
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321712943
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321712943
https://plusone.google.com/share?url=http://www.informit.com/title/9780321712943
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321712943
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321712943/Free-Sample-Chapter

List of Patterns

Adaptive Model (487): Arrange blocks of code in a data structure to implement an
alternative computational model.

Alternative Tokenization (319): Alter the lexing behavior from within the parser.

Annotation (445): Data about program elements, such as classes and methods, which
can be processed during compilation or execution.

BNF (229): Formally define the syntax of a programming language.

Class Symbol Table (467): Use a class and its fields to implement a symbol table in
order to support type-aware autocompletion in a statically typed language.

Closure (397): A block of code that can be represented as an object (or first-class data
structure) and placed seamlessly into the flow of code by allowing it to reference its
lexical scope.

Construction Builder (179): Incrementally create an immutable object with a builder
that stores constructor arguments in fields.

Context Variable (175): Use a variable to hold context required during a parse.

Decision Table (495): Represent a combination of conditional statements in a tabular
form.

Delimiter-Directed Translation (201): Translate source text by breaking it up into
chunks (usually lines) and then parsing each chunk.

Dependency Network (505): A list of tasks linked by dependency relationships. To
run a task, you invoke its dependencies, running those tasks as prerequisites.

Dynamic Reception (427): Handle messages without defining them in the receiving
class.

Embedded Interpretation (305): Embed interpreter actions into the grammar, so that
executing the parser causes the text to be directly interpreted to produce the response.

Embedded Translation (299): Embed output production code into the parser, so that
the output is produced gradually as the parse runs.

Embedment Helper (547): An object that minimizes code in a templating system by
providing all needed functions to that templating mechanism.

Expression Builder (343): An object, or family of objects, that provides a fluent
interface over a normal command-query API.

Foreign Code (309): Embed some foreign code into an external DSL to provide more
elaborate behavior than can be specified in the DSL.

Function Sequence (351): A combination of function calls as a sequence of statements.

Generation Gap (571): Separate generated code from non-generated code by
inheritance.

Literal Extension (481): Add methods to program literals.

Literal List (417): Represent language expression with a literal list.

Literal Map (419): Represent an expression as a literal map.

Macro (183): Transform input text into a different text before language processing
using Templated Generation.

Method Chaining (373): Make modifier methods return the host object, so that
multiple modifiers can be invoked in a single expression.

Model Ignorant Generation (567): Hardcode all logic into the generated code so that
there’s no explicit representation of the Semantic Model.

Model-Aware Generation (555): Generate code with an explicit simulacrum of the
semantic model of the DSL, so that the generated code has generic-specific separation.

Nested Closure (403): Express statement subelements of a function call by putting
them into a closure in an argument.

Nested Function (357): Compose functions by nesting function calls as arguments of
other calls.

Nested Operator Expression (327): An operator expression that can recursively contain
the same form of expression (for example, arithmetic and Boolean expressions).

Newline Separators (333): Use newlines as statement separators.

Notification (193): Collects errors and other messages to report back to the caller.

Object Scoping (385): Place the DSL script so that bare references will resolve to a
single object.

Parse Tree Manipulation (455): Capture the parse tree of a code fragment to
manipulate it with DSL processing code.

Parser Combinator (255): Create a top-down parser by a composition of parser
objects.

Parser Generator (269): Build a parser driven by a grammar file as a DSL.

Production Rule System (513): Organize logic through a set of production rules, each
having a condition and an action.

Recursive Descent Parser (245): Create a top-down parser using control flow for
grammar operators and recursive functions for nonterminal recognizers.

Regex Table Lexer (239): Implement a lexical analyzer using a list of regular
expressions.

Semantic Model (159): The model that’s populated by a DSL.

State Machine (527): Model a system as a set of explicit states with transitions between
them.

Symbol Table (165): A location to store all identifiable objects during a parse to
resolve references.

Syntax-Directed Translation (219): Translate source text by defining a grammar and
using that grammar to structure translation.

Templated Generation (539): Generate output by handwriting an output file and
placing template callouts to generate variable portions.

Textual Polishing (477): Perform simple textual substitutions before more serious
processing.

Transformer Generation (533): Generate code by writing a transformer that navigates
the input model and produces output.

Tree Construction (281): The parser creates and returns a syntax tree representation
of the source text that is manipulated later by tree-walking code.

Domain-Specific
Languages

This page intentionally left blank

Domain-Specific
Languages

Martin Fowler
With Rebecca Parsons

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382–3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Fowler, Martin, 1963-
 Domain-specific languages / Martin Fowler.
 p. cm.
 Includes index.
 ISBN 0-321-71294-3 (hardcover : alk. paper) 1. Programming languages (Electronic computers)
2. Domain-specific programming languages. I. Title.
 QA76.7.F687 2010
 005.13--dc22
 2010026229

Copyright © 2011 Martin Fowler

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978–0–321–71294–3
ISBN-10: 0–321–71294–3
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
Second printing, November 2012

For Cindy

—Martin

This page intentionally left blank

xixPreface ...

1Part I: Narratives ..

3Chapter 1: An Introductory Example ...
3Gothic Security ..
4Miss Grant’s Controller ..
5The State Machine Model ..
9Programming Miss Grant’s Controller ...

16Languages and Semantic Model ...
19Using Code Generation ..
22Using Language Workbenches ...
24Visualization ..

27Chapter 2: Using Domain-Specific Languages ..
27Defining Domain-Specific Languages ...
29Boundaries of DSLs ..
32Fragmentary and Stand-alone DSLs ..
33Why Use a DSL? ..
33Improving Development Productivity ...
34Communication with Domain Experts ..
35Change in Execution Context ..
36Alternative Computational Model ..
36Problems with DSLs ..
37Language Cacophony ...
37Cost of Building ...
38Ghetto Language ...
39Blinkered Abstraction ...

Contents

vii

39Wider Language Processing ...
40DSL Lifecycle ...
42What Makes a Good DSL Design? ..

43Chapter 3: Implementing DSLs ..
43Architecture of DSL Processing ..
47The Workings of a Parser ..
49Grammars, Syntax, and Semantics ...
50Parsing Data ..
52Macros ..
53Testing DSLs ...
53Testing the Semantic Model ...
57Testing the Parser ...
61Testing the Scripts ..
62Handling Errors ...
64Migrating DSLs ...

67Chapter 4: Implementing an Internal DSL ..
68Fluent and Command-Query APIs ...
71The Need for a Parsing Layer ..
72Using Functions ...
77Literal Collections ...
79Using Grammars to Choose Internal Elements
80Closures ...
82Parse Tree Manipulation ...
84Annotation ..
85Literal Extension ...
85Reducing the Syntactic Noise ...
86Dynamic Reception ...
87Providing Some Type Checking ...

89Chapter 5: Implementing an External DSL ...
89Syntactic Analysis Strategy ..
92Output Production Strategy ...
94Parsing Concepts ...
94Separated Lexing ...
95Grammars and Languages ...
96Regular, Context-Free, and Context-Sensitive Grammars
98Top-Down and Bottom-Up Parsing ..

Contentsviii

100Mixing-in Another Language ...
101XML DSLs ..

105Chapter 6: Choosing between Internal and External DSLs
105Learning Curve ..
106Cost of Building ...
107Programmer Familiarity ...
108Communication with Domain Experts ...
108Mixing In the Host Language ..
109Strong Expressiveness Boundary ..
110Runtime Configuration ..
110Sliding into Generality ...
111Composing DSLs ...
111Summing Up ..

113Chapter 7: Alternative Computational Models
116A Few Alternative Models ...
116Decision Table ...
117Production Rule System ..
118State Machine ..
119Dependency Network ...
120Choosing a Model ..

121Chapter 8: Code Generation ..
122Choosing What to Generate ...
124How to Generate ...
126Mixing Generated and Handwritten Code
127Generating Readable Code ..
128Preparse Code Generation ...
128Further Reading ...

129Chapter 9: Language Workbenches ..
130Elements of Language Workbenches ..
131Schema Definition Languages and Meta-Models
136Source and Projectional Editing ...
138Multiple Representations ...
138Illustrative Programming ...
140Tools Tour ...
141Language Workbenches and CASE tools
142Should You Use a Language Workbench?

ixContents

145Part II: Common Topics ...

147Chapter 10: A Zoo of DSLs ...
147Graphviz ..
149JMock ..
150CSS ..
151Hibernate Query Language (HQL) ..
152XAML ...
155FIT ...
156Make et al. ...

159Chapter 11: Semantic Model ..
159How It Works ..
162When to Use It ...
163The Introductory Example (Java) ...

165Chapter 12: Symbol Table ...
166How It Works ..
167Statically Typed Symbols ...
168When to Use It ...
168Further Reading ...
168Dependency Network in an External DSL (Java and ANTLR)
170Using Symbolic Keys in an Internal DSL (Ruby)
172Using Enums for Statically Typed Symbols (Java)

175Chapter 13: Context Variable ..
175How It Works ..
176When to Use It ...
176Reading an INI File (C#) ..

179Chapter 14: Construction Builder ..
179How It Works ..
180When to Use It ...
180Building Simple Flight Data (C#) ...

183Chapter 15: Macro ...
184How It Works ..
184Textual Macros ..
188Syntactic Macros ..
192When to Use It ...

Contentsx

193Chapter 16: Notification ..
194How It Works ..
194When to Use It ...
194A Very Simple Notification (C#) ..
195Parsing Notification (Java) ...

199Part III: External DSL Topics ...

201Chapter 17: Delimiter-Directed Translation ...
201How It Works ..
204When to Use It ...
205Frequent Customer Points (C#) ..
205Semantic Model ...
207The Parser ...

211
Parsing Nonautonomous Statements with Miss Grant’s Controller
(Java) ...

219Chapter 18: Syntax-Directed Translation ...
220How It Works ..
221The Lexer ...
223Syntactic Analyzer ..
226Output Production ...
226Semantic Predicates ..
227When to Use It ...
227Further Reading ...

229Chapter 19: BNF ..
229How It Works ..
231Multiplicity Symbols (Kleene Operators) ...
232Some Other Useful Operators ..
233Parsing Expression Grammars ...
234Converting EBNF to Basic BNF ...
236Code Actions ...
238When to Use It ...

239Chapter 20: Regex Table Lexer (by Rebecca Parsons)
240How It Works ..
241When to Use It ...
241Lexing Miss Grant’s Controller (Java) ...

xiContents

245Chapter 21: Recursive Descent Parser (by Rebecca Parsons)
246How It Works ..
249When to Use It ...
249Further Reading ...
250Recursive Descent and Miss Grant’s Controller (Java)

255Chapter 22: Parser Combinator (by Rebecca Parsons)
256How It Works ..
259Dealing with the Actions ..
260Functional Style of Combinators ..
261When to Use It ...
261Parser Combinators and Miss Grant’s Controller (Java)

269Chapter 23: Parser Generator ...
269How It Works ..
270Embedding Actions ..
272When to Use It ...
272Hello World (Java and ANTLR) ..
272Writing the Basic Grammar ...
274Building the Syntactic Analyzer ..
276Adding Code Actions to the Grammar ..
278Using Generation Gap ..

281Chapter 24: Tree Construction ..
281How It Works ..
284When to Use It ...
284Using ANTLR’s Tree Construction Syntax (Java and ANTLR)
285Tokenizing ..
286Parsing ...
288Populating the Semantic Model ..
292Tree Construction Using Code Actions (Java and ANTLR)

299Chapter 25: Embedded Translation ...
299How It Works ..
300When to Use It ...
300Miss Grant’s Controller (Java and ANTLR)

305Chapter 26: Embedded Interpretation ..
305How It Works ..
306When to Use It ...
306A Calculator (ANTLR and Java) ...

Contentsxii

309Chapter 27: Foreign Code ..
309How It Works ..
311When to Use It ...
311Embedding Dynamic Code (ANTLR, Java, and Javascript)
312Semantic Model ...
315Parser ...

319Chapter 28: Alternative Tokenization ..
319How It Works ..
320Quoting ..
322Lexical State ..
324Token Type Mutation ...
325Ignoring Token Types ...
326When to Use It ...

327Chapter 29: Nested Operator Expression ...
327How It Works ..
328Using Bottom-Up Parsers ..
329Top-Down Parsers ...
331When to Use It ...

333Chapter 30: Newline Separators ...
333How It Works ..
335When to Use It ...

337Chapter 31: External DSL Miscellany ..
337Syntactic Indentation ...
339Modular Grammars ...

341Part IV: Internal DSL Topics ..

343Chapter 32: Expression Builder ..
344How It Works ..
344When to Use It ...
345A Fluent Calendar with and without a Builder (Java)
348Using Multiple Builders for the Calendar (Java)

351Chapter 33: Function Sequence ..
351How It Works ..
352When to Use It ...
352Simple Computer Configuration (Java) ..

xiiiContents

357Chapter 34: Nested Function ...
357How It Works ..
359When to Use It ...
360The Simple Computer Configuration Example (Java)
361Handling Multiple Different Arguments with Tokens (C#)
363Using Subtype Tokens for IDE Support (Java)
365Using Object Initializers (C#) ...
366Recurring Events (C#) ..
366Semantic Model ...
369The DSL ...

373Chapter 35: Method Chaining ...
373How It Works ..
375Builders or Values ..
375Finishing Problem ..
376Hierarchic Structure ...
377Progressive Interfaces ...
377When to Use It ...
378The Simple Computer Configuration Example (Java)
381Chaining with Properties (C#) ...
382Progressive Interfaces (C#) ...

385Chapter 36: Object Scoping ...
386How It Works ..
386When to Use It ...
387Security Codes (C#) ...
387Semantic Model ...
390DSL ...
392Using Instance Evaluation (Ruby) ..
394Using an Instance Initializer (Java) ...

397Chapter 37: Closure ...
397How It Works ..
402When to Use It ...

403Chapter 38: Nested Closure ...
403How It Works ..
405When to Use It ...
405Wrapping a Function Sequence in a Nested Closure (Ruby)
408Simple C# Example (C#) ..
409Using Method Chaining (Ruby) ...

Contentsxiv

411Function Sequence with Explicit Closure Arguments (Ruby)
412Using Instance Evaluation (Ruby) ..

417Chapter 39: Literal List ..
417How It Works ..
417When to Use It ...

419Chapter 40: Literal Map ..
419How It Works ..
420When to Use It ...
420The Computer Configuration Using Lists and Maps (Ruby)
422Evolving to Greenspun Form (Ruby) ...

427Chapter 41: Dynamic Reception ..
428How It Works ..
429When to Use It ...
430Promotion Points Using Parsed Method Names (Ruby)
431Model ...
433Builder ..
434Promotion Points Using Chaining (Ruby)
435Model ...
435Builder ..
438Removing Quoting in the Secret Panel Controller (JRuby)

445Chapter 42: Annotation ...
446How It Works ..
446Defining an Annotation ..
447Processing Annotations ...
449When to Use It ...
449Custom Syntax with Runtime Processing (Java)
451Using a Class Method (Ruby) ..
452Dynamic Code Generation (Ruby) ...

455Chapter 43: Parse Tree Manipulation ..
455How It Works ..
456When to Use It ...
457Generating IMAP Queries from C# Conditions (C#)
458Semantic Model ...
460Building from C# ...
465Stepping Back ..

xvContents

467Chapter 44: Class Symbol Table ..
468How It Works ..
469When to Use It ...
469Statically Typed Class Symbol Table (Java)

477Chapter 45: Textual Polishing ..
477How It Works ..
478When to Use It ...
478Polished Discount Rules (Ruby) ...

481Chapter 46: Literal Extension ..
481How It Works ..
482When to Use It ...
483Recipe Ingredients (C#) ..

485Part V: Alternative Computational Models ...

487Chapter 47: Adaptive Model ..
488How It Works ..
489Incorporating Imperative Code into an Adaptive Model
491Tools ..
492When to Use It ...

495Chapter 48: Decision Table ..
495How It Works ..
497When to Use It ...
497Calculating the Fee for an Order (C#) ..
497Model ...
502The Parser ...

505Chapter 49: Dependency Network ...
506How It Works ..
508When to Use It ...
508Analyzing Potions (C#) ..
509Semantic Model ...
511The Parser ...

513Chapter 50: Production Rule System ..
514How It Works ..
515Chaining ...
515Contradictory Inferences ...
516Patterns in Rule Structure ..
517When to Use It ...

Contentsxvi

517Validations for club membership (C#) ...
518Model ...
519Parser ...
520Evolving the DSL ...
521Eligibility Rules: extending the club membership (C#)
523The Model ..
525The Parser ...

527Chapter 51: State Machine ...
527How It Works ..
529When to Use It ...
530Secret Panel Controller (Java) ..

531Part VI: Code Generation ...

533Chapter 52: Transformer Generation ...
533How It Works ..
535When to Use It ...
535Secret Panel Controller (Java generating C)

539Chapter 53: Templated Generation ..
539How It Works ..
541When to Use It ...

541
Generating the Secret Panel State Machine with Nested Conditionals
(Velocity and Java generating C) ..

547Chapter 54: Embedment Helper ...
548How It Works ..
549When to Use It ...
549Secret Panel States (Java and ANTLR) ...
552Should a Helper Generate HTML? (Java and Velocity)

555Chapter 55: Model-Aware Generation ...
556How It Works ..
556When to Use It ...
557Secret Panel State Machine (C) ..
564Loading the State Machine Dynamically (C)

567Chapter 56: Model Ignorant Generation ..
567How It Works ..
568When to Use It ...
568Secret Panel State Machine as Nested Conditionals (C)

xviiContents

571Chapter 57: Generation Gap ..
571How It Works ..
573When to Use It ...
573Generating Classes from a Data Schema (Java and a Little Ruby) ...

579Bibliography ...

581Index ..

Contentsxviii

Domain-specific languages have been a part of the computing landscape since
before I got into programming. Ask an old Unix-hand or Lisp-hand and they’ll
happily bore you to tears on how DSLs have been a useful part of their bag of
tricks. Despite this, they’ve never become a very visible part of the computing
landscape. Most people learn about DSLs from someone else, and they often
learn only a limited set of available techniques.

I’ve written this book to try to change this situation. My intention is to intro-
duce you to a wide range of DSL techniques, so that you can make an informed
choice about whether to use a DSL in your work and what kinds of DSL
techniques to employ.

DSLs are popular for several reasons, but I will highlight the two main ones:
improving productivity for developers and improving communication with domain
experts. A well-chosen DSL can make it easier to understand a complicated block
of code, thus improving the productivity of those working with it. It can also
make it easier to communicate with domain experts, by providing a common
text that acts as both executable software and a description that domain experts
can read to understand how their ideas are represented in a system. This commu-
nication with domain experts is a benefit more difficult to achieve, but the resulting
gain is much broader because it helps unclog one of the worst bottlenecks in
software development—the communication between programmers and their
customers.

I should also not overstate the value of DSLs. I frequently say that whenever
you’re discussing the benefits, or indeed the problems, of DSLs, you should con-
sider substituting “DSL” with “library.” Much of what you gain with a DSL you
can also gain by building a framework. Indeed, most DSLs are merely a thin facade
over a library or framework. As a result, the costs and benefits of a DSL are less
than people think, but these costs and benefits are not understood as well as they
should be. Knowing good techniques reduces the cost of building a DSL consid-
erably—and my hope in this book is to enable that. The facade may be thin, but
it is often useful and worth building.

xix

Preface

Why Now?

DSLs have been around for ages, yet in recent years they’ve generated a significant
uptick in interest. At the same time, I decided to spend a couple years writing
this book. Why? While I don’t know if I can provide a definitive explanation for
the general uptick, I can share a personal perspective.

At the turn of the millennium, there was a sense of an overwhelming standard-
ization in programming languages—at least in my world of enterprise software.
For a couple of years, Java was The One Future Language, and even when Mi-
crosoft challenged that statement with C#, it was still very much a similar lan-
guage. New development was dominated by compiled, static, OO languages with
a C-like syntax. (Even Visual Basic got made to look as close to this as it could.)

But it soon became clear that not everything sat well with this Java/C# hege-
mony. There were bits of important logic that didn’t fit well with those
languages—which led to the rise of XML configuration files. Programmers were
soon joking that they were writing more lines of XML than of Java/C#. Partly,
this was due to a desire to modify behavior at runtime, but it was also a desire
to express aspects of behavior in a more custom way. XML, despite its very noisy
syntax, allows you to define your own vocabulary and provides a strong hierarchic
structure.

But the noise of XML ended up being too much. People complained of angle
brackets hurting their eyes. There was a desire to get the benefits of XML config
files without the cost of XML.

Now our narrative reaches the mid-noughties and the explosive appearance
of Ruby on Rails. Whatever Rails’ place is as a practical platform (and I think
it’s a good one), it’s had a huge impact on how people think about library and
framework design. A big part of the modus operandi of the Ruby community is
a more fluent approach—trying to make interacting with a library feel like pro-
gramming in a specialized language. This is a strand of thinking that goes back
to one of oldest programming languages, Lisp. This approach also saw flowerings
in what you would think as the stony ground of Java/C#: Both languages have
seen fluent interfaces become more popular, probably due to the lasting influence
of the original creators of JMock and Hamcrest.

As I looked at all of this, I felt a sense of a knowledge gap. I saw people using
XML where a custom syntax would be more readable and not harder to do. I
saw people bending Ruby into complicated contortions when a custom syntax
would be easier. I saw people playing around with parsers when a fluent interface
in their regular language would be a lot less work.

My hypothesis is that these things are happening because of a knowledge gap.
Skilled programmers don’t know enough about DSL techniques to make an in-
formed decision about which ones to use. That’s the kind of gap I enjoy trying
to fill.

xx Preface

Why Are DSLs Important?

I’ll talk about this in more detail in “Why Use a DSL?,” p. 33 but I see two pri-
mary reasons why you should be interested in DSLs (and thus the techniques in
this book).

The first reason is to improve programmer’s productivity. Consider this
fragment of code:

input =~ /\d{3}-\d{3}-\d{4}/

You may recognize it as a regular expression match, and probably you know
what it’s matching. Regular expressions are often criticized for being cryptic, but
think of how you would write this pattern match if all you could use were regular
control code. How easy would it be to understand and modify that code,
compared to a regular expression?

DSLs are very good at taking certain narrow parts of programming and making
them easier to understand and therefore quicker to write, quicker to modify, and
less likely to breed bugs.

The second reason for valuing DSLs goes beyond programmers. Since DSLs
are smaller and easier to understand, they allow nonprogrammers to see the code
that drives important parts of their business. By exposing the real code to the
people who understand the domain, you enable a much richer communication
channel between programmers and their customers.

When people talk about this kind of thing, they often say that DSLs will allow
you to get rid of programmers. I’m extremely skeptical of that argument; after
all, it was said of COBOL. Although there certainly are languages, such as CSS,
written by people who don’t call themselves programmers, it’s the reading that
matters more than the writing. If a domain expert can read, and mostly under-
stand, the code that drives a key part of her business, then she can communicate
in a much more detailed fashion with the programmer who actually types in
the code.

This second reason for using DSLs isn’t easy to achieve. But the rewards are
worth the effort. Communication between programmers and their customers is
the biggest bottleneck in software development, so any technique that can address
it is worth its weight in single malts.

Don’t Be Frightened by the Size of This Book

The thickness of this book may be a bit intimidating to you; it certainly makes
me gulp to see how much there is here. I’m wary of big books, because I know
we all only have so much time to read—so a big book is a big investment of time

Preface xxi

(which is much more valuable than the cover price). Therefore, I’ve used a format
that I prefer in cases like this: a duplex book.

A duplex book is really two books under one cover. The first book is a narrative
book, designed to be read cover to cover. My aim with the narrative book is to
provide a brief overview of the topic, enough to get a broad understanding but
not to do any detailed work. My target for a narrative section is no more than
150 pages, so it is a manageable amount to read.

The second, and larger, book is reference material, which is designed not to
be read cover to cover (although some people do) but instead to be dipped into
when needed. Some people like to read the narrative first to get a broad overview
of the subject and then dive into those bits of the reference section that interest
them. Others like to dive into the interesting parts of the reference section as they
work through the narrative. The purpose of the split is for me to give you an
idea of what’s skippable and what isn’t—then you can choose when you wish to
skip and when you want to delve deeper.

I’ve also tried to make the reference bits reasonably self-standing, so if you
want someone to use Tree Construction (281) you can tell them to read just that
pattern and get a good idea of what to do, even if their memory of the narrative
is a little hazy. This way, once you’ve absorbed the narrative overview, it becomes
a reference book that’s handy to grab when you need to look up some details.

The main reason the book is so large is that I haven’t figured out how to make
it shorter. One of my primary aims in this book is to provide a resource that ex-
plores the breadth of different techniques available for DSLs. There are books
out there that talk about code generation, or Ruby metaprogramming, or using
Parser Generator (269) tools. With this book, I want to sweep across all these
techniques so that you can better understand their similarities and differences.
They all play a role in a broader landscape, and my aim here is to provide a tour
of that landscape while giving you enough detail to get started with the techniques
I’m talking about.

What You’ll Learn

I’ve designed this book as a wide-ranging guide on different kinds of DSLs and
the approaches to building them. Often, when people start experimenting with
DSLs, they pick up only one technique. The point of this book is to show you a
broad variety of techniques, so that you can evaluate which one is the best for
your circumstances. I’ve provided details and examples on how to implement
many of these techniques. Naturally, I cannot show you everything you can do,
but there is enough to get you started and help you through the early decisions.

The early chapters should give you a good idea of what a DSL is, when DSLs
come in useful, and what is their role compared to a framework or library. The
implementation chapters will give you a broad start in how to build external and

xxii Preface

internal DSLs. The external DSL material will show you the role of a parser, the
usefulness of a Parser Generator (269), and different ways of using a parser to
parse an external DSL. The internal DSL section will show you how to think
about the various language constructs you can use in a DSL style. While this
won’t tell you how to best use your particular language, it will help you under-
stand how techniques in one language correspond to those in others.

The code generation section will outline different strategies for code generation,
should you need to use it. The language workbench chapter is a very brief
overview of a new generation of tools. For most of this book I concentrate on
techniques that have been used for decades; language workbenches are more of
a future technique that is promising but unproven.

Who Should Read This Book?

My primary target audience for this book is professional software developers
who are considering building a DSL. I imagine such a reader as someone with
at least a couple of years of programming experience and thus comfortable with
the basic ideas of software design.

If you’re deeply involved in language design, you probably won’t find much
new in this book in terms of material. What I hope you will find useful is the
approach I’ve used to organizing and communicating this information. Although
there is a huge amount of work done in language design, particularly in academia,
very little of this makes its way into the professional programming world.

The first couple of chapters of the narrative section should also be useful to
anyone wondering what a DSL is and why it may be worth using. Reading the
full narrative section will provide an overview on the various implementation
techniques to use.

Is This a Java Book or a C# Book?

As with most books I write, the ideas here are pretty much independent of pro-
gramming language. One of my top priorities is to uncover general principles
and patterns that can be used with whatever programming language you happen
to be using. As such, the ideas in the book should be valuable to you if you are
using any kind of modern OO language.

One potential language gap here is functional languages. While I think much
of this book will still be relevant, I don’t have enough experience in functional
languages to really know to what extent their programming paradigm would
alter the advice here. The book is also somewhat limited for procedural languages

Preface xxiii

(i.e., non-OO languages like C) because several of the techniques I describe rely
on object orientation.

Although I am writing about general principles here, in order to describe them
properly I believe I need to show examples—which require a particular program-
ming language to be written in. In choosing a language for examples, my primary
criteria is how widely read the language is. As a result, almost all examples in
this book are in Java or C#. Both are widely used in the industry; both have a
familiar C-like syntax, memory management, and libraries that remove many
awkward contortions. I am not claiming that these are the best languages to write
DSLs in (in particular, because I don’t think they are), but they are the best lan-
guages to help communicate the general concepts I’m describing. I’ve tried to use
both languages pretty much equally, tipping the balance only when one of them
made things a bit easier. I’ve also tried to avoid elements of the language that
require too much knowledge of the syntax, although that’s a difficult tradeoff
since a good use of internal DSLs often involves exploiting syntactic quirks.

There are a few ideas which absolutely require a dynamic language and thus
cannot be illustrated in Java or C#. In those cases I’ve turned to Ruby since it’s
the dynamic language I’m most familiar with. It also helps that it’s well-suited
to writing DSLs with. Again, despite my personal familiarity and considerable
liking of the language, you should not infer that these techniques are not appli-
cable elsewhere. I enjoy Ruby a lot, but the only way you can get my language
bigotry to become evident is by dissing Smalltalk.

I should mention that there are many other languages for which DSLs are ap-
propriate, including many that are specially designed to make it easier to write
internal DSLs. I don’t mention them here because I haven’t done enough work
with them to feel confident about pontificating on them. You should not interpret
that as any negative opinion on them.

In particular, one of the difficult things about trying to write a language-
independent book on DSLs is that the usefulness of many techniques depends
very directly on the features of a particular language. You should always be
aware of the fact that your language environment can severely change the
tradeoffs compared to the broad generalizations I have to make.

What’s Missing

One of the most frustrating parts of writing a book like this is the moment when
I realize that I have to stop. I’ve put a couple of years of work into writing this,
and I believe I have a lot of useful material for you to read. But I’m also conscious
of the many gaps that remain. They are all gaps I’d like to fill, but doing so would
take a significant amount of time. My belief is that it’s better to have an
incomplete published book than wait years for a complete book—if a complete

xxiv Preface

book is even possible. So here I mention the main gaps that I could see but didn’t
have time to cover.

I’ve already alluded to one of these—the role of functional languages. There
is a strong history of DSL construction in modern functional languages based on
ML and/or Haskell—and I’ve pretty much ignored this work in my book. It’s an
interesting question how much a familiarity with functional languages and their
DSL usage would affect the structure of the material in this book.

Perhaps the most frustrating gap for me is the lack of a decent discussion of
diagnostics and error handling. I remember being taught at university how the
truly hard part of compiler writing is diagnostics—and thus I realize I’m glossing
over a considerable topic by not covering it properly here.

My favorite section of this book is the section on alternative computational
models. There is so much more I could write about here—but again, time was
my enemy. In the end I decided I’d have to do with less alternative computational
models than I would like—hopefully there’s still enough to inspire you to explore
some more.

The Reference Book

While the narrative book is a pretty normal structure, I feel I need to talk a bit
more about the structure of the reference section. I’ve divided the reference section
into a series of topics grouped into chapters to keep similar topics together. My
aim was that each topic should generally be self-standing—once you’ve read the
narrative, you should be able to dive into a particular topic for more detail
without looking into other topics. Where there are exceptions, I mention that at
the start of the corresponding topic.

The majority of the topics are written as patterns. The focus of a pattern is a
common solution to a recurring problem. So if a common problem is “How do
I structure my parser?”, two possible patterns for the solution are Delimiter-Di-
rected Translation (201) and Syntax-Directed Translation (219).

There’s been a lot written about patterns in software development in the last
twenty years or so, and different authors have different views on them. For me,
patterns are useful because they provide a good way of structuring a reference
section like this. The narrative will tell you that if you want to parse text, these
two patterns are likely candidates; the patterns themselves will give you more
information on selecting one and enough to get you started on implementing it.

Although I’ve written most of the reference section using a pattern structure,
I haven’t used it for every case. Not all of the reference topics felt like solutions
to me. With some topics, such as Nested Operator Expression (327), a solution
didn’t really seem to be the focus of the topic, and the topic didn’t fit the structure
I’m using for patterns; so in these cases, I didn’t use a pattern-style description.
There are other cases that are hard to call patterns, such as Macro (183) or BNF

Preface xxv

(229), but using the pattern structure seemed like a good way to describe them.
On the whole, I’ve been guided by whether the pattern structure, in particular
the separation of “how it works” and “when to use,” seems to work for the
concept I’m describing.

Pattern Structure

Most authors use some kind of standard template when writing about patterns.
I’m no exception, both in using a standard template and in having one that’s
different from everyone else’s. My template, or pattern form, is the one I first
used in P of EAA [Fowler PoEAA]. It has the following form.

Perhaps the most important element is the name. One of the biggest reasons I
like using patterns as my reference topics is that it helps create a strong vocabulary
to discuss the subject. There’s no guarantee that this vocabulary will be widely
used, but at least it encourages me to be consistent in my own writing, while
giving others a starting point should they wish to use it.

The next two elements are the intent and sketch. They are there to briefly
summarize the pattern. They are a reminder of the pattern, so if you already
“have the pattern” but don’t know the name, they can jog your memory. The
intent is a sentence or two of text, while the sketch is something more visual.
Sometimes I use a diagram for sketch, sometimes a brief code example—whatever
I think will quickly convey the essence of the pattern. When I use a diagram, I
sometimes use UML, but am quite happy to use something else if I think it will
convey the meaning more easily.

Next comes a slightly longer summary, usually around a motivating example.
This is a couple of paragraphs, and again is there to help people get an overview
before diving into the details.

The two main body sections of the pattern are How it works and When to use
it. The ordering of the two is somewhat arbitrary; if you’re trying to decide
whether to use a pattern, you may only want to read the “when” section. Often,
however, the “when” section doesn’t make much sense without knowing how
it works.

The last sections are examples. Although I do my best to explain how a pattern
works in the “how” section, often you need an example, with code, to really get
the point. Code examples are dangerous, however, because they show only one
application of the pattern, and some people may think it’s that application that
is the pattern, rather than the general concept. You can use the same pattern a
hundred times, making it a little different every time, but I only have limited
space and energy for examples. So, always remember that the pattern is much
more than the particular example shows.

All of the examples are deliberately very simple, focused only on the pattern
in question. I use simple, independent examples because they match my goal of
making each reference chapter independent of others. Naturally, there’ll be a
host of other issues to deal with when you apply the pattern to your circumstances,

xxvi Preface

but with a simple example I feel you at least have a chance of understanding the
core point. Richer examples can be more realistic, but they would force you to
deal with a bunch of issues extraneous to the pattern you are studying. So my
aim is to show you the pieces, but leave to you the challenge of assembling them
together for your particular needs.

This also means that my primary aim in the code is understandability. I’ve not
taken into account performance issues, error handling, or other things that distract
from the pattern’s essence.

I try to avoid code that I think is hard to follow, even if it’s more idiomatic
for the language I’m using. This is a particularly awkward balance for internal
DSLs that often rely on obscure language tricks in order to enhance the flow of
the language.

Many patterns will miss out a section or two if I feel there isn’t anything
compelling to put into that section. Some patterns don’t have examples because
the best examples are in other patterns—when that happens, I do try to point
them out.

Acknowledgments

As usual when I write a book, there’s a lot of other people who have done a great
deal to help making the book happen. While my name may be on it, there are
many other people who greatly improved its quality.

My first thanks go to my colleague Rebecca Parsons. One of my concerns about
writing a book on this topic has been delving into an area with a great deal of
academic background that I’m seriously under-aware of. Rebecca has been a
huge help here, since she has a strong background in language theory. On top
of that, she’s one of our leading technical troubleshooters and strategists, so she
combines the academic background with a lot of practical experience. She would
have liked, and is certainly qualified, to play a bigger role in this book, but
ThoughtWorks find her far too useful. I’m glad for the many hours of talks she’s
been able to give me.

When it comes to reviewers, an author always hopes for (and, kind of, dreads)
the reviewer who goes through everything and finds tons of problems, both small
and large. I’ve been lucky to find Michael Hunger who has played this role re-
markably well. From the earliest days this book appeared on my website, he’s
been pummeling me with my errors and how to fix them—and believe me, that’s
a pummeling I need. Just as importantly, Michael has played a big role in pushing
me to describe techniques utilizing static typing, particularly with respect to
statically typed Symbol Tables (165). He has made tons of further suggestions,
which would take another two books to do justice to; I hope to see these ideas
explored in the future.

Preface xxvii

Over the last couple of years, I’ve given tutorials on this material in conjunction
with my colleagues Rebecca Parsons, Neal Ford, and Ola Bini. Besides giving
these tutorials, they’ve done much to shape the ideas in them and in this book,
leading me to steal quite a few thoughts.

ThoughtWorks have generously given me a great deal of time to write this
book. After spending so much of my life determined to never work for a company,
I’m glad to have found a company that makes me want to stay and actively play
a role in building it.

I’ve had a strong group of official reviewers who have gone through this book,
found errors, and suggested improvements:

David IngDavid Bock
Jeremy MillerGilad Bracha
Ravi MohanAino Corry
Terance ParrSven Efftinge
Nat PryceEric Evans
Chris SellsJay Fields
Nathaniel SchuttaSteve Freeman
Craig TavernerBrian Goetz
Dave ThomasSteve Hayes
Glenn VanderburgClifford Heath

Michael Hunger

A small but important thank you is due to David Ing who suggested the title
for a Zoo of DSLs.

One of the nice things about being a series editor is that I’ve acquired a really
good team of authors who are an outstanding sounding board for questions and
ideas. Of these, I particularly want to thank Elliotte Rusty Harold for his
wonderfully detailed comments and review.

Many of my colleagues at ThoughtWorks have acted as sources for ideas. I
want to thank everyone who has let me poke around in projects over the last few
years. I see far more ideas than I can write about, and I really enjoy having such
a rich seam to mine from.

Several people made useful comments on the Safari Books Online roughcut,
which I managed to make use of before we went to print: Pavel Bernhauser,
Mocky, Roman Yakovenko, tdyer.

My thanks to those at Pearson who published this book. Greg Doench was
the acquisition editor who looked after the overall process of publishing the
book. John Fuller was the managing editor who oversaw the production.

Dmitry Kirsanov turned my sloppy English into something worthy of a book.
Alina Kirsanova composed the book into the layout you now see and produced
the Index.

xxviii Preface

This page intentionally left blank

When I start to write, I need to swiftly explain what it is I’m writing about; in
this case, to explain what a domain-specific language (DSL) is. I like to do this
by showing a concrete example and following up with a more abstract definition.
So, here I’m going to start with an example to demonstrate the different forms
a DSL can take. In the next chapter I’ll try to generalize the definition into
something more widely applicable.

1.1 Gothic Security

I have vague but persistent childhood memories of watching cheesy adventure
films on TV. Often, these films would be set in some old castle and feature secret
compartments or passages. In order to find them, heroes would need to pull the
candle holder at the top of stairs and tap the wall twice.

Let’s imagine a company that decides to build security systems based on this
idea. They come in, set up some kind of wireless network, and install little devices
that send four-character messages when interesting things happen. For example,
a sensor attached to a drawer would send the message D2OP when the drawer is
opened. We also have little control devices that respond to four-character com-
mand messages—so a device can unlock a door when it hears the message D1UL.

At the center of all this is some controller software that listens to event mes-
sages, figures out what to do, and sends command messages. The company bought
a job lot of Java-enabled toasters during the dot-com crash and is using them as
the controllers. So whenever a customer buys a gothic security system, they come
in and fit the building with lots of devices and a toaster with a control program
written in Java.

For this example, I’ll focus on this control program. Each customer has indi-
vidual needs, but once you look at a good sampling, you will soon see common
patterns. Miss Grant closes her bedroom door, opens a drawer, and turns on a
light to access a secret compartment. Miss Shaw turns on a tap, then opens either

3

Chapter 1

An Introductory Example

1: An Introductory
Example

of her two compartments by turning on the correct light. Miss Smith has a secret
compartment inside a locked closet inside her office. She has to close a door, take
a picture off the wall, turn her desk light on three times, open the top drawer of
her filing cabinet—and then the closet is unlocked. If she forgets to turn the desk
light off before she opens the inner compartment, an alarm will sound.

Although this example is deliberately whimsical, the underlying point isn’t
that unusual. What we have is a family of systems that share most components
and behaviors, but have some important differences. In this case, the way the
controller sends and receives messages is the same across all the customers, but
the sequence of events and commands differs. We want to arrange things so
that the company can install a new system with the minimum of effort, so it must
be easy for them to program the sequence of actions into the controller.

Looking at all these cases, it emerges that a good way to think about the con-
troller is as a state machine. Each sensor sends an event that can change the state
of the controller. As the controller enters a state, it can send a command message
out to the network.

At this point, I should confess that originally in my writing it was the other
way around. A state machine makes a good example for a DSL, so I picked that
first. I chose a gothic castle because I get bored of all the other state machine
examples.

1.1.1 Miss Grant’s Controller

Although my mythical company has thousands of satisfied customers, we’ll focus
on just one: Miss Grant, my favorite. She has a secret compartment in her bed-
room that is normally locked and concealed. To open it, she has to close the
door, then open the second drawer in her chest and turn her bedside light on—in
either order. Once these are done, the secret panel is unlocked for her to open.

I can represent this sequence as a state diagram (Figure 1.1).
If you haven’t come across state machines yet, they are a common way of de-

scribing behavior—not universally useful but well suited to situations like this.
The basic idea is that the controller can be in different states. When you’re in a
particular state, certain events will transition you to another state that will have
different transitions on it; thus a sequence of events leads you from state to
state. In this model, actions (sending of commands) occur when you enter a state.
(Other kinds of state machines perform actions in different places.)

This controller is, mostly, a simple and conventional state machine, but there
is a twist. The customers’ controllers have a distinct idle state that the system
spends most of its time in. Certain events can jump the system back into this idle
state even if it is in the middle of the more interesting state transitions, effectively
resetting the model. In Miss Grant’s case, opening the door is such a reset event.

Introducing reset events means that the state machine described here doesn’t
quite fit one of the classical state machine models. There are several variations

Chapter 1 An Introductory Example4

1: An Introductory
Example

idle

unlockDoor
lockPanel

active

doorClosed

waitingForDrawer

lightOn

waitingForLight

drawerOpened

unlockedPanel

unlockPanel
lockDoor

drawerOpened lightOn

panelClosed

Reset Events:
doorOpened

Figure 1.1 State diagram for Miss Grant’s secret compartment

of state machines that are pretty well known; this model starts with one of these
but the reset events add a twist that is unique to this context.

In particular, you should note that reset events aren’t strictly necessary to
express Miss Grant’s controller. As an alternative, I could just add a transition
to every state, triggered by doorOpened, leading to the idle state. The notion of a
reset event is useful because it simplifies the diagram.

1.2 The State Machine Model

Once the team has decided that a state machine is a good abstraction for specifying
how the controllers work, the next step is to ensure that abstraction is put into
the software itself. If people want to think about controller behavior with events,
states, and transitions, then we want that vocabulary to be present in the software
code too. This is essentially the Domain-Driven Design principle of Ubiquitous
Language [Evans DDD]—that is, we construct a shared language between the
domain people (who describe how the building security should work) and
programmers.

When working in Java, the natural way to do this is through a Domain Model
[Fowler PoEAA] of a state machine.

1.2 The State Machine Model 5

1: An Introductory
Example

State
Machine

name

State

name
code

Abstract
Event

Command Event

Transition

event code

source target1 1
trigger1

1

*

start1

reset
events

*
actions

Figure 1.2 Class diagram of the state machine framework

The controller communicates with the devices by receiving event messages and
sending command messages. These are both four-letter codes sent through the
communication channels. I want to refer to these in the controller code with
symbolic names, so I create event and command classes with a code and a name.
I keep them as separate classes (with a superclass) as they play different roles in
the controller code.

class AbstractEvent...
 private String name, code;

 public AbstractEvent(String name, String code) {
 this.name = name;
 this.code = code;
 }
 public String getCode() { return code;}
 public String getName() { return name;}

public class Command extends AbstractEvent

public class Event extends AbstractEvent

The state class keeps track of the commands that it will send and its outbound
transitions.

class State...
 private String name;
 private List<Command> actions = new ArrayList<Command>();
 private Map<String, Transition> transitions = new HashMap<String, Transition>();

Chapter 1 An Introductory Example6

1: An Introductory
Example

class State...
 public void addTransition(Event event, State targetState) {
 assert null != targetState;
 transitions.put(event.getCode(), new Transition(this, event, targetState));
 }

class Transition...
 private final State source, target;
 private final Event trigger;

 public Transition(State source, Event trigger, State target) {
 this.source = source;
 this.target = target;
 this.trigger = trigger;
 }
 public State getSource() {return source;}
 public State getTarget() {return target;}
 public Event getTrigger() {return trigger;}
 public String getEventCode() {return trigger.getCode();}

The state machine holds on to its start state.

class StateMachine...
 private State start;

 public StateMachine(State start) {
 this.start = start;
 }
 public State getStart() {return start;}

Then, any other states in the machine are those reachable from this state.

class StateMachine...
 public Collection<State> getStates() {
 List<State> result = new ArrayList<State>();
 collectStates(result, start);
 return result;
 }

 private void collectStates(Collection<State> result, State s) {
 if (result.contains(s)) return;
 result.add(s);
 for (State next : s.getAllTargets())
 collectStates(result, next);
 }

class State...
 Collection<State> getAllTargets() {
 List<State> result = new ArrayList<State>();
 for (Transition t : transitions.values()) result.add(t.getTarget());
 return result;
 }

7

1: An Introductory
Example

1.2 The State Machine Model

To handle reset events, I keep a list of them on the state machine.

class StateMachine...
 private List<Event> resetEvents = new ArrayList<Event>();

 public void addResetEvents(Event... events) {
 for (Event e : events) resetEvents.add(e);
 }

I don’t need to have a separate structure for reset events like this. I could
handle this by simply declaring extra transitions on the state machine like this:

class StateMachine...
 private void addResetEvent_byAddingTransitions(Event e) {
 for (State s : getStates())
 if (!s.hasTransition(e.getCode())) s.addTransition(e, start);
 }

I prefer explicit reset events on the machine because that better expresses
my intent. While it does complicate the machine a bit, it makes it clear how
a general machine is supposed to work, as well as the intention of defining a
particular machine.

With the structure out of the way, let’s move on to the behavior. As it turns
out, it’s really quite simple. The controller has a handle method that takes the
event code it receives from the device.

class Controller...
 private State currentState;
 private StateMachine machine;

 public CommandChannel getCommandChannel() {
 return commandsChannel;
 }

 private CommandChannel commandsChannel;

 public void handle(String eventCode) {
 if (currentState.hasTransition(eventCode))
 transitionTo(currentState.targetState(eventCode));
 else if (machine.isResetEvent(eventCode))
 transitionTo(machine.getStart());
 // ignore unknown events
 }

 private void transitionTo(State target) {
 currentState = target;
 currentState.executeActions(commandsChannel);
 }

Chapter 1 An Introductory Example8

1: An Introductory
Example

class State...
 public boolean hasTransition(String eventCode) {
 return transitions.containsKey(eventCode);
 }
 public State targetState(String eventCode) {
 return transitions.get(eventCode).getTarget();
 }
 public void executeActions(CommandChannel commandsChannel) {
 for (Command c : actions) commandsChannel.send(c.getCode());
 }

class StateMachine...
 public boolean isResetEvent(String eventCode) {
 return resetEventCodes().contains(eventCode);
 }

 private List<String> resetEventCodes() {
 List<String> result = new ArrayList<String>();
 for (Event e : resetEvents) result.add(e.getCode());
 return result;
 }

It ignores any events that are not registered on the state. For any events that
are recognized, it transitions to the target state and executes any commands
defined on that target state.

1.3 Programming Miss Grant’s Controller

Now that I’ve implemented the state machine model, I can program Miss Grant’s
controller like this:

Event doorClosed = new Event("doorClosed", "D1CL");
Event drawerOpened = new Event("drawerOpened", "D2OP");
Event lightOn = new Event("lightOn", "L1ON");
Event doorOpened = new Event("doorOpened", "D1OP");
Event panelClosed = new Event("panelClosed", "PNCL");

Command unlockPanelCmd = new Command("unlockPanel", "PNUL");
Command lockPanelCmd = new Command("lockPanel", "PNLK");
Command lockDoorCmd = new Command("lockDoor", "D1LK");
Command unlockDoorCmd = new Command("unlockDoor", "D1UL");

State idle = new State("idle");
State activeState = new State("active");
State waitingForLightState = new State("waitingForLight");
State waitingForDrawerState = new State("waitingForDrawer");
State unlockedPanelState = new State("unlockedPanel");

StateMachine machine = new StateMachine(idle);

1.3 Programming Miss Grant’s Controller 9

1: An Introductory
Example

idle.addTransition(doorClosed, activeState);
idle.addAction(unlockDoorCmd);
idle.addAction(lockPanelCmd);

activeState.addTransition(drawerOpened, waitingForLightState);
activeState.addTransition(lightOn, waitingForDrawerState);

waitingForLightState.addTransition(lightOn, unlockedPanelState);

waitingForDrawerState.addTransition(drawerOpened, unlockedPanelState);

unlockedPanelState.addAction(unlockPanelCmd);
unlockedPanelState.addAction(lockDoorCmd);
unlockedPanelState.addTransition(panelClosed, idle);

machine.addResetEvents(doorOpened);

I look at this last bit of code as quite different in nature from the previous
pieces. The earlier code described how to build the state machine model; this last
bit of code is about configuring that model for one particular controller. You
often see divisions like this. On the one hand is the library, framework, or com-
ponent implementation code; on the other is configuration or component assembly
code. Essentially, it is the separation of common code from variable code. We
structure the common code in a set of components that we then configure for
different purposes.

Miss Smith's
controller

Miss Grant's
controller

state machine model

compile

copy

configuration
code

Miss Shaw's
controller

Figure 1.3 A single library used with multiple configurations

Chapter 1 An Introductory Example10

1: An Introductory
Example

Here is another way of representing that configuration code:

<stateMachine start = "idle">
 <event name="doorClosed" code="D1CL"/>
 <event name="drawerOpened" code="D2OP"/>
 <event name="lightOn" code="L1ON"/>
 <event name="doorOpened" code="D1OP"/>
 <event name="panelClosed" code="PNCL"/>

 <command name="unlockPanel" code="PNUL"/>
 <command name="lockPanel" code="PNLK"/>
 <command name="lockDoor" code="D1LK"/>
 <command name="unlockDoor" code="D1UL"/>

 <state name="idle">
 <transition event="doorClosed" target="active"/>
 <action command="unlockDoor"/>
 <action command="lockPanel"/>
 </state>

 <state name="active">
 <transition event="drawerOpened" target="waitingForLight"/>
 <transition event="lightOn" target="waitingForDrawer"/>
 </state>

 <state name="waitingForLight">
 <transition event="lightOn" target="unlockedPanel"/>
 </state>

 <state name="waitingForDrawer">
 <transition event="drawerOpened" target="unlockedPanel"/>
 </state>

 <state name="unlockedPanel">
 <action command="unlockPanel"/>
 <action command="lockDoor"/>
 <transition event="panelClosed" target="idle"/>
 </state>

 <resetEvent name = "doorOpened"/>
</stateMachine>

This style of representation should look familiar to most readers; I’ve expressed
it as an XML file. There are several advantages to doing it this way. One obvious
advantage is that now we don’t have to compile a separate Java program for
each controller we put into the field—instead, we can just compile the state ma-
chine components plus an appropriate parser into a common JAR, and ship the
XML file to be read when the machine starts up. Any changes to the behavior
of the controller can be done without having to distribute a new JAR. We do, of
course, pay for this in that many mistakes in the syntax of the configuration can
only be detected at runtime, although various XML schema systems can help

1.3 Programming Miss Grant’s Controller 11

1: An Introductory
Example

with this a bit. I’m also a big fan of extensive testing, which catches most of the
errors with compile-time checking, together with other faults that type checking
can’t spot. With this kind of testing in place, I worry much less about moving
error detection to runtime.

A second advantage is in the expressiveness of the file itself. We no longer need
to worry about the details of making connections through variables. Instead, we
have a declarative approach that in many ways reads much more clearly. We’re
also limited in that we can only express configuration in this file—limitations
like this are often helpful because they can reduce the chances of people making
mistakes in the component assembly code.

You often hear people talk about this kind of thing as declarative programming.
Our usual model is the imperative model, where we command the computer by
a sequence of steps. “Declarative” is a very cloudy term, but it generally applies
to approaches that move away from the imperative model. Here we take a step
in that direction: We move away from variable shuffling and represent the actions
and transitions within a state by subelements in XML.

These advantages are why so many frameworks in Java and C# are configured
with XML configuration files. These days, it sometimes feels like you’re doing
more programming with XML than with your main programming language.

Here’s another version of the configuration code:

events
 doorClosed D1CL
 drawerOpened D2OP
 lightOn L1ON
 doorOpened D1OP
 panelClosed PNCL
end

resetEvents
 doorOpened
end

commands
 unlockPanel PNUL
 lockPanel PNLK
 lockDoor D1LK
 unlockDoor D1UL
end

state idle
 actions {unlockDoor lockPanel}
 doorClosed => active
end

state active
 drawerOpened => waitingForLight
 lightOn => waitingForDrawer
end

Chapter 1 An Introductory Example12

1: An Introductory
Example

state waitingForLight
 lightOn => unlockedPanel
end

state waitingForDrawer
 drawerOpened => unlockedPanel
end

state unlockedPanel
 actions {unlockPanel lockDoor}
 panelClosed => idle
end

This is code, although not in a syntax that’s familiar to you. In fact, it’s a
custom syntax that I made up for this example. I think it’s a syntax that’s easier
to write and, above all, easier to read than the XML syntax. It’s terser and avoids
a lot of the quoting and noise characters that the XML suffers from. You probably
wouldn’t have done it exactly the same way, but the point is that you can con-
struct whatever syntax you and your team prefer. You can still load it in at run-
time (like the XML) but you don’t have to (as you don’t with the XML) if you
want it at compile time.

This language is a domain-specific language that shares many of the character-
istics of DSLs. First, it’s suitable only for a very narrow purpose—it can’t do
anything other than configure this particular kind of state machine. As a result,
the DSL is very simple—there’s no facility for control structures or anything else.
It’s not even Turing-complete. You couldn’t write a whole application in this
language; all you can do is describe one small aspect of an application. As a result,
the DSL has to be combined with other languages to get anything done. But the
simplicity of the DSL means it’s easy to edit and process.

This simplicity makes it easier for those who write the controller software to
understand it—but also may make the behavior visible beyond the developers
themselves. The people who set up the system may be able to look at this code
and understand how it’s supposed to work, even though they don’t understand
the core Java code in the controller itself. Even if they only read the DSL, that
may be enough to spot errors or to communicate effectively with the Java devel-
opers. While there are many practical difficulties in building a DSL that acts as
a communication medium with domain experts and business analysts like this,
the benefit of bridging the most difficult communication gap in software
development is usually worth the attempt.

Now look again at the XML representation. Is this a DSL? I would argue that
it is. It’s wrapped in an XML carrier syntax—but it’s still a DSL. This example
thus raises a design issue: Is it better to have a custom syntax for a DSL or an
XML syntax? The XML syntax can be easier to parse since people are so familiar
with parsing XML. (However, it took me about the same amount of time to
write the parser for the custom syntax as it did for the XML.) I’d contend that
the custom syntax is much easier to read, at least in this case. But however you

1.3 Programming Miss Grant’s Controller 13

1: An Introductory
Example

view this choice, the core tradeoffs of DSLs are the same. Indeed, you can argue
that most XML configuration files are essentially DSLs.

Now look at this code. Does this look like a DSL for this problem?

event :doorClosed, "D1CL"
event :drawerOpened, "D2OP"
event :lightOn, "L1ON"
event :doorOpened, "D1OP"
event :panelClosed, "PNCL"

command :unlockPanel, "PNUL"
command :lockPanel, "PNLK"
command :lockDoor, "D1LK"
command :unlockDoor, "D1UL"

resetEvents :doorOpened

state :idle do
 actions :unlockDoor, :lockPanel
 transitions :doorClosed => :active
end

state :active do
 transitions :drawerOpened => :waitingForLight,
 :lightOn => :waitingForDrawer
end

state :waitingForLight do
 transitions :lightOn => :unlockedPanel
end

state :waitingForDrawer do
 transitions :drawerOpened => :unlockedPanel
end

state :unlockedPanel do
 actions :unlockPanel, :lockDoor
 transitions :panelClosed => :idle
end

It’s a bit noisier than the custom language earlier, but still pretty clear. Readers
whose language likings are similar to mine will probably recognize it as Ruby.
Ruby gives me a lot of syntactic options that make for more readable code, so I
can make it look very similar to the custom language.

Ruby developers would consider this code to be a DSL. I use a subset of the
capabilities of Ruby and capture the same ideas as with our XML and custom
syntax. Essentially I’m embedding the DSL into Ruby, using a subset of Ruby as
my syntax. To an extent, this is more a matter of attitude than of anything else.
I’m choosing to look at the Ruby code through DSL glasses. But it’s a point of
view with a long tradition—Lisp programmers often think of creating DSLs
inside Lisp.

Chapter 1 An Introductory Example14

1: An Introductory
Example

This brings me to pointing out that there are two kinds of textual DSLs which
I call external and internal DSLs. An external DSL is a domain-specific language
represented in a separate language to the main programming language it’s
working with. This language may use a custom syntax, or it may follow the
syntax of another representation such as XML. An internal DSL is a DSL repre-
sented within the syntax of a general-purpose language. It’s a stylized use of that
language for a domain-specific purpose.

You may also hear the term embedded DSL as a synonym for internal DSL.
Although it is fairly widely used, I avoid this term because “embedded language”
may also apply to scripting languages embedded within applications, such as
VBA in Excel or Scheme in the Gimp.

Now think again about the original Java configuration code. Is this a DSL? I
would argue that it isn’t. That code feels like stitching together with an API,
while the Ruby code above has more of the feel of a declarative language. Does
this mean you can’t do an internal DSL in Java? How about this:

public class BasicStateMachine extends StateMachineBuilder {

 Events doorClosed, drawerOpened, lightOn, panelClosed;
 Commands unlockPanel, lockPanel, lockDoor, unlockDoor;
 States idle, active, waitingForLight, waitingForDrawer, unlockedPanel;
 ResetEvents doorOpened;

 protected void defineStateMachine() {
 doorClosed. code("D1CL");
 drawerOpened. code("D2OP");
 lightOn. code("L1ON");
 panelClosed.code("PNCL");

 doorOpened. code("D1OP");

 unlockPanel.code("PNUL");
 lockPanel. code("PNLK");
 lockDoor. code("D1LK");
 unlockDoor. code("D1UL");

 idle
 .actions(unlockDoor, lockPanel)
 .transition(doorClosed).to(active)
 ;

 active
 .transition(drawerOpened).to(waitingForLight)
 .transition(lightOn). to(waitingForDrawer)
 ;

 waitingForLight
 .transition(lightOn).to(unlockedPanel)
 ;

1.3 Programming Miss Grant’s Controller 15

1: An Introductory
Example

 waitingForDrawer
 .transition(drawerOpened).to(unlockedPanel)
 ;

 unlockedPanel
 .actions(unlockPanel, lockDoor)
 .transition(panelClosed).to(idle)
 ;
 }
}

It’s formatted oddly, and uses some unusual programming conventions, but it
is valid Java. This I would call a DSL; although it’s more messy than the Ruby
DSL, it still has that declarative flow that a DSL needs.

What makes an internal DSL different from a normal API? This is a tough
question that I’ll spend more time on later (“Fluent and Command-Query APIs,”
p. 68), but it comes down to the rather fuzzy notion of a language-like flow.

Another term you may come across for an internal DSL is a fluent interface.
This term emphasizes the fact that an internal DSL is really just a particular kind
of API, designed with this elusive quality of fluency. Given this distinction, it’s
useful to have a name for a nonfluent API—I’ll use the term command-query API.

1.4 Languages and Semantic Model

At the beginning of this example, I talked about building a model for a state
machine. The presence of such a model, and its relationship with a DSL, are vi-
tally important concerns. In this example, the role of the DSL is to populate the
state machine model. So, when I’m parsing the custom syntax version and come
across:

events
 doorClosed D1CL

I would create a new event object (new Event("doorClosed", "D1CL")) and keep it to
one side (in a Symbol Table (165)) so that when I see doorClosed => active I could
include it in the transition (using addTransition). The model is the engine that pro-
vides the behavior of the state machine. Indeed you can say that most of the
power of this design comes from having this model. All the DSL does is provide
a readable way of populating that model—that is the difference from the
command-query API I started with.

From the DSL’s point of view, I refer to this model as the Semantic Model
(159). When people discuss a programming language, you often hear them talk
about syntax and semantics. The syntax captures the legal expressions of the
program—everything that in the custom-syntax DSL is captured by the grammar.
The semantics of a program is what it means—that is, what it does when it

Chapter 1 An Introductory Example16

1: An Introductory
Example

executes. In this case, it is the model that defines the semantics. If you’re used to
using Domain Models [Fowler PoEAA], for the moment you can think of a
Semantic Model as very close to the same thing.

events
 doorClosed D1CL
end

state idle
 doorClosed => active
end

name = "doorClosed"
code = "D1CL"

:Event

name = "idle"

:State

name = "active"

:State

:Transition

input

semantic model
populates

Figure 1.4 Parsing a DSL populates a Semantic Model (159).

(Take a look at Semantic Model (159) for the differences between Semantic
Model and Domain Model, as well as the differences between a Semantic Model
and an abstract syntax tree.)

One opinion I’ve formed is that the Semantic Model is a vital part of a well-
designed DSL. In the wild you’ll find some DSLs use a Semantic Model and some
do not, but I’m very much of the opinion that you should almost always use a
Semantic Model. (I find it almost impossible to say some words, such as “always,”
without a qualifying “almost.” I can almost never find a rule that’s universally
applicable.)

I advocate a Semantic Model because it provides a clear separation of concerns
between parsing a language and the resulting semantics. I can reason about how
the state machine works, and carry out enhancement and debugging of the state
machine without worrying about the language issues. I can run tests on the
state machine model by populating it with a command-query interface. I can
evolve the state machine model and the DSL independently, building new features
into the model before figuring out how to expose them through the language.
Perhaps the most important point is that I can test the model independently of
futzing around with the language. Indeed, all the examples of a DSL shown above
were built on top of the same Semantic Model and created exactly the same
configuration of objects in that model.

In this example, the Semantic Model is an object model. A Semantic Model
can also take other forms. It can be a pure data structure with all behavior in

1.4 Languages and Semantic Model 17

1: An Introductory
Example

separate functions. I would still refer to it as a Semantic Model, because the data
structure captures the particular meaning of the DSL script in the context of those
functions.

Looking at it from this point of view, the DSL merely acts as a mechanism for
expressing how the model is configured. Much of the benefits of using this ap-
proach comes from the model rather than the DSLs. The fact that I can easily
configure a new state machine for a customer is a property of the model, not the
DSL. The fact that I can make a change to a controller at runtime, without
compiling, is a feature of the model, not the DSL. The fact I’m reusing code across
multiple installations of controllers is a property of the model, not the DSL.
Hence the DSL is merely a thin facade over the model.

A model provides many benefits without any DSLs present. As a result, we use
them all the time. We use libraries and frameworks to wisely avoid work. In our
own software, we construct our models, building up abstractions that allow us
to program faster. Good models, whether published as libraries or frameworks
or just serving our own code, can work just fine without any DSL in sight.

However, a DSL can enhance the capabilities of a model. The right DSL makes
it easier to understand what a particular state machine does. Some DSLs allow
you to configure the model at runtime. DSLs are thus a useful adjunct to some
models.

The benefits of a DSL are particularly relevant for a state machine, which is
particular kind of model whose population effectively acts as the program for
the system. If we want to change the behavior of a state machine, we do it by
altering the objects in its model and their interrelationships. This style of model
is often referred to as an Adaptive Model (487). The result is a system that blurs
the distinction between code and data, because in order to understand the behavior
of the state machine you can’t just look at the code; you also have to look at the
way object instances are wired together. Of course this is always true to some
extent, as any program gives different results with different data, but there is a
greater difference here because the presence of the state objects alters the behavior
of the system to a significantly greater degree.

Adaptive Models can be very powerful, but they are also often difficult to use
because people can’t see any code that defines the particular behavior. A DSL is
valuable because it provides an explicit way to represent that code in a form that
gives people the sensation of programming the state machine.

The aspect of a state machine that makes it such a good fit for an Adaptive
Model is that it is an alternative computational model. Our regular programming
languages provide a standard way of thinking about programming a machine,
and it works well in many situations. But sometimes we need a different approach,
such as State Machine (527), Production Rule System (513), or Dependency
Network (505). Using an Adaptive Model is a good way to provide an alternative
computational model, and a DSL is good way to make it easier to program that
model. Later in the book, I describe a few alternative computational models
(“Alternative Computational Models,” p. 113) to give you a feel of what they

Chapter 1 An Introductory Example18

1: An Introductory
Example

are like and how you might implement them. You may often hear people refer
to DSLs used in this way as declarative programming.

In discussing this example I used a process where the model was built first,
and then a DSL was layered over it to help manipulate it. I described it that way
because I think that’s an easy way to understand how DSLs fit into software de-
velopment. Although the model-first case is common, it isn’t the only one. In a
different scenario, you would talk with the domain experts and posit that the
state machine approach is something they understand. You then work with them
to create a DSL that they can understand. In this case, you build the DSL and
model simultaneously.

1.5 Using Code Generation

In my discussion so far, I process the DSL to populate the Semantic Model (159)
and then execute the Semantic Model to provide the behavior that I want from
the controller. This approach is what’s known in language circles as interpretation.
When we interpret some text, we parse it and immediately produce the result
that we want from the program. (Interpret is a tricky word in software circles,
since it carries all sorts of connotations; however, I’ll use it strictly to mean this
form of immediate execution.)

In the language world, the alternative to interpretation is compilation.
With compilation, we parse some program text and produce an intermediate
output, which is then separately processed to provide the behavior we desire.
In the context of DSLs, the compilation approach is usually referred to as
code generation.

It’s a bit hard to express this distinction using the state machine example, so
let’s use another little example. Imagine I have some kind of eligibility rules for
people, perhaps to qualify for insurance. One rule might be age between 21 and 40.
This rule can be a DSL which we can process in order to test the eligibility of
some candidate like me.

With interpretation, the eligibility processor parses the rules and loads up the
semantic model while it executes, perhaps at startup. When it tests a candidate,
it runs the semantic model against the candidate to get a result.

In the case of compilation, the parser would load the semantic model as part
of the build process for the eligibility processor. During the build, the DSL pro-
cessor would produce some code that would be compiled, packaged up, and in-
corporated into the eligibility processor, perhaps as some kind of shared library.
This intermediate code would then be run to evaluate a candidate.

Our example state machine used interpretation: We parsed the configuration
code at runtime and populated the semantic model. But we could generate
some code instead, which would avoid having the parser and model code in the
toaster.

1.5 Using Code Generation 19

1: An Introductory
Example

Eligibility Processor

age between 21 and 40

semantic model

Parser

candidate

 isEligible false

Runtime

Figure 1.5 An interpreter parses the text and produces its result in a single process.

Eligability Processor

age between 21 and 40

semantic model

candidate

candidate.age >= 21 &&
candidate.age <= 40

 isEligible false

an Eligibility
Rule

package

Parser

Generator

DSL
Processor

Runtime

Figure 1.6 A compiler parses the text and produces some intermediate code which is
then packaged into another process for execution.

Chapter 1 An Introductory Example20

1: An Introductory
Example

Code generation is often awkward in that it often pushes you to do an extra
compilation step. To build your program, you have to first compile the state
framework and the parser, then run the parser to generate the source code for
Miss Grant’s controller, then compile that generated code. This makes your build
process much more complicated.

However, an advantage of code generation is that there’s no particular reason
to generate code in the same programming language that you used for the parser.
In this case, you can avoid the second compilation step by generating code for a
dynamic language such as Javascript or JRuby.

Code generation is also useful when you want to use DSLs with a language
platform that doesn’t have the tools for DSL support. If we had to run our secu-
rity system on some older toasters that only understood compiled C, we could
do this by having a code generator that uses a populated Semantic Model as input
and produces C code that can then be compiled to run on the older toaster. I’ve
come across recent projects that generate code for MathCAD, SQL, and COBOL.

Many writings on DSLs focus on code generation, even to the point of making
code generation the primary aim of the exercise. As a result, you can find articles
and books extolling the virtues of code generation. In my view, however, code
generation is merely an implementation mechanism, one that isn’t actually
needed in most cases. Certainly there are plenty of times when you must use code
generation, but there are even plenty of times where you don’t need it.

Using code generation is one case where many people don’t use a Semantic
Model, but parse the input text and directly produce the generated code. Although
this is a common way of working with code-generating DSLs, it isn’t one I rec-
ommend for any but the very simplest cases. Using a Semantic Model allows you
to separate the parsing, the execution semantics, and the code generation. This
separation makes the whole exercise much simpler. It also allows you to change
your mind; for example, you can change your DSL from an internal to an external
DSL without altering the code generation routines. Similarly, you can easily
generate multiple outputs without complicating the parser. You can also use both
an interpreted model and code generation off the same Semantic Model.

As a result, for most of my book, I’m going to assume that a Semantic Model
is present and is the center of the DSL effort.

I usually see two styles of using code generation. One is to generate “first-pass”
code, which is expected to be used as a template but is then modified by hand.
The second is to ensure that generated code is never touched by hand, perhaps
except for some tracing during debugging. I almost always prefer the latter because
this allows code to be regenerated freely. This is particularly true with DSLs,
since we want the DSL to be the primary representation of the logic that the DSL
defines. This means we must be able to change the DSL easily whenever we want
to change behavior. Consequently, we must ensure that any generated code isn’t
hand-edited, although it can call, and be called by, handwritten code.

1.5 Using Code Generation 21

1: An Introductory
Example

1.6 Using Language Workbenches

The two styles of DSL I’ve shown so far—internal and external—are the tradi-
tional ways of thinking about DSLs. They may not be as widely understood and
used as they should be, but they have a long history and moderately wide usage.
As a result, the rest of this book concentrates on getting you started with these
approaches using tools that are mature and easy to obtain.

But there is a whole new category of tools on the horizon that could change
the game of DSLs significantly—the tools I call language workbenches. A language
workbench is an environment designed to help people create new DSLs, together
with high-quality tooling required to use those DSLs effectively.

One of the big disadvantages of using an external DSL is that you’re stuck
with relatively limited tooling. Setting up syntax highlighting in a text editor is
about as far as most people go. While you can argue that the simplicity of a DSL
and the small size of the scripts means that may be enough, there’s also an argu-
ment for the kind of sophisticated tooling that modern IDEs support. Language
workbenches make it easy to define not just a parser, but also a custom editing
environment for that language.

All of this is valuable, but the truly interesting aspect of language workbenches
is that they allow a DSL designer to go beyond the traditional text-based source
editing to different forms of language. The most obvious example of this is support
for diagrammatic languages, which would allow me to specify the secret panel
state machine directly with a state transition diagram.

A tool like this not only allows you to define diagrammatic languages; it also
allows you to look at a DSL script from different perspectives. In Figure 1.7 we
see a diagram, but it also displays lists of states and events and a table to enter
the event codes (which could be omitted from the diagram if there’s too much
clutter there).

This kind of multipane visual editing environment has been available for a
while in lots of tools, but it’s been a lot of effort to build something like this for
yourself. One promise of language workbenches is that they make it quite easy
to do this; indeed I was able to put together an example similar to Figure 1.7
quite quickly on my first play with the MetaEdit tool. The tool allows me to
define the Semantic Model (159) for state machines, define the graphical and
tabular editors in Figure 1.7, and write a code generator from the Semantic
Model.

However, while such tools certainly look good, many developers are naturally
suspicious of such doodleware tools. There are some very pragmatic reasons why
a textual source representation makes sense. As a result, other tools head in that
direction, providing post-IntelliJ-style capabilities—such as syntax-directed editing,
autocompletion, and the like—for textual languages.

My suspicion is that, if language workbenches really take off, the languages
they’ll produce won’t be anything like what we consider a programming

Chapter 1 An Introductory Example22

1: An Introductory
Example

Figure 1.7 The secret panel state machine in the MetaEdit language workbench (source:
MetaCase)

language. One of the common benefits of such tools is that they allow non-
programmers to program. I often sniff at that notion by pointing out that
this was the original intent of COBOL. Yet I must also acknowledge a program-
ming environment that has been extremely successful in providing programming
tools to nonprogrammers who program without thinking of themselves as
programmers—spreadsheets.

Many people don’t think about spreadsheets as a programming environment,
yet it can be argued that they are the most successful programming environ-
ment we currently know. As a programming environment, spreadsheets have
some interesting characteristics. One of these is the close integration of tooling
into the programming environment. There’s no notion of a tool-independent text
representation that’s processed by a parser. The tools and the language are
closely intertwined and designed together.

1.6 Using Language Workbenches 23

1: An Introductory
Example

A second interesting element is something I call illustrative programming.
When you look at a spreadsheet, the thing that’s most visible isn’t the formulae
that do all the calculations; rather, it’s the numbers that form a sample calculation.
These numbers are an illustration of what the program does when it executes.
In most programming languages, it’s the program that’s front-and-center, and
we only see its output when we make a test run. In a spreadsheet, the output is
front-and-center and we only see the program when we click in one of the cells.

Illustrative programming isn’t a concept that’s got much attention; I even had
to make up a word to talk about it. It could be an important part of what makes
spreadsheets so accessible to lay programmers. It also has disadvantages; for one
thing, the lack of focus on program structure leads to lots of copy-paste
programming and poorly structured programs.

Language workbenches support developing new kinds of programming plat-
forms like this. As a result, I think the DSLs they produce are likely to be closer
to a spreadsheet than to the DSLs that we usually think of (and that I talk about
in this book).

I think that language workbenches have a remarkable potential. If they fulfill
this they could entirely change the face of software development. Yet this poten-
tial, however profound, is still somewhat in the future. It’s still early days for
language workbenches, with new approaches appearing regularly and older tools
still subject to deep evolution. That is why I don’t have that much to say about
them here, as I think they will change quite dramatically during the hoped-for
lifetime of this book. But I do have a chapter on them at the end, as I think they
are well worth keeping an eye on.

1.7 Visualization

One of the great advantages of a language workbench is that it enables you to
use a wider range of representations of the DSL, in particular graphical represen-
tations. However, even with a textual DSL you can obtain a diagrammatic repre-
sentation. Indeed, we saw this very early on in this chapter. When looking at
Figure 1.1, you might have noticed that the diagram is not as neatly drawn as I
usually do. The reason for this is that I didn’t draw the diagram; I generated it
automatically from the Semantic Model (159) of Miss Grant’s controller. Not
only do my state machine classes execute; they are also able to render themselves
using the DOT language.

The DOT language is part of the Graphviz package, which is an open source
tool that allows you to describe mathematical graph structures (nodes and edges)
and then automatically plot them. You just tell it what the nodes and edges are,
what shapes to use, and some other hints, and it figures out how to lay out the
graph.

Chapter 1 An Introductory Example24

1: An Introductory
Example

Using a tool like Graphviz is extremely helpful for many kinds of DSLs because
it gives you another representation. This visualization representation is similar
to the DSL itself in that it allows a human to understand the model. The visual-
ization differs from the source in that it isn’t editable—but on the other hand, it
can do something an editable form cannot, such as a render diagram like this.

Visualizations don’t have to be graphical. I often use a simple textual visualiza-
tion to help me debug when I’m writing a parser. I’ve seen people generate visu-
alizations in Excel to help them communicate with domain experts. The point is
that, once you have done the hard work of creating a Semantic Model, adding
visualizations is really easy. Note that the visualizations are produced from the
model, not the DSL, so you can do this even if you aren’t using a DSL to populate
the model.

1.7 Visualization 25

1: An Introductory
Example

This page intentionally left blank

Bold numbers indicate definitions of terms.

Symbols and Numbers
_ (underscore), in Ruby, 437
; (semicolon), as a separator, 316, 320, 336
: (colon), in Ruby, 78, 439, 443–444
? (question mark)

implementing, 258
in lexers, 234
in Recursive Descent Parser, 247

/ (ordered alternative operator), 233
in Recursive Descent Parser, 246

// (comments), 42, 63
. (period), in method calls, 374
.. (range operator), 232
^ operator, in Regex Table Lexer, 240
~ (up-to operator), in ANTLR, 232
'...' (single quotes), 321
"..." (double quotes)

in lexers, 320–322
in XML, 101
removing, 428, 438–444
using for Alternative Tokenization, 101

{:...:} delimiters, 321, 328
{...} delimiters

in C#, 408
in DSLs, 42
in Javascript, 322
in lexers, 322
in Ruby, 401, 408

{{...}} delimiters (Java), 395
@ (at), in Java, 446
* (asterisk)

in ANTLR, 302
in Recursive Descent Parser, 247

in Ruby, 421
Kleene, 293

&& operator (C#), 461
(hash mark)

in comments, 63
in template commands, 544

+ (plus sign)
actions for, 259–260
as multiplicity marker, 235
in Parser Combinator, 258
in Recursive Descent Parser, 247

<...> (angle brackets), in XML, 101
-> operator (ANTLR), 283, 287
| (alternative operator)

actions for, 259
implementing, 257
in C, 257
in lexers, 233–234
in Recursive Descent Parser, 246

A
Access. See Microsoft Access
actions, 236–238, 513–526

binding, 529
embedding, 270–271
in Parser Combinator, 259–260, 268
in Tree Construction, 292–297
invocations for, 260
keeping small, 126

Active Record (Ruby), 428, 430, 434
Adaptive Model, 18, 81–82, 115–116, 161,

256, 402, 487–493
debugging, 115, 492
disadvantages of, 115, 492
embedding imperative code into, 489

581

Index

Adaptive Model (continued)
using with:

Closure, 401
Production Rule System, 492
State Machine, 529

visualizing, 491
agenda, 514–515, 524–525
Algol, 229
alternative computational model, 18,

113–120, 487–493, 505–530
See also Adaptive Model, Dependency

Network, Production Rule System,
Static Machine

Alternative Tokenization, 94, 222–223,
319–326, 340

quotes in, 101
using with:

Foreign Code, 101, 309, 317, 326
Syntax-Directed Translation, 326

alternatives, 230, 234–236
implementing, 246
ordered, 233–234, 246
unordered, 233–234
with recursion, 235

Annotation, 32, 84–85, 445–454
custom syntax for, 449
defining, 446–447, 449
in Ruby, 446, 451–454
parameters in, 446
processing, 447–451
using with Semantic Model, 447
validation, 448–454

Ant, 36, 108, 110, 119, 157, 508
syntactic analyzer in, 274–276

ANTLR, 92, 97–99, 102, 141, 152, 230,
241, 270–280

AST in, 283
calculator in, 306–307
Dependency Network in, 168–170
grammar files in, 549–552
“Hello World” in, 272–280
lexer in, 222
negation operator in, 326
nested tokens in, 318
Notifications in, 195–198
parsing in, 286–288
recognition exceptions in, 196–197
reporting errors in, 274, 277
return types and variables in, 237
rules in, 237
superclasses in, 552

syntactic analyzer in, 274–276
tokens in, 236, 274, 285–286
top-level rule in, 330
up-to operator in, 232
using with Foreign Code, 316

ANTLRWorks, 270, 274
Applescript, 42
ASCII, 429
ASP (Active Server Pages), 125, 540
associative arrays. See Literal Map
AST (Abstract Syntax Tree), 226, 281–297

creating in ANTLR, 283
See also syntax tree

attributes, 84
autocompletion, 22, 107, 358, 363,

382–384, 467, 469, 521
Automake, 157
automata theory, 221
Awk, 28

B
backward chaining, 515
Behavior Verification, 149
Bell, 29
blinkered abstraction problem, 39
blocks. See Closure
BNF (Backus-Naur Form), 79, 90–92, 220,

229–238
code actions in, 283
using with:

Embedded Translation, 301
Parser Generator, 270

vs. EBNF, 99, 232, 234–236
vs. Parser Combinator, 261

browsers, 448
Buck, Jamis, 434
build process, 574

C
C language, 21, 148

function pointers in, 82
generating, 46

from Java, 535–538, 541–546
literal arrays in, 78, 417
macros in, 184–186
pointer arithmetic in, 558
standard library of, 565

C preprocessor
macros in, 53
template commands in, 544

Index582

C# language
annotations in, 446
anonymous delegates in, 399–400
autocompletion in, 521
conditions in, 457–466
configuration files in, 12
Decision Table in, 497–503
explicit class methods in, 351
extension methods in, 481
hashmaps in, 167–168
implicit conversion operator in, 376
in Dependency Network, 508–512
lambdas in, 81–82, 456, 460, 519, 521
Literal Extension in, 483–484
Nested Closure in, 408–409
Notifications in, 194–195
object initializers in, 365
parse tree in, 456
Parse Tree Manipulation in, 83, 191, 456
parsers in, 519, 525–526
partial classes in, 126, 573
periods at the start of the line in, 374
progressive interfaces in, 382–384
property syntax in, 381–382
recurring events in, 366
SQL queries in, 83
static checking in, 122, 521
static methods in, 369, 371
statically typed symbols in, 128
string arguments in, 521
using for Context Variables, 176–178
validations in, 517–521
varargs function calls in, 77

C++ language
macros in, 184, 188
parsing, 226–227
templates in, 53

calculator, 306–307, 327–331
calendar, 345–347

multiple builders for, 348–350
callouts, 539–546
CASE (Computer-Aided Software

Engineering) tools, 141–142
CFG (Context-Free Grammar), 233
chaining

methods. See Method Chaining
rules, 117

Chomsky hierarchy, 96–97
Chomsky, Noam, 96

Class Symbol Table, 88, 107, 168, 173,
467–475, 511

in Java, 469
statically typed, 469–475
using with:

Dependency Network, 509
Expression Builder, 467–468
Semantic Model, 468

classes
collaborating, 573
generating from a data schema, 573–577
initializing fields of, 471–472
naming, 471, 572
open (Ruby), 481, 573
partial (C#), 573
private, 445
public, 445
serializing, 445
using fields as a symbol table, 475

Closure, 80–82, 150, 188, 359, 397–402,
489

in C#, 81–82, 456, 460, 519, 521
in Lisp, 82, 397
in Ruby, 81–82, 397, 401
in Smalltalk, 82, 397
multiple, 401
nested. See Nested Closure
using with:

Adaptive Model, 401
Foreign Code, 491

COBOL, 21, 23, 34, 39
code actions. See actions
code coloring. See syntax highlighting
code generation, 19–21, 46–47, 92, 121–128

advantages of, 21, 567
and handwritten code:

intermixing with, 448
separating from, 126–127, 535,

571–577
and Semantic Model, 21, 128, 130, 162,

533–538
by Embedment Helper, 548, 552–554
dynamic, 452–454
for static languages, 100, 566
keeping in separate files, 573
preparsing, 128
readability of, 127–128, 545, 563, 566
reasons for, 121–122
styles of, 21
target audience of, 558
target environments for, 121

583Index

Collecting Parameter, 194
collections, 540
combinatorial explosion, 235
combinators, 256

functional style of, 260
See also Parser Combinator

Command, 489
command objects, 82
command-query APIs, 16, 29, 69, 343–350

bad, 38
documenting classes in, 29
naming methods in, 70
vs. DSLs, 37
vs. fluent interfaces, 70, 72

command-query separation, 70, 374
comments

generating, 538
in C, 234
in DSLs, 42, 63
in lexers, 222–223, 241, 335
in Parser Generator, 274

compilation, 19
type checking during, 469

compiled languages, 448
composed regex, 209
Composite, 256, 344
computational models

alternative. See alternative computational
model

declarative, 12, 36, 150
imperative, 36, 113–114, 487

conditionals, 113, 405, 513–526
nested, 122, 541–546, 568–570
overlapping, 529

configuration files, 30–31
Construction Builder, 51, 176, 179–181,

348, 353, 378
adding lifecycle controls to, 180
full delegation in, 381
grouping, 180
uses of, 180
using with Semantic Model, 353–354

context, 540
Context Variable, 49, 52, 73–74, 76,

175–178, 237, 271, 317, 351–353, 361,
369, 371, 376–379, 381, 433

and debugging, 176
and parsing, 300

using with:
Function Sequence, 351–355, 358
Nested Closure, 404–405
Nested Function, 359
Parse Tree Manipulation, 466

control flow operators, 245
CSS (Cascading Style Sheets), 150–151

specifying colors in, 53, 184–185
using macros with, 53, 184–185

CSV (comma-separated values), 496, 574
Custom Assertion, 56

D
DAG (directed acyclic graph), 505
Data Mapper, 160
data schemas, 573–577
databases, 115

accessing, 573
desktop tools for, 136
mapping, 448

Davidson, James Duncan, 110
debugging, 31, 62, 115, 429

and code readability, 566
and line numbers, 375
and mistaken expansions, 186
diagnostics for, 563
of Production Rule System, 517
trace statements for, 126
using comments for, 274
with Adaptive Model, 492
with Context Variables, 176
with Macros, 185, 192
with pointer arithmetic, 558

Decision Table, 114–118, 156, 495–503
in C#, 497–503
parsing, 496, 502–503
using with:

Delimiter-Directed Translation, 502
Semantic Model, 496–502

vs. Production Rule System, 497
deferred evaluation, 80–81, 189
delimiter characters, 90, 201, 321
Delimiter-Directed Translation, 91, 97, 107,

177, 201–218, 222, 565
syntactic indentation in, 339
using with:

complex languages, 204
Decision Table, 502
Newline Separators, 333
regular expressions, 90, 202, 209, 214

Index584

vs. Embedded Interpretation, 202
vs. Embedded Translation, 202
vs. Syntax-Directed Translation, 92, 106,

204–205, 227
vs. Tree Construction, 202, 286

Dependency Network, 18, 36, 108–109, 119,
156–158, 505–512

in C#, 508–512
in external DSLs, 168–170
invoking vs. executing tasks in, 507
missed prerequisites in, 507
parsing, 511–512
product-oriented vs. task-oriented,

506–508
targets in, 506
unnecessary builds in, 507
using with:

Class Symbol Table, 509
Object Scoping, 509, 511
Semantic Model, 509–511

Design by Contract, 135
diagrams

and State Machine, 136
describing in a textual format, 154
in projectional editors, 136, 141

dictionaries. See Literal Map
do...end delimiters (Ruby), 401, 406, 408
doesNotUnderstand method (Smalltalk), 428
DOM (Document Object Model), 48, 93,

101–102
domain experts, 34–35, 108, 116, 479,

496–497
domain languages, 32
Domain Model, 5, 17, 160

vs. Semantic Model, 44, 134, 160
Domain-Driven Design principle, 5
DOT, 24, 148
DSL processor, 121
DSL scripts

executing, 472
self-contained, 386, 415

DSLs (Domain-Specific Languages)
advantages of, 18
boundaries of, 29–32, 109
building cost of, 106–107
changeability of, 21
clarity of, 33
comments in, 42, 63
common conventions in, 42
composing, 111

compositional, 161
computational, 161
custom syntax of, 13, 15–16, 28
defining, 27–32
embedded. See internal DSLs
embedding languages in. See Foreign Code
extending, 100
external. See external DSLs
fluency of, 103, 106
fragmentary, 32, 84, 387, 392, 415
IDE for. See language workbenches
implementing, 40–41, 43–66
internal. See internal DSLs
layering on top of another, 111, 151
learning cost of, 37
limitations of, 28, 151, 309, 339
limited expressiveness of, 13, 27–30, 33,

110, 121
maintenance cost of, 37–38
migrating, 64–66
problems with, 36
processing, 39–40, 43–47
readability of, 310–311, 360, 363, 469,

471
semantic model of, 29
semantic predicates for, 227
stand-alone, 32, 84, 392
syntactic structure of, 269–280
uses of, 33–36
vs. forms, 35, 102
vs. general-purpose languages, 28, 30, 42
vs. property lists, 101
wrapping third-party libraries with, 33,

38
DTD (Document Type Definition), 102
DTO, 574
Dynamic Reception, 86–87, 427–444

limitations of, 429
using with:

Method Chaining, 428
Nested Closure, 415, 442
Object Scoping, 428
Textual Polishing, 428

dynamically typed languages
and external DSLs, 110
evaluate text at runtime in, 477
Foreign Code in, 100
Literal Maps in, 419
overriding unknown methods in, 428
runtime errors in, 427

585Index

E
EBNF (extended BNF), 229–238

intermediate rules in, 235
vs. BNF, 99, 232, 234–236

Eclipse, 141
Egge, Brian, 39
Emacs, 102
email messages, 377, 382–384

filtering, 514
searching, 457–466

embedded DSLs. See internal DSLs
Embedded Interpretation, 93, 226, 236–237,

305–307, 331
and Parser Generator, 271
using with Nested Operator Expression,

328
vs. Delimiter-Directed Translation, 202
vs. Syntax-Directed Translation, 276

Embedded Translation, 93, 101, 148, 168,
196, 226, 236–237, 261, 284, 299–304,
549

actions in, 259
advantages of, 300
and Parser Generator, 271
disadvantages of, 300
in Recursive Descent Parser, 248
populating Semantic Model with, 284
using with:

BNF, 301
Embedment Helper, 301
Foreign Code, 299–301, 315

vs. Delimiter-Directed Translation, 202
vs. Syntax-Directed Translation, 276–278
vs. Tree Construction, 93, 284, 300

Embedment Helper, 126, 148, 169, 195,
238, 277, 316, 547–554

advantages of, 549
generating code with, 548, 552–554
naming for, 551
using with:

ANTLR, 276, 280, 294
Embedded Translation, 301
Foreign Code, 310, 312, 315, 547–549
Parser Generator, 271, 551
Templated Generation, 125, 540, 544,

548
encapsulation, 563
end-of-statement rule, 334
enums

for Literal Map keys, 419
for statically typed symbols, 172–174, 469

error handling, 59–64, 151
cost of, 63
semantic, 63–64
special methods for, 428
syntactic, 63

error messages, 62
errors

collecting, 193–198
compilation, 427
reporting in ANTLR, 277–278–280, 286
runtime, 427

escaping mechanism, 321
Escher, M. C., 131, 135
Evans, Eric, 67
Excel. See Microsoft Excel
exceptions, 194
Execute-Around Method, 188
expectations, 149–150
Expression Builder, 45, 71–73, 81, 107, 149,

171–172, 180, 343–350, 351, 370, 373,
375, 377, 382–383, 386–387, 406, 411,
428, 468, 472, 481–482

composite, 344
multiple, 344, 348–350, 409–411
separating from Semantic Model, 71, 344
testing, 344
using with:

Class Symbol Table, 467–468
Literal Extension, 481–482
Method Chaining, 344
Nested Function, 344

vs. parsers, 71
external DSLs, 15, 28–29, 89–103

boundaries of, 30–31
changing, 64
comments in, 63
composing, 111
Dependency Network in, 168–170
disadvantages of, 22
embedding in a method name, 428
flexibility of, 245
fragmentary, 32, 429
learning cost of, 105–106
limitations of, 109
parsing, 45–47, 89–92, 110
runtime configuration of, 110
Symbol Table in, 168
Textual Polishing in, 478
vs. internal DSLs, 45–47, 89, 105–112,

478

Index586

F
fail fast principle, 60, 456
filtering, 397–402
finishing problem, 375–376
finite-state machine, 96
FIT (Framework for Integrated Test), 31,

155–156
Fitnesse, 155
Flex, 322
fluent interfaces, 16, 30, 67–70, 107,

343–350
naming methods in, 70, 482
vs. command-query APIs, 70, 72

Ford, Neal, 75, 375, 481, 483
Foreign Code, 100–101, 109, 111, 195, 226,

236, 270, 309–318, 320, 340, 540
advantages of, 311
and Semantic Model, 310–315, 318
compiled, 310
interpreted, 310
parser for, 315–318
using with:

Alternative Tokenization, 101, 309,
317, 326

ANTLR, 316
Closure, 491
dynamic languages, 100
Embedded Translation, 299–301, 315
Embedment Helper, 310, 312, 315,

547–549
Parser Generator, 270–271
Repository, 316
Syntax-Directed Translation, 126

forms
embedding Javascript in, 520
submitting, 449
validation, 448–449
vs. DSLs, 35, 102

forward chaining, 515, 521, 523–524
forward references, 302
full delegation, 381
function pointers, 82
Function Sequence, 49, 68–69, 72–76,

79–80, 150, 170, 351–355, 359, 376,
385–386, 411

evaluation order of, 357, 359
using with:

Context Variable, 351–355, 358
Method Chaining, 352
Nested Closure, 352, 394, 404–407,

411–412

Nested Function, 352
Object Scoping, 352–353
Production Rule System, 523, 526

vs. Literal List, 352
functional programming, 163
functions, 72–77

anonymous. See Closure
child expressions of, 403–415
combining, 72
global, 73, 351, 385, 387
helper, 148, 248, 253
keyword arguments in, 419
varargs parameters in, 77, 358, 361,

417–419, 421
vs. Macros, 185–186
See also methods

G
general-purpose languages, 27

code generation with, 92
learning cost of, 37
using as DSLs. See internal DSLs
vs. DSLs, 28, 30, 42

generated code. See code generation
Generation Gap, 127, 278, 571–577

using with ANTLR, 278–280
gensyms, 190
ghetto language problem, 38–39
Gimp, 15
global functions. See functions, global
global state, 385
GLR parser, 99
grammar files, 126, 269–280

putting code actions into, 547
grammars, 16, 29, 49–50, 79–80, 90, 95–96,

219–220, 227, 229–238
and parse tree, 135
changing, 99
context-free, 97–98
context-sensitive, 97
modular, 339–340
regular, 96–97, 529
vs. schema definition languages, 135

Grant. See secret panel controller
graphs, 147–148
Graphviz, 24–25, 147–148, 491

error messages in, 62
Greenspun form, 422–425
GUI design, 139

587Index

H
handwritten code, 21

intermixing, 448
separating from generated code, 126–127,

535, 571–577
hashmaps. See Literal Map
Hibernate. See HQL
hierarchic context, 302
hierarchic structure, 376
HQL (Hibernate Query Language), 28,

151–152, 325
HTML (Hypertext Markup Language), 552

I
IDE (Integrated Development Environment)

advantages of, 107
build process in, 574
compile-time type checking in, 469
for DSLs. See language workbenches
refactoring capabilities of, 572
representations in, 138–139
support of, 122, 377, 382, 466, 469
type-aware autocompletion in, 467, 469

illustrative programming, 24, 130, 138–140
IMAP (Internet Message Access Protocol),

457, 466–466
immutable objects, 179
incremental migration, 65
inference engine, 514
informational messages, 194
inheritance, 386, 571–577
INI files, 101

using for Context Variables, 176–178
inline nesting, 80
input token buffer, 248, 257–258, 260,

264–265
instance_eval method (Ruby), 386, 392–394,

405, 407, 412–415, 420, 422, 440, 442,
479

instance initializers, 150, 172, 386, 394–395
integration tests, 62
Intentional Software, 136, 140
Intentional Workbench, 136, 140
interfaces

command-query. See command-query APIs
fluent. See fluent interfaces
marker, 447
operational, 161
population, 161
progressive, 149, 377, 382–384, 519
published, 64

internal DSLs, 15, 28–29, 67–88, 344
boundaries of, 29–30
changing, 64
Closures in, 80, 491
composing, 111
fragmentary, 32
learning cost of, 105–106
Macros in, 184
making little parse trees in, 438
mixing in host languages, 108–109
naming methods in, 30
parsing, 45–47
readability of, 377, 477
Symbol Table in, 168, 170–171
vs. external DSLs, 45–47, 89, 105–112,

478
interpretation, 19
invalid input tests, 59–61

J
jargon, 31
Java

actions in, 260
annotations in, 84, 445–446, 449
as a DSL, 15
building languages in, 157
built-in date and time classes in, 346
Class Symbol Table in, 469
configuration files in, 12
Dependency Network in, 168–170
generated and handwritten code in, 126
generating:

C, 535–538, 541–546
classes from a data schema, 573–577

hashmaps in, 167–168
“Hello World” in, 272–280
instance initialization in, 150, 172, 386,

394–395
mapping classes to SQL queries in,

151–152
periods at the start of the line in, 374
setter methods in, 374
static import in, 73, 352, 360, 371, 378
statically typed symbols in, 128
varargs function calls in, 77

Java CUP, 321, 323–324, 328
Javascript, 21, 100, 317

curly brackets in, 322
embedding in forms, 520
integrating with Java, 312, 314
validation with, 448

Index588

JetBrains, 140
JMock, 149–150, 394
Johnson, Ralph, 115
JRuby, 21, 46, 438–444
JSON (JavaScript Object Notation), 103
JSP (JavaServer Pages), 125, 540

K
keywords, 75

and method naming, 480
date-oriented vs. string-oriented, 461
in lexers, 223, 320, 323

Kleene operators, 231–232, 293

L
LALR parser, 99
lambdas. See Closure
language cacophony problem, 37
language workbenches, 22–24, 28–29, 112,

129–143, 469
bootstrapped, 135, 140
boundaries of, 31
editing systems for, 136–138
using with Semantic Model, 142

lay programmers, 138
Lex, 148, 204, 241
lexers, 148, 204, 221–223, 230, 232–233,

239–244
comments in, 222–223, 241, 335
generating, 220, 223, 275
implementing, 239
keywords in, 223, 320, 323
missing rules for some tokens in, 274
operators in, 223
preprocessing text for, 339, 478
quoting in, 320–322
regular expressions in, 221, 223
separating from syntactic analysis, 94–95
separators in, 320, 324–325, 333–336
states of, 322–324
vs. parsers, 319
whitespace in, 222–223, 241, 286, 319,

325
See also Regex Table Lexer

lexical state, 322–324
line continuation characters, 202, 208
line ending characters, 90, 202, 231, 286
Linq, 83–84, 457
Lisp, 14, 28, 67

duality of code and data in, 488
lambdas in, 82, 397

Literal Lists in, 78, 417–418
Macros in, 53, 82–83, 184, 188–191, 456
Nested Functions in, 75
Parse Tree Manipulation in, 83, 191, 456
symbols in, 166
tagging function names with data in, 447

list operator
actions for, 259–260
implementing, 258, 267–268
in ANTLR, 302

lists
combinators for, 258, 267–268
optional, 258, 267

literal arrays, 417
literal collections, 77–79
Literal Extension, 85, 375, 481–484

in C#, 483–484
using with Expression Builder, 481–482

Literal List, 77, 79–80, 390, 417–418, 420,
422–423

in Lisp, 78
in Ruby, 77–78, 417, 420–422
nested, 424
using with:

Literal Map, 419, 422–425
Nested Function, 358, 417

varargs function calls in, 417, 419
vs. Function Sequence, 352

Literal Map, 75, 77–80, 170, 366, 419–425
arguments of, 359
in Ruby, 419–422
keys for, 419, 421
using with:

Literal List, 419, 422–425
Nested Function, 358
Symbol Table, 167–168

LL parsers. See parsers, top-down
loader class, 288
loops, 113
LR parsers. See parsers, bottom-up

M
M language, 141
m4 macro processor, 184
machine states, 528
Macro, 52–53–53, 151, 183–192

nesting, 186, 192
parameters in, 185
syntactic, 53, 184, 186, 188–192
textual, 52, 184–188, 192, 478
vs. functions, 185–186

589Index

Make, 36, 108, 119, 156–158, 508
maps

multiple, 167
nested, 123
single, 166

MathCAD, 21
Maven, 157
MetaCase, 140
MetaEdit, 22, 31, 140–141
meta-models, 131
Meta-Programming System Language

Workbench, 31
Method Chaining, 48, 68–70, 72–76, 78–80,

85, 149–150, 370, 373–384, 409, 420,
465–466

and hierarchic structure, 376
end methods in, 479
evaluation order of, 357–359
finishing problem in, 375–376, 380
mandatory elements in, 377
readability of, 381
using with:

Dynamic Reception, 428
Expression Builder, 344
Function Sequence, 352
Nested Closure, 404–405, 409–411
Nested Function, 366, 369
Production Rule System, 523, 526

vs. Nested Function, 381
method_missing method (Ruby), 428, 433–434
Method Object, 209
methods, 72

adding to program literals, 481–484
automatic delegation to another object,

428
chaining. See Method Chaining
class, 446–447, 451–452
context validity of, 377
extension (C#), 481
for testing, 445, 447–448
formatting, 374
global, 85
naming, 30, 70, 137, 374, 428–434, 437,

447, 473, 480, 548
overriding missing. See Dynamic

Reception
private, 127, 445
protected, 127
public, 445
setter, 374, 449

static, 369, 371, 387
unknown, overriding, 427–444
validation, 577
vs. parameters, 370
See also functions

Meyer, Bertrand, 69
Microsoft Access, 31, 136
Microsoft Excel, 15, 25, 31, 497
Microsoft Office, 140
mistaken expansions, 185, 192
Mock Object, 32, 149
Model Ignorant Generation, 122–125, 127,

541, 567–570
vs. Model-Aware Generation, 122–124,

556, 568
model-assisted source editing, 137
Model-Aware Generation, 122–124, 142,

535, 555–566
using with:

Semantic Model, 555–566
Transformer Generation, 535–538

vs. Model Ignorant Generation, 122–124,
556, 568

model-based migration, 65
MPS (Meta-Programming System), 140
multiple evaluation, 186, 190, 192
multiple passes, 302
multiplicity symbols, 231–232, 234

N
namespaces, 73, 482–483
negation operator (ANTLR), 326
Nested Closure, 80–82, 87, 109, 150, 154,

158, 376–377, 394, 402, 403–415
evaluation order of, 359, 404
explicit arguments in, 411–412, 415
in C#, 408–409
in Ruby, 404, 408
language support of, 405
multiple, 405
using with:

Context Variable, 404–405
Dynamic Reception, 415, 442
Function Sequence, 352, 394, 404–407,

411–412
Method Chaining, 404–405, 409–411
Object Scoping, 404, 406
Production Rule System, 523

vs. Nested Function, 393, 403–405

Index590

Nested Function, 48, 74–77, 79–80, 87, 149,
191, 357, 359–371, 376, 385–386,
420–421

arguments of:
checking, 363–365
labeling, 358
multiple different, 361–363
optional, 358–359, 361

disadvantages of, 359–360
evaluation order of, 357–359
in Lisp, 75
in Ruby, 403
mandatory clauses in, 377
using with:

Context Variable, 359
Expression Builder, 344
Function Sequence, 352
Literal List, 358, 417
Literal Map, 358
Method Chaining, 366, 369
Object Scoping, 359, 366, 369, 371

vs. Method Chaining, 381
vs. Nested Closure, 393, 403–405

Nested Operator Expression, 99, 249,
306–307, 327–331

using with Embedded Interpretation, 328
.NET, 82, 370, 457

attributes in, 84, 445
Newline Separators, 95, 222, 320, 333–336

using with:
Delimiter-Directed Translation, 333
Syntax-Directed Translation, 333–336

noise. See syntactic noise
Notification, 58–59, 193–198, 515

in ANTLR, 195–198
in C#, 194–195
parsing, 195–198
using with Production Rule System, 518

O
object initializers, 365
Object Scoping, 73–75, 81, 149–150,

171–172, 361–362, 385, 387–395, 409,
415, 420, 440, 470, 479, 519, 522

using with:
Dependency Network, 509, 511
Dynamic Reception, 428
Function Sequence, 352–353
Nested Closure, 404, 406
Nested Function, 359, 366, 369, 371
Production Rule System, 525

Observation, 516–517
“Old MacDonald Had a Farm” song, 75,

80, 357, 359
OMG, 141–142
OO (object-oriented) languages

command objects in, 82
domain model of, 134
generated and handwritten code in,

126–127
imperative computational model of, 113
methods in, 69, 72, 75
naming classes in, 471
train wrecks in, 68

operators in lexers, 223
optional operator

implementing, 258
in Recursive Descent Parser, 247

output production, 226

P
Packrat, 98
PARC (Palo Alto Research Center), 140
Parr, Terence, 339
parse tree, 226

and grammar, 135
immutable, 456
walking, 456
See also syntax tree

Parse Tree Manipulation, 82–83, 190–191,
455–466

in C#, 191, 456
in Lisp, 191, 456
in Ruby, 456
using with Context Variable, 466

Parser Combinator, 91–92, 97, 99, 220, 226,
249, 255–268, 270

actions in, 259–260
composite, 258
downsides of, 261
implementing, 261
input of, 256
output of, 256
recognition in, 256–260
vs. BNF, 261
vs. Parser Generator, 261
vs. Recursive Descent Parser, 256, 261

591Index

Parser Generator, 46, 63, 91–94, 96–100,
102–103, 105–106, 111, 129, 220, 223,
225–226–227, 230, 232, 234, 236–238,
241, 245–246, 248–249, 255, 261,
269–280, 283–284, 292, 299–300,
302–303, 311, 319–322, 326–328, 330,
334, 340

advantages of, 261, 272
and Embedded Interpretation, 271
and Embedded Translation, 271
and Tree Construction, 271
code actions in, 236–238
disadvantages of, 272
embedding actions, 270–271
multiplicity symbols in, 232
using with:

BNF, 270
Embedment Helper, 271, 551
Foreign Code, 270–271

vs. Parser Combinator, 261
parser objects, 255–268
parsers, 47–49, 201–218, 223–226, 239

bottom-up, 98–99, 238, 327–329
developing cost of, 107, 478
error handling in, 63
for Decision Table, 496, 502–503
for Dependency Network, 511–512
for lines, 204, 212–218
for state machines, 215–218
for XML, 102
generating, 275
implementing, 220, 255–268
in C#, 519, 525–526
testing, 57–61, 275
top-down, 98–99, 235, 245–254–255,

261–268, 306, 329–331
See also Recursive Descent Parser
vs. Expression Builder, 71
vs. lexers, 319
whitespace in, 202

ParseTree (Ruby), 456
parsing, 50–52, 225

and Context Variables, 175, 300
external DSLs, 45–47, 89–92, 110

multiple together, 101
flexibility in, 162
internal DSLs, 45–47
output of, 92–94
textual transformations prior to, 183

PEG (Parsing Expression Grammar), 97,
233–234

performance, 166
PIC, 154
PL/1, 222
pointer arithmetic, 558
polymorphic lines, 203
precedence rules, 328
precision, 369
printf function (C), 540
procedures. See functions
Production Rule System, 18, 117–118, 136,

489, 513–526
debugging, 517
using with:

Adaptive Model, 492
Function Sequence, 523, 526
Method Chaining, 523, 526
Nested Closure, 523
Notification, 518
Object Scoping, 525
Semantic Model, 519–521

vs. Decision Table, 497
programming languages, 27

domain-specific. See DSLs
dynamic. See dynamically typed languages
encodings of, 429
general-purpose. See general-purpose

languages
interpreted, 110
object-oriented. See OO languages
static. See statically typed languages
templating, 540
with keyword arguments, 75

projectional editing, 136–138, 139, 141
property lists, 101
push-down machine, 97
Python, 95, 338

Q
Quadrant, 141

R
R language, 30
Ragel, 97
Rails, 28

Active Record, 428, 430, 434
See also Ruby on Rails

Rake, 157
range operator, 232
recurring events, 366
recursion, 235

Index592

Recursive Descent Parser, 91–92, 97, 99,
220, 226, 245–254, 256, 261, 270, 423

advantages of, 261
shortcomings of, 249
simplicity of, 249
vs. Parser Combinator, 256, 261

refactoring
automated, 64, 168
in IDE, 572
safe, 137

regex API, 243–244
Regex Table Lexer, 94, 223, 239–244, 246,

250, 256
regular expressions, 28, 30, 32

using with:
Delimiter-Directed Translation, 90, 202,

209, 214
lexers, 221, 223
Regex Table Lexer, 239–244
Textual Polishing, 477

Relax NG, 102
repetition operator (Recursive Descent

Parser), 247
Repository, 316
reset block, 267
reset events, 4, 8, 288, 297, 303, 475, 563

explicit, 8
Roberts, Mike, 29
Row Data Gateway, 573
Ruby, 14, 28, 67, 157, 574

Annotations in, 446, 451–454
arrays in, 456
blocks in, 81–82, 397, 401
class methods in, 451–452
dynamic code generation in, 452–454
Dynamic Reception in, 86
Greenspun form in, 422–425
instance evaluation in, 386, 392–394, 405,

407, 412–415, 420, 422, 440, 442,
479

keywords in, 480
Literal Extension in, 85
Literal Lists in, 77–78, 417, 420–422
Literal Maps in, 419–422
Macros in, 187
Nested Closure in, 404, 408
Nested Function in, 403
open classes in, 481, 573
Parse Tree Manipulation in, 83
parsed method names in, 430–434
ParseTree library in, 456

periods at the end of the line in, 374
populating Semantic Model in, 35
ranges in, 446
Symbol Table in, 170–171
symbols in, 78, 87, 166, 419, 439,

443–444
Textual Polishing in, 478–480
varargs arguments in, 421

Ruby on Rails
DSL expressions in, 85
metadata in, 84–85

rule engine, 514
rules, 513–526

activated, 514, 524–525
backward chaining, 515
contradictory, 515–516, 523
firing, 514, 525
forward chaining, 515, 521, 523–524
sets of, 515
validation, 516–521
See also Production Rule System

S
salience, 514
SASS, 151
SAX (Simple API for XML), 48, 93, 101
scanners. See lexers
scheduler, 514
schema definition languages, 131, 135
schemas, 102
Scheme (Gimp), 15, 190
screen layouts, 154
scripts

testing, 61–62
visualizing, 62

secret panel controller, 3–5, 22, 32–33, 54,
131, 133, 163–164, 438–444, 488, 491

in ANTLR, 549–552
in C, 557–563, 568–570
in Java, 530, 535–538, 541–546, 549–552
lexing, 241–244
nonautonomous statements in, 211–218
programming, 9–16
testing, 56–57
using with:

Embedded Translation, 300–304
Model-Aware Generation, 557–563
State Machine, 530
Templated Generation, 541–546
Transformer Generation, 535–538
Tree Construction, 284–291

593Index

security systems, 3–5
Semantic Model, 16–21, 22, 25, 29, 42–47,

51–54, 56–57, 60–62, 71–72, 81–83,
92–94, 100, 102, 108, 110–112, 115,
120–123, 130–131, 133, 135–136, 138,
141, 148–149, 152, 159–164, 168, 170,
172, 176–178, 202, 221–223, 282, 284,
288, 299, 301, 320, 345, 349, 353–354,
360, 387, 441, 446, 456, 458–461, 463,
465, 470, 488, 509, 520, 530, 533–534,
556, 563–564, 567, 574, 576

advantages of, 71, 162–164, 306
and code generation, 21, 128, 130, 162,

533–538
and Foreign Code, 310–315, 318
and parsing, 162, 256
binding XML elements to, 102
executing, 162
fluent constructs in, 344–345
generating diagrams from, 24
handling semantic errors in, 63–64
model-based migration of, 65
populating, 36, 43–47, 49, 52, 128, 162,

284, 288–291, 317, 575
in an invalid state, 60
in Recursive Descent Parser, 248
in Ruby, 35
via a command-query interface, 160
via Embedded Translation, 299–304

schema of, 130
separating from Expression Builder, 71,

344
simulacrum of, 556–557
supporting multiple DSLs for, 163
testing, 53–57
using with:

Annotation, 447
Class Symbol Table, 468
Decision Table, 496–502
Dependency Network, 509–511
language workbenches, 142
Model-Aware Generation, 555–566
Production Rule System, 519–521
Symbol Table, 166
Templated Generation, 125, 544, 546,

549
Transformer Generation, 124, 533–538

validation checks in, 161, 164
visualizing, 34
vs. Domain Model, 44, 134, 160
vs. syntax tree, 48, 135, 160, 306

semantic predicates, 226–227, 271
semantics, 49
Sendmail, 110
separation of concerns, 71
separators, in lexers, 320, 324–325, 333–336
sequence operator

actions for, 259–260
implementing, 257
in Recursive Descent Parser, 246

serialized data structures, 30
servers, 448
setf macro (Lisp), 191
shifting, 98
Simonyi, Charles, 140
SLR parser, 99
Smalltalk

adding methods to third-party classes in,
482

blocks in, 82, 397
conditional expressions in, 405
Dynamic Reception in, 86
named parameters in, 78
overriding unknown methods in, 428
symbols in, 166

smell, 52, 218, 438, 514
source code repository, 126, 275
source-based editing, 136
Specification, 206, 313, 366, 389
spreadsheets, 23–24, 138–140, 496–497
SQL, 21, 28, 32

generating, 35, 46, 82, 121
from C# conditions, 457

mapping to Java classes, 151–152
Starbucks, 31
start conditions, 322–324
State, 204, 212
State Machine, 4–9, 18, 118, 122, 159–161,

163–164, 527–530
creating, 295–296
dynamically loading, 564–566
lexical analyzer for, 241–244
model of, 5–9, 16–19, 22, 131
parsing, 215–218
using with Adaptive Model, 529
visualizing as a diagram, 136

state tables, 124
statement separators, 286, 333–336
states, 528
static checking, 122, 521
static data, 352
static import, 73, 352, 360, 371, 378

Index594

static methods. See methods, static
statically typed languages

and external DSLs, 110
code generation for, 566
compilation errors in, 427
Decision Table in, 496
enums in, 419
Foreign Code in, 100
IDE support for, 377
marker interfaces in, 447
no Dynamic Reception in, 429
string arguments in, 521
type-aware autocompletion in, 467, 469
using Textual Polishing in, 477

statistics, 30
Strategy, 212
strings

and performance, 166
autocompletion of, in IDE, 168
operations with, 166
splitting, 90

strtok function (C), 565–566
structs, 28
structural constraints, 135
subroutines. See functions
sugar. See syntactic sugar
Swiby, 154
symbol data type, 78, 166, 419, 467
Symbol Table, 16, 50–52, 71, 78, 93, 97,

165–174, 215, 218, 259, 289, 441,
468–469, 484, 550

in internal DSLs, 170–171
populating, 442
uses of, 168
using with Semantic Model, 166
values of, 166

Symbol Table for Nested Scopes, 167
symbolic constants, 185
symbols, 87, 165

and performance, 166
declaring, 167
dynamically typed, 419
in Ruby, 439, 443–444
misspelled, 167
operations with, 166
statically typed, 168, 172–174, 467

syntactic analysis, 223–227
in ANTLR, 274–276
separating from lexing, 94–95
strategy of, 89–92

syntactic indentation, 95, 337–339, 478

syntactic noise, 75, 81, 108, 376, 381, 386,
392, 415

of DSLs, 82
of embedded code, 101
of XML, 13, 101, 103
reducing with:

Dynamic Reception, 428, 439, 443–444
syntax coloring, 86
Textual Polishing, 85, 478

syntactic sugar, 358, 360, 437, 443
syntax, 49, 90, 229–238
syntax highlighting, 22, 86, 107, 549
syntax tree, 47, 49, 93–94, 226, 376

abstract. See AST
constructing. See Tree Construction, 260
populating in Recursive Descent Parser,

248
vs. Semantic Model, 48, 135, 160, 306

syntax-directed editing, 22
Syntax-Directed Translation, 49, 79, 90–92,

94, 97, 105–107, 148, 152, 203–205,
219–227, 229–230, 232, 240, 281, 299,
339

composing DSLs with, 111
disadvantages of, 92, 227, 271
grammar files for, 126
learning cost of, 105–106
separation between lexing and parsing in,

221–223, 240–241
strategies to produce output with, 202,

276
syntactic indentation in, 339
using with:

Alternative Tokenization, 326
Foreign Code, 126
Newline Separators, 333–336

vs. Delimiter-Directed Translation, 92,
106, 204–205, 227

vs. Embedded Interpretation, 276
vs. Embedded Translation, 276
vs. Tree Construction, 276

T
tabs, 338
Templated Generation, 183, 192, 539–546

problems with, 125
using with:

Embedment Helper, 125, 540, 544, 548
Ruby, 574
Semantic Model, 125, 544, 546, 549
Transformer Generation, 534

595Index

Templated Generation (continued)
vs. Transformer Generation, 124–125,

540
templates, 539–546, 547
templating engine, 540
templating languages, 540
terminal symbols

actions for, 259–260
combinators for, 263
recognizer for, 257–259

Test Utility Method, 56
test-driven development, 53
testing, 53–62

marking methods for, 445, 447–448
with invalid input tests, 59–61

Textual Polishing, 85, 185, 477–480
in Ruby, 478–480
using with Dynamic Reception, 428

third-party libraries
adding methods to, 482
wrapping with DSLs, 33

tokenizers. See lexers
tokens, 94–95, 221–223

checking, 363–365
declaring in grammar file, 287
ignoring type of, 325–326
in ANTLR, 274
nested, 318
type mutation of, 324–325
types of, 223, 363–365

train wrecks, 68
Transformer Generation, 533–538, 541

input-driven vs. output-driven, 534
using with:

Model-Aware Generation, 535–538
Semantic Model, 124, 533–538
Templated Generation, 534

vs. Templated Generation, 124–125, 540
Tree Construction, 49, 93–94, 101, 152,

168, 225–226, 236–237, 253, 281–297,
300–301, 326, 331

actions in, 259
advantages of, 93
and Parser Generator, 271
code actions in, 292–297
in Recursive Descent Parser, 248
memory consumption of, 284
parsing, 286–288
populating Semantic Model with, 284

processing AST in multiple passes, 302
tokenizing, 285–286
vs. Delimiter-Directed Translation, 202,

286
vs. Embedded Translation, 93, 284, 300
vs. Syntax-Directed Translation, 276

type checking, 87–88
type transmogrification, 375, 481–482

U
Ubiquitous Language, 5, 34
Unix

configuration files for, 102
line ending character in, 202
little languages in, 28

up-to operator, 232

V
validation, 81, 135, 577

and Semantic Model, 161, 164
annotations for, 448–454
failing, 193, 521
in C#, 517–521
on form fields, 448–449
rules for, 516–521

Value Object, 375
Vanderburg, Glenn, 112
varargs parameters, 77, 358, 361, 417–419,

421
in Ruby, 421

variable capture, 186, 190, 192
variables

class, 447, 452
context. See Context Variable
declaring, 97
limited-scope, 80–81
static, 558

VBA (Visual Basic for Applications), 15
Velocity, 184, 187, 541–546, 552–554

template commands in, 544
version control systems, 35
visualization, 24–25

of Adaptive Model, 491
of scripts, 62
of Semantic Model, 34
of State Machine, 136

Vlissides, John, 571
Voelter, Marcus, 128

Index596

W
warnings, 194
web pages

common elements on, 185
embedding code into, 547
generating:

by Embedment Helper, 552–554
from templates, 125, 540
in Transformer Generation, 534
in Velocity, 187

Weirich, Jim, 415
whitespace

in Delimiter-Directed Translation, 204
in lexers, 222–223, 241, 286, 319, 325
in parsers, 202
in syntactic indentation, 338
syntactic, 95

WPF (Windows Presentation Framework),
152

X
XAML, 152–154, 161
XML (Extensible Markup Language), 11–12

advantages of, 102
as DSL, 28, 31, 101–103, 106
as serialization mechanism, 102
binding to Semantic Model, 102
creating documents in, 415
parsers for, 102
processing, 93
syntactic noisiness of, 13, 101, 103
using for Context Variables, 176
vs. custom syntax, 13

XML Schema, 102
XPath, 83
XSLT (Extensible Stylesheet Language

Transformations), 30
Xtext, 141
xUnit, 447–448

Y
Yacc, 148, 235–236
YAML (YAML Ain’t Markup Language),

103
indentation in, 338
using for Context Variables, 176

Yoder, Joe, 115

597Index

	Contents
	Preface
	Chapter 1: An Introductory Example
	Gothic Security
	The State Machine Model
	Programming Miss Grant’s Controller
	Languages and Semantic Model
	Using Code Generation
	Using Language Workbenches
	Visualization

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

