

Praise for
Agile Software Engineering with Visual Studio

“Agile dominates projects increasingly from IT to product and business development,
and Sam Guckenheimer and Neno Loje provide pragmatic context for users seeking
clarity and specifics with this book. Their knowledge of past history and current
practice, combined with acuity and details about Visual Studio’s agile capabilities,
enable a precise path to execution. Yet their voice and advice remain non-dogmatic and
wise. Their examples are clear and relevant, enabling a valuable perspective to those
seeking a broad and deep historical background along with a definitive understanding
of the way in which Visual Studio can incorporate agile approaches.”
—Melinda Ballou, Program Director, Application Lifecycle Management and Executive

Strategies Service, International Data Corporation (IDC)

“Sam Guckenheimer and Neno Loje have forgotten more about software development
processes than most development ‘gurus’ ever knew, and that’s a good thing! In Agile
Software Engineering with Visual Studio, Sam and Neno distill the essence of years of
hard-won experience and hundreds of pages of process theory into what really
matters—the techniques that high performance software teams use to get stuff done. By
combining these critical techniques with examples of how they work in Visual Studio,
they created a de-facto user guide that no Visual Studio developer should be without.”

—Jeffrey Hammond, Principal Analyst, Forrester Research

“If you employ Microsoft’s Team Foundation Server and are considering Agile projects,
this text will give you a sound foundation of the principles behind its agile template and
the choices you will need to make. The insights from Microsoft’s own experience in
adopting agile help illustrate challenges with scale and the issues beyond pure
functionality that a team needs to deal with. This book pulls together into one location a
wide set of knowledge and practices to create a solid foundation to guide the decisions
and effective transition, and will be a valuable addition to any team manager’s
bookshelf.”

—Thomas Murphy, Research Director, Gartner

“This book presents software practices you should want to implement on your team
and the tools available to do so. It paints a picture of how first class teams can work,
and in my opinion, is a must read for anyone involved in software development. It will
be mandatory reading for all our consultants.”

—Claude Remillard, President, InCycle

“This book is the perfect tool for teams and organizations implementing agile practices
using Microsoft’s Application Lifecycle Management platform. It proves disciplined
engineering and agility are not at odds; each needs the other to be truly effective.”

—David Starr, Scrum.org

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page i

“Sam Guckenheimer and Neno Loje have written a very practical book on how Agile
teams can optimize their practices with Visual Studio. It describes not only how Agile
and Visual Studio work, but also the motivation and context for many of the functions
provided in the platform. If you are using Agile and Visual Studio, this book should be
a required read for everyone on the team. If you are not using Agile or Visual Studio,
then reading this book will describe a place that perhaps you want to get to with your
process and tools.”

—Dave West, Analyst, Forrester Research

“Sam Guckenheimer and Neno Loje are leading authorities on agile methods and Visual
Studio. The book you are holding in your hand is the authoritative way to bring these
two technologies together. If you are a Visual Studio user doing agile, this book is a
must read.”

—Dr. James A. Whittaker, Software Engineering Director, Google

“Agile development practices are a core part of modern software development.
Drawing from our own lessons in adopting agile practices at Microsoft, Sam
Guckenheimer and Neno Loje not only outline the benefits, but also deliver a hands-on,
practical guide to implementing those practices in teams of any size. This book will help
your team get up and running in no time!”

—Jason Zander, Corporate Vice President, Microsoft Corporation

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page ii

Agile Software Engineering
with Visual Studio
From Concept to Continuous Feedback

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page iii

The award-winning Microsoft .NET Development Series was

established in 2002 to provide professional developers with the

most comprehensive, practical coverage of the latest .NET technologies.

Authors in this series include Microsoft architects, MVPs, and other

experts and leaders in the field of Microsoft development technologies.

Each book provides developers with the vital information and critical

insight they need to write highly effective applications.

Visit informit.com/msdotnetseries for a complete list of available products.

Microsoft
®

 .NET Development Series

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page iv

From Concept to Continuous Feedback

Sam Guckenheimer
Neno Loje

Agile Software
Engineering
with
Visual Studio

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page v

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inci-
dental or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or spe-
cial sales, which may include electronic versions and/or custom covers and content particular to your busi-
ness, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

The Library of Congress cataloging-in-publication data is on file.

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United States
and/or other countries and is used under license from Microsoft.

Microsoft, Windows, Visual Studio, Team Foundation Server, Visual Basic, Visual C#, and Visual C++ are
either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other coun-
tries/regions.

ISBN-13: 978-0-321-68585-8
ISBN-10: 0-321-68585-7

Text printed in the United States on recycled paper at R.R. Donnelly in Crawfordsville, Indiana.

First printing September 2011

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page vi

To Monica, Zoe, Grace, Eli, and Nick,
whose support made this book possible.

—Sam

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page vii

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page viii

Contents

Foreword xvii
Preface xix
Acknowledgements xxvi
About the Authors xxvii

1 The Agile Consensus 1
The Origins of Agile 1
Agile Emerged to Handle Complexity 2
Empirical Process Models 4
A New Consensus 4
Scrum 6

Potentially Shippable 7

Increasing the Flow of Value in Software 8

Reducing Waste in Software 9

Transparency 11

Technical Debt 11

An Example 12
Self-Managing Teams 13

Back to Basics 15

Summary 15
End Notes 16

ix

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page ix

2 Scrum, Agile Practices, and Visual Studio 19
Visual Studio and Process Enactment 20
Process Templates 21

Teams 22

Process Cycles and TFS 23
Release 24

Sprint 26

Bottom-Up Cycles 30

Personal Development Preparation 30

Check-In 30

Test Cycle 31

Definition of Done at Every Cycle 35

Inspect and Adapt 36
Task Boards 36
Kanban 38
Fit the Process to the Project 39

Geographic Distribution 40

Tacit Knowledge or Required Documentation 41

Governance, Risk Management, and Compliance 41

One Project at a Time Versus Many Projects at Once 41

Summary 42
End Notes 43

3 Product Ownership 45
What Is Product Ownership? 46

The Business Value Problem: Peanut Butter 47

The Customer Value Problem: Dead Parrots 47

The Scope-Creep Problem: Ships That Sink 48

The Perishable Requirements Problem: Ineffective Armor 49

Scrum Product Ownership 50
Release Planning 51

Business Value 52

Customer Value 52

Exciters, Satisfiers, and Dissatisfiers: Kano Analysis 55

Design Thinking 58

Customer Validation 62

Contentsx

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page x

Qualities of Service 63
Security and Privacy 64

Performance 64

User Experience 65

Manageability 66

How Many Levels of Requirements 67
Work Breakdown 68

Summary 70
End Notes 70

4 Running the Sprint 73
Empirical over Defined Process Control 75
Scrum Mastery 76

Team Size 77

Rapid Estimation (Planning Poker) 78

A Contrasting Analogy 80

Use Descriptive Rather Than Prescriptive Metrics 81
Prevent Distortion 84

Avoid Broken Windows 85

Answering Everyday Questions with Dashboards 86
Burndown 87

Quality 88

Bugs 90

Test 91

Build 93

Choosing and Customizing Dashboards 94
Using Microsoft Outlook to Manage the Sprint 95
Summary 96
End Notes 96

5 Architecture 99
Architecture in the Agile Consensus 100

Inspect and Adapt: Emergent Architecture 100

Architecture and Transparency 101

Design for Maintainability 102

Contents xi

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page xi

Exploring Existing Architectures 103
Understanding the Code 103

Maintaining Control 109

Understanding the Domain 113

Summary 121
End Notes 123

6 Development 125
Development in the Agile Consensus 126
The Sprint Cycle 127

Smells to Avoid in the Daily Cycle 127

Keeping the Code Base Clean 128
Catching Errors at Check-In 128

Shelving Instead of Checking In 134

Detecting Programming Errors Early 135
Test-Driven Development Provides Clarity 135

Catching Programming Errors with Code Reviews,

Automated and Manual 148

Catching Side Effects 152
Isolating Unexpected Behavior 152

Isolating the Root Cause in Production 155

Tuning Performance 156

Preventing Version Skew 160
What to Version 160

Branching 162

Working on Different Versions in Parallel 163

Merging and Tracking Changes Across Branches 165

Working with Eclipse or the Windows Shell Directly 167

Making Work Transparent 168
Summary 169
End Notes 171

Contentsxii

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page xii

7 Build and Lab 173
Cycle Time 174
Defining Done 175
Continuous Integration 177
Automating the Build 179

Daily Build 180

BVTs 181

Build Report 181

Maintaining the Build Definitions 183

Maintaining the Build Agents 183

Automating Deployment to Test Lab 185
Setting Up a Test Lab 185

Does It Work in Production as Well as in the Lab? 187

Automating Deployment and Test 190

Elimination of Waste 196
Get PBIs Done 196

Integrate As Frequently As Possible 197

Detecting Inefficiencies Within the Flow 198

Summary 201
End Notes 202

8 Test 203
Testing in the Agile Consensus 204

Testing and Flow of Value 205

Inspect and Adapt: Exploratory Testing 206

Testing and Reduction of Waste 206

Testing and Transparency 207

Testing Product Backlog Items 207
The Most Important Tests First 209

Actionable Test Results and Bug Reports 212
No More “No Repro” 214

Use Exploratory Testing to Avoid False Confidence 216

Handling Bugs 218
Which Tests Should Be Automated? 219

Contents xiii

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page xiii

Automating Scenario Tests 220
Testing “Underneath the Browser” Using HTTP 221

Load Tests, as Part of the Sprint 225
Understanding the Output 228

Diagnosing the Performance Problem 229

Production-Realistic Test Environments 230
Risk-Based Testing 232

Capturing Risks as Work Items 234

Security Testing 235

Summary 235
End Notes 236

9 Lessons Learned at Microsoft Developer Division 239
Scale 240
Business Background 241

Culture 241

Waste 243

Debt Crisis 244

Improvements After 2005 245
Get Clean, Stay Clean 245

Tighter Timeboxes 246

Feature Crews 246

Defining Done 246

Product Backlog 249

Iteration Backlog 251

Engineering Principles 254

Results 254
Law of Unintended Consequences 255

Social Contracts Need Renewal 255

Lessons (Re)Learned 256

Celebrate Successes, but Don’t Declare Victory 258

What’s Next? 259
End Notes 259

Contentsxiv

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page xiv

10 Continuous Feedback 261
Agile Consensus in Action 262
The Next Version 263
Product Ownership and Stakeholder Engagement 264

Storyboarding 264

Getting Feedback on Working Software 265

Balancing Capacity 267

Managing Work Visually 268

Staying in the Groove 270
Collaborating on Code 272

Cleaning Up the Campground 273

Testing to Create Value 275
TFS in the Cloud 275
Conclusion 276

Living on the Edge of Chaos 278

End Notes 279

Index 281

Contents xv

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page xv

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page xvi

Foreword

It is my honor to write a foreword for Sam’s book, Agile Software Engineer-
ing with Visual Studio. Sam is both a practitioner of software development
and a scholar. I have worked with Sam for the past three years to merge
Scrum with modern engineering practices and an excellent toolset,
Microsoft’s VS 2010. We are both indebted to Aaron Bjork of Microsoft, who
developed the Scrum template that instantiates Scrum in VS 2010 through
the Scrum template.

I do not want Scrum to be prescriptive. I left many holes, such as what
is the syntax and organization of the product backlog, the engineering prac-
tices that turned product backlog items into a potentially shippable incre-
ment, and the magic that would create self-organizing teams. In his book,
Sam has superbly described one way of filling in these holes. He describes
the techniques and tooling, as well as the rationale of the approach that he
prescribes. He does this in detail, with scope and humor. Since I have
worked with Microsoft since 2004 and Sam since 2009 on these practices
and tooling, I am delighted. Our first launch was a course, the Professional
Scrum Developer .NET course, that taught developers how to use solid
increments using modern engineering practices on VS 2010 (working in
self-organizing, cross-functional teams). Sam’s book is the bible to this
course and more, laying it all out in detail and philosophy. If you are on a
Scrum team building software with .NET technologies, this is the book for
you. If you are using Java, this book is compelling enough to read anyway,
and may be worth switching to .NET.

xvii

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page xvii

When we devised and signed the Agile Manifesto in 2001, our first value
was “Individuals and interactions over processes and tools.” Well, we have
the processes and tools nailed for the Microsoft environment. In Sam’s
book, we have something developers, who are also people, can use to
understand the approach and value of the processes and tools. Now for the
really hard work, people. After 20 years of being treated as resources,
becoming accountable, creative, responsible people is hard. Our first chal-
lenge will be the people who manage the developers. They could use the
metrics from the VS 2010 tooling to micromanage the processes and devel-
opers, squeezing the last bit of creativity out and leaving agility flat. Or,
they could use the metrics from the tools to understand the challenges fac-
ing the developers. They could then coach and lead them to a better, more
creative, and more productive place. This is the challenge of any tool. It
may be excellent, but how it is used will determine its success.

Thanks for the book, Sam and Neno.

Ken Schwaber
Co-Creator of Scrum

Forewordxviii

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page xviii

Preface

Five years ago, we extended the world’s leading product for individual
developers, Microsoft Visual Studio, into Visual Studio Team System, and
it quickly became the world’s leading product for development teams. This
addition of Application Lifecycle Management (ALM) to Visual Studio
made life easier and more productive for hundreds of thousands of our
users and tens of thousands of our Microsoft colleagues. In 2010, we
shipped Visual Studio 2010 Premium, Ultimate, Test Professional, and
Team Foundation Server. (We’ve dropped the Team System name.)

We’ve learned a lot from our customers in the past five years. Visual Stu-
dio 2010 is a huge release that enables a high-performance Agile software
team to release higher-quality software more frequently. We set out to
enable a broad set of scenarios for our customers. We systematically
attacked major root causes of waste in the application lifecycle, elevated
transparency for the broadly engaged team, and focused on flow of value
for the end customer. We have eliminated unnecessary silos among roles, to
focus on empowering a multidisciplinary, self-managing team. Here are
some examples.

No more no repro. One of the greatest sources of waste in software
development is a developer’s inability to reproduce a reported defect. Tra-
ditionally, this is called a “no repro” bug. A tester or user files a bug and
later receives a response to the effect of “Cannot reproduce,” or “It works
on my machine,” or “Please provide more information,” or something of
the sort. Usually this is the first volley in a long game of Bug Ping-Pong, in
which no software gets improved but huge frustration gets vented. Bug

xix

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page xix

Ping-Pong is especially difficult for a geographically distributed team. As
detailed in Chapters 1 and 8, VS 2010 shortens or eliminates this no-win
game.

No more waiting for build setup. Many development teams have mas-
tered the practice of continuous integration to produce regular builds of
their software many times a day, even for highly distributed Web-based
systems. Nonetheless, testers regularly wait for days to get a new build
to test, because of the complexity of getting the build deployed into a
production-realistic lab. By virtualizing the test lab and automating the
deployment as part of the build, VS 2010 enables testers to take fresh builds
daily or intraday with no interruptions. Chapter 7, “Build and Lab,”
describes how to work with build and lab automation.

No more UI regressions. The most effective user interface (UI) testing is
often exploratory, unscripted manual testing. However, when bugs are
fixed, it is often hard to tell whether they have actually been fixed or if they
simply haven’t been found again. VS 2010 removes the ambiguity by cap-
turing the action log of the tester’s exploration and allowing it to be con-
verted into an automated test. Now fixes can be retested reliably and
automation can focus on the actually observed bugs, not the conjectured
ones. Chapter 8, “Test,” covers both exploratory and automated testing.

No more performance regressions. Most teams know the quickest way
to lose a customer is with a slow application or Web site. Yet teams don’t
know how to quantify performance requirements and accordingly, don’t
test for load capacity until right before release, when it’s too late to fix the
bugs that are found. VS 2010 enables teams to begin load testing early.
Performance does not need to be quantified in advance, because the test can
answer the simple question, “What has gotten slower?” And from the end-
to-end result, VS profiles the hot paths in the code and points the developer
directly to the trouble spots. Chapters 6 and 8 cover profiling and load
testing.

No more missed changes. Software projects have many moving parts,
and the more iterative they are, the more the parts move. It’s easy for devel-
opers and testers to misunderstand requirements or overlook the impact
of changes. To address this, Visual Studio Test Professional introduces test

Prefacexx

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page xx

impact analysis. This capability compares the changes between any two
builds and recommends which tests to run, both by looking at the work
completed between the builds and by analyzing which tests cover the
changed code based on prior coverage. Chapters 3 and 4 describe the prod-
uct backlog and change management, and Chapters 6 through 8 show test
impact analysis and the corresponding safety nets from unit testing, build
automation, and acceptance testing.

No more planning black box. In the past, teams have often had to guess
at their historical velocity and future capacity. VS 2010 draws these directly
from the Team Foundation Server database and builds an Excel worksheet
that allows the team to see how heavily loaded every individual is in the
sprint. The team can then transparently shift work as needed. Examples of
Agile planning are discussed in Chapters 2 and 4.

No more late surprises. Agile teams, working iteratively and incre-
mentally, often use burndown charts to assess their progress. Not only does
VS 2010 automate the burndowns, but project dashboards go beyond burn-
downs to provide a real-time view of quality and progress from many
dimensions: requirements, tasks, tests, bugs, code churn, code coverage,
build health, and impediments. Chapter 4, “Running the Sprint,” intro-
duces the “happy path” of running a project and discusses how to trou-
bleshoot project “smells.”

No more legacy fear. Very few software projects are truly “greenfield,”
developing brand new software on a new project. More frequently, teams
extend or improve existing systems. Unfortunately, the people who worked
on earlier versions are often no longer available to explain the assets they
have left behind. VS 2010 makes it much easier to work with the existing
code by introducing tools for architectural discovery. VS 2010 reveals the
patterns in the software and enables you to automatically enforce rules that
reduce or eliminate unwanted dependencies. These rules can become part
of the check-in policies that ensure the team’s definition of done to prevent
inadvertent architectural drift. Architectural changes can also be tied to
bugs or work, to maintain transparency. Chapter 5, “Architecture,” covers
the discovery of existing architecture, and Chapter 7 shows you how to
automate the definition of done.

Preface xxi

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page xxi

No more distributed development pain. Distributed development is a
necessity for many reasons: geographic distribution, project complexity,
release evolution. VS 2010 takes much of the pain out of distributed devel-
opment processes both proactively and retrospectively. Gated check-in
proactively forces a clean build with verification tests before accepting a
check-in. Branch visualization retrospectively lets you see where changes
have been applied. The changes are visible both as code and work item
updates (for example, bug fixes) that describe the changes. You can visually
spot where changes have been made and where they still need to be pro-
moted. Chapters 6 and 7 show you how to work with source, branches, and
backlogs across distributed teams.

No more technology silos. More and more software projects use mul-
tiple technologies. In the past, teams often have had to choose different
tools based on their runtime targets. As a consequence, .NET and Java
teams have not been able to share data across their silos. Visual Studio Team
Foundation Server 2010 integrates the two by offering clients in both the
Visual Studio and Eclipse integrated development environments (IDEs), for
.NET and Java respectively. This changes the either-or choice into a
both-and, so that everyone wins. Again, Chapters 6 and 7 include examples
of working with your Java assets alongside .NET.

These scenarios are not an exhaustive list, but a sampling of the moti-
vation for VS 2010. All of these illustrate our simple priorities: reduce
waste, increase transparency, and accelerate the flow of value to the end
customer. This book is written for software teams considering running a
software project using VS 2010. This book is more about the why than the
how.

This book is written for the team as a whole. It presents information in
a style that will help all team members get a sense of each other’s view-
point. I’ve tried to keep the topics engaging to all team members. I’m fond
of Einstein’s dictum “As simple as possible, but no simpler,” and I’ve tried
to write that way. I hope you’ll agree and recommend the book to your col-
leagues (and maybe your boss) when you’ve finished with it.

Prefacexxii

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page xxii

Preface xxiii

Enough About Visual Studio 2010 to Get You Started

When I write about Visual Studio (or VS) I’m referring to the full product
line. As shown in Figure P.1, the VS 2010 family is made up of a server and
a small selection of client-side tools, all available as VS Ultimate.

Figure P-1: Team Foundation Server, now including Lab Management, forms the server of VS

2010. The client components are available in VS Ultimate.

Team Foundation Server (TFS) is the ALM backbone, providing source con-
trol management, build automation, work item tracking, test case manage-
ment, reporting, and dashboards. Part of TFS is Lab Management, which
extends the build automation of TFS to integrate physical and virtual test
labs into the development process.

If you just have TFS, you get a client called Team Explorer that launches
either standalone or as a plug-in to the Visual Studio Professional IDE.
Team Explorer Everywhere, a comparable client written in Java, launches
as an Eclipse plug-in. You also get Team Web Access and plug-ins that
let you connect from Microsoft Excel or Project. SharePoint hosts the
dashboards.

Visual Studio Premium adds the scenarios that are described in Chapter
6, “Development,” around working with the code. Visual Studio Test

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page xxiii

Professional, although it bears the VS name, is a separate application outside
the IDE, designed with the tester in mind. You can see lots of Test Profes-
sional examples in Chapter 8. VS Ultimate, which includes Test Professional,
adds architectural modeling and discovery, discussed in Chapter 5.

There is also a rich community of partner products that use the extensi-
bility to provide additional client experiences on top of TFS. Figure P.2
shows examples of third-party extensions that enable MindManager,
Microsoft Word, and Microsoft Outlook as clients of TFS. You can find a
directory at www.visualstudiowidgets.com/.

Prefacexxiv

Ekobit TeamCompanion uses Microsoft Outlook to connect to TFS.

AIT WordtoTFS makes Microsoft Word a TFS client. Artiso Requirements Mapper turns
Mindjet MindManager into a TFS Client.

Figure P-2: A broad catalog of partner products extend TFS. Shown here are Artiso

Requirements Mapper, Ekobit TeamCompanion, and AIT WordtoTFS.

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page xxiv

www.visualstudiowidgets.com/

Of course, all the clients read and feed data into TFS, and their trends sur-
face on the dashboards, typically hosted on SharePoint. Using Excel Ser-
vices or SQL Server Reporting Services, you can customize these
dashboards. Dashboard examples are the focus of Chapter 4.

Unlike earlier versions, VS 2010 does not have role-based editions. This
follows our belief in multidisciplinary, self-managing teams. We want to
smooth the transitions and focus on the end-to-end flow. Of course, there’s
plenty more to learn about VS at the Developer Center of http://msdn.
microsoft.com/vstudio/.

Preface xxv

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page xxv

http://msdn.microsoft.com/vstudio/
http://msdn.microsoft.com/vstudio/

Acknowledgments

Hundreds of colleagues and millions of customers have contributed to
shaping Visual Studio. In particular, the roughly two hundred “ALM
MVPs” who relentlessly critique our ideas have enormous influence.
Regarding this book, there are a number of individuals who must be sin-
gled out for the direct impact they made. Ken Schwaber convinced me that
this book was necessary. The inexhaustible Brian Harry and Cameron Skin-
ner provided detail and inspiration. Jason Zander gave me space and
encouragement to write. Tyler Gibson illustrated the Scrum cycles to unify
the chapters. Among our reviewers, David Starr, Claude Remillard, Aaron
Bjork, David Chappell, and Adam Cogan stand out for their thorough and
careful comments. And a special thanks goes to Joan Murray, our editor at
Pearson, whose patience was limitless.

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page xxvi

About the Authors

Sam Guckenheimer
When I wrote the predecessor of this book, I had been at Microsoft less than three
years. I described my history like this:

I joined Microsoft in 2003 to work on Visual Studio Team System (VSTS),
the new product line that was just released at the end of 2005. As the group
product planner, I have played chief customer advocate, a role that I have
loved. I have been in the IT industry for twenty-some years, spending most
of my career as a tester, project manager, analyst, and developer.

As a tester, I’ve always understood the theoretical value of advanced
developer practices, such as unit testing, code coverage, static analysis, and
memory and performance profiling. At the same time, I never understood
how anyone had the patience to learn the obscure tools that you needed to
follow the right practices.

As a project manager, I was always troubled that the only decent data
we could get was about bugs. Driving a project from bug data alone is like
driving a car with your eyes closed and only turning the wheel when you
hit something. You really want to see the right indicators that you are on
course, not just feel the bumps when you stray off it. Here, too, I always
understood the value of metrics, such as code coverage and project veloc-
ity, but I never understood how anyone could realistically collect all that
stuff.

As an analyst, I fell in love with modeling. I think visually, and I found
graphical models compelling ways to document and communicate. But
the models always got out of date as soon as it came time to implement

xxvii

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page xxvii

anything. And the models just didn’t handle the key concerns of develop-
ers, testers, and operations.

In all these cases, I was frustrated by how hard it was to connect the dots
for the whole team. I loved the idea in Scrum (one of the Agile processes)
of a “single product backlog”—one place where you could see all the
work—but the tools people could actually use would fragment the work
every which way. What do these requirements have to do with those tasks,
and the model elements here, and the tests over there? And where’s the
source code in that mix?

From a historical perspective, I think IT turned the corner when it
stopped trying to automate manual processes and instead asked the ques-
tion, “With automation, how can we reengineer our core business
processes?” That’s when IT started to deliver real business value.

They say the cobbler’s children go shoeless. That’s true for IT, too. While
we’ve been busy automating other business processes, we’ve largely neg-
lected our own. Nearly all tools targeted for IT professionals and teams
seem to still be automating the old manual processes. Those processes
required high overhead before automation, and with automation, they still
have high overhead. How many times have you gone to a 1-hour project
meeting where the first 90 minutes were an argument about whose num-
bers were right?

Now, with Visual Studio, we are seriously asking, “With automation,
how can we reengineer our core IT processes? How can we remove the
overhead from following good process? How can we make all these differ-
ent roles individually more productive while integrating them as a high-
performance team?”

Obviously, that’s all still true.

About the Authorsxxviii

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page xxviii

Neno Loje
I started my career as a software developer—first as a hobby, later as pro-
fession. At the beginning of high school, I fell in love with writing software
because it enabled me to create something useful by transforming an idea
into something of actual value for someone else. Later, I learned that this
was generating customer value.

However, the impact and value were limited by the fact that I was just
a single developer working in a small company, so I decided to focus on
helping and teaching other developers. I started by delivering pure techni-
cal training, but the topics soon expanded to include process and people,
because I realized that just introducing a new tool or a technology by itself
does not necessarily make teams more successful.

During the past six years as an independent ALM consultant and TFS
specialist, I have helped many companies set up a team environment and
software development process with VS. It has been fascinating to watch
how removing unnecessary, manual activities makes developers and entire
projects more productive. Every team is different and has its own problems.
I’ve been surprised to see how many ways exist (both in process and tools)
to achieve the same goal: deliver customer value faster though great
software.

When teams look back at how they worked before, without VS, they
often ask themselves how they could have survived without the tools they
use now. However, what had changed from the past were not only the
tools, but also the way they work as a team.

Application Lifecycle Management and practices from the Agile Con-
sensus help your team to focus on the important things. VS and TFS are a
pragmatic approach to implement ALM (even for small, nondistributed
teams). If you’re still not convinced, I urge you to try it out and judge for
yourself.

About the Authors xxix

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page xxix

00_9780321685858_FM.qxd 8/24/11 1:43 PM Page xxx

2

Scrum, Agile Practices, and
Visual Studio

One methodology cannot possibly be the “right” one, but…
there is an appropriate, different way of working for each project
and project team.1

—Alistair Cockburn

19

Figure 2-1: The rhythm of a crew rowing in unison is a perfect example of flow in both the
human and management senses. Individuals experience the elation of performing optimally,
and the coordinated teamwork enables the system as a whole (here, the boat) to achieve its
optimum performance. It’s the ideal feeling of a “sprint.”

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 19

T
he preceding chapter discussed the Agile Consensus of the past decade.
That chapter distinguished between complicated projects, with well-

controlled business or technical risk, and complex ones, where the tech-
nology and business risks are greater. Most new software projects are
complex; otherwise, the software would not be worth building.

This chapter covers the next level of detail—the characteristics of soft-
ware engineering and management practices, the “situationally specific”
contexts to consider, and the examples that you can apply in Visual Studio
(VS). In this chapter, you learn about the mechanisms that VS (primarily
Team Foundation Server [TFS]) provides to support the team enacting the
process. Whereas Chapter 1, “The Agile Consensus,” gave an outside-in
view of what a team needs, this chapter provides an inside-out overview
of the tooling that makes the enactment possible.

Visual Studio and Process Enactment

Through three classes of mechanisms, VS helps the team follow a defined
software process:

1. As illustrated in Chapter 1, TFS captures backlogs, workflow, status,
and metrics. Together, these keep the work transparent and guide
the users to the next appropriate actions. TFS also helps ensure the
“done-ness” of work so that the team cannot accrue technical debt
without warning and visibility.

2. Each team project tracked by TFS starts off with a process template
that defines the standard workflows, reports, roles, and artifacts for
the process. These are often changed later during the course of the
team project as the team learns and tunes its process, but their initial
defaults are set according to the chosen process template.

3. On the IDE clients (VS or Eclipse), there are user experiences that
interact with the server to ensure that the policies are followed and
that any warnings from policy violations are obvious.

Scrum, Agile Practices, and Visual Studio20

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 20

Process Templates

The process template supports the workflow of the team by setting the
default work item types, reports, queries, roles (i.e. security groups), team
portal, and artifacts. Work item types are the most visible of these because
they determine the database schema that team members use to manage the
backlog, select work, and record status as it is done. When a team member
creates a team project, the Project Creation Wizard asks for a choice of
process template, as shown in Figure 2-2.

Process Templates 21

Figure 2-2: The Project Creation Wizard lets you create a team project based on any of the
currently installed process templates.

Microsoft provides three process templates as standard:

1. Scrum: This process template directly supports Scrum, and was
developed in collaboration with Ken Schwaber based on the Scrum
Guide.2 The Scrum process template defines work item types for
Product Backlog Item, Bug, Task, Impediment, Test Case, Shared
(Test) Steps, and Sprint. The reports are Release Burndown, Sprint
Burndown, and Velocity.

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 21

2. MSF for Agile Software Development: MSF Agile is also built
around a Scrum base but incorporates a broader set of artifacts than
the Scrum process template. In MSF Agile, product backlog items are
called user stories and impediments are called issues. The report
shown in Figure 1.4 is taken from MSF Agile.

3. MSF for CMMI Process Improvement: This process template is also
designed for iterative work practices, but with more formality than
the other templates. This one is designed to facilitate a team’s prac-
tice of Capability Maturity Model Integration (CMMI) Level 3 as
defined by the Software Engineering Institute.3 Accordingly, it
extends MSF Agile with more formal planning, more documentation
and work products, more sign-off gates, and more time tracking.
Notably, this process template adds Change Request and Risk work
item types and uses a Requirement work item type that is more elab-
orate than the user stories of MSF Agile.

Other companies provide their own process templates and can have
these certified by Microsoft. For example, Sogeti has released a version of
its Test Management Approach (TMap) methodology as a certified process
template, downloadable from http://msdn.microsoft.com/vstudio/.

When you create a team project with VS TFS, you choose the process
template to apply, as shown in Figure 2-2.

Teams
Processes tend to prescribe team structure. Scrum, for example, has three
roles. The Product Owner is responsible for the external definition of the
product, captured in the product backlog, and the management of the stake-
holders and customers. The Team of Developers is responsible for the imple-
mentation. And the Scrum Master is responsible for ensuring that the Scrum
process is followed.

In Scrum, the team has 7±2 developers—in other words, 5 to 9 dedicated
members. Lots of evidence indicates that this is the size that works best for
close communication. Often, one of the developers doubles as the Scrum
Master. If work is larger than can be handled by one team, it should be split
across multiple teams, and the Scrum Masters can coordinate in a scrum of

Scrum, Agile Practices, and Visual Studio22

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 22

http://msdn.microsoft.com/vstudio/

scrums. A Product Owner can serve across multiple scrum teams but
should not double as a Scrum Master.

In most cases, it is bad Scrum to use tooling to enforce permissions
rather than to rely on the team to manage itself. Instead, it is generally bet-
ter to assume trust, following the principle that “responsibility cannot be
assigned; it can only be accepted.”4 TFS always captures the history of
every work item change, thereby making it easy to trace any unexpected
changes and reverse any errors.

Nonetheless, sometimes permissions are important (perhaps because of
regulatory or contractual circumstances, for example). Accordingly, you
can enforce permissions in a team project in four ways:

1. By role

2. By work item type down to the field and value

3. By component of the system (through the area path hierarchy of
work items and the folder and branch hierarchy of source control)

4. By builds, reports, and team site

For example, you can set a rule on the Product Backlog Item (PBI) work
item type that only a Product Owner can update PBIs. In practice, this is
rarely done.

Process Cycles and TFS

A core concept of the convergent evolution discussed in Chapter 1 is itera-
tive and incremental development. Scrum stresses the basis of iteration in
empirical process control, because through rapid iteration the team reduces
uncertainty, learns by doing, inspects and adapts based on its progress, and
improves as it goes.5 Accordingly, Scrum provides the most common rep-
resentation of the main macro cycles in a software project: the release and
the sprint (a synonym for iteration), as shown in Figure 2-3. Scrum provides
some simple rules for managing these.

Process Cycles and TFS 23

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 23

Figure 2-3: Software projects proceed on many interlocking cycles, ranging from the “code-
edit-test-debug-check in” cycle, measured in minutes, to continuous integration, to daily
testing cycles, to the sprint. These are views of both the process and the flow of data, auto-
mated by the process tooling.

Release
The release is the path from vision to delivered software. As Ken Schwaber
and Jeff Sutherland explain in the Scrum Guide:

Release planning answers the questions, “How can we turn the
vision into a winning product in best possible way? How can we
meet or exceed the desired customer satisfaction and Return on
Investment?” The release plan establishes the goal of the release, the
highest priority Product Backlog, the major risks, and the overall fea-
tures and functionality that the release will contain. It also establishes
a probable delivery date and cost that should hold if nothing
changes.6

The release definition is contained in the product backlog, which consists of
requirements, unsurprisingly named product backlog items, as shown in

Scrum, Agile Practices, and Visual Studio24

Continuous
Integration

Potentially
Shippable
Increment

Sprint
Daily
Standup

Check-in

Sprint
Backlog

Acceptance
Testing

Deploy
to Lab

Daily
Build

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 24

Figure 2-4. Throughout the release, the Product Owner keeps the PBIs stack
ranked to remove ambiguity about what to do next. As DeMarco and Lister
have put it:

Rank-ordering for all functions and features is the cure for two ugly
project maladies: The first is the assumption that all parts of the prod-
uct are equally important. This fiction is preserved on many projects
because it assures that no one has to confront the stakeholders who
have added their favorite bells and whistles as a price for their coop-
eration. The same fiction facilitates the second malady, piling on, in
which features are added with the intention of overloading the proj-
ect and making it fail, a favorite tactic of those who oppose the project
in the first place but find it convenient to present themselves as enthu-
siastic project champions rather than as project adversaries.7

Process Cycles and TFS 25

Figure 2-4: A product backlog item, shown here as accessed inside the VS IDE, can also be
viewed from the Web Portal, Microsoft Excel, Microsoft Project, and many third-party plug-
in tools available for TFS.

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 25

A common and useful practice is stating the PBIs, especially the func-
tional requirements, as user stories. User stories take the form As a <target
customer persona>, I can <achieve result> in order to <realize value>. Chapter
3, “Product Ownership,” goes into more detail about user stories and other
forms of requirements.

Sprint
In a Scrum project, every sprint has the same duration, typically two to four
weeks. Prior to the sprint, the team helps the Product Owner groom the
product backlog, estimating a rough order of magnitude for the top PBIs.
This estimation has to include all costs associated with completing the PBI
according to the team’s agreed definition of done. The rough estimation
method most widely favored these days is Planning Poker, adapted by Mike
Cohn as a simple, fast application of what had been described by Barry
Boehm as the Wideband Delphi Method.8 Planning Poker is easy and fast,
making it possible with minimal effort to provide estimates that are gener-
ally as good as those derived from much longer analysis. Estimates from
Planning Poker get entered as story points in the PBI work item. Planning
Poker is discussed further in Chapter 4, “Running the Sprint.”

Another great practice is to define at least one acceptance test for each
PBI. These are captured in TFS as test cases, a standard work item type.
Defining acceptance tests early has three benefits:

1. They clarify the intent of the PBI.

2. They provide a done criterion for PBI completion.

3. They help inform the estimate of PBI size.

At the beginning of the sprint, the team commits to delivering a poten-
tially shippable increment of software realizing some of the top-ranked prod-
uct backlogs. The commitment factors the cumulative estimate of the PBIs,
the team’s capacity, and the need to deliver customer value in the poten-
tially shippable increment. Then, only the PBIs committed for the current

Scrum, Agile Practices, and Visual Studio26

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 26

Figure 2-5: The sprint backlog, shown here as accessed from the Web Portal, consists of the
tasks for the current sprint, derived from the PBIs to which the team has committed.

Don’t Confuse Product Backlog and Sprint Backlog

In my experience, the most common confusion around Scrum terminology
is the use of the word backlog in two different instances. To some extent, the
confusion is a holdover from earlier project management techniques. The
product backlog holds only requirements and bugs deferred to future
sprints, and is the interface between the Product Owner, representing cus-
tomers and other stakeholders, and the team. PBIs are assessed in story
points only.

Process Cycles and TFS 27

sprint are broken down by the team into tasks. These tasks are collectively
called the sprint backlog (see Figure 2-5).

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 27

The sprint backlog consists of implementation tasks, test cases, bugs of
the current sprint, and impediments, and is for the implementation team.
When working on a task, a team member updates the remaining hours on
these tasks, but typically does not touch the PBI, except to mark it as ready
for test or completed. Stakeholders should not be concerned with the sprint
backlog, only with the PBIs.

Handling Bugs

Bugs should be managed according to context. Different teams view bugs
differently. Product teams tend to think of anything that detracts from cus-
tomer value as a bug, whereas contractors stick to a much tighter definition.

In either case, do not consider a PBI done if there are outstanding bugs,
because doing so would create technical debt. Accordingly, treat bugs that
are found in PBIs of the current sprint as simply undone work and manage
them in the current iteration backlog.

In addition, you often discover bugs unrelated to the current PBIs, and
these can be added to the product backlog, unless you have spare capacity
in the current sprint. (The committed work of the sprint should normally
take precedence, unless the bug found is an impediment to achieving the
sprint goal.) This can create a small nuisance for grooming the product
backlog, in that individual bugs are usually too fine-grained and numerous
to be stack ranked against the heftier PBIs. In such a case, create a PBI as a
container or allotment for a selection of the bugs, make it a “parent” of them
in TFS, and rank the container PBI against its peers (see Figure 2-6).

Scrum, Agile Practices, and Visual Studio28

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 28

Figure 2-6: The product backlog contains the PBIs that express requirements and the bugs
that are not handled in the current sprint. This can be accessed from any of the TFS clients;
here it is shown in the VS IDE.

Avoiding Analysis Paralysis

A great discipline of Scrum is the strict timeboxing of the sprint planning
meeting, used for commitment of the product backlog (the “what”) and for
initial task breakdown of the sprint backlog (the “how”). For a one-month
sprint, the sprint planning meeting is limited to a day before work begins
on the sprint. For shorter sprints, the meeting should take a proportionally
shorter length of time.

Note that this does not mean that all tasks are known on the first day of
the sprint. On the contrary, tasks may be added to the sprint backlog when-
ever necessary. Rather, timeboxing sprint planning means that the team

Process Cycles and TFS 29

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 29

needs to understand the committed PBIs well enough to start work. In this
way, only 5% of the sprint time is consumed by planning before work
begins. (Another 5% of the calendar, the last day of a monthly sprint,
is devoted to review and retrospective.) In this way, 90% of the sprint is
devoted to working through the sprint backlog.

Bottom-Up Cycles
In addition to the two macro cycles of release and sprint, TFS uses the two
finer-grained cycles of check-in and test to collect data and trigger automa-
tion. In this way, with no overhead for the users, TFS can provide mecha-
nisms to support both automating definitions of done and transparently
collecting project metrics.

Personal Development Preparation
As discussed in Chapter 6, “Development,” VS provides continuous feed-
back to the developer to practice test-driven development, correct syntax
suggestions with IntelliSense, and check for errors with local builds, tests,
and check-in policy reviews. These are private activities, in the sense that
VS makes no attempt to persist any data from these activities before the
developer decides to check in.

Check-In
The finest-grained coding cycle at which TFS collects data and applies
workflow is the check-in (that is, any delivery of code by the developer
from a private workspace to a shared branch). This cycle provides the first
opportunity to measure done on working code. The most common Agile
practice for the check-in cycle is continuous integration, in which every
check-in triggers a team build from a TFS build definition. The team build
gets the latest versions of all checked-in source from all contributors,
provisions a build server, and runs the defined build workflow, including
any code analysis, lab deployment, or build verification tests that have
been defined in the build. (See Chapter 7, “Build and Lab,” for more
information.)

Scrum, Agile Practices, and Visual Studio30

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 30

Continuous integration is a great practice, if build breaks are rare. In that
case, it is a great way to keep a clean, running drop of the code at all times.
The larger the project, however, the more frequent build breaks can
become. For example, imagine a source base with 100 contributors. Sup-
pose that they are all extraordinary developers, who make an average of
only one build break per three months. With continuous integration, their
build would be broken every day.

To avoid the frequent broken builds, TFS offers a form of continuous
integration called gated check-in. Gated check-in extends the continuous
integration workflow, in that it provisions a server and runs the team build
before check-in. Only if the full build passes, then the server accepts the code
as checked in. Otherwise, the check-in is returned to the developer as a
shelveset with a warning detailing the errors. Chapter 9, “Lessons Learned
at Microsoft Developer Division,” describes how we use this at Microsoft.

In addition, prior to the server mechanisms of continuous integration or
gated check-in, TFS runs check-in policies. These are the earliest and fastest
automated warnings for the developer. They can validate whether unit
tests and code analysis have been run locally, work items associated, check-
in notes completed, and other “doneness” criteria met before the code goes
to the server for either continuous integration or gated check-in.

Test Cycle
Completed PBIs need to be tested, as do bug fixes. Typically, team members
check in code in small increments many times before completing a PBI.
However, when a PBI is completed, a test cycle may start. In addition, many
PBIs and bug fixes are often completed in rapid succession, and these can
be combined into a single test cycle. Accordingly, a simple way to handle
test cycles is to make them daily.

TFS allows for multiple team build definitions, and a good practice is to
have a daily build in addition to the continuous integration or gated check-
in build. When you do this, every daily “build details” page shows the
increment in functionality delivered since the previous daily build, as
shown in Figure 2-7.

Process Cycles and TFS 31

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 31

Figure 2-7: Every build has a “build details” page that serves as an automated release
note, accessible from the dashboard or inside the IDE clients. In this case, it is shown inside
Eclipse, as a team working with Java code would see.

In addition, Microsoft Test Manager (MTM, part of the VS product line)
enables you to compare the current build against the last one tested to see
the most important tests to run based on both backlog changes and new or
churned code, as shown in Figure 2-8. (See Chapter 8, “Test,” for more
information.)

Scrum, Agile Practices, and Visual Studio32

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 32

Figure 2-8: This build assignment in Microsoft Test Manager is a great way to start the test
cycle because it shows the new work delivered since the last tested build and can recom-
mend tests accordingly.

Daily Cycle

The Scrum process specifies a daily scrum, often called a “daily stand-up
meeting,” to inspect progress and adapt to the situation. Daily scrums
should last no more than 15 minutes. As the Scrum Guide explains, during
the meeting, each team member explains the following:

1. What has the team member accomplished since the last meeting?

2. What will the team member accomplish before the next meeting?

3. What obstacles currently impede the team member?

Process Cycles and TFS 33

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 33

Daily scrums improve communications, eliminate other meetings, iden-
tify and remove impediments to development, highlight and promote quick
decision-making, and improve everyone’s level of project knowledge.

Although TFS does not require daily builds, and the process rules do not
mandate combining the daily and testing cycles, treating the daily cycle
and test cycle as the same is certainly convenient. TFS helps considerably
with preparation for the Scrum questions:

• As Figures 2-7 and 2-8 show, the automated release note of the
“build details” page and the test recommendations of MTM help
resolve any discrepancies in assumptions for question 1.

• The My Active Items query should align with question 2.

• The Open Impediments or Open Issues query, shown in Figure 2-9,
should match question 3.

These tools don’t replace the daily scrum, but they remove any dispute
about the data of record. In this way, the team members can focus the meet-
ing to on crucial interpersonal communication rather than questions about
whose data to trust.

Scrum, Agile Practices, and Visual Studio34

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 34

Figure 2-9: The Open Impediments query shows the current state of blocking issues as of
the daily scrum.

Definition of Done at Every Cycle
For each of these cycles—check-in, test, release, and sprint—the team
should have a common definition of done and treat it as a social contract.
The entire team should be able to see the status of done transparently at all
times. Without this social contract, it is impossible to assess technical debt,
and accordingly, impossible to ship increments of software predictably.

With Scrum and TFS working together, every cycle has a done mecha-
nism. Check-in has its policies and the build workflows, test has the test
plans for the cycle, and sprint and release have work items to capture their
done lists.

Process Cycles and TFS 35

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 35

Inspect and Adapt

In addition to the daily 15 minutes, Scrum prescribes that the team have
two meetings at the end of the sprint to inspect progress (the sprint review)
and identify opportunities for process improvement (the sprint retrospec-
tive). Together, these should take about 5% of the sprint, or one day for a
monthly sprint. Alistair Cockburn has described the goal of the retrospec-
tive well: “Can we deliver more easily or better?”9 Retrospectives force the
team to reflect on opportunities for improvement while the experience
is fresh.

Based on the retrospective, the sprint end is a good boundary at which
to make process changes. You can tune based on experience, and you can
adjust for context. For example, you might increase the check-in require-
ments for code review as your project approaches production and use TFS
check-in policies, check-in notes, and build workflow to enforce these
requirements.

Task Boards

Scrum uses the sprint cadence as a common cycle to coordinate prioritiza-
tion of the product backlog and implementation of the iteration backlog.
The team manages its capacity by determining how much product backlog
to take into the coming sprint, usually based on the story points delivered
in prior sprints. This is an effective model for running an empirical process
in complex contexts, as defined in Figure 1-3 in Chapter 1.

Scrum teams often visualize the tasks of the sprint backlog on the wall
with a task board. Manual task boards use sticky notes, where rows group
the tasks related to a particular PBI and columns show the progress of tasks
from planned to in progress to done. As a task progresses, the task owner
moves it along the board.

Several automated task boards currently visualize the sprint backlog of
TFS, as shown in Figure 2-10. They provide a graphical way to interact with
TFS work items and an instant visual indicator of sprint status. Automated
task boards are especially useful for geographically distributed teams and
scrums. You can hang large touch screens in meeting areas at multiple sites,

Scrum, Agile Practices, and Visual Studio36

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 36

and other participants can see the same images on their laptops. Because
they all connect to the same TFS database, they are all current and visible.

Task Boards 37

Figure 2-10: Many TFS add-ins display the product and sprint backlogs as a task board.
This add-in is called Urban Turtle and is available from http://urbanturtle.com

At Microsoft, we use these to coordinate Scrum teams across Redmond,
Raleigh, Hyderabad, Shanghai, and many smaller sites. In Chapter 10,
“Continuous Feedback,” you can see how we have productized our inter-
nal taskboards in the next version of TFS.

The history of task boards is an interesting study in idea diffusion. For
Agile teams, they were modeled after the so-called Kanban (Japanese for
“signboards”) that Taiichi Ohno of Toyota had pioneered for just-in-time
manufacturing. Ohno created his own model after observing how Ameri-
can supermarkets stocked their shelves in the 1950s.10 Ohno observed that
supermarket shelves were stocked not by store employees, but by distrib-
utors, and that the card at the back of the cans of soup, for example, was the
signal to put more soup on the shelf. Ohno introduced this to the factory,
where the card became the signal for the component supplier to bring a
new bin of parts.

Surprisingly, only in the past few years have software teams discovered
the value of the visual and tactile metaphor of the task board. And Toyota
only recently looked to bring Agile methods into its software practices,

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 37

http://urbanturtle.com

Scrum, Agile Practices, and Visual Studio38

based not on its manufacturing but on its observation again of Western
work practices.11 So, we’ve seen an idea move from American supermarkets
to Japanese factories to American software teams back to Japanese software
teams, over a period of 50 years.

Kanban

In software practices, Kanban has become the name of more than the task
board; it is also the name of an alternative process, most closely associated
with David J. Anderson, who has been its primary proponent.12 Where
Scrum uses the team’s commitments for the sprint to regulate capacity,
Kanban uses work-in-progress (WIP) limits. Kanban models workflow
more deterministically with finer state transitions on PBIs, such as Analysis
Ready, Dev Ready, Test Ready, Release Ready, and so on. The PBIs in each
such state are treated as a queue, and each queue is governed by a WIP
limit. When a queue is above the WIP limit, no more work may be pulled
from earlier states, and when it falls below, new work is pulled.

Kanban is more prescriptive than Scrum in managing queues. The Kan-
ban control mechanism allows for continuous adjustment, in contrast to
Scrum, which relies on the team commitment, reviewed at sprint boundaries.

Recent conferences have featured many experience reports comparing
Scrum and Kanban. Kanban clearly works well where the team’s workflow
is relatively stable, the PBIs are fairly consistent, and the release vision well
understood. For example, sustaining engineering projects often have a
backlog of maintenance requests that are similarly sized and lend them-
selves well to Kanban.

In other words, in the Stacey terminology of Figure 1-1, Kanban works
well for complicated or simple projects. The jury is out with regard to complex
projects. Where higher degrees of uncertainty exist in the process, the
explicit sprint cadence of Scrum can prove invaluable. In my experience,
the concept of team commitment and the sprint rhythm are empowering
to teams working in uncharted territory, the common ground of software
development.

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 38

Fit the Process to the Project

Based on your project context and your retrospectives, you may choose to
customize your process template. Ideally, this is a team decision, but certain
stakeholders may have special influence. Even then, every team member
should understand the rationale of the choice and the value of any practice
that the process prescribes. If the value cannot be identified, it is unlikely
that it can be realized. Sometimes the purpose might not be intuitive (cer-
tain legal requirements for example), but if understood can still be
achieved.

As Barry Boehm and Richard Turner have described, it is best to start
small:

Build Your Method Up, Don’t Tailor It Down

Plan-driven methods have had a tradition of developing all-inclusive
methods that can be tailored down to fit a particular situation.
Experts can do this, but nonexperts tend to play it safe and use the
whole thing, often at considerable unnecessary expense. Agilists
offer a better approach of starting with relatively minimal sets of
practices and only adding extras where they can be clearly justified
by cost-benefit.13

Fortunately, TFS assumes that a team will “stretch the process to fit”—
that is, take a small core of values and practices and add more as necessary
(see Figure 2-11).

One of the tenets of the Agile Consensus is to keep overhead to a mini-
mum. Extra process is waste unless it has a clear purpose whose return
justifies the cost. Three common factors might lead to more steps or done
criteria in the process than others: geographic distribution; tacit knowledge
or required documentation; and governance, risk management, and
compliance.

Fit the Process to the Project 39

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 39

Figure 2-11: The Process Template Editor (in the TFS Power Tools on the VS Gallery) enables
you to customize work item types, form design, and workflows.

Geographic Distribution
Most organizations are now geographically distributed. Individual Scrum
teams of seven are best collocated, but multiple Scrum teams across multi-
ple locations often need to coordinate work. For example, on VS, we are
running scrums of scrums and coordinating sprint reviews and planning
across Redmond, Raleigh, and Hyderabad, and several smaller sites, a
spread of 12 time zones. In addition to TFS with large screens, we use
Microsoft Lync for the video and screen sharing, and we record meetings
and sprint review demos so that not everyone needs to be awake at weird
hours to see others’ work.

Scrum, Agile Practices, and Visual Studio40

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 40

Tacit Knowledge or Required Documentation
When you have a geographically distributed team, it is harder to have
spontaneous conversations than when you’re all in one place, although
instant messaging and video chat help a lot. When you’re spread out, you
cannot rely just on tacit knowledge. You can also use internal documenta-
tion to record contract, consensus, architecture, maintainability, or approval
for future audit. Whatever the purpose, write the documentation for its
audience and to its purpose and then stop writing. Once the documentation
serves its purpose, more effort on it is waste. Wherever possible, use TFS
work items as the official record so that there is a “single source of truth.”
Third-party products such as Ekobit TeamCompanion, shown in Chapter 4,
can help by converting email into TFS work items for a visiable and
auditable record.

Governance, Risk Management, and Compliance
Governance, risk management, and compliance (GRC) are closely related terms
that are usually considered together since the passage of the Sarbanes-
Oxley Act of 2002 (SOX) in the United States. For public and otherwise reg-
ulated companies, GRC policies specify how management maintains its
accountability for IT. GRC policies may require more formality in docu-
mentation or in the fields and states of TFS work items than a team would
otherwise capture.

One Project at a Time Versus Many Projects at Once
One of the most valuable planning actions is to ensure that your team mem-
bers can focus on the project at hand without other commitments that drain
their time and attention. Gerald Weinberg once proposed a rule of thumb to
compute the waste caused by project switching, shown in Table 2-1.14

Fit the Process to the Project 41

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 41

Table 2-1: Waste Caused by Project Switching

Number of Percent of Working Loss to

Simultaneous Time Available per Context

Projects Project Switching

1 100% 0%

2 40% 20%

3 20% 40%

4 10% 60%

5 5% 75%

That was 20 years ago, without suitable tooling. In many organizations
today, it is a fact of life that individuals have to work on multiple projects,
and VS is much easier to handle now than it was when Weinberg wrote. In
Chapter 10, I discuss how VS is continuing to help you stay in the groove
despite context switching, but it is still a cognitive challenge.

Summary

As discussed in Chapter 1, in the decade since the Agile Manifesto, the
industry has largely reached consensus on software process. Scrum is at its
core, complemented with Agile engineering practices, and based on Lean
principles. This convergent evolution is the basis for the practices sup-
ported by VS.

This chapter addressed how VS, and TFS in particular, enacts process.
Microsoft provides three process templates with TFS: Scrum, MSF for Agile
Software Development, and MSF for CMMI Process Improvement. All are
Agile processes, relying on iterative development, iterative prioritization,
continuous improvement, constituency-based risk management, and situ-
ationally specific adaptation of the process to the project. Microsoft partners
provide more process templates and you can customize your own.

Core to all the processes is the idea of work in nested cycles: check-in,
test, sprint, and release. Each cycle has its own definition of done, reinforced

Scrum, Agile Practices, and Visual Studio42

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 42

with tooling in TFS. The definitions of done by cycle are the best guards
against the accumulation of technical debt, and thus the best aids in main-
taining the flow of potentially shippable software in every sprint.

Consistent with Scrum, it is important to inspect and adapt not just the
software but also the process itself. TFS provides a Process Template Edi-
tor to adapt the process to the needs of the project. The process design
should reflect meaningful business circumstances and what the team learns
as it matures from sprint to sprint.

Finally, inspect and adapt. Plan on investing in process and tooling early
to improve the economics of the project over its lifespan. By following an
Agile approach, you can achieve considerable long-term benefits, such as
the development of high-quality and modifiable software without a long
tail of technical debt. However, such an approach, and its attendant bene-
fits, requires conscious investment.

The next chapter pulls back to the context around the sprint and dis-
cusses product ownership and the many cycles for collecting and acting on
feedback. That chapter covers the requirements in their many forms and
the techniques for eliciting them and keeping them current in the backlog.

End Notes

1 Alistair Cockburn coined the phrase stretch to fit in his Crystal family
of methodologies and largely pioneered this discussion of context
with his paper “A Methodology per Project,” available at http://
alistair.cockburn.us/crystal/articles/mpp/methodologyperproject.
html.

2 Ken Schwaber and Jeff Sutherland, Scrum Guide, February 2010,
available at www.scrum.org/scrumguides/.

3 www.sei.cmu.edu
4 Kent Beck with Cynthia Andres, Extreme Programming Explained:

Embrace Change, Second Edition (Boston: Addison-Wesley, 2005), 34.
5 Mentioned in the Scrum Guide, and discussed in somewhat greater

length in Ken Schwaber and Mike Beedle, Agile Software Development
with Scrum (Prentice Hall, 2001), 25.

End Notes 43

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 43

www.scrum.org/scrumguides/
www.sei.cmu.edu
http://alistair.cockburn.us/crystal/articles/mpp/methodologyperproject.html
http://alistair.cockburn.us/crystal/articles/mpp/methodologyperproject.html
http://alistair.cockburn.us/crystal/articles/mpp/methodologyperproject.html

6 Scrum Guide, 9.
7 Tom DeMarco and Timothy Lister, Waltzing with Bears: Managing

Risk on Software Projects (New York: Dorset House, 2003), 130.
8 Mike Cohn, Agile Estimating and Planning (Prentice Hall, 2005).
9 Cockburn, op. cit.

10 Ohno, op. cit., 26.
11 Henrik Kniberg, “Toyota’s journey from Waterfall to Lean software

development,” posted March 16, 2010, at http://blog.crisp.se/
henrikkniberg/2010/03/16/1268757660000.html.

12 David J. Anderson, Kanban, Successful Evolutionary Change for Your
Technology Business (Seattle: Blue Hole Press, 2010). This control
mechanism is very similar to the drum-buffer-rope described by
Eli Goldratt in The Goal.

13 Barry Boehm and Richard Turner, Balancing Agility with Discipline:
A Guide for the Perplexed (Boston: Addison-Wesley, 2004), 152.

14 Gerald M. Weinberg, Quality Software Management: Systems Thinking
(New York: Dorset House, 1992), 284.

Scrum, Agile Practices, and Visual Studio44

02_9780321685858_ch02.qxd 8/24/11 9:38 AM Page 44

http://blog.crisp.se/henrikkniberg/2010/03/16/1268757660000.html
http://blog.crisp.se/henrikkniberg/2010/03/16/1268757660000.html

Index

281

A
acceptance testing. See testing
accessibility, 65
action logs, 13
actionable test results, 212-213
activity diagrams, 114
advantages of Visual Studio 2010, xix-xxii
Agile Alliance, 2
Agile Consensus

advantages of, 2-3, 15
architecture, 100

dependency graphs, 103-106
diagram extensibility, 119-121
emergent architecture, 100-101
layer diagrams, 109-112
maintainability, 102-103
modeling projects, 113-119
sequence diagrams, 106-108
transparency, 101-102

builds
automated builds, 179-180
build agents, 183-185
build definitions, maintaining, 183
Build Quality Indicators report,

168-169
Build reports, 181-182
BVTs (build verification tests),

146-147, 181, 246
CI (continuous integration), 177-179
cycle time, 174-175
daily builds, 180
done, definition of, 35, 80, 175-177
elimination of waste, 196-200
failures, 199-200

continuous feedback cycle
advantages of, 263
illustration, 262

descriptive metrics, 81-86
development. See development
empirical process control, 75-76

empirical process models, 4
flow, 8
multiple dimensions of project health, 86
origins of, 1-2
principles of, 4-6
product ownership. See product

ownership
rapid estimation, 78-81
Scrum

explained, 6
potentially shippable increments, 7
product backlog, 8-9
reduction of waste, 9-13
technical debt, 11-12
transparency, 11
user stories, 8

Scrum mastery, 76-77
self-managing teams, 13-14
team size, 77
testing in, 204

exploratory testing, 206
flow of value, 205
reduction of waste, 206-207
transparency, 207

transparency, 5
Agile Management for Software Engineering

(Anderson), 8
analysis paralysis, 29-30
Anderson, David J., 8, 38
architecture, 100

dependency graphs, 103-106
diagram extensibility, 119-121
emergent architecture, 100-101
layer diagrams, 109-112
maintainability, 102-103
modeling projects, 113

activity diagrams, 114
class diagrams, 115-116
component diagrams, 115
Model Links, 117-119
sequence diagrams, 115

11_9780321685858_index.qxd 8/24/11 9:50 AM Page 281

UML Model Explorer, 116-117
use case diagrams, 114

sequence diagrams, 106-108
transparency, 101-102

attractiveness, 65
Austin, Robert, 81
automated builds, 179-180
automated deployment, 190-196
automated testing, 219-220

coded UI tests, 220-221
equivalence classes, 223-224
Web performance tests, 221-223

automatic code analysis, 148-149
availability, 66

B
backlogs

iteration backlog, 251-253
product backlog, 8-9, 24

Microsoft Developer Division case
study, 249-251

PBIs (product backlog items),
174-175, 196-197

problems solved by, 47-50
testing product backlog items,

207-211
sprint backlog, 27-28

balancing capacity, 267
baseless merges, 165-166
Beck, Kent, 10, 135, 203
Beizer, Boris, 216
Boehm, Barry, 26, 39
bottom-up cycles, 30
branching, 162-166

branch visualization, 248
branching by release, 163

Brandeis, Louis, 11
broken windows’ effect, 85-86
Brooks, Frederick, 45-46
Brown, Tim, 58
Bug Ping-Pong, 12-13
bugs

debugging
Multi-Tier Analysis, 156
operational issues, 155-156
performance errors, 156-160
profiling, 156-160
with IntelliTrace, 152-154

handling, 28-29, 218-219
Bugs dashboard, 90-91
build check-in policy, 133-134
build process templates, 183
Build Quality Indicators report, 168-169
Build reports, 181-182
Build Success Over Time report, 200
build verification tests (BVTs), 146-147, 181, 246
builds. See also deployment

automated builds, 179-180
build agents, 183-185
build definitions, maintaining, 183

Build Quality Indicators report, 168-169
Build reports, 181-182
BVTs (build verification tests), 146-147,

181, 246
CI (continuous integration), 177-179
cycle time, 174-175
daily builds, 180
done, definition of, 35, 80, 175-177
elimination of waste

detecting inefficiencies, 198-200
integrating code and tests, 197-198
PBIs (product backlog items), 196-197

failures, 199-200
Builds dashboard, 93-94
Burndown dashboard, 87-88
business background (Microsoft Developer

Division case study)
culture, 241-243
debt crisis, 244-245
waste, 243

business value problem, 47
butterfly effect, 279
BVTs (build verification tests), 146-147, 181, 246

C
Capability Maturity Model Integration

(CMMI), 22
capacity, balancing, 267
catching errors at check-in, 128-130

build check-in policy, 133-134
changesets, 129
check-in policies, 131-132
gated check-in, 132-134
shelving, 134-135

Change by Design (Brown), 58
changesets, 129
chaos theory, 279
check-in policies, 30-31, 131-132
check-in, catching errors at, 128-130

build check-in policy, 133-134
changesets, 129
check-in policies, 30-31, 131-132
gated check-in, 132-134
shelving, 134-135

choosing dashboards, 94-95
CI (continuous integration), 177-179
class diagrams, 115-116
classic continuous integration (CI), 177
clones, finding, 273-274
cloud, TFS (Team Foundation Server) on,

275-276
CMMI (Capability Maturity Model

Integration), 22
Cockburn, Alistair, 19
code coverage, 141-142
Code Review Requests, 272
code reviews

automatic code analysis, 148-149
manual code reviews, 151

code, collaborating on, 272

INDEX282

11_9780321685858_index.qxd 8/24/11 9:50 AM Page 282

coded UI tests, 220-221
Cohn, Mike, 26, 54, 97
collaborating on code, 272
compatibility, 65
component diagrams, 115
concurrency, 65
configuration testing, 187-190
conformance to standards, 67
continuous feedback cycle

advantages of, 263
illustration, 262

continuous integration (CI), 177-179
correction, 10
Create Bug feature, 214-215
crowds, wisdom of, 80
CTPs (customer technical previews), 246
culture (Microsoft Developer Division case

study), 241-243
cumulative flow diagrams, 198-199
customer technical previews (CTPs), 246
customer validation, 62-63
customer value problem, 47-48
customizing dashboards, 94-95
cycle time, 174-175

D
daily builds, 180
daily cycle, 33-35
daily stand-up meeting, 33, 77
dashboards

Bugs, 90-91
Builds, 93-94
Burndown, 87-88
choosing, 94-95
customizing, 94-95
importance of, 86
Quality, 88, 90
Test, 91-93

DDAs (diagnostic data adapters), 212
debugging

with IntelliTrace, 152-154
Multi-Tier Analysis, 156
operational issues, 155-156
performance errors, 156-160
profiling, 156-160

defined process control, 75
defined process model, 2
dependency graphs, 103-106
deployment test labs

automating deployment and test, 190-196
configuration testing, 187-190
setting up, 185-186

descriptive metrics, 81-86
design thinking, 58-60
desirability, 59
detecting inefficiencies, 198-200
DevDiv. See Microsoft Developer Division

case study
Developer Division. See Microsoft Developer

Division case study

development, 126
branching, 162-166
catching errors at check-in, 128-130

build check-in policy, 133-134
changesets, 129
check-in policies, 131-132
gated check-in, 132-134
shelving, 134-135

common problems, 127-128
debugging

IntelliTrace, 152-154
Multi-Tier Analysis, 156
operational issues, 155-156
performance errors, 156-160
profiling, 156-160

Eclipse Team Explorer Everywhere (TEE)
plug-in, 167

merging, 165
sprint cycle, 127
TDD (test-driven development)

advantages of, 136-138
BVTs (build verification tests),

146-147
code coverage, 141-142
code reviews, 148-151
explained, 135-136
generating tests for existing code,

138-140
Red-Green-Refactor, 136
test impact analysis, 143
variable data, 144-145

TFS Power Tools, 167-168
transparency, 168-169
versioning, 160-161

DGML (Directed Graph Markup
Language), 121

diagnostic data adapters (DDAs), 212
diagrams

activity diagrams, 114
class diagrams, 115-116
component diagrams, 115
cumulative flow diagrams, 198-199
extensibility, 119-121
layer diagrams, 109-112
Model Links, 117-119
sequence diagrams, 106-108, 115
use case diagrams, 114

dimensions of project health, 86.
See also dashboards

Directed Graph Markup Language
(DGML), 121

discoverability, 65
dissatisfiers, 55
distortion, preventing, 84
documentation, 41
done

definition of, 35, 80, 175-177
Microsoft Developer Division case study,

246-248

INDEX 283

11_9780321685858_index.qxd 8/24/11 9:50 AM Page 283

E
ease of use, 65
Eclipse Team Explorer Everywhere (TEE)

plug-in, 167
efficiency, 65
Ekobit TeamCompanion, 95
eliminating waste

detecting inefficiencies, 198-200
integrating code and tests, 197-198
PBIs (product backlog items), 196-197

emergent architecture, 100-101
empirical process control, 75-76
empirical process models, 4
enforcing permissions, 23
engineering principles (Microsoft Developer

Division case study), 254
epics, 54
equivalence classes, 223-224
errors, catching at check-in, 128-130

build check-in policy, 133-134
changesets, 129
check-in policies, 131-132
gated check-ins, 132-134
shelving, 134-135

exciters, 55
experiences (Microsoft Developer Division case

study), 250
exploratory testing, 206, 216-218, 275
extensibility (diagrams), 119-121
extra processing, 10

F
failures (build), 199-200
fault model, 233
fault tolerance, 65
feasibility, 59
feature crews (Microsoft Developer Division

case study), 246
features (Microsoft Developer Division case

study), 250
feedback

continuous feedback cycle
advantages of, 263
illustration, 262

in next version of VS product line, 265-267
feedback assistant, 265-267
Fibonacci sequence, 78, 261
15-minute daily scrum, 33, 77
finding clones, 273-274
fitting processes to projects, 39

documentation, 41
geographic distribution, 40
governance, risk management, and

compliance (GRC), 41
project switching, 41-42

flow, 8
cumulative flow diagrams, 198-199
flow of value, testing and, 205

forming-storming-norming-performing, 51
Franklin, Benjamin, 128, 239

full-motion video, 13
functionality, 75
FXCop, 148

G
Garlinghouse, Brad, 47
gated check-in (GC), 31, 132-134, 177-178, 248
General Motors (GM), 15
generating tests for existing code, 138-140
geographic distribution, 40
GM (General Motors), 15
granularity of requirements, 67-68
graphs, dependency, 103-106
GRC (governance, risk management, and

compliance), 41
Great Recession, impact on software

practices, 278

H-I
Haig, Al, 255
Howell, G., 73

inefficiencies, detecting, 198-200
installability, 66
integration

integrating code and tests, 197-198
Microsoft Developer Division case study,

247-248
IntelliTrace, 13, 152-154
interoperability, 67
interruptions, handling, 270-272
iron triangle, 75
isolation (Microsoft Developer Division case

study), 247-248
iteration backlog (Microsoft Developer Division

case study), 251-253

K-L
Kanban, 38
Kano analysis, 55-58
Kay, Alan C., 99, 261
Koskela, L., 73

Lab Management, xxiii
layer diagrams, 109-112
Lean, 1
Liber Abaci (Fibonacci), 261
lightweight methods, 2
links, Model Links, 117-119
load modeling, 226
load testing

diagnosing performance problems with,
229-230

example, 226-228
explained, 225
load modeling, 226
output, 228-229

Logan, Dave, 242, 258
logs, 13

INDEX284

11_9780321685858_index.qxd 8/24/11 9:50 AM Page 284

M
The Machine That Changed the World

(Womack), 1
maintainability, 66

build agents, 183-185
build definitions, 183
designing for, 102-103

manageability, 66-67
managing work visually, 268-270
manual code reviews, 151
Martin, Bob, 273
McConnell, Steve, 75
Mean Time to Recover (MTTR), 66
mean time to repair (MTTR), 277
merging, 165
metrics, descriptive versus prescriptive, 81-86
Microsoft Developer Division case study, 240

culture, 241-243
debt crisis, 244-245
done, definition of, 246-248
engineering principles, 254
feature crews, 246
future plans, 259
integration and isolation, 247-248
iteration backlog, 251-253
management lesson, 258
MQ (milestone for quality), 245-246
product backlog, 249-251
results, 254-255
scale, 240
timeboxes, 246
unintended consequences, 255-258
waste, 243

Microsoft Outlook, managing sprints from, 95
Microsoft Test Manager. See MTM (Microsoft

Test Manager)
milestone for quality (MQ), 245-246
Model Explorer, 116-117
Model Links, 117-119
modeling projects, 113

activity diagrams, 114
class diagrams, 115-116
component diagrams, 115
Model Links, 117-119
sequence diagrams, 115
UML Model Explorer, 116-117
use case diagrams, 114

Moles, 139
monitorability, 66
Moore, Geoffrey, 52
motion, 10
MQ (milestone for quality), 245-246
MSF Agile process template, 22
MSF for CMMI Process Improvement process

template, 22
MTM (Microsoft Test Manager), 32, 207-211

actionable test results, 212-213
Create Bug feature, 214-215
DDAs (diagnotic data adapters), 212
exploratory testing, 216-218

query-based suites, 209
Recommended Tests, 209-210
Shared Steps, 211
test data, 211
test plans, 209
test settings, 213
test steps, 211
test suites, 209

MTTR (Mean Time to Recover), 66
MTTR (mean time to repair), 277
muda, 9-10
Multi-Tier Analysis, 156
multiple dimensions of project health, 86.

See also dashboards
mura, 9-10
muri, 9-10
must-haves, 55

N-O
negative testing, 206
Newton’s Cradle, 125
“No Repro” results, eliminating, 214-215

Ohno, Taiichi, 10, 37
operability, 66
operational issues, 155-156
Outlook, managing sprints from, 95
overburden, 10
overproduction, 10

P
pain points, 53
paper prototyping, 59
PBIs (product backlog items), 24, 174-175,

196-197
Peanut Butter Manifesto, 47
peanut buttering, 249
performance, 64-65

performance problems, diagnosing,
229-230

tuning, 156-160
Web performance tests, 221-222

perishable requirements problem, 49-50
permissions, enforcing, 23
personal development preparation, 30
personas, 52
pesticide paradox, 216
The Pet Shoppe, 47
Pex, 139
planning

Planning Poker, 78-80
releases, 51-54

business value, 52
customer value, 52-53
pain points, 53
scale, 54
user story form, 54
vision statements, 53

sprints, 77
Planning Poker, 78-81

INDEX 285

11_9780321685858_index.qxd 8/24/11 9:50 AM Page 285

PMBOK (Project Management Body of
Knowledge), 3, 69

policies
build check-in policy, 133-134
check-in policies, 31, 131-132

Poppendieck, Tom, 9
portability, 67
potentially shippable increments, 7, 26, 126
PowerPoint, 62
PreFAST, 148
prescriptive metrics, 81-86
preventing distortion, 84
privacy, 64
process cycles, 23-24

bottom-up cycles, 30
check-in, 30-31
daily cycle, 33-35
definition of done at every cycle, 35
personal development preparation, 30
releases, 24-26
sprints

avoiding analysis paralysis, 29-30
explained, 26-27
handling bugs, 28-29
retrospectives, 36
reviews, 36
sprint backlogs, 27-28

test cycle, 31-32
process enactment, 20
process models

defined process model, 2
empirical process models, 4

process templates, 21-22
processes, fitting to projects, 39

documentation, 41
geographic distribution, 40
governance, risk management, and

compliance (GRC), 41
project switching, 41-42

product backlog, 8-9
Microsoft Developer Division case study,

249-251
experiences, 250
features, 250
scenarios, 250

PBIs (product backlog items), 24, 174-175,
196-197

problems solved by
business value problem, 47
customer value problem, 47-48
perishable requirements problem,

49-50
scope creep problem, 48

testing product backlog items, 207-211
Product Owners, 22. See also producct

ownership
product ownership, 256

customer validation, 62-63
design thinking, 58-60

explained, 46-47, 50
granularity of requirements, 67-68
in next version of VS product line

balancing capacity, 267
feedback assistant, 265-267
storyboarding, 264
taskboard visualization, 268-270

Kano analysis, 55-58
qualities of service (QoS), 63-64

manageability, 66-67
performance, 64-65
security and privacy, 64
user experience, 65

release planning, 51-54
business value, 52
customer value, 52-53
pain points, 53
scale, 54
user story form, 54
vision statements, 53

storyboarding, 60-62
work breakdown, 68-70

production-realistic test environments, 230-231
profiling, 156-160
Project Creation Wizard, 21
Project Management Body of Knowledge

(PMBOK), 3, 69
project switching, 41-42
projects, fitting processes to, 39

documentation, 41
geographic distribution, 40
governance, risk management, and

compliance (GRC), 41
project switching, 41-42

Q-R
QoS (qualities of service), 63-64

manageability, 66-67
performance, 64-65
security and privacy, 64
user experience, 65

quality, 75
Quality dashboard, 88-90
quality gates, 247
quantities, comparison of, 79
query-based suites, 209
Quick Cluster, 106

rapid cognition, 79
Rapid Development (McConnell), 75
rapid estimation, 78-81
Reagan, Ronald, 255
Recommended Tests, 209-210
recoverability, 66
Red-Green-Refactor, 136
reduction of waste, 9-10

Bug Ping-Pong, 12-13
Taiichi Ohno’s taxonomy of waste, 10
testing and, 206-207

INDEX286

11_9780321685858_index.qxd 8/24/11 9:50 AM Page 286

releases
explained, 23-26
planning, 51-54

business value, 52
customer value, 52-53
pain points, 53
scale, 54
user story form, 54
vision statements, 53

reliability, 66
reporting, 231-232

Build Quality Indicators report, 168-169
Build reports, 181-182
Build Success Over Time report, 200

resources, 75
responsiveness, 65
results (Microsoft Developer Division case

study), 254-255
retrospectives (sprint), 36, 77
reviews (sprint), 36, 77
Ries, Eric, 173
risk-based testing, 232-235
roles

Product Owner, 22
customer validation, 62-63
design thinking, 58-60
explained, 46-50
granularity of requirements, 67-68
Kano analysis, 55-58
qualities of service (QoS), 63-67
release planning, 51-54
storyboarding, 60-62
work breakdown, 68-70

Scrum Master, 22
Team of Developers, 22

Romer, Paul, 1

S
SaaS (software as a service), 275
satisfiers, 55
scalability, 65
scale, 54, 240
scenarios, 250
Schema Compare, 161
Schwaber, Ken, 3, 15, 24, 97
scope creep, 48
screenshots, 13
Scrum

daily cycle, 33-35
explained, 6
Planning Poker, 78-80
potentially shippable increments, 7, 126
product backlog, 8-9
product ownership

customer validation, 62-63
design thinking, 58-60
explained, 46-47, 50
granularity of requirements, 67-68
Kano analysis, 55-58
qualities of service (QoS), 63-67

release planning, 51-54
storyboarding, 60-62
work breakdown, 68-70

reduction of waste, 9-10
Bug Ping-Pong, 12-13
Taiichi Ohno’s taxonomy of waste, 10
testing and, 206-207

releases, 23-26, 51-54
Scrum Guide, 24, 77
Scrum mastery, 76-77
sprints, 23, 30

avoiding analysis paralysis, 29-30
definition of, 77
explained, 26-27
handling bugs, 28-29
planning, 77
retrospectives, 36, 77
reviews, 36, 77
sprint backlogs, 27-28

task boards, 36-38
team size, 77
teams, 22-23
technical debt, 11-12
transparency, 11
user stories, 8

Scrum Guide, 24, 77
Scrum Master, 22
Scrum process template, 21
security, 64
security testing, 235
self-managing teams, 13-14
sequence diagrams, 106-108, 115
serviceability, 67
Shared Steps, 211, 220
shelving, 134-135
size of teams, 77
Sketchflow, 62
software as a service (SaaS), 275
software under test (SUT), 219
sprint backlogs, 27-28
sprints, 23, 30

avoiding analysis paralysis, 29-30
definition of, 77
done, 80
explained, 26-27
handling bugs, 28-29
managing

with dashboards. See dashboards
with Microsoft Outlook, 95

planning, 77
Planning Poker, 78-80
retrospectives, 36, 77
reviews, 36, 77
sprint backlogs, 27-28
sprint cycle, 127

Stacey Matrix, 3
Stacey, Ralph D., 3
standards, conformance to, 67
static code analysis, 148-149
story points, 78

INDEX 287

11_9780321685858_index.qxd 8/24/11 9:50 AM Page 287

story-point estimation, 78-80
storyboarding, 60-62, 264
Strategic Management and Organisational

Dynamics (Stacey), 3
stubs, 139
SUT (software under test), 219
Sutherland, Jeff, 24
system configurations, 13

T
task boards, 36-38
taskboard visualization, 268-270
TDD (test-driven development)

advantages of, 136-138
BVTs (build verification tests), 146-147
code coverage, 141-142
code reviews

automatic code analysis, 148-149
manual code reviews, 151

explained, 135-136
generating tests for existing code, 138-140
Red-Green-Refactor, 136
test impact analysis, 143
variable data, 144-145

Team Explorer, xxiii
Team Explorer Everywhere (TEE), xxiii, 167
Team Foundation Server. See TFS
Team of Developers, 22
team projects, 20
TeamCompanion, 95
teams, 22-23

self-managing teams, 13-14
size of, 77

technical debt, 11-12, 244-245
TEE (Team Explorer Everywhere), xxiii, 167
templates, process templates, 21-22
Test dashboard, 91-93
test-driven development. See TDD
test impact analysis, 143
Test Management Approach (TMap), 22
testability, 67
testing. See also debugging

in Agile Consensus, 204
exploratory testing, 206
flow of value, 205
reduction of waste, 206-207
transparency, 207

automated testing, 219-220
coded UI tests, 220-221
equivalence classes, 223-224
Web performance tests, 221-223

exploratory testing, 275
fault model, 233
integrating code and tests, 197-198
load testing

diagnosing performance problems
with, 229-230

example, 226-228
explained, 225

load modeling, 226
output, 228-229

MTM (Microsoft Test Manager), 207-211
actionable test results, 212-213
Create Bug feature, 214-215
DDAs (diagnostic data adapters), 212
exploratory testing, 216-218
query-based suites, 209
Recommended Tests, 209-210
Shared Steps, 211
test data, 211
test plans, 209
test settings, 213
test steps, 211
test suites, 209

negative testing, 206
production-realistic test environments,

230-231
reporting, 231-232
risk-based testing, 232-235
security testing, 235
SUT (software under test), 219
TDD (test-driven development)

advantages of, 136-138
BVTs (build verification tests),

146-147
code coverage, 141-142
code reviews, 148-151
explained, 135-136
generating tests for existing code,

138-140
Red-Green-Refactor, 136
test impact analysis, 143
variable data, 144-145

test automation, 257
test category, 146
test configurations, 188
test cycle, 31-32
test data, 211
test labs

automating deployment and test,
190-196

configuration testing, 187-190
setting up, 185-186

test plans, 209
test settings, 213
test steps, 211
test suites, 209

TFS (Team Foundation Server), 20
explained, xxiii-xxv
fitting processes to projects, 39

documentation, 41
geographic distribution, 40
governance, risk management, and

compliance (GRC), 41
project switching, 41-42

Power Tools, 167-168
process cycles, 23

bottom-up cycles, 30
check-in, 30-31

INDEX288

11_9780321685858_index.qxd 8/24/11 9:50 AM Page 288

daily cycle, 33-35
definition of done at every cycle, 35
personal development

preparation, 30
releases, 24-26
sprints, 26-30
test cycle, 31-32

on Windows Azure, 275-276
themes, 54
time, 75
timeboxes (Microsoft Developer Division case

study), 246
TMap (Test Management Approach), 22
tours, 206
Toyota, 1, 14, 37
transparency, 5, 11

architecture, 101-102
development, 168-169
testing and, 207

Tribal Leadership (Logan et al), 242
tuning performance, 156-160
Turner, Richard, 39

U
UML

activity diagrams, 114
class diagrams, 115-116
component diagrams, 115
Model Explorer, 116-117
sequence diagrams, 115
use case diagrams, 114

“The Underlying Theory of Project
Management Is Obsolete” (Koskela and
Howell), 73

uninstallability, 66
unintended consequences (Microsoft Developer

Division case study), 255-258
unreasonableness, 10
use case diagrams, 114
user experience, 65
user stories, 8
User Stories Applied: For Agile Software

Development (Cohn), 54
user story form, 54

V
validation, customer, 62-63
variable data, 144-145
Vasa, 48
velocity, 80
version skew, preventing

branching, 162-166
merging, 165
versioning, 160-161

versioning, 160-161
viability, 59
virtual machine snapshots, 13
vision statements, 53

Visual Studio Premium, xxiii
Visual Studio Test Professional, xxiii
Visual Studio. See VS
visualization, taskboard, 268-270
vNext (next version of VS product line), 263

balancing capacity, 267
clones, finding, 273-274
Code Review Requests, 272
exploratory testing, 275
feedback assistant, 265-267
impact on flow of value, 276-278
interruptions, handling, 270-272
storyboarding, 264
taskboard visualization, 268-270
Team Foundation Server on Windows

Azure, 275-276
VS (Visual Studio)

process enactment, 20
process templates, 21-22
vNext (next version of VS product

line), 263
balancing capacity, 267
clones, finding, 273-274
Code Review Requests, 272
exploratory testing, 275
feedback assistant, 265-267
impact on flow of value, 276-278
interruptions, handling, 270, 272
storyboarding, 264
taskboard visualization, 268-270
Team Foundation Server on

Windows Azure, 275-276

W-X-Y-Z
waiting, 10
waste

eliminating
detecting inefficiencies, 198-200
integrating code and tests, 197-198
PBIs (product backlog items), 196-197

Microsoft Developer Division case
study, 243

reducing, 9-10
Bug Ping-Pong, 12-13
Taiichi Ohno’s taxonomy of waste, 10
testing and, 206-207

Web performance tests, 221-223
Weinberg, Gerald, 41
Wideband Delphi Method, 26
Windows Azure, TFS (Team Foundation Server)

on, 275-276
WIP (work-in-progress) limits, 38
wizards, Project Creation Wizard, 21
Womack, Jim, 1, 15
work breakdown, 68-70
work item types, 21
work-in-progress (WIP) limits, 38
world readiness, 65

INDEX 289

11_9780321685858_index.qxd 8/24/11 9:50 AM Page 289

	Contents
	Foreword
	Preface
	Acknowledgements
	About the Authors
	2 Scrum, Agile Practices, and Visual Studio
	Visual Studio and Process Enactment
	Process Templates
	Teams

	Process Cycles and TFS
	Release
	Sprint
	Bottom-Up Cycles
	Personal Development Preparation
	Check-In
	Test Cycle
	Definition of Done at Every Cycle

	Inspect and Adapt
	Task Boards
	Kanban
	Fit the Process to the Project
	Geographic Distribution
	Tacit Knowledge or Required Documentation
	Governance, Risk Management, and Compliance
	One Project at a Time Versus Many Projects at Once

	Summary
	End Notes

	Index
	A
	B
	C
	D
	E
	F
	G
	H-I
	K-L
	M
	N-O
	P
	Q-R
	S
	T
	U
	V
	W-X-Y-Z

