Process Areas by Process Area Category

Service Establishment and Delivery
- Incident Resolution and Prevention (IRP) (p. 315)
- Service Delivery (SD) (p. 539)
- Service System Development (SSD) (p. 561)
- Service System Transition (SST) (p. 595)
- Strategic Service Management (STSM) (p. 609)

Project and Work Management
- Capacity and Availability Management (CAM) (p. 261)
- Integrated Work Management (IWM) (p. 335)
- Quantitative Work Management (QWM) (p. 461)
- Requirements Management (REQM) (p. 483)
- Risk Management (RSKM) (p. 493)
- Supplier Agreement Management (SAM) (p. 509)
- Service Continuity (SCON) (p. 523)
- Work Monitoring and Control (WMC) (p. 621)
- Work Planning (WP) (p. 633)

Process Management
- Organizational Process Definition (OPD) (p. 375)
- Organizational Process Focus (OPF) (p. 389)
- Organizational Performance Management (OPM) (p. 405)
- Organizational Process Performance (OPP) (p. 425)
- Organizational Training (OT) (p. 441)

Support
- Causal Analysis and Resolution (CAR) (p. 281)
- Configuration Management (CM) (p. 291)
- Decision Analysis and Resolution (DAR) (p. 305)
- Measurement and Analysis (MA) (p. 357)
- Process and Product Quality Assurance (PPQA) (p. 453)
Generic Goals and Generic Practices

GG 1: Achieve Specific Goals (p. 193)
- GP 1.1: Perform Specific Practices

GG 2: Institutionalize a Managed Process (p. 193)
- GP 2.1: Establish an Organizational Policy
- GP 2.2: Plan the Process
- GP 2.3: Provide Resources
- GP 2.4: Assign Responsibility
- GP 2.5: Train People
- GP 2.6: Control Work Products
- GP 2.7: Identify and Involve Relevant Stakeholders
- GP 2.8: Monitor and Control the Process
- GP 2.9: Objectively Evaluate Adherence
- GP 2.10: Review Status with Higher Level Management

GG 3: Institutionalize a Defined Process (p. 248)
- GP 3.1: Establish a Defined Process
- GP 3.2: Collect Process Related Experiences
CMMI® for Services

Second Edition
The SEI Series in Software Engineering represents a collaborative undertaking of the Carnegie Mellon Software Engineering Institute (SEI) and Addison-Wesley to develop and publish books on software engineering and related topics. The common goal of the SEI and Addison-Wesley is to provide the most current information on these topics in a form that is easily usable by practitioners and students.

Books in the series describe frameworks, tools, methods, and technologies designed to help organizations, teams, and individuals improve their technical or management capabilities. Some books describe processes and practices for developing higher-quality software, acquiring programs for complex systems, or delivering services more effectively. Other books focus on software and system architecture and product-line development. Still others, from the SEI's CERT Program, describe technologies and practices needed to manage software and network security risk. These and all books in the series address critical problems in software engineering for which practical solutions are available.

Visit informit.com/sei for a complete list of available products.
The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT, and CERT Coordination Center are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation; CURE; EPIC; Evolutionary Process for Integrating COTS Based Systems; Framework for Software Product Line Practice; IDEAL; Interim Profile; OAR; OCTAVE; Operationally Critical Threat, Asset, and Vulnerability Evaluation; Options Analysis for Reengineering; Personal Software Process; PLTP; Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead Appraiser; SCAMPI Lead Assessor; SCE; SEI; SEPG; Team Software Process; and TSP are service marks of Carnegie Mellon University.

Special permission to reproduce portions of CMMI for Services (CMU/SEI-2010-TR-036), © 2010 by Carnegie Mellon University, and “Considering the Case for Security Content in CMMI for Services,” by Eileen Forrester, © 2010 by Carnegie Mellon University, has been granted by the Software Engineering Institute.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:
International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Forrester, Eileen C.
CMMI for services : guidelines for superior service / Eileen C. Forrester, Brandon L. Buteau, Sandy Shrum.—2nd ed.
p. cm.
Includes bibliographical references and index.
QA76.758.F6725 2011
005.10685—dc22
2010049519

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, March 2011
CONTENTS

PREFACE xiii

ACKNOWLEDGMENTS xix

PART ONE—ABOUT CMMI FOR SERVICES 1

1 INTRODUCTION 3

Do You Need CMMI? 3
 Do You Have These Common Problems? 3
How Does CMMI Help You to Solve These Problems? 5
How Can CMMI Benefit You? 7
Evolution of CMMI 8
CMMI Framework 10
CMMI for Services 10
Important CMMI-SVC Concepts 11
 Service 12
 Service System 13
 Service Agreement 15
 Service Request 16
 Service Incident 16
 Project, Work Group, and Work 17
 Stakeholder, Customer, and End User 19
2 PROCESS AREA COMPONENTS

<table>
<thead>
<tr>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Process Areas and CMMI Models</td>
<td>21</td>
</tr>
<tr>
<td>Required, Expected, and Informative Components</td>
<td>21</td>
</tr>
<tr>
<td>Required Components</td>
<td>21</td>
</tr>
<tr>
<td>Expected Components</td>
<td>22</td>
</tr>
<tr>
<td>Informative Components</td>
<td>22</td>
</tr>
<tr>
<td>Components Associated with Part Two</td>
<td>22</td>
</tr>
<tr>
<td>Process Areas</td>
<td>22</td>
</tr>
<tr>
<td>Purpose Statements</td>
<td>24</td>
</tr>
<tr>
<td>Introductory Notes</td>
<td>24</td>
</tr>
<tr>
<td>Related Process Areas</td>
<td>24</td>
</tr>
<tr>
<td>Specific Goals</td>
<td>25</td>
</tr>
<tr>
<td>Generic Goals</td>
<td>25</td>
</tr>
<tr>
<td>Specific Goal and Practice Summaries</td>
<td>25</td>
</tr>
<tr>
<td>Specific Practices</td>
<td>25</td>
</tr>
<tr>
<td>Example Work Products</td>
<td>25</td>
</tr>
<tr>
<td>Subpractices</td>
<td>26</td>
</tr>
<tr>
<td>Generic Practices</td>
<td>26</td>
</tr>
<tr>
<td>Generic Practice Elaborations</td>
<td>27</td>
</tr>
<tr>
<td>Additions</td>
<td>27</td>
</tr>
<tr>
<td>Supporting Informative Components</td>
<td>27</td>
</tr>
<tr>
<td>Notes</td>
<td>28</td>
</tr>
<tr>
<td>Examples</td>
<td>28</td>
</tr>
<tr>
<td>References</td>
<td>28</td>
</tr>
<tr>
<td>Numbering Scheme</td>
<td>29</td>
</tr>
<tr>
<td>Typographical Conventions</td>
<td>29</td>
</tr>
</tbody>
</table>

3 HOW TO START USING CMMI

<table>
<thead>
<tr>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Important Roles in Process Improvement</td>
<td>33</td>
</tr>
<tr>
<td>The Executive Sponsor</td>
<td>33</td>
</tr>
<tr>
<td>The Management Steering Group</td>
<td>34</td>
</tr>
<tr>
<td>The Process Group</td>
<td>34</td>
</tr>
<tr>
<td>The Process Group Leader</td>
<td>35</td>
</tr>
<tr>
<td>The Working Groups</td>
<td>35</td>
</tr>
<tr>
<td>The SCAMPI Lead Appraiser or Team Leader</td>
<td>35</td>
</tr>
<tr>
<td>The Appraisal Team</td>
<td>36</td>
</tr>
</tbody>
</table>
Lifecycles
The Importance of Lifecycles
Lifecycles in CMMI for Services
Service Lifecycles
Project Lifecycles
Service System Lifecycles
Service Request Lifecycles
Incident Lifecycles
Putting Lifecycles Together

6 ESSAYS ABOUT CMMI FOR SERVICES
A Changing Landscape
Changing Paradigms
The Principal Agents of Change
Management’s Challenge
Benchmarking: A Management Tool for Change
Summary
Expanding Capabilities across the “Constellations”
CMMI for Services, with a Dash of CMMI for Development
The Development Environment
The Services Environment
Implementing CMMI for Services
Enhancing Advanced Use of CMMI-DEV with CMMI-SVC
Process Areas for SoS
Multiple Paths to Service Maturity
Case 1: CMMI-DEV Maturity Level to CMMI-DEV Maturity Level 3 Adapted for Services, 2004–2007
Case 2: CMM-SW to CMMI-DEV and ISO 9001
Case 3: CMM-SW to CMMI-DEV Maturity Level 3 and Maturity Level 5 to CMMI-SVC
Using CMMI-DEV and ISO 20000 Assets in Adopting CMMI-SVC
Understanding the Service Spectrum
Rethinking the Core Process Areas
Understanding Customer Relationships
Understanding the New Terminology
Understanding How to Reuse Existing CMMI Process Assets
Understanding How to Use and Reuse ISO 20000 Assets
Conclusion
Experience-Based Expectations for CMMI-SVC 111
Expectations for CMMI-SVC to Be a Promising Model 111
A Prelude 113
My CMM Experience 114
From Compliance-Driven Improvement to Performance-Driven Improvement 115
An IT Services Scenario Applying CMMI for Services: The Story of How HeRus Improved Its IT Services 116
Observations 116
What It Looks Like in Practice 122
Introduction to the HeRus Scenario 122
Service Delivery (SD) 123
Capacity and Availability Management (CAM) 125
Service Continuity (SCON) 127
Incident Resolution and Prevention (IRP) 127
Conclusion 128
Are Services Agile? 129
What We Can Learn from High-Performing IT Organizations to Stop the Madness in IT Outsourcing 135
Introduction 135
Our Ten-Year Study of High-Performing IT Organizations 136
Common Culture Among High Performers 137
The Performance Differences between High and Low Performers 138
Which Controls Really Matter 139
What Goes Wrong in Too Many IT Outsourcing Programs 139
A Hypothetical Case Study 140
An Effective System of IT Operations 141
Call to Action 142
Public Education in an Age of Accountability 143
Federal Legislation Drives Change 144
Orienting Education to Delivering Services 144
A Service Agreement for Education 145
A Process for Producing Consistently High Levels of Student Learning 146
A Process for Efficient Decision Making 147
Providing for Continuity 147
Other Applications for the Model in Education 147
A Better Future for American Education 148
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGRATED WORK MANAGEMENT</td>
<td>335</td>
</tr>
<tr>
<td>MEASUREMENT AND ANALYSIS</td>
<td>357</td>
</tr>
<tr>
<td>ORGANIZATIONAL PROCESS DEFINITION</td>
<td>375</td>
</tr>
<tr>
<td>ORGANIZATIONAL PROCESS FOCUS</td>
<td>389</td>
</tr>
<tr>
<td>ORGANIZATIONAL PERFORMANCE MANAGEMENT</td>
<td>405</td>
</tr>
<tr>
<td>ORGANIZATIONAL PROCESS PERFORMANCE</td>
<td>425</td>
</tr>
<tr>
<td>ORGANIZATIONAL TRAINING</td>
<td>441</td>
</tr>
<tr>
<td>PROCESS AND PRODUCT QUALITY ASSURANCE</td>
<td>453</td>
</tr>
<tr>
<td>QUANTITATIVE WORK MANAGEMENT</td>
<td>461</td>
</tr>
<tr>
<td>REQUIREMENTS MANAGEMENT</td>
<td>483</td>
</tr>
<tr>
<td>RISK MANAGEMENT</td>
<td>493</td>
</tr>
<tr>
<td>SUPPLIER AGREEMENT MANAGEMENT</td>
<td>509</td>
</tr>
<tr>
<td>SERVICE CONTINUITY</td>
<td>523</td>
</tr>
<tr>
<td>SERVICE DELIVERY</td>
<td>539</td>
</tr>
<tr>
<td>SERVICE SYSTEM DEVELOPMENT</td>
<td>561</td>
</tr>
<tr>
<td>SERVICE SYSTEM TRANSITION</td>
<td>595</td>
</tr>
<tr>
<td>STRATEGIC SERVICE MANAGEMENT</td>
<td>609</td>
</tr>
<tr>
<td>WORK MONITORING AND CONTROL</td>
<td>621</td>
</tr>
<tr>
<td>WORK PLANNING</td>
<td>633</td>
</tr>
<tr>
<td>PART THREE—THE APPENDICES</td>
<td>661</td>
</tr>
<tr>
<td>A REFERENCES</td>
<td>663</td>
</tr>
<tr>
<td>B ACRONYMS</td>
<td>669</td>
</tr>
<tr>
<td>C CMMI VERSION 1.3 PROJECT PARTICIPANTS</td>
<td>673</td>
</tr>
<tr>
<td>D GLOSSARY</td>
<td>681</td>
</tr>
<tr>
<td>BOOK CONTRIBUTORS</td>
<td>715</td>
</tr>
<tr>
<td>INDEX</td>
<td>729</td>
</tr>
</tbody>
</table>
This page intentionally left blank
Services make up 80 percent of the world economy and comprise more than half of U.S. Department of Defense acquisitions. The primary purpose of the CMMI for Services (CMMI-SVC) model, which is the basis of this book, is to guide service providers as they improve the way they do their work—their processes. Improved processes result in improved service performance, customer satisfaction, and profitability. When organizations using CMMI-SVC make improvements in their performance, they can ultimately contribute to the health of the world economy.

CMMI (Capability Maturity Model Integration) models are collections of effective practices that help organizations to improve their processes. The CMMI-SVC model, like all of the CMMI Product Suite, was developed by a team from industry, government, and the Software Engineering Institute (SEI). Hundreds of reviewers suggest new content and changes for the model. Adopters pilot model content and give further feedback. A network of hundreds of SEI Partners and thousands of users apply the model to their work and report their experience and results, further improving model content. In this way, the CMMI-SVC model represents the ongoing consensus of thousands of practitioners about how to provide superior service.

1. There are CMMI models that focus on the development of products and services (CMMI for Development) and on the acquisition of products and services (CMMI for Acquisition). See the CMMI website for more information about these members of the CMMI Product Suite (www.sei.cmu.edu/cmmi/).
Purpose

This book provides guidance on how all types of service provider organizations can establish, manage, and improve services that meet the needs of their customers and end users.

This guidance includes the following:

- Delivering services that meet the terms of service agreements
- Managing the organization's capacity to provide services and ensure the availability of services
- Addressing service incidents effectively
- Establishing standard services and service levels that meet the strategic needs of the organization as well as the needs of customers and end users
- Ensuring the continuity of services in the face of disaster

By integrating these and other practices, CMMI-SVC helps service providers to establish, deliver, and manage services.

Organization of This Book

This book is organized into three main parts:

- Part One: About CMMI for Services
- Part Two: Generic Goals and Generic Practices, and the Process Areas
- Part Three: The Appendices and Glossary

Part One: About CMMI for Services, consists of six chapters.

- Chapter 1, Introduction, offers a broad view of CMMI and the Services constellation, concepts of process improvement, the history of models used for process improvement, and key concepts of CMMI for Services.
- Chapter 2, Process Area Components, describes the components of the CMMI-SVC process areas.
- Chapter 3, How to Start Using CMMI, describes the important roles needed for implementing a CMMI-based process improvement program, explains how appraisals can be used, identifies training that can help, and provides tips for getting started using CMMI.

2. A constellation is a collection of CMMI components that are used to construct models, training materials, and appraisal related documents for an area of interest (e.g., development, acquisition, services).
• Chapter 4, Achieving Process Improvement that Lasts, explains how selected practices in all CMMI models enable the organization to make improvement part of how it does business, including descriptions of generic goals, generic practices, maturity levels, capability levels, and equivalent staging.

• Chapter 5, Relationships Among Process Areas, describes how process areas interrelate and provides insight into the interactions among the CMMI-SVC process areas.

• Chapter 6, Essays About CMMI for Services, consists of invited essays from contributing authors. The essays cover the use of CMMI-SVC, unusual applications, and use of CMMI-SVC in new domains.

Part Two: Generic Goals and Generic Practices, and the Process Areas, contains all of the CMMI-SVC required and expected components. It also contains related informative components, including subpractices, notes, examples, and example work products.

Part Two contains 25 sections. The first section contains the generic goals and practices. The remaining 24 sections each represent one of the CMMI-SVC process areas. Process areas contain effective practices covering topics ranging from configuration management to service delivery.

To make these process areas easy to find, they are organized alphabetically by process area acronym. Most CMMI users quickly learn the process area acronyms and abandon their longer names for their shorter abbreviations. An example in which the order of the process areas by full process area title versus abbreviation is different is that Supplier Agreement Management (SAM) appears before Service Delivery (SD). Each section contains goals, practices, and examples in a format that enables you to locate information quickly.

Part Three: The Appendices and Glossary, consists of four sections.

• Appendix A, References, contains references you can use to locate documented sources of information such as reports, process improvement models, industry standards, and books that are related to CMMI-SVC.

• Appendix B, Acronyms, defines the acronyms used in the model.

• Appendix C, CMMI for Service Project Participants, contains lists of team members who participated in the development of CMMI-SVC, V1.3.

• Appendix D, Glossary, defines many of the terms used in CMMI.

3. A process area is a cluster of related practices in an area that, when implemented collectively, satisfies a set of goals considered important for making improvement in that area. This concept is covered in detail in Chapter 2.
Finally, the Book Contributors section provides information about the book's authors and those who contributed essays for Chapter 6.

Extras in This Book

Readers who are familiar with the model and with prior CMMI books will find these changes and extras in this book on CMMI-SVC.

- We extensively revised Part One to add more material on service concepts, including a discussion of lifecycles in service environments.
- We also clarified and shortened the material on generic goals and practices, and updated the material on getting started and sustaining improvement.
- In Part Two, we added margin notes to all the process areas. These notes describe why the practices in a process area are valuable and rephrase what the process area is about in plainer language than the formal model language.
- We also added author notes in Part Two to amplify service concepts or to explain how to apply core model concepts in a service context.
- Finally, we included invited essays in Chapter 6 that consist of essays from partners, experienced users, experts in service management, and new users with advice for other new adopters.

How to Use This Book

Whether you are new to process improvement, new to CMMI, or already familiar with CMMI, Part One can help you understand why CMMI-SVC is the model to use for improving your service processes.

Readers New to Process Improvement

If you are new to process improvement or new to the Capability Maturity Model (CMM) concept, we suggest that you read Chapter 1 first. Chapter 1 contains an overview of process improvement that explains what CMMI is all about.

Next, skim Part Two, including generic goals and practices and specific goals and practices, to get a feel for the scope of the best practices contained in the model. Pay close attention to the purpose and introductory notes at the beginning of each process area.
In Part Three, look through the references in Appendix A and select additional sources you think would be beneficial to read before moving forward with using CMMI-SVC. Read through the acronyms and glossary to become familiar with the language of CMMI. Then, go back and read the details of Part Two.

Readers Experienced with Process Improvement

If you are new to CMMI but have experience with other process improvement models, such as Information Technology Infrastructure Library (ITIL) or International Organization for Standardization (ISO) 9000, you will recognize similarities in their structure and content [ISO 2008c].

We recommend that you read Part One to understand how CMMI is different from other process improvement models. If you have experience with other models, you might want to select which sections to read first. Read Part Two looking for practices you recognize from other models that you have used, and note variations. You might notice a different level of detail in CMMI than in the models you are accustomed to using.

Next, review the glossary to understand how some terminology can differ from that used in the process improvement models you know. Many concepts are the same, but they might be called something different.

Readers Familiar with CMMI

If you have reviewed or used a CMMI model before, you will quickly recognize the CMMI concepts discussed and many of the practices presented.

Review the process areas specific to CMMI-SVC first:

- Capacity and Availability Management (CAM)
- Incident Resolution and Prevention (IRP)
- Service Continuity (SCON)
- Service Delivery (SD)
- Service System Development (SSD)
- Service System Transition (SST)
- Strategic Service Management (STSM)
Then go back and review the other process areas you are already familiar with and see the guidance for applying these practices to a service environment.

User Feedback and Questions

Your suggestions for improving CMMI are welcome. For information on how to provide feedback, see the CMMI website at www.sei.cmu.edu/cmmi/tools/cr/. If you have questions about CMMI, send e-mail to cmmi-comments@sei.cmu.edu.
ACKNOWLEDGMENTS

This book wouldn’t have been possible without the work of people from organizations dedicated to CMMI-based process improvement. The CMMI-SVC model, which was created by the CMMI Product Team, is contained in the book. Other helpful information was added by Eileen Forrester, Brandon Buteau, and Sandy Shrum.

The CMMI-SVC Model Development Team included members from different organizations and backgrounds. Ultimately, without the work of those involved in the CMMI project since it began in 1998, this book would not exist.

The CMMI-SVC Model Development Team developed what is now CMMI-SVC, V1.2, from the input of lots of users and reviewers. That team consisted of the following members: Drew Allison, Roger Bate, Rhonda Brown, Brandon Buteau, Eileen Clark, Eileen Forrester, Craig Hollenbach, Mike Konrad, Frank Niessink, Mary Lynn Penn, Roy Porter, Rich Raphael, Pamela Schoppert, Sandy Shrum, Jerry Simpson, and Jeff Zeidler. The team for CMMI-SVC V1.3 included Drew Allison, Brandon Buteau, Eileen Forrester, Christian Hertneck, and Pam Schoppert.

We would also like to acknowledge those who directly contributed to this book.

We want to thank Anita Carleton for her support and for her leadership of the Software Engineering Process Management Program (which includes CMMI) at the SEI.
Acknowledgments

We have special thanks for the contributors to Chapter 6. All of these authors were willing to share their insights and experiences and met aggressive deadlines to do so. These contributors were Drew Allison, Urs Andelfinger, Kevin Behr, Gary Coleman, Betsey Cox-Buteau, Alison Darken, Kieran Doyle, Peter Flower, Hillel Glazer, Gene Kim, Mary Jenifer, Gary Lunsford, Tobin Lunsford, Suzanne Garcia Miller, Takeshige Miyoshi, Brad Nelson, Maggie Pabustan, Lynn Penn, Mike Phillips, and Pam Schoppert. We are delighted that they agreed to contribute their experiences to our book.

Special thanks go to Addison-Wesley Publishing Partner, Peter Gordon, for his assistance, experience, and advice. We'd also like to thank Kim Boedigheimer, Julie Nahil, Megan Guiney, Audrey Doyle, Curt Johnson, and Stephane Nakib for their help with the design, editing, and final production of this book.

From Eileen Forrester

I thank my two coauthors, Sandy and Brandon. I can’t imagine doing this work without you. In addition, Craig Hollenbach, who led the volunteer industry team for the first two years of the project, is an amazing and generous collaborator. We wouldn’t have this model or the book without his fine work.

I especially wish to acknowledge Roger Bate, who passed away shortly after we published the first version of CMMI-SVC. He was one of the most accomplished men I’ve ever met, and it is among the greatest honors of my life that his last project was to work with us on CMMI-SVC. I thank Roger and his family for their dedication and the inspiring example they set.

My friends and colleagues Julia Allen, Mike Bridges, Audrey Dorofee, Suzanne Garcia Miller, and Ray Obenza have offered support and, when necessary, distraction throughout this work.

I especially want to thank some of my many supportive family members. My nephews Eric and Kevin are living examples of the power of process discipline and improvement in both their academic work and their athletics, and their parents, Rick and Linda, are natural process improvement geeks. My nephew Alex was the biggest fan of my first book, and at age 10 asked good questions until he understood the work I do—no mean feat at any age. My brother Joe’s unflagging pride and interest in what I am working on has been an unexpected treasure at this point in my career. My sisters Kathleen, Pat, Betty, and Mary Ann, and my brothers Tom and Rick are all in service fields and have provided inspiration even if they didn’t know it—and great teaching examples!
From Brandon Buteau

First, I am deeply grateful to my two coauthors, Eileen and Sandy. Besides granting me the honor of joining them in working on this book, they are both exceptional collaborators, and are some of the most productive people I’ve ever known. I’m also thankful to Craig Hollenbach, who invited me to work on the CMMI-SVC model team at its beginning, and to all the members of the CMMI Core Model and CMMI-SVC teams; working with all of them has greatly expanded my understanding of CMMI details and subtleties.

I would not have the skills today that made it possible for me to contribute to the CMMI-SVC model or this book without the early guidance of my parents. My father taught me the value of disciplined reasoning, and my mother taught me the value of subtleties in the meanings of words. The result has been my lifelong appreciation of good arguments and good definitions.

Finally, my wife Betsey has been a complete jewel throughout all my work on the model and the book, and has gradually progressed from being a cheerful supporter and patient sounding board to an enthusiastic advocate of CMMI-SVC practices in her own professional field. I cannot thank her enough.

From Sandy Shrum

Working simultaneously on three CMMI books has tested my limits in many ways. Those that have helped me along the journey provided both professional and personal support.

Many thanks to Rhonda Brown and Mike Konrad for their partnership during CMMI model development. They are peerless as team members and friends. Our joint management of the CMMI Core Model Team was not only effective, but enjoyable.

Affectionate thanks to my boyfriend Jimmy Orsag for his loving support and for helping me keep my focus and sense of humor through all the hours of work preparing three manuscripts. Heartfelt thanks to my parents, John and Eileen Maruca, for always being there for me no matter what and instilling my strong work ethic.

Finally, thanks to the coauthors of all three CMMI books: Brandon Buteau, Mary Beth Chrissis, Eileen Forrester, Brian Gallagher, Mike Konrad, Mike Phillips, and Karen Richter. They are all terrific to work with. Without their understanding, excellent coordination, and hard work, I would never have been able to participate.
This page intentionally left blank
The service industry is a significant driver for worldwide economic growth. Guidance on developing and improving mature service practices is a key contributor to improved performance, customer satisfaction, and profitability. The CMMI for Services (CMMI-SVC) model is designed to begin meeting that need.

All CMMI-SVC model practices focus on the activities of the service provider. Seven process areas focus on practices specific to services, addressing capacity and availability management, service continuity, service delivery, incident resolution and prevention, service transition, service system development, and strategic service management processes. The remaining 17 process areas focus on practices that any organization should master to meet its business objectives.

Do You Need CMMI?

CMMI is being adopted by organizations all over the world. These organizations are large and small, government and private industry, and represent industries ranging from financial to health care, manufacturing to software, education to business services. What do all of these organizations have in common?

Do You Have These Common Problems?

Many organizations accept common problems as “normal” and they don’t try to address them or eliminate them. What about your organization? Are you settling for less? Take a look through the following list and see if you have accepted problems that you can solve by adopting CMMI.
• Plans are made, but not necessarily followed.
• Work is not tracked against the plan; plans are not adjusted.
• Expectations and service levels are not consistent; changes to them are not managed.
• Estimates are way off; over-commitment is common.
• When overruns become apparent, a crisis atmosphere develops.
• Most problems are discovered in operations or, worse yet, by the customer.
• Success depends on heroic efforts by competent staff members.
• Repeatability of effective behaviors is questionable.

Even if you’ve accepted that your organization could use something to reduce or eliminate these problems, some service providers reject the idea of using process improvement to address or resolve them. Some mythology has grown up around the idea of using process improvement. You may have heard some of these fallacies.

• I don’t need process improvement; I have good people (or advanced technology, or an experienced manager).
• Process improvement interferes with creativity and introduces bureaucracy.
• Process improvement is useful only in large organizations and costs too much.
• Process improvement hinders agility in fast-moving markets.¹

These common misconceptions serve only as excuses for organizations not willing to make the changes needed to move ahead, address their problems, and improve their bottom line.

Another way to look at whether your organization could benefit from CMMI is to think about whether it is often operating in crisis mode. Crisis mode is characterized by the following:

• Staff members working harder and longer
• Staff members moving from team to team
• Service teams lowering expectations to meet delivery deadlines
• Service teams adding more people to meet expectations or deadlines
• Everyone cutting corners
• A hero saving the day

¹ See the report “CMMI or Agile: Why Not Embrace Both!” for a discussion of how CMMI and Agile can work together effectively [Anderson 2008].
How Does CMMI Help You to Solve These Problems?

In its research to help organizations to develop and maintain quality products and services, the Software Engineering Institute (SEI) has found several dimensions that an organization can focus on to improve its business. Figure 1.1 illustrates the three critical dimensions that organizations typically focus on: people, procedures and methods, and tools and equipment.

What holds everything together? It is the processes used in your organization. Processes allow you to align the way you do business. They allow you to address scalability and provide a way to incorporate knowledge of how to do things better. Processes allow you to leverage your resources and to examine business trends.

This is not to say that people and technology are not important. We are living in a world where technology is changing at an incredible speed. Similarly, people typically work for many companies throughout their careers. We live in a dynamic world. A focus on process provides the infrastructure and stability necessary to deal with an ever-changing world and to maximize the productivity of people and the use of technology to be competitive.

Manufacturing has long recognized the importance of process effectiveness and efficiency. Today, many organizations in manufacturing and service industries recognize the importance of quality processes. Process helps an organization’s workforce to meet business objectives by helping them to work smarter, not harder, and with

![FIGURE 1.1](image-url)
improved consistency. Effective processes also provide a vehicle for introducing and using new technology in a way that best meets the business objectives of the organization.

The advantage of a process focus is that it complements the emphasis the organization places on both its people and its technology.

- A well-defined process can provide the means to work smarter, not harder. That means using the experience and training of your workforce effectively. It also means shifting the “blame” for problems from people to processes, making the problems easier to address and solve.
- An appropriate process roadmap can help your organization use technology to its best advantage. Technology alone does not guarantee its effective use.
- A disciplined process enables an organization to discover which procedures and methods are most effective and to improve them as results are measured.

CMMI is a suite of products used for process improvement. These products include models, appraisal methods, and training courses.

- The models are descriptions of best practices that can help you achieve your business goals related to cost, schedule, service levels, quality, and so forth. CMMI best practices describe what to do, but not how to do it or who should do it.
- The appraisal methods evaluate an organization's processes using a CMMI model as a yardstick. SCAMPI (Standard CMMI Appraisal Method for Process Improvement) is the group of SEI appraisal methods used with CMMI models. SCAMPI uses a formalized appraisal process, involves senior management as a sponsor, focuses the appraisal on the sponsor's business objectives, and observes strict confidentiality and nonattribution of data.
- Training courses support knowledge about the use of CMMI models and appraisal methods.

The SEI has taken the process management premise that the quality of a product (including service) is highly influenced by the quality of the process used to develop and maintain it, and defined CMMs that embody this premise. The belief in this premise is seen worldwide in quality movements, as evidenced by the International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) body of standards.
How Can CMMI Benefit You?

Today, CMMI is an application of the principles introduced almost a century ago to achieve an enduring cycle of process improvement. The value of this process improvement approach has been confirmed over time. Organizations have experienced increased productivity and quality, improved cycle time, and more accurate and predictable schedules and budgets [Gibson 2006].

The benefits of CMMI have been published for years and will continue to be published in the future. (See the SEI website for more information about performance results.)

The cost of CMMI adoption is highly variable depending on many factors (e.g., organization size, culture, structure, current processes). Regardless of the investment, history demonstrates a respectable return on investment (ROI).

Example returns on investment at various organizations using CMMI-DEV include those shown in Table 1.1.

Since the CMMI-SVC model was first released only two short years ago (2009), data on the results of its use are not yet available. We will be collecting ROI data as organizations adopt the CMMI-SVC model and experience the benefits.

See the CMMI website (www.sei.cmu.edu/cmmi/) for the latest information about CMMI adoption, including presentations by those who have adopted CMMI and want to share how they did it.

A Capability Maturity Model (CMM), including CMMI, is a simplified representation of the world. CMMs contain the essential elements of effective processes. These elements are based on the concepts developed by Crosby, Deming, Juran, and Humphrey.

In the 1930s, Walter Shewhart began work in process improvement with his principles of statistical quality control [Shewhart 1931]. These principles were refined by W. Edwards Deming [Deming 1986], Phillip Crosby [Crosby 1979], and Joseph Juran [Juran 1988].

<table>
<thead>
<tr>
<th>ROI</th>
<th>Focus of Process Improvement Program</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:1</td>
<td>Quality activities</td>
<td>Accenture</td>
</tr>
<tr>
<td>13:1</td>
<td>Defects avoided per hour spent in training and defect prevention</td>
<td>Northrop Grumman</td>
</tr>
<tr>
<td>2:1</td>
<td>Overall process improvement over three years</td>
<td>Siemens Information Systems Ltd., India</td>
</tr>
</tbody>
</table>
Watts Humphrey, Ron Radice, and others extended these principles further and began applying them to software in their work at IBM and the SEI [Humphrey 1989]. Humphrey’s book, *Managing the Software Process*, provides a description of the basic principles and concepts on which many of the CMMs are based.

The SEI has taken the process management premise, “the quality of a system or product is highly influenced by the quality of the process used to develop and maintain it,” and defined CMMs that embody this premise. The belief in this premise is seen worldwide in quality movements, as evidenced by the ISO/IEC body of standards.

CMMs focus on improving processes in an organization. They contain the essential elements of effective processes for one or more disciplines and describe an evolutionary improvement path from ad hoc, immature processes to disciplined, mature processes with improved quality and effectiveness.

Like other CMMs, CMMI models provide guidance to use when developing processes. CMMI models are not processes or process descriptions. The actual processes used in an organization depend on many factors, including application domains and organization structure and size. In particular, the process areas of a CMMI model typically do not map one to one with the processes used in your organization.

The SEI created the first CMM designed for software organizations and published it in a book, *The Capability Maturity Model: Guidelines for Improving the Software Process* [SEI 1995].

Today, CMMI is an application of the principles introduced almost a century ago to this never-ending cycle of process improvement. The value of this process improvement approach has been confirmed over time. Organizations have experienced increased productivity and quality, improved cycle time, and more accurate and predictable schedules and budgets [Gibson 2006].

Evolution of CMMI

The CMM Integration project was formed to sort out the problem of using multiple CMMs. The combination of selected models into a single improvement framework was intended for use by organizations in their pursuit of enterprise-wide process improvement.

Developing a set of integrated models involved more than simply combining existing model materials. Using processes that promote consensus, the CMMI Product Team built a framework that accommodates multiple constellations.
The first model to be developed was the CMMI for Development model (then simply called “CMMI”). Figure 1.2 illustrates the models that led to CMMI Version 1.3.

Initially, CMMI was one model that combined three source models: the Capability Maturity Model for Software (SW-CMM) V2.0 draft C, the Systems Engineering Capability Model (SECM) [EIA 2002a], and the Integrated Product Development Capability Maturity Model (IPD-CMM) V0.98.

These three source models were selected because of their successful adoption or promising approach to improving processes in an organization.

The first CMMI model (V1.02) was designed for use by development organizations in their pursuit of enterprise-wide process improvement. It was released in 2000. Two years later Version 1.1 was released, and four years after that, Version 1.2 was released.

2. EIA 731 SECM is the Electronic Industries Alliance standard 731, or the Systems Engineering Capability Model. INCOSE SECAM is the International Council on Systems Engineering Systems Engineering Capability Assessment Model [EIA 2002a].
By the time Version 1.2 was released, two other CMMI models were being planned. Because of this planned expansion, the name of the first CMMI model had to change to become CMMI for Development and the concept of constellations was created.

The CMMI for Acquisition model was released in 2007. Since it built on the CMMI for Development Version 1.2 model, it also was named Version 1.2. Two years later the CMMI for Services model was released. It built on the other two models and also was named Version 1.2.

In 2008, plans were drawn to begin developing Version 1.3, which would ensure consistency among all three models and improve high maturity material. Version 1.3 of CMMI for Acquisition [Gallagher 2011, SEI 2010b], CMMI for Development [Chrissis 2011, SEI 2010a], and CMMI for Services [Forrester 2011, SEI 2010c] were released in November 2010.

CMMI Framework

The CMMI Framework provides the structure needed to produce CMMI models, training, and appraisal components. To allow the use of multiple models within the CMMI Framework, model components are classified as either common to all CMMI models or applicable to a specific model. The common material is called the “CMMI Model Foundation” or “CMF.”

The components of the CMF are part of every model generated from the CMMI Framework. Those components are combined with material applicable to an area of interest (e.g., acquisition, development, services) to produce a model.

A “constellation” is defined as a collection of CMMI components that are used to construct models, training materials, and appraisal related documents for an area of interest (e.g., services, development, acquisition). The model for the Services constellation is called “CMMI for Services” or “CMMI-SVC.”

CMMI for Services

CMMI-SVC draws on concepts and practices from CMMI and other service-focused standards and models, including the following:

- Information Technology Infrastructure Library (ITIL)
- ISO/IEC 20000: Information Technology—Service Management
- Control Objectives for Information and related Technology (CobiT)
- Information Technology Services Capability Maturity Model (ITSCMM)
Familiarity with these and other service-oriented standards and models is not required to comprehend CMMI-SVC, and this model is not structured in a way that is intended to conform to any of them. However, knowledge of other standards and models can provide a richer understanding of CMMI-SVC.

The CMMI-SVC model covers the activities required to establish, deliver, and manage services. As defined in the CMMI context, a service is an intangible, nonstorable product. The CMMI-SVC model has been developed to be compatible with this broad definition.

CMMI-SVC goals and practices are therefore potentially relevant to any organization concerned with the delivery of services, including enterprises in sectors such as defense, information technology (IT), health care, finance, and transportation. Early users of CMMI-SVC include organizations that deliver services as varied as training, logistics, maintenance, refugee services, lawn care, book shelving, research, consulting, auditing, independent verification and validation, human resources, financial management, health care, and IT services.

The CMMI-SVC model contains practices that cover work management, process management, service establishment, service delivery and support, and supporting processes. The CMMI-SVC model shares a great deal of material with CMMI models in other constellations. Therefore, those who are familiar with another CMMI constellation will find much of the CMMI-SVC content familiar.

When using this model, use professional judgment and common sense to interpret it for your organization. That is, although the process areas described in this model depict behaviors considered best practices for most service providers, all process areas and practices should be interpreted using an in-depth knowledge of CMMI-SVC, organizational constraints, and the business environment.

Organizations interested in evaluating and improving their processes to develop systems for delivering services can use the CMMI-DEV model. This approach is especially recommended for organizations that are already using CMMI-DEV or that must develop and maintain complex systems for delivering services. However, the CMMI-SVC model provides an alternative, streamlined approach to evaluating and improving the development of service systems that can be more appropriate in certain contexts.

Important CMMI-SVC Concepts

The following concepts are particularly significant in the CMMI-SVC model. Although all are defined in the glossary, they each employ words that can cover a range of possible meanings to those from different
backgrounds, and so they merit additional discussion to ensure that model material that includes these concepts is not misinterpreted.

Service

The most important of these terms is the word *service* itself, which the glossary defines as a product that is intangible and nonstorable. While this definition accurately captures the intended scope of meaning for the word *service*, it does not highlight some of the possible subtleties or misunderstandings of this concept in the CMMI context.

The first point to highlight is that a service is a kind of *product*, given this definition. Many people routinely think of products and services as two mutually exclusive categories. In CMMI models, however, products and services are not disjoint categories: A *service* is considered to be a special variety of *product*. Any reference to *products* can be assumed to refer to *services* as well. If you find a need to refer to a category of products that are not services in a CMMI context, you may find it helpful to use the term *goods*, as in the commonly used and understood phrase “goods and services.” (For historical reasons, portions of CMMI models still use the phrase “products and services” on occasion. However, this usage is always intended to explicitly remind the reader that services are included in the discussion.)

A second possible point of confusion is between *services* and *processes*, especially because both terms refer to entities that are by nature intangible and nonstorable, and because both concepts are intrinsically linked. However, in CMMI models, processes are *activities*, while services are a useful *result* of performing those activities. For example, an organization that provides training services performs training processes (activities) that are intended to leave the recipients of the training in a more knowledgeable state. This useful state of affairs (i.e., being more knowledgeable) is the *service* that the training provider delivers or attempts to deliver. If the training processes are performed but the recipients fail to become more knowledgeable (perhaps because the training is poorly designed, or the recipients don’t have some necessary preliminary knowledge), then the service—the useful result—has not actually been delivered. Services are the results of processes (performed as part of a collection of resources), not the processes themselves.

A final possible point of confusion over the meaning of the word *service* will be apparent to those with a background in information technology, especially those familiar with disciplines such as service-oriented architecture (SOA) or software as a service (SaaS). In a software context, services are typically thought of as methods, components, or building blocks of a larger automated system, rather than
as the results produced by that system. In CMMI models, services are useful intangible and nonstorable results delivered through the operation of a service system, which may or may not have any automated components. To completely resolve this possible confusion, an understanding of the service system concept is necessary.

Service System

A service is delivered through the operation of a service system, which the glossary defines as an integrated and interdependent combination of component resources that satisfies service requirements. The use of the word system in service system may suggest to some that service systems are a variety of information technology, and that they must have hardware, software, and other conventional IT components. This interpretation is much too restrictive. While it is possible for some components of a service system to be implemented with information technology, it is also possible to have a service system that uses little or no information technology at all. Even organizations that deliver managed IT services have service systems that encompass more than merely IT components.

In this context, the word system should be interpreted in the broader sense of “a regularly interacting or interdependent group of items forming a unified whole,” a typical dictionary definition. Also, systems created by people usually have an intended unifying purpose, as well as a capability to operate or behave in intended ways. Consider a package delivery system, a health care system, or an education system as examples of service systems with a wide variety of integrated and interdependent component resources.

Some may still have trouble with this interpretation because they may feel that the way they deliver services is not systematic, does not involve identifiable “components,” or is too small or difficult to view through the lens of a systems perspective. While this difficulty may in some cases be true for service provider organizations with relatively immature practices, part of the difficulty may also be traced to an overly narrow interpretation of the word resources in the definition of service system.

The full extent of a service system encompasses everything required for service delivery, including work products, processes, tools, facilities, consumable items, and human resources. Some of these resources may belong to customers or suppliers, and some may be transient (in the sense that they are only part of the service system for a limited time). But all of these resources become part of a service system if they are needed in some way to enable service delivery.
Because of this broad range of included resource types and the relationships among them, a service system can be something large and complex, with extensive facilities and tangible components (e.g., a service system for health care or for transportation). Alternatively, a service system could be something consisting primarily of people and processes (e.g., for an independent verification and validation service). Since every service provider organization using the CMMI-SVC model must have at a minimum both people and process resources, they should be able to apply the service system concept successfully.

Service providers who are not used to thinking of their methods, tools, and personnel for service delivery from a broad systems perspective may need to expend some effort to reframe their concept of service delivery to accommodate this perspective. The benefits of doing so are great, however, because critical and otherwise unnoticed resources and dependencies among resources will become visible for the first time. This insight will enable the service provider organization to effectively improve its operations over time without being caught by surprises or wasting resources on incompletely addressing a problem.

SERVICES AND SERVICE SYSTEMS IN CMMI FOR SERVICES VERSUS SOA AND SAAS

If you know something about SOA or SaaS, you might be a bit nonplussed by the preceding briefly stated distinction between the various meanings of the term service, followed by a forward reference to a discussion of the term service system, where neither SOA nor SaaS is mentioned at all. Here’s some additional clarification. (If you’re not interested in SOA or SaaS, you can skip over this discussion.)

Although there are a variety of interpretations of SOA and SaaS, they all tend to focus on information systems of one form or another and how they are designed to deliver value. SOA emphasizes certain characteristics of the architecture of these systems (e.g., the alignment of components with business functions), whereas SaaS considers different aspects of system architecture while emphasizing the flexibility of how software capabilities are delivered to end users. Because CMMI for Services, SOA, and SaaS practitioners all use the terms service and system somewhat differently, and because it’s quite possible for CMMI for Services, SOA, and SaaS to all be employed in a single context, some confusion is likely if you are not sensitive to those differences.

In the CMMI for Services perspective, a service is the result of a process, and a system (i.e., a service system) refers to all the resources required to deliver services. When done properly, the operation of a service system causes service delivery. Service systems may incorporate subsystems that are themselves information technology systems, but these IT systems might represent only a small fraction of a total service system infrastructure.
In the SOA perspective, a service is an IT system component that provides a distinct and loosely coupled function accessible through a standard, contractually governed interface. At the top level, the structure of these services is expected to correlate well with the structure of business functions that an organization performs, and SOA designs often involve analyses of one or more enterprise architectures to establish needed commonalities. No matter what level of abstraction, the term service in SOA is most likely to be applied to actions, methods, functions, and “things that are done” rather than to their results; and the term system typically refers to something that at its core is an IT system of some kind.

In the SaaS perspective, software is delivered as a service (e.g., a subscription service) without the need for the customer to pay for the full cost up front. The term service in SaaS therefore seems closer to the CMMI for Services usage than the SOA usage, but it’s important to be clear. A SaaS service is not a software component that is made available (as in SOA), but rather is the on-demand availability of that component (and others) along with capabilities such as dynamic updates, tailorability, and load balancing. SaaS services are delivered via an IT system, but this may be only a portion of a larger service system that supplies other services such as help desk support or network management.

Service Agreement

A service agreement is the foundation of the joint understanding between a service provider and a customer of what to expect from their mutual relationship. The glossary defines a service agreement as a binding, written record of a promised exchange of value between a service provider and a customer. Service agreements can appear in a wide variety of forms, ranging from simple posted menus of services and their prices, to tickets or signs with fine print that refer to terms and conditions described elsewhere, to complex multipart documents that are included as part of legal contracts. Whatever they may contain, it is essential that service agreements be recorded in a form that both the service provider and the customer can access and understand so that misunderstandings are minimized.

The “promised exchange of value” implies that each party to the agreement commits to providing the other party or parties with something they need or want. A common situation is for the service provider to deliver needed services and for the customer to pay money in return, but many other types of arrangements are possible. For example, an operating level agreement (OLA) between organizations in the same enterprise may require only that the customer organization
notify the service provider organization when certain services are needed. Service agreements for public services provided by governments, municipal agencies, and nonprofit organizations may simply document what services are available, and identify what steps end users must follow to get those services. In some cases, the only thing the service provider needs or wants from the customer or end user is specific information required to enable service delivery.

See the glossary for additional discussion of the terms service agreement, service level agreement, customer, and end user.

Service Request

Even given a service agreement, customers and end users must be able to notify the service provider of their needs for specific instances of service delivery. In the CMMI-SVC model, these notifications are called “service requests,” and they can be communicated in every conceivable way, including face-to-face encounters, phone calls, all varieties of written media, and even nonverbal signals (e.g., pressing a button to call a bus to a bus stop).

However it is communicated, a service request identifies one or more desired services that the request originator expects to fall within the scope of an existing service agreement. These requests are often generated over time by customers and end users as their needs develop. In this sense, service requests are expected intentional actions that are an essential part of service delivery; they are the primary triggering events that cause service delivery to occur. (Of course, it is possible for the originator of a request to be mistaken about whether the request is actually within the scope of agreed services.)

Sometimes specific service requests may be incorporated directly into the service agreements themselves. This incorporation of service requests in the service agreement is often the case for services that are to be performed repeatedly or continuously over time (e.g., a cleaning service with a specific expected cleaning schedule or a network management service that must provide 99.9 percent network availability for the life of the service agreement). Even in these situations, ad hoc service requests may also be generated when needed and the service provider should be prepared to deliver services in response to both types of requests.

Service Incident

Even with the best planning, monitoring, and delivery of services, unintended events may occur that are unwanted. Some instances of service delivery may have lower than expected or lower than acceptable degrees of performance or quality, or may be completely
unsuccessful. The CMMI-SVC model refers to these difficulties as “service incidents.” The glossary defines a service incident as an indication of an actual or potential interference with a service. The single word *incident* is used in place of *service incident* when the context makes the meaning clear.

Like requests, incidents require some recognition and response by the service provider; but unlike requests, incidents are *unintended* events, although some types of incidents may be anticipated. Whether or not they are anticipated, incidents must be resolved in some way by the service provider. In some service types and service provider organizations, service requests and incidents are both managed and resolved through common processes, personnel, and tools. The CMMI-SVC model is compatible with this kind of approach, but does not require it, as it is not appropriate for all types of services.

The use of the word *potential* in the definition of service incident is deliberate and significant; it means that incidents do not always have to involve actual interference with or failure of service delivery. Indications that a service *may* have been insufficient or unsuccessful are also incidents, as are indications that it may be insufficient or unsuccessful in the future. (Customer complaints are an almost universal example of this type of incident because they are always indications that service delivery may have been inadequate.) This aspect of incidents is often overlooked, but it is important: Failure to address and resolve potential interference with services is likely to lead eventually to actual interference, and possibly to a failure to satisfy service agreements.

Project, Work Group, and Work

CMMI models must often refer to the organizational entities that are at the foundation of process improvement efforts. These entities are focal points in the organization for creating value, managing work, tailoring processes, and conducting appraisals. In CMMI-SVC, these entities are called “work groups,” while in CMMI-DEV and CMMI-ACQ these entities are called “projects.” The glossary defines both terms and their relationship to each other, but it does not explain why two different terms are needed.

Those with prior experience using CMMI-DEV or CMMI-ACQ models, or who routinely think of their work as part of a project-style work arrangement, may wonder why the term *project* is not sufficient by itself. The CMMI glossary defines a “project” as a managed set of interrelated activities and resources, including people, that delivers one or more products or services to a customer or end user. The definition
notes explain that a project has an intended beginning (i.e., project startup) and end, and that it typically operates according to a plan. These are characteristics of a project according to many definitions, so why is there an issue? Why might there be a difficulty with applying terms like project planning or project management in some service provider organizations?

One simple reason is that projects have an intended end as well as an intended beginning; such efforts are focused on accomplishing an objective by a certain time. While some services follow this same pattern, many are delivered over time without an expected end (e.g., typical municipal services, or services from businesses that intend to offer them indefinitely). Service providers in these contexts are naturally reluctant to describe their service delivery work as a project under this definition.

In prior (V1.2) CMMI models, the definition of “project” was deliberately changed to eliminate this limitation (i.e., that projects have a definite or intended end), in part to allow the term to be applied easily to the full range of service types. However, the change raised more questions and objections than it resolved when interpreted by many users (even in some service contexts), and so the limited meaning has been restored in V1.3: Projects now must have an intended end.

For organizations that do not structure their people and other resources into projects with intended ends, or that only do so for a portion of their work, the original problem remains. All of the common CMMI practices are useful whether or not your work is planned to have an intended end, but what can we call a fundamental organizational entity that implements those practices if it is not a project? How can we refer to and apply the practices of process areas such as project planning when we are not discussing a project?

The CMMI V1.3 solution is to introduce some new terms that take advantage of two distinct senses of meaning for the English word project: as a collection of resources (including people), and as a collection of activities performed by people. CMMI-DEV and CMMI-ACQ continue to use the term project for both senses, because this reflects the typical nature of development and acquisition efforts; CMMI-SVC replaces “project” with “work group” (when it refers strictly to a collection of resources including people) or with “work” (when it refers to a collection of activities, or a collection of activities and associated resources). The glossary defines a “work group” as a managed set of people and other resources that delivers one or more products or services to a customer or end user. The definition is
silent on the expected lifetime of a work group. Therefore, a project (in the first sense) may be considered a type of work group, one whose work is planned to have an intended end.

Service provider organizations may therefore structure themselves into work groups (without time limits) or projects (with time limits) depending on the nature of the work, and many organizations will do both in different contexts. For example, development of a service system may be performed by a project, whereas service delivery may be performed by a work group.

The glossary also notes that a work group may contain work groups, may span organizational boundaries, and may appear at any level of an organization. It is possible for a work group to be defined by nothing more than those in an organization with a particular common purpose (e.g., all those who perform a particular task), whether or not that group is represented somewhere on an organization chart.

In the end, of course, organizations will use whatever terminology is comfortable, familiar, and useful to them, and the CMMI-SVC model does not require this approach to change. However, all CMMI models need a convenient way to refer clearly to the fundamental groupings of resources that organize work to achieve significant objectives. In contrast to other CMMI models, the CMMI-SVC model uses the term work group rather than project for this limited purpose, and uses the term work for other senses of the word project including combined senses. For example, a “project plan” is called a “work plan” in CMMI-SVC. (In a few cases, the word project is retained in the CMMI-SVC model when it explicitly refers to a true project.)

Consistent with this usage, the titles of some important core process areas are different in CMMI-SVC compared to CMMI-DEV and CMMI-ACQ: Work Planning, Work Monitoring and Control, Integrated Work Management, and Quantitative Work Management (cf. Project Planning, Project Monitoring and Control, Integrated Project Management, and Quantitative Project Management). Despite these differences in terminology in different constellations, Integrated Work Management and Integrated Project Management cover essentially the same material and are considered to be the same core process area in all three CMMI constellations; the same is true for other equivalent process area pairings.

Stakeholder, Customer, and End User

In the model glossary, a stakeholder is defined as a group or individual who is affected by or is in some way accountable for the outcome of an undertaking. Stakeholders include any and all parties with a
legitimate interest in the results of service delivery, such as service provider executives, staff members, customers, end users, suppliers, partners, and oversight groups. Remember that any given reference to stakeholders in the model covers all these types of stakeholders, and not just the ones that might be most obvious in the particular context.

The model defines a customer as the party (individual, project, or organization) responsible for accepting the product or for authorizing payment. A customer must also be external to the project that develops (delivers) a product (service), although both the customer and the project may be part of the same larger organization.

While this concept seems clear enough, the glossary includes some ambiguous language about how the term customer can include “other relevant stakeholders” in some contexts, such as customer requirements. While this caveat reflects an accepted legacy usage of the term from earlier versions of CMMI models, it could be potentially confusing in a service context, where the distinction between customers and other stakeholders (especially end users) can be especially significant.

The CMMI for Services model addresses this concern in two ways. First, it avoids the term customer requirements except in those contexts where it refers to the requirements of customers in the narrow sense (those who accept a product or authorize payment). Second, the model relies upon material in the glossary that distinguishes between customers and end users, and that defines the term end user itself. Specifically, the model defines an end user as a party (individual, project, or organization) that ultimately uses a delivered product or receives the benefit of a delivered service. While end users and customers therefore cover distinct roles in service establishment and delivery, both can often be represented by a single party.

For example, a private individual who receives financial services from a bank is probably both the customer and the end user of those services. However, in health care services, the customers often include organizations such as employers and government agencies that negotiate (or dictate) health care plan coverage for the ultimate health care beneficiaries, who are the end users of those services. (Many of these end users may be customers as well, if they have a responsibility to pay for all or part of some services.)

To summarize: It’s important to keep in mind the actual scope of the terms stakeholder, customer, and end user as you review and apply the CMMI for Services model in your unique service context so that you don’t overlook or confuse crucial interactions and interfaces in your service system.
INDEX

A
Accept the Acquired Product practice, 520–521
Acceptable service levels
- documentation, 532
Acceptance criteria, 682
Acceptance procedures for acquired products, 520
Acceptance reviews and tests
- documentation, 521
Acceptance testing, 682
Access control
- archived data, 651
- configuration management, 298
Accuracy checks for measures, 372
Achieve Specific Goals goal, 193
Achievement profiles
- defined, 682
- vs. target profiles, 60
Acquired products
- accepting, 520–521
- configuring, 292
- transition of, 521–522
Acquirers, 682
Acquisition Mini Team, 678
Acquisition process, 682
Acquisition strategy, 682
Acquisition types, 511–512
Acquisitions Requirements Development (ARD), 87
Acronyms, 669–671
Action plans
- establishing, 396–397
- implementing, 397–398
- for supplier agreements, 521
Action proposals, 287–288
Actions
- corrective. See Corrective actions
- incident, 331
- measuring effects of, 289–290
- planning and implementing, 395–398
- on standard services, 614
Activities, 12
Actualization phase in service lifecycles, 73
Ad-hoc service requests, 540
Adaptive maintenance, 559
Additions
- defined, 682
- description, 27
Address Causes of Selected Outcomes goal, 287
Evaluate the Effect of Implemented Actions practice, 289–290
Implement Action Proposals practice, 287–288
Record Causal Data practice, 290
Adherence evaluation, 238–246
Administrative procedures in measurement analyses, 368
Agile Manifesto, 129–130
Agile principles
Service System Development, 563–565
for services, 129–135
Agreement phase in project lifecycles, 74
Agreement types in strategies, 639
Agreements, supplier. See Supplier Agreement Management (SAM) process area
Align Measurement and Analysis
Activities goal, 359
Establish Measurement Objectives practice, 359–361
Specify Analysis Procedures practice, 367–369
Specify Data Collection and Storage Procedures practice, 365–367
Specify Measures practice, 361–365
Alignment of work products and requirements, 491
Allen, Ed, 86
Allison, Drew
biography, 719
IT services scenario essay, 116–129
Allocated requirements, 682–683
Alternative solutions evaluating, 307–314
identifying, 310–311
Analysis phase
incident lifecycles, 77
service request lifecycles, 76
service system lifecycles, 75
Analyze and Address Causes and Impacts of Selected Incidents goal, 327–328
Analyze Selected Incidents practice, 328–330
Establish and Apply Solutions to Reduce Incident Occurrence practice, 331–332
Establish Solutions to Respond to Future Incidents practice, 330
Analyze and Validate Requirements practice, 572–574
Analyze Causes practice, 284–287
Analyze Existing Agreements and Service Data practice, 542–544
degree program use case, 153
lecture offer use case, 155
Analyze Individual Incident Data practice, 324–325
Analyze Issues practice, 629–630
Analyze Measurement Data practice, 371
Analyze Process Performance and Establish Process Performance Baselines practice, 434–436
Analyze Process Performance Data practice, 410
Analyze Results of Verification and Validation of the Service Continuity Plan practice, 537–538
Analyze Selected Incidents practice, 328–330
Analyze Service System Transition Needs practice, 599–601
Analyze Suggested Improvements practice, 414–417
Andelfinger, Urs
biography, 719
educational institution essay, 148–159
Annual conferences, 39
Applied Engineering Management (AEM) Corporation, 90
CMMI implementation, 91–94
service environment, 90–91
Appraisal approach, 47–48
Appraisal findings, 683
Appraisal participants, 683
Appraisal ratings benefits, 48–49
defined, 683
Appraisal reference models, 683
Appraisal Requirements for CMMI (ARC), 84
Appraisal scope, 683
Appraisal teams, 36
Appraisals, 6
defined, 683
processes, methods, and tools, 404
SCAMPI, 36–37
security, 173–179
Appraise the Organization’s Processes practice, 393–394
Architecture, 683
Archived data, 651
Assess and Control the Impacts of the Transition practice, 605–607
Assess Training Effectiveness practice, 451–452
Assessing knowledge and skills, 655
Asset libraries, 375
for defined processes, 340, 348
establishing, 385–386
Assign Responsibility practice overview, 210–211
process area relationships, 257
security content example, 184
Assumptions
decision criteria, 313
schedule, 647
Attributes
monitoring, 623–624
process elements, 378
selecting, 471–473
services, 616
work products and tasks, 642–643
Audits
configuration, 303–304
defined, 683–684
Authorization for configuration item changes, 301
Authors, biographies, 717–718
Auto insurance. See Vehicle insurance essay
Automatic collection of data, 367
Availability, CAM. See Capacity and Availability Management (CAM) process area

B
Barriers to improvements, 415, 421
Base measures
data collection for, 370
defined, 684
examples, 362
Baselines
configuration management, 295–299
defined, 684
measures, 476
performance, 434–436
service system, 600
transition plans, 603
Bate, Roger, 87
Behr, Kevin
biography, 720
high-performing IT organizations essay, 135–143
Visible Ops Handbook: Starting ITIL in Four Practical Steps, 135
Benchmarking, 84–86
Benchmarks, 84
Benefits in risk mitigation plans, 506
Bidirectional traceability
defined, 684
description, 484–485
maintaining, 489–491
Books on change, 40
Bounds for thresholds, 498
Budgets, 646–648
Buteau, Brandon L., 718

C
CACI company, 97–102
Calibrating process performance models, 438
Call center essay, 89–94
CAM. See Capacity and Availability Management (CAM) process area
Candidate measures, 365
Capabilities across constellations essay, 86–89
Capability levels
defined, 684
and maturity levels, 55–59
overview, 52–53
profiles, 59–60, 684
working with, 53–55
Capability Maturity Model: Guidelines for Improving the Software Process, 8
Capability Maturity Models (CMMs), 8, 684
Capability profiles, 40
Capable processes, 684
Capacity and Availability Management (CAM) process area
CMMI-DEV, 88–89
Incident Resolution and Prevention relationship, 317
introductory notes, 261–266
IT services scenario, 125–126
Monitor and Analyze Capacity and Availability goal, 274–279
Organizational Process Performance relationship, 427
Prepare for Capacity and Availability Management goal, 267–274
process monitoring and control, 232
process plans, 198
project lifecycles, 75
purpose, 261
Quantitative Work Management relationship, 463
relationships, 70, 266
resources, 203
service system lifecycles, 76
stakeholder identification and involvement, 224
training, 212
Work Monitoring and Control relationship, 621
Work Planning relationship, 635
work product control, 218
Capital project failures, 140
CAR. See Causal Analysis and Resolution (CAR) process area
Case studies for IT organizations, 140–141
Categories
incidents, 319, 324
risks, 496, 502–504
service requests, 547, 555–556
Causal analysis, 684
Causal Analysis and Resolution (CAR) process area
Address Causes of Selected Outcomes goal, 287–290
adherence evaluation, 239
Determine Causes of Selected Outcomes goal, 283–287
Incident Resolution and Prevention relationship, 317
Causal Analysis and Resolution (CAR) process area (Continued)
introductory notes, 281–282
Organizational Performance Management relationship, 407
policies, 193
process monitoring and control, 232
process plans, 198–199
process related experiences collection, 250
purpose, 281
Quantitative Work Management relationship, 463
relationships, 69, 282
resources, 203
Service System Transition relationship, 598
stakeholder identification and involvement, 224
training, 212
work product control, 218
Causality, culture of, 137
Causes of selected incidents, 327–328
CCBs (configuration control boards), 299
Change
readiness for, 49–50
service continuity plans, 536
strategies for, 48–50
Change Configuration and Release Performance Study, 138
Change essay, 79–80
agents of change, 81–83
benchmarking, 84–86
management challenges, 83–84
paradigm changes, 80–81
summary, 86
Change history for requirements, 489
Change management, 684
Change requests documentation, 628
Checking in and out configuration items, 301
Checklists for service system component reviews, 588
China, labor in, 81
Claims system for vehicle insurance, 170–171
Closing
incidents, 326–327
service requests, 557
Closure phase
incident lifecycles, 77
service request lifecycles, 76
CM. See Configuration Management (CM) process area
CMMI overview
benefits, 7–8
CMMI Framework, 10
critical dimensions, 5–6
history, 7–8
model components, 685
models, 685
need for, 3–4
CMMI-DEV, 7–8
call center essay, 89–94
in CMMI-SVC adoption essay, 102–111
in system of systems, 94–97
CMMI Framework, 685
CMMI Product Suite, 685
CMMI-SVC
overview, 10–11
service system concept, 13–15
services, 12–13
CMMI Technology Conference and User Group conference, 39
CMMI Version 1.3 project participants, 673
Acquisition Mini Team, 678
Configuration Control Board, 675–676
Coordination Team, 675
Core Model Team, 676–677
High Maturity Team, 677
Quality Team, 680
SCAMPI Upgrade Team, 678
Services Advisory Group, 674–675
Services Mini Team, 678
Steering Group, 673–674
SVC Training Teams, 679–680
Training Teams, 679
Translation Team, 677
CMMs (Capability Maturity Models), 8
CobiT (Control Objectives for Information and Related Technology), 9
Coleman, Gary
biography, 720
paths to service maturity essay, 97–102
Collect Improvement Information practice process area relationships, 260
security content example, 186
Collect Process Related Experiences practice, 249–255
Collection
information, 38–42
issues for analysis, 629–630
procedures, 365–367
Commercial off-the-shelf items, 685
Commitments
acquired products, 521
to corrective actions, 356
to monitoring, 624–625
to plans, 659–660
to requirements, 488
resources, 44
reviewing, 629, 660
to transition plans, 603
in vehicle insurance, 169
Common cause of variation, 685
Index 733

Common culture among high performers, 137
Common parts of standard services, 616
Common problems and misconceptions, 3–4
Communicate and Resolve Noncompliance Issues practice, 458–459
Communicate Results practice, 373–374
Communicate the Status of Incidents practice, 327
Communicating
action proposals, 332
deployment impact information, 607
measurements, 367
product status, 627
risk status, 625
service request status, 559
strategic needs, 613
Communication mechanisms
business objectives, 408
changes in, 81
requirements, 652
stakeholders, 549
Compatible interfaces, 579–581
Complaints, customer, 316
Completeness checks for measures, 372
Compliance-driven improvement, 115–116
Compliance with configuration management standards and procedures, 304
Component-to-component interfaces, 580
Components, 21
descriptions, 22–27
expected, 22
informative, 22
required, 21–22
requirements, 653
supporting informative, 27–28
Compose the Defined Process practice, 468–471
Compound interfaces, 580
Conceptualization phase in service lifecycles, 73
Conditions
exception, 279
incidents, 317
risks, 502
Conduct Milestone Reviews practice, 628–629
Conduct Progress Reviews practice, 627–628
Conferences, 39
Configuration audits, 685
Configuration baselines, 685
Configuration control, 685
Configuration control boards (CCBs) for baselines, 299
CMMI Version 1.3 project, 675–676
defined, 686
Configuration identification, 686
Configuration items, 686
Configuration management, 686
Configuration Management (CM) process area
adherence evaluation, 239
Establish Baselines goal, 295–299
Establish Integrity goal, 302–304
generic goals and practices support by, 256
Incident Resolution and Prevention relationship, 317
introductory notes, 291–294
policies, 193
process monitoring and control, 232
process plans, 199
process related experiences collection, 250
purpose, 291
relationships, 68, 294
Requirements Management relationship, 485
resources, 204
Service Delivery relationship, 541
Service System Transition relationship, 598
stakeholder identification and involvement, 224
Track and Control Changes goal, 299–302
training, 212
work product control, 218
Configuration status accounting, 686
Conflicts
managing, 347
quality and process performance objectives, 468
Consequences, risks, 502
Consistency
for measures, 370
reviews for, 491
Consistent curriculum delivery, 146
Constellations, 8, 10
defined, 686
essay, 86–89
Constraints
identifying, 647
verification and validation, 569
Consulting for improvement deployment, 423
Context, risk, 502
Contingency plans, 504, 506
Continual Service Improvement, 121
Continuity
education systems, 147
SCon. See Service Continuity (SCon) process area
Continuous model representations, 59–61
Continuous representation, 686
Continuous service requests, 540
Continuous thinking, 86–89
Contract-based lifecycles, 106
Contractual requirements, 687
Contribute to Organizational Process Assets practice, 351–352
Contributing authors biographies, 719–727
Control
Monitor and Control the Process practice, 230–238
and performance, 139
WMC. See Work Monitoring and Control (WMC) process area
Control Configuration Items practice, 301–302
Control Objectives for Information and Related Technology (CobiT), 9
Control Work Products practice
overview, 217–223
process area relationships, 258
Coordinate and Collaborate with Relevant Stakeholders goal, 353
Manage Dependencies practice, 354–355
Manage Stakeholder Involvement practice, 353–354
Resolve Coordination Issues practice, 355–356
Coordination
resolving, 355–356
with stakeholders, 353
Coordination Team, 675
Core Model Team, 676–677
Core process areas, 21, 104–105
Corrective actions
criteria, 648
defined, 687
dependencies and commitments, 356
on identified issues, 630–631
issues analysis for, 629–630
managing, 631
process performance, 231
requirements, 491
service delivery, 552
service system resources, 275–276
Corrective maintenance, 559
Costs
estimating, 643–645
monitoring, 623
risk mitigation plans, 506
risks associated with, 500–501
service system transitions, 602
suggested improvements, 415–416
training programs, 447
Cox-Buteau, Betsey S.
biography, 720
public education essay, 143–148
Create or Release Baselines practice, 299
Criteria
asset library items, 385
corrective actions, 648
decision analysis, 306, 309–313
defined processes, 469–472
design, 579, 582
evaluation, 450–457
incidents, 319–320
measurement analyses, 369, 371
peer reviews, 589
process appraisals, 394
process performance analysis, 431, 433
requirements, 487
requirements providers, 487
risk, 497
service continuity plan verification and validation, 536
service requests, 547
service system selection, 576
standard processes, 381–382
suppliers, 512
tailoring, 381–382, 617
Critical attributes of services, 616
Critical dependencies in service delivery schedules, 538
Criticality of dependent functions, 527
Crosby, Phillip, 7
Culture
for change, 49–50
high performers, 137
organizational, 40
Currency checks for measures, 372
Curriculum for training, 448
Customer relationships in CMMI-SVC adoption, 105–107
Customer requirements, 687
Customer satisfaction in service system, 559
Customer Service Index (CSI) in vehicle insurance, 171
Customers
complaints, 316
defined, 687
in IT services scenario, 117
need data, 542–543
online, 83
overview, 19–20

D
DAR. See Decision Analysis and Resolution (DAR) process area
Darken, Alison
biography, 721
CMMI-DEV and ISO 20000 assets essay, 102–111
Darwin, Charles, 80
Data, defined, 687
Data collection procedures, 365–367
Data integrity checks for measures, 370, 373
Data management
 defined, 687
 planning, 650–651
Dates for critical dependency, 354
Decision Analysis and Resolution (DAR) process area
 adherence evaluation, 239
 for education systems, 147
 Evaluate Alternatives goal, 307–314
 introductory notes, 305–307
Organizational Performance Management relationship, 407
Organizational Training relationship, 442
 policies, 194
 process monitoring and control, 232
 process plans, 199
 process related experiences collection, 250
 purpose, 305
 related process areas, 307
 resources, 204
Risk Management relationship, 494
Service Continuity relationship, 525
Service System Development relationship, 566
 stakeholder identification and involvement, 225
 training, 212
 work product control, 218
Decomposing standard processes, 377–378
Defect density, 687
Defects causes. See Causal Analysis and Resolution (CAR) process area
Define Lifecycle Phases practice, 643
Define Risk Parameters practice, 497–498
Defined processes
 composing, 468–471
 defined, 688
 establishing, 248–249, 338–340
 institutionalizing, 190–192
 in service context, 336–337
Definition of required functionality and quality attributes, 688
Degree program use case, 153–155
Deliver Services goal, 554
 degree program use case, 155
 lecture offer use case, 156
 Maintain the Service System practice, 559–560
 Operate the Service System practice, 557–559
 Receive and Process Service Requests practice, 554–557
Deliver Training practice, 449–450
Deliverable items, defined, 688
Delivery environments, 688
SD. See Service Delivery (SD) process area
Delivery phase in project lifecycles, 74
Deming, W. Edwards, 7
deMonsabert, Sharon, 90
Dependencies
 identifying, 526–529
 in lifecycles, 71–72
 managing, 354–355
 process areas, 256
 service delivery schedules, 558
Deploy Improvements goal, 420
 Evaluate Improvement Effects practice, 423–424
 Manage the Deployment practice, 422–423
 Plan the Deployment practice, 420–422
Deploy Organizational Process Assets and Incorporate Experiences goal, 398
Deploy Organizational Process Assets practice, 398–400
 Deploy Standard Processes practice, 400–401
 Incorporate Experiences into Organizational Process Assets practice, 402–404
 Monitor the Implementation practice, 401–402
Deploy Organizational Process Assets practice, 398–400
Deploy Service System Components practice, 604–605
 Deploy Standard Processes practice, 400–401
 Deploy the Service System goal, 604
 Assess and Control the Impacts of the Transition practice, 605–607
 Deploy Service System Components practice, 604–605
Deployment, SST. See Service System Transition (SST) process area
Derived measures
 data collection for, 370
 defined, 688
 description, 362
Derived requirements, 688–689
Descriptions
 components, 22–27
 defined processes, 256
 lifecycle models, 379–380
 service system performance, 274
 standard services, 618–620
Descriptive statistics, 368
Design
 asset libraries, 385
 developing, 577–579
 implementing, 581–582
 measurement repositories, 384
Design packages, 577
Design phase in service system lifecycles, 75
Design reviews, 689
Detection phase in incident lifecycles, 77
Determine Acquisition Type practice, 511–512
Determine Causes of Selected Outcomes goal, 283
Analyze Causes practice, 284–287
Select Outcomes for Analysis practice, 283–284
Determine Process Improvement Opportunities goal, 390–391
Appraise the Organization’s Processes practice, 393–394
Establish Organizational Process Needs practice, 391–392
Identify the Organization’s Process Improvements practice, 394–395
Determine Risk Sources and Categories practice, 495–496
Determine Which Training Needs are the Responsibility of the Organization practice, 444–445
Develop a Work Plan goal, 645–646
Establish the Budget and Schedule practice, 646–648
Establish the Work Plan practice, 656–658
Identify Risks practice, 648–649
Plan Data Management practice, 650–651
Plan Needed Knowledge and Skills practice, 654–655
Plan Stakeholder Involvement practice, 653–656
Plan the Resources practice, 651–653
Develop and Analyze Stakeholder Requirements goal, 567–568
Analyze and Validate Requirements practice, 572–574
Develop Service System Requirements practice, 570–572
Develop Stakeholder Requirements practice, 568–569
Develop the Design practice, 577–579
Development, 689
Development phase in service lifecycles, 73
Documentation
acceptance reviews and tests, 521
action plans, 396, 398
business strategy considerations, 638
causal analysis activities, 329
change requests, 628
commitments, 355–356, 625, 660
configuration items, 299
configuration management actions, 302
data management activity reviews, 626
decision alternatives, 310
decision criteria, 309
decision results, 313
defect and problem actions, 286
defined processes, 249, 340
dependencies, 355, 529
design, 579
improvement selection, 419, 422
incident actions, 326, 332
incident criteria, 321
information needs and objectives, 361
issue actions, 630–631
lessons learned, 352
milestone reviews, 629
noncompliance issues, 459
performance and availability resource use, 268–269
planning deviations, 624
plans, 657
process appraisals, 394
process asset deployment, 399
process improvements, 395
process needs and objectives, 392
quality and process performance objectives, 466
requirements changes, 488
risks, 502, 625, 649
service continuity plan improvements, 538
service continuity plans, 532
service continuity training, 533
service delivery approach, 549
service system, 560
standard processes, 379, 382
suggested improvements, 416–417
supplier agreements, 515–516
supplier criteria, 513
training commitments, 445
training needs, 444
verification activities, 591
Documents, 689
Doyle, Kieran
biography, 721
security appraisal essay, 173–179
security content example, 180–186

E
Education
Education and Training listing, 39
public education essay, 143–148
Educational institutions essay, 148
degree program use case, 153–155
introduction, 149
lecture offer use case, 155–156
lessons learned, 156–159
methodological approaches, 149–153
next steps, 159
Effectiveness of training, 451–452
Efficient decision making in education systems, 147
Effort estimation, 643–645
Eisenhower, Dwight D., 160
Elementary and Secondary Education Act (ESEA), 144
Elicit Suggested Improvements practice, 412–414
Emergency operating resources, 528
End users
defined, 689
need data for, 542–543
overview, 19–20
Ensure Alignment Between Work Products and Requirements practice, 491
Ensure Interface Compatibility practice, 579–581
Ensure Transition of Products practice, 521–522
Enterprises, 689
Entry criteria, 689
Environment
establishing, 342–344
risks, 502
standards, 386–387
Equipment requirements, 653
Equivalent staging
defined, 689–690
overview, 59–62
Escalation
incidents, 321
noncompliance issues, 459
Essential characteristics of processes, 392
Essential functions, dependencies on, 527–529
Establish a Capacity and Availability Management Strategy practice, 267–269
Establish a Configuration Management System practice, 297–298
Establish a Defined Process practice
overview, 248–249
process area relationships, 260
Establish a Request Management System practice, 553–554
degree program use case, 154
lecture offer use case, 156
Establish a Risk Management Strategy practice, 498–499
Establish a Security Management Plan practice, 182
Establish a Security Management System goal, 181–182
Establish a Training Capability practice, 446–448
Establish an Approach to Incident Resolution and Prevention practice, 318–321
Establish an Approach to Threat Assessment practice, 181–182
Establish an Incident Management System practice, 321–322
Establish an Organizational Policy practice, 183, 193–197
Establish an Organizational Training Capability goal, 443
Establish an Organizational Training Tactical Plan practice, 445–446
Establish Strategic Training Needs practice, 443–444
Establish an Organizational Training Tactical Plan practice, 445–446
Establish and Apply Solutions to Reduce Incident Occurrence practice, 331–332
“Establish and maintain”, defined, 690
Establish and maintain the description of a defined process practice, 256
Establish Baselines goal, 295
Create or Release Baselines practice, 299
Establish a Configuration Management System practice, 297–298
Identify Configuration Items practice, 295–297
Establish Configuration Management Records practice, 302–303
Establish Descriptions of Standard Services practice, 618–620
Establish Estimates goal, 636–637
Establish the Service Strategy practice, 637–640
Estimate Effort and Cost practice, 643–645
Estimate the Scope of the Work practice, 640–641
Establish Estimates of Work Product and Task Attributes practice, 641–643
Establish Evaluation Criteria practice, 309–310
Establish Guidelines for Decision Analysis practice, 307–308
Establish Integrity goal, 302
Establish Configuration Management Records practice, 302–303
Perform Configuration Audits practice, 303–304
Establish Lifecycle Model Descriptions practice, 379–380
Establish Measurement Objectives practice, 359–361
Establish Organizational Process Assets goal, 376
Establish Lifecycle Model Descriptions practice, 379–380
Establish Rules and Guidelines for Teams practice, 387–388
Establish Standard Processes practice, 376–379
Establish Tailoring Criteria and Guidelines practice, 381–382
Establish the Organization's Measurement Repository practice, 383–385
Establish the Organization's Process Asset Library practice, 385–386
Establish Work Environment Standards practice, 386–387
Establish Organizational Process Needs practice, 391–392
Establish Performance Baselines and Models goal, 427–428
Analyze Process Performance and Establish Process Performance Baselines practice, 434–436
Establish Process Performance Measures practice, 432–433
Establish Process Performance Models practice, 436–439
Establish Quality and Process Performance Objectives practice, 428–430
Select Processes practice, 430–432
Establish Plans for Standard Services practice, 614–615
Establish Process Action Plans practice, 396–397
Establish Process Performance Measures practice, 432–433
Establish Process Performance Models practice, 436–439
Establish Properties of Standard Services and Service Levels practice, 615–618
Establish Quality and Process Performance Objectives practice, 428–430
Establish Records practice, 459–460
Establish Rules and Guidelines for Teams practice, 387–388
Establish Security Objectives practice, 181
Establish Service Agreements goal, 514–517
Analyze Existing Agreements and Service Data practice, 542–544
degree program use case, 153–154
Establish the Service Agreement practice, 544–546
lecture offer use case, 155
Establish Service Continuity Plans practice, 530–532
Establish Service Continuity Training practice, 532–533
Establish Service System Representations practice, 271–274
Establish Solutions to Respond to Future Incidents practice, 330
Establish Standard Processes practice, 376–379
Establish Standard Services goal, 615
Establish Descriptions of Standard Services practice, 618–620
Establish Properties of Standard Services and Service Levels practice, 615–618
Establish Strategic Needs and Plans for Standard Services goal, 612
Establish Plans for Standard Services practice, 614–615
Gather and Analyze Data practice, 612–613
Establish Strategic Training Needs practice, 443–444
Establish Supplier Agreements goal
Determine Acquisition Type practice, 511–512
Establish Supplier Agreements practice, 514–517
Select Suppliers practice, 512–514
Establish Supplier Agreements practice, 514–517
Establish Tailoring Criteria and Guidelines practice, 381–382
Establish Teams practice, 349–351
Establish the Budget and Schedule practice, 646–648
Establish the Defined Process practice, 338–340
Establish the Organization's Measurement Repository practice, 383–385
Establish the Organization's Process Asset Library practice, 385–386
Establish the Service Agreement practice, 544–546
degree program use case, 153–154
lecture offer use case, 155
Establish the Service Delivery approach practice, 546–550
degree program use case, 154
lecture offer use case, 155–156
Establish the Service Strategy practice, 637–640
Establish the Work Environment practice, 342–344
Establish the Work Objectives practice, 465–468
Establish the Work Plan practice, 656–658
Establish Training Records practice, 450–451
Establish Work Environment Standards practice, 386–387
Estimate Effort and Cost practice, 643–645
Estimate the Scope of the Work practice, 640–641
Estimates establishing, 636–637
work product and task attributes, 641–643
Evaluate, Categorize, And Prioritize Risks practice, 502–504
Evaluate Alternative Solutions practice, 312–313
Evaluate Alternatives goal, 307
Establish Evaluation Criteria practice, 309–310
Establish Guidelines for Decision Analysis practice, 307–308
Evaluate Alternative Solutions practice, 312–313
Identify Alternative Solutions practice, 310
Select Evaluation Methods practice, 311–312
Select Solutions practice, 313–314
Evaluate and Prioritize Security Threats practice, 182
Evaluate Improvement Effects practice, 423–424
Evaluate the Effect of Implemented Actions practice, 289–290
Evaluation adherence, 238–246
PPQA. See Process and Product Quality Assurance (PPQA) process area
service continuity training, 533–534
training, 452
Example work products, 690
Examples, overview, 28
Exception conditions in service system, 279
Execute the Supplier Agreement practice, 517–519
Executive sponsors, 33–34
Exit criteria defined, 690
peer reviews, 589
Expectations, experience-based, 111–116
Expected CMMI components, 690
Expected components, 22
Experience-based expectations essay, 111–116
Experiences, incorporating, 398–400
External commitment reviews, 660
External dependencies documentation, 529
External interfaces, 580–581
External training programs, 447

F
Facilities for acquired products, 522
requirements, 653
Failure mode and effects analysis (FMEA), 497
FCAs (functional configuration audits), 304
Federal legislation for education, 144
Feedback information needs and objectives, 361
process asset use, 403
service continuity training, 533–534
Financial resources, 528
Flower, Peter biography, 721–722
change essay, 79–86
FMEA (failure mode and effects analysis), 497
Focus groups for vehicle insurance, 167
Formal evaluation processes in decision analysis, 305–307
defined, 690
Format of service agreements, 545
Forrester, Eileen C. biography, 717
security content essay, 179–186
Fuji-Xerox Corp., 114
Functional analysis, 690
Functional architecture, 690–691
Functional configuration audits (FCAs), 304
Functional validation on selected service system components, 592
Functionality, establishing, 573

G
Gap analysis, 152
Gather and Analyze Data practice, 612–613
Index

Generic goals
and capability levels, 53
defined, 691
institutionalization of, 189–192
Institutionalize a Defined Process goal, 248–255
Institutionalize a Managed Process goal, 193–248
and maturity levels, 56
overview, 25, 189
Generic practices, 51–52
defined, 691
elaborations, 27, 691
institutionalization of, 189–192
overview, 26–27, 189
process area support for, 255–260
Glazer, Hillel
Agile services essay, 129–135
biography, 722
Globalization, 81
Glossary of terms, 681–713
Goal Question Metric paradigm, 433
Goals, numbering schemes, 29. See also specific goals by name
Guidelines
decision analysis, 307–308
integrated teams, 387–388
standard processes, 381–382
H
Hardware engineering, 691
Help, 44–45
Help desk function, 319
HeRus IT services scenario, 122–129
High Maturity Team, 677
High-performing IT organizations, 135
calls to action, 142–143
case study, 140–141
common culture, 137
controls, 139
effective systems, 141–142
high and low performers, 138–139
introduction, 135–136
IT problems, 139–140
ten-year study, 136
High risks, 508
Higher level management
defined, 691
status reviews with, 246–248
Historical data for cost estimates, 644–645
Humphrey, Watts, 7–8
Identify, Control, and Address Individual Incidents goal, 322–323
Analyze Individual Incident Data practice, 324–325
Communicate the Status of Incidents practice, 327
Identify and Record Incidents practice, 323–324
Monitor the Status of Incidents to Closure practice, 326–327
Resolve Incidents practice, 325–326
Identify Alternative Solutions practice, 310–311
Identify and Analyze Risks goal, 499
Evaluate, Categorize, And Prioritize Risks practice, 502–504
Identify Risks practice, 499–502
Identify and Involve Relevant Stakeholders practice
overview, 223–230
process area relationships, 258
security content example, 185
Identify and Prioritize Essential Functions practice, 527
Identify and Prioritize Essential Resources practice, 527–529
Identify and Record Incidents practice, 323–324
Identify Configuration Items practice, 295–297
Identify Essential Service Dependencies goal, 526
Identify and Prioritize Essential Functions practice, 527
Identify and Prioritize Essential Resources practice, 527–529
Implement Action Proposals practice, 287–288
Implement Process Action Plans practice, 397–398
Implement Risk Mitigation Plans practice, 507–508
Implement the Service System Design practice, 581–582
Implementation phase in service system lifecycles, 75
Impacts
requirements, 488–489
selected incidents, 327–328
transition, 605–607
Implement Action Proposals practice, 287–288
Implement Process Action Plans practice, 397–398
Implement Risk Mitigation Plans practice, 507–508
Implement the Service System Design practice, 581–582
Improve the Service System function, 318–319
Improvement practice, 399–402
Integrate the Service System function, 312–318
implementation phase in service system lifecycles, 74
integration, 27–28, 691
interactions, 26–27, 189
Improvement
determining, 390–391
educational institution opportunities, 152
lasting, 51
roles, 33–36
scope of, 46
Improvement areas, identifying, 411
Improvement plans process, 389–390
Incident Resolution and Prevention (IRP)
process area
adherence evaluation, 239–240
Analyze and Address Causes and Impacts of
Selected Incidents goal, 327–333
Capacity and Availability Management
relationship, 266
CMMI-DEV, 88–89
Identify, Control, and Address Individual
Incidents goal, 322–327
incident lifecycles, 77
introductory notes, 315–317
IT services scenario, 127–128
policies, 194
Prepare for Incident Resolution and
Prevention goal, 318–322
process monitoring and control, 233
process plans, 199
process related experiences collection, 251
project lifecycles, 75
purpose, 315
relationships, 68, 317–318
resources, 204
responsibility, 210
service system lifecycles, 76
Service System Transition relationship, 598
stakeholder identification and
involvement, 225
status reviews with higher level
management, 246
Strategic Service Management
relationship, 611
work product control, 219
Incidents
lifecycles, 77
overview, 16–17
Incomplete processes, 691
Inconsistencies in project work and
requirements, 491
Incorporate Experiences into Organizational
Process Assets practice, 402–404
India, labor in, 81
Information assurance and security references
and sources, 667–668
Information collection, 38–42
Information Technology Infrastructure Library
(ITIL), 9
influence of, 139
for security, 174
Information Technology Services Capability
Maturity Model (ITSCMM), 9
Informative components, 22, 691–692
Infrastructure needs for cost estimates, 644–645
Initial analyses for measures, 371
Initiation phase in service request lifecycles, 76
Installing service system, 605
Institutionalization, defined, 692
Institutionalization of processes, 189–192
Institutionalize a Defined Process goal
Collect Process Related Experiences practice,
249–255
Establish a Defined Process practice,
248–249
Institutionalize a Managed Process goal
Assign Responsibility practice, 210–211
Control Work Products practice, 217–223
Establish an Organizational Policy practice,
193–197
Identify and Involve Relevant Stakeholders
practice, 223–230
Monitor and Control the Process practice,
230–238
Objectively Evaluate Adherence practice,
238–246
Plan the Process practice, 197–203
Provide Resources practice, 203–210
Review Status with Higher Level
Management practice, 246–248
Train People practice, 211–217
Institutionalized processes, 51
Instructors
selecting, 46
training, 448
Insurance. See Vehicle insurance essay
Integrate Plans practice, 344–347
Integrate Service System Components
practice, 583–584
Integrated plans for project management,
347–349
Integrated Work Management (IWM) process
area
adherence evaluation, 240
Coordinate And Collaborate With Relevant
Stakeholders goal, 353–356
Decision Analysis and Resolution
relationship, 307
for education systems, 147–148
generic goals and practices support by, 256
introductory notes, 335–337
policies, 194
process monitoring and control, 233
process plans, 199
Integrated Work Management (IWM) process area (Continued)
process related experiences collection, 251
purpose, 335
Quantitative Work Management relationship, 463
related process areas, 337
resources, 204
stakeholder identification and involvement, 225
training, 212
Use the Defined Process for the Work goal, 338–352
work product control, 219
Integrating standard processes, 379
Integrity
baselines, 302–304
incident management systems, 322
measures, 370, 373
request management system, 554
Interaction of subprocesses, 470
Interface control, 692
Interfaces
compatible, 579–581
service system, 572
Interim objectives in quality and process performance, 467
Internal commitment reviews, 660
Internal dependencies documentation, 529
Internal interfaces, 580–581
Internal training programs, 447
Interpreting CMMI for Service Organizations, 115
Interpreting measurement results, 371
Interruptions. See Incident Resolution and Prevention (IRP) process area
Introductory notes, 24
IRP. See Incident Resolution and Prevention (IRP) process area
ISO 20000 assets in CMMI-SVC adoption, 102–111
ISO/IEC 20000: Information Technology—Service Management, 9
IT organizations, high-performing. See High-performing IT organizations
IT services scenario essay, 116
Capacity and Availability Management, 125–126
conclusion, 128–129
Incident Resolution and Prevention, 127–128
introduction, 122–123
observations, 116–122
Service Continuity, 126
service delivery, 123–125
ITIL. (Information Technology Infrastructure Library), 9
influence of, 139
in IT services scenario, 119–121
for security, 174
ITSCMM (Information Technology Services Capability Maturity Model), 9
IWM. See Integrated Work Management (IWM) process area

J

Jenifer, Mary
biography, 722
call center essay, 89–94
Joint reviews for action plans, 397
Juran, Joseph, 7

K

Kim, Gene
biography, 722
high-performing IT organizations essay, 135–143
Visible Ops Handbook: Starting ITIL in Four Practical Steps, 135
Knowledge, plans for, 654–655
Knowledge and skills of work group personnel, 624
Knowledge management issues in IT services scenario, 117–120

L

Lasting improvement, 51
Lecture offer use case, 155–156
Legal resources, 528
Lessons learned
from evaluations, 457
from process asset activities, 403
Levels
capability, 52–59
configuration management control, 298
incidents, 320
maturity, 55–59, 160–163
risk acceptability and triggers, 505–506
Libraries, asset, 375
for defined processes, 340, 348
establishing, 385–386
Lifecycle models
defined, 692
defined processes, 339
descriptions, 379–380
Lifecycles, 71–72
CMMI for Services, 73
importance, 72–73
incidents, 77
phases, 643
projects, 74–75
putting together, 77–78
service requests, 76–77
service systems, 75–76
services, 73–74
Literature searches for decision alternatives, 310
Lockheed Martin, 95–96
Long duration service strategies, 637
Low-level monitoring of service delivery, 558
Lunsford, Gary H.
biography, 723–724
vehicle insurance essay, 164–173
Lunsford, Tobin A.
biography, 724
vehicle insurance essay, 164–173

M
MA. See Measurement and Analysis (MA) process area
Maintain Bidirectional Traceability of Requirements practice, 489–491
Maintain Business Objectives practice, 407–409
Maintain the Service System practice, 559–560
degree program use case, 155
lecture offer use case, 156
Maintenance and operational support for work environment, 344
Maintenance notifications to stakeholders, 560
Manage Business Performance goal, 407–409
Analyze Process Performance Data practice, 410
Identify Potential Areas for Improvement practice, 411
Maintain Business Objectives practice, 407–409
Manage Configurations practice, 185
Manage Corrective Action to Closure goal, 629
Analyze Issues practice, 629–631
Manage Corrective Actions practice, 631
Take Corrective Action practice, 630–631
Manage Corrective Actions practice, 631
Manage Dependencies practice, 354–355
Manage Requirements Changes practice, 488
Manage Requirements goal, 486
Ensure Alignment Between Work Products and Requirements practice, 491
Maintain Bidirectional Traceability of Requirements practice, 489–491
Manage Requirements Changes practice, 488
Obtain Commitment to Requirements practice, 488
Understand Requirements practice, 486–487
Manage Stakeholder Involvement practice, 353–354
Manage the Deployment practice, 422–423
Manage the Work Using Integrated Plans practice, 347–349
Manage Work Performance practice, 478–481
Managed processes
defined, 692
institutionalizing, 190–197
Management
change challenges, 83–84
reviews with suppliers, 519
Management and analysis processes in call center essay, 92
Management steering group, 34
Managers, 692
Managing the Software Process (Humphrey), 8
Material Damage Quarterly Planner (MDQP), 168
Materials
solicitation, 513
training, 447–448, 533
Maturity levels
and capability levels, 55–59
defined, 692
high, 63
limits, 160–163
overview, 55–57
paths essay, 97–102
MDQP (Material Damage Quarterly Planner), 168
Measurement and Analysis (MA) process area adherence evaluation, 240
Align Measurement and Analysis Activities goal, 359–369
Capacity and Availability Management relationship, 266
Causal Analysis and Resolution relationship, 282
for education systems, 148
Integrated Project Management relationship, 337
introductory notes, 357–358
in IT services scenario, 119
Organizational Performance Management relationship, 407
Organizational Process Performance relationship, 427
policies, 194
process monitoring and control, 233
process plans, 199
Provide Measurement Results goal, 369–374
purpose, 357
Quantitative Work Management relationship, 463
Measurement and Analysis (MA) process area
(Continued)
related process areas, 358
resources, 204
stakeholder identification and involvement, 225
training, 213
Work Monitoring and Control relationship, 621
Work Planning relationship, 635
work product control, 219
Measurements
action effects, 289
analyzing, 403
capacity and availability management, 269–271
for causes, 282
decision evaluation methods, 311–312
defined, 692
improvements results, 424
for organization needs support, 348
for planning parameters, 341
process performance, 432–433, 435
QWM. See Quantitative Work Management (QWM) process area
repositories, 383–385
results, 692
service system performance, 274
training effectiveness, 451
Measures
defined, 692
selecting, 473–476
Medium risks, 508
Memoranda of agreement, 693
Metrics in CMMI-SVC adoption, 105
Milestones
identifying, 646–647
reviewing, 628–629
Miller, Suzanne
biography, 724
SoS essay, 94–97
Mitigate Risks goal, 504
Develop Risk Mitigation Plans practice, 504–506
Implement Risk Mitigation Plans practice, 507–508
Miyoshi, Takeshige
biography, 725
experience-based expectations essay, 111–116
Models
CMMI, 6, 21
for cost estimates, 644–645
for decisions, 313
performance, 436–439
selecting, 46–47
for standard processes, 378–379
Monitor and Analyze Availability practice, 277–278
Monitor and Analyze Capacity and Availability goal, 274–275
Monitor and Analyze Availability practice, 277–278
Monitor and Analyze Capacity practice, 275–277
Report Capacity and Availability Management Data practice, 278–279
Monitor and Analyze Capacity practice, 275–277
Monitor and Control the Process practice overview, 230–238
process area relationships, 259
security content example, 185
Monitor Commitments practice, 624–625
Monitor Data Management practice, 626
Monitor Risks practice, 625
Monitor Stakeholder Involvement practice, 626–627
Monitor the Implementation practice, 401–402
Monitor the Performance of Selected Subprocesses practice, 477–478
Monitor the Security Management System practice, security content example, 183
Monitor the Status of Incidents to Closure practice, 326–327
Monitor the Work Against the Plan goal, 622
Conduct Milestone Reviews practice, 628–629
Conduct Progress Reviews practice, 627–628
Monitor Commitments practice, 624–625
Monitor Data Management practice, 626
Monitor Risks practice, 625
Monitor Stakeholder Involvement practice, 626–627
Monitor Work Planning Parameters practice, 622–624
Monitor Work Planning Parameters practice, 622–624
Monitoring
improvement deployment, 422
plans for, 348
risk status, 507
service delivery, 552, 558
service request status, 556
supplier progress and performance, 518
WMC. See Work Monitoring and Control (WMC) process area
Multiple levels of control in configuration management, 298

N
Natural bounds, 693
Nelson, Brad
biography, 725
plans worthlessness essay, 159–163
No Child Left Behind (NCLB) Act, 144
Non-numeric criteria in decision analysis, 306
Noncompliance issues, 438–439
Nondevelopmental items, 693
Nonfunctional validation on selected service system components, 592
Nontechnical commitments for acquired products, 521
Nontechnical requirements, 693
Normative components, 22
Notes overview, 28
Notifications
 incidents, 320
 transitions, 603
Numbering schemes, 29
Numeric criteria in decision analysis, 306
Nyuyki, Daniel, 148

Objective criteria for requirements, 487
Objectively Evaluate Adherence practice overview, 238–246
 process area relationships, 259
 security content example, 186
Objectively evaluate process, 693
Objectively Evaluate Processes and Work Products goal, 456
Objectively Evaluate Processes practice, 456–457
Objectively Evaluate Work Products practice, 457–458
Objectively Evaluate Processes practice, 456–457
Objectively Evaluate Work Products practice, 457–458
Objectives
 business, 407–409, 428–430
 improvement, 40–44
 measurement, 359–361
 project, 463–468
 quality and process performance, 428–430, 465–468
 strategic, 614, 638
 training needs identification, 444
Objectivity in quality assurance, 454
Obtain Commitment to Requirements practice, 488
Obtain Commitment to the Plan goal, 658
Obtain Plan Commitment practice, 659–660
Reconcile Work And Resource Levels practice, 659
Review Plans That Affect the Work practice, 658
Obtain Commitment to the Security Management Plan practice, 182
Obtain Measurement Data practice, 370
Obtain Plan Commitment practice, 659–660
OLAs (operating level agreements), 15–16
Online customers, 83
OPD. See Organizational Process Definition (OPD) process area
Open source software (OSS), changes from, 81–82
Operate the Security Management System practice, 183
Operate the Service System practice, 557–559
 degree program use case, 155
 lecture offer use case, 156
Operating level agreements (OLAs), 15–16
Operation phase in service system lifecycles, 75
Operational concepts, 693
Operational definitions for measures, 365
Operational failures in IT organizations, 140
Operational scenarios, 693
OPF. See Organizational Process Focus (OPF) process area
OPM. See Organizational Performance Management (OPM) process area
OPP. See Organizational Process Performance (OPP) process area
Organization business objectives, 694
Organization measurement repositories, 694
Organization process asset libraries, 694
Organization set of standard processes, 695
Organizational culture, 40, 49–50
Organizational issues in IT services scenario, 117–120
Organizational maturity, 694
Organizational Performance Management (OPM) process area, 54–55
 adherence evaluation, 241
 Causal Analysis and Resolution relationship, 282
 Deploy Improvements goal, 420–424
 for education systems, 148
 introductory notes, 405–406
 Manage Business Performance goal, 407–411
 policies, 194
 process related experiences collection, 251
 purpose, 405
 Quantitative Work Management relationship, 464
 related process areas, 407, 427
 resources, 205
 Select Improvements goal, 411–420
 Service System development relationship, 566
 stakeholder identification and involvement, 226–227
Organizational Performance Management (OPM) process area (Continued)
status reviews with higher level management, 247
training, 214
Organizational policies, 694
Organizational process assets, 694
Organizational Process Definition (OPD) process area
adherence evaluation, 240–241
for education systems, 148
Establish Organizational Process Assets goal, 376–388
generic goals and practices support by, 256
Integrated Project Management relationship, 337
introductory notes, 375–376
Measurement and Analysis relationship, 358
Organizational Process Focus relation, 390
Organizational Training relationship, 442
policies, 194
process monitoring and control, 233
process plans, 199
process related experiences collection, 251
purpose, 24, 375
Quantitative Work Management relationship, 464
relationships, 68–69, 376
resources, 205
stakeholder identification and involvement, 226
Strategic Service Management relationship, 611
training, 213
work product control, 219
Organizational Process Focus (OPF) process area
adherence evaluation, 241
Deploy Organizational Process Assets and Incorporate Experiences goal, 398–404
Determine Process Improvement Opportunities goal, 390–395
introductory notes, 389–390
Organizational Performance Management relationship, 407
Organizational Process Definition relationship, 376
Plan and Implement Process Actions goal, 396–397
policies, 194
process monitoring and control, 234
process plans, 200
process related experiences collection, 251
purpose, 389
related process areas, 390
resources, 205
stakeholder identification and involvement, 226
status reviews with higher level management, 246–247
training, 213
work product control, 220
Organizational Process Performance (OPP) process area, 54
adherence evaluation, 241–242
for education systems, 148
Establish Performance Baselines and Models goal, 427–439
introductory notes, 425–427
Organizational Performance Management relationship, 407
policies, 195
process monitoring and control, 234
process plans, 200
process related experiences collection, 252
purpose, 425
Quantitative Work Management relationship, 464
related process areas, 427
resources, 206
service system representations, 273
stakeholder identification and involvement, 227
training, 214
work product control, 220
Organizational processes in call center essay, 93–94
Organizational Training (OT) process area
adherence evaluation, 242
for education systems, 148
Establish an Organizational Training Capability goal, 443–448
introductory notes, 441–442
Organizational Performance Management relationship, 407
policies, 195
process monitoring and control, 234
process plans, 200
process related experiences collection, 252
purpose, 441
relationships, 69, 442
resources, 206
Service Continuity relationship, 526
stakeholder identification and involvement, 227
training, 214
work product control, 220
Organizations, 693–694
Outcomes causes
 addressing, 287–290
 selecting, 283–287

P
Pabustan, Maggie
 biography, 725
 call center essay, 89–94
Paradigm changes, 80–81
Parameters
 project planning, 341
 risk, 497–498, 502–504
 work planning, 622–624
Partner organizations, 39, 49–50
Paths of service delivery schedules, 558
Paths to service maturity essay, 97–102
PCAs (physical configuration audits), 304
Peer reviews
 defined, 695
 defined processes, 340
 lifecycle models, 380
 plans for, 346
 selected service system components, 582
 standard processes, 379, 384
 standard service descriptions, 619
 system services, 587–590
Penn, Lynn
 biography, 726
 SoS essay, 94–97
Perfective maintenance, 559
Perform Configuration Audits practice, 303–304
Perform Peer Reviews practice, 587–590
Perform Root Cause Analysis practice, 481–482
Perform Specific Practices practice, 193
Performance
 high and low performers, 138–139
 OPM. See Organizational Performance Management (OPM) process area
 OPP. See Organizational Process Performance (OPP) process area
 risk-handling activities, 508
 risks associated with, 500–501
 suppliers, 519
Performance-driven improvement, 115–116
Performance parameters, 695
Performed processes
 defined, 695
 institutionalizing, 190–192
Person-to-component interfaces, 579
Person-to-person interfaces, 579
Phillips, Mike
 biography, 726–727
 constellations essay, 86–89
Physical configuration audits (PCAs), 304
Pilots
 action plans, 397
 for decisions, 313
 problems, 394
Plan and Implement Process Actions goal, 395
 Establish Process Action Plans practice, 396–397
 Implement Process Action Plans practice, 397–398
Plan Data Management practice, 650–651
Plan dates for critical dependency, 354
Plan Needed Knowledge and Skills practice, 654–655
Plan Stakeholder Involvement practice, 655–656
Plan the Deployment practice, 420–422
Plan the Process practice
 overview, 197–203
 process area relationships, 257
Plan the Resources practice, 651–653
Plan the Work practice, security content example, 184
Planned processes, 695
Planned work, culture of, 137
Plans
 action, 395–398, 521
 establishing, 656–658
 reviewing, 629
 risk mitigation, 504–506
 service continuity, 530–532
 service request actions, 556
 service system maintenance, 560
 service system transition, 601–603
 for standard services, 614–615
 training, 445–446
 validation, 417–418
 worthlessness of, 159–163
WP. See Work Planning (WP) process area
Policies
 establishing, 193–197
 for standard processes, 378–379
Post-deployment reviews, 607
PPQA. See Process and Product Quality Assurance (PPQA) process area
Practice Implementation Indicator (PII) for security, 176–178
Practices. See also specific practices by name
 generic. See Generic practices numbering schemes, 29
Preliminary conclusions for measures, 371
Premiums for vehicle insurance, 165
Preparation phase in project lifecycles, 74
Prepare for Capacity and Availability Management goal, 267
 Establish a Capacity and Availability Management Strategy practice, 267–269
Prepare for Capacity and Availability
Management goal (Continued)
Establish Service System Representations practice, 271–274
Select Measures and Analytic Techniques practice, 269–271

Prepare for Incident Resolution and Prevention goal, 318
Establish an Approach to Incident Resolution and Prevention practice, 318–321
Establish an Incident Management System practice, 321–322

Prepare for Quantitative Management goal, 464
Compose the Defined Process practice, 468–471
Establish the Work Objectives practice, 465–468
Select Measures and Analytic Techniques practice, 473–476
Select Subprocesses and Attributes practice, 471–473

Prepare for Risk Management goal, 495
Define Risk Parameters practice, 497–498
Determine Risk Sources and Categories practice, 495–496
Establish a Risk Management Strategy practice, 498–499

Prepare for Service Continuity goal, 530
Establish Service Continuity Plans practice, 530–532
Establish Service Continuity Training practice, 532–533
Provide and Evaluate Service Continuity Training practice, 533–534

Prepare for Service Delivery goal, 546
degree program use case, 154
Establish a Request Management System practice, 553–554
Establish the Service Delivery approach practice, 546–550
lecture offer use case, 155–156
Prepare for Service System Operations practice, 551–553

Prepare for Service System Operations practice, 551–553
degree program use case, 154
lecture offer use case, 156

Prepare for Service System Transition goal, 598–599
Analyze Service System Transition Needs practice, 599–601
Develop Service System Transition Plans practice, 601–603
Prepare Stakeholders for Changes practice, 603–604

Prepare for the Verification and Validation of the Service Continuity Plan practice, 535–536
Prepare for Verification and Validation practice, 586–587
Prepare Stakeholders for Changes practice, 603–604

Preventive maintenance, 559
Priorities
action proposals, 287
candidate process improvements, 394–395
change requests, 300
data collection procedures, 367
essential functions, 527–529
incident levels, 320
information needs and objectives, 361
maintenance requests, 560
measurement analyses, 367–368
measures, 365
objectives, 430
quality and process performance, 465
risks, 502–504

Prioritizing
business objectives, 409
deployment improvements, 419
Privacy requirements and procedures, 651

Problem causes. See Causal Analysis and Resolution (CAR) process area
Process action plans
defined, 696
implementing, 397–398
Process action teams, 696
Process and Product Quality Assurance (PPQA) process area
adherence evaluation, 242
for education systems, 146
introductory notes, 453–455
in IT services scenario, 119
Objectively Evaluate Processes and Work Products goal, 456–458
policies, 195
process monitoring and control, 235
process plans, 201
process related experiences collection, 252
Provide Objective Insight goal, 458–460
purpose, 453
related process areas, 455
resources, 206
responsibility, 210
stakeholder identification and involvement, 227
training, 214
work product control, 220

Process and technology improvements, 696
Process architecture, 696
Process areas. See also specific process areas by name
components. See Components
defined, 696
description, 22–27
educational institutions, 151–152
generic goals and generic practices support,
255–260
and maturity levels, 54, 56
relationships among. See Relationships among process areas
Process asset libraries, 375
defined, 696
for defined processes, 348
establishing, 385–386
Process assets
defined, 696
deploying, 398–400
monitoring, 401–402
Process attributes, 696
Process capability, 696
Process definitions, 696
Process descriptions, 696
Process elements, 697
Process group leaders, 35
Process groups
defined, 697
responsibilities, 34–35
Process improvement objectives, 697
Process improvement plans, 697
Process improvements
defined, 697
determining, 390–391
roles, 33–36
Process measurements, 697
Process owners, 697–698
Process performance, 698
Process performance baselines, 698
Process performance models, 698
Process related experiences collection, 249–255
Process tailoring, 698
Processes
CMMI, 5–6
defined, 695
lasting improvement, 51
needs establishment, 391–392
performance. See Organizational Process Performance (OPP) process area
Product baselines, 699
Product component requirements, 699
Product components, 699
Product Integration (PI) for system of systems, 96
Product lifecycle, 699
Product lines, 699–700
Product related lifecycle processes, 700
Product requirements, 700
Products
defined, 698
services as, 12
Profiles, 40, 54, 59–62
Progress
action plan, 397
reviews, 627–628
work monitoring, 623
Project and Work Management process area, 70
Project management, 18
Project plans, 700
Project progress and performance, 700
Project startup, 701
Projects overview
defined, 700
description, 17–19
lifecycles, 74–75
Properties of standard services and service levels, 615–618
Prototypes
defined, 701
for solutions, 313
Provide and Evaluate Service Continuity Training practice, 533–534
Provide Measurement Results goal, 369–370
Analyze Measurement Data practice, 371
Communicate Results practice, 373–374
Obtain Measurement Data practice, 370
Store Data and Results practice, 372–373
Provide Objective Insight goal, 458
Communicate and Resolve Noncompliance Issues practice, 458–459
Establish Records practice, 459–460
Provide Resources practice
overview, 203–210
process area relationships, 257
security content example, 184
Provide Security goal, 183
Provide Training goal, 449
Deliver Training practice, 449–450
Establish Training Records practice, 450–451
Public education essay, 143–148
Publishing service agreements, 546
Purpose statements, 24
Q
Quality
defined, 701
measurement limitations, 82–83
OPP. See Organizational Process Performance (OPP) process area
PPQA. See Process and Product Quality Assurance (PPQA) process area
Quality and process performance objectives, 701
Quality assurance
call center essay, 92–93
defined, 701
IT services scenario, 124
Quality assurance appraisal, 37
Quality attributes, 701–702
Quality control, 702
Quality Team, 680
Quantitative management, 702
Quantitative objectives, 702
Quantitative Work Management (QWM) process area, 54–55
adherence evaluation, 242
Causal Analysis and Resolution relationship, 282
introductory notes, 461–463
Measurement and Analysis relationship, 358
Organizational Process Performance relationship, 427
policies, 195
Prepare for Quantitative Management goal, 464–476
process monitoring and control, 235
process plans, 201
process related experiences collection, 252
purpose, 461
Quantitatively Manage the Work goal, 476–482
related process areas, 463–464
resources, 206–207
stakeholder identification and involvement, 227–228
training, 214
work product control, 221
Quantitatively Manage the Work goal, 476
Manage Work Performance practice, 478–481
Monitor the Performance of Selected Subprocesses practice, 477–478
Perform Root Cause Analysis practice, 481–482
QWM. See Quantitative Work Management (QWM) process area
degree program use case, 155
lecture offer use case, 156
Reconcile Work And Resource Levels practice, 659
Record Causal Data practice, 290
Recording actions, 333
commitments to requirements, 488
incident actions, 326
incidents, 323
peer review information, 590
process improvement activities, 402
service continuity plan verification and validation, 537
service request information, 555
underlying causes of incidents, 329
verification activities results, 591
Records quality assurance, 459–460
training, 450–451
Reference models defined, 702
selecting, 46–47
References CMMI resources, 663–668
process areas, 28
Regulations future, 84
vehicle insurance, 165–166
Reinsurance for vehicle insurance, 165
Relationships among process areas, 65–66, 192
Capacity and Availability Management, 266
Causal Analysis and Resolution, 282
Configuration Management, 294
Decision Analysis and Resolution, 307
Incident Resolution and Prevention, 317–318
Integrated Project Management, 337
lifecycles, 71–78
Measurement and Analysis, 358
Organizational Performance Management, 407
Organizational Process Definition, 376
Organizational Process Focus, 390
Organizational Process Performance, 427
Organizational Training, 442
overview, 24
Process and Product Quality Assurance, 455
Quantitative Work Management, 463–464
Requirements Management, 485
Risk Management, 494
Service Continuity, 525–526
Service Delivery, 540–541
Service Establishment and Delivery, 66–69
service management, 69–71
Service System Development, 566
Service System Transition, 598

R
Radice, Ron, 8
Range for ranking decision criteria, 309
Ranking decision criteria, 309–310
Ratings, appraisal, 36–37, 48–49
Rationale for evaluation criteria, 310
Real-time infrastructure (RTI) architecture, 82
Receive and Process Service Requests practice, 554–557
specifying, 378
Strategic Service Management, 611
Supplier Agreement Management, 511
Work Monitoring and Control, 621–622
Work Planning, 635–636
Relative importance of decision criteria, 310
Relevant stakeholders, defined, 702
Repeatability of measurements, 365
Report Capacity and Availability Management
Data practice, 278–279
Reports
configuration management, 298
measurement analyses, 367–368
process performance, 410
underlying causes of incidents, 329
Repositories for measurement, 383–385
Representation, 702
REQM. See Requirements Management (REQM) process area
Request management system, 553–554
Required components, 21–22, 702
Requirements
analyzing and validating, 572–574
defect, 593
defined, 702–703
peer review, 588
service system, 570–572
stakeholders, 568–569
standard services, 614
Requirements analysis, 703
Requirements Development (RD) process area, 87
Requirements elicitation, 703
Requirements management, 703
Requirements Management (REQM) process area
adherence evaluation, 243
introductory notes, 483–485
Manage Requirements goal, 486–491
policies, 195
process monitoring and control, 235
process plans, 201
process related experiences collection, 253
purpose, 483
relationships, 67–68, 70–71, 485
resources, 207
stakeholder identification and involvement, 228
status reviews with higher level management, 247
Strategic Service Management relationship, 611
Supplier Agreement Management relationship, 511
training, 215
Work Planning relationship, 636
work product control, 221
Requirements traceability
defined, 703
matrices, 490
Resiliency Management Model (RMM), 88–89
Resolution phase in incident lifecycles, 77
Resolve Coordination Issues practice, 355–356
Resolve Incidents practice, 325–326
Resolving
noncompliance issues, 458–459
quality and process performance objectives conflicts, 468
Resource level reconciliation, 659
Resources, 13
CAM. See Capacity and Availability Management (CAM) process area
committing, 44
dependencies, 528–529
monitoring, 624
planning, 651–653
providing, 203–210
requirements, 653
risk-handling activities, 508
service delivery, 552
service requests, 548, 556
service system transitions, 602
in strategies, 638–639
Response phase in service request lifecycles, 76
Responsibility
assigning, 210–211
incidents, 320
risk, 506
service requests, 548
Responsible buyers, 161
Retirement phase
service lifecycles, 73
service system lifecycles, 75
Return on investment, 703
Reuse of assets in CMMI-SVC adoption, 107–110
Review Plans That Affect the Work practice, 658
Review Status with Higher Level Management practice
overview, 246–248
process area relationships, 259
security content example, 186
Reviews
acceptance procedures, 520
action plans, 397
asset libraries, 386
business objectives, 429–430
commitments, 660
for consistency, 491
Reviews (Continued)
data collection procedures, 367
data management activities, 626
incident actions, 326
interface descriptions, 581
maintenance requests, 560
measurement analyses, 369
measurement objectives, 361
measures, 365
plans, 658
post-deployment, 607
process accomplishments, 231
process performance baselines, 436
process performance models, 438
project performance with current and anticipated needs, 348–349
quality and process performance objectives, 465
risks, 649
selected improvements, 418, 420, 422
service agreements, 546
service continuity plans, 531
service continuity training materials, 533
service delivery approach, 552
service delivery data, 543
service request status, 556
service system components, 588
standard processes, 403
standard service descriptions, 619
strategies, 639–640
with suppliers, 518
verification and validation plans, 536
work breakdown structures, 502
work environment, 344
Revising
asset libraries, 386
business objectives, 408
configuration management structure, 298
defined process descriptions, 249
lifecycle model descriptions, 380
measure sets, 433
measurement repositories, 384
objectives, 430
planned process improvements, 395
process needs and objectives, 392
process performance baselines, 436
process performance models, 438
project plans, 658
quality and process performance objectives, 468
quality assurance status and history, 460
risk documentation, 625
risks, 649
service agreements, 546
service continuity plans, 532
service continuity training materials, 533
service delivery approach, 549
service system, 582
standard process tailoring, 382
standard processes, 379, 382
standard service descriptions, 619
strategies, 640
supplier requirements, 515, 517
training materials, 448
training needs, 444
training plans, 446
Rickover, Hyman, 161–162
Risk analysis, 703
Risk identification, 703
Risk management, 703
Risk Management (RSKM) process area
adherence evaluation, 243
Decision Analysis and Resolution relationship, 307
Identify and Analyze Risks goal, 499–504
Incident Resolution and Prevention relationship, 318
introductory notes, 493–494
Mitigate Risks goal, 504–508
policies, 195
Prepare for Risk Management goal, 495–499
process monitoring and control, 235–236
process plans, 201
process related experiences collection, 253
purpose, 493
related process areas, 494
Requirements Management relationship, 485
resources, 207
Service Continuity relationship, 526
stakeholder identification and involvement, 228
status reviews with higher level management, 247
for system of systems, 96
training, 215
Work Planning relationship, 636
work product control, 221
Risks
decisions, 313–314
identifying, 648–649
monitoring, 625
process performance, 410, 480
product and project interface, 346
in quality and process performance, 467
reviewing, 629
RSKM. See Risk Management (RSKM) process area
in strategies, 639
subprocesses, 469
suggested improvements, 416
supplier, 513, 519
vehicle insurance, 168

Roles
peer reviews, 589
process improvement, 33–36
Roll-out, SST. See Service System Transition (SST) process area

Root causes
analysis, 481–482
determining, 285
incidents, 316–317, 328

RSKM. See Risk Management (RSKM) process area
Russia, labor in, 81

S
SaaS (software as a service), 12, 14–15
Safety provisions for continuity, 529
SAIC company, 102–111
SAM. See Supplier Agreement Management (SAM) process area
Satisfy Supplier Agreements goal, 517
Accept the Acquired Product practice, 520–521
Ensure Transition of Products practice, 521–522
Execute the Supplier Agreement practice, 517–519

Scale for ranking decision criteria, 309
SCAMPI. See Standard CMMI Appraisal Method for Process Improvement (SCAMPI)
SCAMPI Upgrade Team, 678
Scenario development, 573
Schedules
assumptions, 647
critical development tasks, 346
establishing, 646–648
peer reviews, 588
process appraisals, 394
risk-handling activities, 508
risks associated with, 500–501
service delivery, 558
service requests, 540
service system transitions, 602
suggested improvements, 416
training, 449–450
Schoppert, Pam
biography, 727
CMMI-DEV and ISO 20000 assets essay, 102–111
SCON. See Service Continuity (SCON) process area
Scope
establishing, 640–641
improvement, 46
process appraisals, 393

SD. See Service Delivery (SD) process area
SECM (Systems Engineering Capability Model), 9
Secure storage and access methods, 531
Security
appraisal of, 173–179
content, 179–186
requirements and procedures for, 651
service delivery, 558
in strategies, 639
SEI (Software Engineering Institute), 5–6
benchmarking tools, 84
training courses, 38–39
SEI Partners, 49
Select and Implement Improvements for Deployment practice, 418–420
Select Evaluation Methods practice, 311–312
Select Improvements goal, 411–412
Analyze Suggested Improvements practice, 414–417
Elicit Suggested Improvements practice, 412–414
Select and Implement Improvements for Deployment practice, 418–420
Select Measures and Analytic Techniques practice, 269–271, 473–476
Select Outcomes for Analysis practice, 283–284
Select Processes practice, 430–432
Select Service System Solutions practice, 575–577
Select Solutions practice, 313–314
Select Subprocesses and Attributes practice, 471–473
Select Suppliers practice, 512–514
Senior management
business objectives, 408
commitment reviews with, 660
process appraisal sponsorship, 393
strategy reviews with, 639–640
Senior managers, 703–704
SEPG conference, 39
Service agreements, 15–16
contents, 132
defined, 704
for education, 145–146
establishing, 541–546
vehicle insurance, 169–170
Service catalogs, 704–705
Service Continuity (SCON) process area
adherence evaluation, 243–244
Capacity and Availability Management relationship, 266
Identify Essential Service Dependencies goal, 526–529
introductory notes, 523–525
IT services scenario, 126
Service Continuity (SCON) process area
(Continued)
policies, 196
Prepare for Service Continuity goal, 530–534
process monitoring and control, 236
process plans, 201–202
process related experiences collection, 253
purpose, 88, 523
relationships, 71, 525–526
resources, 207–208
responsibility, 211
Risk Management relationship, 494
Service System Transition relationship, 598
stakeholder identification and involvement, 228
status reviews with higher level management, 248
training, 215
Verify and Validate the Service Continuity Plan goal, 534–538
work product control, 221
Service Delivery (SD) process area
adherence evaluation, 244
Capacity and Availability Management relationship, 266
Deliver Services goal, 554–560
education systems, 145–146
Establish Service Agreements goal, 541–546
Incident Resolution and Prevention relationship, 317
introductory notes, 539–540
IT services scenario, 123–125
policies, 196
Prepare for Service Delivery goal, 546–554
process monitoring and control, 236
process plans, 202
process related experiences collection, 253
project lifecycles, 75
purpose, 539
relationships, 68, 71, 540–541
resources, 208
responsibility, 211
Service Continuity relationship, 525
service request lifecycles, 76
Service System Development relationship, 566
Service System Transition relationship, 598
stakeholder identification and involvement, 229
Strategic Service Management relationship, 611
terminology, 549–550
training, 215
vehicle insurance essay, 169–171
Work Planning relationship, 635
work product control, 222
Service Design, 121
Service desk function, 319
Service Establishment and Delivery process areas, 66–69
Service incidents. See also Incident Resolution and Prevention (IRP) process area
defined, 705
lifecycles, 77
overview, 16–17
Service level agreements (SLAs)
defined, 705
IT services scenario, 123–126
penalties, 141
Service level measures, 705
Service levels
defined, 705
perspectives, 610–611
properties, 615–618
Service lines, 705
Service Management, 10
Service Operation, 121
Service-oriented architecture (SOA), 12, 14–15, 81–82
Service requests, 16
in CMMI-SVC adoption, 107
defined, 705–706
lifecycles, 76–77
receiving and processing, 554–557
Service requirements, 706
Service spectrum in CMMI-SVC adoption, 103–104
Service Strategy, 121
Service system components, 706
Service system consumables, 707
Service System Development (SSD) process area, 27
adherence evaluation, 244–245
Capacity and Availability Management relationship, 266
Develop and Analyze Stakeholder Requirements goal, 567–574
Develop Service Systems goal, 574–584
Integrated Project Management relationship, 337
introductory notes, 561–564
in IT services scenario, 121
Measurement and Analysis relationship, 358
policies, 196
Process and Product Quality Assurance relationship, 455
process monitoring and control, 236–237
process plans, 202
process related experiences collection, 254
purpose, 561
relationships, 67–68, 566
Requirements Management relationship, 485
resources, 208–209
responsibility, 211
Service Delivery relationship, 540
service system lifecycles, 76
stakeholder identification and involvement, 229
Strategic Service Management relationship, 611
Supplier Agreement Management relationship, 511
training, 215
uses, 87
Verify and Validate Service Systems goal, 584–594
Work Planning relationship, 635
work product control, 222
Service system representations
Capacity and Availability Management process area, 264–266
establishing, 271–274
Service System Transition (SST) process area
adherence evaluation, 245
benefits, 88
Deploy the Service System goal, 604–607
for education systems, 148
introductory notes, 595–597
policies, 196
Prepare for Service System Transition goal, 598–604
process monitoring and control, 237
process plans, 202
process related experiences collection, 254
purpose, 595
relationships, 68, 566, 598
resources, 209
responsibility, 211
Service Delivery relationship, 541
service system lifecycles, 76
stakeholder identification and involvement, 229
status reviews with higher level management, 248
for system of systems, 96
training, 215
work product control, 222
Service systems
concept, 13–15
defined, 706
lifecycles, 75–76
Service Transition, 121
Services, 12–13
critical attributes, 616
defined, 704
lifecycles, 73–74
Services Advisory Group, 674–675
Services constellations, 10
Services Mini Team, 678
Servitization of products, 80
Severity levels of incidents, 320
Shared vision
defined, 707
establishing, 350
Shewhart, Walter, 7–8
Short duration service strategies, 637
Shrum, Sandy, 718
Skills, plans for, 654–655
SLAs (service level agreements)
defined, 705
IT services scenario, 123–126
penalties, 141
SOA (service-oriented architecture), 12, 14–15, 81–82
Software as a service (SaaS), 12, 14–15
Software CMM, 115
Software development processes in call center essay, 93
Software engineering, 707
Software Engineering Institute (SEI), 5–6
benchmarking tools, 84
training courses, 38–39
Software Engineering Institute Partners, 49–50
Software Research Associates, Inc. (SRA), 113
Solicitation, 707
Solicitation material, 513
Solicitation packages, 707
Solutions to incidents practice, 330–332
Sources, risk, 495–496
Spafford, George, Visible Ops Handbook: Starting ITIL in Four Practical Steps, 135
Special cause of variation, 707
Specific goals
defined, 707
description, 25
Specific practices
defined, 707
description, 25–26
Specify Analysis Procedures practice, 367–369
Specify Data Collection and Storage Procedures practice, 365–367
Specify Measures practice, 361–365
Sponsorship in process appraisals, 393
SSD. See Service System Development (SSD) process area
SST. See Service System Transition (SST) process area
Stable processes, 707
Staffing requirements, 653
Staged model representation
defined, 708
process areas in, 58–62
Stakeholders
acceptance procedures reviews with, 520
action proposals communicated to, 332
commitment from, 659–660
communication mechanisms, 549
configuration items status for, 303
conflicts among, 347
defined, 708
deployment information from, 607
esential function responsibilities, 529
evaluation information for, 459
identifying and involving, 223–230
maintenance notifications to, 560
managing involvement of, 353–354
measurement information for, 374
measurement reviews with, 371
milestone reviews with, 629
monitoring involvement of, 626–627
overview, 19–20
plan reviews with, 658
planning involvement of, 655–656
requirements, 568–569
risk associated with, 502
risk status communication to, 626
service continuity plan reviews with, 531
service continuity training materials reviews with, 533
service request status reviews with, 556
standard services agreement with, 615
strategic needs descriptions communications to, 613
in strategies, 639
for transition activities, 602–604
verification and validation plan reviews with, 536
Standalone testing of service system components, 582
Standard CMMI Appraisal Method for Process Improvement (SCAMPI), 6
appraisals, 6, 36–37
benchmarking appraisals, 84–85
lead appraisers, 35, 45
ratings, 59–60
security approach, 175–177
Standard processes
defined, 708
deployment, 400–401
OPD for. See Organizational Process Definition (OPD) process area
selecting, 339
Standard services, 609–611
descriptions, 618–620
plans, 549–550
properties, 615–618
strategic needs and plans for, 612–613
Standards
defined, 708
in design, 982
Statements of goals, 25
Statements of work, 708
Statistical management, 462–463
Statistical process control, 708–709
Statistical techniques
defined, 709
measures, 475
Status
incidents, 327
product, 627
reviewing, 246–248, 629
risk, 507–508, 625
Status quo, 39–40
Steering Group, 673–674
Storage procedures, 365–367
Store Data and Results practice, 372–373
Strategic Service Management (STSM) process area
adherence evaluation, 245
Capacity and Availability Management relationship, 266
Establish Standard Services goal, 615–620
Establish Strategic Needs and Plans for Standard Services goal, 612–615
introductory notes, 609–611
objective, 88
Organizational Process Definition relationship, 376
Organizational Process Performance relationship, 427
policies, 196
process monitoring and control, 237
process plans, 202–203
process related experiences collection, 254
purpose, 609
Quantitative Work Management relationship, 463
relationships, 66–69, 611
Requirements Management relationship, 485
resources, 209
Service System development relationship, 566
stakeholder identification and involvement, 230
training, 215
Work Planning relationship, 635
work product control, 222
Strategies
capacity and availability management, 267–269
change, 48–50
establishing, 637–640
Index 757

risk management, 498–499
service continuity training, 533
Structural issues in CMMI-SVC adoption, 110
Structure of service agreements, 545
STSM. See Strategic Service Management (STSM) process area
Students
Education and Training listing, 39
public education essay, 143–148
Subject matter experts (SMEs) in IT services scenario, 119
Submitting service requests, 548
Subpractices
defined, 709
overview, 26
Subprocesses
defined, 709
in defined processes, 468–471
performance monitoring, 477–478
selecting, 471–473
Suggested improvements
analyzing, 414–417
eliciting, 412–414
Supplier Agreement Management (SAM) process area
adherence evaluation, 243
Establish Supplier Agreements goal, 511–517
introducy notes, 509–511
policies, 195
process monitoring and control, 236
process plans, 201
process related experiences collection, 253
purpose, 509
Quantitative Work Management relationship, 464
related process areas, 511
resources, 207
Satisfy Supplier Agreements goal, 517–522
stakeholder identification and involvement, 228
training, 215
work product control, 221
Supplier agreements
defined, 709
reviews, 543
Suppliers, 709
Support personnel, 543
Supporting informative components, 27–28
Sustainment, 709
SVC Training Teams, 679–680
System of systems (SoS) essay, 94–97
Systems engineering, 709–710
Systems Engineering Capability Model (SECM), 9
Systems of systems, 709

T
Tactical plans
deployment backout, 607
training, 445–446
Tailoring
criteria, 381–382, 617
defined, 710
Tailoring guidelines, 710
Take Corrective Action practice, 630–631
Target profiles, 54, 60–62, 710
Target staging, 710
Tasks
attributes, 642–643
dependencies, 647
Team leaders
responsibilities, 35
selecting, 45
Teams
for actions, 396
defined, 710–711
establishing, 349–351
rules and guidelines, 387–388
Technical data packages, 711
Technical performance, 711
Technical performance measures, 712
Technical reviews with suppliers, 518
Termination phase in project lifecycles, 74
Terminology issues in CMMI-SVC adoption, 107–109
acceptance, 521
corrective and preventive maintenance, 560
service system components, 582
Terms, glossary of, 681–713
Threats, identifying, 531
Thresholds
risk acceptability and triggers, 505–506
risk categories, 498
service system performance, 274
Ticket punching, 162
Time requirements
incident response, 320
service request handling, 548
Titles of goals, 25
Traceability
bidirectional, 484–485, 489–491
defined, 712
measurement objectives, 361, 365
measures, 473
quality and process performance objectives, 468
Track and Control Changes goal, 299–302
Control Configuration Items practice, 301–302
Track Change Requests practice, 300–301
Track Change Requests practice, 300–301
Tracking
acceptance actions, 521
action plan progress, 397
corrective actions, 231
dependencies and commitments, 356
milestone actions, 629
noncompliance issues, 459
risk-handling actions, 507
selected improvements, 418
training, 450
Trade studies, 712
Train People practice
overview, 211–217
process area relationships, 257
security content example, 184–185
Training
for acquired products, 522
for data collection, 366
defined, 712
for defined processes, 346
for knowledge needs, 654–655
methods, 6
OT. See Organizational Training (OT) process area
overview, 37–38
for process asset deployment, 399
programs, 48
for service continuity, 532–533
for transitions, 604
vehicle insurance, 165
Training Teams, 679
Transfer of incidents, 321
Transition
products, 521–522
SST. See Service System Transition (SST) process area
Transition phase in service system lifecycles, 75
Translation Team, 677
Trends in service system resources, 277
Triggers, risk, 505–506
Typographical conventions, 29–32

U
Underlying causes of incidents, 316–317, 329
Understand Requirements practice, 486–487
Unintended events, 17
Unit testing, 712
UNIVAC computers, 113–114
University of Applied Science Darmstadt, 149
Updating
data collection procedures, 367
measurement analyses, 369
measurement objectives, 361
measures, 365
process assets, 420
service system documentation, 560
Use-case orientation in educational institutions, 149–150
Use Organizational Process Assets for Planning Work Activities practice, 341–342
Use the Defined Process for the Work goal, 338
Contribute to Organizational Process Assets practice, 351–352
Establish Teams practice, 349–351
Establish the Defined Process practice, 338–340
Establish the Work Environment practice, 342–344
Integrate Plans practice, 344–347
Manage the Work Using Integrated Plans practice, 347–349
Use Organizational Process Assets for Planning Work Activities practice, 341–342
V
Validate Improvements practice, 417–418
Validate the Service System practice, 591–594
Validation
action proposals, 332
constraints for, 569
defined, 712
requirements, 572–574
service continuity plans, 534–535
service system components, 590–591, 605
suggested improvements, 416
Variable parts of standard services, 616
Vehicle insurance essay, 164
conclusion, 173
improvement areas, 171–172
overview, 164–166
Service Delivery, 169–171
Work Planning, 166–169
Verification
acquired products satisfaction, 520
action proposals, 332
constraints for, 569
defined, 712
Verify and Validate Service Systems goal, 584–586
Perform Peer Reviews practice, 587–590
Prepare for Verification and Validation practice, 586–587
Validate the Service System practice, 591–594
Verify Selected Service System Components practice, 590–591
Verify and Validate the Service Continuity Plan goal, 534–535
Analyze Results of Verification and Validation of the Service Continuity Plan practice, 537–538
Prepare for the Verification and Validation of the Service Continuity Plan practice, 535–536
Verify and Validate the Service Continuity Plan practice, 537
Verify and Validate the Service Continuity Plan practice, 537
Verify Selected Service System Components practice, 590–591
Version control
deciding on, 651
defined, 712
Visible Ops Handbook: Starting ITIL in Four Practical Steps (Behr, Kim, and Spafford), 135
Vital data and systems protection, 531
Vital data and systems protection, 531

W
Waiver for standard processes, 382
Waterfall type of service system lifecycle, 75
WMC. See Work Monitoring and Control (WMC) process area
Work breakdown structure (WBS), 347
defined, 712
developing, 640
reviews, 502
vehicle insurance, 167
Work environment
establishing, 342–344
standards, 386–387
Work groups
defined, 712–713
working with, 17–19
Work levels reconciliation, 659
Work management processes in call center essay, 91–92
Work Monitoring and Control (WMC) process area
adherence evaluation, 245
Configuration Management relationship, 294
generic goals and practices support by, 256
Incident Resolution and Prevention relationship, 318
Integrated Project Management relationship, 337
introductory notes, 621
Manage Corrective Action To Closure goal, 629–631
Measurement and Analysis relationship, 358
Monitor the Work Against the Plan goal, 622–629
processes, 196
process monitoring control, 238
process plans, 203
process related experiences collection, 255
purpose, 621
Quantitative Work Management relationship, 464
relationships, 70, 621–622
Requirements Management relationship, 485
resources, 209
Risk Management relationship, 494
Service Delivery relationship, 541
stakeholder identification and involvement, 230
Strategic Service Management relationship, 611
Supplier Agreement Management relationship, 511
training, 217
work product control, 223
Work packages, 641
Work Planning (WP) process area
adherence evaluation, 246
Capacity and Availability Management relationship, 266
Configuration Management relationship, 294
Develop a Work Plan goal, 645–658
Establish Estimates goal, 636–645
generic goals and practices support by, 256
Integrated Project Management relationship, 337
introductory notes, 633–635
Measurement and Analysis relationship, 358
Obtain Commitment to the Plan goal, 658–660
Organizational Training relationship, 442
policies, 197
process monitoring control, 238
process plans, 203
process related experiences collection, 255
purpose, 633
relationships, 70, 635–636
Requirements Management relationship, 485
resources, 209–210
Work Planning (WP) process area (Continued)
- Risk Management relationship, 494
- Service Continuity relationship, 526
- stakeholder identification and involvement, 230
- training, 217
- vehicle insurance essay, 166–169
- Work Monitoring and Control relationship, 621
- work product control, 223

Work plans, 713
Work product and task attributes, 713
Work product control general goal, 217–223
Work products
- configuring, 291–292
- defined, 713
Work startup, 713
Working groups, 35
WP. See Work Planning (WP) process area