

Editor-in-Chief
Mark Taub

Acquisitions Editor
Trina MacDonald

Development
Editor
Songlin Qiu

Managing Editor
John Fuller

Project Editor
Anna Popick

Copy Editor
Apostrophe Editing
Services

Indexer
Jack Lewis

Proofreader
Linda Begley

Editorial Assistant
Olivia Basegio

Technical
Reviewers
Jason Essington
Jim Hathaway
Daniel Wellman

Cover Designer
Gary Adair

Compositor
Rob Mauhar

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital let-
ters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Kereki, Federico, 1960-
Essential GWT : building for the web with Google Web toolkit 2 / Federico Kereki.

p. cm.
Includes index.
ISBN-13: 978-0-321-70514-3 (pbk. : alk. paper)
ISBN-10: 0-321-70514-9 (pbk. : alk. paper)

1. Ajax (Web site development technology) 2. Java (Computer program language)
3. Google Web toolkit. 4. Application software--Development. I. Title.
TK5105.8885.A52K47 2011
006.7'6--dc22

2010018606

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding per-
missions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-70514-3
ISBN-10: 0-321-70514-9
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, IN.
First printing, July 2010

Contents at a Glance

Preface xv

Acknowledgments xix

About the Author xxi

1 Developing Your Application 1

2 Getting Started with GWT 2 9

3 Understanding Projects and Development 21

4 Working with Browsers 31

5 Programming the User Interface 55

6 Communicating with Your Server 77

7 Communicating with Other Servers 119

8 Mixing in JavaScript 139

9 Adding APIs 157

10 Working with Servers 177

11 Moving Around Files 195

12 Internationalization and Localization 211

13 Testing Your GWT Application 229

14 Optimizing for Application Speed 259

15 Deploying Your Application 287

Index 301

This page intentionally left blank

Contents

Preface xv

Acknowledgments xix

About the Author xxi

1 Developing Your Application 1

Rich Internet Applications 1

Web 2.0 2

Cloud Computing 3

The “Death of the Desktop” 4

Advantages of GWT 4

HTML Ubiquity and Browser Differences 4

JavaScript Deficiencies 5

Software Methodologies to Apply 5

Classic Development Problems 5

Agile Methodologies 7

Forever Beta? 7

Summary 8

2 Getting Started with GWT 2 9

Why Use GWT? 9

Why Java? 10

Some Actual Disadvantages 10

The GWT Components 12

Compiler 12

JRE Emulation Library 14

UI Library 17

Setting Up GWT 17

Writing Code 17

Version Control Management 19

Testing 19

Running and Deploying 19

Summary 20

x Contents

3 Understanding Projects and Development 21

Creating a Project 21

Using the Google Plugin for Eclipse 21

Using the GWT Shell Script 22

Project Structure 23

Running Your Application: Development Mode 27

Summary 30

4 Working with Browsers 31

The Back Button Problem 31

Setting Up Your HTML Page 32

The History Class 33

Starting Your Application 34

Showing Forms in Pop-Ups 37

Passing Parameters 38

Creating a Menu 41

Detecting the User’s Browser 43

The Classic Way 43

The Deferred Binding Way 44

Recognizing Older Explorers 52

No JavaScript? 53

Summary 53

5 Programming the User Interface 55

Thinking About UI Patterns 55

MVC: A Classic Pattern 56

MVP: A More Suitable Pattern 57

Implementing MVP 59

Callbacks Galore 59

Implementation Details 60

Some Extensions 67

Declarative UI 69

A Basic UiBinder Example 70

More Complex Examples 73

Summary 76

xiContents

6 Communicating with Your Server 77

Introduction to RPC 77

Implementation 78

Serialization 79

Direct Evaluation RPC 83

RPC Patterns of Usage 84

The World Cities Service 84

Code Sharing 86

Coding the Server Side Services 88

Database-Related Widgets and MVP 94

A Look at MVP 100

A Country/State Cities Browser 101

Live Suggestions 108

Data Prevalidation 112

Enterprise Java Beans 116

Summary 118

7 Communicating with Other Servers 119

The Same Origin Policy (SOP) Restriction 119

Our City Update Application 121

Receiving and Processing XML 125

Using Ajax Directly 127

Going Through a Proxy 129

Producing and Sending XML 131

Creating XML with Strings 132

Creating XML Through the DOM 133

Sending the XML Data 135

Sending XML Through Ajax 136

Sending XML Through a Proxy 136

Summary 137

8 Mixing in JavaScript 139

JSNI 139

Basic JSNI Usage 140

Hashing with JavaScript 142

Animations Beyond GWT 143

A Steampunk Display Widget 143

xii Contents

JSON 146

JSONP 153

Summary 155

9 Adding APIs 157

A Weather Vane 157

Getting Weather Data 157

Getting the Feed 159

Getting Everything Together 160

Getting at the Feed Data with an Overlay 161

Getting the Feed with JSNI 162

Dashboard Visualizations 162

Using the Google Visualization API 164

Handling Events 167

Working with Maps 168

Interactive Maps 168

Fixed Maps 173

Summary 175

10 Working with Servers 177

The Challenges to Meet 177

Before Going Any Further 177

Security 178

Ajax Problems 179

Cryptography 179

Hashing 180

Encrypting 180

Stateless Versus Stateful Servers 183

Common Operations 185

Logging In 185

Changing Your Password 190

Summary 193

11 Moving Around Files 195

Uploading Files 195

An Upload Form 195

A File Processing Servlet 200

Providing Feedback to the User 202

xiiiContents

Downloading Files 204

A File Download Form 204

A Sample File Producing Servlet 207

Summary 209

12 Internationalization and Localization 211

Internationalization (i18n) 211

Resource Bundles 212

Using Constants 213

Messages 217

UiBinder Internationalization 219

Localization (l10n) 223

Summary 227

13 Testing Your GWT Application 229

Why Testing? 229

Advantages of Automatically Tested Code 230

And if a Bug Appears? 230

Unit Testing with JUnit 231

A Basic JUnit Example 231

Test Coverage with Emma 236

Testing MVP Code 238

Testing with Mock Objects 239

EasyMock 240

Integration Testing with GWTTestCase 247

Testing a View 247

Testing a Servlet 252

Acceptance Testing with Selenium 253

A Very Simple Example 255

What Can Go Wrong? 257

Summary 257

14 Optimizing for Application Speed 259

Design Patterns for Speed 259

Caching 260

Prefetching 263

Thread Simulation 266

Bundling Data 273

xiv Contents

Speed Measurement Tools 277

Speed Tracer 278

YSlow 280

Page Speed 283

JavaScript Debuggers 285

Summary 286

15 Deploying Your Application 287

Compilation 287

Modules 289

Code Splitting 291

Deployment 297

Working with Client-Only GWT 297

Working with Client-Plus-Server GWT 297

Summary 300

Index 301

Preface

Developing modern, interactive, complex web sites has become a harder task since
users’ expectations are higher today. The bar has been raised by the current crop of appli-
cations such as Gmail or Google Maps, and developers are expected to work up to that
level and provide similarly powerful new web sites. The style, speed, and interaction levels
of modern sites practically rival those of classical desktop installed applications, and of
course users don’t want to go back. How do you develop such sites?

It can be said that the usage of Ajax was what started the trend toward such distinc-
tive applications, but even given that technique, the rest of the development of web
pages was the same, tools were the same, testing methods were the same, and the whole
result was that the programmers’ jobs had gotten much harder than needed.

(Personally, I should confess that I really never liked classic-style web development:
Building large-sized applications was harder than it needed to be, JavaScript was—and
still is—missing constructs geared to complex systems, the click-wait-click-wait again
cycle was inevitably slow and not very interactive, and, to top it all, unless you were
quite careful with your testing, your design was prone to fail on this or that browser in
unexpected ways.)

GWT, in just a very few years, has grown into a powerful tool by harnessing the
power of Java and its considerable programming environment and many development
tools, and producing efficient and consistent output, despite the too-many and well-
known incompatibilities between browsers.

Getting started with GWT isn’t that hard—documentation is reasonably good, the
development environment can be Eclipse or several other equally powerful IDEs, and
programming is quite similar to old-fashioned Java Swing coding—so you can have your
first short application up and running in a short time.

Creating production-quality, secure, internationally compliant, high-level code can be,
however, a bit more complex. You need to take many factors into account, from the ini-
tial setup of your project and development of the user interface, to the final compile and
deployment of your application.

Similarly, we’ll also have to focus on methodologies and on software design patterns,
so we can go forth in a safer, more organized way toward the complete application. For
example, we’ll consider how the model-view-presenter (MVP) pattern can not only
enhance the design of the application, but also help run fully automatic tests, in modern
Agile programming style, to attain higher quality, better tested software.

We’ll be working with the latest tools and versions; not only GWT’s (2.0.3 just now),
but also Eclipse, Subversion, Tomcat, Apache, MySQL, and so on. Because all these tools

are open source, we can support the notion that an appropriate software stack can be
built starting with GWT and ending with a full open web solution.

After my earlier confession on my dislike of classic web development strategies, I
should now aver that GWT did change that for me. Working in a high-level setting, with
plenty of tools, and practically forgetting about browser quirks, HTML, CSS, and
JavaScript, while gaining in clarity, maintainability, and performance, has made web appli-
cation creation an enjoyable task again!

The Structure of This Book
Chapters 1 through 3 deal with the basic setup for working with GWT. After consider-
ing the main reasons and objectives for using GWT, we’ll study what other tools are
required for serious code development, the methodology to use, and the internal aspects
of projects.

Chapters 4 and 5 are the backbone for the book, for they deal with the basic design
patterns that we use for building the User Interface. The code style and idioms devel-
oped here will be used throughout the rest of the book.

Chapters 6 and 7 deal with communications with servers, either through RPC (to
connect with servlets) or through direct Ajax (to communicate with remote services).

Chapters 8 and 9 study how to add both JavaScript coding and third-party APIs to
your application. Together with the previous two chapters, everything that’s needed for
mashing up services and getting information from different sources will have been covered.

Chapters 10 and 11 have to do with common server related problems, such as security
aspects, and file upload and download.

Chapter 12 deals with developing GWT applications that will be used worldwide and
covers both internationalization and localization.

Finally, Chapters 13 through 15 consider general themes such as testing GWT appli-
cations, optimizing their performance, and finally deploying them.

Who Should Read This Book
This book goes beyond “just learn GWT,” and is targeted to programmers who already
have a basis of GWT programming and want to encompass other web applications, serv-
ices, APIs, and standards as well, to produce Web 2.0-compliant Rich Internet
Applications (RIAs). A previous experience with web development, possibly in a J2EE
environment, will come in handy.

Having read this book through, the reader should not only be able to develop a RIA
on his own by just using GWT, but he will also have a reference book to help solve the
common problems that arise in such applications. Complete source code is given for all
examples, so getting started is quicker.

xvi Preface

Web Resources for This Book
The Google Web Toolkit site at http://code.google.com/webtoolkit/ is a mandatory ref-
erence, and so is the forum at http://groups.google.com/group/google-web-toolkit.

The code examples for this book are available on the book’s web site at
www.informit.com/title/9780321705143.

xviiPreface

http://code.google.com/webtoolkit/
http://groups.google.com/group/google-web-toolkit
www.informit.com/title/9780321705143

1
Developing Your Application

Why would you use GWT? What can you develop with it and how? Before delving
into specifics (as we’ll be doing in the rest of the book) let’s consider the answers to
these questions, so you’ll know what to focus on.

Developing applications with GWT can be seen as a straightforward job, but you should
ask some interesting questions to unlock the way to powerful, distinct, applications. What
kind of applications should you develop with GWT? (And, given the current push for
Cloud Computing, you can even add “Where would you deploy your application?”)
How can you go about it? And, why would you use GWT?

Let’s consider all these questions in sequence to start you on your way through this
book, knowing your goal and the road to it.

Rich Internet Applications
When you start reading about Rich Internet Applications (RIAs), your JAB (Jargon,
Acronyms, and Buzzwords) warning should go off because there are many words that are
bandied about, without necessarily a good, solid definition or a clear delimitation of
their meanings.

Basically, what we build are web applications that have the look and feel of classic
desktop applications but that are delivered (and “installed”) over the web. Many tools
have been used for this purpose, such as Java (through applets), Adobe Flash, and more
recently, Microsoft Silverlight, but used in this way, all these tools are beaten, in terms of
practicality, by simple HTML-based systems.

The RIAs that we will be developing are based on JavaScript and Ajax and just
require an appropriate browser to run. Classic web applications were developed with a
different set of tools, subjected the user to frequent waits (the hourglass cursor was often
seen), and had severe restrictions as to usability, with a much clunkier feel to them than
desktop installed programs.

Although some people distinguish between RIAs and the kind of interactive web
applications we build, the frontiers are getting blurrier and blurrier. You could argue that
Flash or Silverlight require preinstalled plugins, or that development runs along different

lines, but in terms of the final result (which is what the user experiences) differences are
not so marked, and well-designed HTML/JavaScript/Ajax applications can compete for
equality with applications developed with the other tools. (Also, some people opine that
HTML 5 can seriously challenge Flash, up to the point of making it obsolete, but that’s
still to come.1) There used to be obvious differences—the ability to store local data at
the user’s machine was the biggest one—but tools such as Google Gears or current
developments in HTML 5 have provided this feature to web applications.2

Given its ubiquity (from desktops to netbooks, and from cell phones to tablet PCs)
the browser can be considered a universal tool, and Ajax provides the best way for the
creation of highly interactive applications. Of course, a few years ago there weren’t many
tools for doing this (GWT itself appeared in 2006) and creating heavy-lifting interactive
code with just JavaScript wasn’t (and still isn’t) an appealing idea.3

Furthermore, given that users have been subjected for many years to web applica-
tions, and are familiar with their idioms, you are a bit ahead in terms of user interface
design by keeping to a reasonable standard.

As for the language itself, using Java as a tool—even if it gets compiled into
JavaScript, as GWT does—provides both a way around JavaScript’s deficiencies and
introduces a widely used language with plenty of development tools, which has been
used over and over for all kinds of applications and has been proved to scale to large-
sized applications.4

Web 2.0
Web 2.0 is another expression that has been bandied about a lot since its invention in
2004. Though there are way too many definitions for it, most seem to agree on the idea
of using the “Web as Platform,” where all applications run in a browser instead of being
preinstalled on your desktop. Furthermore, the idea of allowing users to produce their
own contents (à la Wikipedia) is also included, highlighting the collaborative aspect of
work, and thus bringing into the fold all kind of community and social networking sites
(think Facebook or YouTube). Finally (and that’s what actually works for us) the concept
of mashing together different data sources (probably from many web services) is also
included.

2 Chapter 1 Developing Your Application

1. See www.ibm.com/developerworks/web/library/wa-html5webapp/ for an article of some HTML 5

features already available in current browsers.

2. Google Gears’ development was practically stopped (other than support for currently available

versions) by the end of 2009 because of the upcoming HTML 5 features for local storage.

3. It might be said that developing large applications with, say, Flash, isn’t a walk in the park either,

for different reasons to be sure, but complicating the programmer’s job in any case.

4. It should be remarked that GWT isn’t the only such compile-to-JavaScript solution; for example,

the Python-based Pyjamas project (http://code.google.com/p/pyjamas/) provides Python-to-

JavaScript translation, and there are many more similar tools.

http://code.google.com/p/pyjamas/
www.ibm.com/developerworks/web/library/wa-html5webapp/

GWT applications can obviously be used for producing highly interactive people
sites, but they can also link together information from different origins, consuming web
services with no difficulty, either connecting directly to the server or by means of proxy-
based solutions. Various data formats are also not a problem; if you cannot work with
such standards as XML or JSON, you can include external libraries (or roll out your
own) through JSNI or Java programming. (We cover this in Chapter 8, “Mixing in
JavaScript,” and Chapter 9, “Adding APIs.”)

In this context, the phrase Service-Oriented Architectures (SOA) frequently pops up.
Instead of developing tightly integrated, almost monolithic, applications, SOA proposes
basing your systems on a loosely integrated group of services. These services are general
in purpose and can be used in the context of different applications—and, as previously
mentioned, GWT is perfectly suited to “consuming” such services, dealing with different
protocols and standards. (We’ll cover this in Chapter 6, “Communicating with Your
Server,” and Chapter 7, “Communicating with Other Servers.”) If your company is cen-
tered on an SOA strategy, your GWT-developed applications will fit perfectly well.

Cloud Computing
Next to the idea of using the browser as the basis for the user’s experience, the most
current term related to modern application development is Cloud Computing. This idea
reflects the concept of sharing resources over the web, on demand, instead of each user
having a private, limited pool of resources. In this view, software is considered a “service”
(the acronym SAAS, which stands for “Software as a Service,” is often used) and a
resource similar to more “tangible” ones as hardware.

(As an aside, the vulnerability of some operating systems, most notably Windows, to
viruses, worms, and similar attacks, has given a push to the idea of using a simple, secure,
machine and storing everything “on the web,” letting the cloud administrators deal with
hackers and program infections.)

For many, this concept is yet another cycle going from centralized resources (think
mainframes) to distributed processing (PCs, possibly in client/server configurations) and
now to having the web as your provider. The main requirements for such an architecture
involve reliable services and software, delivered through specific data centers, and running
on unspecified servers; for the user, the web provides an access to a cloud of resources.

For GWT applications, your applications are basically destined from the ground up to
be used “in the cloud” because of the standard restrictions imposed by browsers.
Distributing an application over the web, accessing it from anywhere, and having your
data stored in a basically unknown place are all characteristics of any applications you
might write.5

3Rich Internet Applications

5. With current (or forthcoming) standards, you might also resort to storing data locally, or to using

your own private, dedicated, resources, but that’s not original and more often associated with clas-

sic desktop applications.

The “Death of the Desktop”
The trend toward Cloud Computing has even spawned a new concept: the “Death of
the Desktop.” This presents rather starkly the problem of going overboard, to the limit:
From the appearance of mini netbooks (with flash-based disks, slow processors, not much
RAM) and iPhone-look-alike cell phones, some have reached the conclusion that desk-
top applications (and even desktop computers!) are on their way out. If this were true, it
could be great for GWT developers, but things are a bit different.

Despite several impressive opinions and pronouncements from people all over the
industry, the trend toward more powerful machines, with CPUs, memory, and I/O facili-
ties that put to shame the supercomputers of just a few years ago, doesn’t seem to be
slowing down. Even if you are enamored with the latest netbooks or high-powered cell-
phones, you should accept that working all the time with minimal screens isn’t the way
that things can get done at a company. (And for gaming or graphic-intense usages, small
machines aren’t so hot either; they may do, however, for business-oriented applications.)
In any case, GWT can help you because you can use its layout facilities and CSS styling
to produce applications for just about any device out there.

Also, remove the rosy glasses for an instant. Cloud computing offers several advantages
(and GWT applications can be considered to be right in the middle of that concept) but
also presents problems, so you need to plan accordingly. Aside from the obvious difficulty
of dealing with possibly flaky web connections, security and compatibility can be stum-
bling blocks. (On the other hand, scalability is well handled; there are plenty of large sites,
with hundreds or thousands of servers, proving that web applications can scale well.) The
important point is, with or without desktops, GWT provides some ways around these
kind of problems, and we’ll study this in upcoming chapters.6

Advantages of GWT
Why would you develop with GWT? Shouldn’t directly using JavaScript make more
sense? How do you manage with browser quirks? Let’s consider the reasons for GWT.

HTML Ubiquity and Browser Differences
The first reason for GWT applications is the ubiquity of HTML. Even if some time ago
browsers for, say, cell phones, weren’t as capable as their desktop brethren, nowadays you
can basically find the exact same capabilities in both. In terms of GWT, this is a boon
because it means that a well-designed application can run and look pretty in devices
from 3 inches to 25 inches.7

4 Chapter 1 Developing Your Application

6. And, of course, these inconveniences haven’t stopped anyone from developing HTML-based

applications!

7. Don’t expect to get the screen design right the first time; managing to build clear, small screen

browser applications is more an art than a science.

This availability is somehow tempered because today’s browsers are not created
equal—but you certainly knew that if you designed web pages on your own! When
Microsoft’s Internet Explorer ruled the roost, having practically 100% of the browser
market, this wasn’t a noticeable problem. However, today browser usage statistics point to
a different status quo: Mozilla Firefox and Safari, among others, have started carving larger
and larger niches in the market, and in some countries (mostly European) they have out-
numbered Internet Explorer. The current trend is toward applying web standards, and
that bodes well for web developers. In any case, GWT is quite adept at solving browser
quirks and differences, so the point may be considered moot for the time being.

JavaScript Deficiencies
Even assuming fully standard-compliant browsers, the fact remains that JavaScript, no
matter how powerful, isn’t a good language from the specific point of view of software
engineering. Because this isn’t a book on JavaScript, we won’t delve in its main prob-
lems, but using it for large-sized application development can be, to say the least, a bit
complicated.

This language isn’t well adapted either to development by large groups of people, and
the tools it provides for system development aren’t that adequate, so the programmer
must add extra code to bridge the distance between a modern object-oriented design
and its actual implementation.

One solution that has been applied is the usage of different libraries that provide a
higher-level way of using the language.8 GWT solves this problem in a radically different
way, by enabling the use of the higher level Java language, for which there are plenty of
modern development, testing, and documentation tools.

Software Methodologies to Apply
For classic application development, many well-known methodologies exist, but in the
context of modern web development, you should definitely use some techniques.

Classic Development Problems
If you learned to develop systems years ago, you were surely exposed to the Waterfall
Model or some other methodologies directly based on it. In this model for the develop-
ment process, progress is seen as flowing like a waterfall from stage to stage, through

5Software Methodologies to Apply

8. You could consider Google’s “Closure” library (see http://code.google.com/closure/) used for

Gmail’s development, or Yahoo!’s YUI library (see http://developer.yahoo.com/yui/), jQuery

(http://jquery.com/), Dojo (www.dojotoolkit.org/), Prototype (www.prototypejs.org/), MooTools

(http://mootools.net/), and many others. The functionality of these libraries isn’t always the same,

but there’s considerable overlap between them, showing the problems they set out to solve are real

and well known.

http://code.google.com/closure/
http://developer.yahoo.com/yui/
http://jquery.com/
http://mootools.net/
www.dojotoolkit.org/
www.prototypejs.org/

well-defined phases (see Figure 1.1) starting with the Analysis of Requirements, follow-
ing with the Design of the Solution and its Implementation, then to Testing (or Quality
Assurance), and finally to Installation and future Maintenance.

6 Chapter 1 Developing Your Application

Figure 1.1 The classic Waterfall Model isn’t the best possible
for GWT development.

This model is flawed in several ways (and of course, there are some fixes for that) but
its main problem is its orientation to highly regimented industries such as Construction,
in which late changes can be quite costly to implement, usually requiring tearing down
what was done and practically starting anew.

Another point—and an important one—is that you cannot expect users to be fully
aware of what they require; it is sometimes said “Users don’t know what they want, but
they know what they don’t want.”9 Classical methodologies do not take this into consid-
eration, and might thus incur important costs, because newly discovered or determined
requirements can invalidate a previous design.

Finally, it’s difficult to predict where difficulties will occur; problems with functionality
are usually found “on the go,” and if going back to change something to help future
development is too costly, you can face a dilemma: Spend money and time revising your

Analysis

Design

Programming

Testing

Installation

Maintenance

9. “I’ll know it when I see it” is another way of expressing this.

design, or keep your substandard design, and spend money and time later trying to make
your software do tasks it wasn’t well designed to do.

It has been said that the Waterfall Model, and similar ones, are based on the old
“Measure Twice, Cut Once” saw, but you cannot actually apply this when you don’t
actually know what’s being measured! (And, furthermore, what happens if requirements
change along the way, and by the time you finish with development, the problem has
actually changed?) Modern, agile technologies try to take this into account and work in
a radically different way, and that’s the way you should use with GWT.

Agile Methodologies
Several software development methodologies seek to reduce the time between the
requirement analysis phase and the development phase to develop at least parts of the
system in shorter times, using possibly an iterative method to advance to the final appli-
cation. Prototypes are frequently used to bridge the distance between the user and the
developer, helping both to understand what’s actually required. Instead of attempting to
do a whole system at once, development is parceled in smaller subsystems. The user is
involved all the time, instead of providing his input (in the form of requirements) only at
the beginning and then dealing with the system after its installation.

All these suggestions are currently applied in Agile Software Methodologies (born in
2001) that emphasize collective (i.e., users plus programmers) development of systems, in
highly iterative steps, with frequent verification and (if needed) adaptation of the written
code.

Agile Methodologies usually break a complex system into several short stages, substi-
tuting short, easily measured and controlled iterations, for long-term (and hard to do)
planning. Each iteration (usually shorter than a month) involves a mini development
cycle that includes all the stages associated with a Waterfall Model but finishes with giv-
ing the users a working product with increasing functionality that serves not only as a
measure of advance, but also as an aid to determine if changes are needed. The delivered
software is used as the main measurement for progress, instead of depending on a Gantt
chart or other documents.

GWT is perfectly suited to such methodologies, because it can offer iterative develop-
ment, rapid prototyping (and here tools such as UiBinder, which we will study, can help
quickly develop appropriate interfaces), and automated testing. The latter point is partic-
ularly important: Given that development can (and will) go back and forth, and code
used in a previous iteration can be modified several times along the complete develop-
ment process, it’s important to check whether old functionality hasn’t been lost and
whether bugs have been introduced. GWT has tools that provide for both unit testing
(at the lowest level) and acceptance testing (at the user level).

Forever Beta?
As a side effect of the iterative development process, it’s usually hard to define what con-
stitutes a “version” of the final system. Because practically every iteration produces new

7Software Methodologies to Apply

functionality, and the final goal isn’t as well defined as with classic methodologies (in
which the complete roadmap is laid out at the beginning and then preferably left
unchanged) with iterative development, you deliver the system in many small steps,
rather than in large ones.

In this context, it’s not unknown for systems to be considered in “perpetual beta”;
beta testing refers to the tests done by actual users with a system that is close to the full
product but not necessarily complete. (An extreme case of this is Google’s Gmail, which
was considered to be at beta level from 2004 to 2009!) With GWT, you can provide
functionality increases in short steps, and the web model enables for easy distribution of
the updated code.10

Summary
We touched upon several considerations that impact web application development. In the
rest of the book, we will be elaborating on them and provide specific techniques to help
you develop company-sized RIAs with the expected levels of quality and functionality.

8 Chapter 1 Developing Your Application

10. This could be said, of course, of any web-based application not necessarily written with GWT;

the point is that GWT helps you work this way.

Index

Numbers and Symbols
007. See Bond, James

$('a'), as selector, 142

A
Acceptance testing, with Selenium

example of, 255–256
overview, 253–255
potential problems, 257

"Access Control Specification," 121

Accounting, security and, 178

Accuweather, 158

actualUrl value, 175

addCity(...) function

coding server side services and, 90
WorldService remote service and, 85

addValueChangeHandler method, 97

aDirectory, compilation and, 287, 288, 289

Agile Software Methodologies, 7, 10

Ajax

caching and, 260
ExternalTextResource types and,

277
receiving/processing XML and,

127–128
security controls and, 179
sending XML via, 136
stateless server-side coding and,

183–184

AjaxLoader API, 160–161

<all>...</all> construct, 45

Albany, a city in NY, USA, 108, 175

Alt+Backspace/Back button problem

creating menus, 41–43
displaying forms in pop-ups, 37–38
History class, 33–34
overview, 31–32
passing parameters, 38–41
setting up HTML page, 32
starting application, 34–37

American Museum of Natural History,
168–170, 173–174

andReturn(...) method, 245–246

animateAllLinks(...) function, 143

Ángel S. Adami, 158

Animations, JSNI and, 143

Annotations, 215

Antique browsers, 52–53, 120–121

<any>...</any> construct, 45

Apache

client-only GWT deployment and, 297
Commons Lang component, 183,

200–202
Tomcat servlet container, deployment

and, 297–300
appendChild(...) method, 134–135

Application deployment

with client-only GWT 2, 297
with client-plus-server GWT 2,

297–300
code splitting, 291–297
compilation, 287–289
getting started, 20
modules, 289–291
overview, 287
summary, 300

Application development

GWT advantages, 4–5
overview, 1
Rich Internet Applications and, 1–4
software methodologies for, 5–8
summary, 8

Application Programming Interfaces (APIs),
adding

dashboard visualizations, 162–168
overview, 157
summary, 175
weather vane, 157–162
working with maps. See Maps

Application speed, optimizing

design patterns for. See Design patterns,
for speed

measurement tools for. See Speed
measurement tools

overview, 259
Application testing

acceptance testing with Selenium,
253–257

integration testing with
GWTTestCase, 247–253

JUnit and. See JUnit testing
overview, 229
reasons for, 229–231
summary, 257

ARCFOUR, 180–183

AreaChart objects, 164, 167

arguments, JSNI and, 140

Assembly language, 139

assertArrayEquals(...) methods, 235

assertFalse(...) methods

EasyMock and, 245
GWTTestCase and, 251
JUnit testing and, 236

302 AjaxLoader API

AsyncCallback function

callbacks and, 59
coding server side services and, 89
JSONP and, 154–155

Authentication, security and, 178

Authorization, security and, 178

Automatic testing of GWT. See Application
testing

Automatically tested code, 229–231

Availability, security and, 178

B
Back button/Alt+Backspace problem

creating menus, 41–43
displaying forms in pop-ups, 37–38
History class, 33–34
overview, 31–32
passing parameters, 38–41
setting up HTML page, 32
starting application, 34–37

baseUrl method, 136

Beta testing, 7–8

Bond, James, 144–145, 226

Browser recognition

classic way, 43–44
deferred binding way, 44–47
disabled JavaScript and, 53
of older IE, 52–53
overview, 43

Browser(s)

based measurement tools. See Speed
measurement tools

Country/State cities, 101–108
differences, 4–5
GWT Developer Plugin to operate,

28–30
HTMLUnit, 247

older, 52–53, 120–121
security, SOP restriction and, 119–121
"Web as Platform" and, 2
XML parser, 125–127

Browsers, working with

Back button problem. See Back button/
Alt+Backspace problem

code generation, 47–52
detecting user's. See Browser recognition
overview, 31
summary, 53

BufferedReader function, 129

Bug prevention, 229–231. See also Security;
Security, servers and

Bundles, resource

annotations and, 215
internationalization and, 212–213
localization and, 224–227
UiBinder-based internationalization

and, 219–223
using constants and, 213–214

Bundling data, for application speed,
273–277

Button function, JSON and, 147–150

C
Caching

application speed and, 260–263
prefetching and, 264–265

Callbacks

EasyMock testing and, 245–246
enabling/disabling Login button and,

67–69
GWTTestCase testing and, 252–253
JSON usage and, 149–151
JSONP and, 153–155
Login button, 186–187
MVP implementation and, 59–60

303Callbacks

Callbacks (continued)

Presenter, 98
uploading files and, 197–200

callback=yourownfunction(...)
parameter, 153

calledName variable, 242

Calls, from JavaScript, 140–141

Capture<.> class, 244–245

Cascading Style Sheets (CSS), 113–115

Challenges, security

AAA for, 178
Ajax problems, 179
full SSL security and, 177–178
overview, 177

changePassword(...) method,
192–193

Changing passwords, security and, 190–193

CheckStyle plugin, 18

Cities Browsing class, 292–293

Cities updating application, 121–125

CITIES_AT_A_TIME constant, 268–269

CitiesBrowserView.ui.xml file,
102–104, 106–108

CITIES_DELAY_IN_MS constant, 268–269

CITIES_PAGE_SIZE constant, 103,
106–107

City browser application

sample form, 101
Selenium testing and, 255
thread simulation and, 266–270

<city> element

city update application and, 123–124
creating XML and, 132

City input form, 112–113

cityExists(...) function

coding server side services and, 91
WorldService remote service and, 85

cityList function, 127

Classes

java.lang package, 14
java.sql package, 15
java.util package, 15–16

Classic browser detection, 43–44

Classical methodologies, 5–7

classname, JSNI and, 140

clearAllCities(...) method, 123

clearCities(...) method, 105–106

Client-only GWT, deployment with, 297

Client-plus-server GWT, deployment with,
297–300

ClientBundle interface, 273–277

ClientCityData classes

code sharing and, 86–88
coding server side services and, 90, 92

Cloaking, 10

Closure Library, 5

Cloud Computing, 3

Code, automatically tested, 229–231

Code generators, 47–52

Code Inlining

compiler and, 13
JSON usage and, 152

Code sharing, 86–88

Code splitting

application deployment and, 291–297
compiler and, 12

Code writing, 17–18

codeDecode(...) method, 181–182

Codes, pattern, 225–227

Command objects, 41–43, 47–52

Command pattern, 267, 270

Common operations, security

changing password, 190–193
logging in, 185–190

304 Callbacks

Communicating with other servers

city update application, 121–125
overview, 119
producing XML, 131–135
receiving/processing XML, 125–131
sending XML, 135–137
SOP restriction and, 119–121
summary, 137

Communicating with your server

introduction to RPC. See Remote
Procedure Calls (RPC), introduction

RPC patterns of usage. See Remote
Procedure Calls (RPC), usage

Compilation, deployment and, 287–289

Compile process, in GWT 2, 287–289

Compile Reports tool, 293–296

Compiler, Java-to-JavaScript, 12–14

-compileReport, compilation option, 287

Complex UiBinder examples

dealing with constructors, 74–75
presetting properties, 73
using your own widgets, 73–74
working with complex layouts, 75

Components

compiler, 12–14
JRE Emulation Library, 14–16
overview, 12
UI library, 17

Components tab, 281–282

Composite widgets

Country/State, 101–108
interactive maps and, 171
MVP and, 95

Confidentiality, security and, 178

Constant Folding, 13

Constants interface, 213–214

ConstantsWithLookup interface

internationalization and, 213–214
translating error codes and, 215–217

Constructors

code sharing and, 86–88
dealing with, 74–75
invoking Java, 141

Controller role, in MVC, 56–57

<coords> element

city update application and, 123–125
creating XML and, 132–134

Copy Propagation, 13

Country/State cities browser, 101–108

CountryState object, 260–263

CountryStateView widgets

Country/State cities browser and,
102–104, 107–108

UiBinder code and, 95–97
createElement(...) method, 134–135

CreateMock(...) methods, 243

createTextNode(...) method, 134–135

Creating XML

overview, 131–132
with strings, 132–133
through DOM, 133–135

Cryptography

encryption, 180–183
hashing, 180
hashing with JavaScript, 142–143
overview, 179

CssResource elements, 274

Currencies, localization and, 226

currentRow variable, 268–269

CustomFieldSerializer class, 80

D
Darwin, Charles, 144, 225, 233–234

Darwin (cities), 122–124, 252–253, 256

305Darwin (cities)

Dashboard visualizations

Google Visualization API, 164–167
handling events, 167–168
overview, 162–164

Data

bundling, 273–277
prevalidation, 112–116

Data tables, 165–167

Data transfer object (DTO), 186–189

Database-related widgets, 94–100

DataResource elements, 274–276

Date and Time formats, 224–226

Dates, serialization of, 80

Dead Code Elimination, 12

Dead For Now (DFN) code splitting, 291

"Death of the Desktop" concept, 4

Debuggers, JavaScript, 285–286

Declarative UI

basic UiBinder example, 70–73
complex UiBinder examples, 73–75
overview, 69

Default value, 215, 218

defaultLocale attribute, 220

@DefaultStringValue(...) function,
215

Deferred binding replacement technique

browser detection with, 44–47
dashboard visualizations and, 164
using constants and, 214

Deferred commands, 270–273

delayTestFinish(...) call, 252–253

Demeter, Law of, 62

Dependency Injection, 56

description attribute, 221–223

deserialize(...) method, 82

Design patterns, for speed

bundling data, 273–277

caching, 260–263
overview, 259
prefetching, 263–266
thread simulation. See Thread simulation

Desktops, 4

Developing GWT applications. See
Application development

Development mode, 27–30

DFN (Dead For Now) code splitting, 291

Direct Evaluation RPC (deRPC), 83–84

disableLogin(...) method, 67

Display interface

changing password, 191
city update application, 123
file download form, 205
interactive maps, 168–169
uploading files, 197

displayCities(...) method

Country/State cities browser and,
105–107

processing XML using Ajax and, 128
producing/sending XML and, 132

displayEmptyCities(...) method,
105–107

displayNews(...) method, 152

<div>

interactive maps and, 170
UiBinder and, 220–221
widgets and, 145

<div id> function, 144–146

$doc, 142

Document Object Model (DOM)

creating XML through, 133–135
GWTTestCase and, 251

doGet(...) method

file producing servlet and, 207–208
providing feedback and, 202–204

306 Dashboard visualizations

Dojo Toolkit, 5, 11

DOM. See Document Object Model (DOM)

DomEvent.fireNativeEvent(...)
method, 251

doPost(...) method, 201–202

Downloading files

file download form, 204–207
file producing servlet, 207–208
overview, 204

-draftCompile, compilation option, 287,
289

DragonFly debugger, in Opera, 285–286

drawZoomAndCenter(...) method,
172–173

DTO (Data transfer object), 186–189

Dummy objects, 240

E
-ea, compilation option, 287

EasyMock testing, 19, 240–247

EclEmma plugin, 19, 236–238

Eclipse

debugger, and JSNI, 140
JUnit testing and, 234, 236–238
for writing code, 17–18

Einstein, Albert, 234

EjbAccess remote servlet, 116–117

--enable-extension-timeline-api
parameter, 278

enableLoginButton(...) method, 67–68

Encryption

defined, 179
security and, 180–183

Enterprise Java Beans (EJB), 116–118

<entry-point> element

modules and, 290
project structure and, 25–26

Enumerations, serialization of, 80

Environment object

changing passwords and, 192
EasyMock testing and, 240–247
MVP implementation and, 60–63,

66–67
Error codes, translating, 215–217

Exceptions

GWT 2 and, 13
java.lang package, 14
JavaScript code and Java, 141
java.util package, 15

execute(...) method, 272–273

Extensible Markup Language (XML)

city update application and, 123–125
creating, overview, 131–132
creating through DOM, 133–135
creating with strings, 132–133
receiving and processing, 125–131
sending, overview, 131–132, 135–136
sending through Ajax, 136
sending through proxy, 136–137

ExternalTextResource elements,
274–275, 277

-extra, compilation option, 287

Extreme Programming (XP), 229

F
fail(...) methods

EasyMock testing and, 243
JUnit testing and, 236

Fake objects, 240

Feed, weather, 159–160

Feedback information, 202–204

File processing servlet, 200–202

File producing servlet, 206

307File producing servlet

Files, moving

downloading, 204–208
overview, 195
summary, 209
uploading. See Uploading files

FileUpload form, 195–200

final attributes, 80

finishTest(...) call, 252–253

Firebug

debugger, 285–286
Page Speed and, 283–285
YSlow and, 280–282

Firefox

cross scripting request and, 135
Firebug, 280–286
SOP restriction and, 121

firstResultPosition attribute, 147

Fixed maps, 173–175

Flash library, 164

FlexTable function, 170

Floating point numbers, 13

FormPanel parameters, 196–198

Forms

city browser, 101, 255
ClientBundle sampler application,

276
file download, 204–207
file upload, 195–200
passing parameters to, 38–41
in pop-ups, 37–38
UiBinder-based internationalization,

219–223
Full code size value, 295

G
Generators, code, 47–52

Generic resource bundles, 212–213

GenericServiceReturnDto class,
187–188

GeoNames, 158

GET calls

file download form and, 205–206
processing XML using Ajax and,

127–128
providing feedback and, 203–204
SOP restriction and, 121

getAge(...) method, 152

getAndDisplayCities(...) method,
269, 273

getAttributeNode(...) method, 127

getCities(...) function, 85

getCityName(...) method, 109

getCityPopulation(...) method

city update application and, 123
producing/sending XML and,

131–132
getCountries(...) function

caching and, 261
database-related widgets and, 97
WorldService remote service and, 85

getCountryState(...) method, 102,
104–107

getDescription(...) method, 141

getDisplay() method, 131–132

getDocumentElement(...) method,
125–127

getElementsByTagName(...) method,
127

getFeed(...) routine, 162

getFormat(...) method, 225

getFromUrl(...) method, 129

getLatitude(...) method, 171

getLongitude(...) method, 171

getModel(...) method

EasyMock testing and, 243
MVP implementation and, 60

308 Files, moving

getModuleName(...) method, 250

getName(...) method, 141

getName(...) method

EasyMock testing and, 245–246
file processing servlet and, 202

GetNewsCallback(...) function,
149–150

getNodeValue(...) method, 127

getPassword(...) method, 245–246

getSelections(...) method, 168

getSessionKey(...) method, 187–189

getSize(...) method, 202

getSomething(...) method

logging in and, 185–187
MVP implementation and, 62–63, 67

getStates(...) function

database-related widgets and, 97
WorldService remote service and, 85

getSummary(...) method, 152

getText(...) call, 277

goBack(...) method, 59–60

Google AJAX Feed API, 159

Google Chart API, 163

Google Chrome

Speed Tracer and, 278–280
Tomcat-deployed application,

297–300
Google Gears, 2

Google Maps, 168

Google Plugin for Eclipse

coding server side services and, 89
GWT project creation with, 21–22
UiBinder templates and, 70
for writing code, 17–18

Google Testing Blog, 229

Google Visualization API, 163, 164–167

Google Web Toolkit 2. See GWT 2 (Google
Web Toolkit 2), getting started

google.feeds variable, 162

goto. statements, 257

Grade tab, 281

GreetingServiceImpl class, 81

GWT 2 (Google Web Toolkit 2), getting started

advantages/disadvantages, 9–11
components, 12–17
defined, 9
setting up, 17–20
summary, 20

GWT advantages

HTML ubiquity/browser differences,
4–5

Java, 10
JavaScript, 5
overview of, 9–11

GWT AjaxLoader API

getting weather feed and, 160
steps for using, 160–161

GWT Developer Plugin, 28–30

gwt.ajaxloader.jar files, 160–161

GWT.create(...)

creating widgets with, 74
invoking messages with, 217

GWT.getHostpageBaseURL(...)
function, 128

GWT.runAsync(...) method, 291–293

gwttest directory, 23

GWTTestCase, integration testing and

overview, 247
setup times, 254
testing login view, 247–251
testing servlets, 252–253

gwt.xml files

creating modules and, 290–291
Google Visualization API and, 164
GWT AjaxLoader API and, 160–161
GWTTestCase testing and, 252

309gwt.xml files

H
Hashing

changing passwords and, 191–193
defined, 179
with JavaScript, 142–143
logging in and, 185–190
security and, 180

hashword.length(...) method, 180

Hints mode, 279–280

History class, 32, 33–34

Host, 119–120

HTML (HyperText Markup Language)

setting up page, 32
ubiquity of, 4–5
widgets, 46–47

HTMLPanel function, 147–149

HTMLUnit web browser, 247

Humble Dialog (Humble Object), 56

Hýbl, Cestmír, 144, 146

Hyperlink widgets, 43

HyperText Markup Language. See HTML
(HyperText Markup Language)

I
i18n. See Internationalization (i18n)

IE. See Internet Explorer (IE)

ImageBundle interface, 273–274

ImageResource elements, 274–275

IncrementalCommand function, 271

<inherits> element, 25

initialize methods, 81

initializeWithString(...) method, 40

instance objects, 140

instance.@classname::field, 141

Integration testing, with GWTTestCase

overview, 247

testing login view, 247–251
testing servlets, 252–253

Interactive maps, 168–173

Internationalization (i18n)

annotations tricks, 215
bundling data and, 274
messages and, 217–219
overview, 211–212
resource bundles and, 212–213
summary, 227
translating error codes, 215–217
UiBinder, 219–223
using constants, 213–214

Internet Explorer (IE)

recognizing old versions of, 52–53
SOP restriction and, 120–121

IsSerializable interface, 86–88

J
jar file, 290

Java

advantages of, 10
JavaScript interaction with, 139–141
server-side code, 88–94
UiBinder and, 72–73

Java Cryptography Architecture (JCA), 180

Java-to-JavaScript compiler, 12–14

Java Virtual Machine parameters, 140–141

java.io package, 14

java.lang package, 14–15

JavaScript

debuggers, 285–286
deficiencies of, 5
disabled, 53
Java interaction with, 139–141
stateless server-side coding and, 183–184

310 Hashing

JavaScript library

dashboard visualizations and, 164
loading, 160, 161

JavaScript, mixing in

JSNI and. See JavaScript Native
Interface (JSNI)

JSON. See JavaScript Object
Notation (JSON)

JSONP, 153–155
overview, 139
summary, 155

JavaScript Native Interface (JSNI)

basic usage of, 140–141
browser detection and, 44
getting feed with, 162
hashing with, 142–143
overview, 139–140
Steampunk display widgets and,

143–146
JavaScript Object Notation (JSON)

feed data, 161
news reader completion using,

148–153
news reader view using, 147–148
overview, 146–147
weather information and, 158–159

JavaScript Object Notation with Padding
(JSONP), 153–155

JavaScriptException objects, 141

JavaScriptObject function, 170

java.sql package, 15

java.util package, 15–16

JCA (Java Cryptography Architecture), 180

Jetty web server, 79

Johnston, Paul, 142

jQuery JavaScript Library, 5, 11, 143

JRE Emulation Library

java.io package, 14

java.lang package, 14–15
java.sql package, 15
java.util package, 15–16

JSLint, 282

JSMin, 282

JSNI. See JavaScript Native Interface (JSNI)

JSON. See JavaScript Object Notation (JSON)

JSONP (JavaScript Object Notation with
Padding), 153–155

JSONParser methods, 151

JsonpRequestBuilder class, 154–155

JsonUtils.escapeValue(...) method,
147

JsonUtils.unsafeEval(...) method,
151

JUnit testing

basic example of, 231–236
EasyMock and, 240–247
with mock objects, 239–240
MVP code testing, 238–239
overview, 19, 231
test coverage with Emma, 236–238

K
@Key(...) annotation

key attribute and, 220
resource bundles and, 215

key attribute, 219–223

Keys

annotations tricks and, 215
resource bundles and, 212–213
translating error codes and, 216

KeyValueMap class

EclEmma coverage test with,
236–238

JUnit testing of, 231–236
module for, 290–291

311KeyValueMap class

L
l10n. See Localization (l10n)

Launcher, improved, 37–38

Layouts, complex, 75

Lazy evaluation, 100–101

Least recently used (LRU) logic, 262

Libraries

Closure, 5
Flash, 164
JavaScript, 160, 161, 164
jQuery, 5, 11, 143
JRE Emulation, 14–16

Lincoln, Abraham, 144–145, 148, 225,
233–234

LinkedHashMap(...) method, 93–94

Linux

client-only GWT deployment and,
297

SOP restriction and, 121
ListBox widgets, 93, 94–99

Live suggestions, 108–112

Loading.texts

bundling data and, 277
thread simulation and, 268–269

Localization (l10n)

overview, 211
process of, 223–227
summary, 227

-localWorkers, compilation option, 288,
289

Logging in, security and, 185–190

Login button, 67–69

Login procedure, 34–35

Login service, 242–247

Login view, 247–251

LoginFormPresenter class, 60, 62, 64,
66

LoginFormView class

MVP implementation and, 60, 64–66
UiBinder and, 70, 72, 74

LoginFormView.ui.xml files, 70, 72

loginServiceMock(...) function,
243–244, 246

LoginView class, 60–61, 63

-logLevel, compilation option, 288

long variables, 13

<longitude> method, 134–135

LRU (least recently used) logic, 262

M
Magic naming, 78

Management Information Systems (MIS)
applications, 162

Maps

fixed, 173–175
interactive, 168–173
overview, 168

MD5 (Message-Digest algorithm 5), 142–143,
180

Measurement tools, speed

JavaScript debuggers, 285–286
overview, 277–278
Page Speed, 283–285
Speed Tracer, 278–280
YSlow, 280–282

Memory leaks, 139

Menus, 41–43

Message-Digest algorithm 5 (MD5)

hashing and, 180
hashing with JavaScript and, 142–143
logging in and, 186–190

Messages, dynamic, 217

method, 140

Method parameters, 140–141

312 l10n

Microsoft Bing Maps, 168

MIS (Management Information Systems)
applications, 162

Mock objects testing, 239–240, 242–243,
245–246

Model

caching and, 260–261
MVP implementation and, 61
role in MVC, 56–57
role in MVP, 57–58
RPC usage and, 100–101

Model-View-Controller (MVC) design pattern,
56–57

Model-View-Presenter (MVP)

code testing, 238–239
Composite widgets and, 95
database-related widgets and, 94–100
design pattern overview, 57–58

Model-View-Presenter (MVP) implementation

callbacks and, 59–60
details, 60–66
overview, 59

modelMock call, 243–244, 246

-module, compilation option, 288

Modules

application deployment and, 289–291
project structure and, 24–25

Montevideo, 157-159

mouseOver events, 167

moveMarker(...) method, 172–173

Moving files

downloading, 204–208
overview, 195
summary, 209
uploading. See Uploading files

Multithreading, 14

MultiWordSuggestOracle widgets,
108–112

MVC (Model-View-Controller) design pattern,
56–57

MVP. See Model-View-Presenter (MVP)

MyMessages interface, 217–219

N
nameBlurCallback attribute, 68

Net tab, 285–286

Network mode, 278–279

new(...) syntax, 151

newCityList function, 131–132

NewsFeed object

JSON and, 151–152
JSONP and, 155

NewsReaderDisplay interface, 149–150

NewsReaderPresenter function,
148–150

NewsReaderView files, 147–149

Nixie display widgets, 143–144

NixieDisplay class, 144–146

Non-repudiation, 178

Nonce

changing passwords and, 192–193
encryption and, 183
logging in and, 185–190

<none>...</none> construct, 45

<noscript> tag, 53

-noserver parameter, 120

NoSuchAlgorithmException(...)
function, 180

NumberFormat function, 226

O
onAttach(...) method, 171

onFailure(...) method

callbacks and, 59
code splitting and, 291–293

313onFailure(...) method

onModuleLoad(...) method, 290

onSuccess(...) method

bundling data and, 277
callbacks and, 59
code splitting and, 291–293
interactive maps and, 175

onVisualizationLoadCallback(...)
method, 164

OOPHM (Out Of Process Hosted Mode), 27

Open Laszlo, 9

openSUSE, 297

Opera, DragonFly debugger, 285–286

Optimizations, code, 12–13

Optimizing, for application speed

design patterns for. See Design patterns,
for speed

measurement tools for. See Speed
measurement tools

overview, 259
summary, 286

Options class, 165–166

OPTIONS request, 135

Out Of Process Hosted Mode (OOPHM), 27

OutputStream request, 207

outputStyle, compilation and, 288

Overlays

getting at feed data with, 161
JSON usage and, 151–152

P
Page Speed, 283–285

PanelPopup object, 37–38

Pando, 113

Panels

bundling data and, 275
displaying forms in pop-up, 37–38
UI library and, 17

panToLatLon(...) method, 172–173

Parameters, 38–41

parse(...) method, 227

parseStrict(...) method, 226

passwordBlurCallback attribute, 68

Passwords

changing, security and, 190–193
logging in and, 185–190

Pattern codes, 225–227

Performance tab, 283–284

Permutation report, 295

Perpetual beta, 7–8

PieChart objects

dashboard visualizations and, 167–168
Google Visualization API and, 164

PieChart.Options specifications,
165–166

Placeholders, 222

@PluralCount annotation, 218

Pop-up panels, 37–38

Port(s)

changes, SOP restriction and, 119–121
processing XML using Ajax and, 128

POST methods

file producing servlet and, 208
processing XML using Ajax and,

127–128, 130
SOP restriction and, 121

postToUrl(...) method, 129

Prefetching, 263–266

Presenter

changing passwords and, 191–193
city update application and, 123
Country/State cities browser and, 102,

105, 107–108
data prevalidation and, 114–115
database-related widgets and, 97–98

314 onModuleLoad(...) method

EasyMock testing and, 240–247
enabling/disabling Login button and,

67–69
file download form and, 206
interactive maps and, 169
live suggestions and, 108, 110–111
MVP implementation and, 60–66
receiving/processing XML and, 126
role in MVP, 57–58
thread simulation and, 267, 269
uploading files and, 199–200

PresenterDisplay interface, 62–63

Pretty code, 153

Prevalidation, data, 112–116

Primitive types, 79

Printable View, 282

Processing XML. See Receiving/processing
XML

processWeather(...) method, 162

Progressive enhancement, 10–11

Project creation

with Google Plugin for Eclipse, 21–22
with GWT shell script, 22–23
overview, 21

Project structure, 23–27

Projects and development, understanding

Development mode, running applica-
tion, 27–30

overview, 21
project creation, 21–23
project structure, 23–27
summary, 30

.properties files, 212–213, 215

Properties, presetting widget, 73

Protocol changes, SOP restriction and,
119–120

Prototype JavaScript Framework, 5, 11

Proxy

getting weather feed with, 159
RemoteServlet as, 129–131
sending XML via, 136–137

pStart+pCount position, 264–265

<public> element, 25–26

public static void deserialize
(...), 81

public static void serialize
(...), 81

Pyjamas project, 2, 9

Q–R
RC4 encryption, 180–183

readString(...) method, 82

Receiving/processing XML

overview, 125–127
through proxy, 129–131
using Ajax, 127–128

Remote Procedure Calls (RPC), introduction

Direct Evaluation RPC, 83–84
implementation, 78–79
overview, 77
serialization, 79–83

Remote Procedure Calls (RPC), usage

code sharing, 86–88
coding server side services, 88–94
Country/State cities browser, 101–108
data prevalidation, 112–116
database-related widgets, MVP and,

94–100
deployment and, 300
Enterprise Java Beans, 116–118
GWTTestCase testing and, 252–253
live suggestions, 108–112
looking at Model class, 100–101
overview, 84

315Remote Procedure Calls (RPC), usage

Remote Procedure Calls (RPC), usage
(continued)

summary, 118
world cities service, 84–85

@RemoteServiceRelativePath(...)
annotation, 78

RemoteServlet function

Enterprise Java Beans and, 116–118
as proxy, 129–131
RPC implementation and, 79

removeWhitespace(...) method, 126

rename-to attribute, 25

replay(...) method, 246

Report link, 295–296

Representational State Transfer (REST) API,
173–175

RequestBuilder class, 203–204

requestSuggestions(...) method,
110–112

Resource bundles

annotations and, 215
internationalization and, 212–213
localization and, 224–227
UiBinder-based internationalization

and, 219–223
using constants and, 213–214

ResourceCallback<TextResource>
object, 277

Resources tab, 284–285

ResultSet object, 147

RIAs. See Rich Internet Applications (RIAs)

Rich Internet Applications (RIAs)

Cloud Computing, 3
desktop death, 4
overview, 1–2
Web 2.0, 2–3

RPC. See Remote Procedure Calls (RPC),
introduction; Remote Procedure Calls
(RPC), usage

RpcResponse objects, 81

RSS weather feeds, 157–159

run(...) method, 267–270

RunAsyncCallback(...) interface,
291–293

Running applications

Development mode for, 27–30
getting started, 19–20

Ryan, Ray, 32

S
SAAS (Software as a Service), 3

Safari debugger, 285

Same Origin Policy (SOP) restriction

JSONP and, 153–155
server communication and, 119–121

Sampler application, ClientBundle, 276

SayAge(...)string, 218

schedule(...) method, 266–269

<script> element

hashing with JavaScript and, 142
project structure and, 26

Scrum, 229

Searching

live suggestions and, 108–112
with simple news reader, 147–149
weather vane, 157–159
Yahoo's services for, 146–147

Secure Sockets Layer (SSL) communica-
tions, 178

Security

GWT 2 and, 11
hashing for, 142–143
SOP restriction for, 119–121

Security, servers and

AAA for, 178
Ajax problems, 179

316 Remote Procedure Calls (RPC), usage

common operations and. See
Common operations, security

cryptography, 179–183
full SSL security and, 177–178
overview, 177
stateless vs. stateful coding, 183–184
summary, 193

select events, 167

Selenium, acceptance testing and

example of, 255–256
overview, 253–255
potential problems, 257

Sending XML

overview, 131–132, 135–136
through Ajax, 136
through proxy, 136–137

Serialization, RPC, 79–83

serialize(...) method, 82

Server, communication with

introduction to RPC. See Remote
Procedure Calls (RPC), introduction

RPC patterns of usage. See Remote
Procedure Calls (RPC), usage

Server side services, 88–94

ServerCityData classes, 86–88, 90

Servers, communication with other

city update application, 121–125
overview, 119
producing XML, 131–135
receiving/processing XML, 125–131
sending XML, 135–137
SOP restriction and, 119–121
summary, 137

Servers, working with

challenges in, 177–183
common operations and. See

Common operations, security

cryptography, 179–183
overview, 177
stateless vs. stateful coding, 183–184
summary, 193

Service-Oriented Architectures (SOA), 3

<servlet> element

client-plus-server GWT 2 and,
299–300

file processing and, 200
RPC implementation and, 78

Servlet mapping, 78

<servlet-mapping> element, 78

Servlet(s)

calling remote, 79
deployment and, 297–300
file download form, 204–207
file processing, 200–202
file producing, 207–208
GWTTestCase testing, 252–253

Session keys

changing passwords and, 192–193
logging in and, 185–190

setAttribute(...) method, 134–135

set.Callback(...) method, 123

setCitiesOracle(...) method, 109,
111

setCityData(...) method

city update application and, 123
Country/State cities browser and, 102,

104, 106–107
receiving/processing XML and, 127

setCoordinates(...) method,
171–173

setCountryList(...) function, 97–98

setNameBlurCallback(...) method,
244–245

setStateList(...) function, 97–98

317setStateList(...) function

setText(...) method, 145–146

Setting up GWT

overview, 17
running and deploying, 19–20
version control management/testing,

19, 20
writing code, 17–18

setUp(...) methods, 233

setYGeoPoint(...) method, 172–173

Shell script, webAppCreator, 22–23

show(...) method, 37–38

signature parameters, 140

Simple city browser application, 101

Selenium testing and, 255
thread simulation and, 266–270

Simple city input form, 112–113

Simple news reader, 147–148

Sluggishness report, 278–279

Smush.it, 282

SOA (Service-Oriented Architectures), 3

Software as a Service (SAAS), 3

Software methodologies

Agile Software Methodologies, 7
classic development problems, 5–7
perpetual beta, 7–8

somefile.txt text file, 208

someModules, compilation and, 288

someMore variable, 268

someNumber, compilation and, 288, 289

SOP. See Same Origin Policy (SOP) restric-
tion

Soriano, 124, 252, 255

@Source(...) annotation, 274–275

<source> element, 23, 25–26

-soyc parameter, 221

Speed, design patterns for. See Design pat-
terns, for speed

Speed measurement tools

JavaScript debuggers, 285–286
overview, 277–278
Page Speed, 283–285
Speed Tracer, 278–280
YSlow, 280–282

Speed Tracer, 278–280

src directory

JUnit test directory and, 231
modules directory and, 290
project structure and, 23, 24

SSL (Secure Sockets Layer) communica-
tions, 178

Starting, GWT application, 34–37

Stateless server coding vs. stateful, 183–184

Statement Coverage, 236

statesCache function, 261

static object

bundling data and, 274
caching and, 260–262

Statistics tabs, 282

Steampunk display widgets, 143–145

Stooges. See Three Stooges, The

stop(...) method, 143

Streams, reading/writing to, 82

strictfp keyword, 13

String Interning, 13

Strings

creating XML with, 132–133
DOM structure and, 133–135
dynamic messages and, 217–219
localization and, 224–227
resource bundles as, 212–215
sending XML, 135–136
serialization of, 80
weather feed, 159

Stubs, 240

318 setText(...) method

-style, compilation option, 288

<stylesheet> element, 26

Submit event code, 203–204

Subversion, for version control management, 19

SuggestBox widgets, 108–109, 112

SuggestionItem class, 110–111

Super-validationProblems(...)
function, 86–88

SupportsCDATASection(...) method,
126

T
TDD (Test-driven development), 229

tearDown(...) methods, 233

Templates

creating several, 75
creating UiBinder, 70–72

test directory, 23

Test-driven development (TDD), 229

@Test methods, 233–236

Testing

applications. See Application testing
getting started, 19, 20
test/gwttest directories for, 23

TextBox function, 147–149, 171

TextResource elements, 274–277

Thread simulation

deferred command-based solution,
270–273

overview, 266
Timer-based solution, 266–270

Three Stooges, The, 237–238

Time formats, 224–226

TimedCitiesDisplay class, 269–270

Timer function

live suggestions and, 112
thread simulation and, 266–270

Tokens, 33, 34–37

Tools tab, 282

toString(...) methods, 133, 135, 234

totalResultsAvailable attribute, 147

transient attributes, 80

Translating error codes, 215–217

-treeLogger, compilation option, 288

U
<u:attribute> element, 221

u:field attribute, 70, 72–73

UI. See User Interface (UI), programming

UI library, 17

UI patterns

MVC classic pattern, 56–57
MVP pattern, 57–58
overview, 55–56

UiBinder

changing password and, 190
Country/State cities browser and,

102–104
data prevalidation and, 113–114
dealing with constructors, 74–75
internationalization, 219–223
Java defined in, 72–73
overview, 69
presetting widget properties, 73
template defined in, 70–72
using your own widgets, 73–74
working with complex layouts, 75

@UiField annotation

JSON and, 149
UiBinder and, 71–73
uploading files and, 198
widgets and, 74, 97, 103

@UiHandler annotation

Country/State cities browser and,
104–105

data prevalidation and, 114

319@UiHandler annotation

@UiTemplate annotation

JSON and, 149
UiBinder and, 71–72, 75
uploading files and, 198
widgets and, 96, 103

ui.xml files

internationalization and, 219–223
UiBinder and, 70, 72

<u:msg> element, 220–222

Unicode Transformation Format (UTF-8), 213

Unified Modeling Language (UML), 61

Uniform Resource Locator (URL)

fixed maps and, 173–175
JSONP and, 155
news search service and, 150–153
receiving/processing XML and,

127–130
sending XML via Ajax and, 136–137
for weather search, 158

Upload form, 195–200

Uploading files

file processing servlet, 200–202
overview, 195
providing feedback, 202–204
upload form, 195–200

URL.encode(...) method, 136–137

User Interface (UI), programming

declarative UI, 69–75
extensions, 67–69
MVP implementation. See Model-

View-Presenter (MVP) implementa-
tion

overview, 55
summary, 76
UI patterns, 55–58

UTF-8 (Unicode Transformation Format), 213

Utility methods, 15

<u:Uibinder> element

city browser and, 102
defining templates and, 69, 71, 73
internationalization and, 220
JSON and, 148
widgets and, 96

V
-validateOnly, compilation option, 288

Validation, 86–88

ValueChangeHandler method

data prevalidation and, 114
database-related widgets and, 95

Version control management, 19

VerticalPanel function, 170

View

changing password and, 190–191
Country/State cities browser and,

102–104, 106–108
data prevalidation and, 114
database-related widgets and, 98, 100
EasyMock testing and, 242–246
FileUpload, 195–198
GWTTestCase and, 247–251
interactive maps and, 170
live suggestions and, 108–109
MVP implementation and, 60–61
role in MVC, 56–57
role in MVP, 57–58
simple news reader, 147–148

Visualization options, 165, 168

Visualizations, dashboard

Google Visualization API, 164–167
handling events, 167–168
overview, 162–164

VisualizationUtils package, 164

320 @UiTemplate annotation

W
W3C "Access Control Specification," 121

waitFor. commands, 257

-war, compilation option, 289

war directory, 297

war folder, 24

wasCalled variable, 242–246

Waterfall Model, for development process,
5–7

The Weather Channel, 158–159

Weather vane

getting at feed data with overlays, 161
getting everything together, 160–161
getting feed, 159–160
getting feed with JSNI, 162
getting weather data, 157–159
overview, 157

WeatherFeed data, 161

Web 2.0, 2–3

"Web as Platform" concept, 2

webAppCreator shell script, 22–23

webAppGenerator, 53

web.xml file, 298

Where On Earth ID (WOEID) code, 158

Widgets

Composite, 95, 101–108, 171
FileUpload, 196–198
HTML, 46–47
Hyperlink, 43
interactive maps and, 170–171
ListBox, 93, 94–99
MultiWordSuggestOracle, 111
MVP and database-related, 94–100
presetting properties of, 73
Steampunk display, 143–144
SuggestBox, 108–109, 112

UI library and, 17
using your own, 73–74
weather vane, 157–162

Window.alert(...) message, 13, 239

$wnd

getting feed data and, 162
hashing with JavaScript and, 142–143
interactive maps and, 172–173

-workDir, compilation option, 289

World cities service, 84–85

WorldService remote service, 84–85

WorldService remote servlet, 78

WorldService.java interface, 88–89

writeString(...) method, 82

X
-XdisableAggressiveOptimization,

compilation option, 289

-XdisableCastChecking, compilation
option, 289

-XdisableClassMetadata, compilation
option, 289

-XdisableRunAsync, compilation option,
289

XhrProxy servlet, 129–131, 175

XML. See Extensible Markup Language (XML)

XMLHttpRequest method, 136

XMLParser.parse(...) method,
125–127

XP (Extreme Programming), 229

Y–Z
Yahoo!

Maps, 168–175
news search using, 146–147
Weather RSS Feed, 157–159
Yahoo Pipes, 159

321Yahoo!

yahooMap attribute, 172

YGeoPoint object, 172–173

YMap function, 172

yourownfunction(...) method, 154

YSlow, 280–282

YUI Library, 5

322 yahooMap attribute

	Contents
	Preface
	1 Developing Your Application
	Rich Internet Applications
	Web 2.0
	Cloud Computing
	The "Death of the Desktop"

	Advantages of GWT
	HTML Ubiquity and Browser Differences
	JavaScript Deficiencies

	Software Methodologies to Apply
	Classic Development Problems
	Agile Methodologies
	Forever Beta?

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X
	Y-Z

