

Programming in
Objective-C

Third Edition

informit.com/devlibrary

Developer’s
Library

ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library books are designed to provide practicing programmers with
unique, high-quality references and tutorials on the programming languages and
technologies they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners
who are especially skilled at organizing and presenting information in a way that’s
useful for other programmers.

Key titles include some of the best, most widely acclaimed books within their
topic areas:

PHP & MySQL Web Development
Luke Welling & Laura Thomson
ISBN 978-0-672-32916-6

MySQL
Paul DuBois
ISBN-13: 978-0-672-32938-8

Linux Kernel Development
Robert Love
ISBN-13: 978-0-672-32946-3

Python Essential Reference
David Beazley
ISBN-13: 978-0-672-32978-4

PostgreSQL
Korry Douglas
ISBN-13: 978-0-672-32756-2

C++ Primer Plus
Stephen Prata
ISBN-13: 978-0321-77640-2

Developer’s Library books are available in print and in electronic formats at
most retail and online bookstores, as well as by subscription from Safari Books
Online at safari.informit.com

Developer’s Library

Programming in
Objective-C

Third Edition

Stephen G. Kochan

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Programming in Objective-C, Third Edition
Copyright © 2011 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-13: 978-0-321-71139-7
ISBN-10: 0-321-71139-4

Library of Congress Cataloging-in-Publication Data:
Kochan, Stephen G.

Programming in objective-C / Stephen G. Kochan. -- 3rd ed.
p. cm.

Includes index.
ISBN 978-0-321-71139-7 (pbk.)

1. Objective-C (Computer program language) 2. Object-oriented
programming (Computer science) 3. Macintosh (Computer)--Programming.
I. Title.

QA76.64.K655 2011
005.1'17--dc23

2011015714

Printed in the United States of America

Second Printing: August 2011

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Acquisitions Editor
Mark Taber

Development
Editor
Michael Thurston

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Indexer
Larry Sweazy

Proofreader
Kathy Ruiz

Technical Editors
Michael Trent
Wendy Mui

Publishing
Coordinator
Vanessa Evans

Designer
Gary Adair

Compositor
Mark Shirar

❖

To Roy and Ve, two people whom I dearly miss

❖

Contents at a Glance
1 Introduction 1

Part I The Objective-C Language

2 Programming in Objective-C 7

3 Classes, Objects, and Methods 27

4 Data Types and Expressions 51

5 Program Looping 69

6 Making Decisions 91

7 More on Classes 123

8 Inheritance 149

9 Polymorphism, Dynamic Typing,
and Dynamic Binding 179

10 More on Variables and Data
Types 197

11 Categories and Protocols 219

12 The Preprocessor 233

13 Underlying C Language
Features 247

Part II The Foundation Framework

14 Introduction to the Foundation
Framework 305

15 Numbers, Strings, and
Collections 309

16 Working with Files 369

17 Memory Management 397

18 Copying Objects 417

19 Archiving 429

Part III Cocoa, Cocoa Touch, and the iOS SDK

20 Introduction to Cocoa and
Cocoa Touch 445

21 Writing iOS Applications 449

Appendixes

A Glossary 481

B Address Book Source Code 489

Index 495

Table of Contents

1 Introduction 1
What You Will Learn from This Book 2

How This Book Is Organized 3

Support 5

Acknowledgments 5

Part I The Objective-C 2.0 Language

2 Programming in Objective-C 7
Compiling and Running Programs 7

Using Xcode 8

Using Terminal 15

Explanation of Your First Program 17

Displaying the Values of Variables 21

Summary 23

3 Classes, Objects, and Methods 27
What Is an Object, Anyway? 27

Instances and Methods 28

An Objective-C Class for Working with Fractions 30

The @interface Section 32

Choosing Names 33

Instance Variables 35

Class and Instance Methods 35

The @implementation Section 37

The program Section 38

Accessing Instance Variables and Data
Encapsulation 45

Summary 48

4 Data Types and Expressions 51
Data Types and Constants 51

Type int 51

Type float 52

Type char 52

ixContents

Qualifiers: long, long, long, short, unsigned,
and signed 53

Type id 54

Arithmetic Expressions 55

Operator Precedence 55

Integer Arithmetic and the Unary Minus Operator 58

The Modulus Operator 60

Integer and Floating-Point Conversions 61

The Type Cast Operator 62

Assignment Operators 63

A Calculator Class 64

5 Program Looping 69
The for Statement 70

Keyboard Input 76

Nested for Loops 78

for Loop Variants 80

The while Statement 81

The do Statement 85

The break Statement 87

The continue Statement 87

Summary 88

6 Making Decisions 91
The if Statement 91

The if-else Construct 95

Compound Relational Tests 98

Nested if Statements 101

The else if Construct 102

The switch Statement 111

Boolean Variables 114

The Conditional Operator 118

7 More on Classes 123
Separate Interface and Implementation Files 123

Synthesized Accessor Methods 128

Accessing Properties Using the Dot Operator 129

x Contents

Multiple Arguments to Methods 130

Methods Without Argument Names 132

Operations on Fractions 133

Local Variables 135

Method Arguments 136

The static Keyword 137

The self Keyword 140

Allocating and Returning Objects from
Methods 141

Extending Class Definitions and
the Interface File 146

8 Inheritance 149
It All Begins at the Root 149

Finding the Right Method 153

Extension Through Inheritance: Adding
New Methods 154

A Point Class and Memory Allocation 157

The @class Directive 159

Classes Owning Their Objects 163

Overriding Methods 167

Which Method Is Selected? 169

Overriding the dealloc Method and
the Keyword super 171

Extension Through Inheritance:
Adding New Instance Variables 173

Abstract Classes 175

9 Polymorphism, Dynamic Typing, and
Dynamic Binding 179
Polymorphism: Same Name, Different Class 179

Dynamic Binding and the id Type 182

Compile Time Versus Runtime Checking 184

The id Data Type and Static Typing 185

Argument and Return Types with Dynamic
Typing 186

Asking Questions About Classes 187

Exception Handling Using @try 191

xiContents

10 More on Variables and Data Types 197
Initializing Objects 197

Scope Revisited 200

Directives for Controlling Instance Variable
Scope 200

External Variables 201

Static Variables 203

Enumerated Data Types 205

The typedef Statement 208

Data Type Conversions 209

Conversion Rules 210

Bit Operators 211

The Bitwise AND Operator 213

The Bitwise Inclusive-OR Operator 214

The Bitwise Exclusive-OR Operator 214

The Ones Complement Operator 215

The Left Shift Operator 216

The Right Shift Operator 217

11 Categories and Protocols 219
Categories 219

Some Notes About Categories 224

Protocols and Delegation 225

Delegation 228

Informal Protocols 228

Composite Objects 229

12 The Preprocessor 233
The #define Statement 233

More Advanced Types of Definitions 235

The #import Statement 240

Conditional Compilation 241

The #ifdef, #endif, #else, and #ifndef
Statements 241

The #if and #elif Preprocessor
Statements 243

The #undef Statement 244

xii Contents

13 Underlying C Language Features 247
Arrays 248

Initializing Array Elements 250

Character Arrays 251

Multidimensional Arrays 252

Functions 254

Arguments and Local Variables 255

Returning Function Results 257

Functions, Methods, and Arrays 260

Blocks 261

Structures 265

Initializing Structures 268

Structures Within Structures 269

Additional Details About Structures 271

Don’t Forget About Object-Oriented
Programming! 273

Pointers 274

Pointers and Structures 277

Pointers, Methods, and Functions 279

Pointers and Arrays 280

Operations on Pointers 290

Pointers and Memory Addresses 291

Unions 292

They’re Not Objects! 295

Miscellaneous Language Features 295

Compound Literals 295

The goto Statement 296

The null Statement 296

The Comma Operator 297

The sizeof Operator 297

Command-Line Arguments 298

How Things Work 300

Fact #1: Instance Variables are Stored
in Structures 300

Fact #2: An Object Variable is Really a
Pointer 301

xiiiContents

Fact #3: Methods are Functions, and Message
Expressions are Function Calls 301

Fact #4: The id Type is a Generic Pointer Type 302

Part II The Foundation Framework

14 Introduction to the Foundation Framework 305
Foundation Documentation 305

15 Numbers, Strings, and Collections 309
Number Objects 309

A Quick Look at the Autorelease Pool 311

String Objects 314

More on the NSLog Function 314

The description Method 315

Mutable Versus Immutable Objects 316

Mutable Strings 322

Where Are All Those Objects Going? 326

Array Objects 328

Making an Address Book 332

Sorting Arrays 350

Dictionary Objects 356

Enumerating a Dictionary 357

Set Objects 360

NSIndexSet 363

16 Working with Files 369
Managing Files and Directories:
NSFileManager 370

Working with the NSData Class 374

Working with Directories 376

Enumerating the Contents of a Directory 378

Working with Paths: NSPathUtilities.h 380

Common Methods for Working with Paths 383

Copying Files and Using the NSProcessInfo
Class 385

Basic File Operations: NSFileHandle 389

The NSURL Class 393

The NSBundle Class 394

xiv Contents

17 Memory Management 397
The Autorelease Pool 397

Reference Counting 398

Reference Counting and Strings 401

Instance Variables 403

An Autorelease Example 409

Summary of Memory-Management Rules 410

More on the Event Loop and Memory Allocation 411

Finding Memory Leaks 413

Garbage Collection 413

18 Copying Objects 417
The copy and mutableCopy Methods 418

Shallow Versus Deep Copying 420

Implementing the <NSCopying> Protocol 422

Copying Objects in Setter and Getter Methods 425

19 Archiving 429
Archiving with XML Property Lists 429

Archiving with NSKeyedArchiver 431

Writing Encoding and Decoding Methods 433

Using NSData to Create Custom Archives 440

Using the Archiver to Copy Objects 443

Part III Cocoa, Cocoa Touch, and the iOS SDK

20 Introduction to Cocoa and Cocoa Touch 445
Framework Layers 445

Cocoa Touch 446

21 Writing iOS Applications 449
The iOS SDK 449

Your First iPhone Application 449

Creating a New iPhone Application Project 452

Entering Your Code 455

Designing the Interface 458

xvContents

An iPhone Fraction Calculator 464

Starting the New Fraction_Calculator
Project 465

Defining the View Controller 468

The Fraction Class 472

A Calculator Class That Deals with Fractions 475

Designing the UI 477

Summary 478

Appendixes

A Glossary 481

B Address Book Source Code 489

Index 495

About the Author
Stephen Kochan is the author and coauthor of several bestselling titles on the C
language, including Programming in C (Sams, 2004), Programming in ANSI C (Sams, 1994),
and Topics in C Programming (Wiley, 1991), and several Unix titles, including Exploring
the Unix System (Sams, 1992) and Unix Shell Programming (Sams, 2003). He has been
programming on Macintosh computers since the introduction of the first Mac in 1984,
and he wrote Programming C for the Mac as part of the Apple Press Library. In 2003 Kochan
wrote Programming in Objective-C (Sams, 2003), and followed that with another Mac-related
title, Beginning AppleScript (Wiley, 2004).

About the Technical Reviewers
Wendy Mui is a programmer and software development manager in the San Francisco
Bay Area.After learning Objective-C from the second edition of Steve Kochan’s book,
she landed a job at Bump Technologies, where she put her programming skills to good
use working on the client app and the API/SDK for Bump’s third party developers.
Prior to her iOS experience,Wendy spent her formative years at Sun and various other
tech companies in Silicon Valley and San Francisco. She got hooked on programming
while earning a B.A. in Mathematics from University of California Berkeley.When not
working,Wendy is pursuing her 4th Dan Tae Kwon Do black belt.

Michael Trent has been programming in Objective-C since 1997—and programming Macs
since well before that. He is a regular contributor to Steven Frank’s www.cocoadev.com Web
site, a technical reviewer for numerous books and magazine articles, and an occasional
dabbler in Mac OS X open source projects. Currently, he is using Objective-C and Apple
Computer’s Cocoa frameworks to build professional video applications for Mac OS X.
Michael holds a Bachelor of Science degree in computer science and a Bachelor of Arts
degree in music from Beloit College of Beloit,Wisconsin. He lives in Santa Clara,
California, with his lovely wife,Angela.

www.cocoadev.com

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator.We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write directly to let us know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail we receive, we might not be able to reply to every message.

When you write, please be sure to include this book’s title and author, as well as your
name and phone or email address.

E-mail: feedback@developers-library.info
Mail: Reader Feedback

Addison-Wesley Developer's Library
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at www.informit.com/register for convenient
access to any updates, downloads, or errata that might be available for this book.

www.informit.com/register

This page intentionally left blank

3
Classes, Objects, and Methods

In this chapter, you’ll learn about some key concepts in object-oriented programming
and start working with classes in Objective-C.You’ll need to learn a little bit of terminol-
ogy, but we keep it fairly informal.We also cover only some of the basic terms here
because you can easily get overwhelmed. Refer to Appendix A,“Glossary,” at the end of
this book, for more precise definitions of these terms.

What Is an Object, Anyway?
An object is a thing.Think about object-oriented programming as a thing and some-
thing you want to do to that thing.This is in contrast to a programming language such as
C, known as a procedural programming language. In C, you typically think about what
you want to do first and then you worry about the objects, almost the opposite of object
orientation.

Consider an example from everyday life. Let’s assume that you own a car, which is
obviously an object, and one that you own.You don’t have just any car; you have a partic-
ular car that was manufactured in a factory, maybe in Detroit, maybe in Japan, or maybe
someplace else.Your car has a vehicle identification number (VIN) that uniquely identifies
that car here in the United States.

In object-oriented parlance, your particular car is an instance of a car. Continuing with
the terminology, car is the name of the class from which this instance was created. So
each time a new car is manufactured, a new instance from the class of cars is created, and
each instance of the car is referred to as an object.

Your car might be silver, have a black interior, be a convertible or hardtop, and so on.
Additionally, you perform certain actions with your car. For example, you drive your car,
fill it with gas, (hopefully) wash it, take it in for service, and so on.Table 3.1 depicts this.

28 Chapter 3 Classes, Objects, and Methods

The actions listed inTable 3.1 can be done with your car, and they can be done with
other cars as well. For example, your sister drives her car, washes it, fills it with gas, and so on.

Instances and Methods
A unique occurrence of a class is an instance, and the actions that are performed on the
instance are called methods. In some cases, a method can be applied to an instance of the
class or to the class itself. For example, washing your car applies to an instance (in fact,
all the methods listed in Table 3.1 can be considered instance methods). Finding out
how many types of cars a manufacturer makes would apply to the class, so it would be a
class method.

Suppose you have two cars that came off the assembly line and are seemingly identical:
They both have the same interior, same paint color, and so on.They might start out the
same, but as each car is used by its respective owner, its unique characteristics or properties
change. For example, one car might end up with a scratch on it and the other might have
more miles on it. Each instance or object contains not only information about its initial
characteristics acquired from the factory, but also its current characteristics.Those charac-
teristics can change dynamically.As you drive your car, the gas tank becomes depleted, the
car gets dirtier, and the tires get a little more worn.

Applying a method to an object can affect the state of that object. If your method is to
“fill up my car with gas,” after that method is performed, your car’s gas tank will be full.
The method then will have affected the state of the car’s gas tank.

The key concepts here are that objects are unique representations from a class, and
each object contains some information (data) that is typically private to that object.The
methods provide the means of accessing and changing that data.

The Objective-C programming language has the following particular syntax for apply-
ing methods to classes and instances:

[ClassOrInstance method];

In this syntax, a left bracket is followed by the name of a class or instance of that class,
which is followed by one or more spaces, which is followed by the method you want to
perform. Finally, it is closed off with a right bracket and a terminating semicolon.When
you ask a class or an instance to perform some action, you say that you are sending it a

Table 3.1 Actions on Objects

Object What You Do with It

[Your car] Drive it

Fill it with gas

Wash it

Service it

29Instances and Methods

message; the recipient of that message is called the receiver. So another way to look at the
general format described previously is as follows:

[receiver message] ;

Let’s go back to the previous list and write everything in this new syntax. Before you
do that, though, you need to get your new car. Go to the factory for that, like so:

yourCar = [Car new]; get a new car

You send a new message to the Car class (the receiver of the message) asking it to give
you a new car.The resulting object (which represents your unique car) is then stored in
the variable yourCar. From now on, yourCar can be used to refer to your instance of the
car, which you got from the factory.

Because you went to the factory to get the car, the method new is called a factory or
class method.The rest of the actions on your new car will be instance methods because
they apply to your car. Here are some sample message expressions you might write for
your car:

[yourCar prep]; get it ready for first-time use

[yourCar drive]; drive your car

[yourCar wash]; wash your car

[yourCar getGas]; put gas in your car if you need it

[yourCar service]; service your car

[yourCar topDown]; if it's a convertible

[yourCar topUp];

currentMileage = [yourCar odometer];

This last example shows an instance method that returns information—presumably, the
current mileage, as indicated on the odometer. Here we store that information inside a
variable in our program called currentMileage.

Here’s an example of where a method takes an argument that specifies a particular value
that may differ from one method call to the next:

[yourCar setSpeed: 55]; set the speed to 55 mph

Your sister, Sue, can use the same methods for her own instance of a car:

[suesCar drive];

[suesCar wash];

[suesCar getGas];

Applying the same methods to different objects is one of the key concepts of object-
oriented programming, and you’ll learn more about it later.

You probably won’t need to work with cars in your programs.Your objects will likely
be computer-oriented things, such as windows, rectangles, pieces of text, or maybe even a
calculator or a playlist of songs.And just like the methods used for your cars, your meth-
ods might look similar, as in the following:

30 Chapter 3 Classes, Objects, and Methods

An Objective-C Class for Working with Fractions
Now it’s time to define an actual class in Objective-C and learn how to work with
instances of the class.

Once again, you’ll learn procedure first.As a result, the actual program examples might
not seem very practical.We get into more practical stuff later.

Suppose you need to write a program to work with fractions. Maybe you need to deal
with adding, subtracting, multiplying, and so on. If you didn’t know about classes, you
might start with a simple program that looked like this:

Program 3.1

// Simple program to work with fractions

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int numerator = 1;
int denominator = 3;
NSLog (@"The fraction is %i/%i", numerator, denominator);

[pool drain];
return 0;

}

Program 3.1 Output

The fraction is 1/3

In Program 3.1 the fraction is represented in terms of its numerator and denominator.
After the autorelease pool is created, the two lines in main both declare the variables
numerator and denominator as integers and assign them initial values of 1 and 3, respec-
tively.This is equivalent to the following lines:

int numerator, denominator;

numerator = 1;

denominator = 3;

[myWindow erase]; Clear the window

theArea = [myRect area]; Calculate the area of the rectangle

[userText spellCheck]; Spell-check some text

[deskCalculator clearEntry]; Clear the last entry

[favoritePlaylist showSongs]; Show the songs in a playlist of favorites

[phoneNumber dial]; Dial a phone number

[myTable reloadData]; Show the updated table’s data

n = [aTouch tapCount]; Store the number of times the display was tapped

31An Objective-C Class for Working with Fractions

We represented the fraction 1/3 by storing 1 in the variable numerator and 3 in the
variable denominator. If you needed to store a lot of fractions in your program, this could
be cumbersome. Each time you wanted to refer to the fraction, you’d have to refer to the
corresponding numerator and denominator.And performing operations on these fractions
would be just as awkward.

It would be better if you could define a fraction as a single entity and collectively refer
to its numerator and denominator with a single name, such as myFraction.You can do
that in Objective-C, and it starts by defining a new class.

Program 3.2 duplicates the functionality of Program 3.1 using a new class called
Fraction. Here, then, is the program, followed by a detailed explanation of how it works.

Program 3.2

// Program to work with fractions – class version

#import <Foundation/Foundation.h>

//---- @interface section ----

@interface Fraction: NSObject
{

int numerator;
int denominator;

}

-(void) print;
-(void) setNumerator: (int) n;
-(void) setDenominator: (int) d;

@end

//---- @implementation section ----

@implementation Fraction
-(void) print
{

NSLog (@"%i/%i", numerator, denominator);
}

-(void) setNumerator: (int) n
{

numerator = n;
}

-(void) setDenominator: (int) d
{

denominator = d;
}

@end

//---- program section ----

32 Chapter 3 Classes, Objects, and Methods

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Fraction *myFraction;

// Create an instance of a Fraction

myFraction = [Fraction alloc];
myFraction = [myFraction init];

// Set fraction to 1/3

[myFraction setNumerator: 1];
[myFraction setDenominator: 3];

// Display the fraction using the print method

NSLog (@"The value of myFraction is:");
[myFraction print];
[myFraction release];

[pool drain];
return 0;

}

Program 3.2 Output

The value of myFraction is:

1/3

As you can see from the comments in Program 3.2, the program is logically divided
into three sections:

n @interface section
n @implementation section
n program section

The @interface section describes the class, its data components, and its methods,
whereas the @implementation section contains the actual code that implements these
methods. Finally, the program section contains the program code to carry out the
intended purpose of the program.

Each of these sections is a part of every Objective-C program, even though you might
not need to write each section yourself.As you’ll see, each section is typically put in its
own file. For now, however, we keep it all together in a single file.

The @interface Section
When you define a new class, you have to do a few things. First, you have to tell the
Objective-C compiler where the class came from.That is, you have to name its parent
class. Second, you have to specify what type of data is to be stored in the objects of this

33The @interface Section

class.That is, you have to describe the data that members of the class will contain.These
members are called the instance variables. Finally, you need to define the type of operations,
or methods, that can be used when working with objects from this class.This is all done in
a special section of the program called the @interface section.The general format of this
section looks like this:

@interface NewClassName: ParentClassName

{

memberDeclarations;

}

methodDeclarations;

@end

By convention, class names begin with an uppercase letter, even though it’s not
required.This enables someone reading your program to distinguish class names from
other types of variables by simply looking at the first character of the name. Let’s take a
short diversion to talk a little about forming names in Objective-C.

Choosing Names
In Chapter 2,“Programming in Objective-C,” you used several variables to store integer
values. For example, you used the variable sum in Program 2.4 to store the result of the
addition of the two integers 50 and 25.

The Objective-C language allows you to store data types other than just integers in
variables as well, as long as the proper declaration for the variable is made before it is used
in the program.Variables can be used to store floating-point numbers, characters, and even
objects (or, more precisely, references to objects).

The rules for forming names are quite simple:They must begin with a letter or under-
score (_), and they can be followed by any combination of letters (upper- or lowercase),
underscores, or the digits 0–9.The following is a list of valid names:

n sum

n pieceFlag

n i

n myLocation

n numberOfMoves

n sysFlag

n ChessBoard

On the other hand, the following names are not valid for the stated reasons:

n sum$value $—is not a valid character.
n piece flag—Embedded spaces are not permitted.

34 Chapter 3 Classes, Objects, and Methods

n 3Spencer—Names can’t start with a number.
n int—This is a reserved word.

int cannot be used as a variable name because its use has a special meaning to the
Objective-C compiler.This use is known as a reserved name or reserved word. In general, any
name that has special significance to the Objective-C compiler cannot be used as a vari-
able name.

Always remember that upper- and lowercase letters are distinct in Objective-C.There-
fore, the variable names sum, Sum, and SUM each refer to a different variable.As noted,
when naming a class, start it with a capital letter. Instance variables, objects, and method
names, on the other hand, typically begin with lowercase letters.To aid readability, capital
letters are used inside names to indicate the start of a new word, as in the following
examples:

n AddressBook—This could be a class name.
n currentEntry—This could be an object.
n current_entry—Some programmers use underscores as word separators.
n addNewEntry—This could be a method name.

When deciding on a name, keep one recommendation in mind: Don’t be lazy. Pick
names that reflect the intended use of the variable or object.The reasons are obvious. Just
as with the comment statement, meaningful names can dramatically increase the readabil-
ity of a program and will pay off in the debug and documentation phases. In fact, the doc-
umentation task will probably be much easier because the program will be more
self-explanatory.

Here, again, is the @interface section from Program 3.2:

//---- @interface section ----

@interface Fraction: NSObject

{

int numerator;

int denominator;

}

-(void) print;

-(void) setNumerator: (int) n;

-(void) setDenominator: (int) d;

@end

The name of the new class is Fraction, and its parent class is NSObject. (We talk in
greater detail about parent classes in Chapter 8,“Inheritance.”) The NSObject class is

35The @interface Section

defined in the file NSObject.h, which is automatically included in your program when-
ever you import Foundation.h.

Instance Variables
The memberDeclarations section specifies what types of data are stored in a Fraction,
along with the names of those data types.As you can see, this section is enclosed inside its
own set of curly braces. For your Fraction class, these declarations say that a Fraction
object has two integer members, called numerator and denominator:

int numerator;

int denominator;

The members declared in this section are known as the instance variables.As you’ll
see, each time you create a new object, a new and unique set of instance variables also is
created.Therefore, if you have two Fractions, one called fracA and another called
fracB, each will have its own set of instance variables.That is, fracA and fracB each will
have its own separate numerator and denominator.The Objective-C system automati-
cally keeps track of this for you, which is one of the nicer things about working with
objects.

Class and Instance Methods
You have to define methods to work with your Fractions.You need to be able to set the
value of a fraction to a particular value. Because you won’t have direct access to the inter-
nal representation of a fraction (in other words, direct access to its instance variables), you
must write methods to set the numerator and denominator.You’ll also write a method
called print that will display the value of a fraction. Here’s what the declaration for the
print method looks like in the interface file:

-(void) print;

The leading minus sign (-) tells the Objective-C compiler that the method is an
instance method.The only other option is a plus sign (+), which indicates a class method.
A class method is one that performs some operation on the class itself, such as creating a
new instance of the class.

An instance method performs some operation on a particular instance of a class, such
as setting its value, retrieving its value, displaying its value, and so on. Referring to the car
example, after you have manufactured the car, you might need to fill it with gas.The
operation of filling it with gas is performed on a particular car, so it is analogous to an
instance method.

36 Chapter 3 Classes, Objects, and Methods

Return Values
When you declare a new method, you have to tell the Objective-C compiler whether the
method returns a value and, if it does, what type of value it returns.You do this by enclos-
ing the return type in parentheses after the leading minus or plus sign. So this declaration
specifies that the instance method called currentAge returns an integer value:

–(int) currentAge;

Similarly, this line declares a method that returns a double precision value. (You’ll learn
more about this data type in Chapter 4,“Data Types and Expressions.”)

–(double) retrieveDoubleValue;

A value is returned from a method using the Objective-C return statement, similar to
the way in which we returned a value from main in previous program examples.

If the method returns no value, you indicate that using the type void, as in the following:

–(void) print;

This declares an instance method called print that returns no value. In such a case,
you do not need to execute a return statement at the end of your method.Alternatively,
you can execute a return without any specified value, as in the following:

return;

Method Arguments
Two other methods are declared in the @interface section from Program 3.2:

–(void) setNumerator: (int) n;

–(void) setDenominator: (int) d;

These are both instance methods that return no value. Each method takes an integer
argument, which is indicated by the (int) in front of the argument name. In the case of
setNumerator, the name of the argument is n.This name is arbitrary and is the name the
method uses to refer to the argument.Therefore, the declaration of setNumerator speci-
fies that one integer argument, called n, will be passed to the method and that no value
will be returned.This is similar for setDenominator, except that the name of its argu-
ment is d.

Notice the syntax of the declaration for these methods. Each method name ends with
a colon, which tells the Objective-C compiler that the method expects to see an argu-
ment. Next, the type of the argument is specified, enclosed in a set of parentheses, in
much the same way the return type is specified for the method itself. Finally, the symbolic
name to be used to identify that argument in the method is specified.The entire declara-
tion is terminated with a semicolon. Figure 3.1 depicts this syntax.

37The @implementation Section

When a method takes an argument, you also append a colon to the method name
when referring to the method.Therefore, setNumerator: and setDenominator: is the
correct way to identify these two methods, each of which takes a single argument.Also,
identifying the print method without a trailing colon indicates that this method does
not take any arguments. In Chapter 7,“More on Classes,” you’ll see how methods that
take more than one argument are identified.

The @implementation Section
As noted, the @implementation section contains the actual code for the methods you
declared in the @interface section. Just as a point of terminology, you say that you
declare the methods in the @interface section and that you define them (that is, give the
actual code) in the @implementation section.

The general format for the @implementation section is as follows:

@implementation NewClassName

methodDefinitions;

@end

NewClassName is the same name that was used for the class in the @interface section.
You can use the trailing colon followed by the parent class name, as we did in the
@interface section:

@implementation Fraction: NSObject

However, this is optional and typically not done.
The methodDefinitions part of the @implementation section contains the code for

each method specified in the @interface section. Similar to the @interface section,
each method’s definition starts by identifying the type of method (class or instance), its
return type, and its arguments and their types. However, instead of the line ending with a
semicolon, the code for the method follows, enclosed inside a set of curly braces.

Consider the @implementation section from Program 3.2:

//---- @implementation section ----

@implementation Fraction

–(void) print

{

NSLog (@"%i/%i", numerator, denominator);

}

- (void) setNumerator: (int) n;

method
type

return
type

method
name

method
takes

argument

argument
type

argument
name

Figure 3.1 Declaring a method

38 Chapter 3 Classes, Objects, and Methods

–(void) setNumerator: (int) n

{

numerator = n;

}

–(void) setDenominator: (int) d

{

denominator = d;

}

@end

The print method uses NSLog to display the values of the instance variables
numerator and denominator. But to which numerator and denominator does this
method refer? It refers to the instance variables contained in the object that is the receiver
of the message.That’s an important concept, and we return to it shortly.

The setNumerator: method stores the integer argument you called n in the instance
variable numerator. Similarly, setDenominator: stores the value of its argument d in the
instance variable denominator.

The program Section
The program section contains the code to solve your particular problem, which can be
spread out across many files, if necessary. Somewhere you must have a routine called main,
as we’ve previously noted.That’s where your program always begins execution. Here’s the
program section from Program 3.2:

//---- program section ----

int main (int argc, char *argv[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Fraction *myFraction;

// Create an instance of a Fraction and initialize it

myFraction = [Fraction alloc];

myFraction = [myFraction init];

// Set fraction to 1/3

[myFraction setNumerator: 1];

[myFraction setDenominator: 3];

39The program Section

// Display the fraction using the print method

NSLog (@"The value of myFraction is:");

[myFraction print];

[myFraction release];

[pool drain];

return 0;

}

Inside main, you define a variable called myFraction with the following line:

Fraction *myFraction;

This line says that myFraction is an object of type Fraction; that is, myFraction is
used to store values from your new Fraction class.The asterisk that precedes the variable
name is described in more detail below.

Now that you have an object to store a Fraction, you need to create one, just as you
ask the factory to build you a new car.This is done with the following line:

myFraction = [Fraction alloc];

alloc is short for allocate.You want to allocate memory storage space for a new frac-
tion.This expression sends a message to your newly created Fraction class:

[Fraction alloc]

You are asking the Fraction class to apply the alloc method, but you never defined
an alloc method, so where did it come from? The method was inherited from a parent
class. Chapter 8,“Inheritance” deals with this topic in detail.

When you send the alloc message to a class, you get back a new instance of that class.
In Program 3.2, the returned value is stored inside your variable myFraction.The alloc
method is guaranteed to zero out all of an object’s instance variables. However, that
doesn’t mean that the object has been properly initialized for use.You need to initialize an
object after you allocate it.

This is done with the next statement in Program 3.2, which reads as follows:

myFraction = [myFraction init];

Again, you are using a method here that you didn’t write yourself.The init method
initializes the instance of a class. Note that you are sending the init message to
myFraction.That is, you want to initialize a specific Fraction object here, so you don’t
send it to the class—you send it to an instance of the class. Make sure you understand this
point before continuing.

The init method also returns a value—namely, the initialized object.You store the
return value in your Fraction variable myFraction.

40 Chapter 3 Classes, Objects, and Methods

The two-line sequence of allocating a new instance of class and then initializing it is
done so often in Objective-C that the two messages are typically combined, as follows:

myFraction = [[Fraction alloc] init];

This inner message expression is evaluated first:

[Fraction alloc]

As you know, the result of this message expression is the actual Fraction that is allo-
cated. Instead of storing the result of the allocation in a variable, as you did before, you
directly apply the init method to it. So, again, first you allocate a new Fraction and
then you initialize it.The result of the initialization is then assigned to the myFraction
variable.

As a final shorthand technique, the allocation and initialization is often incorporated
directly into the declaration line, as in the following:

Fraction *myFraction = [[Fraction alloc] init];

We use this coding style often throughout the remainder of this book, so it’s important
that you understand it.You’ve seen in every program up to this point with the allocation
of the autorelease pool:

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Here an alloc message is sent to the NSAutoreleasePool class requesting that a new
instance be created.The init message then is sent to the newly created object to get it
initialized.

Returning to Program 3.2, you are now ready to set the value of your fraction.These
program lines do just that:

// Set fraction to 1/3

[myFraction setNumerator: 1];

[myFraction setDenominator: 3];

The first message statement sends the setNumerator: message to myFraction.The
argument that is supplied is the value 1. Control is then sent to the setNumerator:
method you defined for your Fraction class.The Objective-C system knows that it is the
method from this class to use because it knows that myFraction is an object from the
Fraction class.

Inside the setNumerator: method, the passed value of 1 is stored inside the variable n.
The single program line in that method stores that value in the instance variable
numerator. So you have effectively set the numerator of myFraction to 1.

The message that invokes the setDenominator: method on myFraction follows next.
The argument of 3 is assigned to the variable d inside the setDenominator: method.
This value is then stored inside the denominator instance variable, thus completing the

41The program Section

assignment of the value 1/3 to myFraction. Now you’re ready to display the value of
your fraction, which you do with the following lines of code from Program 3.2:

// Display the fraction using the print method

NSLog (@"The value of myFraction is:");

[myFraction print];

The NSLog call simply displays the following text:

The value of myFraction is:

The following message expression invokes the print method:

[myFraction print];

Inside the print method, the values of the instance variables numerator and
denominator are displayed, separated by a slash character.

The message in the program releases or frees the memory that was used for the
Fraction object:

[myFraction release];

This is a critical part of good programming style.Whenever you create a new object,
you are asking for memory to be allocated for that object.Also, when you’re done with
the object, you are responsible for releasing the memory it uses.Although it’s true that the
memory will be released when your program terminates anyway, after you start develop-
ing more sophisticated applications, you can end up working with hundreds (or thou-
sands) of objects that consume a lot of memory.Waiting for the program to terminate for
the memory to be released is wasteful of memory, can slow your program’s execution, and
is not good programming style. So get into the habit of releasing memory when you can
right now.

The Apple runtime system provides a mechanism known as garbage collection that facili-
tates automatic cleanup of memory. However, it’s best to learn how to manage your
memory usage yourself instead of relying on this automated mechanism. In fact, you can’t
rely on garbage collection when programming for certain platforms on which garbage
collection is not supported, such as the iPhone or iPad. For that reason, we don’t talk
about garbage collection until much later in this book.

It seems as if you had to write a lot more code to duplicate in Program 3.2 what you
did in Program 3.1.That’s true for this simple example here; however, the ultimate goal in
working with objects is to make your programs easier to write, maintain, and extend.
You’ll realize that later.

Let’s go back for a second to the declaration of myFraction

Fraction *myFraction;

and the subsequent setting of its values.

42 Chapter 3 Classes, Objects, and Methods

myFraction

Figure 3.2 Declaring
Fraction *myFraction;

Figure 3.3 Relationship between myFraction
and its data

The asterisk (*) in front of myFraction in its declaration says that myFraction is actu-
ally a reference (or pointer) to a Fraction object.The variable myFraction doesn’t actu-
ally store the fraction’s data (that is, its numerator and denominator values). Instead, it
stores a reference—which is a actually a memory address—indicating where the object’s
data is located in memory.When you first declare myFraction as shown, its value is unde-
fined as it has not been set to any value and does not have a default value.We can con-
ceptualize myFraction as a box that holds a value. Initially the box contains some
undefined value, as it hasn’t been assigned any value.This is depicted in Figure 3.2.

When you allocate a new object (using alloc, for example) enough space is reserved
in memory to store the object’s data, which inclues space for its instance variables, plus a
little more.The location of where that data is stored (the reference to the data) is returned
by the alloc routine, and assigned to the variable myFraction.This all takes place when
this statement in executed in Program 3.2.
myFraction = [Fraction alloc];

The allocation of the object and the storage of the reference to that object in
myFraction is depicted in Figure 3.3:

Note
There’s some more data stored with the object than that indicated, but you don’t need to
worry about that here. You’ll note that the instance variables are shown as being set to 0.
That’s currently being handled by the alloc method. However, the object still has not been
properly initialized. You still need to use the init method on the newly allocated object.

Note
Note that Xcode inserts a space after the * when it generates the first line in main that
creates an NSAutoreleasepool object. It’s not needed, so we won’t do that for our
objects, as most programmers don’t either.

Notice the directed line in Figure 3.3.This indicates the connection that has been
made between the variable myFraction and the allocated object. (The value stored inside
myFraction is actually a memory address. It’s at that memory address that the object’s data
is stored.)

myFraction

Object’s data

0 numerator

0 denominator

43The program Section

myFraction

Object’s data

1 numerator

3 denominator

Figure 3.4 Setting the fraction’s numerator
and denominator

Subsequently in Program 3.2, the fraction’s numerator and denominator are set. Figure
3.4 depicts the fully initialized Fraction object with its numerator set to 1 and its
denominator set to 3.

The next example shows how you can work with more than one fraction in your pro-
gram. In Program 3.3, you set one fraction to 2/3, set another to 3/7, and display them both.

Program 3.3

// Program to work with fractions – cont'd

#import <Foundation/Foundation.h>

//---- @interface section ----

@interface Fraction: NSObject
{

int numerator;
int denominator;

}

-(void) print;
-(void) setNumerator: (int) n;
-(void) setDenominator: (int) d;

@end

//---- @implementation section ----

@implementation Fraction
-(void) print
{

NSLog (@"%i/%i", numerator, denominator);
}

-(void) setNumerator: (int) n
{

numerator = n;
}

-(void) setDenominator: (int) d
{

denominator = d;
}

44 Chapter 3 Classes, Objects, and Methods

@end

//---- program section ----

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Fraction *frac1 = [[Fraction alloc] init];
Fraction *frac2 = [[Fraction alloc] init];

// Set 1st fraction to 2/3

[frac1 setNumerator: 2];
[frac1 setDenominator: 3];

// Set 2nd fraction to 3/7

[frac2 setNumerator: 3];
[frac2 setDenominator: 7];

// Display the fractions

NSLog (@"First fraction is:");
[frac1 print];

NSLog (@"Second fraction is:");
[frac2 print];

[frac1 release];
[frac2 release];

[pool drain];
return 0;

}

Program 3.3 Output

First fraction is:
2/3
Second fraction is:

3/7

The @interface and @implementation sections remain unchanged from Program 3.2.
The program creates two Fraction objects, called frac1 and frac2, and then assigns
the value 2/3 to the first fraction and 3/7 to the second. Realize that when the
setNumerator: method is applied to frac1 to set its numerator to 2, the instance variable
frac1 gets its instance variable numerator set to 2.Also, when frac2 uses the same
method to set its numerator to 3, its distinct instance variable numerator is set to the
value 3. Each time you create a new object, it gets its own distinct set of instance variables.
Figure 3.5 depicts this.

45Accessing Instance Variables and Data Encapsulation

Based on which object is getting sent the message, the correct instance variables are
referenced.Therefore, here frac1’s numerator is referenced whenever setNumerator:
uses the name numerator inside the method:

[frac1 setNumerator: 2];

That’s because frac1 is the receiver of the message.

Accessing Instance Variables and Data
Encapsulation
You’ve seen how the methods that deal with fractions can access the two instance vari-
ables numerator and denominator directly by name. In fact, an instance method can
always directly access its instance variables.A class method can’t, however, because it’s deal-
ing only with the class itself, not with any instances of the class (think about that for a sec-
ond). But what if you wanted to access your instance variables from someplace else—for
example, from inside your main routine? You can’t do that directly because they are hid-
den.The fact that they are hidden from you is a key concept called data encapsulation. It
enables someone writing class definitions to extend and modify the class definitions, with-
out worrying about whether programmers (that is, users of the class) are tinkering with
the internal details of the class. Data encapsulation provides a nice layer of insulation
between the programmer and the class developer.

You can access your instance variables in a clean way by writing special methods to set
and retrieve their values.We wrote setNumerator: and setDenominator: methods to set
the values of the two instance variables in our Fraction class.To retrieve the values of
those instance variables, you’ll need to write two new methods. For example, you’ll create
two new methods called, appropriately enough, numerator and denominator to access
the corresponding instance variables of the Fraction that is the receiver of the message.
The result is the corresponding integer value, which you return. Here are the declarations
for your two new methods:

–(int) numerator;

–(int) denominator;

And here are the definitions:

–(int) numerator

{

Object

Instance
Variables

frac1

numerator 2
denominator 3

frac2

numerator 3
denominator 7

Figure 3.5 Unique instance variables

46 Chapter 3 Classes, Objects, and Methods

return numerator;

}

–(int) denominator

{

return denominator;

}

Note that the names of the methods and the instance variables they access are the
same.There’s no problem doing this (although it might seem a little odd at first); in fact, it
is common practice. Program 3.4 tests your two new methods.

Program 3.4

// Program to access instance variables – cont'd

#import <Foundation/Foundation.h>

//---- @interface section ----

@interface Fraction: NSObject
{

int numerator;
int denominator;

}

-(void) print;
-(void) setNumerator: (int) n;
-(void) setDenominator: (int) d;
-(int) numerator;
-(int) denominator;

@end

//---- @implementation section ----

@implementation Fraction
-(void) print
{

NSLog (@"%i/%i", numerator, denominator);
}

-(void) setNumerator: (int) n
{

numerator = n;
}

-(void) setDenominator: (int) d
{

denominator = d;
}

-(int) numerator
{

return numerator;
}

47Accessing Instance Variables and Data Encapsulation

-(int) denominator
{

return denominator;
}

@end

//---- program section ----

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Fraction *myFraction = [[Fraction alloc] init];

// Set fraction to 1/3

[myFraction setNumerator: 1];
[myFraction setDenominator: 3];

// Display the fraction using our two new methods

NSLog (@"The value of myFraction is: %i/%i",
[myFraction numerator], [myFraction denominator]);

[myFraction release];
[pool drain];

return 0;

}

Program 3.4 Output

The value of myFraction is 1/3

This NSLog statement displays the results of sending two messages to myFraction: the
first to retrieve the value of its numerator, and the second the value of its denominator:

NSLog (@"The value of myFraction is: %i/%i",

[myFraction numerator], [myFraction denominator]);

So, in the first message call, the numerator message will be sent to the Fraction object
myFraction. In that method, the code will return the value of the numerator instance vari-
able for that fraction. Remember, the context of a method while it is executing is the object
that is the receiver of the message. So when the numerator method accesses and returns the
value of the numerator instance variable, it’s myFraction’s numerator that will be accessed
and returned.That returned integer value is then passed along to NSLog to be displayed.

For the second message call, the denominator method will be called to access and return
the value of myFraction’s denominator, which is then passed to NSLog to be displayed.

Incidentally, methods that set the values of instance variables are often collectively
referred to as setters, and methods used to retrieve the values of instance variables are called
getters. For the Fraction class, setNumerator: and setDenominator: are the setters, and
numerator and denominator are the getters. Collectively, setters and getters are also
referred to as accessor methods.

48 Chapter 3 Classes, Objects, and Methods

Note
Soon you’ll learn a convenient feature of Objective-C 2.0 that allows for the automatic cre-
ation of getter and setter methods.

Make sure you understand the difference between setters and the getters.The setters
don’t return a value because their purpose is to take an argument and to set the corre-
sponding instance variable to the value of that argument. No value needs to be returned
in that case.That’s the purpose of a setter: to set the value of an instance variable, so setters
typically do not return values. On the other hand, the purpose of the getter is to “get” the
value of an instance variable stored in an object and to send it back to the program. In
order to do that, the getter must return the value of the instance variable using the return
statement.

Again, the idea that you can’t directly set or get the value of an instance variable from
outside of the methods written for the class, but instead have to write setter and getter
methods to do so is the principle of data encapsulation. So you have to use methods to
access this data that is normally hidden to the “outside world.”This provides a centralized
path to the instance variables and prevents some other code from indirectly changing
these values, which would make your programs harder to follow, debug, and modify.

We should also point out that there’s also a method called new that combines the
actions of an alloc and init. So this line could be used to allocate and initialize a new
Fraction:

Fraction *myFraction = [Fraction new];

It’s generally better to use the two-step allocation and initialization approach so you
conceptually understand that two distinct events are occurring:You’re first creating a new
object and then you’re initializing it.

Summary
Now you know how to define your own class, create objects or instances of that class, and
send messages to those objects.We return to the Fraction class in later chapters.You’ll
learn how to pass multiple arguments to your methods, how to divide your class defini-
tions into separate files, and also how to use key concepts such as inheritance and dynamic
binding. However, now it’s time to learn more about data types and writing expressions in
Objective-C. First, try the exercises that follow to test your understanding of the impor-
tant points covered in this chapter.

Exercises
1. Which of the following are invalid names? Why?

Int playNextSong 6_05

_calloc Xx alphaBetaRoutine

clearScreen _1312 z

ReInitialize _ A$

49Exercises

2. Based on the example of the car in this chapter, think of an object you use every
day. Identify a class for that object and write five actions you do with that object.

3. Given the list in exercise 2, use the following syntax to rewrite your list in this
format:
[instance method];

4. Imagine that you owned a boat and a motorcycle in addition to a car. List the
actions you would perform with each of these. Do you have any overlap between
these actions?

5. Based on question 4, imagine that you had a class called Vehicle and an object
called myVehicle that could be either Car, Motorcycle, or Boat. Imagine that you
wrote the following:
[myVehicle prep];

[myVehicle getGas];

[myVehicle service];

Do you see any advantages of being able to apply an action to an object that could
be from one of several classes?

6. In a procedural language such as C, you think about actions and then write code to
perform the action on various objects. Referring to the car example, you might
write a procedure in C to wash a vehicle and then inside that procedure write code
to handle washing a car, washing a boat, washing a motorcycle, and so on. If you
took that approach and then wanted to add a new vehicle type (see the previous
exercise), do you see advantages or disadvantages to using this procedural approach
over an object-oriented approach?

7. Define a class called XYPoint that will hold a Cartesian coordinate (x, y), where x
and y are integers. Define methods to individually set the x and y coordinates of a
point and retrieve their values.Write an Objective-C program to implement your
new class and test it.

This page intentionally left blank

Index

SYMBOLS
== (double equals sign), 98

; (semicolon), 19

_ (underscore), 33

\’0’\ (null characters), 251

\ (backslash), 20

!= (not equal to) operator, 72

#define statement, 233-239

#elif statements, 243-244

#else statements, 241-243

#endif statements, 241-243

#ifdef statements, 241-243

#ifndef statements, 241-243

#if statements, 243-244

#import statements, 234, 240-241

#include statements, 234

#undef statements, 244

% (modulus operator), 60-61

& operator, 239

& (address) operator, 274

* (asterisk), 42, 55,

++ (increment operators), 282, 287

+ (plus sign), 55

+ (unary plus operator), 59

+= (plus equals) operator, 63

++ (increment) operators, 287

, (commas), 268

— (decrement operators), 282

- (minus sign), 35, 55

/ (slash), 18, 55

: (colons), 118, 188

; (semicolons), 236

< (less than) operator, 72

<= (less than or equal to) operator, 72

= (equal sign), 262

== (equal to) operator, 72

> (greater than) operator, 72

>= (greater than or equal to) operator, 72

? (question marks), 118

@catch block, 193

@class directive, 159-163

@finally block, 193

@implementation section, 37-38

@interface directive, 423

@interface section, 32-37

@optional directive, 226

@package directive, 200

@private directive, 200

@property directive, 128

@protected directive, 200

@protocol directive, 225

@public directive, 200

@sign, 19

@throw directive, 193

@try, handling exceptions, 191-193

\ (curly braces), 256

~(tilde), 370, 383

A
absoluteValue function, 259

abstract classes, 175

accessing

documentation, 306
files, 369
instance variables, 45-48
local variables, 137
MAC OS X reference library, 308
properties, 130

accessor methods. See also getter methods;
setter methods

event loops, 412
synthesized, 128-130

actions, 449

adding, 462
in objects, 28

addCard: method, 340

adding

actions, 462
categories, 219
classes, 124
description methods, 315
else clauses, 101
extensions, 220
fractions, 30
instance variables, 173-175
labels, 460
methods, 154-167, 219

add: method, 133, 140, 141, 182, 220

testing, 142
AddressBook class, 226, 340-342

archiving, 433
AddressCard class, 332-337

synthesized methods, 337-339
addresscard.h interface file, 434

addresses

books, formatting, 332-337
memory pointers, 291-292

addSubView: method, 401

advanced type definitions, 235

algorithms

common divisor, 257
while statements, 82

allKeys method, 358

allocating

memory, 19, 39, 423
event loops, 411-413
inheritance, 157-158

objects, 141-146, 413, 424
allocF class, 203

alloc message, 39

alloc method, 153, 204

alternative names, assigning data
types, 208

analyzing

characters, 104
memory leaks, 413

AND operators, 213, 239

compound relational tests, 98
AppKit, 446

Apple Computer, 1

applications

Fraction_Calculator project, 465-467
hierarchies, 445
iOS

SDK (Software Development
Kit), 449

writing, 449
iPhone

fraction calculators, 464-477
templates, 452
writing, 449-464

496 absoluteValue function

Terminal, 15-17
terminating, 411
Xcode, 8. See also Xcode

Applications folder, 15

Applications Services layer, 446

applying

directories, 376
fractions, 30-32
NSData class, 374
paths, 383
Xcode, 8-15

archiving, 429

decoding methods, 433-440
encoding methods, 433-440
NSData, 440-443
NSKeyedArchiver, 431-433
objects, copying, 443-444
XML propertylists, 429-431

arguments

command-line, 298
with dynamic typing, 186-187
functions, 255
instance variables, referring to, 134
methods, 36-37, 136-137
multiple, 130-135
names, methods without, 133
zone, 423

arithmetic

expressions, 55-63
integers, 58-59
operators, combining assignment

operators, 63
arrays, 248-254, 309

characters, 251
copying, 421
elements, initializing, 250
indexes, 330
methods, 412
multidimensional, 252-254

objects, 328-356
address books, 332-337
references, 419
saving, 431
sorting, 350-355

passing, 260-261
pointers, 280-290
sorting, 350-355
two-dimensional, 252

arraySum function, 251

arrayWithObjects: method, 330

assigning

alternative names to data types, 208
blocks, 262
constants, 235
integer values to enumerated data

types, 208
assignment operators, 63-64

assignment statements, 417

asterisk (*), 42, 55,

atomically parameter, 430

AT&T Bell Laboratories, 1

attributes

labels, modifying, 461
nonatomic, 337

attributesOfItemAtPath: method, 371

automatic local variables, 256

autorelease pools, 22, 30, 142, 411, 425

examples of, 409-410
memory, 397-398
NSAutoreleasePool, 306
number objects, 311-314

availableData method, 389

B
backslash (), 20

backup files, 430

basic data types, 54-55

binary notation conversions, 212

497binary notation conversions

binding

dynamic, 54, 179
id type, 182-184

bit fields, 271-273

bit operators, 211-218

blocks,

printFoo, 264
Using, sorting, 352-355

BOOL data types, 117

Boolean variables, 114-118

brace pairs, 253

break statements, 87, 111, 113

buffers, configuring, 374

buttons, adding actions, 462

bytes, files, 392. See also files

C
Caches directory, 385

calculateTriangularNumber function, 256

calculating

arraySum function, 283
fractions, iPhone applications, 464-477
triangle numbers, 77

Calculator class, 64-66, 106, 475-477

Calculator.h interface file, 475

Calculator.m implementation file, 240

calls, functions, 301

capitalization, 235

Cartesian coordinate systems, 157

categories, 219-224

MathOps, 220-221
centralizing definitions, 241

CGSizeMake function, 270

changeCurrentDirectoryPath: method, 438

characters

@ sign, 19
analyzing, 104

arrays, 251
pointers, 276
slash (/), 18
strings

immutable, 316
pointers to, 284-286

tildes (~), 370, 383
underscore (_), 33
unichar, 314

char data types, 52-54

checking

compile time, 184-185
runtime, 184-185

child classes, 147. See also classes

Circle method, 234

C language,

classes, 27, 187-191

@interface section, 35-37
abstract, 175
adding, 124
AddressBook, 226, 340-342, 433
AddressCard, 332-337-339
allocF, 203
Calculator, 64-66, 106, 475-477
Complex, 179, 183
copying, 422
declaring, 124
defining, 33, 229
extending, 146, 154
Foundation framework, 309
Fraction, 31, 66, 128, 183,

422, 472-475
GraphicObject, 226
initializing, 197-199
instances, 28. See also instances
local variables, 135-140
members, releasing, 171

498 binding

methods
multiple arguments to, 130-135
syntax for applying to, 28
without argument names, 133

NSArray, 198, 329, 354
NSBundle, 370, 394-395
NSCountedSet, 362
NSData, applying, 374-375
NSDictionary methods, 359
NSIndexSet, 363-366
NSMutableArray, 329, 355
NSMutableDictionary methods, 359
NSMutableSet methods, 363
NSMutableString, 326, 328
NSObject, 147
NSProcessInfo, copying files, 385
NSSet methods, 363
NSString methods, 326-328
NSURL, 370, 374-394
NSValue, 355-356
objects, owning, 163-167
operations on fractions, 133-135
overview of, 123
polymorphism. See polymorphism
Printer, 200
properties, accessing, 130
Rectangle, 155, 185, 189
root, 147-154
self keyword, 140-141
separate files, 123-128
Square, 155, 189

defining, 229
testing, 157

synthesized accessor methods, 128-130
UIKit, 229
XYPoint, 159, 190

implementation files, 160
interface files, 160
memory, 164

class method, 191

clauses, else, 110

adding, 101
if statements, 103

cleanup, memory, 41

clickDigit: method, 472

clickEquals method, 472

closeFile method, 390

Cocoa, 411

framework layers, 445-446
overview of, 445

Cocoa Touch, 445-447

code, 7. See also programming

interfaces, viewing, 462
iOS, entering, 455-458
looping, 69-70
program section, 38-45

collections, 309. See also sets
colons (:), 118, 188

colors

windows, modifying, 459
Xcode, 13

command-line arguments, 298-300

commands

gcc, 16
Terminal, 15

comma operators, 297

commas (,), 268

comments, 12

reducing need for, 237
statements, 18

common divisors

algorithms, 257
finding, 84

compare: method, 313

compareNames: method, 351

comparing pointer variables, 282-290

499comparing pointer variables

compilers

enumeration identifiers, 206
errors, 166
static typing, 185

compile time, checking, 184-185

compiling

conditional compilation, 241-244
preprocessors, 233. See also

preprocessors
programs, 7-17

Complex class, 179, 183

composite objects, 229-230

compound literals, 295

compound relational tests, 98-101

conditional compilation, 241-244

conditional operators, 118-119

configuring

buffers, 374
subclasses, 175

conformsToProtocol: method, 227

connecting outlet variables, 462

Console Interfaces, 332

constants

assigning, 235
characters, 52
data types and, 51-55
floating-point, 52
hexadecimal floating, 55
metric conversions, 240

constructs

else if, 102-111
if-else, 95-98

contentsAtPath: method, 371, 375

contentsEqualAtPath: method, 371

contentsOfDirectoryAtPath: method, 376

continue statements, 87-88

controllers

defining, 468-472
views, 465

conversions

binary notation, 212
data types, 209
floating-point, 61-62
hexadecimal notation, 212
integers, 61-62
metric, 240
objects, 355
rules, 210-211
type cast operators, 62-63

convertToString method, 472

coordinates, 158

copying

deep, 420-422, 443
files, 385-389
getter/setter methods, 425-427
objects, 417, 443-444
shallow, 420-422

copyItemAtPath: method, 371

copy method, 418-424

copyString function, 289

copyWithZone: method, 423

Core Data frameworks, 445

counting references, 398-409

instance variables, 403-409
strings, 401-403

Cox, Brad J., 1

C programming language

arrays, 248-254
characters, 251-252
initializing elements, 250-251
multidimensional, 252-254
passing, 260-261

blocks, 261

500 compilers

command-line arguments, 298
comma operators, 297
compound literals, 295
features, 247, 295
functions, 254

arguments/local variables, 255
declaring return/argument types,

258-260
returning results, 257

goto statements, 296
null statements, 296
Objective-C connections (how things

work), 300-302
objects, 295
pointers, 274

arrays, 280
functions/methods, 279
memory addresses, 291
operations on, 290
structures, 277

sizeof operator, 297
structures, 265

defining, 271
initializing, 268
OOP (object-oriented

programming), 273
within structures, 269

unions, 292
createDirectoryAtPath: method, 376

createFileAtPath: method, 371, 375

curly braces (), 256

current directories, 378. See also directories

currentDirectory method, 382

currentDirectoryPath method, 376

customizing

archiving, 440-443
preprocessors, 233. See also preprocessors

D
dataArray, 418, 443

data encapsulation, 45-48

data types, 51, 197

alternative names, assigning, 208
basic, 54-55
BOOL, 117
char, 52-54
constants, 51-55
conversions, 209
enumeration, 205-208
float, 52
id, 54-55, 182-187. See also pointers
int, 22, 51-52
storage, 33

date structures, 266

dealloc method, 336, 408

overriding, 171-172
debugging

Cocoa, 445
conditional compilation, 243
description method, 316
Terminal, 17
Xcode, 13

decimal notation conversions, 212

decisions, making, 91

declaring

classes, 124
functions, 260
immutable string objects, 318
methods, 36
unions, 292

decoding methods, 433-440

decrement operators (—), 282

deep copying, 420-422, 443

defaultManager message, 371

501defaultManager message

defining

advanced types, 235
arrays. See arrays
classes, 33, 146, 229
enumerated data types, 206
external variables, 201
fractions, 31
global variables, 202
methods, 35
multiple arguments, 131
new type names, 209
pointers, 274
preprocessor identifiers, 242
protocols, 225, 227
structures, 266
unions, 293
view controllers, 468-472

delegates, 449

delegation, protocols and, 225-229

deleteCharactersInRange: method, 325

denominator instance variable, 128

description method, 315-316, 362

design

iPhone interfaces, 458-464
UIs (user interfaces), 477

Developer folder, Xcode, 8

dictionaries, 309

copying, 422
enumeration, 357-359
objects, 356-359, 431

dictionaryWithObjectsAndKeys: method, 357

digits, int data types, 51

directives

@ class, 159-163
@interface, 423
@optional, 226

@package, 200
@private, 200
@property, 128
@protected, 200
@protocol, 225
@public, 200
for controlling instances, 200-201

directories

applying, 376
Caches, 385
enumeration, 378
files, 369. See also files
iOS, 385
managing, 370
methods, 376

dividing

fractions, 30
integers, 268

division, if-else constructs, 95-98

division-by-zero problem, 110

documentation

Foundation framework, 305-308
Xcode, 306

do statements, 85-87

dot (.) operator, 266

properties, accessing, 130
double equals sign (==), 98

double quotes, 127, 240, 314

drain messages, 398

Drawing3D protocol, 227

Drawing protocol, 226

draw method, 184

duplication of functionality, 446

dynamic binding, 54, 179

id data type, 182-184
dynamic typing, 179

502 defining

arguments, 186-187
methods, 187
with return types, 186-187

E
editing files, 12

Xcode, 306
edit windows, 10

elements

arrays, 250. See also arrays
copying, 421
initializing, 250

references, 284
structures, 265. See also structures

else clauses, 110

adding, 101
if statements, adding, 103

else if constructs, 102-111

enabling garbage collection, 414

encapsulation, data, 45-48

encodeObject: method, 435

encodeWithCoder: method, 433

encoding

methods, 433-440
objects, 441

entering code, iOS, 455-458

enumeration

data types, 205-208
dictionaries, 357-359
directories, 378
fast, 330, 342-344

enumeratorAtPath: method, 376

enum flags, 205

environment method, 386

equality tests, 236

equal sign (=), 262

equal to (==) operator, 72

errors

compilers, 166
Xcode, 13

Euclid, 82

evaluating

expressions, 210
multiple operations, 57

even numbers, if-else constructs, 95-98

event loops, allocating memory, 411-413

exceptions, handling, 191-193

exclusive OR operators, 214

executing

break statements, 87
continue statements, 88
do statements, 85
loops, Boolean variables, 115
methods, 182
programs, terminating, 192
for statements, 73

expressions, 51

arithmetic, 55-63
compound relational, 99
conditional operators, 118
evaluating, 210
messages, 40,

extending class definitions, 146

extending classes, 154

instance variables, adding, 173-175
Extensible Markup Language. See XML

(Extensible Markup Language)

extensions

adding, 220
filenames, 12

external variables, 201-202

503external variables

F
FALSE, 233

fast enumeration, 330, 342-344

features, C programming language, 247, 295

Fibonacci numbers, 249

fields, bit, 271-273

fileExistsAtPath: method, 371

fileHandleForReadingAtPath: method, 371

fileHandleForUpdatingAtPath: method, 389

fileHandleForWritingAtPath: method, 389

filename extensions, 12

files, 369

addresscard.h interface, 434
backup, 430
copying, 385-389
editing, 12
formatting, 124
Foundation.h, 18, 309
glossary, 430
implementation, 123, 180

AddressBook.m, 340
AddressCard.m, 333, 337
Calculator.m, 240
Fraction_CalculatorApp

Delegate.m, 467
Fraction_CalculatorView

Controller.m, 469
Fraction.m, 126, 131, 138, 473
iPhone_1AppDelegate.m, 457
Rectangle.m, 154, 161
Square.me, 156
XYPoint class, 160

interfaces, 123, 179
AddressBook.h, 340, 347
AddressCard.h, 333
Calculator.h, 475
extending, 146

Fraction_CalculatorApp
Delegate.h, 467

Fraction_CalculatorView
Controller.h, 468

Fraction.h, 124, 131, 138, 473
Rectangle.h, 161
Square.h, 156
XYPoint class, 160

managing, 370
NSFileHandle, 389
NSPathUtilities.h, 380
objects, saving, 431
opening, 369
positioning, 392
separate, classes, 123-128
temporary storage areas, 374
troubleshooting, 373
Xcode, 306
XML, 430

flags, 115

enum, 205
tests, 116

float data types, 52

floating-point

conversions, 61-62
numbers, 175

folders

Applications, 15
Developer, Xcode, 8
naming, 8

for loops, 73, 145

arrays, 330
autorelease pools, 398
list method, 342
nested, 78-80
variants, 80-81

504 FALSE

for statements, 70-81

executing, 73
keyboard input, 76-78
nested for loops, 78-80
programs, 73

formatting

@implementation section, 37
address books, 332-337
archives, customizing, 440-443
comments, 18
files, 124
iPhone interfaces, 458-464
mutable copies of dataArray, 419
pathnames, 382
for statements, 71
subclasses, 175
UIs (user interfaces), 477

forwardInvocation: method, 189

Foundation framework, 305

abstract classes, 175
autorelease pools, 397-398
copy method, 418-420
documentation, 305-308
files, accessing, 18, 369
memory, 397. See also memory
mutablecopy method, 418-420
NSCountedSet class, 362
objects, 309
pointers, 291
protocols, 225
Terminal window, 16

Foundation.h file, 18, 309

Fraction_CalculatorAppDelegate.h interface
file, 467

Fraction_CalculatorAppDelegate.m
implementation file, 467

Fraction_Calculator project, 465-467

Fraction_CalculatorViewController.h interface
file, 468

Fraction_CalculatorViewController.m
implementation file, 469

Fraction class, 31, 66, 128, 183,
422, 472-475

Fraction.h interface file, 124, 131, 138, 473

Fraction.m implementation file, 126, 131,
138, 473

fractions, 30-32

calculators, 464-477
multiplying, 465
operations on, 133-135
reduce method, 135

FractionTest.m file, 123, 127, 132, 134,
139, 144

frameworks

Cocoa, layers, 445-446
Cocoa Touch, 447
Core Data, 445
Foundation, 224-225

FSF (Free Software Foundation), 1

functionality, duplication of, 446

functions

absoluteValue, 259
arguments, 255
arrays, passing, 260-261
arraySum, 251
calculateTriangularNumber, 256
calls, 301
CGSizeMake, 270
copyString, 289
declaring, 260
Foundation framework, 309
gcd, 302
invoking, 261
methods, 301

505functions

multidimensional arrays, 252
NSFullUserName, 384
NSHomeDirectory, 384
NSHomeDirectoryForUser, 384
NSLog, 314-315
NSSearchPathForDirectories

InDomains, 384
NSTemporaryDirectory, 382
NSUserName, 384
numberOfDays, 395
paths, 384
results, returning, 257
returning, 258
sign, implementing, 103
squareRoot, 260

G
garbage collection, 41, 413-414

gcc command, 16

gcd function, 302

generating

objects, 188
prime numbers, 114
selectors, 188

getter methods, 48, 203

objects, copying, 425-427
globallyUniqueString method, 386

global variables, defining, 202

glossary files, 430

gMoveNumber, 201

GNU General Public License, 1

goto statements, 296

graphical user interfaces. See GUIs

GraphicObject class, 226

greater than (>) operator, 72

greater than or equal to (>=) operator, 72

grouping elements, structures, 265.
See also structures

GUIs (graphical user interfaces), 3, 445

H
handling exceptions, 191-193

hard-coding pathnames, 370

headers

Foundation framework, 309
NSObjcRuntime.h, 244

hexadecimal floating constants, 55

hexadecimal notation conversions, 212

hierarchies

applications, 445
inheritance, 191

home directories, 370. See also directories

hostName method, 386

I–J
id data types, 54-55, 182-187.

See also pointers

identifiers

enumeration, 206
preprocessors, defining, 242

if-else constructs, 95-98

if statements, 91-111

compound relational tests, 98-101
else if constructs, 102-111
if-else constructs, 95-98
nested, 101-102

immutable character strings, 316

immutable objects, 316-322

immutable storage areas, 374

implementation

categories, 223
files, 123, 180

AddressBook.m, 340
AddressCard.m, 333, 337

506 functions

Calculator.m, 240
Fraction_CalculatorApp

Delegate.m, 467
Fraction_CalculatorView

Controller.m, 469
Fraction.m, 126, 131, 138, 473
iPhone_1AppDelegate.m, 457
Rectangle.m, 154, 161
Square.me, 156
XYPoint class, 160

NSCopying protocol, 422
protocols, 225
sign functions, 103

importing Foundation header files, 309

inclusive OR operators, 214

increment (++) operators, 282, 287

indexes,

arrays, 330
strings, 325

indexesOfObhectsPassingTest: method, 365

indirection (*) operators, 274. See also
pointers

inDirectory: parameter, 395

informal protocols, 228-229

inheritance, 149, 417

abstract classes, 175
hierarchies, 191
instance variables, adding, 173-175
memory, allocating, 157-158
methods

adding, 154-167
overriding, 167-172

overview of, 149-154
initialization

array elements, 250
classes, 197-199
comments, 18

immutable string objects, 318
methods, 198
structures, 268
two-dimensional arrays, 252
two-step allocation approach, 48

initialize method, 205

init method, 39, 153

initVar method, 150

initWithCoder: method, 433

initWith:: method, 198

input, for statements, 76-78

inserting. See also adding

comment statements, 18
loops, 78

instances

@interface section, 35-37
directives for controlling, 200-201
methods and, 28-30
objects, 197
variables

@interface section, 35
accessing, 45-48
adding, 173-175
counting references, 403-409
inheritance, 151
storage, 300
unique, 44

int data types, 22, 51-52

integers, 51. See also int data types

abstract classes, 175
arithmetic, 58-59
conversions, 61-62
dividing, 268
Euclid, 82
NSUInteger, 365
pointers, 278. See also pointers
variables, 22

507integers

Interface Builder, 449

MainWindow.xib, 458
interfaces

addresscard.h interface files, 434
categories, 223
Console Interfaces, 332
design, 477
files, 123, 179

AddressBook.h, 340, 347
AddressCard.h, 333
Calculator.h, 475
extending, 146
Fraction_CalculatorApp

Delegate.h, 467
Fraction_Calculator

ViewController.h, 468
Fraction.h, 124, 131, 138, 473
Rectangle.h, 161
Square.h, 156
XYPoint class, 160

GUIs (graphical user interfaces), 3,
445

iPhones, designing, 458-464
source code, viewing, 462

intersect: method, 362

INTOPBJ macro, 362

intWithName: method, 341

invoking functions,

iOS, 411

applications, writing, 449
code, entering, 455-458
directories, 385
Fraction_Calculator project, 465-467
interfaces, formatting, 458-464
iPhone applications

fraction calculators, 464-477
writing, 449-464

SDK (Software Development Kit), 449

iPads, Cocoa Touch, 446

iPhone_1AppDelegate.m implementation
file, 457

iPhones, 2

applications
templates, 452
writing, 449-464

Cocoa Touch, 446
fraction calculators, 464-477
interfaces, designing, 458-464

iPods, 2

Cocoa Touch, 446
isEqualToNumber: method, 313

isEqualToString: method, 318

islower routine, 106

isPrime variable, 115

isReadableFileAtPath: method, 371

isupper routine, 106

isWritableFileAtPath: method, 371

K
keyboard input, for statements, 76-78

keyed archives, 431. See also archiving

keying operations, 465

key-object pairs, 356

keys, dictionaries, 357. See also dictionaries

keywords

overriding, 171-172
self, 140-141
static, 137-140
struct, 293

L
labels

adding, 460
modifying, 461

508 Interface Builder

lastPathComponent method, 282

layers, Cocoa, 445-446

leaks, memory, 413

leap years, 237

left shift operators, 216-217

length method, 318

less than (<) operator, 72

less than or equal to (<=) operator, 72

letters, lowercase, 239

libraries

references, accessing MAC OS X, 308
Standard Library, 291

lists

method, 342
protocols, 225. See also protocols
XML propertylists, 429-431

literals, compound, 295

local static variables, 137

local variables, 135-140

automatic, 256
functions, 255

locations, folders, 8

logical negation operator, 117

long qualifiers, 53-54

lookupAll: method, 365

lookup functions, 291

lookup: method, 344-346

loops

for, 73, 145
arrays, 330
autorelease pools, 398
list method, 342
nested, 78-80
variants, 80-81

Boolean variables, 115
break statements, 87
continue statements, 87-88

dictionaries, enumerating, 358
do statements, 85-87
events, allocating memory, 411-413
inserting, 78
programs, 69-70
while, 326,
while statements, 81-85

lowercase letters, 17, 239

M
MAC OS X

Cocoa Touch, 446-447
reference library, accessing, 308
support, 445

macros, 238

INTOPBJ, 362
MAX, 239
SQUARE, 238

mainBundle method, 396

main function, 254

main.m program, 10, 180

main routines, 19

Main Test Program, FractionTest.m,
127, 132-134, 139

MainWindow.xib, 458

making decisions, 91

management

files, 370-380
memory, 397. See also memory
NSFileManager, 369-380
rules for memory, 410-411

MathOps category, 220

programs, 221
matrices, 252

MAX macro, 239

members

releasing, 171
unions, 294. See also unions

509members

memberships, 191

memory

add: method, 142
addresses, pointers, 291
allocating, 19, 39, 423

event loops, 411-413
inheritance, 157-158

autorelease pools, 311, 397-398.
See also autorelease pools

buffers, reading files, 369
cleanup, 41
dataArray, 418
garbage collection, 413-414.

See also garbage collection
leaks, 413
management, 397
references, counting, 398-409
rules, 410-411
XYPoint class, 164

menus, New File (Xcode), 124

messages

alloc, 39
compiler errors, 166
defaultManager, 371
drain, 398
expressions, 40
release, 398, 410
retainCount, 399
skipDescendants, 378
uppercaseString, sending, 319

methods, 27

@implementation section, 37-38
@interface section, 35-37
accessor

event loops, 412
synthesized, 128-130

add:, 133, 140-142, 182, 220

addCard:, 340
adding, 219
AddressCard class, synthesized,

337-339
addSubView:, 401
allKeys, 358
alloc, 153, 204
arguments, 36-37, 136-137
arrays, 412
arrayWithObjects:, 330
attributesOfItemAtPath:, 371
autorelease pools, 311
availableData, 389
changeCurrentDirectoryPath:, 438
Circle, 234
classes, 191

multiple arguments to, 130-135
without argument names, 133

clickDigit:, 472
clickEquals, 472
closeFile, 390
compare:, 313
compareNames:, 351
conformsToProtocol:, 227
contentsAtPath:, 371
contentsEqualAtPath:, 371
contentsOfDirectoryAtPath:, 376
convertToString, 472
copy, 418-424
copyItemAtPath:, 371
copyWithZone:, 423
createDirectoryAtPath:, 376
createFileAtPath:, 371
currentDirectory, 382
currentDirectoryPath, 376
dealloc, 171-172, 336, 408
declaring, 36

510 memberships

decoding, 433-440
defining, 35
deleteCharactersInRange:, 325
description, 315-316, 362
dictionaryWithObjectsAndKeys:, 357
directories, 376
draw, 184
dynamic typing, 187
encodeObject:, 435
encodeWithCoder:, 433
encoding, 433-440
enumeratorAtPath:, 376
environment, 386
executing, 182
fileExistsAtPath:, 371
fileHandleForReadingAtPath:, 371
fileHandleForUpdatingAtPath:, 389
fileHandleForWritingAtPath:, 389
forwardInvocation:, 189
Foundation framework, 309
functions, 301
getter, 48, 203
globallyUniqueString, 386
hostName, 386
indexesOfObhectsPassingTest:, 365
inheritance, 151, 154-167
init, 39, 153
initialize, 205
initVar, 150
initWith::, 198
initWithCoder:, 433
instances and, 28-30
intersect:, 362
intWithName:, 341
isEqualToNumber:, 313
isEqualToString:, 318

isReadableFileAtPath:, 371
isWritableFileAtPath:, 371
lastPathComponent, 382
length, 318
list, 342
lookup:, 344-346
lookupAll:, 365
mainBundle, 386
moveItemAtPath:, 371
multiply, 66
mutablecopy, 418-420
name, 182
names, 182
newObject, 54
NSArray class, 354
NSDictionary class, 359
NSFileHandle, 389
NSFileManager, 370
NSIndexSet class, 366
NSMutableArray class, 355
NSMutableDictionary class, 359
NSMutableSet class, 363
NSMutableString class, 328
NSProcessInfo class, 386
NSSet class, 363
NSString class, 326-328
numberWithInt:, 313
numberWithInteger:, 313
objectAtIndex:, 330
objects

allocating, 141-146, 413
returning, 141-146

offsetInFile, 389
operatingSystem, 386
operatingSystemName, 386
operatingSystemVersionString, 386

511methods

outline, tests, 227
overriding, 167-172, 224
pathConponents, 382-383
pathExtension, 382-383
pathForResource:, 395
paths, 384-385
pathWithConponents, 383
performSelector:, 188
pointers, 279-280
print, 35, 182, 335
printVar, 170
processDigit:, 472
processIdentifier, 386
processInfo, 386
processName, 386
rangeOfString:, 325
readDataOfLength:, 389-391
readDataToEndOfFile, 389-391
reduce, 135, 140
release, 171
removeCard:, 346-349
removeItemAtPath:, 374-376
removeObjectAtIndex:, 401
respondsToSelector:, 189
retain, 408
return values, 36, 311
saveFilePath, 384
seekToEndOfFile, 389
seekToFileOffset:, 389
selecting, 153-154, 169-171
set::, 133
setAttributesOfItemsAtPath:, 371
setDenominator:, 41
setEmail:, 334
setName:, 334, 425
setNumerator:, 40

setOrigin:, 164, 171
setReal:andImaginary:, 184
setSide:, 156
setStr:, 405, 408
setter, 48, 203
setTo:over:, 188
setWidth:, 156
setWithObjects:, 362
sortUsingFunction:, 350
sortUsingSelector:, 350
stringByDeletingLastPath

Component, 383
stringByDeletingPathExtension, 383
stringByExpandingTildeInPath, 383
stringByResolvingSymlinksInPath, 383
stringByStandardizingPath, 383
stringsByAppendingPath

Component:, 383
stringsByAppendingPathExtension:, 383
stringWithString:, 324
substringFromIndex:, 321
substringWithRange:, 321
syntax, applying to classes, 28
tests, 204, 423
truncateFileAtOffset:, 390
union:, 362
unwrapper, 355
wrapper, 355
writeData:, 388
writeToFile:, 430

metric conversions, 240

minus sign (-), 35, 55

modifying

labels, 461
order of evaluation, 57
window colors, 459

512 methods

modularization, 219

modulus operator (%), 60-61

moveItemAtPath: method, 371

multidimensional arrays, 252-254

multiple arguments, 130-135

multiple operations, evaluating, 57

multiplying fractions, 30, 465

multiply method, 66

mutablecopy method, 418-420

mutable objects, 316-322

mutable strings, 322-326

N
name method, 387

names

alternative, assigning to data types, 208
arguments, methods without, 133
folders, 8
methods, 182
pathnames to files, 370
selecting, 33-35

nested for loops, 78-80

nested if statements, 101-102

New File menu, Xcode, 124

newObject method, 54

New Project window, 466

nil objects, 336, 356

nonatomic attributes, 337

nonzero, 116

notations

multidimensional arrays, 252
sigma, 144

not equal to (!=) operator, 72

NSArray class, 198, 329

methods, 354
NSAutoreleasePool class, 306

NSBundle class, 370, 394-395

NSCopying protocol, 225

implementation, 422-423
NSCountedSet class, 362

NSData class

applying, 374
archiving, 440-443

NSDictionary class methods, 359

NSException object, 193

NSFileHandle class, 369, 389-391

NSFileManager class, 369-380

NSFullUserName function, 384

NSHomeDirectoryForUser function, 382-384

NSHomeDirectory function, 382-384

NSIndexSet class, 363-366

NSKeyedArchiver, 431-433

NSLog function, 314-315

NSLog statements, 19, 22, 47, 59, 267

for statements, 74
while statements, 84

NSMutableArray class, 329

methods, 355
NSMutableCopying protocol, 418

NSMutableDictionary class methods, 359

NSMutableSet class methods, 363

NSMutableString class, 326

methods, 328
NSNumber objects, 311

creation/retrieval methods, 312
NSObjcRuntime.h header, 244

NSObject class, 149

NSPathUtilities.h file, 380, 383

NSProcessInfo class, copying files, 385, 388

NSRange structure, 322

NSSearchPathForDirectoriesInDomains
function, 384

NSSet class methods, 363

NSSstring object, 314

513NSSstring object

NSString class methods, 326-328

NSTemporaryDirectory function, 382-384

NSURL class, 370, 399

NSUserName function, 384

NSValue class, 355-356

null characters (‘0’), 248

null statements, 296

numberOfDays function, 269

numbers, 309

autorelease pools, 311-314
Fibonacci, 249
floating-point, 175
if-else constructs, 95-98
indexes, 330
objects, 309-314
prime, 114
triangle arrangements, 255.

See also triangle arrangements
numberWithInteger: method, 313

numberWithInt: method, 313

numerator instance variable, 128

O
objectAtIndex: method, 330

object-oriented programming. See OOP
(object-oriented programming)

objects, 27

actions in, 28
allocating, 413, 424
arrays, 328-356

address books, 332-337
references, 419
sorting, 350-355

autorelease pools, 311-314, 398.
See also autorelease pools

composite, 229-230
copying, 417, 443-444

C programming language, 295
dictionaries, 356-359
encoding, 441
Foundation framework, 309
generating, 188
getter/setter methods, 425-427
instances, 197
methods

allocating, 141-146
returning, 141-146

nil, 336, 356
NSException, 193
NSNumber, 311-312
NSSstring, 314
numbers, 309-314
overview of, 27-28
releasing, 410
Rounded Rect Button, 461
saving, 431
sets, 360-366
storage, id data types, 54-55
strings, 314-328

description method, 315-316
mutable, 322-326
mutable/immutable objects, 316-322
NSLog function, 314-315
returning, 326-328

structure conversions, 355
variables, 301-302
viewing, 439

odd numbers, if-else constructs, 95-98

offsetInFile method, 389

old-style property lists, 429

ones complement operators, 215-216

OOP (object-oriented programming), 273

OpenGL, 446

opening files, 369

514 NSString class methods

operands, 118

operatingSystem method, 386

operatingSystemName method, 386

operatingSystemVersionString method, 386

operations

on fractions, 133-135
keying, 465
on pointers, 690-691

operators

AND, 98, 213, 239
##-240
&, 239
address (&), 274
assignment, 63-64
bit, 211-218
comma, 297
conditional, 118-119
decrement (—), 282
dot, 130, 266
equal to (==), 72
greater than (>), 72
greater than or equal to (>=), 72
increment (++), 290
indirection (*), 276
left shift, 216-217
less than (<), 72
less than or equal to (<=), 72
logical negation, 117
modulus (%), 60-61
not equal to (!=), 72
ones complement, 215-216
OR

compound relational tests, 98
exclusive, 214
inclusive, 214

plus equals (+=), 63
precedence, 55-58

relational, 72
right shift, 217-218
sizeof, 297-298
ternary, 118
type cast, 62-63, 208, 210
unary plus (+), 59

options, selecting projects, 453

order

of conversions, 198
of evaluation, modifying, 57

OR operators

compound relational tests, 98
exclusive, 214
inclusive, 214

outlets, 449

variables, connecting, 462
outline method, tests, 227

overriding

dealloc methods, 171-172
methods, 167-172, 224

owning objects, classes, 163-167

P
pageCount variables, 138

pairs, key-object, 356

parameters

atomically, 430
inDirectory:, 380

passing

arrays, 261, 284
blocks, 262
pointers, 291
rectangle origins to methods, 164

pathConponents method, 382-383

pathExtension method, 382-383

pathForResource: method, 395

515pathForResource: method

pathnames

files, 370
formatting, 382

paths

applying, 385
functions, 385
methods, 384-385
NSPathUtilities.h, 380

PATH variables, 17

pathWithConponents method, 383

performSelector: method, 188

PI, 235

plus equals (+=) operator, 63

plus sign (+), 55

pointers, 273

arrays, 281, 289
characters, 280
constant character strings, 287
functions, 289-290
memory addresses, 291-292
methods, 279-280
operations on, 290-291
passing, 290
structures, 279

polymorphism, 54, 179-182

pools, autorelease, 22, 30, 142, 411

examples of, 409-410
memory, 397-398
NSAutoreleasePool, 306

positioning

#define statements, 234
files, 392

precedence, operators, 55-58

preprocessors, 233

#define statement, 233-239
#elif statements, 243-244

#if statements, 243-244
#import statements, 240-241
#undef statements, 244
conditional compilation, 241-244
identifiers, defining, 242

prime numbers, 114

Printer class, 200

printFoo block, 264

print method, 35, 182, 335

printVar method, 170

processDigit: method, 472

processIdentifier method, 386

processInfo method, 386

processName method, 386

programming, 7

pointers, characters, 276
Xcode, applying, 8-15

programs. See also programming

#import statements, 240
@implementation section, 37
add: method, 142
address books, 437
addresscard.h interface file, 434
address (&) operators, 277
archiving, customizing, 430
arguments, 255
array objects, 329
bit operators, 215
blocks

accessing variables, 264
defining, 263
executing, 262
modifying values, 264

Boolean variables, 114-117
Calculator class, 64-66
character arrays, 251

516 pathnames

char data types, 52-53
classes, 189

defining, 404
owning objects, 163

common divisor algorithms, 258
compiling, 7-17
compound relational tests, 99-100
conversions, 61
copying, 420
copyString function, 289
dataArray, 418
date structures, 268
dictionaries, 356-357
directories, 376, 378
do statements, 86-87
dummy classes, defining, 409
dynamic binding, 182
else if constructs, 103-108
encoding/decoding, 436
enumerated data types, 207
exception handling, 191-192
fast enumeration, 330
Fibonacci numbers, 249
files, 372, 375
for statements, 70, 73
Fraction class, 31
fractions, 30
FractionTest.m, 123, 144
if-else constructs, 96-98
if statements, 92-94
immutable character strings, 316
implementation files, 126, 131, 138, 180
initialization methods, 199
instance variables, 46-47

adding, 173
releasing values, 407

integer arithmetic, 58
interface files, Fraction.h, 124, 131, 138
iPhone_1AppDelegate.m

implementation file, 457
iPhone applications, 456
looping, 69-70
main function, 255
main.m, 10, 180
Main Test Program, FractionTest.m,

127, 132, 134, 139
MathOps category, 221
methods

adding, 149
overriding, 167
tests, 423

modulus operator (%), 60
mutable strings, 322
nested for loops, 78
NSFileHandle, 391-392
NSKeyedArchiver, 432
NSLog statements, 22
NSProcessInfo class, 395
NSSstring object, 314
NSURL class, 392-394
number objects, 309
objects

copying, 443-444
viewing, 439

operator precedence, 56
overview of, 17-21
paths, 280
pointers

arraySum function, 283
indexes, 284
returning, 280
structures, 279

polymorphism, 179

517programs

program section, 43-44
readability, 34
Rectangle.h interface files, 161
Rectangle.m added methods, 160
Rectangle.m implementation files, 161
references, 399-401
restoring data, 442
root classes, 149
sections, 38-45
sets, 360
setStr: method, 405
statements, 22
static variables, 204
strings, 320
structures, 287, 279
switch statements, 112-113
Terminal, 15-17
termination, 20, 192
testing, 109
triangle arrangements, 69, 77
values of variables, displaying, 21
while statements, 81-84
XML propertylists, 429-431
XYPoint.h interface files, 160
XYPoint.m implementation files, 160

projects

classes, adding, 124
Fraction_Calculator, 465-467
options, selecting, 453
starting, 8

properties

accessing, 130
UILabel, 455

protocols, 219

defining, 227
and delegation, 225-229

Drawing, 226
Drawing3D, 227
informal, 228-229
NSCopying, 225, 422-423

Q
qualifiers, 53-54

Quartz, 446

question marks (?), 118

Quick Help pane, 307

QuickTime, 446

R
rangeOfString: method, 325

readability, 34

readDataOfLength: method, 389-391

readDataToEndOfFile: method, 389-391

reading XML propertylists, 431

Rectangle class, 155, 189

Rectangle.h interface file, 161

Rectangle.m implementation file, 161

rectangles in windows, 157

Rectangle variable, 185

recursion, directories, 378

reduce method, 135, 140

references

array objects, 419
counting, 398-409
elements, 284
instance variables, 403-409
libraries, accessing MAC OS X, 308
strings, counting, 401-403
tracking, 399

relational operators, 72

release messages, 398, 410

518 programs

release method, 171

releasing

members, 171
objects, 398, 410. See also autorelease

pools
removeCard: method, 346-349

removeItemAtPath: method, 374-376

removeObjectAtIndex: method, 401

repetition, 70

reserved words, Xcode, 13

respondsToSelector: method, 189

results, returning functions, 257-258

retainCount message, 399

retain method, 408

returning

objects from methods, 141-146
results from functions, 257-258

return statements, 48

return types with dynamic typing, 186-187

return values, 36-37

right shift operators, 217-218

root classes, 147-154

Rounded Rect Button object, 461

routines

islower, 106
isupper, 106
main, 19
NSLog statements, 23
program section, 38

rules

conversions, 210-211
external variables, 201
memory management, 410-411
multiple operations, evaluating, 57
names, creating, 33

running programs, 7-17

runtime

checking, 184-185
dynamic typing, 187
garbage collection, 413
systems, 41

S
saveFilePath method, 384

saving

folders, 8
objects, 431

scanf calls, 108

scope

blocks, 261
enumerated identifiers, 208
functions, 260
variables, 200-205

directives for controlling instances,
200-201

external variables, 201-202
static variables, 203-205

SDK (Software Development Kit), 2

iOS, 449
sections

@implementation, 37-38
@interface, 32-37
interfaces, 224
program, 38-45

seekToEndOfFile method, 389

seekToFileOffset: method, 389

selecting

application types, 8
methods, 153-154, 169-171
names, 33-35
project options, 453

selectors, generating, 188

519selectors, generating

self keyword, 140-141

semicolons (;), 19, 236

sending

release messages, 410
uppercaseString messages, 319

separate files, classes, 123-128

sequences

int data types, 51-50
unions, 294. See also unions

setAttributesOfItemsAtPath: method, 371

setDenominator: method, 41

setEmail: method, 334

set:: method, 133

setName: method, 334, 425

setNumerator: method, 40

setOrigin: method, 164, 171

setReal:andImaginary: method, 184

sets, 309

copying, 422
objects, 360-366

setSide: method, 156

setStr: method, 405, 408

setter methods, 48, 203

objects, copying, 425-427
structures, 266

setTo:over: method, 188

setWidth: method, 156

setWithObjects: method, 362

shallow copying, 420-422

shells, UNIX, 17

short qualifiers, 53-54

sigma notations, 144

signed qualifiers, 53-54

sign extensions, 211

sign functions, implementing, 103

simulators, iPhones, 450, 455

single characters, char data types, 52-53

sizeof operator, 297-298

sizing, modifying labels, 461

skipDescendants message, 379

slash (/), 18, 55

Software Development Kit. See SDK

sorting

arrays, 350-355
Using blocks, 352-355

sortUsingFunction: method, 350

sortUsingSelector: method, 350

source code, viewing interfaces, 462

specifiers, classes, 205

Square class, 155, 189

defining, 229
testing, 157

Square.h interface file, 156

SQUARE macro, 238

squareRoot function, 261

Standard Library, 291

starting

projects, 8
Terminal, 15

statements. See also constructs

for, 70-81
executing, 73
keyboard input, 76-78
nested for loops, 78-80
programs, 73

#define, 233-239
#elif, 243-244
#else, 241-243
#endif, 241-243
#if, 243-244
#ifdef, 241-243
#ifndef, 241-243
#import, 234, 240-241

520 self keyword

#include, 234
#undef, 244
assignment, 417
break, 87, 111-113
comments, 18
continue, 87-88
debugging, 243
do, 85-87
goto, 296
if, 91-111

compound relational tests, 98-101
else if constructs, 102-111
if-else constructs, 95-98
nested, 101-102

NSLog, 19, 22, 47, 59
for statements, 74
while statements, 84

null, 296
programs, 22
return, 48
switch, 111-114
termination, 19
typedef, 208-209
while, 81-85

static functions, 260. See also functions

static keyword, 137-140

static typing, id data types, 185-187

static variables, 203-205

storage, 203-205

characters, 293
data types, 33
instance variables, 300-301
objects, id data types, 54-55
projects, writing iPhone applications,

453
temporary areas, files, 374
XML propertylists, 429

stringByDeletingLastPathComponent
method, 383

stringByDeletingPathExtension method, 383

stringByExpandingTildeInPath method, 383

stringByResolvingSymlinksInPath method, 383

stringByStandardizingPath method, 383

strings, 309

characters
immutable, 316
pointers to, 316

indexes, 325
objects, 314-328

description method, 315-316
immutable, 316-322
mutable, 322-326
NSLog function, 314-315
returning, 326-328
saving, 431

references, counting, 401-403
stringsByAppendingPathComponent:

method, 383

stringsByAppendingPathExtension:
method, 383

stringWithString: method, 324

struct keyword, 293

structures, 265

arrays of, 268
dates, 268
defining, 268-270, 273
initializing, 286-287
NSRange, 322
object conversions, 355
OOP (object-oriented

programming), 273
pointers, 277-279. See also pointers
within structures, 269-270

styles, comments, 18

521styles, comments

subclasses, 147, 229. See also classes

abstract classes, 175
creating, 175

subdirectories, 380. See also directories

subfolders, 8. See also folders

subscribing to documents (Xcode), 308

substitutions, text, 236

substringFromIndex: method, 321

substrings, 320. See also strings

substringWithRange: method, 321

subtracting fractions, 30

superclasses, 150. See also classes

support, 5

Mac OS X, 445
switch statements, 111-114

syntax

do statements, 85
methods, applying to classes, 28

synthesized accessor methods, 128-130

synthesized AddressCard class methods,
337-339

systems, runtime, 41

T
templates, iPhone applications, 452

temporary storage areas, files, 374

Terminal

debugging, 17
programs, running, 15-17
windows, 3

termination

applications, 411
continue statements, 87-88
programs, 20, 192
statements, 19

ternary operators, 118

tests

add: method, 142
AddressBook class, 342
AddressCard class, 335
compound relational, 98-101
equality, 236
flags, 116
FractionTest.m, 144.

See also FractionTest.m
lookup: method, 344
lowercase letters, 239
main.m program, 180
MathOps category, 221
methods, 204, 423
outline method, 227
Rectangle class, 162
removeCard: method, 348
sort method, 351
Square class, 157
synthesized setter methods, 339

text, substitutions, 236

throwing exceptions, 193

tilde (˜), 370, 382

tools

NSPathUtilities.h, 380, 389
Terminal, 15-17
Xcode, 8. See also Xcode

tracking references, 399

triangle arrangements, 69, 77, 255

troubleshooting

files, 374
programs, 109
Xcode, 13

TRUE, 233

truncateFileAtOffset: method, 390

two-dimensional arrays, 252

two-step allocation approach, 48

522 subclasses

typedef statements, 208-209, 269

types

advanced, definitions, 235-240
applications, selecting, 8
cast operators, 62-63, 208, 210
of comments, 18
data, 51. See also data types
encoding/decoding, 434
of exceptions, 193
return, with dynamic typing, 186-187

typing

dynamic, 179
arguments, 186-187
methods, 187
with return types, 186-187

static id data types, 185-187

U
UIKit classes, 229

UILabel property, 455

UIs (user interfaces), designing, 477

unarchiving, 443. See also archiving
unary plus operator (+), 59

underscore (_), 33

unichar characters, 314

union: method, 362

unions, 292-294

unique instance variables, 44

UNIX shells, 17

unknown operators, keying, 109

unsigned qualifiers, 53-54

unwrapper methods, 355

uppercase letters, 17

uppercaseString messages, sending, 319

User Interface design pane, 458

user interfaces, 477

523variables

Using blocks, sorting, 352-355

utilities, NSPathUtilities.h, 254, 389

V
valid names, 33. See also names

values

arrays, initializing elements, 250
floating-point, 62
nil objects, 356. See also nil objects
return, 36-37
switch statements, 113
variables, viewing, 21-23
Xcode, 13

variables, 197

blocks, assigning, 262
Boolean, 114-118
characters, sign extensions, 211
char data types, 52-54
defining, 205
float data types, 52
global, defining, 202
instances

@interface section, 35
accessing, 45-48
adding, 173-175
counting references, 403-409
inheritance, 151
storage, 300-301
unique, 44

int data types, 52
integers, 22
isPrime, 115
local, 135-140

automatic, 256
functions, 255, 257

local static, 137

objects, 300-301. See also pointers
outlet, connecting, 462
pageCount, 138
PATH, 17
pointers, 274
qualifiers, 53-54
Rectangle, 185
scope, 200-205

directives for controlling instances,
200-201

external variables, 201-202
static variables, 203-205

values, viewing, 21-23
variants for loops, 80-81

viewing

code, interfaces, 462
objects, 439
values, variables, 21-23

View pane, 307

views

controllers, 465
defining, 468-472

W
while loops, 326

while statements, 81-85

windows

colors, modifying, 459
edit, 10
New Project, 466
rectangles in, 157
Terminal, 3, 15
Xcode prog1 project, 10

wrapper methods, 355

writeData: method, 388

writeToFile: method, 430

writing applications

iOS, 449. See also iOS
iPhone, 449-464

X
Xcode, 6

applying, 8-15
debugging, 13
documentation, 306
FractionTest.m, 123
iOS SDKs (Software Development

Kits), 449
New File menu, 124
projects, starting, 8

XML (Extensible Markup Language)

files, 430
propertylists, 429-431

XYPoint class, 159, 190

implementation files, 160
interface files, 160
memory, 164

Y
years, leap, 237

Z
zeros

char data types, 52
conditional operators, 118
division-by-zero problem, 110
nonzero, 116
sets, 362

zone arguments, 423

524 variables

	Table of Contents
	3 Classes, Objects, and Methods
	What Is an Object, Anyway?
	Instances and Methods
	An Objective-C Class for Working with Fractions
	The @interface Section
	The @implementation Section
	The program Section
	Accessing Instance Variables and Data Encapsulation
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I–J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

