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Preface

For a number of years, home computers have given the illusion of doing multiple tasks
simultaneously. This has been achieved by switching between the running tasks many
times per second. This gives the appearance of simultaneous activity, but it is only an
appearance. While the computer has been working on one task, the others have made no
progress. An old computer that can execute only a single task at a time might be referred
to as having a single processor, a single CPU, or a single “core.”  The core is the part of
the processor that actually does the work.

Recently, even home PCs have had multicore processors. It is now hard, if not impossi-
ble, to buy a machine that is not a multicore machine. On a multicore machine, each
core can make progress on a task, so multiple tasks really do make progress at the same
time.

The best way of illustrating what this means is to consider a computer that is used for
converting film from a camcorder to the appropriate format for burning onto a DVD.
This is a compute-intensive operation—a lot of data is fetched from disk, a lot of data is
written to disk—but most of the time is spent by the processor decompressing the input
video and converting that into compressed output video to be burned to disk.

On a single-core system, it might be possible to have two movies being converted at
the same time while ignoring any issues that there might be with disk or memory
requirements. The two tasks could be set off at the same time, and the processor in the
computer would spend some time converting one video and then some time converting
the other. Because the processor can execute only a single task at a time, only one video
is actually being compressed at any one time. If the two videos show progress meters, the
two meters will both head toward 100% completed, but it will take (roughly) twice as
long to convert two videos as it would to convert a single video.

On a multicore system, there are two or more available cores that can perform the
video conversion. Each core can work on one task. So, having the system work on two
films at the same time will utilize two cores, and the conversion will take the same time
as converting a single film. Twice as much work will have been achieved in the same
time.

Multicore systems have the capability to do more work per unit time than single-core
systems—two films can be converted in the same time that one can be converted on a
single-core system. However, it’s possible to split the work in a different way. Perhaps the
multiple cores can work together to convert the same film. In this way, a system with
two cores could convert a single film twice as fast as a system with only one core.



This book is about using and developing for multicore systems. This is a topic that is
often described as complex or hard to understand. In some way, this reputation is justi-
fied. Like any programming technique, multicore programming can be hard to do both
correctly and with high performance. On the other hand, there are many ways that multi -
core systems can be used to significantly improve the performance of an application or
the amount of work performed per unit time; some of these approaches will be more
difficult than others.

Perhaps saying “multicore programming is easy” is too optimistic, but a realistic way
of thinking about it is that multicore programming is perhaps no more complex or no
more difficult than the step from procedural to object-oriented programming. This book
will help you understand the challenges involved in writing applications that fully utilize
multicore systems, and it will enable you to produce applications that are functionally
correct, that are high performance, and that scale well to many cores.

Who Is This Book For?
If you have read this far, then this book is likely to be for you. The book is a practical
guide to writing applications that are able to exploit multicore systems to their full
advantage. It is not a book about a particular approach to parallelization. Instead, it covers
various approaches. It is also not a book wedded to a particular platform. Instead, it pulls
examples from various operating systems and various processor types. Although the book
does cover advanced topics, these are covered in a context that will enable all readers to
become familiar with them.

The book has been written for a reader who is familiar with the C programming lan-
guage and has a fair ability at programming. The objective of the book is not to teach
programming languages, but it deals with the higher-level considerations of writing code
that is correct, has good performance, and scales to many cores.

The book includes a few examples that use SPARC or x86 assembly language.
Readers are not expected to be familiar with assembly language, and the examples are
straightforward, are clearly commented, and illustrate particular points.

Objectives of the Book
By the end of the book, the reader will understand the options available for writing pro-
grams that use multiple cores on UNIX-like operating systems (Linux, Oracle Solaris,
OS X) and Windows. They will have an understanding of how the hardware implemen-
tation of multiple cores will affect the performance of the application running on the
system (both in good and bad ways). The reader will also know the potential problems to
avoid when writing parallel applications. Finally, they will understand how to write
applications that scale up to large numbers of parallel threads.
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Structure of This Book
This book is divided into the following chapters.

Chapter 1 introduces the hardware and software concepts that will be encountered
in the rest of the book. The chapter gives an overview of the internals of processors. It is
not necessarily critical for the reader to understand how hardware works before they can
write programs that utilize multicore systems. However, an understanding of the basics of
processor architecture will enable the reader to better understand some of the concepts
relating to application correctness, performance, and scaling that are presented later in
the book. The chapter also discusses the concepts of threads and processes.

Chapter 2 discusses profiling and optimizing applications. One of the book’s prem-
ises is that it is vital to understand where the application currently spends its time before
work is spent on modifying the application to use multiple cores. The chapter covers all
the leading contributors to performance over the application development cycle and dis-
cusses how performance can be improved.

Chapter 3 describes ways that multicore systems can be used to perform more work
per unit time or reduce the amount of time it takes to complete a single unit of work. It
starts with a discussion of virtualization where one new system can be used to replace
multiple older systems. This consolidation can be achieved with no change in the soft-
ware. It is important to realize that multicore systems represent an opportunity to change
the way an application works; they do not require that the application be changed. The
chapter continues with describing various patterns that can be used to write parallel
applications and discusses the situations when these patterns might be useful.

Chapter 4 describes sharing data safely between multiple threads. The chapter leads
with a discussion of data races, the most common type of correctness problem encoun-
tered in multithreaded codes. This chapter covers how to safely share data and synchro-
nize threads at an abstract level of detail. The subsequent chapters describe the operating
system–specific details.

Chapter 5 describes writing parallel applications using POSIX threads. This is the
standard implemented by UNIX-like operating systems, such as Linux, Apple’s OS X,
and Oracle’s Solaris. The POSIX threading library provides a number of useful building
blocks for writing parallel applications. It offers great flexibility and ease of development. 

Chapter 6 describes writing parallel applications for Microsoft Windows using
Windows native threading. Windows provides similar synchronization and data sharing
primitives to those provided by POSIX. The differences are in the interfaces and require-
ments of these functions.

Chapter 7 describes opportunities and limitations of automatic parallelization pro-
vided by compilers. The chapter also covers the OpenMP specification, which makes it
relatively straightforward to write applications that take advantage of multicore processors.

Chapter 8 discusses how to write parallel applications without using the functional-
ity in libraries provided by the operating system or compiler. There are some good rea-
sons for writing custom code for synchronization or sharing of data. These might be for
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finer control or potentially better performance. However, there are a number of pitfalls
that need to be avoided in producing code that functions correctly.

Chapter 9 discusses how applications can be improved to scale in such a way as to
maximize the work performed by a multicore system. The chapter describes the common
areas where scaling might be limited and also describes ways that these scaling limitations
can be identified. It is in the scaling that developing for a multicore system is differenti-
ated from developing for a multiprocessor system; this chapter discusses the areas where
the implementation of the hardware will make a difference.

Chapter 10 covers a number of alternative approaches to writing parallel applica-
tions. As multicore processors become mainstream, other approaches are being tried to
overcome some of the hurdles of writing correct, fast, and scalable parallel code.

Chapter 11 concludes the book.

xviii Preface



3
Identifying Opportunities

for Parallelism

This chapter discusses parallelism, from the use of virtualization to support multiple
operating systems to the use of multiple threads within a single application. It also covers
the concepts involved in writing parallel programs, some ways of visualizing parallel
tasks, and ways of architecting parallel applications. The chapter continues with a discus-
sion of various parallelization strategies, or patterns. It concludes by examining some of
the limitations to parallelization. By the end of the chapter, you should be in a position
to understand some of the ways that a system can support multiple applications and that
an existing application might be modified to utilize multiple threads. You will also be
able to identify places in the code where parallelization might be applicable.

Using Multiple Processes to Improve System
Productivity
Consider a home computer system. This will probably have only one active user at a
time, but that user might be running a number of applications simultaneously. A system
where there is a single core produces the illusion of simultaneous execution of multiple
applications by switching between the active applications many times every second. A
multicore system has the advantage of being able to truly run multiple applications at the
same time. 

A typical example of this happens when surfing the Web and checking e-mail. You
may have an e-mail client downloading your e-mail while at the same time your
browser is rendering a web page in the background. Although these applications will uti-
lize multiple threads, they do not tend to require much processor time; their perform-
ance is typically dominated by the time it takes to download mail or web pages from
remote machines. For these applications, even a single-core processor often provides suf-
ficient processing power to produce a good user experience. However, a single-core
processor can get saturated if the e-mail client is indexing mail while an animation-
heavy web page is being displayed. 



In fact, these applications will probably already take advantage of multiple threads.
Figure 3.1 shows a newly opened instance of Mozilla Firefox launching 20 threads. A
consequence of this is that just by having a multicore processor, the performance of the
system will improve because multiples of those threads can be executed simultaneously—
and this requires no change to the existing applications.

Alternatively, there are a number of tasks we perform on our personal computer sys-
tems that are inherently compute intensive, such as playing computer games, encoding
audio for an MP3 player, transforming one video format into another suitable for burn-
ing to DVD, and so on. In these instances, having multiple cores can enable the work to
take less time by utilizing additional cores or can keep the system responsive while the
task is completed in the background.

Figure 3.2 shows the system stack when a single user runs multiple applications on a
system.

86 Chapter 3 Identifying Opportunities for Parallelism

Figure 3.1 Windows Process Explorer showing thread activity in 
Mozilla Firefox



It is also possible to have multiple users in a home environment. For example, on
Windows, it is quite possible for one user to be logged in and using the computer while
another user, having logged in earlier, has set some other applications running. For
example, you may have left some DVD-authoring package running in the background
while another user logs into their account to check their e-mail.

Multiple Users Utilizing a Single System
In business and enterprise computing, it is much more common to encounter systems
with multiple simultaneous users. This is often because the computer and software being
shared are more powerful and more costly than the typical consumer system. To maxi-
mize efficiency, a business might maintain a database on a single shared system. Multiple
users can simultaneously access this system to add or retrieve data. These users might just
as easily be other applications as well as humans. 

For many years, multiuser operating systems like UNIX and Linux have enabled shar-
ing of compute resources between multiple users. Each user gets a “slice” of the available
compute resources. In this way, multicore systems provide more compute resources for
the users to share.

Figure 3.3 illustrates the situation with multiple users of the same system.
Multicore systems can be very well utilized running multiple applications, running

multiple copies of the same application, and supporting multiple simultaneous users. To
the OS, these are all just multiple processes, and they will all benefit from the capabilities
of a multicore system.

Multiuser operating systems enforce separation between the applications run by dif-
ferent users. If a program one user was running were to cause other applications to crash
or to write randomly to disk, the damage is limited to only those applications owned by
that user or the disk space they have permission to change. 
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Such containment and security is critical for supporting multiple simultaneous users.
As the number of users increases, so does the chance that one of them will do something
that could “damage” the rest of the system. This could be something as simple as deleting
critical files or enabling someone to get unauthorized access to the system.

Improving Machine Efficiency Through
Consolidation
Multicore computing is really just the continuing development of more powerful system
architectures. Tasks that used to require a dedicated machine can now be performed
using a single core of a multicore machine. This is a new opportunity to consolidate
multiple tasks from multiple separate machines down to a single multicore machine. An
example might be using a single machine for both a web server and e-mail where previ-
ously these functions would be running on their own dedicated machines.

There are many ways to achieve this. The simplest would be to log into the machine
and start both the e-mail and web server. However, for security reasons, it is often neces-
sary to keep these functions separated. It would be unfortunate if it were possible to send
a suitably formed request to the web server allowing it to retrieve someone’s e-mail
archive.

The obvious solution would be to run both servers as different users. This could use
the default access control system to stop the web server from getting access to the e-mail
server’s file. This would work, but it does not guard against user error. For example,
someone might accidentally put one of the mail server’s files under the wrong permis-
sions, leaving the mail open to reading or perhaps leaving it possible to install a back
door into the system. For this reason, smarter technologies have evolved to provide bet-
ter separation between processes running on the same machine.

Figure 3.3 A single system supporting multiple users
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Using Containers to Isolate Applications Sharing a Single System
One such technology is containerization. The implementations depend on the particular
operating system, for example, Solaris has Zones, whereas FreeBSD has Jails, but the con-
cept is the same. A control container manages the host operating system, along with a
multitude of guest containers. Each guest container appears to be a complete operating
system instance in its own right, and an application running in a guest container cannot
see other applications on the system either in other guest containers or in the control
container. The guests do not even share disk space; each guest container can appear to
have its own root directory system. 

The implementation of the technology is really a single instance of the operating sys-
tem, and the illusion of containers is maintained by hiding applications or resources that
are outside of the guest container. The advantage of this implementation is very low
overhead, so performance comes very close to that of the full system. The disadvantage 
is that the single operating system image represents a single point of failure. If the operat-
ing system crashes, then all the guests also crash, since they also share the same image.
Figure 3.4 illustrates containerization.
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Figure 3.4 Using containers to host multiple guest operating systems in
one system
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Hosting Multiple Operating Systems Using Hypervisors
Two other approaches that enforce better isolation between guests’ operating systems also
remove the restriction that the guests run the same operating system as the host. These
approaches are known as type 1 and type 2 hypervisors.

Type 1 hypervisors replace the host operating system with a very lightweight but
high-level system supervisor system, or hypervisor, that can load and initiate multiple
operating system instances on its own. Each operating system instance is entirely isolated
from the others while sharing the same hardware.
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Each operating system appears to have access to its own machine. It is not apparent,
from within the operating system, that the hardware is being shared. The hardware has
effectively been virtualized, in that the guest operating system will believe it is running
on whatever type of hardware the hypervisor indicates.

This provides the isolation that is needed for ensuring both security and robustness,
while at the same time making it possible to run multiple copies of different operating
systems as guests on the same host. Each guest believes that the entire hardware resources
of the machine are available. Examples of this kind of hypervisor are the Logical
Domains provided on the Sun UltraSPARC T1 and T2 product lines or the Xen hyper-
visor software on x86. Figure 3.5 illustrates a type 1 hypervisor.

Figure 3.5 Type 1 hypervisor
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A type 2 hypervisor is actually a normal user application running on top of a host
operating system. The hypervisor software is architected to host other operating systems.
Good examples of type 2 hypervisors are the open source VirtualBox software, VMware,
or the Parallels software for the Apple Macintosh. Figure 3.6 illustrates a type 2 hypervisor.

Clearly, it is also possible to combine these strategies and have a system that supports
multiple levels of virtualization, although this might not be good for overall performance.

Even though these strategies are complex, it is worth exploring why virtualization is
an appealing technology.

n Security. In a virtualized or containerized environment, it is very hard for an
application in one virtualized operating system to obtain access to data held in a
different one. This also applies to operating systems being hacked; the damage that
a hacker can do is constrained by what is visible to them from the operating sys-
tem that they hacked into.

n Robustness. With virtualization, a fault in a guest operating system can affect
only those applications running on that operating system, not other applications
running in other guest operating systems.



n Configuration isolation. Some applications expect to be configured in particular
ways: They might always expect to be installed in the same place or find their con-
figuration parameters in the same place. With virtualization, each instance believes it
has the entire system to itself, so it can be installed in one place and not interfere with
another instance running on the same host system in a different virtualized container.

n Restricted control. A user or application can be given root access to an instance
of a virtualized operating system, but this does not give them absolute control over
the entire system.

n Replication. There are situations, such as running a computer lab, where it is nec-
essary to be able to quickly reproduce multiple instances of an identical configura-
tion. Virtualization can save the effort of performing clean reinstalls of an operating
system. A new guest operating system can be started, providing a new instance of
the operating system. This new instance can even use a preconfigured image, so it
can be up and running easily.

n Experimentation. It is very easy to distribute a virtualized image of an operating
system. This means a user can try a new operating system without doing any dam-
age to their existing configuration.

n Hardware isolation. In some cases, it is possible to take the running image of a
virtualized operating system and move that to a new machine. This means that old
or broken hardware can be switched out without having to make changes to the
software running on it.

n Scaling. It is possible to dynamically respond to increased requests for work by
starting up more virtual images. For example, a company might provide a web-
hosted computation on-demand service. Demand for the service might peak on
weekday evenings but be very low the rest of the time. Using virtualization, it
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Figure 3.6 Type 2 hypervisor
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would be possible to start up new virtual machines to handle the load at the times
when the demand increases.

n Consolidation. One of the biggest plays for virtualization is that of consolidating
multiple old machines down to fewer new machines. Virtualization can take the
existing applications, and their host operating systems can move them to a new
host. Since the application is moved with its host operating system, the transition is
more likely to be smooth than if the application had to be reconfigured for a new
environment.

All these characteristics of virtualization make it a good fit for cloud computing. Cloud
computing is a service provided by a remote farm of machines. Using virtualization, each
user can be presented with root access to an unshared virtual machine. The number of
machines can be scaled to match the demand for their service, and new machines can
quickly be brought into service by replicating an existing setup. Finally, the software is
isolated from the physical hardware that it is running on, so it can easily be moved to
new hardware as the farm evolves.

Using Parallelism to Improve the Performance of
a Single Task
Virtualization provides one way of utilizing a multicore or multiprocessor system by
extracting parallelism at the highest level: running multiple tasks or applications simulta-
neously. For a user, a compelling feature of virtualization is that utilizing this level of par-
allelism becomes largely an administrative task.

But the deeper question for software developers is how multiple cores can be
employed to improve the throughput or computational speed of a single application. The
next section discusses a more tightly integrated parallelism for enabling such perform-
ance gains.

One Approach to Visualizing Parallel Applications
One way to visualize parallelization conceptually is to imagine that there are two of you;
each thinks the same thoughts and behaves in the same way. Potentially, you could
achieve twice as much as one of you currently does, but there are definitely some issues
that the two of you will have to face.

You might imagine that your double could go out to work while you stay at home
and read books. In this situation, you are implicitly controlling your double: You tell
them what to do. 

However, if you’re both identical, then your double would also prefer to stay home
and read while you go out to work. So, perhaps you would have to devise a way to
determine which of you goes to work today—maybe splitting the work so that one
would go one week, and the other the next week.
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Of course, there would also be problems on the weekend, when you both would
want to read the same newspaper at the same time. So, perhaps you would need two
copies of the paper or work out some way of sharing it so only one of you had the
paper at a time.

On the other hand, there would be plenty of benefits. You could be painting one
wall, while your double is painting another. One of you could mow the lawn while the
other washes the dishes. You could even work together cooking the dinner; one of you
could be chopping vegetables while the other is frying them.

Although the idea of this kind of double person is fanciful, these examples represent
very real issues that arise when writing parallel applications. As a thought experiment,
imagining two people collaborating on a particular task should help you identify ways to
divide the task and should also indicate some of the issues that result.

The rest of the chapter will explore some of these opportunities and issues in more
detail. However, it will help in visualizing the later parts of the chapter if you can take some
of these more “human” examples and draw the parallels to the computational problems.

Parallelism provides an opportunity to get more work done. This work might be
independent tasks, such as mowing the lawn and washing the dishes. These could corre-
spond to different processes or perhaps even different users utilizing the same system.
Painting the walls of a house requires a little more communication—you might need to
identify which wall to paint next—but generally the two tasks can proceed independ-
ently. However, when it comes to cooking a meal, the tasks are much more tightly cou-
pled. The order in which the vegetables are chopped should correspond to the order in
which they are needed. You might even need messages like “Stop what you’re doing and
get me more olive oil, now!” Preparing a meal requires a high amount of communica-
tion between the two workers.

The more communication is required, the more likely it is that the effect of the two
workers will not be a doubling of performance. An example of communication might be
to indicate which order the vegetables should be prepared in. Inefficiencies might arise
when the person cooking is waiting for the other person to complete chopping the next
needed vegetable.

The issue of accessing resources, for example, both wanting to read the same newspaper,
is another important concern. It can sometimes be avoided by duplicating resources—
both of you having your own copies—but sometimes if there is only a single resource,
we will need to establish a way to share that resource.

In the next section, we will explore this thought experiment further and observe how
the algorithm we use to solve a problem determines how efficiently the problem can be
solved.

How Parallelism Can Change the Choice of Algorithms
Algorithms have characteristics that make them more or less appropriate for a multi-
threaded implementation. For example, suppose you have a deck of playing cards that are
in a random order but you would like to sort them in order. One way to do this would
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be to hold the unsorted cards in one hand and place each card into its appropriate place
in the other hand. There are N cards, and a binary search is needed to locate each card
into its proper place. So, going back to the earlier discussion on algorithmic complexity,
this is an O(n∗log(n)) algorithm.

However, suppose you have someone to help, and you each decide to sort half the
pack. If you did that, you would end up with two piles of sorted cards, which you would
then have to combine. To combine them, you could each start with a pile of cards, and
then whoever had the next card could place it onto the single sorted stack. The com-
plexity of the sort part of this algorithm would be O(n∗log(n)) (for a value of n that was
half the original), and the combination would be O(n). So although we have increased
the number of “threads,” we do not guarantee a doubling of performance.

An alternative way of doing this would be to take advantage of the fact that playing
cards have an existing and easily discernible order. If instead of sorting the cards, you just
place them at the correct place on a grid. The grid could have the “value” of the card as
the x-axis and the “suit” of the card as the y-axis. This would be an O(n) operation since
the time it takes to place a single card does not depend on the number of cards that are
present in the deck. This method is likely to be slightly slower than keeping the cards in
your hands because you will have to physically reach to place the cards into the appro-
priate places in the grid. However, if you have the benefit of another person helping,
then the deck can again be split into two, and each person would have to sort only half
the cards. Assuming you don’t obstruct each other, you should be able to attain a near
doubling of performance. So, comparing the two algorithms, using the grid method
might be slower for a single person but would scale better with multiple people.

The point here is to demonstrate that the best algorithm for a single thread may not
necessarily correspond to the best parallel algorithm. Further, the best parallel algorithm
may be slower in the serial case than the best serial algorithm. 

Proving the complexity of a parallel algorithm is hard in the general case and is typi-
cally handled using approximations. The most common approximation to parallel per-
formance is Amdahl’s law.

Amdahl’s Law
Amdahl’s law is the simplest form of a scaling law. The underlying assumption is that the
performance of the parallel code scales with the number of threads. This is unrealistic, as
we will discuss later, but does provide a basic starting point. If we assume that S repre-
sents the time spent in serial code that cannot be parallelized and P represents the time
spent in code that can be parallelized, then the runtime of the serial application is as
follows:

The runtime of a parallel version of the application that used N processors would
take the following:

Runtime = +S P
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It is probably easiest to see the scaling diagrammatically. In Figure 3.7, we represent
the runtime of the serial portion of the code and the portion of the code that can be
made to run in parallel as rectangles.

Runtime = +S
P

N
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Figure 3.7 Single-threaded runtime
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If we use two threads for the parallel portion of the code, then the runtime of that
part of the code will halve, and Figure 3.8 represents the resulting processor activity.

Figure 3.8 Runtime with two threads
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If we were to use four threads to run this code, then the resulting processor activity
would resemble Figure 3.9.

Figure 3.9 Runtime with four threads
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There are a couple of things that follow from Amdahl’s law. As the processor count
increases, performance becomes dominated by the serial portion of the application. In
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the limit, the program can run no faster than the duration of the serial part, S. Another
observation is that there are diminishing returns as the number of threads increases: At
some point adding more threads does not make a discernible difference to the total 
runtime.

These two observations are probably best illustrated using the chart in Figure 3.10,
which shows the parallel speedup over the serial case for applications that have various
amounts of code that can be parallelized.

Figure 3.10 Scaling with diminishing parallel regions
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If all the code can be made to run in parallel, the scaling is perfect; a code run with
18 threads will be 18x faster than the serial version of the code. However, it is surprising
to see how fast scaling declines as the proportion of code that can be made to run in
parallel drops. If 99% of the application can be converted to parallel code, the application
would scale to about 15x the serial performance with 18 threads. At 95% serial, this
would drop to about 10x the serial performance. If only half the application can be run
in parallel, then the best that can be expected is for performance to double, and the code
would pretty much attain that at a thread count of about 8.

There is another way of using Amdahl’s law, and that is to look at how many threads
an application can scale to given the amount of time it spends in code that can be
parallelized.



Determining the Maximum Practical Threads
If we take Amdahl’s law as a reasonable approximation to application scaling, it becomes
an interesting question to ask how many threads we should expect an application to scale to.

If we have an application that spends only 10% of its time in code that can be paral-
lelized, it is unlikely that we’ll see much noticeable gain when using eight threads over
using four threads. If we assume it took 100 seconds to start with, then four threads
would complete the task in 92.5 seconds, whereas eight threads would take 91.25 sec-
onds. This is just over a second out of a total duration of a minute and a half. In case the
use of seconds might be seen as a way of trivializing the difference, imagine that the
original code took 100 days; then the difference is equivalent to a single day out of a
total duration of three months.

There will be some applications where every last second is critical and it makes sense
to use as many resources as possible to increase the performance to as high as possible.
However, there are probably a large number of applications where a small gain in per-
formance is not worth the effort.

We can analyze this issue assuming that a person has a tolerance, T, within which they
cease to care about a difference in performance. For many people this is probably 10%; if
the performance that they get is within 10% of the best possible, then it is acceptable.
Other groups might have stronger or weaker constraints. 

Returning to Amdahl’s law, recall that the runtime of an application that has a pro-
portion P of parallelizable code and S of serial code and that is run with N threads is as
follows:

The optimal runtime, when there are an infinite number of threads, is S. So, a run-
time within T percent of the optimal would be as follows:

We can compare the acceptable runtime with the runtime with N threads:

We can then rearrange and solve for N to get the following relationship for N:

RuntimeN S
P

N
= +

Acceptable runtime = +( )S T* 1

S T S
P

N
* 1+( ) = +⎛

⎝⎜
⎞
⎠⎟

N
P

ST

P

P T
= =

−( )1
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Using this equation, Figure 3.11 shows the number of threads necessary to get a run-
time that is within 10% of the best possible.

Reading this chart, it is clear that an application will have only limited scalability until
it spends at least half of its runtime in code that can be parallelized. For an application to
scale to large numbers of cores, it requires that 80%+ of the serial runtime is spent in
parallelizable code.

If Amdahl’s law were the only constraint to scaling, then it is apparent that there is lit-
tle benefit to using huge thread counts on any but the most embarrassingly parallel
applications. If performance is measured as throughput (or the amount of work done), it
is probable that for a system capable of running many threads, those threads may be bet-
ter allocated to a number of processes rather than all being utilized by a single process.

However, Amdahl’s law is a simplification of the scaling situation. The next section
will discuss a more realistic model.

How Synchronization Costs Reduce Scaling
Unfortunately, there are overhead costs associated with parallelizing applications. These
are associated with making the code run in parallel, with managing all the threads, and
with the communication between threads. You can find a more detailed discussion in
Chapter 9, “Scaling on Multicore Systems.”

In the model discussed here, as with Amdahl’s law, we will ignore any costs intro-
duced by the implementation of parallelization in the application and focus entirely on
the costs of synchronization between the multiple threads. When there are multiple
threads cooperating to solve a problem, there is a communication cost between all the

Figure 3.11 Minimum number of threads required to get 90% of 
peak performance
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threads. The communication might be the command for all the threads to start, or it
might represent each thread notifying the main thread that it has completed its work. 

We can denote this synchronization cost as some function F(N), since it will increase
as the number of threads increases. In the best case, F(N) would be a constant, indicating
that the cost of synchronization does not change as the number of threads increases. In
the worst case, it could be linear or even exponential with the number threads. A fair
estimate for the cost might be that it is proportional to the logarithm of the number of
threads (F(N)=K*ln(N)); this is relatively easy to argue for since the logarithm represents
the cost of communication if those threads communicated using a balanced tree. Taking
this approximation, then the cost of scaling to N threads would be as follows:

The value of K would be some constant that represents the communication latency
between two threads together with the number of times a synchronization point is
encountered (assuming that the number of synchronization points for a particular appli-
cation and workload is a constant). K will be proportional to memory latency for those
systems that communicate through memory, or perhaps cache latency if all the commu-
nicating threads share a common level of cache. Figure 3.12 shows the curves resulting
from an unrealistically large value for the constant K, demonstrating that at some thread
count the performance gain over the serial case will start decreasing because of the syn-
chronization costs. 

Runtime = + + ( )S
P

N
K Nln
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Figure 3.12 Scaling with exaggerated synchronization overheads
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It is relatively straightforward to calculate the point at which this will happen:

Solving this for N indicates that the minimal value for the runtime occurs when

This tells us that the number of threads that a code can scale to is proportional to the
ratio of the amount of work that can be parallelized and the cost of synchronization. So,
the scaling of the application can be increased either by making more of the code run in
parallel (increasing the value of P) or by reducing the synchronization costs (reducing the
value of K). Alternatively, if the number of threads is held constant, then reducing the
synchronization cost (making K smaller) will enable smaller sections of code to be made
parallel (P can also be made smaller).

What makes this interesting is that a multicore processor will often have threads shar-
ing data through a shared level of cache. The shared level of cache will have lower
latency than if the two threads had to communicate through memory. Synchronization
costs are usually proportional to the latency of the memory through which the threads
communicate, so communication through a shared level of cache will result in much
lower synchronization costs. This means that multicore processors have the opportunity
to be used for either parallelizing regions of code where the synchronization costs were
previously prohibitive or, alternatively, scaling the existing code to higher thread counts
than were previously possible.

So far, this chapter has discussed the expectations that a developer should have when
scaling their code to multiple threads. However, a bigger issue is how to identify work
that can be completed in parallel, as well as the patterns to use to perform this work. The
next section discusses common parallelization patterns and how to identify when to use
them.

Parallelization Patterns
There are many ways that work can be divided among multiple threads. The objective of
this section is to provide an overview of the most common approaches and to indicate
when these might be appropriate. 

Broadly speaking, there are two categories of parallelization, often referred to as data
parallel and task parallel.

A data parallel application has multiple threads performing the same operation on
separate items of data. For example, multiple threads could each take a chunk of itera-
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tions from a single loop and perform those iterations on different elements in a single
array. All the threads would perform the same task but to different array indexes.

A task parallel application would have separate threads performing different operations
on different items of data. For example, an animated film could be produced having one
process render each frame and then a separate process take each rendered frame and
incorporate it into a compressed version of the entire film.

Data Parallelism Using SIMD Instructions
Although this book discusses data parallelism in the context of multiple threads cooper-
ating on processing the same item of data, the concept also extends into instruction sets.
There are instructions, called single instruction multiple data (SIMD) instructions, that load
a vector of data and perform an operation on all the items in the vector. Most processors
have these instructions: the SSE instruction set extensions for x86 processors, the VIS
instructions for SPARC processors, and the AltiVec instructions on Power/
PowerPC processors.

The loop shown in Listing 3.1 is ideal for conversion into SIMD instructions.

Listing 3.1 Loop Adding Two Vectors

void vadd(double * restrict a, double * restrict b , int count)

{
for (int i=0; i < count; i++)

{

a[i] += b[i];

}

}

Compiling this on an x86 box without enabling SIMD instructions generates the
assembly language loop shown in Listing 3.2.

Listing 3.2 Assembly Language Code to Add Two Vectors Using x87 Instructions

loop:

fldl   (%edx)     // Load the value of a[i]

faddl  (%ecx)     // Add the value of b[i]

fstpl  (%edx)     // Store the result back to a[i]

addl   8,%edx     // Increment the pointer to a

addl   8,%ecx     // Increment the pointer to b

addl   1,%esi     // Increment the loop counter

cmp    %eax,%esi  // Test for the end of the loop

jle    loop       // Branch back to start of loop if not complete

Compiling with SIMD instructions produces code similar to that shown in Listing 3.3.
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Listing 3.3 Assembly Language Code to Add Two Vectors Using SSE Instructions

loop:

movupd (%edx),%xmm0 // Load a[i] and a[i+1] into vector register

movupd ($ecx),%xmm1 // Load b[i] and b[i+1] into vector register

addpd  %xmm1,%xmm0  // Add vector registers

movpd  %xmm0,(%edx) // Store a[i] and a[i+1] back to memory

addl   16,%edx      // Increment pointer to a

addl   16,%ecx      // Increment pointer to b

addl   2,%esi       // Increment loop counter

cmp    %eax,%esi    // Test for the end of the loop

jle    loop         // Branch back to start of loop if not complete

Since two double-precision values are computed at the same time, the trip count
around the loop is halved, so the number of instructions is halved. The move to SIMD
instructions also enables the compiler to avoid the inefficiencies of the stack-based x87
floating-point architecture.

SIMD and parallelization are very complementary technologies. SIMD is often useful
in situations where loops perform operations over vectors of data. These same loops
could also be parallelized. Simultaneously using both approaches enables a multicore chip
to achieve high throughput. However, SIMD instructions have an additional advantage in
that they can also be useful in situations where the amount of work is too small to be
effectively parallelized.

Parallelization Using Processes or Threads
The rest of the discussion of parallelization strategies in this chapter will use the word
tasks to describe the work being performed and the word thread to describe the instruc-
tion stream performing that work. The use of the word thread is purely a convenience.
These strategies are applicable to a multithreaded application where there would be a
single application with multiple cooperating threads and to a multiprocess application
where there would be an application made up of multiple independent processes (with
some of the processes potentially having multiple threads). 

The trade-offs between the two approaches are discussed in Chapter 1, “Hardware,
Processes, and Threads.” Similarly, these patterns do not need to be restricted to a single
system. They are just as applicable to situations where the work is spread over multiple
systems.

Multiple Independent Tasks
As discussed earlier in the chapter, the easiest way of utilizing a CMT system is to per-
form many independent tasks. In this case, the limit to the number of independent tasks
is determined by resources that are external to those tasks. A web server might require a
large memory footprint for caching recently used web pages in memory. A database
server might require large amounts of disk I/O. These requirements would place load on
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the system and on the operating system, but there would be no synchronization con-
straints between the applications running on the system.

A system running multiple tasks could be represented as a single system running three
independent tasks, A, B, and C, as shown in Figure 3.13.

Figure 3.13 Three independent tasks

System

A B C

An example of this kind of usage would be consolidation of multiple machines down
to a single machine. This consolidation might just be running the web server, e-mail
server, and so on, on the same machine or might involve some form of virtualization
where different tasks are isolated from each other.

This approach is very common but not terribly interesting from a parallelization strat-
egy since there is no communication between the components. Such an approach would
increase the utilization of the machine and could result in space or power savings but
should not be expected to lead to a performance change (except that which is attained
from the intrinsic differences in system performance).

One place where this strategy is common is in cluster, grid, or cloud computing. Each
individual node (that is, system) in the cloud might be running a different task, and the
tasks are independent. If a task fails (or a node fails while completing a task), the task can
be retried on a different node. The performance of the cloud is the aggregate throughput
of all the nodes.

What is interesting about this strategy is that because the tasks are independent, per-
formance (measured as throughput) should increase nearly linearly with the number of
available threads.

Multiple Loosely Coupled Tasks
A slight variation on the theme of multiple independent tasks would be where the tasks
are different, but they work together to form a single application. Some applications do
need to have multiple independent tasks running simultaneously, with each task generally
independent and often different from the other running tasks. However, the reason this is
an application rather than just a collection of tasks is that there is some element of com-
munication within the system. The communication might be from the tasks to a central
task controller, or the tasks might report some status back to a status monitor.
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In this instance, the tasks themselves are largely independent. They may occasionally
communicate, but that communication is likely to be asynchronous or perhaps limited to
exceptional situations.

Figure 3.14 shows a single system running three tasks. Task A is a control or supervi-
sor, and tasks B and C are reporting status to task A.

Figure 3.14 Loosely coupled tasks
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The performance of the application depends on the activity of these individual tasks.
If the CPU-consuming part of the “application” has been split off into a separate task,
then the rest of the components may become more responsive. For an example of this
improved responsiveness, assume that a single-threaded application is responsible for
receiving and forwarding packets across the network and for maintaining a log of packet
activity on disk. This could be split into two loosely coupled tasks—one receives and for-
wards the packets while the other is responsible for maintaining the log. With the origi-
nal code, there might be a delay in processing an incoming packet if the application is
busy writing status to the log. If the application is split into separate tasks, the packet can
be received and forwarded immediately, and the log writer will record this event at a
convenient point in the future.

The performance gain arises in this case because we have shared the work between
two threads. The packet-forwarding task only has to process packets and does not get
delayed by disk activity. The disk-writing task does not get stalled reading or writing
packets. If we assume that it takes 1ms to read and forward the packet and another 1ms
to write status to disk, then with the original code, we can process a new packet every
2ms (this represents a rate of 5,000 packets per second). Figure 3.15 shows this situation.

Figure 3.15 Single thread performing packet forwarding and log writing
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If we split these into separate tasks, then we can handle a packet every 1ms, so
throughput will have doubled. It will also improve the responsiveness because we will
handle each packet within 1ms of arrival, rather than within 2ms. However, it still takes
2ms for the handling of each packet to complete, so the throughput of the system has
doubled, but the response time has remained the same. Figure 3.16 shows this situation.
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Figure 3.16 Using two threads to perform packet forwarding and 
log writing
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Multiple Copies of the Same Task
An easy way to complete more work is to employ multiple copies of the same task. Each
individual task will take the same time to complete, but because multiple tasks are com-
pleted in parallel, the throughput of the system will increase.

This is a very common strategy. For example, one system might be running multiple
copies of a rendering application in order to render multiple animations. Each applica-
tion is independent and requires no synchronization with any other.

Figure 3.17 shows this situation, with a single system running three copies of task A.

Figure 3.17 Multiple copies of a single task
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Once again, the performance of the system is an increase in throughput, not an
improvement in the rate at which work is completed.

Single Task Split Over Multiple Threads
Splitting a single task over multiple threads is often what people think of as paralleliza-
tion. The typical scenario is distributing a loop’s iterations among multiple threads so that
each thread gets to compute a discrete range of the iterations.

This scenario is represented in Figure 3.18 as a system running three threads and each
of the threads handling a separate chunk of the work.

Figure 3.18 Multiple threads working on a single task
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In this instance, a single unit of work is being divided between the threads, so the
time taken for the unit of work to complete should diminish in proportion to the num-
ber of threads working on it. This is a reduction in completion time and would also rep-
resent an increase in throughput. In contrast, the previous examples in this section have
represented increases in the amount of work completed (the throughput), but not a
reduction in the completion time for each unit of work.

This pattern can also be considered a fork-join pattern, where the fork is the division
of work between the threads, and the join is the point at which all the threads synchro-
nize, having completed their individual assignments. 

Another variation on this theme is the divide-and-conquer approach where a prob-
lem is recursively divided as it is divided among multiple threads.

Using a Pipeline of Tasks to Work on a Single Item
A pipeline of tasks is perhaps a less obvious strategy for parallelization. Here, a single unit
of work is split into multiple stages and is passed from one stage to the next rather like
an assembly line.

Figure 3.19 represents this situation. A system has three separate threads; when a unit
of work comes in, the first thread completes task A and passes the work on to task B,
which is performed by the second thread. The work is completed by the third thread
performing task C. As each thread completes its task, it is ready to accept new work.



There are various motivations for using a pipeline approach. A pipeline has some
amount of flexibility, in that the flow of work can be dynamically changed at runtime. It
also has some implicit scalability because an implementation could use multiple copies of
a particular time-consuming stage in the pipeline (combining the pipeline pattern with
the multiple copies of a single task pattern), although the basic pipeline model would
have a single copy of each stage.

This pattern is most critical in situations where it represents the most effective way the
problem can be scaled to multiple threads. Consider a situation where packets come in for
processing, are processed, and then are retransmitted. A single thread can cope only with a
certain limit of packets per second. More threads are needed in order to improve perform-
ance. One way of doing this would be to increase the number of threads doing the receiv-
ing, processing, and forwarding. However, that might introduce additional complexity in
keeping the packets in the same order and synchronizing the multiple processing threads.

In this situation, a pipeline looks attractive because each stage can be working on a
separate packet, which means that the performance gain is proportional to the number
of active threads. The way to view this is to assume that the original processing of a
packet took three seconds. So, every three seconds a new packet could be dealt with.
When the processing is split into three equal pipeline stages, each stage will take a sec-
ond. More specifically, task A will take one second before it passes the packet of work on
to task B, and this will leave the first thread able to take on a new packet of work. So,
every second there will be a packet starting processing. A three-stage pipeline has
improved performance by a factor of three. The issues of ordering and synchronization
can be dealt with by placing the items in a queue between the stages so that order is
maintained.

Notice that the pipeline does not reduce the time taken to process each unit of work.
In fact, the queuing steps may slightly increase it. So, once again, it is a throughput
improvement rather than a reduction in unit processing time.

One disadvantage to pipelines is that the rate that new work can go through the
pipeline is limited by the time that it takes for the work of the slowest stage in the
pipeline to complete. As an example, consider the case where task B takes two seconds.
The second thread can accept work only every other second, so regardless of how much
faster tasks A and C are to complete, task B limits the throughput of the pipeline to one
task every two seconds. Of course, it might be possible to rectify this bottleneck by having
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two threads performing task B. Here the combination would complete one task every
second, which would match the throughput of tasks A and C. It is also worth consider-
ing that the best throughput occurs when all the stages in the pipeline take the same
amount of time. Otherwise, some stages will be idle waiting for more work.

Division of Work into a Client and a Server
With a client-server configuration, one thread (the client) communicates requests to
another thread (the server), and the other thread responds. The split into client and server
might provide a performance improvement, because while the server is performing some
calculation, the client can be responding to the user; the client might be the visible UI
to the application, and the server might be the compute engine that is performing the
task in the background. There are plenty of examples of this approach, such as having
one thread to manage the redraw of the screen while other threads handle the activities
of the application. Another example is when the client is a thread running on one sys-
tem while the server is a thread running on a remote system; web browsers and web
servers are obvious, everyday examples.

A big advantage of this approach is the sharing of resources between multiple clients.
For example, a machine might have a single Ethernet port but have multiple applications
that need to communicate through that port. The client threads would send requests to a
server thread. The server thread would have exclusive access to the Ethernet device and
would be responsible for sending out the packets from the clients and directing incom-
ing packets to the appropriate client in an orderly fashion.

This client-server relationship can be represented as multiple clients: A, communicat-
ing with a server, B, as shown in Figure 3.20. Server B might also control access to a set
of resources, which are not explicitly included in the diagram.

Figure 3.20 Client-server division of work
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Implicit in the client-server pattern is the notion that there will be multiple clients
seeking the attention of a single server. The single server could, of course, be imple-
mented using multiple threads.

The client-server pattern does not improve responsiveness but represents a way of
sharing the work between multiple threads, especially where the server thread actually does
some work. Alternatively, it represents a way of sharing a common resource between



multiple clients (in which case any gains in throughput are a fortunate by-product rather
than a design goal).

Splitting Responsibility into a Producer and a Consumer
A producer-consumer model is similar to both the pipeline model and the client-server.
Here, the producer is generating units of work, and the consumer is taking those units of
work and performing some kind of process on them.

For example, the movie-rendering problem described earlier might have a set of pro-
ducers generating rendered frames of a movie. The consumer might be the task that has
the work of ordering these frames correctly and then saving them to disk.

This can be represented as multiple copies of task A sending results to a single copy of
task B, as shown in Figure 3.21. Alternatively, there could be multiple producers and a
single consumer or multiple producers and consumers.
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Figure 3.21 Producer-consumer division of work
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Again, this approach does not necessarily reduce the latency of the tasks but provides
an improvement in throughput by allowing multiple tasks to progress simultaneously. In
common with the client-server task, it may also provide a way of reducing the complex-
ity of combining the output from multiple producers of data.

Combining Parallelization Strategies
In many situations, a single parallelization strategy might be all that is required to pro-
duce a parallel solution for a problem. However, in other situations, there is no single
strategy sufficient to solve the problem effectively, and it is necessary to select a combina-
tion of approaches.

The pipeline strategy represents a good starting point for a combination of
approaches. The various stages in the pipeline can be further parallelized. For example,
one stage might use multiple threads to perform a calculation on one item of data. A dif-
ferent stage might have multiple threads working on separate items of data.

When mapping a process to an implementation, it is important to consider all the
ways that it is possible to exploit parallelism and to avoid limiting yourself to the first
approach that comes to mind. Consider a situation where a task takes 100 seconds to



complete. Suppose that it’s possible to take 80 of those seconds and use four threads to
complete the work. Now the runtime for the task is 20 serial seconds, plus 20 seconds
when four threads are active, for a total of 40 seconds. Suppose that it is possible to use a
different strategy to spread the serial 20 seconds over two threads, leading to a perform-
ance gain of 10 seconds, so the total runtime is now 30 seconds: 10 seconds with two
threads and 20 seconds with four threads. The first parallelization made the application
two and a half times faster. The second parallelization made it 1.3x faster, which is not
nearly as great but is still a significant gain. However, if the second optimization had
been the only one performed, it would have resulted in only a 1.1x performance gain,
not nearly as dramatic a pay-off as the 1.3x gain that it obtained when other parts of the
code had already been made parallel.

How Dependencies Influence the Ability Run
Code in Parallel
Dependencies within an application (or the calculation it performs) define whether the
application can possibly run in parallel. There are two types of dependency: loop- or data-
carried dependencies and memory-carried dependencies.

With a loop-carried dependency, the next calculation in a loop cannot be performed
until the results of the previous iteration are known. A good example of this is the loop
to calculate whether a point is in the Mandelbrot set. Listing 3.4 shows this loop.

Listing 3.4 Code to Determine Whether a Point Is in the Mandelbrot Set

int inSet(double ix, double iy)

{

int iterations=0;

double x = ix, y = iy, x2 = x*x, y2 = y*y;

while ( (x2+y2 < 4) && (iterations < 1000) )

{

y  = 2 * x * y + iy;

x  = x2 - y2 + ix;

x2 = x * x;

y2 = y * y;

iterations++;

}

return iterations;

}

Each iteration of the loop depends on the results of the previous iteration. The loop
terminates either when 1,000 iterations have been completed or when the point escapes
a circle centered on the origin of radius two. It is not possible to predict how many iter-
ations this loop will complete. There is also insufficient work for each iteration of the
loop to be split over multiple threads. Hence, this loop must be performed serially.
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Memory-carried dependencies are more subtle. These represent the situation where a
memory access must be ordered with respect to another memory access to the same
location. Consider the snippet of code shown in Listing 3.5.

Listing 3.5 Code Demonstrating Ordering Constraints

int val=0;

void g()

{

val = 1;

}

void h()

{

val = val + 2;

}

If the routines g() and h() are executed by different threads, then the result depends
on the order in which the two routines are executed. If g() is executed followed by
h(), then the val will hold the result 3. If they are executed in the opposite order, then
val will contain the result 1. This is an example of a memory-carried dependence
because to produce the correct answer, the operations need to be performed in the cor-
rect order.

Antidependencies and Output Dependencies
Suppose one task, A, needs the data produced by another task, B; A depends on B and
cannot start until B completes and releases the data needed by A. This is often referred to
as true dependency. Typically, B writes some data, and A needs to read that data. There are
other combinations of two threads reading and writing data. Table 3.1 illustrates the four
ways that tasks might have a dependency.

Table 3.1 Possible Ordering Constraints

Second task
Read Write

First task Read Read after read (RAR) Write after read (WAR)
No dependency Antidependency

Write Read after write (RAW) Write after write (WAW)
True dependency Output dependency

When both threads perform read operations, there is no dependency between them,
and the same result is produced regardless of the order the threads run in.

111How Dependencies Influence the Ability Run Code in Parallel



With an antidependency, or write after read, one task has to read the data before the
second task can overwrite it. With an output dependency, or write after write, one of the
two tasks has to provide the final result, and the order in which the two tasks write their
results is critical. These two types of dependency can be most clearly illustrated using
serial code.

In the code shown in Listing 3.6, there is an antidependency on the variable data1.
The first statement needs to complete before the second statement because the second
statement reuses the variable data1.

Listing 3.6 An Example of an Antidependency

void anti-dependency()

{

result1 = calculation( data1 );  // Needs to complete first

data1 = result2 + 1;           // Will overwrite data1

}

If one of the statements was modified to use an alternative or temporary variable, for
example, data1_prime, then both statements could proceed in any order. Listing 3.7
shows this modified code.

Listing 3.7 Fixing an Antidependency

void anti-dependency()

{

data1_prime = data1;      // Local copy of data1

result1 = calculation( data1_prime );  

data1 = result2 + 1;   // No longer has antidependence

}

The code shown in Listing 3.8 demonstrates an output dependency on the variable
data1. The second statement needs to complete after the first statement only because
they both write to the same variable. 

Listing 3.8 An Output Dependency

void output-dependency()

{

data1 = result1 + 2; 

data1 = result2 + 2; // Overwrites same variable

}

If the first target variable was renamed data1_prime, then both statements could
proceed in any order. Listing 3.9 shows this fix.
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Listing 3.9 Fixing an Output Dependency

void output-dependency()

{

data1_prime = result1 + 2;

data1 = result2 + 2; // No longer has output-dependence

}

What is important about these two situations is that both output and antidependen-
cies can be avoided by renaming the data being written, so the final write operation goes
to a different place. This might involve taking a copy of the object and having each task
work on their own copy, or it might be a matter of duplicating a subset of the active
variables. In the worst case, it could be resolved by both tasks working independently
and then having a short bit of code that sets the variables to the correct state.

Using Speculation to Break Dependencies
In some instances, there is a clear potential dependency between different tasks. This
dependency means it is impossible to use a traditional parallelization approach where the
work is split between the two threads. Even in these situations, it can be possible to
extract some parallelism at the expense of performing some unnecessary work. Consider
the code shown in Listing 3.10.

Listing 3.10 Code with Potential for Speculative Execution

void doWork( int x, int y )

{

int value = longCalculation( x, y );

if (value > threshold)

{

return value + secondLongCalculation( x, y );

}

else

{

return value;

}

}

In this example, it is not known whether the second long calculation will be per-
formed until the first one has completed. However, it would be possible to speculatively
compute the value of the second long calculation at the same time as the first calculation
is performed. Then depending on the return value, either discard the second value or use
it. Listing 3.11 shows the resulting code parallelized using pseudoparallelization directives.
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Listing 3.11 Speculatively Parallelized Code

void doWork(int x, int y)

{

int value1, value2;  

#pragma start parallel region

{

#pragma perform parallel task

{

value1 = longCalculation( x, y );

}

#pragma perform parallel task

{ 

value2 = secondLongCalculation( x, y );

}

}

#pragma wait for parallel tasks to complete

if (value1 > threshold)

{

return value1 + value2;

}

else

{

return value1;

}

}

The #pragma directives in the previous code are very similar to those that are actu-
ally used in OpenMP, which we will discuss in Chapter 7, “OpenMP and Automatic
Parallelization.” The first directive tells the compiler that the following block of code
contains statements that will be executed in parallel. The two #pragma directives in the
parallel region indicate the two tasks to be performed in parallel. A final directive indi-
cates that the code cannot exit the parallel region until both tasks have completed.

Of course, it is important to consider whether the parallelization will slow perform-
ance down more than it will improve performance. There are two key reasons why the
parallel implementation could be slower than the serial code.

n The overhead from performing the work and synchronizing after the work is close
in magnitude to the time taken by the parallel code.

n The second long calculation takes longer than the first long calculation, and the
results of it are rarely used.

It is possible to put together an approximate model of this situation. Suppose the first
calculation takes T1 seconds and the second calculation takes T2 seconds; also suppose
that the probability that the second calculation is actually needed is P. Then the total
runtime for the serial code would be T1 + P ∗ T2.
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For the parallel code, assume that the calculations take the same time as they do in
the serial case and the probability remains unchanged, but there is also an overhead from
synchronization, S. Then the time taken by the parallel code is S + max (T1,T2).

Figure 3.22 shows the two situations.

Figure 3.22 Parallelization using speculative execution
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We can further deconstruct this to identify the constraints on the two situations
where the parallel version is faster than the serial version:

n If T1 > T2, then for the speculation to be profitable, S+T1 < T1+P∗T2, or 
S < P∗T2. In other words, the synchronization cost needs to be less than the aver-
age amount of time contributed by the second calculation. This makes sense if the
second calculation is rarely performed, because then the additional overhead of
synchronization needed to speculatively calculate it must be very small.

n If T2 > T1 (as shown in Figure 3.21), then for speculation to be profitable, S+T2
< T1+P∗T2 or P > (T2 +S -T1)/T2. This is a more complex result because the
second task takes longer than the first task, so the speculation starts off with a
longer runtime than the original serial code. Because T2 > T1, T2 + S -T1 is
always >0. T2 + S -T1 represents the overhead introduced by parallelization. For
the parallel code to be profitable, this has to be lower than the cost contributed by
executing T2. Hence, the probability of executing T2 has to be greater than the
ratio of the additional cost to the original cost. As the additional cost introduced
by the parallel code gets closer to the cost of executing T2, then T2 needs to be
executed increasingly frequently in order to make the parallelization profitable.

The previous approach is speculative execution, and the results are thrown away if they
are not needed. There is also value speculation where execution is performed, speculating
on the value of the input. Consider the code shown in Listing 3.12.



Listing 3.12 Code with Opportunity for Value Speculation

void doWork(int x, int y)

{

int value = longCalculation( x, y );

return secondLongCalculation( value );

}

In this instance, the second calculation depends on the value of the first calculation. 
If the value of the first calculation was predictable, then it might be profitable to specu-
late on the value of the first calculation and perform the two calculations in parallel.
Listing 3.13 shows the code parallelized using value speculation and pseudoparallelization
directives.

Listing 3.13 Parallelization Using Value Speculations

void doWork(int x, int y)

{

int value1, value2;

static int last_value;

#pragma start parallel region

{

#pragma perform parallel task

{

value1 = longCalculation( x, y );

}

#pragma perform parallel task

{

value2 = secondLongCalculation( lastValue );

}

}

#pragma wait for parallel tasks to complete

if (value1 == lastvalue)

{

return value2;

}

else

{

lastValue = value1;

return secondLongCalculation( value1 );

}

}

The value calculation for this speculation is very similar to the calculation performed
for the speculative execution example. Once again, assume that T1 and T2 represent the
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costs of the two routines. In this instance, P represents the probability that the specula-
tion is incorrect. S represents the synchronization overheads. Figure 3.23 shows the costs
of value speculation.

The original code takes T1+T2 seconds to complete. The parallel code takes
max(T1,T2)+S+P∗T2. For the parallelization to be profitable, one of the following con-
ditions needs to be true:

n If T1 > T2, then for the speculation to be profitable, T1 + S + P∗T2 < T1 +T2.
So, S < (1-P) ∗ T2. If the speculation is mostly correct, the synchronization costs
just need to be less than the costs of performing T2. If the synchronization is often
wrong, then the synchronization costs need to be much smaller than T2 since T2
will be frequently executed to correct the misspeculation.

n If T2 > T1, then for the speculation to be profitable, T2 + S + P∗T2 < T1 +T2.
So, S <T1 – P∗T2. The synchronization costs need to be less than the cost of T1
after the overhead of recomputing T2 is included.

As can be seen from the preceding discussion, speculative computation can lead to a
performance gain but can also lead to a slowdown; hence, care needs to be taken in
using it only where it is appropriate and likely to provide a performance gain.

Critical Paths
One way of looking at parallelization is by examining the critical paths in the application.
A critical path is the set of steps that determine the minimum time that the task can

Figure 3.23 Parallelization using value speculation
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complete in. A serial program might complete tasks A, B, C, and D. Not all of the tasks
need to have dependencies. B might depend on the results of A, and D might depend on
the results of B and C, but C might not depend on any previous results. This kind of
data can be displayed on a graph such as the one in Figure 3.24.

It is relatively straightforward to identify the critical path in a process once the
dependencies and durations have been identified. From this graph, it is apparent that task
C could be performed in parallel with tasks A and B. Given timing data, it would be
possible to estimate the expected performance of this parallelization strategy.

Identifying Parallelization Opportunities
The steps necessary to identify parallelization opportunities in codes are as follows:

1. Gather a representative runtime profile of the application, and identify the regions
of code where the most time is currently being spent. 

2. For these regions, examine the code for dependencies, and determine whether the
dependencies can be broken so that the code can be performed either as multiple
parallel tasks or as a loop over multiple parallel iterations. At this point, it may also
be worth investigating whether a different algorithm or approach would give code
that could be more easily made parallel.

3. Estimate the overheads and likely performance gains from this parallelization strat-
egy. If the approach promises close to linear scaling with the number of threads,
then it is probably a good approach; if the scaling does not look very efficient, it
may be worth broadening the scope of the analysis.

4. Broaden the scope of the analysis by considering the routine that calls the region
of interest. Is it possible to make this routine parallel?

The important point to remember is that parallelization incurs synchronization costs,
so the more work that each thread performs before it needs synchronization, the better
the code will scale. Consequently, it is always worth looking further up the call stack of a
region of code to determine whether there is a more effective parallelization point. For
example, consider the pseudocode shown in Listing 3.14.

Figure 3.24 Critical paths
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Listing 3.14 Opportunities for Parallelization at Different Granularities

void handlePacket(packet_t *packet)

{

doOneTask(packet);

doSecondTask(packet);

}

void handleStream( stream_t* stream )

{

for( int i=0; i < stream->number_of_packets; i++)

{

handlePacket( stream->packets[i] );

}

}

In this example, there are two long-running tasks; each performs some manipulation of
a packet of data. It is quite possible that the two tasks, doOneTask() and doSecondTask(),
could be performed in parallel. However, that would introduce one synchronization
point after every packet that is processed. So, the synchronization cost would be O(N)
where N is the number of packets.

Looking further up the stack, the calling routine, handleStream(), iterates over a
stream of packets. So, it would probably be more appropriate to explore whether this
loop could be made to run in parallel. If this was successful, then there would be a syn-
chronization point only after an entire stream of packets had been handled, which could
represent a significant reduction in the total synchronization costs.

Summary
This chapter has discussed the various strategies that can be used to utilize systems more
efficiently. These range from virtualization, which increases the productivity of the system
through increasing the number of active applications, to the use of parallelization tech-
niques that enable developers to improve the throughput or speed of applications. 

It is important to be aware of how the amount of code that is made to run in parallel
impacts the scaling of the application as the number of threads increases. Consideration
of this will enable you to estimate the possible performance gains that might be attained
from parallelization and determine what constraints need to be met for the paralleliza-
tion to be profitable. 

The chapter introduces various parallelization strategies, and these should provide you
with insights into the appropriate strategy for the situations you encounter. Successful
parallelization of applications requires identification of the dependencies present in code.
This chapter demonstrates ways that the codes can be made parallel even in the presence
of dependencies.
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This chapter has focused on the strategies that might be employed in producing par-
allel applications. There is another aspect to this, and that is the handling of data in paral-
lel applications. The individual threads need to coordinate work and share information.
The appropriate method of sharing information or synchronizing will depend on the
implementation of the parallelization strategy. The next chapter will discuss the various
mechanisms that are available to support sharing data between threads and the ways that
threads can be synchronized.
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memory bandwidth, 21

CodeAnalyst tool, 75–77

Coherence, cache, 18

collapse clause, 286–287, 348

Column-major array order, 58

Common execution paths, 61

Common Language Infrastructure (CLI), 397

Common Language Runtime (CLR), 397

Communicating costs in MPI, 403

Communication between threads and
processes, 133

condition variables, 135–137
latency, 99
memory, 134–135
message queues, 138
named pipes, 139
network stack, 139–140
signals and events, 137–138

Compare and swap (CAS) operations

atomic operations, 131, 297–301
spin locks, 325–326

Compilation of source code

32-bit vs. 64-bit code, 23–24
memory operation order, 24–26
overview, 21–23
processes vs. threads, 26–29

Compiler role in performance, 60–62

cross-file optimization, 65–68
optimization types, 62–64
options, 64–65
pointer aliasing, 70–74
profile feedback, 68–70
profiling, 74–80

Compilers and compiling

automatically parallelizing code, 254
lazy loading, 52–53
libraries, 44–45
memory-ordering directives, 303
multithreaded code, 151–152
operation ordering, 304–308
POSIX threads flags, 197–198

Complex instruction set computers 
(CISCs), 22

Complexity, algorithmic, 33

considerations, 38–39
examples, 33–37
importance, 37–38

Computational costs in OpenMP, 263–265

Compute Unified Device Architecture (CUDA),
383–384

Computer components, 1–2

Concurrent queues, 387–388

Condition variables, 135–137

POSIX threads, 170–175
Windows threads, 209, 218–219

Conditional code, 63–64

Conditional execution in OpenMP, 284

Configuration isolation, 91
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Conflicts, cache, 359–363

connect socket routine, 196

Consolidation

efficiency through, 88–92
virtualization for, 92

Consumers. See Producer-consumer systems

Containers for isolating applications, 89

Contended mutexes, 127, 340–345

Context switches, 4

copyin clause, 275

copyprivate directive, 275–276

Cores

bandwidth sharing between, 353–355
interleaving, 365–366
multicore. See Multicore processors
pipelined, 9–12
processor, 3

Costs

development, 39
libraries, 43–44, 47
MPI, 403
OpenMP, 263–265
scaling, 98–100

Counters

increment operations, 309–310
for semaphores, 128

CPU_SET macro, 376

CPU_ZERO macro, 376

CPUs. See Processors

cputrack tool, 362

CreateEvent routine, 220, 235

CreateFileMapping routine, 225–226

CreateMutex routine, 213, 221, 229–231

CreateMutexA routine, 221

CreateMutexEx routine, 213

CreateMutexW routine, 221

CreateNamedPipe routine, 231–232

CreatePipe routine, 231, 233

CreateProcess routine, 222–223, 229

CreateProcessW routine, 223

CreateSemaphore routine, 216

CreateSemaphoreEx routine, 216

CreateThread routine, 199–201

critical directive, 282

Critical paths, 117–118

Critical sections

mutex locks, 126–128
OpenMP, 282–283
Windows threads, 208, 210–213

Cross-file optimization, 40–42, 62, 65–68

CUDA (Compute Unified Device Architecture),
383–384

cudaMalloc routine, 385

cudaMemcpy routine, 385–386

D
-D_REENTRANT flag, 151–152

Data-carried dependencies, 413

Data padding

caches, 56
for false sharing, 357

Data races, 295

avoiding, 126
CAS operations, 299
detecting, 123–125
mutex locks for, 154–155, 413
overview, 121–123
transactional memory, 407–408

Data sharing

storing thread-private data, 141–142
synchronization. See Synchronization

Data structures

array access patterns, 58–59
choosing, 59–60
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Data structures (continued )

density and locality, 55–57
performance, 53–60

Data TLB (DTLB), 16

Deadlocks

circular buffers, 320
overview, 132–133

Debug level optimization, 64–65

__declspec specifier, 240–241

Decode stage in pipelines, 9

decrement atomic operations, 239

Decrement routine, 127

Default size

pages, 17
stack, 149

Dekker’s algorithm, 312–315

Delays in spin code, 368–369

DeleteCriticalSection routine, 210

Deleting POSIX thread shared memory, 181

Density, data, 55–57

Dependencies

antidependencies and output, 111–113
breaking, 113–117
compiling for, 52–53
critical paths, 117–118
determining, 413
parallelism, 110–111

Design, performance by, 82–83

destructor function, 178

Detached threads, 147–148

Detecting data races, 123–125

Developer time and cost in algorithm com-
plexities, 39

Device drivers in libraries, 51

Direct mapped caches, 13

Directives, 74, 256–257

dirent structure, 198

dispatch_apply routine, 393–394

dispatch_async routine, 393

Divide-and-conquer approach, 106

Division of work in client-server configura-
tion, 108–109

Division with reductions, 250, 261

Domains, logical, 90

Doors, 141

down method, 129

Downtime, 32

DTLB (data TLB), 16

Dual-core processors, 5

Dynamic scheduling in OpenMP, 264–266

example, 291–293
impact, 286

Dynamically defined parallel tasks, 269–273

E
Echo threads

POSIX, 194–195
Windows sockets, 237–238

Efficiency through consolidation, 88–92

Empty loops, 62

EMT64 instruction set, 23

_endthread routine, 205

_endthreadex routine, 205

EnterCriticalSection routine, 211–212

er_src tool, 259–260

errno variable, 151–152, 193

Error-handling code, time spent in, 75

Events

automatically reset, 220
and signals, 137–138
Windows sockets, 235
Windows synchronization, 209,

219–221
Exceptional conditions, time spent in, 75

exec routine, 179–180

execl routine, 179
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Execute stage in pipelines, 10

Execution duration in algorithm complexi-
ties, 37–38

Execution order in OpenMP, 285–286

Execution paths, common, 61

ExitThread routine, 205

Experimentation, virtualization for, 91

F
Factorial sums, 34–35

False dependencies, 413

False sharing, 355–359, 380

-fansi_alias flag, 73

Feedback-directed optimization, 69

Fences, memory, 25–26, 393

Fetch stage in pipelines, 9–10

Fibonacci numbers, 399–401

FIFO (first-in, first-out) queues, 185

Filling, register, 23

Firefox, 86

First-in, first-out (FIFO) queues, 185

First-touch placement, 373

firstprivate clause, 262, 273

Flags, compiler, 64–65

Floating-point values

incrementing, 299
loops, 62–63
pipelines, 11
reductions, 250

flush directive, 287–288

-fno-inline-functions flag, 247

for loops in OpenMP, 258

Fork-Exec model, 179–180

Fork-join pattern

OpenMP, 258
task splitting, 106

fork routine, 179–180

Fortress language, 399

free routine, 345–347

free_spinlock routine, 302–303, 319

FreeBSD jails, 89

Freeing locks, 25

ftruncate routine, 180

Fully associative caches, 14

Function address tables, 44

Function calls in loops, 62

Future of parallelization, 416

G
gcc asm statement, 307–308

GCD (Grand Central Dispatch), 392–394

gcnew routine, 398

General-purpose registers, 23

getchar routine, 207, 224

GetCurrentThreadId routine, 200

GetThreadPriority routine, 243

GetTickCount routine, 376- 377

gettid routine, 376

gettimeofday routine, 375–376

Global indexes, 241

__global__ keyword, 386

Global variables in POSIX threads, 175–178

Go language, 399

GPU-based computing, 383–386

GPUs (graphics processing units), 383–384

Grand Central Dispatch (GCD), 392–394

Granularity, locking, 413–414

Graphics processing units (GPUs), 383–384

Grid computing, 103

Grid sorting method, 94

Grids for tasks, 407

Groups, locality, 8, 372–373

Guided schedules, 266
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H
Hadoop, 406

Hand-coded synchronization, 295

atomic memory operations, 295–297
compare and swap, 297–301
memory ordering, 301–303
operating system-provided, 309–311
operation ordering, 304–308
overview, 295–297
volatile variables, 308

lockless. See Lockless algorithms
Handles

kernel resources, 207–208
processes, 224, 228–229
Windows threads, 200–204

Hardware constraints to scaling, 352–353

bandwidth sharing between cores,
353–355

cache conflict and capacity, 359–363
false sharing, 355–359
pipeline resource starvation, 363–369

Hardware isolation, 91

Hardware prefetching, 55

Hardware threads, 4

Hardware transactional memory, 408

Hashing in hardware, 360

Haskell language, 399–401

Header files

multithreaded code, 151–152
Windows sockets, 234–235

Heap

data sharing through, 175
POSIX threads, 150

Helgrind tool, 124

Hierarchy, memory, 13

Hot mutex locks, 340–345

Hypervisors, 89–92

I
Identifying

reductions, 250–251
tasks, 411–412

IDs for Windows threads, 200

inc instruction, 296

Inclusive time, 412

Increment operations

array values, 254
atomic operations, 239
C and C++ proposals, 395–396
Dekker’s algorithm, 312–313
floating-point values, 299
mutex locks, 127
variables, 21–22, 25

Incremental parallelization, 257

Independent tasks, 102–103

Infinite loops, 175

Inheriting handles in child processes, 228–229

InitializeConditionVariable routine, 218

InitializeCriticalSection routine, 210

InitializeCriticalSectionAndSpinCount routine,
212–213

Inlining

accessor functions, 40
compiler role, 62, 176
cross-file optimization, 41, 66–69
disabling, 247
loops, 253

Instruction issue rate, pipelining for, 9–12

Instruction TLB (ITLB), 16

Instruments tool, 80

Insufficient work constraints, 347–350

Integer pipelines, 11

Integration

OpenMP, 349–350
trapezium rule, 348–349
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Interleaving cores, 365–366

Interlocked functions, 238

InterlockedBitTestAndReset routine, 239

InterlockedBitTestAndSet routine, 239

InterlockedCompareExchange routine, 239

InterlockedExchangeAdd routine, 238–239,
309

InterlockedIncrement routine, 239

Inversion, priority, 244, 379–380

Isolating applications, 89

Items per unit time metric, 31

ITLB (instruction TLB), 16

J
Jails, 89

Joinable threads, 147–148

K
Kernel resources, handles to, 207–208

kill routine, 188

L
Language extensions, 386

C and C++ feature proposals,
394–397

Cilk++, 389–392
GCD, 392–394
Microsoft C++/CLI, 397–399
TBB, 386–389

lastprivate clause, 262–263

Latency

caches, 13
CMT processors, 55
memory, 18–21, 54, 373–379, 415
metrics, 32
page access, 18
producer-consumer model, 109

queuing, 355
between threads, 99

Lazy loading, 47, 51–52

LD_DEBUG environment variable, 46–47

LeaveCriticalSection routine, 211

Levels, caches, 13–14

lfence, 303

lgrpinfo tool, 372

libfast library, 152

Libraries

application structure, 42–53
benefits, 42–43
build process, 41–42
calling code, 45, 51
compiling, 44–45
costs, 43–44, 47
defining, 44
guidelines, 50
lazy loading, 47, 51–52
linking, 47
memory maps, 45–46
multithreaded code, 151
scaling code, 345–347
stepping through calls, 49–50
TBB, 386–389

Linkers, 47

listen socket routine, 194

Lists, circular

atomic operations, 326–328
overview, 315–318
scaling, 318–326

Literals, block, 394

Livelocks, 132–133

Loading, lazy, 47, 51–52

Locality

data, 55–57
memory, 371–379

427Locality



Locality groups, 8, 372–373

Lockless algorithms, 312

ABA problem, 329–332
atomic operations, 130–131, 300
circular buffers. See Circular buffers
Dekker’s algorithm, 312–315

Locks

freeing, 25
granularity, 413–414
mutex. See Mutexes and mutex locks
read-write, 159–162
readers-writer, 129
spin. See Spin locks
synchronization, 126

Logical domains, 90

Logical operations

for conditional code, 63–64
for reductions, 250, 261

Loops

algorithmic complexity, 34
arrays, 58
automatic parallelization, 246
collapsing, 286–287
empty, 62
floating-point arithmetic, 62–63
function calls, 62, 251–253
infinite, 175
merging, 347–348
OpenMP, 258, 278
potential compiler aliasing, 71
with reductions, 250–251
vector addition, 101–102
versioning, 255

Loosely coupled tasks, 103–105

Lost wake-up calls, 136–137, 173–174

-lpthread flag, 152

M
Main threads, 143

malloc routine

critical regions, 127–128
library code, 345–347
memory placement, 373

Mandelbrot set

cilk_for, 389–390
dependencies, 110
determining if a point is in the, 348
GCD, 393
loop-carried dependencies, 110
MPI, 403–404
OpenMP, 288–292
TBB, 388–390

Manually reset events, 219

MapReduce algorithm, 406

Maps, 134–135

memory to applications and libraries,
45–46, 49–50

memory to caches, 13–14
virtual CPU numbers to cores, 365
virtual memory to physical memory, 15

MapViewOfFile routine, 225–226

master directive, 279, 282

Master threads, 143

MPI, 404–405
OpenMP, 258
in regions of code, 282

Matrices, multiplying by vectors, 247–248

MAX operations, 250, 261

Maximum practical threads, 97–98

membar instructions, 25–26, 303, 314

Memory, 1–3

atomic operations, 295–308
bandwidth, 20–21, 354–355
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caches. See Caches
communication through, 134–135
consistency, 287–288
hierarchy, 13
latency, 18–21, 54, 373–379, 415
locality, 8, 371–379
maps, 45–46, 49–50, 134–135
multiprocessor systems, 18–20
ordering, 24–26, 301–303
POSIX threads, 175–178, 180–183
sharing, 134–135, 180–183, 225–228
in superlinear scaling, 337
transactional, 407
virtual, 9, 15–18
Windows threads, 225–228

Memory barriers, 25–26

atomic operations, 301–303
circular buffers, 316
Dekker’s algorithm, 314–315

Memory-carried dependencies, 111, 413

MemoryBarrier macro, 303

memset routine, 353

Merging loops, 347–348

Message Passing Interface (MPI), 402–405

Messages

POSIX threads, 184–186
queues, 138
signals and events, 137–138

Metrics, performance, 31–32

mfence operations, 25–26, 303, 314

Microsoft C++/CLI, 397–399

Microsoft Windows threads. See Windows
threads

Migration of threads, 371–372

MIN operations, 250, 261

Mispredicted branches, 10–11

Miss rates in TLB, 17

mknod routine, 187–188

mmap routine, 180

Motherboards, 1

Mozilla Firefox, 86

MPI (Message Passing Interface), 402–405

MPI_Comm_rank routine, 402

MPI_Comm_size routine, 402

MPI_Finalize routine, 402

MPI_Init routine, 402

MPI_Recv routine, 403–404

MPI_Send routine, 403

mq_attr structure, 184

mq_close routine, 184

mq_open routine, 184

mq_receive routine, 185

mq_reltimedreceive_np routine, 185

mq_reltimedsend_np routine, 185

mq_send routine, 185

mq_timedreceive routine, 185

mq_timedsend routine, 185

mq_unlink routine, 184

mtx_init routine, 396

Multicore processors, 414–415

caches, 12–15
instruction issue rate, 9–12
motivation, 3–4
multiple thread support, 4–9
optimizing programs, 415–416
scaling, 380–381
virtual addresses, 16–18
virtual memory, 15–16

Multiple barriers, 130

Multiple-reader locks, 129

Multiple tasks

copies, 105–106
independent, 102–103
loosely coupled, 103–105
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Multiple users on single systems, 87–88

Multiplication

matrices by vectors, 247–248
with reductions, 250, 261

Multiprocessor systems

characteristics, 18–20
latency and bandwidth, 20–21
POSIX threads, 179–193
for productivity, 85–87

Multithreaded code, compiling, 151–152

munmap routine, 180

Mutexes and mutex locks

addition of values, 301
atomic operations, 301–303, 310
attributes, 156–157
in C and C++, 396–397
condition variables, 135–137
contended, 340–345
critical regions, 126–128
data races, 126
OpenMP, 283–284
for ordering, 398–399
POSIX threads, 154–157
scaling limitations, 413
semaphores as, 165
vs. spin locks, 128
Windows threads, 208, 213–214,

229–231
Mutual exclusion

circular buffers, 319–322
Dekker’s algorithm for, 312–313
queue access, 167

N
Named critical sections, 282

Named mutexes, 229–231

Named pipes, 139

POSIX threads, 186–188
Windows threads, 231–232

Named semaphores, 164–165

Native Windows threads, 199–204

Nested loops

algorithmic complexity, 34
memory access, 58

Nested parallelism, 268–269, 273

Network stack, 139–140

no-op instruction, 369

Nodes in MPI, 402

Noncontiguous memory access patterns, 58

Noncritical code, time spent in, 75

now routine, 353, 356–357, 370, 373–375,
377

nowait clause, 279

num_threads clause, 277

numactl tool, 372

Number of threads in OpenMP, 276–277

Numerical integration

OpenMP, 349–350
trapezium rule, 348–349

O
O_CREAT flag, 164, 180, 184, 186

O_EXCL flag, 164, 180, 184

O_NONBLOCK flag, 185

O_RDONLY flag, 180, 184

O_RDWR flag, 180, 184

Odd-even sort, 350–352

omp_destroy_lock routine, 283

OMP_DYNAMIC environment variable, 277

omp_get_dynamic routine, 277

omp_get_max_threads routine, 276

omp_get_nested routine, 268
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omp_get_schedule routine, 278

omp_get_thread_limit routine, 277

omp_get_thread_num routine, 276

omp_init_lock routine, 283

omp_lock_t type, 283

OMP_NUM_THREADS environment variable,
247, 258–259, 276

omp parallel directive, 273

omp_sched_auto routine, 278

omp_sched_dynamic routine, 278

omp_sched_guided routine, 278

omp_sched_static routine, 278

OMP_SCHEDULE environment variable, 278

omp_set_dynamic routine, 277

omp_set_lock routine, 283

omp_set_nested routine, 268–270

omp_set_num_threads routine, 276

omp_set_schedule routine, 278

omp single directive, 273

OMP_STACKSIZE environment variable, 278

omp task directive, 273

omp_test_lock routine, 283

OMP_THREAD_LIMIT environment variable,
277

omp_unset_lock routine, 283

OoO (out-of-order) execution, 20

Open Computing Language (OpenCL),
383–384

open routine, 187

OpenEvent routine, 220

OpenMP API, 245, 256–257

collapse clause, 348
collapsing loops, 286–287, 348
dynamically defined parallel tasks,

269–273
example, 288–293
execution order, 285–286
memory consistency, 287–288

nested parallelism, 268–269
numerical integration, 349–350
parallel sections, 267–268
parallelizing loops, 258
parallelizing reductions, 260–261
private data, 274–276
Quicksort using, 350–352
restricting threads, 281–282
runtime behavior, 258
runtime environment, 276–278
thread restriction in, 281–284
waiting for work to complete, 278–281
work distribution scheduling, 263–267

OpenMP scheduling modes, 266–267

OpenMutex routine, 229

OpenSemaphore routine, 216

Operating system constraints to scaling

oversubscription, 369–371
priority inversion, 379–380
processor binding, 371–379

Operating system-provided atomics,
309–311

Operating systems, hypervisors for, 89–92

Operation count in algorithm complexities,
39

Operation ordering, 304–308

operator routine, 388–389, 397

oprofile tool, 75

OR operations for reductions, 250, 261

Order of N computations (O(N)), 34

ordered directive, 285–286

Ordering

execution, 285–286
memory, 24–26, 301–303
mutexes for, 398–399
operations, 304–308
POSIX threads, 165–166
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OSMemoryBarrier macro, 303

Out-of-order (OoO) execution, 20, 54–55

Output dependencies, 111–113

output routine, 390

output-dependency routine, 112–113

OverFileMapping routine, 225–226

Oversubscription, 369–371

P
Padding

caches, 56
for false sharing, 357

Paging from disk, 15–18

-par-report flag, 247

-par-threshold flag, 247, 256

parallel directive, 284

-parallel flag, 247

parallel for directive, 279, 286

parallel_for routine, 388

Parallel sections, 267–268

parallel sections directive, 268, 279

Parallelism

and algorithm choice, 93–94
Amdahl’s law, 94–96
automatic. See Automatic parallelization
through consolidation, 88–92
dependencies, 110–118
in Haskell, 401
maximum practical threads, 97–98
multiple processes, 85–87
multiple users on single system, 87–88
opportunities, 118–119
patterns. See Patterns in parallelization
for single task performance, 92–100
synchronization costs, 98–100
visualizing, 92–93

Parallels software, 90

Passing

data to and from POSIX child
threads, 145–147

values by pointer, 254–255
Patterns in parallelization, 100–101

client-server configuration, 108–109
combining strategies, 109–110
data parallelism using SIMD instruc-

tions, 101–102
multiple copies of same task, 105–106
multiple independent tasks, 102–103
multiple loosely coupled tasks, 103–105
pipelines, 106–108
processes and threads, 102
producer-consumer model, 109
split tasks, 106

pause instruction, 369

Performance

algorithmic complexity, 33–39
application structure. See Applications
compiler role. See Compiler role in

performance
defining, 31–33
by design, 82–83
gain estimates, 412
optimization guidelines, 80–82

Peripherals, 3

Physical addresses, translating virtual
addresses to, 16–18

pipe routine, 186

Pipelines

disadvantages, 107–108
resource starvation, 363–369
tasks, 106–108

Pipes

named, 139
POSIX threads, 186–188
Windows threads, 231–234
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plockstat tool, 343

PLTs (procedure linkage tables), 48–49

pmap utility, 45

Pointers

64-bit, 24
aliasing, 61, 70–74
restrict-qualified, 249, 254–255

POSIX threads, 123, 143

attributes, 148–150
barriers, 162–163
compiling multithreaded code,

151–152
concurrent queues, 387–388
condition variables, 170–175
creating, 143–144
detached, 147
memory, 175–178, 180–183
message queues, 184–186
multiprocess programming, 179–193
mutex attributes, 156–157
mutex locks, 154–156
passing data to and from child threads,

145–147
pipes, 186–188
process termination, 153–154
read-write locks, 159–162
reentrant code and compiler flags,

197–198
semaphores, 163–170, 183
signals, 188–193
sockets, 193–197
spin locks, 157–159
termination, 144–145
variables, 175–178

post method, 129

#pragma directives, 114

#pragma omp directive, 256–257

#pragma omp critical directive, 282

#pragma omp parallel directive, 268

#pragma omp section directive, 268

Pragmas, 74

Prefetching, 55

Prime number testing, 209–210, 239–240

printf routine

safety of, 189
wide strings, 222

Printing

signals for, 189–190
stack addresses, 359–360
Windows threads for, 204–205

Priorities

inversion, 244, 379–380
Windows threads, 242–244

Private data in OpenMP, 259–263, 274–276

Procedure linkage tables (PLTs), 48–49

PROCESS_INFORMATION structure, 222–223

Processes

communication with threads. See
Communication between threads
and processes

creating, 179-180, 222–225
inheriting handles, 228–229
memory sharing, 225–228
multiple. See Multiprocessor systems
mutexes, 229–231
pipes, 231–234
sockets, 234–238
termination, 153–154
vs. threads, 26–29
Windows threads. See Windows

threads
processor_bind routine, 362, 365, 375

Processors, 1–3

binding, 371–379
multicore. See Multicore processors
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Producer-consumer systems

atomics, 326–328
with circular buffers, 315–318
concurrent queues, 387–388
condition variables, 135–137
overview, 109
scaling, 318–326
semaphores, 168–169

Profiling

feedback, 68–70
importance, 74–75
performance gain estimates, 412
tools, 75–80

Protocol families for sockets, 194

pthread_attr_destroy routine, 148

pthread_barrier_destroy routine, 162

pthread_barrier_init routine, 162

pthread_barrier_wait routine, 162

pthread_cond_broadcast routine, 172

pthread_cond_destroy routine, 170

pthread_cond_init routine, 170

pthread_cond_signal routine, 172

pthread_cond_timedwait routine, 174–175

pthread_cond_wait routine, 173

pthread_create routine, 143–145, 147–149

pthread_detach routine, 147, 194

pthread_exit routine, 145, 153

pthread_getspecific routine, 177

pthread_join routine, 144–147, 194, 305

pthread_key_create routine, 177–178

pthread_key_delete routine, 177

pthread_mutex_attr_destroy routine, 157

pthread_mutex_destroy routine, 154

pthread_mutex_init routine, 154, 156–157

pthread_mutex_lock routine, 155

pthread_mutex_setpshared routine, 156

pthread_mutex_trylock routine, 155

pthread_mutex_unlock routine, 155

pthread_mutexattr_init routine, 156–157

pthread_mutexattr_t structure, 156

pthread_rwlock_destroy routine, 160

pthread_rwlock_rdlock routine, 160

pthread_rwlock_rdunlock routine, 160

pthread_rwlock_timedrdlock routine, 161

pthread_rwlock_timedrdlock_np routine, 161

pthread_rwlock_timedwrlock routine, 161

pthread_rwlock_timedwrlock_np routine, 161

pthread_rwlock_tryrwlock routine, 161

pthread_rwlock_trywrlock routine, 161

pthread_rwlock_wrlock routine, 160

pthread_rwlock_wrunlock routine, 160

pthread_rwlockattr_destroy routine, 160

pthread_rwlockattr_init routine, 159

pthread_rwlockattr_setpshared routine, 159

pthread_self routine, 147

pthread_setspecific routine, 177

pthread_spin_destroy routine, 157

pthread_spin_init routine, 157

pthread_spin_lock routine, 157

pthread_spin_trylock routine, 158

pthread_spin_unlock routine, 157

PTHREAD_STACK_MIN variable, 150

pthread_t structure, 143–144

Q
Quality of service (QoS) metric, 32

Queues

concurrent, 387–388
latencies, 355
messages, 138, 184–186

Quicksort

algorithmic complexity, 35–37
Cilk++, 390–392
OpenMP, 350–352
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R
read routine, 194

Read task dependencies, 111

Read-write locks, 159–162

_ReadBarrier routine, 308

readdir routine, 197–198

readdir_r routine, 198

Readers-writer locks

overview, 129
Windows threads, 214–216

ReadFile routine, 232

_ReadWriteBarrier routine, 308

recv routine, 194

Reduced instruction set computers 
(RISCs), 22

reduction clause, 261

Reductions

identifying and parallelizing, 250–251
MapReduce for, 406
OpenMP, 282–283

_REENTRANT flag, 197

Reentrant code

POSIX threads, 197–198
strength, 63

References, 417–418

Regions, critical. See Critical sections

Registers

spilling and filling, 23
tick, 368–369

Relative timeouts, 162

Release barriers, 302

release method, 129

ReleaseMutex routine, 213, 399

ReleaseSemaphore routine, 217

ReleaseSRWLockExclusive routine, 214

ReleaseSRWLockShared routine, 214

Reloading variables, 176, 304–305, 308

Replication, virtualization for, 91

ResetEvent routine, 220

Resources

handles, 207–208
sharing. See Synchronization
starvation in pipelines, 363–369

Response time metrics, 32

restrict keyword, 74, 254–255

Restrict-qualified pointers, 249, 254–255

Restrictions

regions of code threads, 281–284
virtualization for, 91

ResumeThread routine, 207

Retire stage in pipelines, 10

RISCs (reduced instruction set 
computers), 22

Robustness, hypervisors for, 90

Row-major array order, 58

Runtime environment in OpenMP, 276–278

behavior, 258
scheduling modes, 266–267

S
SA_SIGINFO flag, 193

Saturated memory chips, 355

Scalability in cilkview, 392

Scaling

algorithm complexities, 39
Amdahl’s law, 94–96
applications. See Application scaling

constraints
collapsing loops for, 287
dynamically scheduled code, 293
hardware. See Hardware constraints to

scaling
MapReduce for, 406
multicore processors, 380–381
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Scaling (continued )

mutex locks, 413
operating system constraints. See

Operating system constraints to
scaling

producer-consumer systems, 318–326
sockets for, 193
synchronization costs, 98–100
task identification for, 411–412
virtualization for, 91–92

sched_setaffinity routine, 376

schedule clause, 265, 267

schedules, OpenMP

example, 291–293
impact, 286
runtime loops, 278
work distribution, 263–267

Scoping in OpenMP, 259–263

Searches, 59–60

sections directive, 268

Security, hypervisors for, 90

SECURITY_ATTRIBUTES structure, 223, 229

sem_close routine, 164

sem_destroy routine, 163

sem_getvalue routine, 165

sem_init routine, 163

sem_open routine, 164

sem_post routine, 165

sem_trywait routine, 165

sem_unlink routine, 164

sem_wait routine, 165, 170

SemaphoreCreate routine, 216

SemaphoreCreateEx routine, 216

Semaphores, 128–129

POSIX threads, 163–170, 183
Windows threads, 208–209, 216–218

send routine, 194

Serial code

in Haskell, 400
performance, 31, 334–336

Serializing programs, 128

Servers. See Client/server systems

SetCriticalSectionSpinCount routine, 
212–213

setdata routine, 241

SetEvent routine, 220

SetThreadAffinityMask routine, 376

SetThreadPriority routine, 243

sfence, 303

Shared variables

C and C++, 396–397
OpenMP, 259–260

Sharing

between cores, 353–355
false, 355–359, 380
heap for, 175
memory, 134–135, 180–183, 225–228
between POSIX threads. See POSIX

threads
resources. See Synchronization

Shark tool, 78

shm_open routine, 180–181

shm_unlink routine, 181

Side effects from static libraries, 42

sigaction routine, 190, 192

siginfo_t data, 193

SIGKILL signal, 137, 188

signal routine

POSIX threads, 188
semaphores, 129

signalHandler routine, 138

Signals

and events, 137–138
POSIX threads, 188–193
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semaphores, 128, 165
Windows threads, 219–221

SIGPROF signal, 190

sigqueue routine, 192–193

SIGRTMAX signal, 189

SIGRTMIN signal, 189, 193

SIMD (single instruction multiple data)
instructions

data parallelism using, 101–102
vectorization, 408

sin routine, 252

single directive, 275, 279–282

Single instruction multiple data (SIMD)
instructions

data parallelism using, 101–102
vectorization, 408

Single instruction single data (SISD) instruc-
tions, 408

64-bit code performance, 23–24

Size

caches, 13
page, 17
stack, 149, 278

sleep command, 179

SleepConditionVariableCS routine, 218

SleepConditionVariableSRW routine, 218

Slim reader/writer locks, 208, 214–216

Snooping for cache coherence, 18

sockaddr_in structure, 269

socket routine, 194

Sockets, 

POSIX threads, 193–197
setting up, 140
Windows threads, 234–238

Software prefetching, 55

Software threads, 4

Software transactional memory, 408

Solaris operating system

doors, 141
locality groups, 8
zones, 89

Solaris Studio Performance Analyzer, 76,
78–79, 291

Sorting

algorithmic complexity, 35–37
Cilk++, 390–392
OpenMP, 350–352
parallelism for, 93–94

Source code

build structure trade-offs, 39–42
translation to assembly language. See

Translating source code to assembly
language

Source-level profiles, 77

SPARC architecture, 3

assembly language, 21–22
memory barriers, 25
page size, 17

SPEC Java Application Server benchmark, 31

Speculation to break dependencies,
113–117

Speculative execution, 115

Spilling, register, 23

Spin locks, 128

with barriers, 302–303
using CAS, 298–299
circular buffers, 319–326
POSIX threads, 157–159

spin routine, 356–358, 367–368, 370

Spinning threads, 366–369

Split tasks, 106

Splitting structures, 57

Stack, network, 139–140

Stack addresses, printing, 359–360
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Stack-based calling convention, 23

Stack-based data, 141

Stack size

default, 149
OpenMP worker threads, 278

Start method, 398

STARTUPINFO structure, 222–223

Static libraries

build process, 41–42
side effects, 42

Static scheduling, 263–265

__stdcall calling convention, 201

Stepping through library calls, 49–50

Storing thread-private data, 141–142

Strands, 4

Strategies in Haskell, 401

Strength reduction, 63

String handling, 221–222

strlen routine, 353

Structure of applications

build, 39–42
libraries, 42–53

Structures

64-bit, 24
data. See Data structures
passing, 254–255

Studio Performance Analyzer, 76, 78–79, 291

Subtraction with reductions, 250, 261

Super-scalar execution, 11

Superlinear scaling, 336–337

suspended Windows threads, 207

SuspendThread routine, 207

__sync_fetch_ routine, 309

Synchronization, 121

atomic operations, 130–131
barriers, 130

communication. See Communication
between threads and processes

critical regions, 126–128
data races, 121–126
deadlocks and livelocks, 132–133
hand-coded. See Hand-coded

synchronization
multicore processors, 380–381
primitives, 126–131
readers-writer locks, 129
scaling costs, 98–100
semaphores, 128–129
spin locks, 128
Windows threads. See Windows

threads
System-wide profiling, 75

T
task directive, 269

Tasks

dynamically defined parallel, 269–273
identifying, 411–412
multiple copies, 105–106
multiple loosely coupled, 103–105
pipelines, 106–108
split, 106

taskwait directive, 280–281

TBB (Threading Building Blocks) library,
386–389

TerminateThread routine, 205

Termination

POSIX threads, 144–145
processes, 153–154
Windows threads, 204–206

TEXT macro, 221–222

Thrashing, 359

Thread Analyzer, 124–125
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thread_code routine, 144, 153–154

Thread-local data

allocating, 240–242
arrays for, 141
declaring, 142, 177

Thread object, 398

Thread-private data, 141–142, 176

thread-safe malloc routines, 127–128

__thread specifier, 142, 177

threadbind routine, 373, 376–377

Threading Building Blocks (TBB) library,
386–389

threadprivate directive, 274–275

Threads

binding, 362, 365–366, 373
C and C++ proposals, 394–395
C++/CLI, 397–398
communication with processes. See

Communication between threads
and processes

defined, 4
maximum practical, 97–98
migration, 371–372
oversubscription, 369–371
POSIX. See POSIX threads
vs. processes, 26–29
spinning, 366–369
support for, 4–9
tasks split over, 106
Windows. See Windows threads

ThreadStart object, 398–399

Thundering herd problem, 323

Tick registers, 368–369

Time per item metric, 32

Timeouts

POSIX thread condition variables,
174–175

read-write locks with, 161–162

TLBs (translation look-aside buffers), 9,
16–17, 27–28

TlsAlloc routine, 241

TlsGetValue routine, 241

TlsSetValue routine, 241

_tprintf routine, 222

Transactional memory, 407

Transactions per second metric, 31

Translating source code to assembly lan-
guage, 21–23

memory ordering, 24–26
performance of 32-bit vs. 64-bit code,

23–24
processes vs. threads, 26–29

Translating virtual addresses to physical
addresses, 16–18

Translation look-aside buffers (TLBs), 9,
16–17, 27–28

Trapezium rule, 348–349

True dependencies, 413

TryAcquireSRWLockExclusive routine, 216

TryAcquireSRWLockShared routine, 216

TryEnterCriticalSection routine, 212

Type 1 hypervisors, 90

Type 2 hypervisors, 90–92

U
uintptr_t type, 201

ulimit command, 150, 278

UltraSPARC T2 processors

floorplan, 6–8
pipelines, 10–11

UMA (uniform memory architecture), 19

Unicode

processes, 223
wide string handling, 221–222

Uniform memory architecture (UMA), 19

unlink routine, 187

439unlink routine



UnmapViewOfFile routine, 226

Unnamed semaphores, 163

up method, 129

Updates

atomic, 238–240
data races, 122

UTF-16 format, 221

V
Valgrind tool, 124

Value speculation, 115–117

Vectorization, 408–409

Vectors

adding, 101–102
double-precision, 246
multiplying matrices by, 247–248

Versions

ABA problem, 329–330
loops, 255

Virtual CPUs, 4

ABA problem, 329
mapping to cores, 365

Virtual memory

address translation to physical
addresses, 16–18

benefits, 15–16
TLBs for, 9

VirtualBox software, 90

Virtualization benefits, 90–92

Visualizing parallel applications, 92–93

VMware software, 90

volatile keyword and variables

atomic operations, 296, 308
CAS operations, 298
Dekker’s algorithm, 313

POSIX threads, 175–176
reordering operations, 304–305

VTune tool, 75, 78–79

W
Wait-free implementation, 131

wait method for semaphore, 129

WaitForMultipleObjects routine, 205–206

WaitForSingleObject routine

events, 220
mutex locks, 213
processes, 224
semaphores, 216
Windows threads, 202–203, 205

waiting for work to complete, 278–281

WaitOne routine, 399

waitpid routine, 183

Wake-up calls, 136–137, 173–174

WakeAllConditionVariable routine, 218

WakeConditionVariable routine, 218

wchar_t type, 221–222

Weak memory ordering

atomic operations, 301
locks under, 25

WEXITSTATUS macro, 183

Whitespace-delimited text, 223

Wide string handling, 221–222

Windows threads, 199

atomic updates of variables, 238–240
creating, 199–204
kernel resources, 207–208
priorities, 242–244
processes. See Processes
suspended, 207
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synchronizing, 208–209
condition variables, 218–219
critical regions, 210–213
example, 209–210
mutex locks, 213–214
semaphores, 216–218
signals, 219–221
slim reader/writer locks, 214–216

terminating, 204–206
thread-local variables, 240–242
wide string handling, 221–222

Work distribution scheduling, 263–267

Worker threads

MPI, 404–405
OpenMP, 258
stack size, 278

Workload balance

application scaling constraints,
338–339

collapsing loops for, 286–287
wprintf routine, 222

write routine, 189, 194

Write task dependencies, 111

_WriteBarrier routine, 308

WriteFile routine, 232, 234

WriteLine routine, 397

WSACleanup routine, 235

WSADATA structure, 235

WSAStartup routine, 235

X
x64 instruction set, 23

x86-64 instruction set, 23

xadd instruction, 296–297

-xalias_level flag, 73

-xautopar flag, 246

-xbuiltin flag, 252, 256

-xloopinfo flag, 246, 259

-xopenmp flag, 259

xor operation for atomic operations, 239

-xreduction flag, 251, 256

-xrestrict flag, 73

Y
yieldprocessor macro, 369

Z
Zero-sum performance view, 69

Zones, 89
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