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Preface

Developing modern, interactive, complex web sites has become a harder task since
users’ expectations are higher today. The bar has been raised by the current crop of appli-
cations such as Gmail or Google Maps, and developers are expected to work up to that
level and provide similarly powerful new web sites. The style, speed, and interaction levels
of modern sites practically rival those of classical desktop installed applications, and of
course users don’t want to go back. How do you develop such sites?

It can be said that the usage of Ajax was what started the trend toward such distinc-
tive applications, but even given that technique, the rest of the development of web
pages was the same, tools were the same, testing methods were the same, and the whole
result was that the programmers’ jobs had gotten much harder than needed.

(Personally, I should confess that I really never liked classic-style web development:
Building large-sized applications was harder than it needed to be, JavaScript was—and
still is—missing constructs geared to complex systems, the click-wait-click-wait again
cycle was inevitably slow and not very interactive, and, to top it all, unless you were
quite careful with your testing, your design was prone to fail on this or that browser in
unexpected ways.)

GWT, in just a very few years, has grown into a powerful tool by harnessing the
power of Java and its considerable programming environment and many development
tools, and producing efficient and consistent output, despite the too-many and well-
known incompatibilities between browsers. 

Getting started with GWT isn’t that hard—documentation is reasonably good, the
development environment can be Eclipse or several other equally powerful IDEs, and
programming is quite similar to old-fashioned Java Swing coding—so you can have your
first short application up and running in a short time.

Creating production-quality, secure, internationally compliant, high-level code can be,
however, a bit more complex. You need to take many factors into account, from the ini-
tial setup of your project and development of the user interface, to the final compile and
deployment of your application. 

Similarly, we’ll also have to focus on methodologies and on software design patterns,
so we can go forth in a safer, more organized way toward the complete application. For
example, we’ll consider how the model-view-presenter (MVP) pattern can not only
enhance the design of the application, but also help run fully automatic tests, in modern
Agile programming style, to attain higher quality, better tested software.

We’ll be working with the latest tools and versions; not only GWT’s (2.0.3 just now),
but also Eclipse, Subversion, Tomcat, Apache, MySQL, and so on. Because all these tools



are open source, we can support the notion that an appropriate software stack can be
built starting with GWT and ending with a full open web solution.

After my earlier confession on my dislike of classic web development strategies, I
should now aver that GWT did change that for me. Working in a high-level setting, with
plenty of tools, and practically forgetting about browser quirks, HTML, CSS, and
JavaScript, while gaining in clarity, maintainability, and performance, has made web appli-
cation creation an enjoyable task again!

The Structure of This Book
Chapters 1 through 3 deal with the basic setup for working with GWT. After consider-
ing the main reasons and objectives for using GWT, we’ll study what other tools are
required for serious code development, the methodology to use, and the internal aspects
of projects.

Chapters 4 and 5 are the backbone for the book, for they deal with the basic design
patterns that we use for building the User Interface. The code style and idioms devel-
oped here will be used throughout the rest of the book.

Chapters 6 and 7 deal with communications with servers, either through RPC (to
connect with servlets) or through direct Ajax (to communicate with remote services). 

Chapters 8 and 9 study how to add both JavaScript coding and third-party APIs to
your application. Together with the previous two chapters, everything that’s needed for
mashing up services and getting information from different sources will have been covered.

Chapters 10 and 11 have to do with common server related problems, such as security
aspects, and file upload and download.

Chapter 12 deals with developing GWT applications that will be used worldwide and
covers both internationalization and localization.

Finally, Chapters 13 through 15 consider general themes such as testing GWT appli-
cations, optimizing their performance, and finally deploying them.

Who Should Read This Book
This book goes beyond “just learn GWT,” and is targeted to programmers who already
have a basis of GWT programming and want to encompass other web applications, serv-
ices, APIs, and standards as well, to produce Web 2.0-compliant Rich Internet
Applications (RIAs). A previous experience with web development, possibly in a J2EE
environment, will come in handy.

Having read this book through, the reader should not only be able to develop a RIA
on his own by just using GWT, but he will also have a reference book to help solve the
common problems that arise in such applications. Complete source code is given for all
examples, so getting started is quicker.
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Web Resources for This Book
The Google Web Toolkit site at http://code.google.com/webtoolkit/ is a mandatory ref-
erence, and so is the forum at http://groups.google.com/group/google-web-toolkit.

The code examples for this book are available on the book’s web site at 
www.informit.com/title/9780321705143.

xviiPreface
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1
Developing Your Application

Why would you use GWT? What can you develop with it and how? Before delving
into specifics (as we’ll be doing in the rest of the book) let’s consider the answers to
these questions, so you’ll know what to focus on.

Developing applications with GWT can be seen as a straightforward job, but you should
ask some interesting questions to unlock the way to powerful, distinct, applications. What
kind of applications should you develop with GWT? (And, given the current push for
Cloud Computing, you can even add “Where would you deploy your application?”)
How can you go about it? And, why would you use GWT? 

Let’s consider all these questions in sequence to start you on your way through this
book, knowing your goal and the road to it.

Rich Internet Applications
When you start reading about Rich Internet Applications (RIAs), your JAB (Jargon,
Acronyms, and Buzzwords) warning should go off because there are many words that are
bandied about, without necessarily a good, solid definition or a clear delimitation of
their meanings.

Basically, what we build are web applications that have the look and feel of classic
desktop applications but that are delivered (and “installed”) over the web. Many tools
have been used for this purpose, such as Java (through applets), Adobe Flash, and more
recently, Microsoft Silverlight, but used in this way, all these tools are beaten, in terms of
practicality, by simple HTML-based systems. 

The RIAs that we will be developing are based on JavaScript and Ajax and just
require an appropriate browser to run. Classic web applications were developed with a
different set of tools, subjected the user to frequent waits (the hourglass cursor was often
seen), and had severe restrictions as to usability, with a much clunkier feel to them than
desktop installed programs.

Although some people distinguish between RIAs and the kind of interactive web
applications we build, the frontiers are getting blurrier and blurrier. You could argue that
Flash or Silverlight require preinstalled plugins, or that development runs along different



lines, but in terms of the final result (which is what the user experiences) differences are
not so marked, and well-designed HTML/JavaScript/Ajax applications can compete for
equality with applications developed with the other tools. (Also, some people opine that
HTML 5 can seriously challenge Flash, up to the point of making it obsolete, but that’s
still to come.1) There used to be obvious differences—the ability to store local data at
the user’s machine was the biggest one—but tools such as Google Gears or current
developments in HTML 5 have provided this feature to web applications.2

Given its ubiquity (from desktops to netbooks, and from cell phones to tablet PCs)
the browser can be considered a universal tool, and Ajax provides the best way for the
creation of highly interactive applications. Of course, a few years ago there weren’t many
tools for doing this (GWT itself appeared in 2006) and creating heavy-lifting interactive
code with just JavaScript wasn’t (and still isn’t) an appealing idea.3

Furthermore, given that users have been subjected for many years to web applica-
tions, and are familiar with their idioms, you are a bit ahead in terms of user interface
design by keeping to a reasonable standard. 

As for the language itself, using Java as a tool—even if it gets compiled into
JavaScript, as GWT does—provides both a way around JavaScript’s deficiencies and
introduces a widely used language with plenty of development tools, which has been
used over and over for all kinds of applications and has been proved to scale to large-
sized applications.4

Web 2.0
Web 2.0 is another expression that has been bandied about a lot since its invention in
2004. Though there are way too many definitions for it, most seem to agree on the idea
of using the “Web as Platform,” where all applications run in a browser instead of being
preinstalled on your desktop. Furthermore, the idea of allowing users to produce their
own contents (à la Wikipedia) is also included, highlighting the collaborative aspect of
work, and thus bringing into the fold all kind of community and social networking sites
(think Facebook or YouTube). Finally (and that’s what actually works for us) the concept
of mashing together different data sources (probably from many web services) is also
included.
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1. See www.ibm.com/developerworks/web/library/wa-html5webapp/ for an article of some HTML 5

features already available in current browsers.

2. Google Gears’ development was practically stopped (other than support for currently available

versions) by the end of 2009 because of the upcoming HTML 5 features for local storage.

3. It might be said that developing large applications with, say, Flash, isn’t a walk in the park either,

for different reasons to be sure, but complicating the programmer’s job in any case.

4. It should be remarked that GWT isn’t the only such compile-to-JavaScript solution; for example,

the Python-based Pyjamas project (http://code.google.com/p/pyjamas/) provides Python-to-

JavaScript translation, and there are many more similar tools.

http://code.google.com/p/pyjamas/
www.ibm.com/developerworks/web/library/wa-html5webapp/


GWT applications can obviously be used for producing highly interactive people
sites, but they can also link together information from different origins, consuming web
services with no difficulty, either connecting directly to the server or by means of proxy-
based solutions. Various data formats are also not a problem; if you cannot work with
such standards as XML or JSON, you can include external libraries (or roll out your
own) through JSNI or Java programming. (We cover this in Chapter 8, “Mixing in
JavaScript,” and Chapter 9, “Adding APIs.”)

In this context, the phrase Service-Oriented Architectures (SOA) frequently pops up.
Instead of developing tightly integrated, almost monolithic, applications, SOA proposes
basing your systems on a loosely integrated group of services. These services are general
in purpose and can be used in the context of different applications—and, as previously
mentioned, GWT is perfectly suited to “consuming” such services, dealing with different
protocols and standards. (We’ll cover this in Chapter 6, “Communicating with Your
Server,” and Chapter 7, “Communicating with Other Servers.”) If your company is cen-
tered on an SOA strategy, your GWT-developed applications will fit perfectly well.

Cloud Computing
Next to the idea of using the browser as the basis for the user’s experience, the most
current term related to modern application development is Cloud Computing. This idea
reflects the concept of sharing resources over the web, on demand, instead of each user
having a private, limited pool of resources. In this view, software is considered a “service”
(the acronym SAAS, which stands for “Software as a Service,” is often used) and a
resource similar to more “tangible” ones as hardware.

(As an aside, the vulnerability of some operating systems, most notably Windows, to
viruses, worms, and similar attacks, has given a push to the idea of using a simple, secure,
machine and storing everything “on the web,” letting the cloud administrators deal with
hackers and program infections.)

For many, this concept is yet another cycle going from centralized resources (think
mainframes) to distributed processing (PCs, possibly in client/server configurations) and
now to having the web as your provider. The main requirements for such an architecture
involve reliable services and software, delivered through specific data centers, and running
on unspecified servers; for the user, the web provides an access to a cloud of resources.

For GWT applications, your applications are basically destined from the ground up to
be used “in the cloud” because of the standard restrictions imposed by browsers.
Distributing an application over the web, accessing it from anywhere, and having your
data stored in a basically unknown place are all characteristics of any applications you
might write.5
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5. With current (or forthcoming) standards, you might also resort to storing data locally, or to using

your own private, dedicated, resources, but that’s not original and more often associated with clas-

sic desktop applications.



The “Death of the Desktop”
The trend toward Cloud Computing has even spawned a new concept: the “Death of
the Desktop.” This presents rather starkly the problem of going overboard, to the limit:
From the appearance of mini netbooks (with flash-based disks, slow processors, not much
RAM) and iPhone-look-alike cell phones, some have reached the conclusion that desk-
top applications (and even desktop computers!) are on their way out. If this were true, it
could be great for GWT developers, but things are a bit different.

Despite several impressive opinions and pronouncements from people all over the
industry, the trend toward more powerful machines, with CPUs, memory, and I/O facili-
ties that put to shame the supercomputers of just a few years ago, doesn’t seem to be
slowing down. Even if you are enamored with the latest netbooks or high-powered cell-
phones, you should accept that working all the time with minimal screens isn’t the way
that things can get done at a company. (And for gaming or graphic-intense usages, small
machines aren’t so hot either; they may do, however, for business-oriented applications.)
In any case, GWT can help you because you can use its layout facilities and CSS styling
to produce applications for just about any device out there.

Also, remove the rosy glasses for an instant. Cloud computing offers several advantages
(and GWT applications can be considered to be right in the middle of that concept) but
also presents problems, so you need to plan accordingly. Aside from the obvious difficulty
of dealing with possibly flaky web connections, security and compatibility can be stum-
bling blocks. (On the other hand, scalability is well handled; there are plenty of large sites,
with hundreds or thousands of servers, proving that web applications can scale well.) The
important point is, with or without desktops, GWT provides some ways around these
kind of problems, and we’ll study this in upcoming chapters.6

Advantages of GWT
Why would you develop with GWT? Shouldn’t directly using JavaScript make more
sense? How do you manage with browser quirks? Let’s consider the reasons for GWT.

HTML Ubiquity and Browser Differences
The first reason for GWT applications is the ubiquity of HTML. Even if some time ago
browsers for, say, cell phones, weren’t as capable as their desktop brethren, nowadays you
can basically find the exact same capabilities in both. In terms of GWT, this is a boon
because it means that a well-designed application can run and look pretty in devices
from 3 inches to 25 inches.7
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6. And, of course, these inconveniences haven’t stopped anyone from developing HTML-based 

applications!

7. Don’t expect to get the screen design right the first time; managing to build clear, small screen

browser applications is more an art than a science.



This availability is somehow tempered because today’s browsers are not created
equal—but you certainly knew that if you designed web pages on your own! When
Microsoft’s Internet Explorer ruled the roost, having practically 100% of the browser
market, this wasn’t a noticeable problem. However, today browser usage statistics point to
a different status quo: Mozilla Firefox and Safari, among others, have started carving larger
and larger niches in the market, and in some countries (mostly European) they have out-
numbered Internet Explorer. The current trend is toward applying web standards, and
that bodes well for web developers. In any case, GWT is quite adept at solving browser
quirks and differences, so the point may be considered moot for the time being.

JavaScript Deficiencies
Even assuming fully standard-compliant browsers, the fact remains that JavaScript, no
matter how powerful, isn’t a good language from the specific point of view of software
engineering. Because this isn’t a book on JavaScript, we won’t delve in its main prob-
lems, but using it for large-sized application development can be, to say the least, a bit
complicated.

This language isn’t well adapted either to development by large groups of people, and
the tools it provides for system development aren’t that adequate, so the programmer
must add extra code to bridge the distance between a modern object-oriented design
and its actual implementation.

One solution that has been applied is the usage of different libraries that provide a
higher-level way of using the language.8 GWT solves this problem in a radically different
way, by enabling the use of the higher level Java language, for which there are plenty of
modern development, testing, and documentation tools.

Software Methodologies to Apply
For classic application development, many well-known methodologies exist, but in the
context of modern web development, you should definitely use some techniques.

Classic Development Problems
If you learned to develop systems years ago, you were surely exposed to the Waterfall
Model or some other methodologies directly based on it. In this model for the develop-
ment process, progress is seen as flowing like a waterfall from stage to stage, through
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8. You could consider Google’s “Closure” library (see http://code.google.com/closure/) used for

Gmail’s development, or Yahoo!’s YUI library (see http://developer.yahoo.com/yui/), jQuery

(http://jquery.com/), Dojo (www.dojotoolkit.org/), Prototype (www.prototypejs.org/), MooTools

(http://mootools.net/), and many others. The functionality of these libraries isn’t always the same,

but there’s considerable overlap between them, showing the problems they set out to solve are real

and well known.

http://code.google.com/closure/
http://developer.yahoo.com/yui/
http://jquery.com/
http://mootools.net/
www.dojotoolkit.org/
www.prototypejs.org/


well-defined phases (see Figure 1.1) starting with the Analysis of Requirements, follow-
ing with the Design of the Solution and its Implementation, then to Testing (or Quality
Assurance), and finally to Installation and future Maintenance.

6 Chapter 1 Developing Your Application

Figure 1.1 The classic Waterfall Model isn’t the best possible 
for GWT development.

This model is flawed in several ways (and of course, there are some fixes for that) but
its main problem is its orientation to highly regimented industries such as Construction,
in which late changes can be quite costly to implement, usually requiring tearing down
what was done and practically starting anew. 

Another point—and an important one—is that you cannot expect users to be fully
aware of what they require; it is sometimes said “Users don’t know what they want, but
they know what they don’t want.”9 Classical methodologies do not take this into consid-
eration, and might thus incur important costs, because newly discovered or determined
requirements can invalidate a previous design.

Finally, it’s difficult to predict where difficulties will occur; problems with functionality
are usually found “on the go,” and if going back to change something to help future
development is too costly, you can face a dilemma: Spend money and time revising your

Analysis

Design

Programming

Testing

Installation

Maintenance

9. “I’ll know it when I see it” is another way of expressing this.



design, or keep your substandard design, and spend money and time later trying to make
your software do tasks it wasn’t well designed to do.

It has been said that the Waterfall Model, and similar ones, are based on the old
“Measure Twice, Cut Once” saw, but you cannot actually apply this when you don’t
actually know what’s being measured! (And, furthermore, what happens if requirements
change along the way, and by the time you finish with development, the problem has
actually changed?) Modern, agile technologies try to take this into account and work in
a radically different way, and that’s the way you should use with GWT.

Agile Methodologies
Several software development methodologies seek to reduce the time between the
requirement analysis phase and the development phase to develop at least parts of the
system in shorter times, using possibly an iterative method to advance to the final appli-
cation. Prototypes are frequently used to bridge the distance between the user and the
developer, helping both to understand what’s actually required. Instead of attempting to
do a whole system at once, development is parceled in smaller subsystems. The user is
involved all the time, instead of providing his input (in the form of requirements) only at
the beginning and then dealing with the system after its installation.

All these suggestions are currently applied in Agile Software Methodologies (born in
2001) that emphasize collective (i.e., users plus programmers) development of systems, in
highly iterative steps, with frequent verification and (if needed) adaptation of the written
code.

Agile Methodologies usually break a complex system into several short stages, substi-
tuting short, easily measured and controlled iterations, for long-term (and hard to do)
planning. Each iteration (usually shorter than a month) involves a mini development
cycle that includes all the stages associated with a Waterfall Model but finishes with giv-
ing the users a working product with increasing functionality that serves not only as a
measure of advance, but also as an aid to determine if changes are needed. The delivered
software is used as the main measurement for progress, instead of depending on a Gantt
chart or other documents.

GWT is perfectly suited to such methodologies, because it can offer iterative develop-
ment, rapid prototyping (and here tools such as UiBinder, which we will study, can help
quickly develop appropriate interfaces), and automated testing. The latter point is partic-
ularly important: Given that development can (and will) go back and forth, and code
used in a previous iteration can be modified several times along the complete develop-
ment process, it’s important to check whether old functionality hasn’t been lost and
whether bugs have been introduced. GWT has tools that provide for both unit testing
(at the lowest level) and acceptance testing (at the user level).

Forever Beta?
As a side effect of the iterative development process, it’s usually hard to define what con-
stitutes a “version” of the final system. Because practically every iteration produces new

7Software Methodologies to Apply



functionality, and the final goal isn’t as well defined as with classic methodologies (in
which the complete roadmap is laid out at the beginning and then preferably left
unchanged) with iterative development, you deliver the system in many small steps,
rather than in large ones.

In this context, it’s not unknown for systems to be considered in “perpetual beta”;
beta testing refers to the tests done by actual users with a system that is close to the full
product but not necessarily complete. (An extreme case of this is Google’s Gmail, which
was considered to be at beta level from 2004 to 2009!) With GWT, you can provide
functionality increases in short steps, and the web model enables for easy distribution of
the updated code.10

Summary
We touched upon several considerations that impact web application development. In the
rest of the book, we will be elaborating on them and provide specific techniques to help
you develop company-sized RIAs with the expected levels of quality and functionality.

8 Chapter 1 Developing Your Application

10. This could be said, of course, of any web-based application not necessarily written with GWT;

the point is that GWT helps you work this way.
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enabling/disabling Login button and,

67–69
file download form and, 206
interactive maps and, 169
live suggestions and, 108, 110–111
MVP implementation and, 60–66
receiving/processing XML and, 126
role in MVP, 57–58
thread simulation and, 267, 269
uploading files and, 199–200

PresenterDisplay interface, 62–63

Pretty code, 153

Prevalidation, data, 112–116

Primitive types, 79

Printable View, 282

Processing XML. See Receiving/processing
XML

processWeather(...) method, 162

Progressive enhancement, 10–11

Project creation

with Google Plugin for Eclipse, 21–22
with GWT shell script, 22–23
overview, 21

Project structure, 23–27

Projects and development, understanding

Development mode, running applica-
tion, 27–30

overview, 21
project creation, 21–23
project structure, 23–27
summary, 30

.properties files, 212–213, 215

Properties, presetting widget, 73

Protocol changes, SOP restriction and,
119–120

Prototype JavaScript Framework, 5, 11

Proxy

getting weather feed with, 159
RemoteServlet as, 129–131
sending XML via, 136–137

pStart+pCount position, 264–265

<public> element, 25–26

public static void deserialize
(...), 81

public static void serialize
(...), 81

Pyjamas project, 2, 9

Q–R
RC4 encryption, 180–183

readString(...) method, 82

Receiving/processing XML

overview, 125–127
through proxy, 129–131
using Ajax, 127–128

Remote Procedure Calls (RPC), introduction

Direct Evaluation RPC, 83–84
implementation, 78–79
overview, 77
serialization, 79–83

Remote Procedure Calls (RPC), usage

code sharing, 86–88
coding server side services, 88–94
Country/State cities browser, 101–108
data prevalidation, 112–116
database-related widgets, MVP and,

94–100
deployment and, 300
Enterprise Java Beans, 116–118
GWTTestCase testing and, 252–253
live suggestions, 108–112
looking at Model class, 100–101
overview, 84
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Remote Procedure Calls (RPC), usage 
(continued)

summary, 118
world cities service, 84–85

@RemoteServiceRelativePath(...)
annotation, 78

RemoteServlet function

Enterprise Java Beans and, 116–118
as proxy, 129–131
RPC implementation and, 79

removeWhitespace(...) method, 126

rename-to attribute, 25

replay(...) method, 246

Report link, 295–296

Representational State Transfer (REST) API,
173–175

RequestBuilder class, 203–204

requestSuggestions(...) method,
110–112

Resource bundles

annotations and, 215
internationalization and, 212–213
localization and, 224–227
UiBinder-based internationalization

and, 219–223
using constants and, 213–214

ResourceCallback<TextResource>
object, 277

Resources tab, 284–285

ResultSet object, 147

RIAs. See Rich Internet Applications (RIAs)

Rich Internet Applications (RIAs)

Cloud Computing, 3
desktop death, 4
overview, 1–2
Web 2.0, 2–3

RPC. See Remote Procedure Calls (RPC),
introduction; Remote Procedure Calls
(RPC), usage

RpcResponse objects, 81

RSS weather feeds, 157–159

run(...) method, 267–270

RunAsyncCallback(...) interface,
291–293

Running applications

Development mode for, 27–30
getting started, 19–20

Ryan, Ray, 32

S
SAAS (Software as a Service), 3

Safari debugger, 285

Same Origin Policy (SOP) restriction

JSONP and, 153–155
server communication and, 119–121

Sampler application, ClientBundle, 276

SayAge(...)string, 218

schedule(...) method, 266–269

<script> element

hashing with JavaScript and, 142
project structure and, 26

Scrum, 229

Searching

live suggestions and, 108–112
with simple news reader, 147–149
weather vane, 157–159
Yahoo's services for, 146–147

Secure Sockets Layer (SSL) communica-
tions, 178

Security

GWT 2 and, 11
hashing for, 142–143
SOP restriction for, 119–121

Security, servers and

AAA for, 178
Ajax problems, 179

316 Remote Procedure Calls (RPC), usage



common operations and. See
Common operations, security

cryptography, 179–183
full SSL security and, 177–178
overview, 177
stateless vs. stateful coding, 183–184
summary, 193

select events, 167

Selenium, acceptance testing and

example of, 255–256
overview, 253–255
potential problems, 257

Sending XML

overview, 131–132, 135–136
through Ajax, 136
through proxy, 136–137

Serialization, RPC, 79–83

serialize(...) method, 82

Server, communication with

introduction to RPC. See Remote
Procedure Calls (RPC), introduction

RPC patterns of usage. See Remote
Procedure Calls (RPC), usage

Server side services, 88–94

ServerCityData classes, 86–88, 90

Servers, communication with other

city update application, 121–125
overview, 119
producing XML, 131–135
receiving/processing XML, 125–131
sending XML, 135–137
SOP restriction and, 119–121
summary, 137

Servers, working with

challenges in, 177–183
common operations and. See

Common operations, security

cryptography, 179–183
overview, 177
stateless vs. stateful coding, 183–184
summary, 193

Service-Oriented Architectures (SOA), 3

<servlet> element

client-plus-server GWT 2 and,
299–300

file processing and, 200
RPC implementation and, 78

Servlet mapping, 78

<servlet-mapping> element, 78

Servlet(s)

calling remote, 79
deployment and, 297–300
file download form, 204–207
file processing, 200–202
file producing, 207–208
GWTTestCase testing, 252–253

Session keys

changing passwords and, 192–193
logging in and, 185–190

setAttribute(...) method, 134–135

set.Callback(...) method, 123

setCitiesOracle(...) method, 109,
111

setCityData(...) method

city update application and, 123
Country/State cities browser and, 102,

104, 106–107
receiving/processing XML and, 127

setCoordinates(...) method,
171–173

setCountryList(...) function, 97–98

setNameBlurCallback(...) method,
244–245

setStateList(...) function, 97–98
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setText(...) method, 145–146

Setting up GWT

overview, 17
running and deploying, 19–20
version control management/testing,

19, 20
writing code, 17–18

setUp(...) methods, 233

setYGeoPoint(...) method, 172–173

Shell script, webAppCreator, 22–23

show(...) method, 37–38

signature parameters, 140

Simple city browser application, 101

Selenium testing and, 255
thread simulation and, 266–270

Simple city input form, 112–113

Simple news reader, 147–148

Sluggishness report, 278–279

Smush.it, 282

SOA (Service-Oriented Architectures ), 3

Software as a Service (SAAS), 3

Software methodologies

Agile Software Methodologies, 7
classic development problems, 5–7
perpetual beta, 7–8

somefile.txt text file, 208

someModules, compilation and, 288

someMore variable, 268

someNumber, compilation and, 288, 289

SOP. See Same Origin Policy (SOP) restric-
tion

Soriano, 124, 252, 255

@Source(...) annotation, 274–275

<source> element, 23, 25–26

-soyc parameter, 221

Speed, design patterns for. See Design pat-
terns, for speed

Speed measurement tools

JavaScript debuggers, 285–286
overview, 277–278
Page Speed, 283–285
Speed Tracer, 278–280
YSlow, 280–282

Speed Tracer, 278–280

src directory

JUnit test directory and, 231
modules directory and, 290
project structure and, 23, 24

SSL (Secure Sockets Layer) communica-
tions, 178

Starting, GWT application, 34–37

Stateless server coding vs. stateful, 183–184

Statement Coverage, 236

statesCache function, 261

static object

bundling data and, 274
caching and, 260–262

Statistics tabs, 282

Steampunk display widgets, 143–145

Stooges. See Three Stooges, The

stop(...) method, 143

Streams, reading/writing to, 82

strictfp keyword, 13

String Interning, 13

Strings

creating XML with, 132–133
DOM structure and, 133–135
dynamic messages and, 217–219
localization and, 224–227
resource bundles as, 212–215
sending XML, 135–136
serialization of, 80
weather feed, 159

Stubs, 240
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-style, compilation option, 288

<stylesheet> element, 26

Submit event code, 203–204

Subversion, for version control management, 19

SuggestBox widgets, 108–109, 112

SuggestionItem class, 110–111

Super-validationProblems(...)
function, 86–88

SupportsCDATASection(...) method,
126

T
TDD (Test-driven development), 229

tearDown(...) methods, 233

Templates

creating several, 75
creating UiBinder, 70–72

test directory, 23

Test-driven development (TDD), 229

@Test methods, 233–236

Testing

applications. See Application testing
getting started, 19, 20
test/gwttest directories for, 23

TextBox function, 147–149, 171

TextResource elements, 274–277

Thread simulation

deferred command-based solution,
270–273

overview, 266
Timer-based solution, 266–270

Three Stooges, The, 237–238

Time formats, 224–226

TimedCitiesDisplay class, 269–270

Timer function

live suggestions and, 112
thread simulation and, 266–270

Tokens, 33, 34–37

Tools tab, 282

toString(...) methods, 133, 135, 234

totalResultsAvailable attribute, 147

transient attributes, 80

Translating error codes, 215–217

-treeLogger, compilation option, 288

U
<u:attribute> element, 221

u:field attribute, 70, 72–73

UI. See User Interface (UI), programming

UI library, 17

UI patterns

MVC classic pattern, 56–57
MVP pattern, 57–58
overview, 55–56

UiBinder

changing password and, 190
Country/State cities browser and,

102–104
data prevalidation and, 113–114
dealing with constructors, 74–75
internationalization, 219–223
Java defined in, 72–73
overview, 69
presetting widget properties, 73
template defined in, 70–72
using your own widgets, 73–74
working with complex layouts, 75

@UiField annotation

JSON and, 149
UiBinder and, 71–73
uploading files and, 198
widgets and, 74, 97, 103

@UiHandler annotation

Country/State cities browser and,
104–105

data prevalidation and, 114
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@UiTemplate annotation

JSON and, 149
UiBinder and, 71–72, 75
uploading files and, 198
widgets and, 96, 103

ui.xml files

internationalization and, 219–223
UiBinder and, 70, 72

<u:msg> element, 220–222

Unicode Transformation Format (UTF-8), 213

Unified Modeling Language (UML), 61

Uniform Resource Locator (URL)

fixed maps and, 173–175
JSONP and, 155
news search service and, 150–153
receiving/processing XML and,

127–130
sending XML via Ajax and, 136–137
for weather search, 158

Upload form, 195–200

Uploading files

file processing servlet, 200–202
overview, 195
providing feedback, 202–204
upload form, 195–200

URL.encode(...) method, 136–137

User Interface (UI), programming

declarative UI, 69–75
extensions, 67–69
MVP implementation. See Model-

View-Presenter (MVP) implementa-
tion

overview, 55
summary, 76
UI patterns, 55–58

UTF-8 (Unicode Transformation Format), 213

Utility methods, 15

<u:Uibinder> element

city browser and, 102
defining templates and, 69, 71, 73
internationalization and, 220
JSON and, 148
widgets and, 96

V
-validateOnly, compilation option, 288

Validation, 86–88

ValueChangeHandler method

data prevalidation and, 114
database-related widgets and, 95

Version control management, 19

VerticalPanel function, 170

View

changing password and, 190–191
Country/State cities browser and,

102–104, 106–108
data prevalidation and, 114
database-related widgets and, 98, 100
EasyMock testing and, 242–246
FileUpload, 195–198
GWTTestCase and, 247–251
interactive maps and, 170
live suggestions and, 108–109
MVP implementation and, 60–61
role in MVC, 56–57
role in MVP, 57–58
simple news reader, 147–148

Visualization options, 165, 168

Visualizations, dashboard

Google Visualization API, 164–167
handling events, 167–168
overview, 162–164

VisualizationUtils package, 164
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W
W3C "Access Control Specification," 121

waitFor. commands, 257

-war, compilation option, 289

war directory, 297

war folder, 24

wasCalled variable, 242–246

Waterfall Model, for development process,
5–7

The Weather Channel, 158–159

Weather vane

getting at feed data with overlays, 161
getting everything together, 160–161
getting feed, 159–160
getting feed with JSNI, 162
getting weather data, 157–159
overview, 157

WeatherFeed data, 161

Web 2.0, 2–3

"Web as Platform" concept, 2

webAppCreator shell script, 22–23

webAppGenerator, 53

web.xml file, 298

Where On Earth ID (WOEID) code, 158

Widgets

Composite, 95, 101–108, 171
FileUpload, 196–198
HTML, 46–47
Hyperlink, 43
interactive maps and, 170–171
ListBox, 93, 94–99
MultiWordSuggestOracle, 111
MVP and database-related, 94–100
presetting properties of, 73
Steampunk display, 143–144
SuggestBox, 108–109, 112

UI library and, 17
using your own, 73–74
weather vane, 157–162

Window.alert(...) message, 13, 239

$wnd

getting feed data and, 162
hashing with JavaScript and, 142–143
interactive maps and, 172–173

-workDir, compilation option, 289

World cities service, 84–85

WorldService remote service, 84–85

WorldService remote servlet, 78

WorldService.java interface, 88–89

writeString(...) method, 82

X
-XdisableAggressiveOptimization,

compilation option, 289

-XdisableCastChecking, compilation
option, 289

-XdisableClassMetadata, compilation
option, 289

-XdisableRunAsync, compilation option,
289

XhrProxy servlet, 129–131, 175

XML. See Extensible Markup Language (XML)

XMLHttpRequest method, 136

XMLParser.parse(...) method,
125–127

XP (Extreme Programming), 229

Y–Z
Yahoo!

Maps, 168–175
news search using, 146–147
Weather RSS Feed, 157–159
Yahoo Pipes, 159
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yahooMap attribute, 172

YGeoPoint object, 172–173

YMap function, 172

yourownfunction(...) method, 154

YSlow, 280–282

YUI Library, 5
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