

Editor-in-Chief
Karen Gettman

Senior Acquisitions
Editor
Chuck Toporek

Managing Editor
John Fuller

Project Editor
Anna Popick

Copy Editor
Kelli Brooks

Indexer
Jack Lewis

Proofreader
Debbie Liehs

Technical
Reviewers
Joachim Bean
Cory Bohon
Andy Lee
Matt Long
Joseph E. Sacco,

Ph.D.
Scott D. Yelich

Editorial Assistant
Romny French

Compositor
Rob Mauhar

Cover Designer
Chuti Prasertsith

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial capi-
tal letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Clair, Robert, 1950–
Learning Objective-C 2.0 : a hands-on guide to Objective-C for Mac and iOS developers /

Robert Clair.
p. cm.

Includes index.
ISBN-13: 978-0-321-71138-0 (pbk. : alk. paper)
ISBN-10: 0-321-71138-6 (pbk. : alk. paper)

1. Objective-C (Computer program language) 2. Object-oriented programming (Computer
science) 3. Macintosh (Computer)—Programming. 4. iPhone (Smartphone)—Programming.
I. Title.
QA76.73.O115C58 2011
005.1'17—dc22

2010019360

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-71138-0
ISBN-10: 0-321-71138-6
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, July 2010

Contents at a Glance
Preface xxiii

Acknowledgments xxxi

About the Author xxxiii

I: Introduction to Objective-C 1

1 C, The Foundation of Objective-C 3

2 More About C Variables 41

3 An Introduction to Object-Oriented Programming 55

4 Your First Objective-C Program 73

II: Language Basics 91

5 Messaging 93

6 Classes and Objects 115

7 The Class Object 143

8 Frameworks 159

9 Common Foundation Classes 171

10 Control Structures in Objective-C 191

11 Categories, Extensions, and Security 213

12 Properties 229

13 Protocols 249

III: Advanced Concepts 265

14 Reference Counting 267

15 Garbage Collection 291

16 Blocks 309

x Contents at a Glance

IV: Appendices 335

A Reserved Words and Compiler Directives 337

B Toll-Free Bridged Classes 339

C 32- and 64-Bit 341

D Runtimes, Old and New 345

E Resources for Objective-C 349

Index 351

Contents

Preface xxiii

Acknowledgments xxxi

About the Author xxxiii

I: Introduction to Objective-C 1

1 C, The Foundation of Objective-C 3
The Structure of a C Program 4

main Routine 4

Formatting 5

Comments 5

Variable and Function Names 6

Naming Conventions 6

Files 7

Variables 8

Integer Types 8

Floating-Point Types 9

Truth Values 9

Initialization 10

Pointers 10

Arrays 12

Strings 13

Structures 14

typedef 15

Enumeration Constants 15

Operators 16

Arithmetic Operators 16

Remainder Operator 16

Increment and Decrement Operators 16

Precedence 17

Negation 18

Comparisons 18

Logical Operators 18

Logical Negation 19

xii Contents

Assignment Operators 19

Conversion and Casting 19

Other Assignment Operators 20

Expressions and Statements 21

Expressions 21

Evaluating Expressions 21

Statements 22

Compound Statements 22

Program Flow 22

if 23

Conditional Expression 24

while 24

do-while 25

for 25

break 26

continue 26

Comma Expression 27

switch 27

goto 28

Functions 29

Declaring Functions 31

Preprocessor 31

Including Files 31

#define 32

Conditional Compilation 32

printf 33

Using gcc and gdb 35

Summary 37

Exercises 37

2 More About C Variables 41

Memory Layout of an Objective-C Program 41

Automatic Variables 42

External Variables 43

Declaration Keywords 44

auto 44

extern 45

xiiiContents

static 45

register 46

const 46

volatile 47

Scope 47

The Scope of Automatic Variables 47

Compound Statements and Scope 48

The Scope of External Variables 49

Dynamic Allocation 49

Summary 51

Exercises 52

3 An Introduction to Object-Oriented Programming 55

Object-Oriented Programming 55

Classes and Instances 56

Methods 56

Encapsulation 56

Inheritance 57

Polymorphism 58

What Is the Point of an Object-Oriented
Language? 58

An Introduction to Objective-C 58

Defining a Class 59

Class Names as Types 61

Messaging (Invoking a Method) 62

Class Objects and Object Creation 64

Memory Management 65

Objective-C Additions 66

Runtime 66

Names 66

Message Expressions 66

Compiler Directives 67

Literal Strings 67

Objective-C Keywords 67

Cocoa Numeric Types 70

NSLog 70

Summary 71

xiv Contents

4 Your First Objective-C Program 73

Building with Xcode 73

Objective-C Program Structure 76

Build and Run the Program 78

An Object-Oriented Hello World 79

Greeter.h 80

Greeter.m 82

HelloObjectiveC.m 86

Build and Run the Program 87

Summary 88

Exercises 88

II: Language Basics 91

5 Messaging 93

Methods 93

A Simple Method 93

Methods with Arguments 94

Messaging 96

Polymorphism 97

Messaging Details 98

Nesting 98

Messaging nil 100

Sending Messages to self 100

Overriding and Messages to super 101

Selectors 103

Method with the Same Name 104

Dynamic and Static Typing 105

Under the Hood 106

Message Forwarding 108

Efficiency 109

Introspection and Other Runtime Fun 111

Summary 112

Exercises 113

6 Classes and Objects 115

Defining a Class 115

xvContents

The Interface Section 115

@class Directive 117

The Implementation Section 117

Imports 118

Subclassing a Class 119

Defining a Subclass 119

An Example of Subclassing 119

Class Hierarchies 123

A Class Hierarchy Example 124

Abstract Classes 125

Creating Objects 126

Object Allocation 126

Object Initialization 127

Destroying Objects 135

Copying Objects 136

Shallow and Deep Copies 137

Mutable and Immutable Copies 138

Implementing Copying in Your Own Classes 139

Summary 141

Exercises 141

7 The Class Object 143

Class Objects 143

The Class Type 144

Class Methods 146

Other Class Methods 147

Convenience Constructors 147

Singletons 149

Initializing Classes 150

Mimicking Class Variables 151

Summary 157

Exercises 157

8 Frameworks 159

What Is a Framework? 159

Using a Framework 160

Cocoa Frameworks 161

iPhone 162

xvi Contents

AppKit 162

Core Foundation 163

Memory Management for Core Foundation
Objects 164

Toll-Free Bridging 165

Core Graphics 166

Core Animation 167

Other Apple-Supplied Frameworks 167

Third-Party Frameworks 168

Under the Hood 168

Summary 170

9 Common Foundation Classes 171

Immutable and Mutable Classes 171

Class Clusters 172

NSString 173

NSString Examples 174

C String to NSString and Back 176

NSMutableString 176

Literal Strings 177

Collection Classes 177

NSArray 177

NSDictionary 180

NSSet 182

NSNumber 183

NSNull 184

NSData 185

Accessing NSData’s Bytes 185

File to NSData and Back 186

NSURL 186

Structures 187

Summary 188

Exercises 189

10 Control Structures in Objective-C 191

if Statements 191

Testing Objects for Equality 193

xviiContents

for Statements and Implicit Loops 195

for Statements 195

Implicit Loops 195

Implicit Loops with Blocks 196

while Statements and NSEnumerator 196

Modifying a Mutable Collection While
Enumerating 197

Fast Enumeration 199

An Example Using Fast Enumeration 201

Exceptions 205

Throwing Your Own Exceptions 206

Multiple @catch Blocks 207

Nested Exception Handling 207

Using Exceptions 208

Should You Use Exceptions? 209

Summary 210

Exercises 211

11 Categories, Extensions, and Security 213

Categories 213

Overriding Methods with Categories 216

Other Uses for Categories 217

Extensions 218

Instance Variable Scope (Access Control) 220

Access Control for Methods 221

Namespaces 221

Security 222

Calling C Functions from Objective-C 224

Technical 225

Practical 225

Philosophical 225

Summary 226

Exercises 226

12 Properties 229

Accessing Instance Variables Outside of an Object
(Don’t Do It) 230

xviii Contents

Declaring and Implementing Accessors 231

The Form of Accessors 232

Accessors Using Properties 233

The Instance Variable Name Can Be Different from
the Property Name 235

The @property Statement 236

assign, retain, copy 236

readwrite, readonly 237

nonatomic 237

setter=name, getter=name 237

attributes and @dynamic 238

More About @dynamic 238

Properties and Memory Management 240

dealloc 240

Subclassing and Properties 240

Hidden Setters for readonly Properties 242

Properties as Documentation 242

Dot Syntax 243

Dot Syntax and Properties 244

Dot Syntax and C structs 245

Summary 246

Exercises 247

13 Protocols 249

Protocols 249

Using Protocols 250

Declaring a Protocol 250

Adopting a Protocol 251

Protocols as Types 252

Properties and Protocols 252

TablePrinter Example 253

TablePrinterDataSource 253

TablePrinter 254

FruitBasket 256

main 258

A Problem 259

Implement the Optional Methods 260

xixContents

Protocol Objects and Testing for Conformance 260

Informal Protocols 261

Summary 262

Exercises 263

III: Advanced Concepts 265

14 Reference Counting 267

The Problem 268

Reference Counting 269

Receiving Objects 271

Ownership 273

Taking Ownership by Copying 274

dealloc 274

Returning Objects 276

Autorelease 277

Autorelease Pools 277

Managing Autorelease Pools 278

Back to Convenience Constructors 280

Autorelease and the iPhone 280

Using Extra Autorelease Pools to Control Memory
Usage 280

retainCount 281

Multithreading 282

When Retain Counts Go Bad 283

NSZombie 284

Retain Cycles 285

The Final Goodbye: When Programs Terminate 288

Summary 288

Exercises 289

15 Garbage Collection 291

Garbage Collection: The Theory 291

Garbage Collection: The Practice 293

Strong and Weak References 293

Using Garbage Collection 294

Controlling When Collections Occur 296

xx Contents

Finalizers 296

malloc and Garbage Collection 297

Core Foundation Objects and Garbage Collection 298

Some Bumps in the Road 299

Opaque Pointer Problems in the AppKit 299

Interior Pointers 302

Falsely Rooted Objects 303

Garbage Collection Pro and Con 303

The Positive 304

The Negative 304

Should You Use Garbage Collection? 304

Summary 305

Exercises 305

16 Blocks 309

Function Pointers 310

Calling a Function with a Function Pointer 311

Using Function Pointers 312

The Trouble with Function Pointers 314

NSInvocation 315

Blocks 317

Block Pointers 318

Access to Variables 319

Block Variables 320

Blocks Are Stack Based 321

Global Blocks 322

Blocks Are Objective-C Objects 322

Copying Blocks 323

Memory Management for Blocks 323

Traps 326

Blocks in Cocoa 327

Style Issues 330

Some Philosophical Reservations 331

Summary 332

Exercises 332

xxiContents

IV: Appendices 335

A Reserved Words and Compiler Directives 337

B Toll-Free Bridged Classes 339

C 32- and 64-Bit 341

Kernel and User Programs in 64-Bit 342

Coding Differences for 64-Bit Programs 342

Performance 342

Compiling for 64-Bit 343

More Information 343

D Runtimes, Old and New 345

Synthesized Instance Variables 345

Synthesized Instance Variables and Mac OS X
Leopard (v 10.5) 346

The Fragile Base Class Problem—Solved 347

E Resources for Objective-C 349

Apple Resources 349

Internet Resources 350

Groups 350

Books 350

Index 351

This page intentionally left blank

Preface

Objective-C is an object-oriented extension to C. You could call it “C with Objects.”
If you’re reading this book, you’re probably interested in learning Objective-C so that
you can write applications for Mac OS X or for iOS. But there’s another reason to learn
Objective-C: It’s a fun language and one that is relatively easy to learn. Like anything
else in the real world, Objective-C has some rough spots, but on the whole it is a much
simpler language than other object-oriented languages, particularly C++. The additions
that Objective-C makes to C can be listed on a page or two.

In the Apple world, Objective-C does not work alone. It is used in conjunction with
two class libraries called frameworks. The Foundation framework contains classes for basic
entities, such as strings and arrays, and classes that wrap interactions with the operating
system. The AppKit contains classes for windows, views, menus, buttons, and the assorted
other widgets needed to build graphical user interfaces. Together, the two frameworks are
called Cocoa. On iOS, a different framework called the UIKit replaces the AppKit.
Together, Foundation and UIKit are called Cocoa Touch.

Objective-C was initially created by Brad J. Cox in the early 1980s. In 1988, NeXT
Computer, the company started by Steve Jobs after he left Apple, licensed Objective-C
and made it the basis of the development environment for creating applications to run
under NeXT’s NeXTSTEP operating system. The NeXT engineers developed a set of
Objective-C libraries for use in building applications. After NeXT withdrew from the
hardware business in 1993, it worked with Sun Microsystems to create OpenStep, an open
specification for an object-oriented system, based on the NeXTSTEP APIs. Sun eventually
lost interest in OpenStep. NeXT continued selling its version of OpenStep until NeXT
was purchased by Apple in early 1997. The NeXTSTEP operating system became the
basis of Mac OS X. The NeXT Objective-C libraries became the basis of Cocoa.

This book concentrates on the Objective-C language. It will not teach you how to
write Cocoa programs or make you an expert Xcode user. It covers and makes use of a
small part of the Foundation framework, and mentions the AppKit and UIKit only in
passing. The book’s premise is that you will have a much easier time learning Cocoa if
you first acquire a good understanding of the language on which Cocoa is based.

Who Should Read This Book
This book is intended for programmers who want to learn Objective-C in order to
write programs for Mac OS X or iOS. (iOS is used for the iPhone, the iPod touch, and
the iPad.) Although it is technically possible to write complete OS X programs using

other languages, writing a program that follows the Apple Human Interface Guidelines1

and has a proper Mac “look and feel” requires the use of the Objective-C Cocoa frame-
works. Even if you write the core of a Mac application in a different language, such as
plain C or C++, your user interface layer should be written in Objective-C. When writ-
ing for iOS, there is no choice: An iPhone app’s outer layer and user interface must be
written in Objective-C.

The book will also be useful for programmers who want to write Objective-C pro-
grams for other platforms using software from the GNUStep project,2 an open source
implementation of the OpenStep libraries.

What You Need to Know
This book assumes a working knowledge of C. Objective-C is an extension of C; the
book concentrates on what Objective-C adds to C. For those whose C is rusty and
those who are adept at picking up a new language quickly, Chapters 2 and 3 form a
review of the essential parts of C, those that you are likely to need to write an
Objective-C program. If you have no experience with C or any C-like language (C++,
Java, and C#), you will probably want to read a book on C in conjunction with this
book. Previous exposure to an object-oriented language is helpful but not absolutely
necessary. The required objected-oriented concepts are introduced as the book proceeds.

New in Objective-C 2.0
If you already know some Objective-C and want to skip to the parts of the language
that are new in the 2.0 version, they are covered in these chapters:

n Fast Enumeration (Chapter 10) provides a simple (and fast) way to iterate over a
collection of objects.

n Declared properties (Chapter 12) provide an easy way to specify an object’s instance
variables and to have the compiler create methods to access those variables for you.

n Garbage collection (Chapter 15) adds automatic memory management to Objective-
C.

n Blocks (Chapter 16) let you define function-like objects that carry their context
with them.

How This Book Is Organized
This book is organized into three sections: The first section is a review of C, followed by
an introduction to object-oriented programming and Objective-C. The second section
of the book covers the Objective-C language in detail, and provides an introduction to

xxiv Preface

1. http://developer.apple.com/mac/library/documentation/UserExperience/Conceptual/

AppleHIGuidelines

2. www.gnustep.org

www.gnustep.org
http://developer.apple.com/mac/library/documentation/UserExperience/Conceptual/AppleHIGuidelines
http://developer.apple.com/mac/library/documentation/UserExperience/Conceptual/AppleHIGuidelines

the Foundation framework. The final section of the book covers the two forms of mem-
ory management used in Objective-C, and Objective-C 2.0’s newly added Blocks feature.

Part I: Introduction to Objective-C
n Chapter 1, “C, The Foundation of Objective-C,” is a high-speed introduction to

the essentials of C. It covers the parts of C that you are most likely to need when
writing Objective-C programs.

n Chapter 2, “More About C Variables,” continues the review of C with a discussion
of the memory layout of C and Objective-C programs, and the memory location
and lifetime of different types of variables. Even if you know C, you may want to
read through this chapter. Many practicing C programmers are not completely
familiar with the material it contains.

n Chapter 3, “An Introduction to Object-Oriented Programming,” begins with an
introduction to the concepts of object-oriented programming and continues with
a first look at how these concepts are embodied in Objective-C.

n Chapter 4, “Your First Objective-C Program,” takes you line by line through a
simple Objective-C program. It also shows you how to use Xcode to create a proj-
ect, and then compile and run an Objective-C program. You can then use this
knowledge to do the exercises in the remainder of the book.

Part II: Language Basics
Objects are the primary entities of object-oriented programming; they group variables,
called instance variables, and function-like blocks of code, called methods, into a single
entity. Classes are the specifications for an object. They list the instance variables and
methods that make up a given type of object and provide the code that implements
those methods. An object is more tangible; it is a region of memory, similar to a C struct,
which holds the variables defined by the object’s class. A particular object is said to be an
instance of the class that defines it.

n Chapter 5, “Messaging,” begins the full coverage of the Objective-C language. In
Objective-C, you get an object to “do something” by sending it a message. The
message is the name of a method plus any arguments that the method takes. In
response to receiving the message, the object executes the corresponding method.
This chapter covers methods, messages, and how the Objective-C messaging sys-
tem works.

n Chapter 6, “Classes and Objects,” covers defining classes, and creating and copying
object instances. It also covers inheritance, the process of defining a class by extend-
ing an existing class, rather than starting from scratch.

Each class used in executing an Objective-C program is represented by a piece of
memory that contains information about the class. This piece of memory is called
the class’s class object. Classes can also define class methods, which are methods exe-
cuted on behalf of the class rather than an instance of the class.

xxvPreface

n Chapter 7, “The Class Object,” covers class objects and class methods. Unlike
classes in some other object-oriented languages, Objective-C classes do not have
class variables, variables that are shared by all instances of the class. The last sections
of this chapter show you how to obtain the effect of class variables by using static
variables.

n Chapter 8, “Frameworks,” describes Apple’s way of encapsulating dynamic link
libraries. It covers the definition and structure of a framework, and takes you on a
brief descriptive tour of some of the common frameworks that you will encounter
when writing OS X or iOS programs.

n Chapter 9, “Common Foundation Classes,” covers the most commonly used
Foundation classes: classes for strings, arrays, dictionaries, sets, and number objects.

n Chapter 10, “Control Structures in Objective-C,” discusses some additional consid-
erations that apply when you use Objective-C constructs with C control struc-
tures. It goes on to cover the additional control structures added by Objective-C,
including Objective-C 2.0’s new Fast Enumeration construct. The chapter con-
cludes with an explanation of Objective-C’s exception handling system.

n Chapter 11, “Categories, Extensions, and Security,” shows you how to add methods
to an existing class without having to subclass it and how to hide the declarations
of methods that you consider private. The chapter ends with a discussion of
Objective-C security issues.

n Chapter 12, “Properties,” introduces Objective-C 2.0’s new declared properties fea-
ture. Properties are characteristics of an object. A property is usually modeled by
one of the object’s instance variables. Methods that set or get a property are called
accessor methods. Using the declared properties feature, you can ask the compiler to
synthesize a property’s accessor methods for you, saving yourself a considerable
amount of effort.

n Chapter 13, “Protocols,” covers a different way to characterize objects. A protocol is
a defined group of methods that a class can choose to implement. In many cases,
what is important is not an object’s class, but whether the object’s class adopts a
particular protocol by implementing the methods declared in the protocol. (More
than one class can adopt a given protocol.) The Java concept of an interface was
borrowed from Objective-C protocols.

Part III: Advanced Concepts
Objective-C provides two different systems for managing object memory: reference count-
ing and automatic garbage collection.

n Chapter 14, “Reference Counting,” covers Objective-C’s traditional reference
counting system. Reference counting is also called retain counting or managed
memory. In a program that uses reference counting, each object keeps a count,

xxvi Preface

called a retain count, of the number of other objects that are using it. When that
count falls to zero, the object is deallocated. This chapter covers the rules needed
to keep your retain counts in good order.

n Chapter 15, “Garbage Collection,” describes Objective-C 2.0’s new automatic
garbage collection system. Using garbage collection, a separate thread called the
garbage collector, is responsible for determining which objects are no longer needed
and freeing them. Garbage collection relieves you of most memory management
chores.

n Chapter 16, “Blocks,” discusses Objective-C 2.0’s new Blocks feature. A block is
similar to an anonymous function, but in addition, a block carries the values of the
variables in its surrounding context with it. Blocks are a central feature of Apple’s
Grand Central Dispatch concurrency mechanism.

Part IV: Appendices
n Appendix A, “Reserved Words and Compiler Directives,” provides a table of names

that have special meaning to the compiler, and a list of Objective-C compiler
directives. Compiler directives are words that begin with an @ character; they are
instructions to the compiler in various situations.

n Appendix B, “Toll-Free Bridged Classes,” gives a list of Foundation classes whose
instances have the same memory layout as, and may be used interchangeably with,
corresponding objects from the low-level C language Core Foundation framework.

n Appendix C, “32- and 64-Bit,” provides a brief discussion of Apple’s ongoing move
to 64-bit computing.

n Appendix D, “Runtimes, Old and New,” describes the difference between the
older “legacy” Objective-C runtime used for 32-bit OS X programs and the
newer “modern” runtime used for 64-bit Objective-C programs running on OS X
10.5 or later, and for iOS programs.

n Appendix E, “Resources for Objective-C,” lists books and websites that have useful
information for Objective-C developers.

Compile Time and Run Time
There are two times that are significant when you create programs: compile time, when
your source code is translated into machine language and linked together to form an
executable program, and run time (also called execution time), when the executable pro-
gram is run as a process on some computer. One of the characteristics that distinguishes
Objective-C from other common languages, especially C++, is that Objective-C is a
very dynamic language. “Dynamic” here means that decisions that other languages make
at compile time are postponed to run time in Objective-C. The most prominent example

xxviiPreface

of this is Objective-C’s messaging system. The section of code that a program executes
when it evaluates a message expression (the equivalent of a method call in other lan-
guages) is determined at run time.

Postponing decisions until run time has many advantages, as you will see as you read
this book, but it has one important drawback. It limits the amount of checking that the
compiler can do. When you code in Objective-C, some errors, which would be caught
at the compile stage in other languages, only become apparent at run time.

About Memory Management
As noted earlier, Objective-C 2.0 offers you the choice between using a manual refer-
ence counting system or automatic garbage collection for managing object memory.
With the exception of Chapter 15, which covers Objective-C 2.0’s garbage collection
system, this book uses reference counting from the beginning in all of its examples. It
then provides a complete treatment of reference counting in Chapter 14.

The primary reason for this is that garbage collection is not available on iOS. If you
want to write programs for the iPhone, the iPod touch, or the iPad, you must learn
Objective-C’s reference counting system.

Judging from the contents of various Objective-C and Cocoa mailing lists, reference
counting is probably the single greatest source of confusion among people learning
Objective-C. But if you learn its rules early and apply them uniformly, you will discover
that reference counting isn’t really difficult.

If, at a later time, you want to use garbage collection for a project, the transition
should be relatively painless. Although there are some architectural issues that you need
to be aware of when moving from reference counting to garbage collection (which are
covered in Chapter 15), much of using garbage collection simply consists of not doing
things that you have to do when using reference counting.

About the Examples
Creating code examples for an introductory text poses a challenge: how to illustrate a
point without getting lost in a sea of boilerplate code that might be necessary to set up a
working program. In many cases, this book takes the path of using somewhat hypotheti-
cal examples that have been thinned to help you concentrate on the point being dis-
cussed. Parts of the code that are not relevant are omitted and replaced by an ellipsis
(...).

For example:

int averageScore = ...

The preceding line of code should be taken to mean that averageScore is an integer
variable whose value is acquired from some other part of the program. The source of
averageScore’s value isn’t relevant to the example; all you need to consider is that it has
a value.

xxviii Preface

About the Code Listings
The examples in this book are a mixture of unnumbered and numbered code listings.

n Unnumbered Code Listings

These are primarily short snippets of code that are referenced in the text that
immediately precedes or follows the example.

n Numbered Code Listings

The numbered code listings have captions and are numbered by chapter number
and their order of appearance in the chapter (e.g., Listing 4.1 or Listing 8.3). These
are primarily larger examples that are referred to in text later in the chapter or in
the exercises following the chapter.

In both cases, examples that require a line-by-line explanation are given line numbers so
that the explanatory text can refer to a specific line in the code.

About the Exercises
Most of the chapters in this book have a set of exercises at the end. You are, of course,
encouraged to do them. Many of the exercises ask you to write small programs to verify
points that were made in the chapter’s text. Such exercises might seem redundant, but
writing code and seeing the result provides a more vivid learning experience than
merely reading. Writing small programs to test your understanding is a valuable habit to
acquire; you should write one whenever you are unclear about a point, even if the book
has not provided a relevant exercise.

None of the programs suggested by the exercises require a user interface; all of them
can be coded, compiled, and run either by writing the code with a text editor and com-
piling and running them from a command line, as shown before the exercises in Chapter
2, or by using a simple Xcode project, as shown in Chapter 4.

xxixPreface

We’d Like to Hear from You
You can visit our website and register this book at www.informit.com/title/
9780321711380.

Be sure to visit the book’s website for convenient access to any updates, downloads, or
errata that might be available for this book.

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do better,
what areas you’d like to see us publish in, and any other words of wisdom you’re willing
to pass our way.

When you write, please be sure to include this book’s title and the name of the
author, as well as your name, phone, and/or email address. I will carefully review your
comments and share them with the author and others who have worked on this book.

Email: chuck.toporek@pearson.com
Mail: Chuck Toporek

Senior Acquisitions Editor, Addison-Wesley
Pearson Education, Inc.
75 Arlington St., Ste. 300
Boston, MA 02116
USA

For more information about our books or conferences, see our website at
www.informit.com.

xxx Preface

www.informit.com/title/9780321711380
www.informit.com/title/9780321711380
www.informit.com

16
Blocks

Blocks provide a way to package up some executable code and a context (various vari-
ables) as a single entity so they can be handed off for execution at a later time or on a
different thread. In other languages, blocks or similar constructs are sometimes called
closures or anonymous functions. Blocks are an Apple-supplied extension to C, Objective-C
2.0, and C++. Apple has submitted blocks to the C standards working group as a pro-
posed extension to C. At the time of this writing, blocks are only available on Mac OS
X Snow Leopard (v 10.6 and on iOS 4). They are not available on earlier versions of
Mac OS X or iPhone iOS.

Note
You can use blocks on iPhone OS 3.x and on Mac OS X Leopard (v 10.5) if you install
Plausible Blocks (PLBlocks). Plausible Blocks, a reverse-engineered port from Apple-
released open-source Darwin OS code, provides the compilers and runtime required to use
blocks. You can obtain Plausible Blocks from http://code.google.com/p/plblocks/.

Handing off a package of work is useful in many situations, but one of the main driving
forces behind the adoption of blocks is Apple’s new Grand Central Dispatch (GCD) fea-
ture. GCD is designed to make concurrency easier to program and more efficient to
execute. Essentially, GCD is a thread pool that is managed for you by the operating sys-
tem. The idea behind GCD is that the operating system has a global view of all the
processes running on your Mac, and allocates resources (CPU, GPU, and RAM) as
needed to make things run more efficiently. GCD can make better decisions than a user
space program can about the number of threads to use and when to schedule them for
execution. You use blocks to submit units of work for GCD to execute.

Note
GCD provides a C interface for submitting blocks. Cocoa provides a higher-level interface to
GCD through the classes NSOperationQueue, NSBLockOperation, and
NSInvocationOperation.

NSInvocationOperation allows you to submit units of work as NSInvocation objects
instead of blocks, but as you will see in the section NSInvocation, NSInvocation
objects are somewhat difficult to set up. Blocks are much easier to use.

http://code.google.com/p/plblocks/

This chapter is an introduction to blocks. You will learn how to define a block, how a
block has access to variables in its surrounding context, how to use a block in your own
code, and about the somewhat tricky topic of memory management for blocks. The
chapter also explores some pitfalls that can befall an unwary user of blocks.

Before looking at blocks in detail, the chapter takes a pair of detours and looks at two
earlier ways of packaging up functionality: function pointers and the Foundation class
NSInvocation.

Function Pointers
When the compiler encounters a function call, it inserts a jump instruction to the code
that performs the function. (A jump instruction causes the program execution to jump
to the specified code instead of executing the line of code directly after the jump
instruction.) To return, the function executes a jump instruction back to the line of code
following the original function call. In a normal function call, the landing point of the
jump instruction (and hence the function that is called) is static. It is determined at com-
pile time. But a function call can be made dynamic through the use of a function pointer.

The following line declares myFunctionPtr as a pointer to a function that takes two
ints as arguments and returns an int:

int (*myFunctionPtr) (int, int);

Figure 16.1 shows the anatomy of a function pointer.

310 Chapter 16 Blocks

int (*myFunctionPtr) (int, int);

The asterisk tells you the
variable is a pointer.

myFunctionPtr points to a
function that takes two int
arguments. The parentheses
are required.

myFunctionPtr points to a
function that returns an int.

The name of the variable
is myFunctionPtr. The
parentheses are required.

Figure 16.1 The anatomy of a function pointer

The general form of a function pointer is:

return_type (*name)(list of argument types);

Function pointers are a low point in C syntax. Instead of reading left-to-right or right-
to-left, they read from the inside out. More complicated function pointer declarations
can quickly turn into puzzles, as you will see in Exercise 16.1.

A Syntax Quirk in Objective-C
The “from the inside out” declaration style of function pointers doesn’t fit with
Objective-C’s syntax for method arguments. Recall that Objective-C requires the type for
a method argument to be enclosed in parentheses before the argument name. This
conflict is resolved in favor of the syntax for method arguments.

When declaring a method argument that is a function pointer, the name comes outside.
For example, a pointer to a function that has no arguments or return value is normally
declared as follows:

void (*functionPtr)(void);

A function that takes a function pointer of preceding type as an argument is declared
like this:

void functionWithFPArg(void (*fp)(void));

But a method with the same argument type is declared like this:

-(void) methodWithFFPArg:(float(*)(float)) fp;

Putting the name of the function pointer last in a function pointer declaration only works
when declaring the type of a method argument. Putting the name last results in a com-
piler error in any other situation.

You can also declare arrays of function pointers. The following line declares fpArray as
an array of 10 pointers to functions. Each function takes a single argument, a pointer to a
float, and returns void:

void (*fpArray[10])(float*);

A function pointer can point to a function that has another function pointer as an argu-
ment or a return value:

void (*(*complicatedFunctionPointer)(void))(void);

complicatedFunctionPointer is a pointer to a function that takes no arguments and
returns a pointer to a function that takes no arguments and returns void.

Declarations like the preceding one are ugly, but you can make your code cleaner by
hiding the ugliness with a typedef:

typedef void (*(*complicatedFunctionPointer)(void))(void);

complicatedFunctionPointer fp;

Calling a Function with a Function Pointer
The following example shows how to assign a function to a function pointer and how
to call the function using the function pointer:

void logInt(int n)

{

NSLog("The integer is: %d", n);

}

311Function Pointers

312 Chapter 16 Blocks

void (*myFunctionPtr)(int); // Declare a function pointer

myFunctionPtr = logInt; // Make it point to logInt

myFunctionPtr(5); // Execute the function through the pointer

To make the function pointer refer to a function, you simply assign it the name of the
function. The function must be defined or visible by a forward declaration at the point it
is assigned.

To call a function through a function pointer, you simply add the arguments, encased
in parentheses, to the function pointer. A function call through a function pointer is just
like a normal function call except that you use the name of the function pointer variable
instead of the function name, as shown in the previous code snippet.

Note
There is no need to use the address of operator (&) or the dereferencing operator (*) with
function pointers. The compiler knows which names are functions or function pointers and
which names are regular variables. However, if you would like to use them, you may, as
shown here:

myFunctionPtr = &logInt; // The same as myFunctionPtr = logInt;

(*myFunctionPtr)(5) // The same as myFunctionPtr(5);

The compiler doesn’t care which form you use.

Using Function Pointers
One of the primary uses of function pointers is for callbacks. Callbacks are used in situa-
tions where you have a function or method that is going to do some work for you, but
you would like the opportunity to insert your own code somewhere in the process. To
do this, you pass the working function or method a pointer to a function containing the
code you want executed. At the appropriate time, the working function or method will
call your function for you.

For example, NSMutableArray provides the following method for use in custom
sorting:

- (void)sortUsingFunction:

(NSInteger (*)(id, id, void *))compare

context:(void *)context

When you invoke sortUsingFunction:context:, the method sorts the contents of
the receiver. To perform the sort, sortUsingFunction:context: must examine pairs
of array elements and decide how they are ordered. To make these decisions,
sortUsingFunction:context: calls the compare function that you passed in by
pointer when the method was invoked.

The compare function must look at the two objects it receives and decide (based on
whatever criterion you require) whether they are ordered NSOrderedAscending,
NSOrderedSame, or NSOrderedDescending.

Note
NSOrderedAscending, NSOrderedSame, and NSOrderedDescending are integer con-
stants defined by the Foundation framework.

sortUsingFunction:context: also passes compare the void* pointer that it received
as its context argument. This is a pure pass-through; sortUsingFunction:context:
doesn’t look at or modify context. context may be NULL if compare doesn’t require
any additional information.

Listing 16.1 sorts an array containing some NSNumber objects. The address of a BOOL
is passed in to control the direction of a numerical sort.

Listing 16.1 ArraySortWithFunctionPointer.m

#import <Foundation/Foundation.h>

NSInteger numericalSortFn(id obj1, id obj2, void* ascendingFlag)

{

int value1 = [obj1 intValue];

int value2 = [obj2 intValue];

if (value1 == value2) return NSOrderedSame;

if (*(BOOL*) ascendingFlag)

{

return (value1 < value2) ?

NSOrderedAscending : NSOrderedDescending;

}

else

{

return (value1 < value2)

? NSOrderedDescending : NSOrderedAscending;

}

}

int main (int argc, const char * argv[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

// Put some number NSNumber objects in an array

NSMutableArray *numberArray = [[NSMutableArray alloc] initWithCapacity: 5];

[numberArray addObject: [NSNumber numberWithInt: 77]];

[numberArray addObject: [NSNumber numberWithInt: 59]];

[numberArray addObject: [NSNumber numberWithInt: 86]];

313Function Pointers

[numberArray addObject: [NSNumber numberWithInt: 68]];

[numberArray addObject: [NSNumber numberWithInt: 51]];

NSLog(@"Before sort: %@", [numberArray description]);

// This flag controls the sort direction.

// Change it to NO to sort in descending order.

BOOL ascending = YES;

// Sort the array

[numberArray sortUsingFunction: numericalSortFn context: &ascending];

NSLog(@"After sort: %@", [numberArray description]);

[numberArray release];

[pool drain];

return 0;

}

Notice:
n ascendingFlag is passed in as void*. It must be cast as BOOL* before it can be

dereferenced to get the BOOL value.
n The name of a function, in this case numericalSortFn, can serve as a properly

typed pointer to that function. Here, it is used as the argument when invoking
sortUsingFunction:context: without defining a separate function pointer
variable.

The Trouble with Function Pointers
There is one large inconvenience with using function pointers as callbacks or in any sit-
uation where you are trying to hand off some code for execution by another part of the
program or another thread. Any context that the function requires must be packed up
and submitted as a separate variable or variables.

Most designs using callbacks use the pattern shown in Listing 16.1. The function or
method that is passed the callback function accepts a blind pointer as an additional argu-
ment and then passes that pointer back to the callback function, as shown on Figure
16.2. This is only a minor inconvenience when the context is a single variable as in the
preceding example. However, if your function requires a more complicated context, you
must create and load a custom structure to hold the context and then pass the pointer to
that structure as the context variable. As an alternative, you could package the context
variables in an NSDictionary and then pass the dictionary as the context. Either way is
awkward if the context involves many variables.

314 Chapter 16 Blocks

Figure 16.2 Passing a callback function to a method

NSInvocation
An NSInvocation object takes an Objective-C message and turns it into an object. The
invocation object stores the message’s receiver (called the target in invocation-speak),
selector, and arguments. An invocation object can be saved for later execution or passed
on to another part of your code. When you send the invocation object an invoke mes-
sage, the invocation sends the target object a message using the stored selector and
arguments.

As an example, consider a LineGraphic class with a method drawWithColor:width:
that draws a line with a specified color and line width:

LineGraphic *graphic = ...

[graphic drawWithColor: [NSColor redColor] width: 2.0];

Listing 16.2 shows how to turn the preceding message into an invocation.

Listing 16.2 Constructing an NSInvocation

LineGraphic *graphic = ...

NSInvocation *drawInvocation =

[NSInvocation invocationWithMethodSignature:

[graphic methodSignatureForSelector:

@selector(drawWithColor:width:)]];

[drawInvocation setTarget: graphic];

[drawInvocation setSelector: @selector(drawWithColor:width:)];

[drawInvocation retainArguments];

315NSInvocation

void(*callbackFnPtr)(callBackInfo*)=…;
callbackContext* someContext=…;

callbackFnPtr

someContext

callbackFnPtr(someContext);

A Method

A pointer to a callback
function and a pointer to
some context information
are passed into the method.

At some later time, the method calls the function
(using the passed-in function pointer) with the
passed in context as the argument.

1. 2.

NSColor *color = [NSColor redColor];

float linewidth = 2.0;

[drawInvocation setArgument: &color atIndex: 2];

[drawInvocation setArgument: &linewidth atIndex: 3];

To set up an invocation, NSInvocation needs to know the return type of the message
being encapsulated and the types of the message’s arguments. The message’s selector is just
a name and doesn’t carry any type information, so you must obtain the type information
by calling the target’s methodSignatureForSelector:. This is a method that all classes
inherit from NSObject. It returns an NSMethodSignature object, which is an encoded
representation of the selector’s return type and argument types. Finally, you pass the returned
NSMethodSignature to NSInvocation’s invocationWithMethodSignature: class
method to create the invocation.

Note
In Listing 16.2, the call to methodSignatureForSelector: is nested inside the call to
invocationWithMethodSignature: so there is no explicit NSMethodSignature
 variable.

Next, you set the invocation’s target and selector with setTarget: and setSelector:.
An NSInvocation does not retain its target or any of its arguments by default. If you

are going to save an invocation for future execution, you should ask the invocation to retain
its target and arguments by sending the invocation a retainArguments message. This
prevents the target and arguments from being released before the invocation is invoked.

The arguments for the encapsulated message are set with the setArgument:atIndex:
method:

n You pass the address of the variable being used for the argument, not the variable
itself. You can’t use a value directly in setArgument:atIndex: message:

[drawInvocation setArgument: 2.0 atIndex: 3]; // WRONG!

n If the selector has an argument that is not an object (an argument that is a primi-
tive C type such as int or float), you may use the address of the primitive type
directly. There is no need to wrap the width argument in an NSNumber object.

n The arguments are identified by their position in the message. Notice that indices
start at 2. Indices 0 and 1 are reserved for the hidden method arguments self and
_cmd. (For an explanation of a method’s hidden arguments, see Chapter 5, “Messaging.”)

Now that you have created drawInvocation, you can store it or hand it off to other
code. When you are ready to draw the line, you simply execute the following line of code:

[drawInvocation invoke];

An invocation like the preceding one could be used as part of a display list scheme in a
drawing program. Each invocation, stored in an array, encapsulates the message required

316 Chapter 16 Blocks

to draw an element in the final scene. When you are ready to draw the scene, you loop
through the array of invocations and invoke each one in turn:

NSMutableArray *displayList = ...

for NSInvocation invocation in displayList

{

[invocation invoke];
}

Two additional points:
n An NSInvocation can be invoked any number of times.
n It is possible to encapsulate a message with a return value in an NSInvocation. To

get the return value, send the invocation a getReturnValue: message, as illus-
trated here:

double result;

[invocationReturningDouble getReturnValue: &result];

The argument to getReturnValue: must be a pointer to a variable of the same
type as the invocation’s return type. If you send a getReturnValue: message to
an invocation object before it has been sent an invoke message, the result is unde-
fined. The value is garbage and may cause a program crash if you attempt to it for
anything.

NSInvocation objects are used in the Cocoa framework to schedule an operation to
be performed after a time interval (NSTimer), and in the Cocoa undo mechanism
(NSUndoManager). NSInvocation objects solve one of the problems of using function
pointers; they carry at least some of their context with them in the form of the argu-
ments to the encapsulated message. That said, NSInvocation objects have a major draw-
back—as you have seen in Listing 16.2, they are difficult to construct.

Blocks
Blocks are similar in many ways to functions, with the important exception that blocks
have direct access to variables in their surrounding context. “Direct access” means that a
block can use variables declared in its surrounding context even though those variables
are not passed into the block through an argument list. Blocks are declared as follows:

^(argument_list){ body };

Blocks begin with a caret (^), followed by an argument list enclosed in parentheses and
one or more statements enclosed in curly brackets. This expression is called a block literal,
and is defined as follows:

n Blocks can return a value by using a return statement in the body.
n You don’t have to specify the return type; the compiler determines the return type

by looking at the body of the block.

317Blocks

318 Chapter 16 Blocks

n If the block doesn’t have arguments, the argument list is written as (void).
n Block literals don’t have a name; that is why they are sometimes called anonymous

functions.

The following is a simple block example that takes an integer, doubles it, and returns the
doubled value:

^(int n){ return n*2; };

You can call a block literal directly by appending values for its arguments surrounded in
parentheses:

int j = ^(int n){ return n*2; }(9); // j is now 18

This works, but it is a bit silly; you could get the same result by simply coding the
following:

int j = 2 * 9;

In normal use, a block literal is assigned to a variable typed as pointer to a block, or used
as an argument to a function or a method that takes a pointer to block argument.

Block Pointers
A variable that is a block pointer (a pointer to a block) is declared as follows:

return_type (^name)(list of argument types);

This should look familiar; it has exactly the same form as the declaration of a function
pointer, except that the * has been replaced with a ^.

Note
Don’t refer to a variable that holds a block pointer as a block variable. As you will see later
in the chapter, the term block variable is reserved for a different entity.

The following example illustrates how to declare a block pointer, assign a block to it, and
then call the block through the block pointer:

int (^doubler)(int); // doubler is typed as a pointer to a block

doubler = ^(int n){ return n*2; };

int j = doubler(9); // j is now 18

You can use block pointers as arguments to a function or a method:

// someFunction is a function that takes a block pointer as an argument

void someFunction(int (^blockArg)(int));

int (^doubler)(int)= ^(int n){ return n*2; };

someFunction(doubler);

You can also use a block literal directly in a function call or an Objective-C message
expression:

void someFunction(int (^blockArg)(int));

someFunction(^(int n){ return n*2; });

Note
Objective-C method declarations have the same quirk with block pointers as they do with
function pointers: When declaring a method that takes a block pointer argument, the name
comes outside the type declaration:

- (void) doSomethingWithBlockPointer:

(float (^)(float)) blockPointer;

Access to Variables
A block has:

n Read-only access to automatic variables visible in its enclosing scope1

n Read/write access to static variables declared in a function and to external vari-
ables

n Read/write access to special variables declared as block variables

Here is a simple example of a block accessing a local variable in its enclosing scope:

int j = 10;

int (^blockPtr)(int) = ^(int n){ return j+n; };

int k = blockPtr(5); // k is now 15

The value that a block uses for a local variable from its context is the value that local
variable has when the flow of execution passes over the block literal, as shown here:

1 int j = 10;

2

3 int (^blockPtr)(int) = ^(int n){ return j+n; };

4

5 j = 20;

6

7 int k = blockPtr (5); // k is 15, not 25 as you might expect

319Blocks

1. The scope of various classes of variables is discussed in Chapter 2, More About C Variables.

320 Chapter 16 Blocks

In the preceding code:
n Line 1: The local variable j is set to 10.
n Line 3: The block blockPtr is defined. blockPtr has access to the local variable
j. The value of j that blockPtr uses is bound to the value that j has when the
program execution passes over this line. In effect, blockPtr now has a private
copy of j that is set to 10.

n Line 5: To show that blockPtr’s value of j was bound in Line 3, j is reset to 20.
n Line 7: The blockPtr is evaluated with an argument of 5 resulting in a return value

of 10 (the value of j at the time Line 3 is executed) + 5 (the argument) = 15.

A block’s access to local variables is read-only. The following code, which attempts to set
the value of j from inside blockPtr, results in a compiler error because blockPtr’s
access to the local variable j is read-only:

int j = 10;

void (^blockPtr)(void) = ^(void){ j = 20; };

Note
If a local variable holds a pointer to an object, a block cannot change the variable to point
to a different object. But the object that the variable points to can still be modified by the
block:

NSMutableArray *localArray = ...

void (^shortenArray)(void) = ^(void){ [localArray removeLastObject]; };

// Removes the last object in localArray

shortenArray();

The compiler gives blocks access to static and external variables by pointer. The value
the block sees for this type of variable is the value the variable has when the block is
executed, not when the block is defined:

static int j = 10;

int (^blockPtr)(int) = ^(int n){ return j+n; };

j = 20;

int k = blockPtr (5); // k is 25

Block Variables
Variables declared with the new type modifier __block are called block variables:

__block int integerBlockVariable;

321Blocks

Block variables are visible to, and are shared and mutable by, any block defined in their
scope. For example:

1 __block int j = 10;

2

3 void (^blockPtr_1)(void) = ^(void){ j += 15; };

4 void (^blockPtr_2)(void) = ^(void){ j += 25; };

5

6 blockPtr_1(); // j is now 25

7 blockPtr_2(); // j is now 50

In the preceding code:
n Line 1: j is declared as a __block variable and set to 10.
n Line 3: blockPtr_1 is defined. Because j has been declared as a __block vari-

able, blockPtr_1 is permitted to set the value of j.
n Line 4: Similarly, blockPtr_2 is permitted to set the value of j. Both
blockPtr_1 and blockPtr_2 share read-write access to the variable j.

n Line 6: blockPtr_1 is evaluated, incrementing j by 15, resulting in a value of 25
for j.

n Line 7: blockPtr_2 is evaluated, incrementing j by 25, resulting in a value of 50
for j.

Block variables start out on the stack like any other automatic variable. But if you copy a
block that references a block variable, the block variable is moved from the stack to the
heap along with the block (see the section Copying Blocks).

Note
The term block variable refers to a variable that is declared with the __block modifier, as
described in the preceding paragraphs. Don’t confuse “block variable” and “variable that
holds a pointer to a block.” A block variable is not a block.

Blocks Are Stack Based
When you define a block literal inside a function or a method, the compiler creates a
structure on the stack that holds the values of any local variables the block references, the
addresses of read/write variables it references, and a pointer to block’s executable code.

Note
The block structure is created on the stack, but the block’s executable code is not on the
stack. It is in the text portion of the program along with all the other executable code.

Blocks have the same lifetime as automatic variables. When the block literal goes out of
scope, it is undefined, just like an automatic variable that has gone out of scope. Scope
for a block literal is defined in the same way as scope for an automatic variable (see

322 Chapter 16 Blocks

Chapter 2, “More About C Variables”): If a block literal is defined inside a compound
statement (between a pair of curly brackets), the block literal goes out of scope when the
program execution leaves the compound statement. If a block literal is defined in a func-
tion, it goes out of scope when the function returns. The following code is incorrect:

int (^doubler)(int);

{

...

doubler = ^(int n){ return n*2; };

...

}

...

int j = doubler(9); // WRONG! Bug!

In the preceding example, j is undefined. At the point where doubler(9) is executed,
the block that the doubler variable points to has gone out of scope and the block may
have been destroyed.

Note
If you try the preceding example, it may appear to work correctly. j may very well be set to
18. But this would be an accident of the way the complier has arranged the code in this
instance. After the block is out of scope, the compiler is free to reuse the space the block
occupied in the stack frame. If the compiler has reused the space, the result of trying to
execute the out-of-scope block would be an incorrect value of j or, more likely, a crash.

Global Blocks
You can also assign a block literal to a file-scope block pointer variable:

#import <Foundation/Foundation.h>

void (^logObject)(id) =

^(id obj){ NSLog(@"Object Description: %@", [obj description]); };

// logObject(someObj) may be used anywhere in the file.

The compiler creates global-scope blocks in low memory like any other file-scope vari-
able. Global blocks never go out of scope.

Blocks Are Objective-C Objects
It may seem surprising, but blocks are also Objective-C objects. A newly created block is
the only example of an Objective-C object that is created on the stack. Blocks are
instances of one of several private subclasses of NSObject. Apple doesn’t provide the
header for the block classes so you can’t subclass them or do much of anything with
them in an Objective-C sense except send them copy, retain, release, and
autorelease messages. Copying and memory management for blocks are covered in
the next sections.

323Blocks

Copying Blocks
One of the main uses of blocks is to pass a chunk of work (some code plus some con-
text) out of the current scope for processing at a later time. Passing a block to a function
or method that you call is safe (as long as that function or method is going to execute
on the same thread). But what happens if you want to pass a block to a different thread
or pass a block out of the current scope as a return value? When the current function or
method returns, its stack frame is destroyed. Any blocks that were defined in its scope
become invalid.

To preserve a block, you must copy it. When you copy a block, the copy is created on
the heap. The heap-based copy is then safe to return up the stack to the calling function
or pass off to another thread.

If you are coding in straight C, you can use the Block_copy() function, as follows:

int(^doublerCopy)(int) = Block_copy(^(int n){ return n * 2; });

In Objective-C, you can send a copy message to the block:

int(^doublerCopy)(int) = [^(int n){ return n * 2; } copy];

The two preceding examples are equivalent. In either statement, you could use a block
pointer instead of the block literal.

When you copy a block, the new block gets copies of the values of any automatic
variables that the block references. (The block accesses automatic variables by value. The
value of the variable is copied into the block object when it is created.)

But What About Block Variables?
Block variables are accessed by reference. It wouldn’t be very useful to copy a block
and then leave the copied block referring to a variable that is destroyed when the pro-
gram execution leaves the current scope.

To remedy this, when you copy a block, the compiler also moves any block variables
that the block references from the stack to a location on the heap. The compiler then
updates any blocks that reference the block variable so they have the variable’s new
address.

One consequence of the compiler’s behavior in this situation is that it is a very bad idea
to take the address of a block variable and use it for anything. After the copy operation,
the original address refers to a memory location that may now be garbage.

Memory Management for Blocks
If you copy a block with Block_copy(), you must eventually balance that call with a
call to Block_release(). If you use the Objective-C copy message and you are using
reference counting, you must balance the copy message with a release or an
autorelease:

int(^getDoublerBlock())(int)

{

int(^db)(int) = ^(int n){ return 2*n; };

// The returned block is autoreleased. This balances the copy

// and makes getDoublerBlock conform to the naming convention

// for memory management.

return [[db copy] autorelease];

}

...

int(^doubler)(int) = getDoublerBlock(); // Get the block

int sevenDoubled = doubler(7); // Use the block

Don’t mix calls to Block_copy() and Block_release()with the Objective-C’s copy
and release messages.

If a block references a variable that holds an object, that object is retained when the
block is copied and released when the block is released.

Note
An object held in __block variable is not retained when a block that references it is
copied.

When copying a block inside a method body, the rules are slightly more complicated:
n A direct reference to self in a block that is being copied causes self to be

retained.
n A reference to an object’s instance variable (either directly or through an accessor

method) in a block that is being copied causes self to be retained.
n A reference to an object held in a local variable in a method causes that object, but

not self, to be retained.

You should be careful when copying a block. If the code that copies the block is inside a
method and the block refers to any of the object’s instance variables, the copy causes
self to be retained. It is easy to set up a retain cycle that prevents the object from ever
being deallocated,

Listing 16.3 shows the interface section for a class that has an instance variable name
to store a name, and a method logMyName to log that name. logMyName uses a block
stored in the instance variable loggingBlock to do the actual logging.

Listing 16.3 ObjectWithName.h

#import <Foundation/Foundation.h>

@interface ObjectWithName : NSObject

{

324 Chapter 16 Blocks

NSString *name;

void (^loggingBlock)(void);

}

- (void) logMyName;

- (id) initWithName:(NSString*) inName;

@end

Listing 16.4 shows the corresponding implementation file.

Listing 16.4 ObjectWithName.m

1 #import "ObjectWithName.h"

2

3 @implementation ObjectWithName

4

5 - (id) initWithName:(NSString*) inputName

6 {

7 if (self = [super init])

8 {

9 name = [inputName copy];

10 loggingBlock = [^(void){ NSLog(@"%@", name); } copy];

11 }

12 return self;

13 }

14

15 - (void) logMyName

16 {

17 loggingBlock();

18 }

19

20 - (void) dealloc

21 {

22 [loggingBlock release];

23 [name release];

24 [super dealloc];

25 }

ObjectWithName is a very simple class. However, this version of ObjectWithName has a
retain cycle. If you create an ObjectWithName object, it won’t be deallocated when you
release it.

The problem is Line 10 of Listing 16.4:

loggingBlock = [^(void){ NSLog(@"%@", name); } copy];

325Blocks

326 Chapter 16 Blocks

To store the block in the instance variable loggingBlock, you must copy the block lit-
eral and assign the copy to the instance variable. This is because the block literal goes out
of scope when initWithName: returns. Copying the block puts the copy on the heap
(like a normal Objective-C object). However, the block literal references the instance
variable name, so the copy causes self to be retained, setting up a retain cycle. The
block now has ownership of the object and the object has ownership of the block
(because it has copied the block). The object’s reference count never goes to zero and its
dealloc method is never called.

You can fix this problem by changing Line 10 of Listing 16.4 so it reads as follows:

loggingBlock = [^(void){ NSLog(@"%@", inputName); } copy];

With this change, the block copying operation retains the input argument inputName
rather than the instance variable name. Because the block no longer references any of the
object’s instance variables, self is not retained and there is no retain cycle. The object
will still have the same behavior because name and inputName have the same content.

Note
The preceding rules are presented separately for blocks copied inside a method to empha-
size the consequences of a block accessing an object’s instance variable. But there is
really no significant difference between copying a block inside or outside a method. The
only difference is that, outside of a method, there is no way to reference an object’s
instance variables without referencing the object itself.

Traps
Because blocks are stack-based objects, they present some traps for the unwary program-
mer. The following snippet of code is incorrect:

void(^loggingBlock)(void);

BOOL canWeDoIt = ...

// WRONG

if (canWeDoIt)

loggingBlock = ^(void){ NSLog(@"YES"); };

else

loggingBlock = ^(void){ NSLog(@"NO"); };

// Possible crash

loggingBlock();

At the end of this snippet, loggingBlock is undefined. The if and else clauses of an
if statement and the bodies of loops are separate lexical scopes, even if they are single
statements and not compound statements. When the program execution leaves the scope, the
compiler is free to destroy the block and leave loggingBlock pointing at garbage.

To fix this code, you must copy the block, and then remember to release it when you
are finished:

void(^loggingBlock)(void);

BOOL canWeDoIt = ...

if (canWeDoIt)

loggingBlock = [^(void){ NSLog(@"YES"); } copy];

else

loggingBlock = [^(void){ NSLog(@"NO"); } copy];

// Remember to release loggingBlock when you are finished

This example is also incorrect:

NSMutableArray *array = ...

// WRONG!

[array addObject: ^(void){ doSomething; }];

return array; //

Recall that objects added to collection objects receive a retain message; however in this
case, the retain doesn’t help because retain is a no-op for a stack-based block. Again, to
fix the problem, you must copy the block:

NSMutableArray *array = ...

[array addObject: [[^(void){ doSomething; } copy] autorelease]];

return array;

In the preceding code snippet, the copy message puts a copy of the block on the heap.
The autorelease message balances the copy. The retain message that the copied
block receives when it is placed in the array is balanced by a release message when the
block is later removed from the array or when the array is deallocated.

Blocks in Cocoa
Beginning with Mac OS X Snow Leopard (v 10.6), Apple has started deploying blocks
throughout the Cocoa frameworks. This section briefly describes three areas where Apple
has added features that use blocks.

Concurrency with NSOperationQueue
Concurrent (multithreaded) programming is very difficult to do correctly. To make it
easier for programmers to write error-free multithreaded programs, Apple has introduced
Grand Central Dispatch (GCD). GCD implements concurrency by creating and manag-
ing a thread pool. A thread pool is a group of threads that can be assigned to various tasks
and reused when the task is finished. GCD hides the details of managing the thread pool
and presents a relatively simple interface to programmers.

327Blocks

The Cocoa class NSOperationQueue provides a high-level interface to GCD. The
idea is simple: You create an NSOperationQueue and add units of work, in the form of
blocks, for the queue to execute. Underneath NSOperationQueue, GCD arranges to
execute the block on a separate thread:

NSOperationQueue *queue = [[NSOperationQueue alloc] init];

[queue addOperationWithBlock: ^(void){ doSomething; }];

// doSomething will now execute on a separate thread

n A block passed to GCD (either through NSOperationQueue or through the low-
level C interface) must have the form:

void (^block)(void)

It must not take arguments or return a value.
n The GCD mechanism takes care of copying blocks submitted to it and releases

them when no longer needed.

Note
Programming concurrency is a complex topic. For a complete discussion of
NSOperationQueue and GCD, see Apple’s Concurrency Programming Guide.2

Collection Classes
The Foundation collection classes now have methods that enable you to apply a block to
every object in the collection. NSArray has the following method:

- (void)enumerateObjectsUsingBlock:

(void (^)(id obj, NSUInteger idx, BOOL *stop))block

This method calls block once for each object in the array; the arguments to block are:
n obj, a pointer to the current object.
n idx, the index of the current object (idx is the equivalent of the loop index in an

ordinary for loop).
n stop, a pointer to a BOOL. If the block sets stop to YES,
-enumerateObjectsUsingBlock: terminates when the block returns. It is the
equivalent of a break statement in an ordinary C loop.

Listing 16.5 uses -enumerateObjectsUsingBlock: to log a description of every object
in an array.

328 Chapter 16 Blocks

2. http://developer.apple.com/mac/library/documentation/General/Conceptual/

ConcurrencyProgrammingGuide

http://developer.apple.com/mac/library/documentation/General/Conceptual/ConcurrencyProgrammingGuide
http://developer.apple.com/mac/library/documentation/General/Conceptual/ConcurrencyProgrammingGuide

Listing 16.5 DescribeArrayContents.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSArray *array =

[NSArray arrayWithObjects: @"dagger", @"candlestick",

@"wrench", @"rope", nil];

void (^loggingBlock)(id obj, NSUInteger idx, BOOL *stop) =

^(id obj, NSUInteger idx, BOOL *stop)

{ NSLog(@"Object number %d is a %@",

idx, [obj description]); };

[array enumerateObjectsUsingBlock: loggingBlock];

[pool drain];

return 0;

}

If you build and run this program, you should see the following result:

DescribeArrayContents [50642:a0b] Object number 0 is a dagger

DescribeArrayContents [50642:a0b] Object number 1 is a candlestick

DescribeArrayContents [50642:a0b] Object number 2 is a wrench

DescribeArrayContents [50642:a0b] Object number 3 is a rope

Did-End Callbacks
I haven’t said much about AppKit in this book, but I’ll assume that you are familiar with
saving files on Mac OS X. You select File > Save in an app, and if this is the first time
the file is saved, a save sheet appears so you can name the file and select the location
where it will be saved. You make your choices and click Save, or if you’ve changed your
mind, you can click Cancel. After clicking one of the buttons, the sheet slides up and
disappears.

When you invoke the method that begins the sheet, Cocoa gives you the chance to
register some code to be executed when the user dismisses the sheet. (This is where you
put the code that actually saved the file to disk.)

Prior to Mac OS X Snow Leopard (v 10.6), a Save sheet was started with this rather
formidable method:

- (void)beginSheetForDirectory:(NSString *)path

file:(NSString *)name

modalForWindow:(NSWindow *)docWindow

329Blocks

330 Chapter 16 Blocks

3. A method whose status is changed to deprecated in a given major OS release is still available in

that release but may be withdrawn in a future major OS release. For example, a method marked as

deprecated in Mac OS X 10.6 may not be available in Mac OS X 10.7.

modalDelegate:(id)modalDelegate

didEndSelector:(SEL)didEndSelector

contextInfo:(void *)contextInfo

When the user dismisses the sheet, the sheet sends the object registered as
modalDelegate, the message represented by the selector didEndSelector. Typically,
the modalDelegate is the object that initiates the panel. didEndSelector has the
form:

- (void)savePanelDidEnd:(NSSavePanel *)sheet

returnCode:(int)returnCode

contextInfo:(void *)contextInfo;

n sheet is a pointer to the NSSavePanel object itself.
n returnCode is an integer that specifies which button the user clicked on.
n contextInfo is a blind pointer to the information passed to
beginSheetForDirectory: ... when it was invoked. This is how you pass
information from the object that invoked the sheet to the code responsible for act-
ing on the user’s input.

For Mac OS X Snow Leopard and beyond, the preceding method has been deprecated3

and replaced with the following method:

- (void)beginSheetModalForWindow:(NSWindow *)window

completionHandler:(void (^)(NSInteger result))handler

You simply pass in a block to be executed when the sheet is dismissed. The block can
capture any required context so the blind contexInfo pointer is not required.

Note
The file and directoryPath arguments were removed as part of a separate cleanup
that doesn’t involve blocks.

Style Issues
Placing the statements of a block literal on a single line makes debugging difficult; for
example:

^(void){doStuff; doMoreStuff; evenMore; keepGoing; lastStatement;}

You can set a debugger breakpoint on doStuff; but there is no way to step through or
set a breakpoint on any of the other statements in the block. If you stop on doStuff;
and try to step, the debugger jumps to the line following the block literal—making it

impossible to debug the subsequent lines in the literal. If your block literal is non-trivial
and may require debugging, you should put the statements in the block’s body on sepa-
rate lines, as follows:

^(void){doStuff;

doMoreStuff;

evenMore;

keepGoing;

lastStatement;}

As noted earlier, you can place a block literal directly in a function or method call:

someFunction(otherArgs, ^(void){ doStuff;

doMoreStuff;

evenMore;

keepGoing;

lastStatement;});

You could also assign the block to a block pointer variable and use the block pointer as
the argument. Which you choose is a matter of preference: Some people are annoyed at
creating an extra variable (which the compiler will probably optimize away), whereas
others find that putting the block literal inside the function call makes the code hard
to read.

Some Philosophical Reservations
Blocks are very versatile and they are clearly an important part of Apple’s plans for the
future of Objective-C and Mac OS X. However, blocks come with a few issues that are
worth a moment or two of thought:

n The term “block” was already in use. It is used as interchangeable with “compound
statement” in almost every book on the C language. This might cause confusion in
some circumstances.

n Blocks are function oriented and not very object oriented. This may be an issue if you
are strongly attached to an ideal of object-oriented purity.

n Blocks completely break encapsulation. A block’s access to variables that are not
accessed through an argument list or an accessor method presents many of the
same issues as using global variables.

Using __block variables and copying blocks can result in entangled objects: You
can create separate objects (potentially belonging to different classes) communicat-
ing via a variable on the heap that is not visible to anything else.

n As with operator overloading in C++, blocks can be used in ways that lead to
Design Your Own Language Syndrome, code that is very terse but very difficult for
others (or yourself, several months later) to read and understand. This may not be
an issue for independent developers, but it can be a problem if you are part of a
programming team.

331Some Philosophical Reservations

Summary
This chapter looked at several ways of packaging functionality to be executed at a later
time or on a different thread. Function pointers let you hand off functions but require
that you provide an extra variable to go with the function pointer if you need to pass
some context to go along with the function. NSInvocation objects wrap the target, the
selector, and the arguments of an Objective-C message expression in a single object that
can then be stored or handed off for later execution. They are easy to use but difficult to
construct.

Blocks, an Apple-added extension to C, Objective-C 2.0, and C++, wrap a series of
statements and the variables in their surrounding context in a single entity. Grand
Central Dispatch, Apple’s system for managing concurrency, uses blocks as the medium
for submitting tasks to be executed on other threads. Beginning with Mac OS X Snow
Leopard (v 10.6), Apple is deploying blocks throughout the Cocoa frameworks to
replace older methods that used NSInvocation objects or required separate target, selec-
tor, and context arguments for callbacks.

Exercises
1. This is more of a puzzle than anything else, but it will test your understanding of

function pointer (and, by extension, block pointer) declarations. Consider the fol-
lowing declaration:
int (*(*myFunctionPointer)(int (*)(int))) (int);

What (in words) is myFunctionPointer?

2. Rewrite the HelloObjectiveC program from Chapter 4, “Your First Objective-C
Program,” to use an NSInvocation:

Instead of passing the Greeter the greeting text as an NSString, create a
Greeting class that encapsulates the greeting and a method that issues the greet-
ing. (The method should take the greeting string as an argument and log it.)

Package up issuing the greeting as an NSInvocation and pass it to the Greeter.

The Greeter should then issue the greeting by sending the invocation object the
-invoke message.

3. Write a program that uses some simple blocks and verify for yourself that:
n The value for an ordinary automatic value that a block sees is fixed when exe-

cution passes over the block literal, and is unchanged if the value of the variable
is changed later in the code.

n A block cannot modify the value of an ordinary automatic variable in its scope.
n A block can both read and set a variable declared with the __block type modi-

fier.

332 Chapter 16 Blocks

4. Rewrite the program in Listing 16.1 to use a block instead of a function. Use the
NSMutableArray method:

- (void)sortUsingComparator:(NSComparator)cmptr

NSComparator is a typedef for a pointer to a block that takes two object argu-
ments and returns the same integer constants as the function in Listing 16.1.

5. Write a program that looks for a name in an array of names and reports back the
name’s index in the array:
n Create an NSArray with some names (use NSString objects).
n Create a local NSString variable to hold the name you are searching for and an

integer block variable to report back at what index the name was found.
n Search the array using -enumerateObjectsUsingBlock:.
n Make sure your block uses the stop argument to stop looking when the name

is found.
n If the name you are looking for isn’t in the array, the block variable holding the

index should have a value of -1.

6. Write a program that uses the ObjectWithName class (see Listings 16.3 and 16.4):
n Add a logging statement to ObjectWithName’s dealloc routine.
n In your main program, allocate an instance of ObjectWithName.
n Release the object and verify that it is never deallocated.
n Make the fix suggested in the text and verify that the object now deallocates.

333Exercises

Index

Symbols
- (negation operator), 18

// (forward slashes), comment syntax, 5

/*…*/, comment syntax, 5–6

++..., ...++ (increment operators), 16–17

--…, ...-- (decrement operators), 16–17

! (logical negation) operator, 19

% (modulus) operator, 16

@ (at character), used for compiler direc-
tives, 67

[] (brackets)

in pointer syntax, 12
used for message expression, 96

^ (caret), in block syntax, 317

<> (angle brackets), in protocol syntax, 250

Numbers
2D graphics, in Core Graphics, 166–167

32-bit vs. 64-bit computing

coding for, 342
compiling, 343
kernel and user programs and, 342
overview of, 342
performance and, 342–343

A
Abstract classes

class clusters and, 129
lack of explicit syntax for, 126
overview of, 125–126

Access control

controlling block access to variables,
319–320

to instance variables, 220–221
for methods, 221
security and, 222–224

Accessors

accessing instances variables outside
objects (not recommended),
230–231

assign, retain, copy attributes, 236
declaring/implementing, 231–232
dot syntax for calling, 243–244
form of, 232
in Greeter class, 82
multithreading and, 282–283
properties using, 233–234
side effects of, 101

Address space, translation between virtual
and physical, 41–42

Adopting protocols, 251–252

Aliases, variable, 15

alloc

as class method, 143
combining with init, 129
object allocation, 126–127
release message balancing, 270
syntax for declaring, 146

Allocation

dynamic allocation of variables, 49–51
object allocation, 126–127

allocWithZone method, 127

Ancestor classes, 123

AND logical operator, 18–19

Angle brackets (<>), in protocol syntax, 250

Animation, Core Animation, 167

Anonymous functions, 309, 318. See also
blocks

AppKit framework

autorelease pools and, 278
function of, 161
garbage collection threads in, 295
graphics capabilities in, 166
mechanism for program termination,

288
problems with opaque pointers,

299–302
prominent classes in, 162–163

Apple. See also Mac OS X

32 bit vs. 64 bit computing, 341
blocks as extension to C, Objective-C,

and C++, 309
documentation for 64-bit Macs, 343
frameworks supplied by, 167
IDE, 73
resources for Objective-C, 349

Arguments

adding to function pointers, 312
initializers with, 129–131
methods with, 94–95

Arithmetic operators, in C language, 16–17

Arrays

declaring in C, 12–13
of function pointers, 311
iterative loops over, 195
multidimensional, 13
mutable, 163–164
NSArray and NSMutableArray,

177–180
strings as, 13–14

assign attribute, 236

Assignment operators, in C language, 19–21

Associative arrays, 180

auto keyword, declaring automatic vari-
ables, 44

Auto zone, of garbage collection heap, 297

352 Access control

Automatic (local) variables

declaring, 44
overview of, 42–43
scope of, 47–48

autorelease

convenience constructors and, 277
memory management for blocks,

323–324, 327
Autorelease pools

adding objects to, 147
controlling memory usage with extra

pools, 280–281
in HelloObjectiveC.m, 77
managing, 278–279
in reference counting, 277–278
scheduling release, 148
troubleshooting, 283

B
Base class, fragile base class problem,

347–348

Bitmapped images, drawing with AppKit, 163

Block literals

overview of, 317–318
scope of, 321–322

Block pointers, 318–319

Block variables

copying blocks and, 323
overview of, 320–321
read/write access to, 319

Blocks

block literals, 317–318
block pointers, 318–319
block variables, 320–321
in Cocoa frameworks, 327
collection classes for applying,

328–329

compared with functions, 317
concurrency (multithreading) and,

327–328
copying, 323
Did-End callbacks, 329–330
global, 322
implicit loops with, 196
issues with use of, 331
memory management for, 323–326
as objects, 322
overview of, 309–310
stack basis of, 321–322
style issues, 331–332
summary and exercises, 332–333
traps in use of, 326–327
variable access from, 319–320

Blocks of bytes, NSData for working with, 185

Books resources, for Objective-C, 350

BOOL

Objective-C keywords, 68
using BOOL type in control statements,

191
Boolean values, 9

Brackets []

in pointer syntax, 12
in messaging expressions, 96

break statements, in C language, 26

Building and running HelloObjectiveC.m pro-
gram, 87

Bytes

32 bit vs. 64 bit computing, 341
NSData for working with blocks of, 185

C
C: A Reference Manual (Harbison and

Steele), 4

.c filename extension, for files in C, 7

353.c filename extension, for files in C

C language

additions to in Objective-C, 66–71
arithmetic operators, 16–17
arrays, 12–13
assignment operators, 19–21
blocks as extension to, 309
break statements, 26
calling functions from Objective-C,

224–225
comma expressions, 27
comments, 5–6
comparison operators, 18
compiling using gcc, 35–36
conditional compilation, 32–33
conditional expressions, 24
continue statements, 26–27
debugging using gdb, 35–36
#define directive, 32
do-while statements, 25
enumeration constants, 15–16
expressions, 21–22
files, 7–8
floating-point types, 9
formatting in, 5
functions in, 29–31
goto statements, 28–29
if statements, 23–24
#include directive, 31–32
initialization, 10
integer types, 8–9
logical operators, 18–19
main routine, 4–5
naming conventions, 6–7
operator precedence, 17–18
operators, 16
overview of, 3–4

pointers, 10–12
preprocessor, 31
printf function, 33–35
program flow, 22–23
program structure, 4
reserved words in, 337
for statements, 25–26
statements in, 22
strings, 13–14
structs, 245–246
structures in, 14–15
summary and exercises, 37–39
switch statements, 27–28
truth values, 9–10
type conversion and casting, 19–20
typedef declarations, 15
variable and function names, 6
variables, 8
while statements, 24–25

The C Programming Language (Kernighan
and Ritchie), 3

C++ language

blocks as extension to, 309
frameworks compared with C++ class

libraries, 159
mixing with Objective C, 8

C99 standard, 3

Callbacks

problems with function pointers,
314–315

using function pointers for, 312
Calling functions

arguments are call by value, 30
C functions, 224–225
function calls compared with method

invocation, 93, 96
with function pointers, 311–312

354 C language

CamelCase

naming conventions in C, 7
strings, 213–216

Caret (^), in block syntax, 317

Case sensitivity, of names in Objective-C, 66

Casting types, 19–20

@catch

exception handling directive, 205–206
multiple @catch blocks in exception

handling, 207
nested exception handling, 207–208
throwing own exceptions, 206–207

Categories

extensions as anonymous categories, 219
overriding methods with, 216–217
overview of, 213–216
security and, 222–224
uses of, 217–218
when to use, 216–217

CFMakeCollectable, garbage collection
and, 299

CFRelease, garbage collection and, 299,
301–302

CFRetain, garbage collection and, 301

CGFloat, Cocoa numeric types, 70

char

integer types, 8–9
strings and, 13–14

@class, in class definition, 117

Class clusters

consequences of implementing classes
as, 172–173

as design pattern, 129
in Foundation framework, 172

Class definition

@class, 117
implementation file importing header

file, 118

implementation section, 117–118
interface section, 115–116
in Objective-C, 59–61
overview of, 115
subclasses, 119

Class hierarchies

example, 124–125
subclasses and, 123–124

Class keyword, in Objective-C, 69

Class libraries. See frameworks

Class methods

alloc. See alloc
convenience constructors, 147–149
overview of, 146
singletons, 149–150

Class objects

autorelease messages, 147
class methods, 146
Class type, 144–145
convenience constructors, 147–149
initialization of, 150–151
overview of, 64–65, 143–144
singletons, 149–150
static variables mimicking class vari-

ables, 151–157
summary and exercises, 157–158
type introspection, 145–146

Class type, 144–145

Class variables

mimicking, 151–157
overview of, 144
as receiver in message expression, 145

class-dump, 224

Classes

abstract. See abstract classes
adopting protocols, 251–252
command line tool for dumping a

class, 224

355Classes

Classes (continued)

defining. See class definition
determining object class at runtime, 111
implementing copying in, 139–141
inheritance in Objective-C, 61
inheritance in object-oriented pro-

gramming, 57
instances of. See objects
names as types in Objective-C, 61–62
in object-oriented programming, 56
objects and object creation, 64–65
overview of, 115
subclasses. See subclasses
summary and exercises, 141–142
superclasses. See superclasses

Classes, in Foundation framework

class clusters, 172–173
collection classes, 177
literal strings, 177
mutable and immutable, 171–172
NSArray, 177–180
NSData, 185–186
NSDictionary, 180–182
NSMutableString, 176
NSNull, 184–185
NSNumber, 183–184
NSSet, 182
NSString, 173–176
NSURL, 186–187
overview of, 171
structures, 187–188
summary and exercises, 188–190

Closures, 309. See also blocks

Cocoa Design Patterns (Buck and
Yacktman), 150

Cocoa frameworks

AppKit and, 162–163

blocks in, 327
convenience constructors in, 147–149
documentation for 64-bit Macs, 343
Internet resources supporting, 350
iPhone and, 162
NSInvocation objects in, 317
overview of, 161–162
singletons in, 149–150

Cocoa Programming for Mac OS X
(Hillegass), 162

Cocoa Touch, 162

CocoaDev, 350

CocoaHeads, 350

Coding 32-bit vs. 64-bit programs, 342

collectIfNeeded method, in garbage
collection, 296

Collection classes

applying blocks to collections,
328–329

NSArray, 177–180
NSData, 185–186
NSDictionary, 180–182
NSNull, 184–185
NSNumber, 183–184
NSSet, 182
NSURL, 186–187
overview of, 177

Comma expressions, in C language, 27

Comments

types supported in C, 5–6
in Xcode, 80

Comparison operators, in C language, 18

Compiler directives

additions Objective-C makes to C
language, 67

@class, 117
controlling access to instance vari-

ables, 220–221

356 Classes

for exception handling. See exceptions
in HelloObjectiveC.m, 81, 83
@implementation, 117–118
@interface, 116
in Objective-C, 338
@selector, 103

Compiling

32-bit vs. 64-bit programs, 343
gcc for, 35–36

Composition, extending classes by, 217

Compound statements

overview of, 22
variable scope and, 48–49

Concurrency (multithreading), with
NSOperationQueue, 327–328

Conditional compilation, preprocessor allow-
ing for, 32–33

Conditional expression, 24

Configuring Xcode, 75

Conformance testing, for protocol objects,
260–261

const keyword, declaring variables and,
46–47

Constants, #define directive, 32

Constructors. See convenience constructors

continue statements, 26–27

Control structures

for…in construction for fast enumer-
ation, 199–201

example of fast enumeration, 201–204
exceptions, 205–206
if statements, 191–195
implicit loops, 195–196
modifying mutable collections while

enumerating, 197–199
multiple @catch blocks, 207
nested exception handling, 207–208

overview of, 191
for program flow, 22–23
for statements, 195
summary and exercises, 210–212
throwing own exceptions, 206–207
using exceptions, 208–210
while statements and NSEnumerator,

196–197
Convenience constructors

creating, 148–149
memory management and, 276–277,

280
overview of, 147–148
reference counting and, 280

Conversion, type conversion, 19–20

copy

copying objects, 136–137
form of a setter using, 232–233
properties, 236
taking ownership by copying, 274

Copying blocks, 323

Copying objects

implementing copying in classes,
139–141

mutable and immutable copies, 138
overview of, 136–137
shallow and deep copies, 137–138
taking ownership by, 274

copyWithZone:

copying objects, 137, 139–141
form of a setter using, 233

Core Animation, 167

Core Animation: Simplified Animation
Techniques for Mac and iPhone
Development (Zarra and Long), 167

Core Audio, 167

Core Data, 161

357Core Data

Core Foundation

garbage collection and, 298–299
memory management for objects in,

164–165
overview of, 163–164
toll-free bridging, 165–166, 339–340

Core Graphics, 166–167, 188

Core Image, 167

D
dealloc

destroying objects and, 133, 135–136
HelloObjectiveC.m, 85–86
not confusing with deallocation, 297
program termination and, 288
properties, 240
releasing objects in reference count-

ing, 274–275
Deallocation, 297

Debugging, with gdb, 35–36

Declared properties, 229. See also
properties

Declaring

accessors, 231–232
arrays of function pointers, 311
class methods, 146
properties, 236
protocols, 250–251
variables, 44–47

Decrement operators (a-- --a), 16–17

Deep copies, objects, 137–138

#define directive, in C language, 32

Defining classes. See class definition

Design patterns

convenience constructors, 147–149
extending classes by composition, 217
singletons, 149–150

Design Your Own Language Syndrome,
blocks and, 331

Designated initializers, 131–132

Destroying objects, 135–136

Dictionaries, 180

Did-End callbacks, blocks, 329–330

Directives

compiler. See compiler directives
preprocessor directives. See preproces-

sor directives
Directories, for frameworks, 169

Display lists, in drawing programs, 97

Documentation

for 64-bit Macs, 343
properties as, 242–243

Dot syntax

C structs and, 245–246
for calling accessor methods, 243–244
properties and, 244–245

double, floating-point type, 9

do-while statements, 25

drain, NSAutoreleasePool, 279

@dynamic

implementing accessors, 234
properties and, 238–239

Dynamic allocation, of variables, 49–51

Dynamic libraries, frameworks as, 159–160

Dynamic typing

in messaging (method invocation),
105–106

methods with same names and,
104–105

E
Efficiency, in messaging (method invocation),

109–110

Encapsulation

blocks breaking, 331

358 Core Foundation

in HelloObjectiveC.m, 82
object-oriented programming and,

56–57, 231
Enumeration

for...in construction for fast enumer-
ation, 199–201

example of fast enumeration, 201–204
modifying mutable collections while

enumerating, 197–199
Enumeration constants, in C language,

15–16

Enumeration tags, 15

Event loops, in GUI programs, 278–279

Exceptions

multiple @catch blocks, 207
nested exception handling, 207–208
overview of, 205–206
rarely using in Objective-C, 209–210
throwing own, 206–207
using, 208–209

Expressions. See also statements

comma expressions, 27
conditional expression, 24
evaluating, 21–22
message. See message expressions
overview of, 21

Extensions, 218–219

extern keyword, 45

External variables

declaring, 45
overview of, 43–44
scope of, 49

F
Failed initialization, 132–135

Falsely rooted objects, garbage collection
and, 303

Fast Enumeration

for…in construction for, 199–201
example of, 201–204
NSDictionary and, 201

File name extensions. See extensions

Files

C language, 7–8
moving to/from NSData, 185–186
saving, 329

finalize method, 297

Finalizers, garbage collection, 296–297

@finally

compiler directive for exception han-
dling, 205–206

multiple @catch blocks in exception
handling, 207

nested exception handling, 207–208
throwing own exceptions, 206–207

Flags, in garbage collection, 294

float, floating-point types, 9

Floating-point types, in C language, 9

for statements

iterative loop over arrays, 195
overview of, 25–26

for...in construction, for fast enumeration,
199–201

Formatting, in C language, 5

Forward declaration, @class, 117

Forwarding, in messaging (method invoca-
tion), 108–109

forwardInvocation, NSObject, 108

Foundation framework

classes. See classes, in Foundation
framework

Cocoa Touch and, 162
garbage collection threads in, 295
NSGarbageCollector, 296
overview of, 161

359Foundation framework

Foundation framework (continued)

singletons, 150
toll-free bridging, 165–166, 339–340

Fragile base class problem, 347–348

Frameworks

Apple-supplied, 167
Cocoa. See Cocoa frameworks
Core Animation, 167
Core Foundation. See Core

Foundation
Core Graphics, 166–167
directories for, 169
overview of, 159–160
summary, 169
third-party, 168
umbrella frameworks, 169
using, 160–161
as versioned bundles, 168–169

free function, dynamic allocation of vari-
ables, 50–51

Function parameters, automatic variables
and, 43

Function pointers

calling functions with, 311–312
overview of, 310–311
problems with, 314–315
using, 312–314

Functions

arguments are call by value, 30
blocks compared with, 317
calling C functions from Objective-C,

224–225
calling with function pointers, 311–312
declaring, 31
function calls compared with method

execution, 93, 96
names in C, 6
overview of, 29–30

G
Garbage collection

considerations in whether to use,
304–305

controlling when occurs, 296
Core Foundation objects and,

298–299
falsely rooted objects and, 303
finalizers, 296–297
interior pointers and, 302–303
malloc, 297–298
memory management and, 267–268
opaque pointers problems in AppKit,

299–302
overview of, 291
in practice, 293
pros/cons of, 303–304
strong and weak references and,

293–294
summary and exercises, 305–308
theory behind, 291–292
using, 294–295

GB (gigabytes), 341

gcc (GNU compiler)

compiling using, 35–36
listing multiple frameworks on com-

mand line, 160
using exceptions and, 208

GCD (Grand Central Dispatch)

as driving force behind blocks, 309
thread pools for concurrency, 327–328

gdb (GNU debugger), 35–36

Generational garbage collection, 293

Generic pointers, 11–12

Getters. See also accessors

form of, 232
getter=name, 237

360 Foundation framework

instance variables, 229
multithreading and, 282–283

Gigabytes (GB), 341

Global blocks, 322

GNU compiler. See gcc (GNU compiler)

GNU debugger (gdb), 35–36

GNUStep, 350

goto statements, 28–29

Grand Central Dispatch (GCD)

as driving force behind blocks, 309
thread pools for concurrency,

327–328
Graphical user interface (GUI)

event loops in GUI programs,
278–279

writing GUI app using AppKit
framework, 162–163

Graphics, Core Graphics, 166–167

Greeter class

in HelloObjectiveC.m, 80–83
putting Greeter class to work, 86–87

greetingText method, in
HelloObjectiveC.m, 83

Group resources, for Objective-C, 350

GUI (graphical user interface)

event loops in GUI programs,
278–279

writing GUI app using AppKit
framework, 162–163

H
Header files

C programs using, 7
declaring informal protocols with

category headers, 218
in TablePrinter class, 254–255

HelloObjectiveC.m program

building and running, 78, 87

dealloc method, 85–86
Greeter.h class, 80–82
Greeter.m class, 82–83
greetingText method, 83
issueGreeting method, 85
overview of, 79–80
program structure, 76–77
putting Greeter class to work, 86–87
setGreetingText method, 84–85
summary and exercises, 88–89

I
id

convenience constructors typed as, 149
dynamic typing and, 104–106
Objective-C keywords, 67–68

IDE (Integrated Development Environment),
Xcode, 73

if statements

compound conditions, 191–192
condition part of, 191
equality tests with, 193–195
explicit comparisons and, 192–193
overview of, 23–24

ImageIO framework, from Apple, 167

Immutable classes

creating separate mutable and
immutable classes for containers,
171–172

NSString, 176
Immutable copies, objects, 138

IMP

Objective-C keywords, 69
typedef declaration of, 110

@implementation, 117–118, 219

Implementation section, of class definition

in HelloObjectiveC.m, 82–83

361Implementation section, of class definition

Implementation section, of class definition
(continued)

introduction to Objective-C, 60–61
overriding methods, 101
messages to super, 102
overview of, 117–118
in separate file from interface section,

118–119
for TablePrinter class, 255–256

Implicit loops

with blocks, 196
overview of, 195–196

#import directive, 32

Imports, implementation file importing
header file, 118

Include files, C language, 31–32

Increment operators (a++ ++a), 16–17

Informal protocols, 261–262

Information hiding. See encapsulation

Inheritance

class hierarchies and, 125
convenience constructors inherited as

subclasses, 149
in Objective-C, 61
in object-oriented programming, 57
protocols compared with subclasses, 250
subclasses and, 121

init

class clusters and, 172
combining with alloc, 129
form of, 128
overview of, 127
return type of, 128–129

Initialization, of objects

in C language, 10
class objects, 150–151
designated initializers, 131–132

failed initialization, 132–135
initializers with arguments, 129–131
overview of, 127–129

initialize message, 150–151

Input/output (I/O), 33

Instance variables

access control to, 220–221
accessing outside objects (not recom-

mended), 230–231
class objects not using, 144
classes and, 56
in HelloObjectiveC.m, 81
names can be different than property

name, 235
subclasses and, 217
synthesized, 345–347

Instances

class objects, 146
of classes, 56

int, 8–9

Integer types, C language, 8–9

Integrated Development Environment (IDE),
Xcode, 73

@interface, 116

Interface section, of class definition

introduction to Objective-C, 59–60
overview of, 115–116
in separate file from implementation

section, 118–119
Interior pointers, garbage collection and,

302–303

Internet resources, for Objective-C, 350

Introspection

at runtime, 111–112
type introspection, 145–146

Invocation. See NSInvocation

I/O (input/output), 33

362 Implementation section, of class definition

iPhone

autorelease pools and, 280
block availability, 309
Cocoa frameworks and, 162
Core Animation, 167
Core Graphics, 166
garbage collection and, 291
mechanism for program termination,

288
memory management, 267
SDK for, 349
synthesized instance variables, 347

iPhone Developer Program, 349

isa variable, object instances and, 107

issueGreeting method, in
HelloObjectiveC.m, 85

J
Java class libraries, 159

K
Kernel, 32-bit vs. 64-bit computing, 342

Key-value coding, getting/setting instance
variables, 229

Keywords

additions Objective-C makes to C
language, 67–69

for declaring variables, 44–47

L
Lazy instantiation, 150

Literal strings

additions Objective-C makes to C
language, 67

in Foundation framework, 177
Local variables. See automatic (local)

variables

Logical operators

in C language, 18–19
logical negation (!), 19
types of, 18

long double floating-point type, 9

long integer type, 8–9

long long integer type, 8–9

Loops

for…in construction for, 199–201
implicit, 195–196
iterative loop over arrays, 195
overview of, 23
while statements, 196–197

ls command, Unix, 201–202

lvalues, assignment to, 19

M
Mac Developer Program, 349

Mac OS X

32 bit vs. 64 bit computing, 341
block availablility, 309
garbage collection and, 304
mechanism for program termination,

288
memory management, 267
resources for Objective-C, 349
saving files, 329
toll-free bridging and, 339–340
use of frameworks in, 159–160

Mac OS X Leopard

32-bit vs. 64-bit computing, 341
blocks for iterating over Foundation

collection objects, 196, 309, 327
Core Animation, 167
garbage collection and, 291
protocol objects, 262
reserved keywords, 337

363Mac OS X Leopard

Mac OS X Leopard (continued)

save sheets, 329–330
synthesized instance variables, 346

main routine

in HelloObjectiveC.m, 77
structural aspects of C, 4–5
in TablePrinter class, 258–259

makeObjectsPerformSelector method,
195–196

malloc

divisions of garbage collection heap,
297–298

dynamic allocation of variables, 50–51
Managed memory. See reference counting

Mathematical sets, 182

Memory layout, of Objective-C programs,
41–42

Memory leaks, 269

Memory management. See also reference
counting, garbage collection

for blocks, 323–326
Core Foundation, 164–165
default for, 268–269
importance of, 267
in Objective-C, 65
properties and, 240

Memory Management Unit (MMU), 41–42

Message expressions

additions Objective-C makes to C
language, 66–67

form of, 96
in HelloObjectiveC.m, 84
nesting, 98–99

Messages

NSInvocation for turning messages
into objects, 315–317

in object-oriented programming, 55

Messaging (method invocation)

comparing methods in Objective-C
with C, 93

dynamic and static typing, 105–106
efficiency, 109–110
forwarding, 108–109
how it works, 106–108
introspection at runtime, 111–112
messaging process, 96
method naming conventions, 95–96
methods with arguments, 94–95
methods with same name, 104–105
nesting, 98–99
nil, 100
in Objective-C, 62–63
overriding messages to super, 101–103
overview of, 93
polymorphism in, 97–98
selectors, 103–104
sending messages to self, 100–101
simple method example, 93–94
summary and exercises, 112–113
who is the sender in, 98

Method overloading, not allowed in
Objective-C, 105

Method selector. See selectors

Methods

access control for, 221
AppKit classes, 163
with arguments, 94–95
class methods. See class methods
comparing Objective-C with C, 93
defined, 55
implementing optional protocol

methods, 260
messaging (method invocation), 62–63
naming conventions, 95–96

364 Mac OS X Leopard

no explicit syntax for, 126
in object-oriented programming, 56
overriding, 119
with same name, 104–105
simple method example, 93–94

Methods, in HelloObjectiveC.m program,
85–86

additions Objective-C makes to C
language, 70–71

dealloc method, 85–86
Greeter class, 82–83
greetingText method, 83
issueGreeting method, 85
setGreetingText method, 84–85

MMU (Memory Management Unit), 41–42

Modulus (%) operator, 16

Multidimensional arrays, declaring in C, 13

Multiple @catch blocks, 207

Multithreading

receiving objects and, 271
reference counting and, 282–283

Mutable arrays, 163–164

Mutable classes

creating separate mutable and
immutable classes for containers,
171–172

NSMutableString, 176
Mutable collections, modifying while enu-

merating, 197–199

Mutable copies, of objects, 138

N
Names

additions Objective-C makes to C
language, 66

class names as types in Objective-C,
61–62

setter=name, getter=name, 237

Namespaces, not used in Objective-C, 221

Naming conventions

C language, 6–7
CamelCase, 213–216
methods, 95–96
object ownership and, 273–274

Negation operator (-), 18

Nesting, message expressions, 98–99

new method, object allocation, 127

New Project window, in Xcode, 74

nil

Objective-C keywords, 68
sending messages to nil receivers, 100

notatomic attribute, 237

NSArray

bounds checking, 178
length of, 178
makeObjectsPerformSelector

method and, 195
memory management for objects in,

179–180
overview of, 177–178

NSAutoreleasePool, 277, 279

NSData

accessing bytes, 185–186
collection class for working with

blocks of bytes, 185
moving files to/from, 185–186

NSDictionary

collection class for associative arrays,
180–182

Fast Enumeration, 201
NSEnumerator, 196–197

NSError, 210

NSException, 206

NSGarbageCollector, 296

NSInteger, 70

NSInvocation, 108–109, 315–317

365New Project window, in Xcode

NSLog

overview of, 70–71
printf function compared with, 35

NSMutableArray

adding objects to, 179
for custom sorting, 312–314
overview of, 177

NSMutableDictionary, 180–182

NSMutableSet, 182

NSMutableString, 176

NSNull, 184–185

NSNumber, 183–184

NSObject

blocks as objects, 322
forwardInvocation and, 108
inheriting from, 124
methods defined by, 111
<NSObject> compared with, 250–251
retainCount method, 281

<NSObject>, 250–251

NSOperationQueue, 327–328

NSPoint, 187–188

NSProxy, 123–124

NSRange, 187–188

NSRect, 187–188

NSSet

collection class for mathematical sets,
182

makeObjectsPerformSelector
method and, 196

NSSize, 187–188

NSString

appending to another NSString, 175
breaking sentences into individual

words, 175–176
CamelCase method, 213–216
converting C strings to/from, 176
examples of, 174

finding length of, 174
literal NSString, 177
overview of, 173–174
uppercase version of, 174–175

NSUInteger, 70

NSURL, 186–187

NSView, 126

NSZombie, 284–285

null object, 184

Numeric types

NSNumber, 183–184
testing for equality, 193–194

O
Object allocation, 126–127

Objective-C, introduction to

additions Objective-C makes to C
language, 66–71

class definition in, 59
class names as types in, 61–62
class objects and object creation,

64–65
implementation section of class defini-

tion, 60–61
inheritance in, 61
interface section of class definition,

59–60
memory management, 65
messaging (method invocation), 62–63
overview of, 58–59
polymorphism in, 63–64
summary, 71

Objective-C 2.0 Runtime Reference, 111

Object-oriented programming

classes and instances, 56
encapsulation, 56–57
inheritance, 57
methods, 56

366 NSLog

overview of, 55
polymorphism, 58
summary, 71

Objects

allocation of, 126–127
blocks as, 322
classes, 64–65
copying, 136–137
in Core Foundation, 163–164
designated initializers, 131–132
destroying, 135–136
failed initialization, 132–135
implementing copying in classes,

139–141
initialization of, 127–129
initializers with arguments, 129–131
mutable and immutable copies, 138
NSInvocation for turning messages

into objects, 315–317
overview of, 126
protocol objects, 260–261
root set, 291–292
shallow and deep copies, 137–138
summary and exercises, 141–142
taking ownership by copying, 274
testing for equality, 193–195
typing by class, 56

Omni Group, The 350

Opaque pointers

for accessing Core Foundation
objects, 163–164

problems in AppKit, 299–302
OpenAL framework, 167

OpenGL framework, 167

OpenGL ES framework, 167

Operator precedence, in C language, 17–18

Operators

arithmetic operators, 16–17

assignment operators, 19–21
comparison operators, 18
logical operators, 18–19
overview of, 16

@optional, protocol methods, 250–251

OR logical operator, 18–19

otool, command line tool for dumping a
class, 224

Overriding methods

with categories, 216–217
defining subclasses and, 119

Ownership, in reference counting, 273–274

P
PDF graphics, 166–167

Performance, 32-bit vs. 64-bit computing,
342–343

Pointers

block pointers, 318–319
to class objects, 144
declaring pointer variables, 10–11
to/from Foundation objects to corre-

sponding Core Foundation objects,
165–166

function pointers, 311–312
generic pointers, 11–12
interior pointers, 302–303
opaque pointers, 163–164

Polymorphism

in Objective-C, 63–64
in object-oriented programming, 58
overview of, 97–98

Precedence, operator precedence, 17–18

Preprocessor directives

conditional compilation, 32–33
#define directive, 32
#include directive, 31–32
overview of, 31

367Preprocessor directives

printf function, in C language, 33–35

@private, controlling access to instance
variables, 220–221

Procedural languages

examples of, 55
object-oriented programming vs., 58

Program flow, in C language, 22–23

Program termination, reference counting
and, 288

Programming in Quartz and PDF Graphics in
Mac OS X (Gelphman and Laden), 166

Properties

accessing instances variables outside
objects (not recommended),
230–231

accessors using, 233–234
assign, retain, copy attributes, 236
dealloc, 240
declaring/implementing accessors,

231–232
as documentation, 242–243
dot syntax and, 244–245
dot syntax and C structs, 245–246
dot syntax for calling accessor meth-

ods, 243–244
@dynamic, 238–239
form of accessors, 232
hidden setters for readonly, 242
instance variable names can be differ-

ent than property name, 235
memory management and, 240
notatomic attribute, 237
overview of, 229–230
@property, 236
protocols and, 252–253
readwrite, readonly attributes, 237
setter=name, getter=name, 237
subclasses and, 240–242
summary and exercises, 246–247

@property

declared properties and, 229
declaring accessors, 233
form of property declaration, 236

@protected, controlling access to instance
variables, 220–221, 231

@protocol

declaring protocols, 250–251
obtaining protocol objects, 260–261

Protocol objects, and conformance testing,
260–261

Protocols

adopting, 251–252
declaring, 250–251
informal, 261–262
overview of, 249–250
properties and, 252–253
protocol objects and conformance

testing, 260–261
summary and exercises, 262–263
TablePrinter class example,

253–260
as types, 252

@public, controlling access to instance
variables, 220–221

Q
Quartz, 166–167

R
Raising exceptions. See throwing exceptions

readonly

controlling block access to variables, 319
hidden setters for, 242
properties, 237

readwrite

controlling block access to variables, 319
properties, 237

368 printf function, in C language

Receiving objects, reference counting and,
271–273

Reference count, 269

Reference counting

autorelease messages and, 147
autorelease pools, 277–278
controlling memory usage with extra

autorelease pools, 280–281
convenience constructors and,

147–148, 280
for Core Foundation objects,

164–165
dealloc, 274–275
as default for memory management,

268–269
disadvantages of converting to garbage

collection, 304
in HelloObjectiveC.m, 84
how it works, 269–270
managing autorelease pools, 278–279
memory management in Objective-C,

65
multithreading and, 282–283
NSZombie for over-release problems,

284–285
overview of, 267–268
ownership in, 273–274
program termination and, 288
receiving objects and, 271–273
retain cycles, 285–287
retainCount method, 281
returning objects, 276–277
as solution to returning memory allo-

cated to objects, 268
summary and exercises, 288–289
troubleshooting errors in, 283

register keyword, declaring variables
and, 46

release

memory management for blocks,
323–324, 327

NSAutoreleasePool, 279
in reference counting, 269–270
troubleshooting, 283

Remainder operator (%), 16

@required, protocol methods, 250–251

Reserved words

in C language, 337
in Objective-C, 337–338

Resources for Objective-C, 349–350

respondsToSelector method, 111

retain

memory management for blocks, 327
properties, 236
in reference counting, 272–273
taking ownership by copying, 274
troubleshooting, 283

Retain count, 269

Retain counting. See reference counting

Retain cycles

garbage collection and, 292
reference counting and, 285–287

retainCount method, NSObject class,
281

return statement, 317

Returning objects, reference counting,
276–277

Root classes, 123

Root set

falsely rooted objects and, 303
garbage collector starting with,

291–292
Runtime

additions Objective-C makes to C
language, 66

369Runtime

Runtime (continued)

changes in Objective-C 2.0, 108
fragile base class problem, 347–348
introspection at, 111–112
legacy vs. modern, 345
library of C functions, 97
synthesized instance variables and,

345–347
Runtime Reference, Objective-C 2.0, 111

S
Scope, variable

of automatic variables, 47–48
compound statements and, 48–49
of external variables, 49
overview of, 47

Security, access control and, 222–224

SEL

Objective-C keywords, 69
for representation of method selectors,

103–104
Selectors, method names as, 103–104

self

class methods and, 146
sending messages to, 100–101
super variable compared with,

102–103
setGreetingText method, in

HelloObjectiveC.m, 84–85

Sets, mathematical, 182

Setters. See also accessors

form of accessors, 232
hidden setters for readonly, 242
instance variables, 229
multithreading and, 282–283
setter=name, 237

Shallow copies, objects, 137–138

short integer type, 8–9

Side effects

of accessor methods, 101
of expressions, 22

Singletons, 149–150

Sorting, NSMutableArray for custom sort-
ing, 312–314

Stack frame, calling functions and, 42

Stacks, block based on, 321–322

Statements. See also control structures;
expressions

break statements, 26
compound statements, 48–49
continue statements, 26–27
do-while statements, 25
goto statements, 28–29
if statements, 23–24
overview of, 22
for program flow, 22–23
return statement, 317
for statements, 25–26
switch statements, 27–28
using different names for properties

and their instance variables, 235
while statements, 24–25

Static allocation, of variables, 49

static keyword, 45–46

Static typing, in messaging (method invoca-
tion), 105–106

Static variables, mimicking class variables,
151–157

Strings

in C language, 13–14
CamelCase, 213–216
literal strings, 67

Strings, in Foundation framework

NSMutableString, 176
NSString, 173–176

370 Runtime

Strong references

garbage collection and, 293–294
reference counting and, 287

structs, dot syntax and, 245–246

Structures

as collection of related variables,
14–15

in Foundation framework, 187–188
program structure in

HelloObjectiveC.m, 76–77
Style, blocks, 331–332

Subclasses

abstract classes and, 125
categories compared with, 213–214
class clusters and, 129, 173
class hierarchies and, 123–125
class methods, 146
convenience constructors inherited as,

149
defining, 119
example of, 119–123
of immutable classes, 171
overview of, 119
properties and, 240–242
protocols compared with, 250
when to use categories instead of,

216–217
Subviews, NSView class, 126

super variable, 101–103

Superclasses

class objects, 144–145
defined, 119
determining object superclass at run-

time, 111
switch statements, 27–28

Syntactic sugar, 243

@synthesize

declared properties and, 229

@dynamic compared with, 238–239
implementing accessors, 233–234
synthesized instance variables,

345–347
using different names for properties

and their instance variables, 235
Synthesized instance variables, 345–347

T
TablePrinter class, protocol example,

253–260

FruitBasket class, 256–258
header files, 254–255
implementation file for, 255–256
implementing optional methods, 260
main routine, 258–259
overview of, 253
problem in, 259–260
TablePrinterDataSource, 253–254

TablePrinterDataSource, 253–254

testMethod, in messaging (method invo-
cation), 109–110

TextEdit program, 163

Third-party frameworks, 168

Thread pools, for concurrency, 327

@throw, 206

Throwing exceptions, 205–207

Toll-free bridging, Core Foundation types to
Foundation classes, 165–166, 339–340

Truth values, in C language, 9–10

@try

compiler directive for exception han-
dling, 205–206

multiple @catch blocks in exception
handling, 207

nested exception handling, 207–208
throwing own exceptions, 206–207

Type conversion and casting, in C language,
19–20

371Type conversion and casting, in C language

Type introspection, class objects, 145–146

typedef declaration

for creating aliases of variable types, 15
of IMP, 110

U
UIKit framework

autorelease pools and, 278
for iPhone, 162
mechanism for program termination,

288
Umbrella frameworks. See also Cocoa

frameworks

indirection in, 169
overview of, 160

Unix, ls command, 201–202

unsigned integers, 9

URLs, collection class for working with,
185–186

V
Variables

automatic or local, 42–43
block pointers, 318–319
block variables, 320–321
class objects and, 144
controlling block access to variables,

319–320
declaring in C, 8
declaring in Objective C, 41
dynamic allocation of, 49–51
external, 43–44
initialization of, 10
keywords for declaring, 44–47
names in C, 6
pointers, 10–11
scope, 47–49

static variables mimicking class vari-
ables, 151–157

structures as groups of, 14–15
summary and exercises, 51–53
typedef declarations for creating

aliases, 15
Vector graphics, drawing with AppKit, 163

Versioned bundles, frameworks as, 168–169

volatile keyword, 47

W
Weak references

assign attribute and, 236
garbage collection and, 293–294
reference counting and, 287

WebKit framework, from Apple, 167

while statements

overview of, 24–25
using in conjunction with
NSEnumerator, 196–197

Write barrier, in garbage collection, 293

X
Xcode

adding frameworks to projects,
160–161

building and running programs, 87
compiling 64-bit projects, 343–344
configuring, 75
enabling exceptions in, 208–209
enabling NSZombie in, 284–285
HelloObjectiveC.m. See

HelloObjectiveC.m program
Internet resources supporting, 350
opening and starting new project,

74–76
overview of, 73

372 Type introspection, class objects

	Contents
	Preface
	16 Blocks
	Function Pointers
	The Trouble with Function Pointers
	NSInvocation
	Blocks
	Some Philosophical Reservations
	Summary
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

