298-300, 303

trigonometry, 183-184
truncating files, 334
tuplespace (Rinda)

class matches, 702
creating, 699
defining, 698
expiring/renewing tuples, 702
nil values as wildcards, 702
notify operations, 701
read all operations, 700
read operations, 699
synchronization, 700
take operations, 700
write operations, 700

Tze, Sun, 163

U
UCS-2, internationalization, 133
UDP (User Datagram Protocol) and network-

ing, 626
umlauts, 137
unary unarray operator. See array expansion

operator (*)
unassigned variables, 51
unbalanced punctuation in stacks, 294

772 Index

unbuffered/buffered I/O operations, 320-321
undefining

classes, 427
methods, 425-426

undirected graphs. See graphs
Unicode

codepoints, 133
internationalization, 131-133
normalization, 138

Unicorn web server, 666
unicursive graphs, 308
unions (set), 288
universal sets, 247
UNIX

Rake utility (development tools), 706
Ruby/X11 GUI toolkit, 493

unless statements, 17
unless-else, 45
unshift method, appending arrays, 253
unshift operator, arrays as queues, 254
unsynchronized threads, 496
until loops, 21-22, 58
update method, SHA-256 hash calculations of

strings, 95
updating

files, 314
gems, 616

uppercase/lowercase characters
regular expressions, controlling in, 75
strings, controlling in, 74

upto method, generating successive strings, 94
URL (Uniform Resource Locators), retrieving

web pages from, 657
UTC (Coordinated Universal Time), 212-213,

227
UTF-8

ASCII compatibility, 134
backwards compatibility of, 134
collation, 142
internationalization, 133
interpreting, 134
memory conservation, 134

UTF-16, internationalization, 133

V
validating times/dates, 219-220
variables, 11. See also attributes

assigning values via for loops, 46
built-in classes, 27
class instance variables, 31, 56, 62, 371
class variables, 45, 62
classes, 45
closure variable, 55
declaring, 45
environment variables

retrieving/setting, 545-546
storing as arrays, 546
storing as hashes, 546

err variable, 24
for loops, assigning variable values via, 46
global variables, 538
index variable, 46
instance variables

class instance variables, 62
class instance variables versus, 56

local variables, 46
naming, 47
nil variables, 51
numbered global variables, 50
pseudovariables, 44
Ruby, 27
rules for, 9
swapping, 51
symbols and, 197
top level variables, 17
unassigned variables, 51

variance (data sets), determining, 187
vectors, 170-171. See also matrices
version management

chruby utility, 721
rbenv utility, 720-721
rvm, 719-720

version numbers, matching in regular expres-
sions, 127

versioning (semantic), gems, 616
vertices (graphs), 304, 307
VHLL (Very High-Level Language), Ruby as, 8
Vim, 717-718
von Neumann, John, 638

Index 773

W
Wagener, Amanda, 724
waking stopped threads, 503
web applications, 661

asset pipeline
CoffeeScript and JavaScript, 683-685
Sass and CSS, 682-683

data storage
data stores, 676
databases, 674-676

HTML
ERB, 678-679
Haml library, 680
layouts, 677
Liquid templates, 681
Mustache library, 681
partials, 677
templates, 677
templates and ERB, 678-679
templates and Haml library, 680
templates and Liquid, 681
templates and Mustache library, 681

HTTP servers
Rack library, 664-666
simple server example, 662-663

Rails framework, 667
asset pipeline, 681-685
CoffeeScript and JavaScript, 683-685
ERB and HTML, 678-679
Haml library and HTML, 680
parameters, 671-672
Rails 4 Way, The, 673, 676
routing, 669-671
Sass and CSS, 682-683

Ramaze framework, 667
Sinatra framework, 668

parameters, 671
routing, 668-669
Sinatra: Up and Running, 673

static sites
Jekyll, 690
Middleman, 688-689
Nanoc, 690
Octopress, 690

web services and HTTP, 686
JSON for API, 686
REST API, 687

web pages, retrieving from URL, 657
web resources

ActiveRecord library, 676
bug reports, 724
CoffeeScript, 685
CSS, 682
feature requests, 724
forums, 724
gems, 613
IRC, 725
JavaScript, 685
mailing lists, 724
Middleman static site generator, 689
Minitest testing tool, 594
Nokogiri, 564, 566
podcasts, 724
Puma web server, 666
Rake utility (development tools), 710
RMagick image manipulation, 576, 579
Ruby-GNOME2 project, 479
Sass, 683
Shoes 4 GUI toolkit, 452
Unicorn web server, 666
websites, 723
YARD, 622

web servers
Puma web server, 665-666
Rack library and, 664-666
Unicorn web server, 666

web services and HTTP, 686
JSON for API, 686
REST API, 687

websites
iwanttolearnruby.com, 724
rdoc.info, 723
ruby-doc.org, 723
ruby-lang.org, 723
static sites

Jekyll, 690
Middleman, 688-689
Nanoc, 690
Octopress, 690

weeks (times/dates)
day of the week, determining, 214
dividing months into, 229
week of the year, finding, 220

weighted graphs, 304

774 Index

Weirich, Jim, 194, 617
Well-Grounded Rubyist, 60
while loops, 21-22, 58
whitespace

here-documents, 67
removing whitespace from strings, 84

Whorf, Benjamin Lee, 1
wide characters, internationalization, 131
widgets

QtRuby GUI toolkit, 485
button building example, 482
check boxes, 486
customizing widgets, 487-489
radio buttons, 486
text editor example, 483-484
TimerClock custom widget example,

487-489
windowed application example, 480-481

Ruby/GTK3 GUI toolkit
airline ticket example, 474-477
button building example, 471
menus, 478
text editor example, 472-473
windowed application example, 469

Ruby/Tk GUI toolkit, 452
button building example, 455-459
check boxes example, 463-464
images, 466
list boxes, 466
menus, 466
radio buttons example, 465-466
scrolling, 466
text example, 459-463

wildcards, nil values as wildcards in tuplespaces,
702

Win32API as a GUI, 494
word_wrap method, 100
wrapping text lines in strings, 99-100
write operations on tuplespace (Rinda), 700
writers/readers (class-level), defining, 412-413
Wynne, Matt, 596

X
X11 GUI toolkit, 493
Xlib, 493
XML (Extensible Markup Language)

parsing
document parsing, 561-564
stream parsing, 564-566

Y2K and, 561
xmpfilter library, 714

Y
Y2K and XML, 561
yajl-ruby library (JSON), 561
YAML (Yet Another Markup Language),

144-145, 347-349
YARD (Yay! A Ruby Documentation tool), 622
years

day of the year, finding, 219
leap years, 221
week of the year, finding, 220

yield keyword, 22, 52
Yoshida, Kazuhiro, 493

Z
zero method and matrices, 168
zero-length matches in regular expressions, 58
zeroes, representing, 45
Ziegler, Austin, 194
zlib library, 94

	Contents
	Foreword
	Acknowledgments
	About the Authors
	Introduction
	1 Ruby in Review
	1.1 An Introduction to Object Orientation
	1.1.1 What Is an Object?
	1.1.2 Inheritance
	1.1.3 Polymorphism
	1.1.4 A Few More Terms

	1.2 Basic Ruby Syntax and Semantics
	1.2.1 Keywords and Identifiers
	1.2.2 Comments and Embedded Documentation
	1.2.3 Constants, Variables, and Types
	1.2.4 Operators and Precedence
	1.2.5 A Sample Program
	1.2.6 Looping and Branching
	1.2.7 Exceptions

	1.3 OOP in Ruby
	1.3.1 Objects
	1.3.2 Built-in Classes
	1.3.3 Modules and Mixins
	1.3.4 Creating Classes
	1.3.5 Methods and Attributes

	1.4 Dynamic Aspects of Ruby
	1.4.1 Coding at Runtime
	1.4.2 Reflection
	1.4.3 Missing Methods
	1.4.4 Garbage Collection

	1.5 Training Your Intuition: Things to Remember
	1.5.1 Syntax Issues
	1.5.2 Perspectives in Programming
	1.5.3 Ruby’s case Statement
	1.5.4 Rubyisms and Idioms
	1.5.5 Expression Orientation and Other Miscellaneous Issues

	1.6 Ruby Jargon and Slang
	1.7 Conclusion

