Process Areas by Process Area Category

Acquisition Engineering
- Acquisition Requirements Development (ARD)
- Acquisition Technical Management (ATM)
- Acquisition Validation (AVAL)
- Acquisition Verification (AVER)

Project Management
- Agreement Management (AM)
- Integrated Project Management (IPM)
- Project Monitoring and Control (PMC)
- Project Planning (PP)
- Quantitative Project Management (QPM)
- Requirements Management (REQM)
- Risk Management (RSKM)
- Solicitation and Supplier Agreement Development (SSAD)

Process Management
- Organizational Process Definition (OPD)
- Organizational Process Focus (OPF)
- Organizational Performance Management (OPM)
- Organizational Process Performance (OPP)
- Organizational Training (OT)

Support
- Causal Analysis and Resolution (CAR)
- Configuration Management (CM)
- Decision Analysis and Resolution (DAR)
- Measurement and Analysis (MA)
- Process and Product Quality Assurance (PPQA)
Generic Goals and Generic Practices

GG 1 Achieve Specific Goals
- GP 1.1 Perform Specific Practices

GG 2 Institutionalize a Managed Process
- GP 2.1 Establish an Organizational Policy
- GP 2.2 Plan the Process
- GP 2.3 Provide Resources
- GP 2.4 Assign Responsibility
- GP 2.5 Train People
- GP 2.6 Control Work Products
- GP 2.7 Identify and Involve Relevant Stakeholders
- GP 2.8 Monitor and Control the Process
- GP 2.9 Objectively Evaluate Adherence
- GP 2.10 Review Status with Higher Level Management

GG 3 Institutionalize a Defined Process
- GP 3.1 Establish a Defined Process
- GP 3.2 Collect Process Related Experiences
The SEI Series in Software Engineering represents a collaborative undertaking of the Carnegie Mellon Software Engineering Institute (SEI) and Addison-Wesley to develop and publish books on software engineering and related topics. The common goal of the SEI and Addison-Wesley is to provide the most current information on these topics in a form that is easily usable by practitioners and students.

Books in the series describe frameworks, tools, methods, and technologies designed to help organizations, teams, and individuals improve their technical or management capabilities. Some books describe processes and practices for developing higher-quality software, acquiring programs for complex systems, or delivering services more effectively. Other books focus on software and system architecture and product-line development. Still others, from the SEI’s CERT Program, describe technologies and practices needed to manage software and network security risk. These and all books in the series address critical problems in software engineering for which practical solutions are available.

Visit informit.com/sei for a complete list of available products.
CONTENTS

FOREWORD xi
PREFACE xiii
BOOK ACKNOWLEDGMENTS xix

PART ONE—ABOUT CMMI FOR ACQUISITION 1

1 INTRODUCTION 3
 About Process Improvement 5
 About Capability Maturity Models 6
 Evolution of CMMI 7
 CMMI Framework 9
 CMMI for Acquisition 10

2 PROCESS AREA COMPONENTS 11
 Core Process Areas and CMMI Models 11
 Required, Expected, and Informative Components 11
 Required Components 11
 Expected Components 12
 Informative Components 12
 Components Associated with Part Two 12
 Process Areas 13
 Purpose Statements 14
 Introductory Notes 15
Contents

Related Process Areas 15
Specific Goals 15
Generic Goals 15
Specific Goal and Practice Summaries 16
Specific Practices 16
Example Work Products 16
Example Supplier Deliverables 17
Subpractices 17
Generic Practices 17
Generic Practice Elaborations 18
Additions 18

Supporting Informative Components 18
Notes 19
Examples 19
References 19

Numbering Scheme 20
Typographical Conventions 20

3 TYING IT ALL TOGETHER 25

Understanding Levels 25
Structures of the Continuous and Staged Representations 26

Understanding Capability Levels 29
Capability Level 0: Incomplete 29
Capability Level 1: Performed 29
Capability Level 2: Managed 29
Capability Level 3: Defined 30
Advancing Through Capability Levels 30

Understanding Maturity Levels 31
Maturity Level 1: Initial 32
Maturity Level 2: Managed 32
Maturity Level 3: Defined 33
Maturity Level 4: Quantitatively Managed 34
Maturity Level 5: Optimizing 35
Advancing Through Maturity Levels 35

Process Areas 36
Equivalent Staging 39
Achieving High Maturity 42
RELATIONSHIPS AMONG PROCESS AREAS

- Project Processes: 47
- Organizational Processes: 51
- Support Processes: 52
- High Maturity Processes: 54

USING CMMI MODELS

- Adopting CMMI: 57
- Your Process Improvement Program: 58
- Selections That Influence Your Program: 58
- CMMI Models: 59
- Using CMMI Appraisals: 60
- Appraisal Requirements for CMMI: 61
- SCAMPI Appraisal Methods: 61
- Appraisal Considerations: 62
- CMMI Related Training: 63

ESSAYS ON CMMI-ACQ IN GOVERNMENT AND INDUSTRY

- Critical Issues in Government Acquisition: 65
 - “Big A” Versus “Little a” Acquisition: 66
 - Continuing Acquisition Reform in the Department of Defense: 69
- Systems-of-Systems Acquisition Challenges: 71
- The IPIC Experience: 74
 - A Brief History: 74
 - Transition from Advisor to Integrator and Sustainer: 75
 - How IPIC Works: 77
- Industry Process Standards and Models: 79
- IPIC and CMMI Models: 82
- Conclusion: 85
- CMMI: The Heart of the Air Force’s Systems Engineering Assessment Model and Enabler to Integrated Systems Engineering—Beyond the Traditional Realm: 86
- Lessons Learned by DGA on CMMI-ACQ: 95
 - General Context and Motivations for CMMI-ACQ: 95
 - CMMI Level 2 Certification Project: 97
PART TWO—GENERIC GOALS AND GENERIC PRACTICES, AND THE PROCESS AREAS

GENERIC GOALS AND GENERIC PRACTICES
AGREEMENT MANAGEMENT
ACQUISITION REQUIREMENTS DEVELOPMENT
ACQUISITION TECHNICAL MANAGEMENT
ACQUISITION VALIDATION
ACQUISITION VERIFICATION
CAUSAL ANALYSIS AND RESOLUTION
CONFIGURATION MANAGEMENT
DECISION ANALYSIS AND RESOLUTION
INTEGRATED PROJECT MANAGEMENT
MEASUREMENT AND ANALYSIS
ORGANIZATIONAL PROCESS DEFINITION
ORGANIZATIONAL PROCESS FOCUS
ORGANIZATIONAL PERFORMANCE MANAGEMENT
ORGANIZATIONAL PROCESS PERFORMANCE
ORGANIZATIONAL TRAINING
PROJECT MONITORING AND CONTROL
PROJECT PLANNING
PROCESS AND PRODUCT QUALITY ASSURANCE
QUANTITATIVE PROJECT MANAGEMENT
REQUIREMENTS MANAGEMENT
RISK MANAGEMENT
SOLICITATION AND SUPPLIER AGREEMENT DEVELOPMENT
PART THREE—THE APPENDICES

A REFERENCES 517
B ACRONYMS 523
C CMMI VERSION 1.3 PROJECT PARTICIPANTS 527
D GLOSSARY 535

BOOK CONTRIBUTORS 567

INDEX 581
In today's increasingly global economy, it is imperative that organizations discover, sustain, and improve methods that consistently provide the highest quality products and services at the lowest possible cost. In the aerospace industry, this necessity is more critical than ever. Our nation faces a multitude of challenges, from preventing terrorist attacks to fighting wars on multiple fronts against enemies both foreign and domestic. Industry is adapting by incorporating new technology, becoming more agile, and building the flexibility to combat both physical and cyber threats against our customers and ourselves. It is essential that defense contractors employ methods for the entire lifecycle of ever more complex systems to optimize cost, schedule, technical, and workmanship standards and focus on enhancing the warfighter's ability to succeed the first time, every time.

Northrop Grumman Corporation and our Aerospace Sector are extremely proud to provide the nation with aerospace and defense capabilities. We strive to continually improve our ability to meet and exceed our customers' expectations and deliver best-in-class products and services. Specifically, in our role as the Prime Integration Contractor for the Minuteman III Intercontinental Ballistic Missile (ICBM) weapon system, the majority of our products are acquired from subcontractors, suppliers, and sub-tier suppliers. We partner with our customer and our entire supply chain to enhance the reliability, availability, and sustainability of the weapon system, while ensuring
requirements are accurately defined, allocated, maintained, and realized. Through this team dynamic, we have updated, enhanced, integrated, and maintained our nation’s ability to provide a highly robust and available deterrent against nuclear attack on the United States or its allies.

CMMI for Acquisition (CMMI-ACQ) enables a predictable, consistent, and reliable process for defining the requirements, defining an acquisition strategy, and capturing the best sources. The abilities to identify the right sources, execute properly defined subcontracts, and validate critical requirements are key contributors to ensure customers’ critical needs are satisfied. Our acquisition processes are the cornerstone by which we have managed a wide array of requirements and complex technical solutions to deliver high quality, robust products. Our success is largely due to our implementation of fundamental CMMI concepts within our processes. By achieving CMMI-ACQ maturity level 5, our customers have confidence in our processes as well as our products.

I encourage you to read this book with one goal in mind—continuous improvement of your organization’s acquisition performance. This book can guide you to improve every tier of your supply chain and thereby improve the products and services you ultimately deliver to your customers.

—Anthony W. Spehar
VP Missile Systems (MXS)
Strike & Surveillance Systems Division
Northrop Grumman Aerospace Systems
Clearfield, Utah
CMMI (Capability Maturity Model Integration) models are collections of best practices that help organizations to improve their processes. These models are developed by product teams with members from industry, government, and the Software Engineering Institute (SEI).

This model, called CMMI for Acquisition (CMMI-ACQ), provides a comprehensive integrated set of guidelines for acquiring products and services.

Purpose

The CMMI-ACQ model provides guidance for applying CMMI best practices in an acquiring organization. Best practices in the model focus on activities for initiating and managing the acquisition of products and services to meet the needs of customers and end users. Although suppliers can provide artifacts useful to the processes addressed in CMMI-ACQ, the focus of the model is on the processes of the acquirer.

The CMMI-ACQ V1.3 model is a collection of acquisition best practices from government and industry that is generated from the CMMI V1.3 Architecture and Framework.¹ CMMI-ACQ is based on the CMMI Model Foundation or CMF (i.e., model components

¹ The CMMI Framework is the basic structure that organizes CMMI components and combines them into CMMI constellations and models.
common to all CMMI models and constellations\(^2\), the CMMI Acquisition Module, and the Software Acquisition Capability Maturity Model (SA-CMM) [SEI 2002]. CMMI-ACQ also incorporates work by acquisition organizations to adapt CMMI for use in an acquisition organization.

CMMI-ACQ provides a comprehensive set of best practices for acquiring products and services. CMMI for Development (CMMI-DEV) can be treated as a reference for supplier-executed activities in an acquisition initiative [SEI 2010a]. In those cases where the acquirer also has a role as a product or service developer (e.g., taking responsibility for the first few layers of product development and integration), CMMI-DEV (in particular the Requirements Development, Technical Solution, and Product Integration process areas) should also be used to improve the acquirer’s product or service development processes.

Model Acknowledgments

Many talented people were involved in the development of the V1.3 CMMI Product Suite. Three primary groups were the CMMI Steering Group, Product Team, and Configuration Control Board (CCB).

The Steering Group guided and approved the plans of the Product Team, provided consultation on significant CMMI project issues, and ensured involvement from a variety of interested communities.

The Steering Group oversaw the development of the Acquisition constellation, recognizing the importance of providing best practices to acquirers.

The Product Team wrote, reviewed, revised, discussed, and agreed on the structure and technical content of the CMMI Product Suite, including the framework, models, training, and appraisal materials. Development activities were based on multiple inputs. These inputs included an A-Specification and guidance specific to each release provided by the Steering Group, source models, change requests received from the user community, and input received from pilots and other stakeholders.

The CCB is the official mechanism for controlling changes to CMMI models, appraisal related documents, and *Introduction to CMMI* training. As such, this group ensures integrity over the life of the product suite by reviewing all proposed changes to the baseline

2. A constellation is a collection of CMMI components that are used to construct models, training materials, and appraisal related documents for an area of interest (e.g., development, acquisition, services).
and approving only those changes that satisfy identified issues and meet criteria for the upcoming release.

Members of the groups involved in developing CMMI-ACQ V1.3 are listed in Appendix C.

Audience

The audience for CMMI-ACQ includes anyone interested in process improvement in an acquisition environment. Whether you are familiar with the concept of Capability Maturity Models or are seeking information to begin improving your acquisition processes, CMMI-ACQ will be useful to you. This model is also intended for organizations that want to use a reference model for an appraisal of their acquisition related processes.³

Organization of This Document

This document is organized into three main parts:

- Part One: About CMMI for Acquisition
- Part Two: Generic Goals and Generic Practices, and the Process Areas
- Part Three: The Appendices and Glossary

Part One: About CMMI for Acquisition, consists of six chapters:

- Chapter 1, Introduction, offers a broad view of CMMI and the Acquisition constellation, concepts of process improvement, and the history of models used for process improvement and different process improvement approaches.
- Chapter 2, Process Area Components, describes all of the components of the CMMI-ACQ process areas.⁴
- Chapter 3, Tying It All Together, assembles the model components and explains the concepts of maturity levels and capability levels.
- Chapter 4, Relationships Among Process Areas, provides insight into the meaning and interactions among the CMMI-ACQ process areas.

³ An appraisal is an examination of one or more processes by a trained team of professionals using a reference model (e.g., CMMI-ACQ) as the basis for determining strengths and weaknesses.

⁴ A process area is a cluster of related practices in an area that, when implemented collectively, satisfies a set of goals considered important for making improvement in that area. This concept is covered in detail in Chapter 2.
Preface

- Chapter 5, Using CMMI Models, describes paths to adoption and the use of CMMI-ACQ for process improvement and benchmarking of practices in an acquisition organization.
- Chapter 6, Essays on CMMI-ACQ in Government and Industry, contains essays from invited contributors about topics related to CMMI-ACQ.

Part Two: Generic Goals and Generic Practices, and the Process Areas, contains all of this CMMI model’s required and expected components. It also contains related informative components, including subpractices, notes, examples, and example work products.

Part Two contains 23 sections. The first section contains the generic goals and practices. The remaining 22 sections each represent one of the CMMI-ACQ process areas.

To make these process areas easy to find, they are organized alphabetically by process area acronym. Each section contains descriptions of goals, best practices, and examples.

Part Three: The Appendices, consists of four sections:

- Appendix A: References, contains references you can use to locate documented sources of information such as reports, process improvement models, industry standards, and books that are related to CMMI-ACQ.
- Appendix B: Acronyms, defines the acronyms used in the model.
- Appendix C: CMMI Version 1.3 Project Participants, contains lists of team members who participated in the development of CMMI-ACQ V1.3.
- Appendix D: Glossary, defines many of the terms used in CMMI-ACQ.

Finally, the Book Contributors section, provides information about the book’s authors and those who contributed essays for Chapter 6.

How to Use This Document

Whether you are new to process improvement, new to CMMI, or already familiar with CMMI, Part One can help you understand why CMMI-ACQ is the model to use for improving your acquisition processes.

Readers New to Process Improvement

If you are new to process improvement or new to the Capability Maturity Model (CMM) concept, we suggest that you read Chapter 1
first. Chapter 1 contains an overview of process improvement that explains what CMMI is all about.

Next, skim Part Two, including generic goals and practices and specific goals and practices, to get a feel for the scope of the best practices contained in the model. Pay close attention to the purpose and introductory notes at the beginning of each process area.

In Part Three, look through the references in Appendix A and select additional sources you think would be beneficial to read before moving forward with using CMMI-ACQ. Read through the acronyms and glossary to become familiar with the language of CMMI. Then, go back and read the details of Part Two.

Readers Experienced with Process Improvement

If you are new to CMMI but have experience with other process improvement models, such as the Software Acquisition CMM, you will immediately recognize many similarities in their structure and content [SEI 2002].

We recommend that you read Part One to understand how CMMI is different from other process improvement models. If you have experience with other models, you may want to select which sections to read first. Read Part Two with an eye for best practices you recognize from the models that you have already used. By identifying familiar material, you will gain an understanding of what is new, what has been carried over, and what is familiar from the models you already know.

Next, review the glossary to understand how some terminology can differ from that used in the process improvement models you know. Many concepts are repeated, but they may be called something different.

Readers Familiar with CMMI

If you have reviewed or used a CMMI model before, you will quickly recognize the CMMI concepts discussed and the best practices presented. As always, the improvements that the CMMI Product Team made to CMMI for the V1.3 release were driven by user input. Change requests were carefully considered, analyzed, and implemented.

Some significant improvements you can expect in CMMI-ACQ V1.3 include the following:

- High maturity process areas are significantly improved to reflect industry best practices, including a new specific goal and several new specific practices in the process area that was renamed from
Organizational Innovation and Deployment (OID) to Organizational Performance Management (OPM).

- Improvements were made to the model architecture that simplify the use of multiple models.
- The informative material was improved, including adding guidance about using preferred suppliers in SSAD and AM.
- Glossary definitions and model terminology were improved to enhance the clarity, accuracy, and usability of the model.
- The level 4 and 5 generic goals and practices were eliminated as well as capability levels 4 and 5 to appropriately focus high maturity on the achievement of business objectives, which is accomplished by applying capability levels 1–3 to the high maturity process areas (Causal Analysis and Resolution, Quantitative Project Management, Organizational Performance Management, and Organizational Process Performance).

For a more complete and detailed list of improvements, see www.sei.cmu.edu/cmmi/tools/cmmiv1-3/.

Additional Information and Reader Feedback

Many sources of information about CMMI are listed in Appendix A and are also published on the CMMI website—www.sei.cmu.edu/cmmi/.

Your suggestions for improving CMMI are welcome. For information on how to provide feedback, see the CMMI website at www.sei.cmu.edu/cmmi/tools/cr/. If you have questions about CMMI, send email to cmmi-comments@sei.cmu.edu.
This book wouldn’t be possible without the efforts of a multitude of dedicated people working together on CMMI-based process improvement. The complete CMMI-ACQ model is contained in this book, which was created by the CMMI Product Team. This team included members from different organizations and backgrounds. Ultimately, without the work of those involved in the CMMI project since it began in 1998, this book would not exist.

We would also like to acknowledge those who directly contributed to this book. The contributing authors who wrote essays for Chapter 6 added significantly to the book’s value. All of these authors were willing to share their insights and experiences and met aggressive deadlines to do so: Richard Freeman, Richard Frost, Tom Keuten, Ashok Gurumurthy, Claude Bolton, Dan Lutrell, Steve Kelley, Mary Ann Lapham, Madhav Panwar, and Craig Meyers. We are delighted that they agreed to contribute their experiences to our book.

We are grateful to Anthony W. Spehar for his kind words in the foreword.

Special thanks go to Addison-Wesley Publishing Partner, Peter Gordon, for his assistance, experience, and advice. We’d also like to thank Kim Boedigheimer, Curt Johnson, Stephane Nakib, Julie Nahil, Megan Guiney, and Jill Hobbs for their help with the book’s publication and promotion.
From Brian Gallagher

I would like to thank Valerie, Caitlin, Rachel, and Gabriel for their patience and understanding, and my parents Ed and Earlene and in-laws Alice and Lynn for their wisdom. Special thanks to my daughter Ashley for her bravery and her service in Iraq as the U.S. Army’s #1 Medic. Finally, as always, I would like to dedicate my contribution to this book to my son Brian. Not a day goes by without you in our thoughts, prayers, and hearts.

From Mike Phillips

For this second edition, I would again like to thank my wife Connie for her understanding and acknowledging the time needed to help create this update. It has been a delight to work again with two great teams—one that helped us all refine the three “constellations” for the CMMI Product Suite, and my three coauthors of the additional perspectives we have sought to provide. I’d like to dedicate my contribution to the Chief Architect of our approach to CMMI, the late Dr. Roger Bate. His friendship and guidance over the years keep him close in my memories.

From Karen Richter

I would like to thank my sponsors from the Office of the Under Secretary of Defense for Acquisition, Technology and Logistics (OUSD [AT&L]), Mr. Mark Schaeffer and Ms. Kristen Baldwin, for their unwavering and continued support for my CMMI work over the past 12 years. At the Institute for Defense Analyses (IDA), I would like to thank the Vice President for Programs, Mr. Philip Major, and my Division Director, Mr. Michael Dominguez, for their support to coauthor this book.

From Sandy Shrum

Working simultaneously on three CMMI books has tested my limits in many ways. Those who have helped me along the journey provided both professional and personal support.

Many thanks to Rhonda Brown and Mike Konrad for their partnership during CMMI model development. They are peerless as team members and friends. Our joint management of the CMMI Core Model Team was not only effective, but also enjoyable.
Affectionate thanks to my boyfriend Jimmy Orsag for his loving support and for helping me keep my focus and sense of humor through all the hours of work preparing three manuscripts. Heartfelt thanks to my parents, John and Eileen Maruca, for always being there for me no matter what and for instilling my strong work ethic.

Finally, thanks to the coauthors of all three CMMI books: Brandon Buteau, Mary Beth Chrissis, Eileen Forrester, Brian Gallagher, Mike Konrad, Mike Phillips, and Karen Richter. They are all terrific to work with. Without their understanding, excellent coordination, and hard work, I would never have been able to participate.
This page intentionally left blank
Now more than ever, organizations are increasingly becoming acquirers\(^1\) of needed capabilities by obtaining products and services from suppliers and developing less and less of these capabilities in-house. This widely adopted business strategy is designed to improve an organization's operational efficiencies by leveraging suppliers' capabilities to deliver quality solutions rapidly, at lower cost, and with the most appropriate technology.

Acquisition of needed capabilities is challenging because acquirers have overall accountability for satisfying the end user while allowing the supplier to perform the tasks necessary to develop and provide the solution.

Mismanagement, the inability to articulate customer needs, poor requirements definition, inadequate supplier selection and contracting processes, insufficient technology selection procedures, and uncontrolled requirements changes are factors that contribute to project failure. Responsibility is shared by both the supplier and the acquirer. The majority of project failures could be avoided if the acquirer learned how to properly prepare for, engage with, and manage suppliers.

\(^1\) In CMMI-ACQ, the terms *project* and *acquirer* refer to the acquisition project; the term *organization* refers to the acquisition organization.
In addition to these challenges, an overall key to a successful acquirer–supplier relationship is communication.

Unfortunately, many organizations have not invested in the capabilities necessary to effectively manage projects in an acquisition environment. Too often acquirers disengage from the project once the supplier is hired. Too late they discover that the project is not on schedule, deadlines will not be met, the technology selected is not viable, and the project has failed.

The acquirer has a focused set of major objectives. These objectives include the requirement to maintain a relationship with end users to fully comprehend their needs. The acquirer owns the project, executes overall project management, and is accountable for delivering the product or service to the end users. Thus, these acquirer responsibilities can extend beyond ensuring the product or service is delivered by chosen suppliers to include activities such as integrating the overall product or service, ensuring it makes the transition into operation, and obtaining insight into its appropriateness and adequacy to continue to meet customer needs.

CMMI for Acquisition (CMMI-ACQ) enables organizations to avoid or eliminate barriers in the acquisition process through practices and terminology that transcend the interests of individual departments or groups.

CMMI-ACQ contains 22 process areas. Of those process areas, 16 are core process areas that cover Process Management, Project Management, and Support process areas.²

² A core process area is a process area that is common to all CMMI models. A shared process area is shared by at least two CMMI models, but not all of them.
Six process areas focus on practices specific to acquisition, addressing agreement management, acquisition requirements development, acquisition technical management, acquisition validation, acquisition verification, and solicitation and supplier agreement development.

All CMMI-ACQ model practices focus on the activities of the acquirer. Those activities include supplier sourcing; developing and awarding supplier agreements; and managing the acquisition of capabilities, including the acquisition of both products and services. Supplier activities are not addressed in this document. Suppliers and acquirers who also develop products and services should consider using the CMMI-DEV model.

About Process Improvement

In its research to help organizations to develop and maintain quality products and services, the Software Engineering Institute (SEI) has found several dimensions that an organization can focus on to improve its business. Figure 1.1 illustrates the three critical dimensions that organizations typically focus on: people, procedures and methods, and tools and equipment.

What holds everything together? It is the processes used in your organization. Processes allow you to align the way you do business. They allow you to address scalability and provide a way to incorporate knowledge of how to do things better. Processes allow you to leverage your resources and to examine business trends.

AUTHORS’ NOTE

Another advantage of using CMMI models for improvement is that they are extremely flexible. CMMI doesn’t dictate which processes to use, which tools to buy, or who should perform particular processes. Instead, CMMI provides a framework of flexible best practices that can be applied to meet the organization’s business objectives no matter what they are.
This is not to say that people and technology are not important. We are living in a world where technology is changing at an incredible speed. Similarly, people typically work for many companies throughout their careers. We live in a dynamic world. A focus on process provides the infrastructure and stability necessary to deal with an ever-changing world and to maximize the productivity of people and the use of technology to be competitive.

Manufacturing has long recognized the importance of process effectiveness and efficiency. Today, many organizations in manufacturing and service industries recognize the importance of quality processes. Process helps an organization’s workforce to meet business objectives by helping them to work smarter, not harder, and with improved consistency. Effective processes also provide a vehicle for introducing and using new technology in a way that best meets the business objectives of the organization.

About Capability Maturity Models

A Capability Maturity Model (CMM), including CMMI, is a simplified representation of the world. CMMs contain the essential elements of effective processes. These elements are based on the concepts developed by Crosby, Deming, Juran, and Humphrey.

In the 1930s, Walter Shewhart began work in process improvement with his principles of statistical quality control [Shewhart 1931].
These principles were refined by W. Edwards Deming [Deming 1986], Phillip Crosby [Crosby 1979], and Joseph Juran [Juran 1988]. Watts Humphrey, Ron Radice, and others extended these principles further and began applying them to software in their work at IBM (International Business Machines) and the SEI [Humphrey 1989]. Humphrey's book, *Managing the Software Process*, provides a description of the basic principles and concepts on which many of the Capability Maturity Models (CMMs) are based.

The SEI has taken the process management premise, “the quality of a system or product is highly influenced by the quality of the process used to develop and maintain it,” and defined CMMs that embody this premise. The belief in this premise is seen worldwide in quality movements, as evidenced by the International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) body of standards.

CMMs focus on improving processes in an organization. They contain the essential elements of effective processes for one or more disciplines and describe an evolutionary improvement path from ad hoc, immature processes to disciplined, mature processes with improved quality and effectiveness.

Like other CMMs, CMMI models provide guidance to use when developing processes. CMMI models are not processes or process descriptions. The actual processes used in an organization depend on many factors, including application domains and organization structure and size. In particular, the process areas of a CMMI model typically do not map one to one with the processes used in your organization.

The SEI created the first CMM designed for software organizations and published it in a book, *The Capability Maturity Model: Guidelines for Improving the Software Process* [SEI 1995].

Today, CMMI is an application of the principles introduced almost a century ago to this never-ending cycle of process improvement. The value of this process improvement approach has been confirmed over time. Organizations have experienced increased productivity and quality, improved cycle time, and more accurate and predictable schedules and budgets [Gibson 2006].

Evolution of CMMI

The CMM Integration project was formed to sort out the problem of using multiple CMMs. The combination of selected models into a single improvement framework was intended for use by organizations in their pursuit of enterprise-wide process improvement.
Developing a set of integrated models involved more than simply combining existing model materials. Using processes that promote consensus, the CMMI Product Team built a framework that accommodates multiple constellations.

The first model to be developed was the CMMI for Development model (then simply called “CMMI”). Figure 1.2 illustrates the models that led to CMMI Version 1.3.

Initially, CMMI was one model that combined three source models: the Capability Maturity Model for Software (SW-CMM) v2.0 draft C, the Systems Engineering Capability Model (SECM) [EIA 2002], and the Integrated Product Development Capability Maturity Model (IPD-CMM) v0.98.

These three source models were selected because of their successful adoption or promising approach to improving processes in an organization.

FIGURE 1.2
The History of CMMs

3. EIA 731 SECM is the Electronic Industries Alliance standard 731, or the Systems Engineering Capability Model. INCOSE SECAM is the International Council on Systems Engineering Systems Engineering Capability Assessment Model [EIA 2002a].
The first CMMI model (V1.02) was designed for use by development organizations in their pursuit of enterprise-wide process improvement. It was released in 2000. Two years later version 1.1 was released and four years after that, version 1.2 was released.

By the time that version 1.2 was released, two other CMMI models were being planned. Because of this planned expansion, the name of the first CMMI model had to change to become CMMI for Development and the concept of constellations was created.

The CMMI for Acquisition model was released in 2007 [SEI 2007a]. Since it built on the CMMI for Development Version 1.2 model, it also was named Version 1.2. Two years later the CMMI for Services model was released. It built on the other two models and also was named Version 1.2.

In 2008 plans were drawn to begin developing Version 1.3, which would ensure consistency among all three models and improve high maturity material. Version 1.3 of CMMI for Acquisition [Gallagher 2011], CMMI for Development [Chrissis 2011, SEI 2010a], and CMMI for Services [Forrester 2011, SEI 2010b] were released in November 2010.

CMMI Framework

The CMMI Framework provides the structure needed to produce CMMI models, training, and appraisal components. To allow the use of multiple models within the CMMI Framework, model components are classified as either common to all CMMI models or applicable to a specific model. The common material is called the “CMMI Model Foundation” or “CMF.”
The components of the CMF are part of every model generated from the CMMI Framework. Those components are combined with material applicable to an area of interest (e.g., acquisition, development, services) to produce a model.

A “constellation” is defined as a collection of CMMI components that are used to construct models, training materials, and appraisal related documents for an area of interest (e.g., acquisition, development, services). The Acquisition constellation’s model is called “CMMI for Acquisition” or “CMMI-ACQ.”

CMMI for Acquisition

The CMMI Steering Group initially approved a small introductory collection of acquisition best practices called the Acquisition Module (CMMI-AM), which was based on the CMMI Framework. While it described best practices, it was not intended to become an appraisable model nor a model suitable for process improvement purposes. A similar, but more up-to-date document, *CMMI for Acquisition Primer*, is now available [Richter 2008].

General Motors partnered with the SEI to create the initial Acquisition model draft that was the basis for this model. The model now represents the work of many organizations and individuals from industry, government, and the SEI.

When using this model, use professional judgment and common sense to interpret it for your organization. That is, although the process areas described in this model depict behaviors considered best practices for most acquirers, all process areas and practices should be interpreted using an in-depth knowledge of CMMI-ACQ, your organizational constraints, and your business environment [SEI 2007b].

This document is a reference model that covers the acquisition of needed capabilities. Capabilities are acquired in many industries, including aerospace, banking, computer hardware, software, defense, automobile manufacturing, and telecommunications. All of these industries can use CMMI-ACQ.
Acquisition Technical Management (ATM) process area (Continued)
supplier agreements, 132
transition to operations, 139

Acquisition Validation (AVAL) process area, 50
Acquisition Requirements Development relation, 201
Acquisition Verification relation, 238
Agreement Management relation, 192
government acquisition, 133–134
introductory notes, 229–230
Prepare for Validation goal, 231–235
Process and Product Quality Assurance relation, 445
purpose, 229
related process areas, 230
transition to operations, 139
Validate Selected Products and Product Components goal, 235–236
Acquisition Verification (AVER) process area, 50
introductory notes, 237–238
Perform Peer Reviews goal, 241–242
Prepare for Verification goal, 239–241
purpose, 237
related process areas, 238
Verify Selected Work Products goal, 243–245

Acronyms, 523–525
Action plans
establishing, 340–341
implementing, 341
Action proposals, 253–254
Additions
defined, 536
description, 18
Address Causes of Selected Outcomes goal, 253
Evaluate the Effect of Implemented Actions practice, 254–255
Implement Action Proposals practice, 253–254
Record Causal Analysis practice, 255–256
Adherence, evaluating, 181
Aerial Common Sensor (ACS) program, 103–105
Agile development, 143–144
in DoD acquisitions, 151–156
embracing, 149–150, 153
in enterprises, 150–151
operational agility, 149–146
stakeholder involvement, 436
Agile Manifesto, The, 146, 436
Agreement Management (AM) process area, 50
Acquisition Technical Management relation, 216
Acquisition Validation relation, 230
Configuration Management relation, 259
Integrated Project Management relation, 283
introductory notes, 191
Project Monitoring and Control relation, 396
purpose, 191
related process areas, 191–192
sample page, 22
Satisfy Supplier Agreements goal, 192–197
Specify Analysis Procedures practice, 310–313
Specify Data Collection and Storage Procedures practice, 308–310
Specify Measures practice, 304–308
Air Force assessment model, 86–94
Air Force Systems Engineering Assessment Model (AF SEAM), 88–94
Align Measurement and Analysis Activities goal, 301
Establish Measurement Objectives practice, 302–304
Specify Analysis Procedures practice, 310–313
Specify Data Collection and Storage Procedures practice, 308–310
Specify Measures practice, 304–308
Alignment of project work and requirements, 477–478
Allocate Contractual Requirements practice, 208
Allocated requirements, 537
Alternatives, evaluating, 273–279
Analysis issues, 407–408
Measurement and Analysis process area. See Measurement and Analysis (MA) process area
measurement data, 314–315
outcomes, 250–252
peer review, 243
requirements, 209–213
risk, 489
technical solutions, 220–223
validation results, 236
verification results, 244–245
Analytic techniques, 462–465
Analyze and Validate Requirements goal, 209
ACS program, 105
Analyze Requirements practice, 210–212
Analyze Requirements to Achieve Balance practice, 212–213
Establish Operational Concepts and Scenarios practice, 209–210
Validate Requirements practice, 213–214
Analyze Causes practice, 250–252
Analyze Issues practice, 407–408
Analyze Measurement Data practice, 314–315
Analyze Peer Review Data practice, 243
Analyze Process Performance and Establish Process Performance Baselines practice, 377–380
Analyze Process Performance Data practice, 354–355
Analyze Requirements practice, 210–212
Analyze Requirements to Achieve Balance practice, 212–213
Analyze Selected Technical Solutions practice, 220–223
Analyze Suggested Improvements practice, 359–361
Analyze Validation Results practice, 236
Analyze Verification Results practice, 244–245
Applying generic practices, 183–184
Appraisal findings, 537
Appraisal participants, 537
Appraisal ratings, 537
Appraisal reference models, 537
Appraisal Requirements for CMMI (ARC) documents, 61
Appraisal scope, 537
Appraisals, 25–26
CMMI, 60–63
considerations, 62–63
defined, 537
IT environment, 118–119
processes, 337–338
SCAMPI, 61–62
Appraise the Organization’s Processes practice, 337–338
Architecture, 537
Assess Training Effectiveness practice, 393
Assessment
risk, 489
training effectiveness, 393
Asset library, 328–329
Assets, organizational process, 294–295
Assign Responsibility practice
Institutionalize a Managed Process, 175–176
process area support for, 185
Associate contractor agreements, 141
Attributes
estimating, 419–421
monitoring, 398
selected processes, 376–377
selecting, 461–462
Audits
configuration, 268–269
defined, 538
government acquisition, 136
IPIC experience, 83–84
Authors biographies, 569–571
Automatic collection of data, 310
Automating processes in IT environment, 116
B
Barriers to suggested improvements, 360
Base measures
data for, 304–306, 313–314
defined, 538
Baselines
for analysis, 465
configuration, 260–264
creating and releasing, 264
defined, 538
establishing, 377–380
integrity, 267–268
Bate, Roger, 163
Bidirectional traceability
defined, 538
maintaining, 476–477
Bolton, Claude M.
biography, 573
“three R’s” of DoD acquisition essay, 100–105
Budgets
establishing, 425–427
IT environment, 116
Burton, Dan, 151
Business considerations in acquisition strategy, 416–417
Business objectives, 373
Business Process Engineering, 91–92
C
Capabilities
acquisition strategy, 415
across constellations, 163–165
interoperable, 142
subprocesses, 466
training, 385, 388–390
Capability levels, 26–28
advancing through, 30–31
defined, 538
defined processes, 30
incomplete processes, 29
managed processes, 29–30
performed processes, 29
profiles, 538
Capability Maturity for Software (SW-CMM), 8
Capability Maturity Model, 7
Capability Maturity Models (CMMs)
defined, 538
overview, 6–7
Capable processes, 538
Capacity and Availability Management (CAM) process area, 165
Carter, Ashton, 71
Case study for government acquisition, 157–163
Categories
risk, 481–483, 489–490
training needs, 386
Causal analysis
defined, 538
performing, 250–252
Causal Analysis and Resolution (CAR) process area, 54–55
Address Causes of Selected Outcomes goal, 253–256
Determine Causes of Selected Outcomes goal, 249–252
introductory notes, 247–248
Organizational Project Management relation, 351
purpose, 247
Quantitative Project Management relation, 453
related process areas, 248
Center for Systems Engineering (CSE), 87–88
Change
change management system, 262–264
IT environment, 117
organizational process assets, 343
requirements, 475–476
tracking and controlling, 265–267
Change management, 539
Checking in and out configuration items, 267
Cloud computing, 124
CMMI-DEV model, 59
CMMI for Acquisition (CMMI-ACQ) model overview
Capability Maturity Models, 6–7
CMMI evolution, 7–9
CMMI Framework, 9–10
government. See Government CMMI-ACQ history, 10
overview, 3–5
CMMI Framework, 539
CMMI Model Foundation (CMF), 9–10
CMMI models, 57
adopting, 57–58
appraisals, 60–63
certification project, 97
components, 539
defined, 539
overview, 59–60
process improvement programs, 58
selections, 58–59
training, 63
CMMI or Agile: Why Not Embrace Both!, 436
CMMI Product Suite, 539
“CMMI Roadmaps” report, 163
CMMI-SVC model, 59
CMMI Version 1.3 project participants, 527
Acquisition Mini Team, 532
Configuration Control Board, 529–530
Coordination Team, 529
Core Model Team, 530–531
High Maturity Team, 531
Quality Team, 534
SCAMPI Upgrade Team, 532
Services Advisory Group, 528–529
Services Mini Team, 532
Steering Group, 527–528
Training Teams, 533–534
Translation Team, 531
Coaching
Agile development, 154–155
Air Force assessment model, 90
Coelacanthe weapon system, 95
Collaboration, 295–297
Collect Process Related Experiences practice
Institutionalize a Defined Process, 183
process area support for, 188
Collection
data, 429–432
measurements, 309–310
Commercial off-the-shelf items, 539
Commitment
critical dependencies, 297
monitoring, 399–400
to plans, 440–442
to requirements, 474–475
to training plans, 388
Common cause of variation, 539
Communicate and Resolve Noncompliance Issues practices, 447–448
Communicate Results practice, 317–318
Communications
Agile development, 148
collection status, 268
contract management, 113
measurements, 307, 317–318
as success factor, 4
Compatibility of interfaces, 227
Compliance
IPIC experience, 81
noncompliance issues, 446–448
Component requirements, 433–434
Compose the Defined Process practice, 458–460
Conduct Milestone Reviews practice, 404–405
Conduct Peer Reviews practice, 242–243
Conduct Progress Reviews practice, 402–404
Conduct Technical Reviews practice, 223–225
Configuration audits
defined, 539
performing, 268–269
Configuration baselines, 539
Configuration control, 539
Configuration Control Boards (CCBs), 264
CMMI Version 1.3 project, 529–530
defined, 540
Configuration identification, 540
Configuration items, 540
Configuration management, 540
Configuration Management (CM) process area,
52–53
Acquisition Technical Management
relation, 216
DGA system, 96, 99–100
Establish Baselines goal, 260–264
Establish Integrity goal, 267–269
generic practice support by, 184, 186
introductory notes, 257–259
Measurement and Analysis process
relation, 301
purpose, 257
related process areas, 258–259
Requirements Management relation, 472
Track and Control Changes goal, 265–267
Configuration status accounting, 540
Conflicts, quality and objectives, 457
Consistency of work and requirements,
477–478
Constellations
capabilities across, 163–165
defined, 10, 540
Constraints
budget and schedule, 426–427
contractual requirements, 206–207
process, 156–163
Constructive interoperability, 141
Contingency plans, 491–494
Continuous process improvement in Air Force
assessment model, 91–92
Continuous representations, 26
defined, 540
process areas, 36–39
structures, 26–28
Contracts
IT environment, 112–114
requirements, 204–208, 540–541
supplier agreements, 132
Contribute to Organizational Process Assets
practice, 294–295
Contributing authors, biographies, 573–580
Control, process, 179–181
Control Configuration Items practice, 266–267
Control Work Products practice, 177–178, 186
Coordinate and Collaborate with Relevant
Stakeholders goal
Manage Dependencies practice, 296–297
Manage Stakeholder Involvement practice,
295–296
Resolve Coordination Issues practice, 297
Coordination Team, 529
Core Model Team, 530–531
Core process areas, 11
Corrective actions
budgets and schedules, 427
defined, 541
IPIC experience, 82
managing, 407–409
process plans, 180
supplier agreements, 193–194
taking, 408–409
Costs
estimating, 422–424
monitoring, 398
requirements, 212–213
risk identification, 487
suggested improvements, 359–360
Create or Release Baselines practice, 264
Criteria
acceptance, 308
alternatives evaluation, 275–278
budget and schedule deviation, 427
costing items, 261–262
evaluation, 472, 446–447
interfaces, 226
measurement, 312–315
process appraisal, 338
process asset libraries, 329
process evaluation, 459–460
process performance baseline groups, 378
process performance measures selection, 377
process selection, 375–376
requirements, 474
risk parameters, 484
solicitation package evaluation, 503
subprocesses, 461–462
tailoring, 324–326
tasks, 290
technical solutions, 219, 222
training, 389
validation, 234–235, 314
verification, 241
Critical attributes, 322
Critical dependencies, 297
Critical issues in government CMMI-ACQ,
65–74
Crosby, Phillip, 6–7
Culture, Agile development, 156
Customer feedback in IPIC experience, 81–82
Customer requirements
defined, 541
Develop Contractual Requirements goal,
204–208
Develop Customer Requirements goal,
201–204
Customers, 541

Data
causal analysis, 255–256
collection mechanisms, 308–310
defined, 541
integrity checks, 314
managing, 429–432
measurement, 314–315
monitoring, 401
storing, 315–317
Data management, 541
Decision Analysis and Resolution (DAR)
process area, 53–54
Acquisition Technical Management relation,
217
Evaluate Alternatives goal, 273–279
introductory notes, 271–273
Organizational Project Management relation,
351
Organizational Training relation, 384
purpose, 271
related process areas, 273
Risk Management relation, 481
sample page, 21
Solicitation and Supplier Agreement
Development relation, 498
Defect density, 541
Defense Acquisition Guidebook, 126
Defense Acquisition Performance Assessment
Report (DAPA report), 66–69
Defense Acquisition University (DAU), 125
Deficiencies
root cause analysis, 470
subprocesses, 466, 469
Define, Measure, Analyze, Improve, Control
(DMAIC) improvement methodology, 157
Define Project Lifecycle Phases practice, 421–422
Define Risk Parameters practice, 483–485
Defined maturity level, 33–34
Defined processes
capability levels, 30
composing, 458–460
defined, 541
establishing, 182, 284–286
generic goals and generic practices, 170–171
Use the Project's Defined Process goal,
283–295
Definition of required functionality and quality
attributes, 542
Deliver Training practice, 391–392
Deliverable items, 542
Deliverables, supplier, 17
Delivering value, 137–139
Delivery environments, 542
Deming, W. Edwards, 6–7
Department of Defense (DoD). See Government
CMMI-ACQ
Dependencies
budget and schedule, 426
managing, 296–297
Deploy Improvements goal, 364
Evaluate Improvement Effects practice,
367–368
Manage the Deployment practice, 366–367
Plan the Deployment practice, 364–366
Deploy Organizational Process Assets and
Incorporate Experiences goal, 342
Deploy Organizational Process Assets
practice, 342–343
Deploy Standard Processes practice, 343–344
Incorporate Experiences into Organizational
Process Assets practice, 345–347
Monitor the Implementation practice, 344–345
Deploy Organizational Process Assets practice,
342–343
Deploy Standard Processes practice, 343–344
Derived measures
data for, 304–306, 313–314
defined, 542
Derived requirements, 542
Descriptive statistics, 311
Design reviews, 543
Determine Causes of Selected Outcomes goal
Analyze Causes practice, 250–252
Select Outcomes for Analysis practice,
249–250
Determine Process Improvement Opportunities
goal, 334–335
Appraise the Organization's Processes
practice, 337–338
Establish Organizational Process Needs
practice, 335–337
Identify the Organization's Process
Improvements practice, 338–339
Determine Risk Sources and Categories
practice, 481–483
Determine Which Training Needs are the
Responsibility of the Organization
practice, 386–387
Develop a Project Plan goal, 425
Establish the Budget and Schedule practice, 425–427
Establish the Project Plan practice, 438–439
Identify Project Risks practice, 427–429
Plan Data Management practice, 434–435
Plan Stakeholder Involvement practice, 435–437
Plan the Project's Resources practice, 432–434
Plan Transition to Operations and Support practice, 437–438
Develop and Prioritize Customer Requirements practice, 203–204
Develop Contractual Requirements goal, 204–205
ACS program, 105
Allocate Contractual Requirements practice, 208
Establish Contractual Requirements practice, 205–207
Develop Customer Requirements goal, 201–202
ACS program, 104
Develop and Prioritize Customer Requirements practice, 203–204
Elicit Stakeholder Needs practice, 202–203
Develop Risk Mitigation Plans practice, 491–494
Developer agility, 146–148
Development, 543
Deviations from process plans, 180
Direction Générale de l'Armement (DGA) system, 95–100
Distribute and Maintain the Solicitation Package practice, 507–508
Documentation alternatives evaluation, 273, 275–276
business considerations, 416–417
commitments, 441
configuration management, 267–268
improvement selection, 363
measurement objectives, 303–304
organizational process assets, 294–295
pilots, 362
plans, 175
quality assurance activities, 448–449
risks, 400, 486–489
solicitation packages, 504–505
training, 392–393
Documents change requests, 404
defined, 543
Domain knowledge in IPIC experience, 79
Due diligence, 509

E
Earned Value Management (EVM), 306, 398
Effectiveness, training, 393
Effort, estimating, 422–424
Elements, process, 322
Elicit Stakeholder Needs practice, 202–203
Elicit Suggested Improvements practice, 356–359
Empowerment mechanisms, 331
End users Agile development, 147, 154
defined, 543
England, Gordon, 66
Ensure Alignment Between Project Work and Requirements practice, 477–478
Enterprises, 543
Entry criteria, 543
Environment establishing, 286–288
risk identification, 488
standards, 330
validation, 233–234
verification, 240–241
Equipment Capability Maturity Models, 5–6
requirements, 433–434
Equivalent staging defined, 543
overview, 39–43
Establish a Configuration Management System practice, 262–264
Establish a Defined Process practice
Institutionalize a Defined Process, 182
process area support for, 187–188
Establish a Risk Management Strategy practice, 485
Establish a Solicitation Package practice, 501–506
Establish a Training Capability practice, 388–390
Establish an Organizational Policy practice, 173
Establish an Organizational Training Capability goal, 385
Determine Which Training Needs are the Responsibility of the Organization practice, 386–387
Establish a Training Capability practice, 388–390
Establish an Organizational Training Tactical Plan practice, 388
Establish Strategic Training Needs practice, 385–386
Index

Establish an Organizational Training Tactical Plan practice, 388
Establish an Understanding of the Agreement practice, 511–512
"Establish and maintain", 543–544
Establish Baselines goal, 260
Create or Release Baselines practice, 264
Establish a Configuration Management System practice, 262–264
Identify Configuration Items practice, 260–262
Establish Configuration Management Records practice, 267–268
Establish Contractual Requirements practice, 205–207
Establish Estimates goal, 413–414
Define Project Lifecycle Phases practice, 421–422
Establish Estimates of Work Product and Task Attributes practice, 419–421
Establish the Acquisition Strategy practice, 414–418
Estimate Effort and Cost practice, 422–424
Estimate the Scope of the Project practice, 418–419
Establish Estimates of Work Product and Task Attributes practice, 419–421
Establish Evaluation Criteria practice, 275–276
Establish Guidelines for Decision Analysis practice, 273–275
Establish Integrity goal, 267
Establish Configuration Management Records practice, 267–268
Perform Configuration Audits practice, 268–269
Establish Lifecycle Model Descriptions practice, 324
Establish Measurement Objectives practice, 302–304
Establish Negotiation Plans practice, 510
Establish Operational Concepts and Scenarios practice, 209–210
Establish Organizational Process Assets goal, 320
Establish Lifecycle Model Descriptions practice, 324
Establish Rules and Guidelines for Teams practice, 330–332
Establish Standard Processes practice, 321–323
Establish Tailoring Criteria and Guidelines practice, 324–326
Establish the Organization's Measurement Repository practice, 327–328
Establish the Organization's Process Asset Library practice, 328–329
Establish Work Environment Standards practice, 330
Establish Organizational Process Needs practice, 335–337
Establish Performance Baselines and Models goal, 371–372
Analyze Process Performance and Establish Process Performance Baselines practice, 377–380
Establish Process Performance Measures practice, 376–377
Establish Process Performance Models practice, 380–382
Establish Quality and Process Performance Objectives practice, 372–374
Select Processes practice, 374–376
Establish Process Action Plans practice, 340–341
Establish Process Performance Measures practice, 376–377
Establish Process Performance Models practice, 380–382
Establish Quality and Process Performance Objectives practice, 372–374
Establish Records practice, 448–449
Establish Rules and Guidelines for Teams practice, 330–332
Establish Standard Processes practice, 321–323
Establish Strategic Training Needs practice, 385–386
Establish Supplier Agreements goal, 511
Establish an Understanding of the Agreement practice, 511–512
Establish the Supplier Agreement practice, 512–514
Establish Tailoring Criteria and Guidelines practice, 324–326
Establish Teams practice, 293–294
Establish the Acquisition Strategy practice, 414–418
Establish the Budget and Schedule practice, 425–427
Establish the Organization's Measurement Repository practice, 327–328
Establish the Organization's Process Asset Library practice, 328–329
Establish the Project Plan practice, 438–439
Establish the Project's Defined Process practice, 284–286
Establish the Project's Objectives practice, 455–458
Establish the Project's Work Environment practice, 286–288
Establish the Supplier Agreement practice, 512–514
Establish the Validation Environment practice, 233–234
Establish the Verification Environment practice, 240–241
Establish Training Records practice, 392–393
Establish Validation Procedures and Criteria practice, 234–235
Establish Verification Procedures and Criteria practice, 241
Establish Work Environment Standards practice, 330
Estimate Effort and Cost practice, 422–424
Estimate the Scope of the Project practice, 418–419
Estimates, establishing, 413–424
Evaluate, Categorize, and Prioritize Risks practice, 489–490
Evaluate Alternative Solutions goal, 273
Establish Evaluation Criteria practice, 275–276
Establish Guidelines for Decision Analysis practice, 273–275
Evaluate Alternatives practice, 278–279
Identify Alternative Solutions practice, 276–277
Select Evaluation Methods practice, 277–278
Select Solutions practice, 279
Evaluate Alternatives practice, 278–279
Evaluate Improvement Effects practice, 367–368
Evaluate Proposed Solutions practice, 508–509
Evaluate Technical Solutions goal, 217–218
Analyze Selected Technical Solutions practice, 220–223
Conduct Technical Reviews practice, 223–225
Select Technical Solutions for Analysis practice, 218–220
Evaluate the Effect of Implemented Actions practice, 254–255
Evaluation processes and work products goal, 446–447
solicitation packages criteria, 503
work products practice, 446–447
Evolution of CMMI, 7–9
Example supplier deliverables, 17
Example work products, 16, 544
Examples, 19
Execute the Supplier Agreement practice, 192–194
Exit criteria defined, 544
tasks, 290
Expected CMMI components, 544
Expected process area components, 12
Expended effort, monitoring, 398
Experiences, incorporating, 342–347
Expertise in government acquisition, 69

F
Failure mode and effects analysis, 484
Feedback
IPIC experience, 81–82
measurement objectives, 304
Flexibility in tailoring processes, 325
Formal evaluation processes, 271–272
defined, 544
guidelines and activities, 274
Freeman, George Richard
Air Force assessment model essay, 86–94
biography, 574
French Ministry of Defense, 95–100
Frost, Richard
biography, 574–575
IT environment essay, 108–122
Functional analysis, 544
Functional architecture, 544
Functional configuration audits (FCAs), 269
Future possibilities essay, 122–124

G
Gallagher, Brian
Agile essay, 143–151
biography, 569–570
constraints essay, 156–163
critical issues in government essay, 65–74
delivering value essay, 137–139
future possibilities essay, 122–124
planning for success essay, 125–130
Gates, Robert, 71
Generic goals
Achieve Specific Goals, 173
defined, 544
institutionalization, 169–172
Institutionalize a Defined Process, 182–183
Institutionalize a Managed Process, 173–182
numbering schemes, 20
overview, 15–16, 169
sample page, 23
Generic practices
Air Force assessment model, 89–90
applying, 183–184
defined, 544–545
elaborations, 18, 545
institutionalization, 169–172
IPIC experience, 83
Index

Generic practices (Continued)
 numbering schemes, 20
 overview, 17–18, 169
 process area support, 184–189
 sample page, 23
Glossary, 535–566
Government Accountability Office (GAO)
 CMMI at, 105–107
 report from, 3
Government CMMI-ACQ, 65
 Agile in DoD, 151–156
 Air Force assessment model, 86–94
 case study, 157–163
 critical issues, 65–74
 DGA system, 95–100
 Government Accountability Office, 105–107
 IPIC experience, 74–86
 IT environment, 108–122
 “three R’s” of DoD acquisition, 100–105
Guidelines
 alternatives evaluation, 272–275
 integrated teams, 330–332
 tailoring, 324–326
Gurumurthy, Ashok
 biography, 575
 IT environment essay, 108–122
H
Hammons, Bud, 151
Hardware engineering, 545
High maturity process areas, 54–55
High Maturity Team, 531
Higher level management
 defined, 545
 reviews, 181–182
Humphrey, Watts, 6–7
I
Identify Alternative Solutions practice, 276–277
Identify and Analyze Risks goal, 485–486
 Evaluate, Categorize, and Prioritize Risks practice, 489–490
 Identify Risks practice, 486–489
Identify and Involve Relevant Stakeholders practice
 Institutionalize a Managed Process, 178–179
 process area support for, 186
Identify Configuration Items practice, 260–262
Identify Potential Areas for Improvement practice, 355
Identify Potential Suppliers practice, 499–501
Identify Project Risks practice, 427–429
Identify Risks practice, 486–489
Identify the Organization’s Process
 Improvements practice, 338–339
Implement Action Proposals practice, 253–254
Implement Process Action Plans practice, 341
Implement Risk Mitigation Plans practice, 494–495
Implementation
 evaluating effects of, 254–255
 monitoring, 344–345
Improvement paths, 26
Improvements
 constraints identification and removal, 156–163
deploying, 364–368
identifying potential areas, 355
IPIC experience, 82
selecting, 356–364
Incentives in Agile development, 155
Incident Resolution and Prevention (IRP)
 process area, 165
Incomplete processes
 in capability levels, 29
defined, 545
Inconsistencies, identifying, 477–478
Incorporate Experiences into Organizational Process Assets practice, 345–347
Industry
 future possibilities essay, 122–124
 strategies, 125–130
Industry process standards and models in IPIC experience, 79–85
Information assurance and security references and sources, 521
Informative components, 12, 545
Infrastructure effort and cost estimates, 423–424
Initial maturity level, 32
Initiating, Diagnosing, Establishing, Acting, and Learning (IDEAL) model, 58, 157–158
Institutionalization
 defined, 545
 of processes, 169–172
Institutionalize a Defined Process goal
 Collect Process Related Experiences practice, 183
 Establish a Defined Process practice, 182
Institutionalize a Managed Process goal
 Assign Responsibility practice, 175–176
 Control Work Products practice, 177–178
 Establish an Organizational Policy practice, 173
 Identify and Involve Relevant Stakeholders practice, 178–179
 Monitor and Control the Process practice, 179–181
Objectively Evaluate Adherence practice, 181
Plan the Process practice, 174–175
Provide Resources practice, 175
Review Status with Higher Level Management practice, 181–182
Train People practice, 176–177

Instructors, training, 390
Integrate Plans practice, 288–290
Integrated Master Plan, 439
Integrated Master Schedule, 439
Integrated Product Development Capability Maturity Model (IPM-CMM), 8
Integrated Project Management (IPM) process area, 50–51
Coordinate and Collaborate with Relevant Stakeholders goal, 295–297
Decision Analysis and Resolution relation, 273
generic practice support by, 187–188
introductory notes, 281–282
purpose, 281
Quantitative Project Management relation, 453
related process areas, 283
Use the Project's Defined Process goal, 283–295

Integrity
baseline, 267–269
data checks, 314
Inter-coder reliability, 314
Intercontinental Ballistic Missiles (ICBMs), 74–86
Interface control, 545
Interfaces
managing, 225–227
requirements, 206
Interim objectives, 457
Interoperable Acquisition for Systems of Systems, 71
Interoperable acquisitions, 139–143
IPIC (ICBM Prime Integration Contract)
CMMI models for, 82–85
collection, 85–86
history, 74–75
industry process standards and models, 79–82
operation, 77–79
transitions, 75–77

Issues, analysis, 407–408
IT environment essay
appraisals, 118–119
contracts, 112–114
future needs, 120–122
implementation considerations, 114–118
multi-supplier challenges, 109–110
overview, 108–109
preferred suppliers, 111–112
Maintenance and support responsibilities
Distribute and Maintain the Solicitation Package practice, 507–508
transition to operations, 138
Manage Business Performance goal, 352–353
Analyze Process Performance Data practice, 354–355
Identify Potential Areas for Improvement practice, 355
Maintain Business Objectives practice, 353–354
Manage Corrective Action to Closure goal, 407
Analyze Issues practice, 407–408
Manage Corrective Actions practice, 409
Take Corrective Action practice, 408–409
Manage Corrective Actions practice, 409
Manage Dependencies practice, 296–297
Manage Project Performance practice, 467–469
Manage Requirements Changes practice, 475–476
Manage Requirements goal, 473
Ensure Alignment Between Project Work and Requirements practice, 477–478
Maintain Bidirectional Traceability of Requirements practice, 476–477
Manage Requirements Changes practice, 475–476
Obtain Commitment to Requirements practice, 474–475
Obtain Commitment to Requirements practice, 474–475
Understand Requirements practice, 473–474
Manage Selected Interfaces practices, 226–227
Manage Stakeholder Involvement practice, 295–296
Manage Supplier Invoices practice, 196–197
Manage the Deployment practice, 366–367
Manage the Project Using Integrated Plans practice, 290–292
Managed maturity level, 32–33
Managed processes capability levels, 29–30
defined, 546
generic goals and generic practices, 170–171
Management configuration management system, 262–264
IPIC experience, 80
project. See Integrated Project Management (IPM) process area
quantitative. See Quantitative Project Management (QPM) process area
requirements. See Requirements Management (REQM) process area
Review Status with Higher Level Management practice, 181–182
supplier agreement reviews, 193
Managers, 546
Managing the Software Process, 7
Manufacturing process, 6
Materials, training, 390
Mathematical models, 83
Matrices, traceability bidirectional traceability, 477
work products, 240
Maturity levels, 26–28
advancing through, 35–36
defined, 33–34, 546
initial, 32
managed, 32–33
optimizing, 35
overview, 31–32
process areas, 39, 54–55
quantitatively managed, 34
Measurement and Analysis (MA) process area, 53
Agreement Management relation, 192
Align Measurement and Analysis Activities goal, 301–313
Causal Analysis and Resolution relation, 248
generic practice support by, 187
Integrated Project Management relation, 283
introductory notes, 299–300
Organizational Process Performance relation, 371
Organizational Project Management relation, 351
Project Monitoring and Control relation, 396
Project Planning relation, 413
Provide Measurement Results goal, 313–318
purpose, 299
Quantitative Project Management relation, 453
related process areas, 300–301
Solicitation and Supplier Agreement Development relation, 499
Measurement results, 546
Measurements defined, 546
process performance, 255
repository establishment and maintenance, 327–328
Measures defined, 546
improvements, 365–366
selecting, 462–465
storing, 294
Meetings for technical solutions, 222
Memoranda of agreement, 546
Mentors, training, 390
Method Definition Documents (MDDs), 62
Meyers, B. Craig biography, 578–579
interoperable acquisitions essay, 139–143
Milestones
 budget and schedule, 425–426
 reviewing, 404–405
Million-Picallion, Eric
 biography, 579
 DGA system essay, 95–100
 Minuteman missiles, 74–86
Mitigate Risks goal, 491
 Develop Risk Mitigation Plans practice, 491–494
 Implement Risk Mitigation Plans practice, 494–495
Models
 for analysis, 465
 CMF, 9–10
 CMMI, 57–63
 effort and cost estimates, 423
 IPIC experience, 79–85
 life-cycle, 324
 process performance, 380–382
 SOSI, 140
Monitor and Control the Process practice
 Institutionalize a Managed Process, 179–181
 process area support for, 186–187
Monitor Commitments practice, 399–400
Monitor Data Management practice, 401
Monitor Project Planning Parameters practice, 397–399
Monitor Project Risks practice, 400–401
Monitor Selected Supplier Processes practice, 194–195
Monitor Stakeholder Involvement practice, 402
Monitor the Implementation practice, 344–345
Monitor the Performance of Selected Subprocesses practice, 465–467
Monitor the Project Against the Plan goal, 396–397
 Conduct Milestone Reviews practice, 404–405
 Conduct Progress Reviews practice, 402–404
 Monitor Commitments practice, 399–400
 Monitor Data Management practice, 401
 Monitor Project Planning Parameters practice, 397–399
 Monitor Project Risks practice, 400–401
 Monitor Stakeholder Involvement practice, 402
 Monitor Transition to Operations and Support practice, 405–407
 Monitor Transition to Operations and Support practice, 405–407
 Multi-supplier challenges, 109–110

N
 National Defense Acquisition Act (NDAA), 69–70
 Natural bounds, 546
 Negotiation plans, 510
 Non-numeric criteria, 272
 Noncompliance issues
 detecting, 446
 resolution, 447–448
 Nondevelopmental items, 547
 Nontechnical requirements
 defined, 547
 identifying, 207
 Northrup Grumman, 74–86
 Notes, 19
 Numbering schemes, 20
 Numeric criteria, 272

O
 Objectively Evaluate Adherence practice
 Institutionalize a Managed Process, 181
 process area support for, 187
 Objectively evaluate process, 547
 Objectively Evaluate Processes and Work Products goal, 446
 Objectively Evaluate Processes practice, 446
 Objectively Evaluate Work Products practice, 446–447
 Objectively Evaluate Processes practice, 446
 Objectively Evaluate Work Products practice, 446–447
 Objectives
 acquisition strategy, 415
 business, 353–354, 373
 establishing, 372–374
 measurement, 302–304
 project, 455–458
 Observe, Orient, Decide, Act (OODA) loop, 157
 Obtain Commitment to Requirements practice, 474–475
 Obtain Commitment to the Plan goal, 440
 Obtain Plan Commitment practice, 441–442
 Reconcile Work and Resource Levels practice, 440–441
 Review Plans That Affect the Project practice, 440
 Obtain Measurement Data practice, 313–314
 Obtain Plan Commitment practice, 441–442
 Operational agility, 145–146
 Operational concepts
 defined, 547
 establishing, 209–210
 Operational scenarios, 547
Index

Optimizing maturity level, 35
Organization business objectives, 548
Organization measurement repositories, 548
Organization process asset libraries, 548
Organization set of standard processes, 171
defined, 548
establishing, 321–323
roles, 386
Organizational maturity, 547
Organizational Performance Management (OPM) process area, 54–55
Organizational Process Performance relation, 371
Quantitative Project Management relation, 454
Organizational policies, 547
Organizational process areas, 51–52
Organizational process assets contributing to, 294–295
defined, 548
planning project activities, 286
Organizational Process Definition (OPD) process area, 51, 73
Establish Organizational Process Assets goal, 320–332
generic practice support by, 184, 188
Integrated Project Management relation, 283
introductory notes, 319–320
Measurement and Analysis process relation, 301
Organizational Process Focus relation, 334
Organizational Training relation, 384
purpose, 319
Quantitative Project Management relation, 454
related process areas, 320
Organizational Process Focus (OPF) process area, 51
Deploy Organizational Process Assets and Incorporate Experiences goal, 342–347
Determine Process Improvement Opportunities goal, 334–339
generic practice support by, 188
Institutionalize a Managed Process goal elaboration, 180–181
introductory notes, 333–334
Organizational Project Management relation, 351
Plan and Implement Process Actions goal, 339–341
purpose, 333
related process areas, 334
Organizational Process Performance (OPP) process area, 54–55
Establish Performance Baselines and Models goal, 371–382
introductory notes, 369–371
Organizational Project Management relation, 351
purpose, 369
Quantitative Project Management relation, 454
related process areas, 371
Organizational Project Management (OPM) process area
Causal Analysis and Resolution relation, 248
Deploy Improvements goal, 364–368
introductory notes, 349–351
Manage Business Performance goal, 352–355
purpose, 349
related process areas, 351
Select Improvements goal, 356–364
Organizational Training (OT) process area, 51
Establish an Organizational Training Capability goal, 385–390
generic practice support by, 185
introductory notes, 383–384
Organizational Project Management relation, 351
Provide Training goal, 391–393
purpose, 383
related process areas, 384–385
Organizations, 547
Orientation in acquirer processes, 434
Outcomes
addressing causes, 253–256
determining causes, 249–252
Outsourcing in IT environment, 113–114, 119
Oversight
Agile development, 155
government acquisition, 68–69
IT environment, 117

P
Panwar, Madhav
biography, 579–580
Government Accountability Office essay, 105–107
Parameters
planning, 397–399
risk, 483–485
Pascal, Blaise, 144
Peer reviews, 50
common set of measures, 328
defined, 548–549
defined processes, 286
lifecycle models, 324
Perform Peer Reviews goal, 241–242
set of standard processes, 323
tailoring, 326
People focus in Capability Maturity Models, 6
Perform Configuration Audits practice, 268–269
Perform Interface Management goal, 225
 Manage Selected Interfaces practice, 226–227
 Select Interfaces to Manage practice, 225–226
Perform Peer Reviews goal, 241–242
 Analyze Peer Review Data practice, 243
 Conduct Peer Reviews practice, 242–243
 Prepare for Peer Reviews practice, 242
Perform Root Cause Analysis practice, 469–470
Perform Specific Practices practice, 173
Perform Validation practice, 235
Perform Verification practice, 243–244
Performance
 managing, 467–469
 objectives, 372–374
 process performance baselines, 377–380
 process performance measures, 376–377
 process performance objectives, 456
 risk identification, 487–488
 subprocesses, 465–467
Performance parameters, 549
Performed processes
 capability levels, 29
 defined, 549
 generic goals and generic practices, 170
Phillips, Mike
 acquisition agreements essay, 131–133
 biography, 570
 capabilities across constellations essay, 163–165
 critical issues in government essay, 65–74
 future possibilities essay, 122–124
 verification essay, 133–137
Physical configuration audits (PCAs), 269
Pilots
 for change, 361–362
 results reviews, 406
 suggested improvements, 361
Plan and Implement Process Actions goal, 339
 Establish Process Action Plans practice, 340–341
 Implement Process Action Plans practice, 341
Plan Data Management practice, 429–432
Plan, Do, Check, Act (PDCA) improvement loop, 157
Plan Needed Knowledge and Skills practice, 434–435
Plan Stakeholder Involvement practice, 435–437
Plan the Deployment practice, 364–366
Plan the Process practice
 Institutionalize a Managed Process, 174–175
 process area support for, 185
Plan the Project’s Resources practice, 432–434
Plan Transition to Operations and Support practice, 437–438
Planned processes, 549
Planning, Programming, Budgeting, and Execution (PPBE) system, 66, 69
Plans
 acquisition strategies, 125–130
 deployment, 364–366
 integrating, 288–290
 IPIC experience, 81
 managed processes, 174–175
 monitoring, 397–399
 negotiation, 510
 organizational process assets for, 286
 process action, 340–341
 project plan development, 425–439
 risk mitigation, 494–495
Potential improvement areas, 355
Preferred suppliers in IT environment, 111–112
Prepare for Peer Reviews practice, 242
Prepare for Quantitative Management goal, 454
 Compose the Defined Process practice, 458–460
 Establish the Project’s Objectives practice, 455–458
 Select Measures and Analytic Techniques practice, 462–465
 Select Subprocesses and Attributes practice, 461–462
Prepare for Risk Management goal, 481
 Define Risk Parameters practice, 483–485
 Determine Risk Sources and Categories practice, 481–483
 Establish a Risk Management Strategy practice, 485
Prepare for Solicitation and Supplier Agreement Development goal
 Distribute and Maintain the Solicitation Package practice, 507–508
 Establish a Solicitation Package practice, 501–506
 Identify Potential Suppliers practice, 499–501
 Review the Solicitation Package practice, 506–507
Prepare for Validation goal, 231
 Establish the Validation Environment practice, 233–234
 Establish Validation Procedures and Criteria practice, 234–235
 Select Products for Validation practice, 231–233
Prepare for Verification goal, 239
 Establish the Verification Environment practice, 240–241
 Establish Verification Procedures and Criteria practice, 241
 Select Work Products for Verification practice, 239–240
Preventive actions in IPIC experience, 82
Priorities
 acquisition strategy risks, 126
 Agile development, 148
 analyses, 311
 business objectives, 354
 change requests, 266
 customer requirements, 203–204
 data, 310
 improvement deployment, 363
 measurement objectives, 303
 measurements, 308
 process improvements candidates, 339
 risks, 489–490
Privacy, 431
Probability in risk analysis, 428, 491
Procedures and methods focus in Capability Maturity Models, 5–6
Process action plans, 549
Process action teams, 549
Process and Product Quality Assurance (PPQA) process area, 53
 introductory notes, 443–445
 IPIC experience, 83
 Objectively Evaluate Processes and Work Products goal, 446–447
 Provide Objective Insight goal, 447–449
 purpose, 443
 related process areas, 445
Process and technology improvements, 549
Process architecture, 549
Process areas, 4–5. See also specific process areas by name
 components, 11–12
 defined, 550
 equivalent staging, 39–43
 example supplier deliverables, 17
 example work products, 16
 examples, 19
 generic goals, 15–16
 generic practices, 17–18
 introductory notes, 15
 list, 13–14
 notes, 19
 numbering schemes, 20
 organizational, 51–52
 project, 47–51
 purpose statements, 14
 references, 19–20
 relationships among, 15, 45–46,
 184–189
 representations, 36–39
 specific goals, 15
 specific practices, 16
 subpractices, 17
 support, 52–54
 typographical conventions, 20–23
Process asset libraries
 defined, 550
 establishing, 328–329
Process assets, 550
Process attributes, 550
Process capability, 550
Process definitions
 defined, 550
 process area. See Organizational Process Definition (OPD) process area
Process descriptions, 550
Process elements, 320, 322, 550
Process groups, 550
Process improvement objectives, 551
Process improvement plans, 551
Process improvements
 defined, 550
 establishing, 58
Process measurements, 551
Process owners, 551
Process performance, 551
Process performance baselines, 551
Process performance models, 551–552
Process related experiences, 183
Process tailoring, 552
Processes
 Capability Maturity Models, 6
 defined, 549
 Product baselines, 552
 Product component requirements, 552
 Product components, 552
 Product lifecycle, 552–553
 Product lines, 553
 Product related lifecycle processes, 553
 Product requirements, 553
 Product support in acquisition strategy, 417–418
Products
 defined, 552
 IPIC experience, 81
Profiles, 40–43
Program Management Reviews (PMRs), 159
Program structure in government acquisition, 68
Programmatic interoperability, 140–141
Progress
milestones, 404–405
monitoring, 397
reviewing, 402–404
Project and support groups, 384
Project failure causes, 3–4
Project Management Organization (PMO), 157, 159
Project management process area. See
Integrated Project Management (IPM) process area
Project Monitoring and Control (PMC) process area, 49–50
Agreement Management relation, 192
Configuration Management relation, 259
generic practice support by, 187
Integrated Project Management relation, 283
introductory notes, 395–396
Manage Corrective Action to Closure goal, 407–409
Measurement and Analysis process relation, 301
Monitor the Project Against the Plan goal, 396–407
purpose, 395
Quantitative Project Management relation, 454
related process areas, 396
Requirements Management relation, 472
Risk Management relation, 481
transition to operations, 137
Project Planning (PP) process area, 47
Configuration Management relation, 260
Establish Estimates goal, 413–424
generic practice support by, 185–186
Integrated Project Management relation, 283
introductory notes, 411–412
IT environment, 121
Measurement and Analysis process relation, 301
Obtain Commitment to the Plan goal, 440–442
Organizational Training relation, 385
Project Monitoring and Control relation, 396
purpose, 411
related process areas, 412–413
Requirements Management relation, 472
Risk Management relation, 481
Solicitation and Supplier Agreement Development relation, 499
transition to operations, 137
Project plans, 554
Project progress and performance, 554
Project startup, 554
Projects, 553

Prototypes, 554
Provide Measurement Results goal, 313
Analyze Measurement Data practice, 314–315
Communicate Results practice, 317–318
Obtain Measurement Data practice, 313–314
Store Data and Results practice, 315–317
Provide Objective Insight goal
Communicate and Resolve Noncompliance Issues practices, 447–448
Establish Records practice, 448–449
Provide Resources practice
Institutionalize a Managed Process, 175
process area support for, 185
Provide Training goal, 391
Assess Training Effectiveness practice, 393
Deliver Training practice, 391–392
Establish Training Records practice, 392–393
Purpose statements, 14

Q
Quality
defined, 554
establishing, 372–374
IT environment, 115
Quality and process performance objectives, 554
Quality assurance
defined, 554
process area. See Process and Product Quality Assurance (PPQA) process area
Quality Attribute Workshops (QAWs), 145
Quality attributes
defined, 555
requirements, 206
in technical solutions, 219
Quality control, 555
Quality Function Deployment (QFD), 458
Quality Team, 534
Quantitative management, 555
Quantitative objectives, 555
Quantitative Project Management (QPM) process area, 54–55
Causal Analysis and Resolution relation, 248
introductory notes, 451–453
Measurement and Analysis process relation, 301
Organizational Process Performance relation, 371
Prepare for Quantitative Management goal, 454–465
purpose, 451
Quantitatively Manage the Project goal, 465–470
related process areas, 453–454
Quantitatively Manage the Project goal, 465
Manage Project Performance practice, 467–469
Monitor the Performance of Selected Subprocesses practice, 465–467
Perform Root Cause Analysis practice, 469–470
Quantitatively managed maturity level, 34
Questions for data collection and storage, 309

R
Radice, Ron, 7
Rafale weapon system, 95
Reconcile Work and Resource Levels practice, 440–441
Record Causal Analysis practice, 255–256
Records
configuration, 267–268
establishing, 448–449
IPIC experience, 81
training, 392–393
Reference models, 555
References
CMMI resources, 517–521
overview, 19–20
Reform in government acquisition, 69–71
Relationships
Agile development, 149–150
process elements, 323
Relationships among process areas, 45–46
Acquisition Requirements Development, 201
Acquisition Validation, 230
Acquisition Verification, 238
Agreement Management, 191–192
Causal Analysis and Resolution, 248
Configuration Management, 258–259
Decision Analysis and Resolution, 273
generic goals and generic practices, 172
high maturity process areas, 54–55
Integrated Project Management, 283
Measurement and Analysis, 300–301
organizational process areas, 51–52
Organizational Process Definition, 320
Organizational Process Focus, 334
Organizational Process Performance, 371
Organizational Project Management, 351
Organizational Training, 384–385
overview, 15
Process and Product Quality Assurance, 445
Project Monitoring and Control, 396
Project Planning, 412–413
project process areas, 47–51
Quantitative Project Management, 453–454
Requirements Management, 472
Risk Management, 481
Solicitation and Supplier Agreement
Development, 498–499
support process areas, 32–54
Relevant stakeholders, 555. See also
Stakeholders
Reliability, inter-coder, 314
Repeatability of measurements, 308
Repositories, measurement, 327–328
Representations, 26
defined, 555
process areas, 36–39
structures, 26–28
Required components, 11–12, 555
Requirements
analysis, 209–213
component, 433–434
contractual, 204–208
customer, 201–204
defined, 555–556
government acquisition, 68
IPIC experience, 80
in “three Rs” of DoD acquisition, 102–105
validating, 213–214
Requirements analysis, 556
Requirements elicitation, 556
Requirements management, 556
“Requirements Management in a System of
Systems Context” report, 142
Requirements Management (REQM) process
area, 48
Acquisition Requirements Development
relation, 201
Acquisition Technical Management relation, 217
Acquisition Verification process area relation, 238
DGA system, 96, 99–100
introductory notes, 471–472
Manage Requirements goal, 473–478
Measurement and Analysis process relation, 301
Project Planning relation, 413
purpose, 471
related process areas, 472
Solicitation and Supplier Agreement
Development relation, 499
Requirements traceability, 556
Resolve Coordination Issues practice, 297
Resources
levels, 440–441
monitoring, 398
planning, 432–434
providing, 175
in “three Rs” of DoD acquisition, 102–105
Responsibility, assigning, 175–176
Index

599

Return on investment, 556
Review Plans That Affect the Project practice, 440
Review Status with Higher Level Management practice
 Institutionalize a Managed Process, 181–182
 process area support for, 187
Review the Solicitation Package practice, 506–507
Reviews
 acquisition strategy, 418
 analyses, 312
 data, 310
 IPIC experience, 82
 IT environment, 117
 measurements, 308
 pilots, 362
 plans, 175
 process results, 179
 with stakeholders, 296
 subprocesses, 468
 supplier agreements, 193
 technical, 223–225
 transition activities, 407
Revising
 plans, 175
 process selection, 376
 training materials, 390
Rewards in Agile development, 155
Richter, Karen J.
 biography, 571
 critical issues in government essay, 65–74
Right people in “three Rs” of DoD acquisition, 102–105
Risk analysis, 556
Risk identification, 556
Risk management, 556
 “Risk Management Considerations for Interoperable Acquisition” report, 142
Risk Management (RSKM) process area, 49–50
 Acquisition Requirements Development relation, 201
 Acquisition Technical Management relation, 217
 Decision Analysis and Resolution relation, 273
 government acquisition, 73
 Identify and Analyze Risks goal, 485–490
 introductory notes, 479–480
 Mitigate Risks goal, 491–495
 Prepare for Risk Management goal, 481–485
 Project Planning relation, 413
 purpose, 479
 related process areas, 481
 Requirements Management relation, 472
Risks
 acquisition strategies, 126, 417
 identifying, 427–429
 monitoring, 400–401
 objectives, 457
 process evaluation, 460
 subprocesses, 468–469
 suggested improvements, 360
Roles for set of standard processes, 386
Root causes of outcomes
 analyzing, 469–470
 determining, 251
Ruault, Jean-René
 biography, 580
 DGA system essay, 95–100
Rules for teams, 330–332

S
Satisfy Supplier Agreements goal
 Accept the Acquired Product practice, 195–196
 Execute the Supplier Agreement practice, 192–194
 Manage Supplier Invoices practice, 196–197
 Monitor Selected Supplier Processes practice, 194–195
SCAMPI Upgrade Team, 532
Scenarios, 209–210
 “Schedule Considerations for Interoperable Acquisition” report, 142
Schedules
 establishing, 425–427
 risks, 487
 tasks, 290
Schenker, Fred, 151
Scope
 Agile development, 147
 estimating, 418–419
 process appraisal, 337
SEAM group, 88–94
Security, 431
Select and Implement Improvements for Deployment practice, 363–364
Select Evaluation Methods practice, 277–278
Select Improvements goal, 336
 Analyze Suggested Improvements practice, 359–361
 Elicit Suggested Improvements practice, 356–359
 Select and Implement Improvements for Deployment practice, 363–364
 Validate Improvements practice, 361–362
Select Interfaces to Manage practice, 225–226
Select Measures and Analytic Techniques practice, 462–465
Select Outcomes for Analysis practice, 249–250
Select Processes practice, 374–376
Select Products for Validation practice, 231–233
Select Solutions practice, 279
Select Subprocesses and Attributes practice, 461–462
Select Suppliers goal, 508
 Establish Negotiation Plans practice, 510
 Evaluate Proposed Solutions practice, 508–509
Select Suppliers practice, 510–511
Select Technical Solutions for Analysis practice, 218–220
Select Work Products for Verification practice, 239–240
Senior management
 acquisition strategy, 418
 commitment negotiation, 442
 defined, 556–557
 sponsorship, 57–58, 337
Service agreements, 557
Service catalogs, 557–558
Service incidents, 558
Service level agreements, 132, 558
Service level measures, 558
Service levels, 558
Service lines, 558
Service-oriented architecture (SOA) pattern, 124
Service requests, 558
Service requirements, 559
Service system components, 559
Service system consumables, 559–560
Service System Development (SSD) process area, 164
Service systems, 559
Service Systems Transition (SST) process area, 164
Services, 557
Services Advisory Group, 528–529
Services Mini Team, 532
Set of standard processes, 171
 deploying, 343–344
 establishing, 321–323
 roles, 386
 selecting, 285
Shared vision
 defined, 560
 establishing and maintaining, 293
Shewhart, Walter, 6
Shrum, Sandy, 572
Skills and knowledge monitoring, 399
 planning, 434–435
Software engineering, 560
Software Engineering Institute (SEI)
 CMM design, 7
 focus areas, 5–6
 for GAO system, 105–107
Solicitation, 560
Solicitation and Supplier Agreement
 Development (SSAD) process area, 48
Acquisition Requirements Development relation, 201
Agreement Management relation, 192
Establish Supplier Agreements goal, 511–514
government acquisition, 135
interoperable acquisitions, 142
introductory notes, 497–498
IPIC experience, 84–85
IT environment, 113–114
Measurement and Analysis process relation, 300
operational agility, 145–146
Prepare for Solicitation and Supplier Agreement Development goal, 490–508
Project Monitoring and Control relation, 396
Project Planning relation, 412
purpose, 497
Quantitative Project Management relation, 453
related process areas, 498–499
Risk Management relation, 481
Select Suppliers goal, 508–511
supplier agreements, 132
Solicitation packages defined, 560
 establishing, 501–506
Sources
 improvements, 358
 objectives, 458
 risk, 481–483
 subprocess risks, 468–469
 training, 389
Special cause of variation, 560
Specific goals and practices, 15–16, 20
 Air Force assessment model, 89–90
 defined, 560
Specify Analysis Procedures practice, 310–313
Specify Data Collection and Storage Procedures practice, 308–310
Specify Measures practice, 304–308
Spehar, Anthony W., 580
Sponsorship by senior management, 57–58, 337
Stability of subprocesses, 466
Stable processes, 560
Staffing requirements, 433–434
Staged representations, 26
 defined, 560
 process areas, 36–39
 structures, 26–28
Stakeholders
 commitment negotiation, 441
 communicating results to, 317–318
 coordinate and collaborate with, 295–297
 defined, 560
 government acquisition, 70–71
 identifying, 178–179
 needs, 202–203, 211
Standard CMMI Appraisal Method for Process Improvement (SCAMPI)
 appraisal methods, 61–62
 DGA system, 97–98
 government acquisition, 157, 159–160
 IPIC experience, 84–85
 purpose, 39
Standard processes, 171
 defined, 561
 deploying, 343–344
 establishing, 321–323
 roles, 386
 selecting, 285
Standards
 defined, 561
 IPIC experience, 79–82
Statements of work (SOW)
 defined, 561
 solicitation packages, 502–503
Statistical process control, 561
Statistical techniques
 defined, 561
 IPIC experience, 83
 selecting, 464
Steering Group, 527–528
Store Data and Results practice, 315–317
Strategic Service Management (STSM) process area, 165
Strategic training needs, establishing, 385–386
Strategies
 acquisition, 125–130, 414–418
 government acquisition, 67–68
 risk management, 485
Subpractices, 17, 562
Subprocesses
 defined, 562
 performance, 465–467
Supplier Agreement Management (SAM) process area, 121, 131
Supplier agreements
 defined, 562
 essay, 131–133
interoperable acquisitions, 141
 process area. See Solicitation and Supplier Agreement Development (SSAD) process area
Suppliers
 data management, 430
 data monitoring, 401
 defined, 562
 invoice management, 196–197
 process monitoring, 194–195
 risk monitoring, 400
 types, 417
 Support process areas, 52–54
Sustainment
 defined, 562
 IPIC experience, 76–77
System integrators, 110
System of Systems Interoperability (SOSI) model, 140
Systems approach in IPIC experience, 78
Systems engineering, 562
Systems Engineering Capability Model (SECM), 8
Systems Engineering Detailed Schedule, 439
Systems Engineering Management Plan, 439
Systems Engineering Master Schedule, 439
Systems of systems, 140
 defined, 562
 DGA system, 98–100
 government acquisition, 71–74
 Systems Process Engineering in Air Force assessment model, 91–92
T
 Tailoring
 criteria, 324–326
 defined, 562
 guidelines, 563
 Take Corrective Action practice, 408–409
 Target profiles, 40–43, 563
 Target staging, 41, 563
Tasks
 attribute estimates, 419–421
 dependencies, 426
Team Risk Management approach, 73
Teams
 Agile development, 154–156
 defined, 563
 establishing, 293–294
 rules and guidelines, 330–332
Technical data packages, 563–564
Technical interchange meetings, 222
Technical performance, 564
Technical performance measures
 defined, 564
 identifying, 211
Technical requirements, 564
Technical reviews, 223–225
Technical solutions
 analyzing, 220–223
 selecting for analysis, 218–220
Terms, glossary of, 535–566
Test and evaluation master plan (TEMP), 135–136
Tests
 Agile development, 148
 government acquisition, 135–136
Theory of Constraints, 157–163
“Three Rs” of DoD acquisition essay, 100–105
Thresholds
 risk categories, 484–485
 supplier risks, 492–493
Tools and equipment focus in Capability Maturity Models, 5–6
Traceability
 bidirectional, 476–477
 defined, 564
 measurement, 304, 307
 processes, 375–376
 quality and process-performance objectives, 457–458
Traceability matrices
 bidirectional traceability, 477
 work products, 240
Track and Control Changes goal, 265
 Control Configuration Items practice, 266–267
 Track Change Requests practice, 265–266
Track Change Requests practice, 265–266
Trade studies, 564
Train People practice
 Institutionalize a Managed Process, 176–177
 process area support for, 185
Training
 Agile development, 154–155
 CMMI-related, 63
 defined, 564–565
 IPIC experience, 81
 Plan Needed Knowledge and Skills practice, 434
 process area. See Organizational Training (OT) process area
 work products, 243
Training tactical plan, 388
Training Teams, 533–534
Transition to operations and support
 essay, 137–139
 monitoring, 405–407
 planning, 437–438
Translation Team, 531
Typographical conventions, 20–23

U
Understand Requirements practice, 473–474
Unit testing, 565
Use Organizational Process Assets for Planning Project Activities practices, 286
Use the Project’s Defined Process goal, 283
 Contribute to Organizational Process Assets practice, 294–295
 Establish Teams practice, 293–294
 Establish the Project’s Defined Process practice, 284–286
 Establish the Project’s Work Environment practice, 286–288
 Integrate Plans practice, 288–290
 Manage the Project Using Integrated Plans practice, 290–292
 Use Organizational Process Assets for Planning Project Activities practices, 286
User needs in acquisition strategies, 126

V
Validate Improvements practice, 361–362
Validate Requirements practice, 213–214
Validate Selected Products and Product Components goal, 235
 Analyze Validation Results practice, 236
 Perform Validation practice, 235
Validation
 acquisition. See Acquisition Validation (AVAL) process area
criterion, 314
defined, 565
 preparing for, 231–235
requirements, 207, 213–214
 selected products and product components goal, 235–236
 suggested improvements, 361
Validation process area, 134–135
Value, delivering, 137–139
Variation in subprocesses, 466
Verification
 acquisition. See Acquisition Verification (AVER) process area
defined, 565
 preparing for, 239–241
supplier agreements, 133–137
supplier products, 207
Verify Selected Work Products goal, 243
 Analyze Verification Results practice, 244–245
 Perform Verification practice, 243–244
Version control, 565
Virtual tollgate processes, 116

W
Waterfall methods, 152–153
Weapon System Acquisition Reform Act (WSARA), 69
Weapon systems, 74–86
Williams, Ray, 151
Work breakdown structure (WBS)
 defined, 565
 establishing, 418–419
 working with, 432
Work environment
 establishing, 286–288
 standards, 330
Work groups, 565
Work level reconciliation, 440–441
Work packages, 418
Work plans, 565
Work product and task attributes, 566
Work products
 controlling, 177–178
 defined, 565–566
 estimating, 419–421
 evaluating, 446–447
 example, 16
 selecting for verification, 239–240
Work startup, 566