
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321683915
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321683915
https://plusone.google.com/share?url=http://www.informit.com/title/9780321683915
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321683915
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321683915/Free-Sample-Chapter

Test-Driven JavaScript
Development

The Developer’s Library Series from Addison-Wesley provides

practicing programmers with unique, high-quality references and

tutorials on the latest programming languages and technologies they

use in their daily work. All books in the Developer’s Library are written by

expert technology practitioners who are exceptionally skilled at organizing

and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-

source programming languages and databases, Linux programming,

Microsoft, and Java, to Web development, social networking platforms,

Mac/iPhone programming, and Android programming.

Visit developers-library.com for a complete list of available products

Developer’s Library Series

Test-Driven JavaScript
Development

Christian Johansen

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Johansen, Christian, 1982-
Test-driven JavaScript development / Christian Johansen.

p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-321-68391-5 (pbk. : alk. paper)
ISBN-10: 0-321-68391-9 (pbk. : alk. paper)
1. JavaScript (Computer program language) I. Title.
QA76.73.J39J64 2011
005.13’3–dc22 2010027298

Copyright c© 2011 Pearson Education, Inc.

ISBN-13: 978-0-321-68391-5

ISBN-10: 0-321-68391-9

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.

Acquisitions Editor
Trina MacDonald

Development Editor
Songlin Qiu

Managing Editor
John Fuller

Project Editor
Madhu Bhardwaj,
Glyph International

Project Coordinator
Elizabeth Ryan

Copy Editor
Mike Read

Indexer
Robert Swanson

Proofreader
David Daniels

Technical Reviewers
Andrea Giammarchi
Joshua Gross
Jacob Seidelin

Cover Designer
Gary Adair

Compositor
Glyph International

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458,
or you may fax your request to (201) 236-3290.

Second printing, May 2012

To Frøydis and Kristin, my special ladies.

This page intentionally left blank

Contents

Preface xix

Acknowledgments xxv

About the Author xxvii

Part I Test-Driven Development 1

1. Automated Testing 3
1.1 The Unit Test 4

1.1.1 Unit Testing Frameworks 5
1.1.2 strftime for JavaScript Dates 5

1.2 Assertions 9
1.2.1 Red and Green 10

1.3 Test Functions, Cases, and Suites 11
1.3.1 Setup and Teardown 13

1.4 Integration Tests 14
1.5 Benefits of Unit Tests 16

1.5.1 Regression Testing 16
1.5.2 Refactoring 17
1.5.3 Cross-Browser Testing 17
1.5.4 Other Benefits 17

1.6 Pitfalls of Unit Testing 18
1.7 Summary 18

2. The Test-Driven Development Process 21
2.1 Goal and Purpose of Test-Driven Development 21

2.1.1 Turning Development Upside-Down 22
2.1.2 Design in Test-Driven Development 22

vii

viii Contents

2.2 The Process 23
2.2.1 Step 1: Write a Test 24
2.2.2 Step 2: Watch the Test Fail 25
2.2.3 Step 3: Make the Test Pass 26

2.2.3.1 You Ain’t Gonna Need It 26
2.2.3.2 Passing the Test for String.prototype.trim 27
2.2.3.3 The Simplest Solution that Could Possibly Work 27

2.2.4 Step 4: Refactor to Remove Duplication 28
2.2.5 Lather, Rinse, Repeat 29

2.3 Facilitating Test-Driven Development 29
2.4 Benefits of Test-Driven Development 30

2.4.1 Code that Works 30
2.4.2 Honoring the Single Responsibility Principle 30
2.4.3 Forcing Conscious Development 31
2.4.4 Productivity Boost 31

2.5 Summary 31

3. Tools of the Trade 33
3.1 xUnit Test Frameworks 33

3.1.1 Behavior-Driven Development 34
3.1.2 Continuous Integration 34
3.1.3 Asynchronous Tests 35
3.1.4 Features of xUnit Test Frameworks 35

3.1.4.1 The Test Runner 35
3.1.5 Assertions 36
3.1.6 Dependencies 37

3.2 In-Browser Test Frameworks 37
3.2.1 YUI Test 38

3.2.1.1 Setup 38
3.2.1.2 Running Tests 40

3.2.2 Other In-Browser Testing Frameworks 40
3.3 Headless Testing Frameworks 41

3.3.1 Crosscheck 42
3.3.2 Rhino and env.js 42
3.3.3 The Issue with Headless Test Runners 42

3.4 One Test Runner to Rule Them All 42
3.4.1 How JsTestDriver Works 43
3.4.2 JsTestDriver Disadvantages 44
3.4.3 Setup 44

3.4.3.1 Download the Jar File 44
3.4.3.2 Windows Users 45
3.4.3.3 Start the Server 45
3.4.3.4 Capturing Browsers 46

Contents ix

3.4.3.5 Running Tests 46
3.4.3.6 JsTestDriver and TDD 48

3.4.4 Using JsTestDriver From an IDE 49
3.4.4.1 Installing JsTestDriver in Eclipse 49
3.4.4.2 Running JsTestDriver in Eclipse 50

3.4.5 Improved Command Line Productivity 51
3.4.6 Assertions 51

3.5 Summary 52

4. Test to Learn 55
4.1 Exploring JavaScript with Unit Tests 55

4.1.1 Pitfalls of Programming by Observation 58
4.1.2 The Sweet Spot for Learning Tests 59

4.1.2.1 Capturing Wisdom Found in the Wild 59
4.1.2.2 Exploring Weird Behavior 59
4.1.2.3 Exploring New Browsers 59
4.1.2.4 Exploring Frameworks 60

4.2 Performance Tests 60
4.2.1 Benchmarks and Relative Performance 60
4.2.2 Profiling and Locating Bottlenecks 68

4.3 Summary 69

Part II JavaScript for Programmers 71

5. Functions 73
5.1 Defining Functions 73

5.1.1 Function Declaration 73
5.1.2 Function Expression 74
5.1.3 The Function Constructor 75

5.2 Calling Functions 77
5.2.1 The arguments Object 77
5.2.2 Formal Parameters and arguments 79

5.3 Scope and Execution Context 80
5.3.1 Execution Contexts 81
5.3.2 The Variable Object 81
5.3.3 The Activation Object 82
5.3.4 The Global Object 82
5.3.5 The Scope Chain 83
5.3.6 Function Expressions Revisited 84

5.4 The this Keyword 87
5.4.1 Implicitly Setting this 88
5.4.2 Explicitly Setting this 89
5.4.3 Using Primitives As this 89

5.5 Summary 91

x Contents

6. Applied Functions and Closures 93
6.1 Binding Functions 93

6.1.1 Losing this: A Lightbox Example 93
6.1.2 Fixing this via an Anonymous Function 95
6.1.3 Function.prototype.bind 95
6.1.4 Binding with Arguments 97
6.1.5 Currying 99

6.2 Immediately Called Anonymous Functions 101
6.2.1 Ad Hoc Scopes 101

6.2.1.1 Avoiding the Global Scope 101
6.2.1.2 Simulating Block Scope 102

6.2.2 Namespaces 103
6.2.2.1 Implementing Namespaces 104
6.2.2.2 Importing Namespaces 106

6.3 Stateful Functions 107
6.3.1 Generating Unique Ids 107
6.3.2 Iterators 109

6.4 Memoization 112
6.5 Summary 115

7. Objects and Prototypal Inheritance 117
7.1 Objects and Properties 117

7.1.1 Property Access 118
7.1.2 The Prototype Chain 119
7.1.3 Extending Objects through the Prototype Chain 121
7.1.4 Enumerable Properties 122

7.1.4.1 Object.prototype.hasOwnProperty 124
7.1.5 Property Attributes 126

7.1.5.1 ReadOnly 126
7.1.5.2 DontDelete 126
7.1.5.3 DontEnum 126

7.2 Creating Objects with Constructors 130
7.2.1 prototype and [[Prototype]] 130
7.2.2 Creating Objects with new 131
7.2.3 Constructor Prototypes 132

7.2.3.1 Adding Properties to the Prototype 132
7.2.4 The Problem with Constructors 135

7.3 Pseudo-classical Inheritance 136
7.3.1 The Inherit Function 137
7.3.2 Accessing [[Prototype]] 138
7.3.3 Implementing super 139

7.3.3.1 The _super Method 140

Contents xi

7.3.3.2 Performance of the super Method 143
7.3.3.3 A _super Helper Function 143

7.4 Encapsulation and Information Hiding 145
7.4.1 Private Methods 145
7.4.2 Private Members and Privileged Methods 147
7.4.3 Functional Inheritance 148

7.4.3.1 Extending Objects 149
7.5 Object Composition and Mixins 150

7.5.1 The Object.create Method 151
7.5.2 The tddjs.extend Method 153
7.5.3 Mixins 157

7.6 Summary 158

8. ECMAScript 5th Edition 159
8.1 The Close Future of JavaScript 159
8.2 Updates to the Object Model 161

8.2.1 Property Attributes 161
8.2.2 Prototypal Inheritance 164
8.2.3 Getters and Setters 166
8.2.4 Making Use of Property Attributes 167
8.2.5 Reserved Keywords as Property Identifiers 170

8.3 Strict Mode 171
8.3.1 Enabling Strict Mode 171
8.3.2 Strict Mode Changes 172

8.3.2.1 No Implicit Globals 172
8.3.2.2 Functions 172
8.3.2.3 Objects, Properties, and Variables 174
8.3.2.4 Additional Restrictions 174

8.4 Various Additions and Improvements 174
8.4.1 Native JSON 175
8.4.2 Function.prototype.bind 175
8.4.3 Array Extras 175

8.5 Summary 176

9. Unobtrusive JavaScript 177
9.1 The Goal of Unobtrusive JavaScript 177
9.2 The Rules of Unobtrusive JavaScript 178

9.2.1 An Obtrusive Tabbed Panel 179
9.2.2 Clean Tabbed Panel Markup 181
9.2.3 TDD and Progressive Enhancement 182

9.3 Do Not Make Assumptions 183
9.3.1 Don’t Assume You Are Alone 183

9.3.1.1 How to Avoid 183

xii Contents

9.3.2 Don’t Assume Markup Is Correct 183
9.3.2.1 How to Avoid 184

9.3.3 Don’t Assume All Users Are Created Equal 184
9.3.3.1 How to Avoid 184

9.3.4 Don’t Assume Support 184
9.4 When Do the Rules Apply? 184
9.5 Unobtrusive Tabbed Panel Example 185

9.5.1 Setting Up the Test 186
9.5.2 The tabController Object 187
9.5.3 The activateTab Method 190
9.5.4 Using the Tab Controller 192

9.6 Summary 196

10. Feature Detection 197
10.1 Browser Sniffing 198

10.1.1 User Agent Sniffing 198
10.1.2 Object Detection 199
10.1.3 The State of Browser Sniffing 200

10.2 Using Object Detection for Good 200
10.2.1 Testing for Existence 201
10.2.2 Type Checking 201
10.2.3 Native and Host Objects 202
10.2.4 Sample Use Testing 204
10.2.5 When to Test 206

10.3 Feature Testing DOM Events 207
10.4 Feature Testing CSS Properties 208
10.5 Cross-Browser Event Handlers 210
10.6 Using Feature Detection 213

10.6.1 Moving Forward 213
10.6.2 Undetectable Features 214

10.7 Summary 214

Part III Real-World Test-Driven Development in JavaScript 217

11. The Observer Pattern 219
11.1 The Observer in JavaScript 220

11.1.1 The Observable Library 220
11.1.2 Setting up the Environment 221

11.2 Adding Observers 222
11.2.1 The First Test 222

11.2.1.1 Running the Test and Watching It Fail 222
11.2.1.2 Making the Test Pass 223

Contents xiii

11.2.2 Refactoring 225
11.3 Checking for Observers 226

11.3.1 The Test 226
11.3.1.1 Making the Test Pass 227
11.3.1.2 Solving Browser Incompatibilities 228

11.3.2 Refactoring 229
11.4 Notifying Observers 230

11.4.1 Ensuring That Observers Are Called 230
11.4.2 Passing Arguments 231

11.5 Error Handling 232
11.5.1 Adding Bogus Observers 232
11.5.2 Misbehaving Observers 233
11.5.3 Documenting Call Order 234

11.6 Observing Arbitrary Objects 235
11.6.1 Making the Constructor Obsolete 236
11.6.2 Replacing the Constructor with an Object 239
11.6.3 Renaming Methods 240

11.7 Observing Arbitrary Events 241
11.7.1 Supporting Events in observe 241
11.7.2 Supporting Events in notify 243

11.8 Summary 246

12. Abstracting Browser Differences: Ajax 247
12.1 Test Driving a Request API 247

12.1.1 Discovering Browser Inconsistencies 248
12.1.2 Development Strategy 248
12.1.3 The Goal 248

12.2 Implementing the Request Interface 249
12.2.1 Project Layout 249
12.2.2 Choosing the Interface Style 250

12.3 Creating an XMLHttpRequest Object 250
12.3.1 The First Test 251
12.3.2 XMLHttpRequest Background 251
12.3.3 Implementing tddjs.ajax.create 253
12.3.4 Stronger Feature Detection 254

12.4 Making Get Requests 255
12.4.1 Requiring a URL 255
12.4.2 Stubbing the XMLHttpRequest Object 257

12.4.2.1 Manual Stubbing 257
12.4.2.2 Automating Stubbing 258
12.4.2.3 Improved Stubbing 261
12.4.2.4 Feature Detection and ajax.create 263

xiv Contents

12.4.3 Handling State Changes 263
12.4.4 Handling the State Changes 265

12.4.4.1 Testing for Success 265
12.5 Using the Ajax API 269

12.5.1 The Integration Test 269
12.5.2 Test Results 270
12.5.3 Subtle Trouble Ahead 271
12.5.4 Local Requests 273
12.5.5 Testing Statuses 274

12.5.5.1 Further Status Code Tests 276
12.6 Making POST Requests 277

12.6.1 Making Room for Posts 277
12.6.1.1 Extracting ajax.request 278
12.6.1.2 Making the Method Configurable 278
12.6.1.3 Updating ajax.get 280
12.6.1.4 Introducing ajax.post 281

12.6.2 Sending Data 282
12.6.2.1 Encoding Data in ajax.request 283
12.6.2.2 Sending Encoded Data 284
12.6.2.3 Sending Data with GET Requests 285

12.6.3 Setting Request Headers 287
12.7 Reviewing the Request API 288
12.8 Summary 292

13. Streaming Data with Ajax and Comet 293
13.1 Polling for Data 294

13.1.1 Project Layout 294
13.1.2 The Poller: tddjs.ajax.poller 295

13.1.2.1 Defining the Object 296
13.1.2.2 Start Polling 296
13.1.2.3 Deciding the Stubbing Strategy 298
13.1.2.4 The First Request 299
13.1.2.5 The complete Callback 300

13.1.3 Testing Timers 303
13.1.3.1 Scheduling New Requests 304
13.1.3.2 Configurable Intervals 306

13.1.4 Configurable Headers and Callbacks 308
13.1.5 The One-Liner 311

13.2 Comet 314
13.2.1 Forever Frames 314
13.2.2 Streaming XMLHttpRequest 315
13.2.3 HTML5 315

13.3 Long Polling XMLHttpRequest 315

Contents xv

13.3.1 Implementing Long Polling Support 316
13.3.1.1 Stubbing Date 316
13.3.1.2 Testing with Stubbed Dates 317

13.3.2 Avoiding Cache Issues 319
13.3.3 Feature Tests 320

13.4 The Comet Client 321
13.4.1 Messaging Format 321
13.4.2 Introducing ajax.CometClient 323
13.4.3 Dispatching Data 323

13.4.3.1 Adding ajax.CometClient.dispatch 324
13.4.3.2 Delegating Data 324
13.4.3.3 Improved Error Handling 325

13.4.4 Adding Observers 327
13.4.5 Server Connection 329

13.4.5.1 Separating Concerns 334
13.4.6 Tracking Requests and Received Data 335
13.4.7 Publishing Data 338
13.4.8 Feature Tests 338

13.5 Summary 339

14. Server-Side JavaScript with Node.js 341
14.1 The Node.js Runtime 341

14.1.1 Setting up the Environment 342
14.1.1.1 Directory Structure 342
14.1.1.2 Testing Framework 343

14.1.2 Starting Point 343
14.1.2.1 The Server 343
14.1.2.2 The Startup Script 344

14.2 The Controller 345
14.2.1 CommonJS Modules 345
14.2.2 Defining the Module: The First Test 345
14.2.3 Creating a Controller 346
14.2.4 Adding Messages on POST 347

14.2.4.1 Reading the Request Body 348
14.2.4.2 Extracting the Message 351
14.2.4.3 Malicious Data 354

14.2.5 Responding to Requests 354
14.2.5.1 Status Code 354
14.2.5.2 Closing the Connection 355

14.2.6 Taking the Application for a Spin 356
14.3 Domain Model and Storage 358

14.3.1 Creating a Chat Room 358
14.3.2 I/O in Node 358

xvi Contents

14.3.3 Adding Messages 359
14.3.3.1 Dealing with Bad Data 359
14.3.3.2 Successfully Adding Messages 361

14.3.4 Fetching Messages 363
14.3.4.1 The getMessagesSince Method 363
14.3.4.2 Making addMessage Asynchronous 365

14.4 Promises 367
14.4.1 Refactoring addMessage to Use Promises 367

14.4.1.1 Returning a Promise 368
14.4.1.2 Rejecting the Promise 369
14.4.1.3 Resolving the Promise 370

14.4.2 Consuming Promises 371
14.5 Event Emitters 372

14.5.1 Making chatRoom an Event Emitter 372
14.5.2 Waiting for Messages 375

14.6 Returning to the Controller 378
14.6.1 Finishing the post Method 378
14.6.2 Streaming Messages with GET 380

14.6.2.1 Filtering Messages with Access Tokens 381
14.6.2.2 The respond Method 382
14.6.2.3 Formatting Messages 383
14.6.2.4 Updating the Token 385

14.6.3 Response Headers and Body 386
14.7 Summary 387

15. TDD and DOM Manipulation: The Chat Client 389
15.1 Planning the Client 389

15.1.1 Directory Structure 390
15.1.2 Choosing the Approach 390

15.1.2.1 Passive View 391
15.1.2.2 Displaying the Client 391

15.2 The User Form 392
15.2.1 Setting the View 392

15.2.1.1 Setting Up the Test Case 392
15.2.1.2 Adding a Class 393
15.2.1.3 Adding an Event Listener 394

15.2.2 Handling the Submit Event 398
15.2.2.1 Aborting the Default Action 398
15.2.2.2 Embedding HTML in Tests 400
15.2.2.3 Getting the Username 401
15.2.2.4 Notifying Observers of the User 403
15.2.2.5 Removing the Added Class 406
15.2.2.6 Rejecting Empty Usernames 406

15.2.3 Feature Tests 407

Contents xvii

15.3 Using the Client with the Node.js Backend 408
15.4 The Message List 411

15.4.1 Setting the Model 411
15.4.1.1 Defining the Controller and Method 411
15.4.1.2 Subscribing to Messages 412

15.4.2 Setting the View 414
15.4.3 Adding Messages 416
15.4.4 Repeated Messages from Same User 418
15.4.5 Feature Tests 420
15.4.6 Trying it Out 420

15.5 The Message Form 422
15.5.1 Setting up the Test 422
15.5.2 Setting the View 422

15.5.2.1 Refactoring: Extracting the Common Parts 423
15.5.2.2 Setting messageFormController’s View 424

15.5.3 Publishing Messages 425
15.5.4 Feature Tests 428

15.6 The Final Chat Client 429
15.6.1 Finishing Touches 430

15.6.1.1 Styling the Application 430
15.6.1.2 Fixing the Scrolling 431
15.6.1.3 Clearing the Input Field 432

15.6.2 Notes on Deployment 433
15.7 Summary 434

Part IV Testing Patterns 437

16. Mocking and Stubbing 439
16.1 An Overview of Test Doubles 439

16.1.1 Stunt Doubles 440
16.1.2 Fake Object 440
16.1.3 Dummy Object 441

16.2 Test Verification 441
16.2.1 State Verification 442
16.2.2 Behavior Verification 442
16.2.3 Implications of Verification Strategy 443

16.3 Stubs 443
16.3.1 Stubbing to Avoid Inconvenient Interfaces 444
16.3.2 Stubbing to Force Certain Code Paths 444
16.3.3 Stubbing to Cause Trouble 445

16.4 Test Spies 445
16.4.1 Testing Indirect Inputs 446
16.4.2 Inspecting Details about a Call 446

16.5 Using a Stub Library 447

xviii Contents

16.5.1 Creating a Stub Function 448
16.5.2 Stubbing a Method 448
16.5.3 Built-in Behavior Verification 451
16.5.4 Stubbing and Node.js 452

16.6 Mocks 453
16.6.1 Restoring Mocked Methods 453
16.6.2 Anonymous Mocks 454
16.6.3 Multiple Expectations 455
16.6.4 Expectations on the this Value 456

16.7 Mocks or Stubs? 457
16.8 Summary 458

17. Writing Good Unit Tests 461
17.1 Improving Readability 462

17.1.1 Name Tests Clearly to Reveal Intent 462
17.1.1.1 Focus on Scannability 462
17.1.1.2 Breaking Free of Technical Limitations 463

17.1.2 Structure Tests in Setup, Exercise, and Verify Blocks 464
17.1.3 Use Higher-Level Abstractions to Keep Tests Simple 465

17.1.3.1 Custom Assertions: Behavior Verification 465
17.1.3.2 Domain Specific Test Helpers 466

17.1.4 Reduce Duplication, Not Clarity 467
17.2 Tests as Behavior Specification 468

17.2.1 Test One Behavior at a Time 468
17.2.2 Test Each Behavior Only Once 469
17.2.3 Isolate Behavior in Tests 470

17.2.3.1 Isolation by Mocking and Stubbing 470
17.2.3.2 Risks Introduced by Mocks and Stubs 471
17.2.3.3 Isolation by Trust 472

17.3 Fighting Bugs in Tests 473
17.3.1 Run Tests Before Passing Them 473
17.3.2 Write Tests First 473
17.3.3 Heckle and Break Code 474
17.3.4 Use JsLint 474

17.4 Summary 475

Bibliography 477

Index 479

Preface

Author’s Vision for the Book
Over the recent years, JavaScript has grown up. Long gone are the glory days
of “DHTML”; we are now in the age of “Ajax,” possibly even “HTML5.” Over
the past years JavaScript gained some killer applications; it gained robust libraries
to aid developers in cross-browser scripting; and it gained a host of tools such
as debuggers, profilers, and unit testing frameworks. The community has worked
tirelessly to bring in the tools they know and love from other languages to help give
JavaScript a “real” development environment in which they can use the workflows
and knowledge gained from working in other environments and focus on building
quality applications.

Still, the JavaScript community at large is not particularly focused on automated
testing, and test-driven development is still rare among JavaScript developers—in
spite of working in the language with perhaps the widest range of target platforms.
For a long time this may have been a result of lacking tool support, but new unit
testing frameworks are popping up all the time, offering a myriad of ways to test
your code in a manner that suits you. Even so, most web application developers
skimp on testing their JavaScript. I rarely meet a web developer who has the kind
of confidence to rip core functionality right out of his application and rearrange it,
that a strong test suite gives you. This confidence allows you to worry less about
breaking your application, and focus more on implementing new features.

With this book I hope to show you that unit testing and test-driven development
in JavaScript have come a long way, and that embracing them will help you write
better code and become a more productive programmer.

xix

xx Preface

What This Book is About
This book is about programming JavaScript for the real world, using the techniques
and workflow suggested by Test-Driven Development. It is about gaining confidence
in your code through test coverage, and gaining the ability to fearlessly refactor and
organically evolve your code base. It is about writing modular and testable code. It
is about writing JavaScript that works in a wide variety of environments and that
doesn’t get in your user’s way.

How This Book is Organized
This book has four parts. They may be read in any order you’re comfortable with.
Part II introduces a few utilities that are used throughout the book, but their usage
should be clear enough, allowing you to skip that part if you already have a solid
understanding of programming JavaScript, including topics such as unobtrusive
JavaScript and feature detection.

Part I: Test-Driven Development
In the first part I’ll introduce you to the concept of automated tests and test-driven
development. We’ll start by looking at what a unit test is, what it does, and what
it’s good for. Then we’ll build our workflow around them as I introduce the test-
driven development process. To round the topic off I’ll show you a few available
unit testing frameworks for JavaScript, discuss their pros and cons, and take a closer
look at the one we’ll be using the most throughout the book.

Part II: JavaScript for Programmers
In Part II we’re going to get a deeper look at programming in JavaScript. This part is
by no means a complete introduction to the JavaScript language. You should already
either have some experience with JavaScript—perhaps by working with libraries like
jQuery, Prototype, or the like—or experience from other programming languages.
If you’re an experienced programmer with no prior experience with JavaScript, this
part should help you understand where JavaScript differs from other languages,
especially less dynamic ones, and give you the foundation you’ll need for the real-
world scenarios in Part III.

If you’re already well-versed in advanced JavaScript concepts such as closures,
prototypal inheritance, the dynamic nature of this, and feature detection, you may
want to skim this part for a reminder, or you may want to skip directly to Part III.

Preface xxi

While working through some of JavaScript’s finer points, I’ll use unit tests to
show you how the language behaves, and we’ll take the opportunity to let tests drive
us through the implementation of some helper utilities, which we’ll use throughout
Part III.

Part III: Real-World Test-Driven Development in JavaScript
In this part we’ll tackle a series of small projects in varying environments. We’ll see
how to develop a small general purpose JavaScript API, develop a DOM dependent
widget, abstract browser differences, implement a server-side JavaScript application,
and more—all using test-driven development. This part focuses on how test-driven
development can help in building cleaner API’s, better modularized code and more
robust software.

Each project introduces new test-related concepts, and shows them in practice
by implementing a fully functional, yet limited piece of code. Throughout this part
we will, among other things, learn how to test code that depends on browser API’s,
timers, event handlers, DOM manipulation, and asynchronous server requests (i.e.,
“Ajax”). We will also get to practice techniques such as stubbing, refactoring, and
using design patterns to solve problems in elegant ways.

Throughout each chapter in this part, ideas on how to extend the functionality
developed are offered, giving you the ability to practice by improving the code on
your own. Extended solutions are available from the book’s website.1

I’ve taken great care throughout these projects to produce runnable code that
actually does things. The end result of the five chapters in Part III is a fully func-
tional instant messaging chat client and server, written exclusively using test-driven
development, in nothing but JavaScript.

Part IV: Testing Patterns
The final part of the book reviews some of the techniques used throughout Part
III from a wider angle. Test doubles, such as mocks and stubs, are investigated in
closer detail along with different forms of test verification. Finally, we review some
guidelines to help you write good unit tests.

Conventions Used in This Book
JavaScript is the name of the language originally designed by Brendan Eich for
Netscape in 1995. Since then, a number of alternative implementations have

1. http://tddjs.com

http://tddjs.com

xxii Preface

surfaced, and the language has been standardized by ECMA International as ECMA-
262, also known as ECMAScript. Although the alternative implementations have
their own names, such as Microsoft’s JScript, they are generally collectively referred
to as “JavaScript,” and I will use JavaScript in this sense as well.

Throughout the text, monospaced font is used to refer to objects, functions,
and small snippets of code.

Who Should Read This Book
This book is for programmers—especially those who write, or are interested in
writing JavaScript. Whether you’re a Ruby developer focusing primarily on Ruby
on Rails; a Java or .Net developer working with web applications; a frontend web
developer whose primary tools are JavaScript, CSS, and HTML; or even a backend
developer with limited JavaScript experience, I hope and think you will find this
book useful.

The book is intended for web application developers who need a firmer grasp of
the finer details of the JavaScript language, as well as better understanding on how
to boost their productivity and confidence while writing maintainable applications
with fewer defects.

Skills Required For This Book
The reader is not required to have any previous knowledge of unit testing or test-
driven development. Automated tests are present through the whole book, and
reading should provide you with a strong understanding of how to successfully use
them.

Equally, the reader is not required to be a JavaScript expert, or even interme-
diate. My hope is that the book will be useful to programmers with very limited
JavaScript experience and savvy JavaScripters alike. You are required, however, to
possess some programming skills, meaning that in order to fully enjoy this book you
should have experience programming in some language, and be familiar with web
application development. This book is not an introductory text in any of the basic
programming related topics, web application-specific topics included.

The second part of the book, which focuses on the JavaScript language, focuses
solely on the qualities of JavaScript that set it apart from the pack, and as such
cannot be expected to be a complete introduction to the language. It is expected
that you will be able to pick up syntax and concepts not covered in this part through
examples using them.

Preface xxiii

In particular, Part II focuses on JavaScript’s functions and closures; JavaScript’s
object model, including prototypal inheritance; and models for code-reuse. Ad-
ditionally, we will go through related programming practices such as unobtrusive
JavaScript and feature detection, both required topics to understand for anyone
targeting the general web.

About the Book’s Website
The book has an accompanying website, http://tddjs.com. At this location you will
find all the code listings from the book, both as zip archives and full Git repositories,
which allow you to navigate the history and see how the code evolves. The Git
repositories are especially useful for the Part III sample projects, where a great deal
of refactoring is involved. Navigating the history of the Git repositories allows you
to see each step even when they simply change existing code.

You can also find my personal website at http://cjohansen.no in which you will
find additional articles, contact information, and so on. If you have any feedback
regarding the book, I would love to hear back from you.

http://tddjs.com
http://cjohansen.no

This page intentionally left blank

Acknowledgments

Quite a few people have made this book possible. First of all I would like to
commend Trina MacDonald, my editor at Addison-Wesley, for being the one who
made all of this possible. Without her, there would be no book, and I deeply appre-
ciate her initiative as well as her ongoing help and motivation while I stumblingly
worked my way through my first book.

I would also like to extend my gratitude toward the rest of the team working
with me on this book; Songlin Qiu for making sure the text is comprehensible and
consistent, and for keeping sane while reviewing a constantly changing manuscript.
Her insights and suggestions have truly made the book better than I could ever
manage on my own. The same can be said for my technical reviewers, Andrea
Giammarchi, Jacob Seidelin, and Joshua Gross. Their impressive attention to detail,
thoughtful feedback, and will to challenge me have helped clarify code, remove
errors, and generally raise the quality of both code samples and surrounding prose,
as well as the structure of the book. Last, but not least, Olivia Basego helped me
cope with the administrative side of working with a publisher like Addison-Wesley
and some challenges related to living in Norway while writing for an American
publisher.

Closer to home, my employers and coworkers at Shortcut AS deserve an hon-
orable mention. Their flexibility in allowing me to occasionally take time off to
write and their genuine interest in the book at large have been very motivating and
key to finishing the manuscript in time. In particular I would like to thank Marius
Mårnes Mathiesen and August Lilleaas for frequent discussions of a truly inspiring
and insightful nature, as well as feedback on early drafts.

Last, but definitely not least; Frøydis and Kristin, friends and bandmates who
have given me space to complete this project and stayed patient while I’ve been

xxv

xxvi Acknowledgments

zombie-like tired after long nights of writing, unavailable for various occasions, and
generally chained to the kitchen table for months (that’s right, I wrote this book in
the kitchen)—thank you for your support.

Finally I would like to extend my appreciation for the open source community
at large. Without it, this book would not be what it is. Open source is what ultimately
got me into writing in the first place. It kept my blog alive; it crossed my path with
my editor’s; and now it is responsible for the book you’re holding in your hands.
Most of the code throughout the book would not have been possible were it not
for people tirelessly putting out top-notch code for anyone to freely peruse, modify,
and use.

All software involved in my part of the production of this book are open source
as well. The book was written entirely in Emacs, using the document preparation
system LaTeX. A host of minor open source tools have been involved in the work-
flow, many of which are native citizens in my operating system of choice—GNU
Linux.

When the book hits the streets, it will have brought with it at least one new
open source project, and I hope I will contribute many more in the years to come.

About the Author

Christian Johansen lives in Oslo, Norway, where he currently works for Shortcut
AS, a software company focusing on open source technology, web applications, and
mobile applications. Originally a student in informatics, mathematics, and digital
signal processing, Christian has spent his professional career specializing in web
applications and frontend technologies such as JavaScript, CSS, and HTML, tech-
nologies he has been passionate about since around the time the HTML 4.01 spec
was finalized.

As a consultant, Christian has worked with many high profile companies in
Norway, including leading companies within the finance and telecom sector, where
he has worked on small and big web applications ranging from the average CMS-
backed corporate website via e-commerce to self service applications.

In later years Christian has been an avid blogger. Derived from the same desire
to share and contribute to the community that gave him so much for free, Christian
has involved himself in and contributed to quite a few open source projects.

After working on several projects with less than trivial amounts of JavaScript,
Christian has felt the pain of developing “the cowboy style.” In an attempt at im-
proving code quality, confidence, and the ability to modify and maintain code with
greater ease, he has spent a great deal of his time both at work and in his spare
time over the last few years investigating unit testing and test-driven development
in JavaScript. Being a sworn TDD-er while developing in traditional server-side
languages, the cowboy style JavaScript approach wasn’t cutting it anymore. The
culmination of this passion is the book you now hold in your hands.

xxvii

This page intentionally left blank

3Tools of the Trade

In Chapter 1, Automated Testing, we developed a very simple testCase

function, capable of running basic unit tests with test case setup and teardown
methods. Although rolling our own test framework is a great exercise, there are
many frameworks already available for JavaScript and this chapter explores a few
of them.

In this chapter we will take a look at “the tools of the trade”—essential and
useful tools to support a test-driven workflow. The most important tool is of course
the testing framework, and after an overview of available frameworks, we will spend
some time setting up and running JsTestDriver, the testing framework used for most
of this book’s example code. In addition to a testing framework, this chapter looks
at tools such as coverage reports and continuous integration.

3.1 xUnit Test Frameworks
In Chapter 1, Automated Testing, we coined xUnit as the term used to describe
testing frameworks that lean on the design of Java’s JUnit and Smalltalk’s SUnit,
originally designed by Kent Beck. The xUnit family of test frameworks is still the
most prevalent way of writing automated tests for code, even though the past few
years have seen a rise in usage for so-called behavior-driven development (or BDD)
testing frameworks.

33

34 Tools of the Trade

3.1.1 Behavior-Driven Development
Behavior-driven development, or BDD, is closely related to TDD. As discussed in
Chapter 2, The Test-Driven Development Process, TDD is not about testing, but
rather about design and process. However, due to the terminology used to describe
the process, a lot of developers never evolve beyond the point where they simply
write unit tests to verify their code, and thus never experience many of the advantages
associated with using tests as a design tool. BDD seeks to ease this realization
by focusing on an improved vocabulary. In fact, vocabulary is perhaps the most
important aspect of BDD, because it also tries to normalize the vocabulary used by
programmers, business developers, testers, and others involved in the development
of a system when discussing problems, requirements, and solutions.

Another “double D” is Acceptance Test-Driven Development. In acceptance
TDD, development starts by writing automated tests for high level features, based
on acceptance tests defined in conjunction with the client. The goal is to pass
the acceptance tests. To get there, we can identify smaller parts and proceed with
“regular” TDD. In BDD this process is usually centered around user stories, which
describe interaction with the system using a vocabulary familiar to everyone involved
in the project. BDD frameworks such as Cucumber allow for user stories to be used
as executable tests, meaning that acceptance tests can be written together with
the client, increasing the chance of delivering the product the client had originally
envisioned.

3.1.2 Continuous Integration
Continuous integration is the practice of integrating code from all developers on
a regular basis, usually every time a developer pushes code to a remote version
control repository. The continuous integration server typically builds all the sources
and then runs tests for them. This process ensures that even when developers work
on isolated units of features, the integrated whole is considered every time code
is committed to the upstream repository. JavaScript does not need compiling, but
running the entire test suite for the application on a regular basis can help catch
errors early.

Continuous integration for JavaScript can solve tasks that are impractical for
developers to perform regularly. Running the entire test suite in a wide array of
browser and platform combinations is one such task. Developers working with
TDD can focus their attention on a small representative selection of browsers,
while the continuous integration server can test much wider, alerting the team of
errors by email or RSS.

3.1 xUnit Test Frameworks 35

Additionally, it is common practice for JavaScript to be served minified—i.e.,
with unneeded white-space and comments stripped out, and optionally local identi-
fiers munged to occupy fewer bytes—to preserve bytes over the wire. Both minifying
code too aggressively or merging files incorrectly can introduce bugs. A continuous
integration server can help out with these kinds of problems by running all tests
on the full source as well as building concatenated and minified release files and
re-running the test suite for them.

3.1.3 Asynchronous Tests
Due to the asynchronous nature of many JavaScript programming tasks such as
working with XMLHttpRequest, animations and other deferred actions (i.e., any
code using setTimeout or setInterval), and the fact that browsers do not
offer a sleep function (because it would freeze the user interface), many testing
frameworks provide a means to execute asynchronous tests. Whether or not asyn-
chronous unit tests is a good idea is up for discussion. Chapter 12, Abstracting
Browser Differences: Ajax, offers a more thorough discussion on the subject as well
as an example.

3.1.4 Features of xUnit Test Frameworks
Chapter 1, Automated Testing, already introduced us to the basic features of the
xUnit test frameworks: Given a set of test methods, the framework provides a test
runner that can run them and report back the results. To ease the creation of shared
test fixtures, test cases can employ the setUp and tearDown functions, which are
run before and after (respectively) each individual test in a test case. Additionally,
the test framework provides a set of assertions that can be used to verify the state of
the system being tested. So far we have only used theassertmethod which accepts
any value and throws an exception when the value is falsy. Most frameworks provide
more assertions that help make tests more expressive. Perhaps the most common
assertion is a version of assertEqual, used to compare actual results against
expected values.

When evaluating test frameworks, we should assess the framework’s test runner,
its assertions, and its dependencies.

3.1.4.1 The Test Runner

The test runner is the most important part of the testing framework because it
basically dictates the workflow. For example, most unit testing frameworks available
for JavaScript today use an in-browser test runner. This means that tests must
run inside a browser by loading an HTML file (often referred to as an HTML

36 Tools of the Trade

fixture) that itself loads the libraries to test, along with the unit tests and the testing
framework. Other types of test runners can run in other environments, e.g., using
Mozilla’s Rhino implementation to run tests on the command line. What kind of
test runner is suitable to test a specific application depends on whether it is a client-
side application, server-side, or maybe even a browser plugin (an example of which
would be FireUnit, a unit testing framework that uses Firebug and is suitable for
developing Firefox plugins).

A related concern is the test report. Clear fail/success status is vital to the
test-driven development process, and clear feedback with details when tests fail or
have errors is needed to easily handle them as they occur. Ideally, the test runner
should produce test results that are easily integrated with continuous integration
software.

Additionally, some sort of plugin architecture for the test runner can enable us
to gather metrics from testing, or otherwise allow us to extend the runner to improve
the workflow. An example of such a plugin is the test coverage report. A coverage
report shows how well the test suite covers the system by measuring how many lines
in production code are executed by tests. Note that 100% coverage does not imply
that every thinkable test is written, but rather that the test suite executes each and
every line of production code. Even with 100% coverage, certain sets of input can
still break the code—it cannot guarantee the absence of, e.g., missing error handling.
Coverage reports are useful to find code that is not being exercised by tests.

3.1.5 Assertions
A rich set of assertions can really boost the expressiveness of tests. Given that a good
unit test clearly states its intent, this is a massive boon. It’s a lot easier to spot what
a test is targeting if it compares two values with assertEqual(expected,

actual) rather than with assert(expected == actual). Although
assert is all we really need to get the job done, more specific assertions make
test code easier to read, easier to maintain, and easier to debug.

Assertions is one aspect where an exact port of the xUnit framework design
from, e.g., Java leaves a little to be desired. To achieve good expressiveness in tests,
it’s helpful to have assertions tailored to specific language features, for instance,
having assertions to handle JavaScripts special values such as undefined, NaN
and infinity. Many other assertions can be provided to better support testing
JavaScript, not just some arbitrary programming language. Luckily, specific asser-
tions like those mentioned are easy to write piggybacking a general purposeassert
(or, as is common, a fail method that can be called when the assertion does not
hold).

3.2 In-Browser Test Frameworks 37

3.1.6 Dependencies
Ideally, a testing framework should have as few dependencies as possible. More
dependencies increase the chance of the mechanics of the framework not working
in some browser (typically older ones). The worst kind of dependency for a testing
framework is an obtrusive library that tampers with the global scope. The original
version of JsUnitTest, the testing framework built for and used by the Prototype.js
library, depended on Prototype.js itself, which not only adds a number of global
properties but also augments a host of global constructors and objects. In practice,
using it to test code that was not developed with Prototype.js would prove a futile
exercise for two reasons:

• Too easy to accidentally rely on Prototype.js through the testing framework
(yielding green tests for code that would fail in production, where
Prototype.js would not be available)

• Too high a risk for collisions in the global scope (e.g., the MooTools library
adds many of the same global properties)

3.2 In-Browser Test Frameworks
The original JavaScript port of the JUnit framework was JsUnit, first released in
2001. Not surprisingly, it has in many ways set the standard for a lot of testing
frameworks following it. JsUnit runs tests in a browser: The test runner prompts
for the URL to a test file to execute. The test file may be an HTML test suite which
links to several test cases to execute. The tests are then run in sandboxed frames,
and a green progress bar is displayed while tests are running. Obviously, the bar
turns red whenever a test fails. JsUnit still sees the occasional update, but it has not
been significantly updated for a long time, and it’s starting to lag behind. JsUnit
has served many developers well, including myself, but there are more mature and
up-to-date alternatives available today.

Common for the in-browser testing frameworks is how they require an HTML
fixture file to load the files to test, the testing library (usually a JavaScript and a CSS
file), as well as the tests to run. Usually, the fixture can be simply copy-pasted for
each new test case. The HTML fixture also serves the purpose of hosting dummy
markup needed for the unit tests. If tests don’t require such markup, we can lessen
the burden of keeping a separate HTML file for each test case by writing a script
that scans the URL for parameters naming library and test files to load, and then
load them dynamically. This way we can run several test cases from the same HTML
fixture simply by modifying the URL query string. The fixture could of course also
be generated by a server-side application, but be careful down this route. I advise you

38 Tools of the Trade

to keep things simple—complicated test runners greatly decreases the likelihood of
developers running tests.

3.2.1 YUI Test
Most of the major JavaScript libraries available today have their own unit testing
framework. YUI from Yahoo! is no exception. YUI Test 3 can be safely used to
test arbitrary JavaScript code (i.e., it has no obtrusive dependencies). YUI Test is,
in its own words, “not a direct port from any specific xUnit framework,” but it
“does derive some characteristics from nUnit and JUnit,” with nUnit being the
.NET interpretation of the xUnit family of frameworks, written in C#. YUI Test is a
mature testing framework with a rich feature set. It supports a rich set of assertions,
test suites, a mocking library (as of YUI 3), and asynchronous tests.

3.2.1.1 Setup

Setup is very easy thanks to YUI’s loader utility. To get quickly started, we can link
directly to the YUI seed file on the YUI server, and use YUI.use to fetch the
necessary dependencies. We will revisit the strftime example from Chapter 1,
Automated Testing, in order to compare YUI Test to the testCase function in-
troduced in that chapter. Listing 3.1 shows the HTML fixture file, which can be
saved in, e.g., strftime_yui_test.html.

Listing 3.1 YUI Test HTML fixture file

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>

<title>Testing Date.prototype.strftime with YUI</title>
<meta http-equiv="content-type"

content="text/html; charset=UTF-8">
</head>
<body class="yui-skin-sam">

<div id="yui-main"><div id="testReport"></div></div>
<script type="text/javascript"

src="http://yui.yahooapis.com/3.0.0/build/yui/yui-min.js">
</script>
<script type="text/javascript" src="strftime.js">
</script>
<script type="text/javascript" src="strftime_test.js">
</script>

</body>
</html>

3.2 In-Browser Test Frameworks 39

The strftime.js file contains the Date.prototype.strftime imple-
mentation presented in Listing 1.2 in Chapter 1, Automated Testing. Listing 3.2
shows the test script, save it in strftime_test.js.

Listing 3.2 Date.prototype.strftime YUI test case

YUI({
combine: true,
timeout: 10000

}).use("node", "console", "test", function (Y) {
var assert = Y.Assert;

var strftimeTestCase = new Y.Test.Case({
// test case name - if not provided, one is generated
name: "Date.prototype.strftime Tests",

setUp: function () {
this.date = new Date(2009, 9, 2, 22, 14, 45);

},

tearDown: function () {
delete this.date;

},

"test %Y should return full year": function () {
var year = Date.formats.Y(this.date);

assert.isNumber(year);
assert.areEqual(2009, year);

},

"test %m should return month": function () {
var month = Date.formats.m(this.date);

assert.isString(month);
assert.areEqual("10", month);

},

"test %d should return date": function () {
assert.areEqual("02", Date.formats.d(this.date));

},

"test %y should return year as two digits": function () {
assert.areEqual("09", Date.formats.y(this.date));

},

40 Tools of the Trade

"test %F should act as %Y-%m-%d": function () {
assert.areEqual("2009-10-02", this.date.strftime("%F"));

}
});

//create the console
var r = new Y.Console({

newestOnTop : false,
style: 'block'

});

r.render("#testReport");
Y.Test.Runner.add(strftimeTestCase);
Y.Test.Runner.run();

});

When using YUI Test for production code, the required sources should be
downloaded locally. Although the loader is a convenient way to get started, relying
on an internet connection to run tests is bad practice because it means we cannot
run tests while offline.

3.2.1.2 Running Tests

Running tests with YUI Test is as simple as loading up the HTML fixture in a
browser (preferably several browsers) and watching the output in the console, as
seen in Figure 3.1.

3.2.2 Other In-Browser Testing Frameworks
When choosing an in-browser testing framework, options are vast. YUI Test is
among the most popular choices along with JsUnit and QUnit. As mentioned,
JsUnit is long overdue for an upgrade, and I suggest you not start new projects with
it at this point. QUnit is the testing framework developed and used by the jQuery
team. Like YUI Test it is an in-browser test framework, but follows the traditional
xUnit design less rigidly. The Dojo and Prototype.js libraries both have their test
frameworks as well.

One might get the impression that there are almost as many testing frameworks
out there as there are developers unit testing their scripts—there is no defacto
standard way to test JavaScript. In fact, this is true for most programming tasks
that are not directly related to browser scripting, because JavaScript has no general
purpose standard library. CommonJS is an initiative to rectify this situation, orig-
inally motivated to standardize server-side JavaScript. CommonJS also includes a

3.3 Headless Testing Frameworks 41

Figure 3.1 Running tests with YUI Test.

unit testing spec, which we will look into when testing a Node.js application in
Chapter 14, Server-Side JavaScript with Node.js.

3.3 Headless Testing Frameworks
In-browser testing frameworks are unfit to support a test-driven development pro-
cess where we need to run tests frequently and integrated into the workflow. An
alternative to these frameworks is headless testing frameworks. These typically run
from the command line, and can be interacted with in the same way testing frame-
works for any other server-side programming language can.

There are a few solutions available for running headless JavaScript unit tests,
most originating from either the Java or Ruby worlds. Both the Java and Ruby
communities have strong testing cultures, and testing only half the code base (the
server-side part) can only make sense for so long, probably explaining why it is these
two communities in particular that have stood out in the area of headless testing
solutions for JavaScript.

42 Tools of the Trade

3.3.1 Crosscheck
Crosscheck is one of the early headless testing frameworks. It provides a Java backed
emulation of Internet Explorer 6 and Firefox versions 1.0 and 1.5. Needless to say,
Crosscheck is lagging behind, and its choice of browsers are unlikely to help develop
applications for 2010. Crosscheck offers JavaScript unit tests much like that of YUI
Test, the difference being that they can be run on the command line with the
Crosscheck jar file rather than in a browser.

3.3.2 Rhino and env.js
env.js is a library originally developed by John Resig, creator of the jQuery
JavaScript framework. It offers an implementation of the browser (i.e., BOM) and
DOM APIs on top of Rhino, Mozilla’s Java implementation of JavaScript. Using
the env.js library together with Rhino means we can load and run in-browser tests
on the command line.

3.3.3 The Issue with Headless Test Runners
Although the idea of running tests on the command line is exciting, I fail to recognize
the power of running tests in an environment where production code will never run.
Not only are the browser environment and DOM emulations, but the JavaScript
engine (usually Rhino) is an altogether different one as well.

Relying on a testing framework that simply emulates the browser is bad for a
few reasons. For one, it means tests can only be run in browsers that are emulated
by the testing framework, or, as is the case for solutions using Rhino and env.js, in
an alternate browser and DOM implementation altogether. Limiting the available
testing targets is not an ideal feature of a testing framework and is unlikely to help
write cross-browser JavaScript. Second, an emulation will never match whatever it
is emulating perfectly. Microsoft probably proved this best by providing an Internet
Explorer 7 emulation mode in IE8, which is in fact not an exact match of IE7.
Luckily, we can get the best from both worlds, as we will see next, in Section 3.4,
One Test Runner to Rule Them All.

3.4 One Test Runner to Rule Them All
The problem with in-browser testing frameworks is that they can be cumbersome to
work with, especially in a test-driven development setting where we need to run tests
continuously and integrated into the workflow. Additionally, testing on a wide array
of platform/browser combinations can entail quite a bit of manual work. Headless

3.4 One Test Runner to Rule Them All 43

frameworks are easier to work with, but fail at testing in the actual environment the
code will be running in, reducing their usefulness as testing tools. A fairly new player
on the field of xUnit testing frameworks is JsTestDriver, originating from Google.
In contrast to the traditional frameworks, JsTestDriver is first and foremost a test
runner, and a clever one at that. JsTestDriver solves the aforementioned problems
by making it easy both to run tests and to test widely in real browsers.

3.4.1 How JsTestDriver Works
JsTestDriver uses a small server to run tests. Browsers are captured by the test
runner and tests are scheduled by issuing a request to the server. As each browser
runs the tests, results are sent back to the client and presented to the developer. This
means that as browsers are idly awaiting tests, we can schedule runs from either the
command line, the IDE, or wherever we may feel most comfortable running them
from. This approach has numerous advantages:

• Tests can be run in browsers without requiring manual interaction with the
browser.

• Tests can be run in browsers on multiple machines, including mobile devices,
allowing for arbitrary complex testing grids.

• Tests run fast, due to the fact that results need not be added to the DOM and
rendered, they can be run in any number of browsers simultaneously, and the
browser doesn’t need to reload scripts that haven’t changed since the tests
were last run.

• Tests can use the full DOM because no portion of the document is reserved
for the test runner to display results.

• No need for an HTML fixture, simply provide one or more scripts and test
scripts, an empty document is created on the fly by the test runner.

JsTestDriver tests are fast. The test runner can run complex test suites of several
hundred tests in under a single second. Because tests are run simultaneously, tests will
still run in about a second even when testing 15 browsers at the same time. Granted,
some time is spent communicating with the server and optionally refreshing the
browser cache, but a full run still completes in a matter of a few seconds. Single test
case runs usually complete in the blink of an eye.

As if faster tests, simpler setup, and full DOM flexibility weren’t enough, JsTest-
Driver also offers a plugin that calculates test coverage, XML test report output com-
patible with JUnit’s reports, meaning we can immediately use existing continuous

44 Tools of the Trade

integration servers, and it can use alternative assertion frameworks. Through plug-
ins, any other JavaScript testing framework can take advantage of the JsTestDriver
test runner, and at the time of writing, adapters for QUnit and YUI Test already
exist. This means tests can be written using YUI Test’s assertions and syntax, but
run using JsTestDriver.

3.4.2 JsTestDriver Disadvantages
At the time of writing, JsTestDriver does not support any form of asynchronous
testing. As we will see in Chapter 12, Abstracting Browser Differences: Ajax, this isn’t
necessarily a problem from a unit testing perspective, but it may limit the options
for integration tests, in which we want to fake as little as possible. It is possible that
asynchronous test support will be added to future versions of JsTestDriver.

Another disadvantage of JsTestDriver is that the JavaScript required to run tests
is slightly more advanced, and may cause a problem in old browsers. For instance,
by design, a browser that is to run JsTestDriver needs to support the XMLHttpRe-
quest object or similar (i.e., Internet Explorer’s corresponding ActiveX object)
in order to communicate with the server. This means that browsers that don’t sup-
port this object (older browsers, Internet Explorer before version 7 with ActiveX
disabled) cannot be tested with the JsTestDriver test runner. This problem can be
effectively circumvented, however, by using YUI Test to write tests, leaving the op-
tion of running them manually with the default test runner in any uncooperative
browser.

3.4.3 Setup
Installing and setting up JsTestDriver is slightly more involved than the average
in-browser testing framework; still, it will only take a few minutes. Also, the setup is
only required once. Any projects started after the fact are dirt simple to get running.
JsTestDriver requires Java to run both the server component and start test runs. I
won’t give instructions on installing Java here, but most systems have Java installed
already. You can check if Java is installed by opening a shell and issue the java
-version command. If you don’t have Java installed, you will find instructions
on java.com.

3.4.3.1 Download the Jar File

Once Java is set up, download the most recent JsTestDriver jar file from
http://code.google.com/p/js-test-driver/downloads/list. All the examples in this
book use version 1.2.1, be sure to use that version when following along with the

http://code.google.com/p/js-test-driver/downloads/list

3.4 One Test Runner to Rule Them All 45

examples. The jar file can be placed anywhere on the system, I suggest ~/bin. To
make it easier to run, set up an environment variable to point to this directory, as
shown in Listing 3.3.

Listing 3.3 Setting the $JSTESTDRIVER HOME environment variable

export JSTESTDRIVER_HOME=~/bin

Set the environment variable in a login script, such as .bashrc or .zshrc
(depends on the shell—most systems use Bash, i.e., ~/.bashrc, by default).

3.4.3.2 Windows Users

Windows users can set an environment variable in the cmd command line by issuing
theset JSTESTDRIVER_HOME=C:\bin command. To set it permanently, right-
click My Computer (Computer in Windows 7) and select Properties. In the System
window, select Advanced system properties, then the Advanced tab, and then click
the Environment Variables . . . button. Decide if you need to set the environment
variable for yourself only or for all users. Click New, enter the name (JSTEST-
DRIVER HOME) in the top box, and then the path where you saved the jar file in
the bottom one.

3.4.3.3 Start the Server

To run tests through JsTestDriver, we need a running server to capture browsers
with. The server can run anywhere reachable from your machine—locally, on a
machine on the local network, or a public facing machine. Beware that running
the server on a public machine will make it available to anyone unless the machine
restricts access by IP address or similar. To get started, I recommend running the
service locally; this way you can test while being offline as well. Open a shell and issue
the command in either Listing 3.4 or Listing 3.5 (current directory is not important
for this command).

Listing 3.4 Starting the JsTestDriver server on Linux and OSX

java -jar $JSTESTDRIVER_HOME/JsTestDriver-1.2.1.jar --port
4224

Listing 3.5 Starting the JsTestDriver server on Windows

java -jar %JSTESTDRIVER_HOME%\JsTestDriver-1.2.1.jar --port
4224

46 Tools of the Trade

Port 4224 is the defacto standard JsTestDriver port, but it is arbitrarily picked
and you can run it on any port you want. Once the server is running, the shell
running it must stay open for as long as you need it.

3.4.3.4 Capturing Browsers

Open any browser and point it to http://localhost:4224 (make sure you change the
port number if you used another port when starting the server). The resulting page
will display two links: Capture browser and Capture in strict mode. JsTestDriver runs
tests inside an HTML 4.01 document, and the two links allow us to decide if we
want to run tests with a transitional or strict doctype. Click the appropriate link,
and leave the browser open. Repeat in as many browsers as desired. You can even
try hooking up your phone or browsers on other platforms using virtual instances.

3.4.3.5 Running Tests

Tests can be run from the command line, providing feedback in much the same way
a unit testing framework for any server-side language would. As tests are run, a dot
will appear for every passing test, an F for a failing test, and an E for a test with
errors. An error is any test error that is not a failing assertion, i.e., an unexpected
exception. To run the tests, we need a small configuration file that tells JsTestDriver
which source and test files to load (and in what order), and which server to run tests
against. The configuration file, jsTestDriver.conf by default, uses YAML syntax,
and at its simplest, it loads every source file and every test file, and runs tests at
http://localhost:4224, as seen in Listing 3.6.

Listing 3.6 A barebone jsTestDriver.conf file

server: http://localhost:4224

load:
- src/*.js
- test/*.js

Load paths are relative to the location of the configuration file. When it’s re-
quired to load certain files before others, we can specify them first and still use the
*.js notation, JsTestDriver will only load each file once, even when it is referenced
more than once. Listing 3.7 shows an example where src/mylib.js always need
to load first.

3.4 One Test Runner to Rule Them All 47

Listing 3.7 Making sure certain files load first

server: http://localhost:4224

load:
- src/mylib.js
- src/*.js
- test/*.js

In order to test the configuration we need a sample project. We will revisit the
strftime example once again, so start by copying the strftime.js file into the src
directory. Then add the test case from Listing 3.8 in test/strftime_test.js.

Listing 3.8 Date.prototype.strftime test with JsTestDriver

TestCase("strftimeTest", {
setUp: function () {

this.date = new Date(2009, 9, 2, 22, 14, 45);
},

tearDown: function () {
delete this.date;

},

"test %Y should return full year": function () {
var year = Date.formats.Y(this.date);

assertNumber(year);
assertEquals(2009, year);

},

"test %m should return month": function () {
var month = Date.formats.m(this.date);

assertString(month);
assertEquals("10", month);

},

"test %d should return date": function () {
assertEquals("02", Date.formats.d(this.date));

},

"test %y should return year as two digits": function () {
assertEquals("09", Date.formats.y(this.date));

},

48 Tools of the Trade

"test %F should act as %Y-%m-%d": function () {
assertEquals("2009-10-02", this.date.strftime("%F"));

}
});

The test methods are almost syntactically identical to the YUI Test example,
but note how this test case has less scaffolding code to support the test runner. Now
create the configuration file as shown in Listing 3.9.

Listing 3.9 JsTestDriver configuration

server: http://localhost:4224

load:
- src/*.js
- test/*.js

We can now schedule tests to run by issuing the command in Listing 3.10 or
Listing 3.11, depending on your operating system.

Listing 3.10 Running tests with JsTestDriver on Linux and OSX

java -jar $JSTESTDRIVER_HOME/JsTestDriver-1.2.1.jar --tests
all

Listing 3.11 Running tests with JsTestDriver on Windows

java -jar %JSTESTDRIVER_HOME%\JsTestDriver-1.2.1.jar--tests
all

The default configuration file name is jsTestDriver.conf, and as long
as this is used we don’t need to specify it. When using another name, add the
--config path/to/file.conf option.

When running tests, JsTestDriver forces the browser to refresh the test files.
Source files, however, aren’t reloaded between test runs, which may cause errors due
to stale files. We can tell JsTestDriver to reload everything by adding the --reset
option.

3.4.3.6 JsTestDriver and TDD

When TDD-ing, tests will fail frequently, and it is vital that we are able to quickly
verify that we get the failures we expect in order to avoid buggy tests. A browser such
as Internet Explorer is not suitable for this process for a few reasons. First, its error

3.4 One Test Runner to Rule Them All 49

messages are less than helpful; you have probably seen “Object does not support
this property or method” more times than you care for. The second reason is that
IE, at least in older versions, handles script errors badly. Running a TDD session
in IE will cause it to frequently choke, requiring you to manually refresh it. Not to
mention the lack of performance in IE, which is quite noticeable compared to, e.g.,
Google Chrome.

Disregarding Internet Explorer, I would still advise against keeping too many
browsers in your primary TDD process, because doing so clutters up the test runner’s
report, repeating errors and log messages once for every captured browser. My
advice is to develop against one server that only captures your browser of choice, and
frequently run tests against a second server that captures many browsers. You can
run against this second server as often as needed—after each passed test, completed
method, or if you are feeling bold, even more. Keep in mind that the more code you
add between each run, the harder it will be to spot any bugs that creep up in those
secondary browsers.

To ease this sort of development, it’s best to remove the server line from the
configuration file and use the --server command line option. Personally I do
this kind of development against Firefox, which is reasonably fast, has good error
messages, and always runs on my computer anyway. As soon as I pass a test, I issue
a run on a remote server that captures a wider variety of browsers, new and old.

3.4.4 Using JsTestDriver From an IDE
JsTestDriver also ships plugins for popular integrated development environments
(IDEs), Eclipse and IntelliJ IDEA. In this section I will walk through setting up the
Eclipse plugin and using it to support a test-driven development process. If you are
not interested in developing in Eclipse (or Aptana), feel free to skip to Section 3.4.5,
Improved Command Line Productivity.

3.4.4.1 Installing JsTestDriver in Eclipse

To get started you need to have Eclipse (or Aptana Studio, an IDE based on Eclipse
aimed at web developers) installed. Eclipse is a free open source IDE and can be
downloaded from http://eclipse.org. Once Eclipse is running, go to the Help menu
and select Install new software. In the window that opens, enter the following URL
as a new update site: http://js-test-driver.googlecode.com/svn/update/

“JS Test Driver Eclipse Plugin” should now be displayed with a checkbox next
to it. Check it and click Next. The next screen is a confirmation that sums up the
plugins to be installed. Click Next once again and Eclipse asks you to accept the

http://eclipse.org
http://js-test-driver.googlecode.com/svn/update/

50 Tools of the Trade

terms of use. Check the appropriate radio button and click Next if you accept. This
should finish the installation.

Once the plugin is installed we need to configure it. Find the Preferences pane
under the Window menu (Eclipse menu on OS X). There should be a new entry
for Js Test Driver; select it. As a bare minimum we need to enter the port where
Eclipse should run the server. Use 4224 to follow along with the example. You can
also enter the paths to browsers installed locally to ease browser capturing, but it’s
not really necessary.

3.4.4.2 Running JsTestDriver in Eclipse

Next up, we need a project. Create a new project and enter the directory for the
command line example as location. Now start the server. Locate the JsTestDriver
panel in Eclipse and click the green play button. Once the server is running, click
the browser icons to capture browsers (given that their path was configured during
setup). Now right-click a file in the project, and select Run As and then Run Configu-
rations . . . Select Js Test Driver Test and click the sheet of paper icon indicating “new
configuration.” Give the configuration a name and select the project’s configuration
file. Now click run and the tests run right inside Eclipse, as seen in Figure 3.2.

Figure 3.2 Running JsTestDriver tests inside Eclipse.

3.4 One Test Runner to Rule Them All 51

On subsequent runs, simply select Run As and then Name of configuration.
Even better, check the Run on every save checkbox in the configuration prompt.
This way, tests are run anytime a file in the project is saved, perfect for the test-driven
development process.

3.4.5 Improved Command Line Productivity
If the command line is your environment of choice, the Java command to run tests
quickly becomes a bit tiresome to type out. Also, it would be nice to be able to have
tests run automatically whenever files in the project change, just like the Eclipse
and IDEA plugins do. Jstdutil is a Ruby project that adds a thin command line
interface to JsTestDriver. It provides a leaner command to run tests as well as an
jsautotest command that runs related tests whenever files in the project change.

Jstdutil requires Ruby, which comes pre-installed on Mac OS X. For other
systems, installation instructions can be found on ruby-lang.org. With Ruby
installed, install Jstdutil by running `gem install jstdutil` in a shell.
Jstdutil uses the previously mentioned $JSTESTDRIVER_HOME environment
variable to locate the JsTestDriver jar file. This means that running tests is a
simple matter of `jstestdriver --tests all`, or for autotest, simply
`jsautotest`. If the configuration file is not automatically picked up, spec-
ify it using `jstestdriver --config path/to/file.conf --tests

all`. The jstestdriver and jsautotest commands also add coloring to
the test report, giving us that nice red/green visual feedback.

3.4.6 Assertions
JsTestDriver supports a rich set of assertions. These assertions allow for highly
expressive tests and detailed feedback on failures, even when a custom assertion
message isn’t specified. The full list of supported assertions in JsTestDriver is:

• assert(msg, value)

• assertTrue(msg, value)

• assertFalse(msg, value)

• assertEquals(msg, expected, actual)

• assertNotEquals(msg, expected, actual)

• assertSame(msg, expected, actual)

• assertNotSame(msg, expected, actual)

• assertNull(msg, value)

52 Tools of the Trade

• assertNotNull(msg, value)

• assertUndefined(msg, value)

• assertNotUndefined(msg, value)

• assertNaN(msg, number)

• assertNotNaN(msg, number)

• assertException(msg, callback, type)

• assertNoException(msg, callback)

• assertArray(msg, arrayLike)

• assertTypeOf(msg, type, object)

• assertBoolean(msg, value)

• assertFunction(msg, value)

• assertNumber(msg, value)

• assertObject(msg, value)

• assertString(msg, value)

• assertMatch(msg, pattern, string)

• assertNoMatch(msg, pattern, string)

• assertTagName(msg, tagName, element)

• assertClassName(msg, className, element)

• assertElementId(msg, id, element)

• assertInstanceOf(msg, constructor, object)

• assertNotInstanceOf(msg, constructor, object)

We will be using JsTestDriver for most examples throughout this book.

3.5 Summary
In this chapter we have taken a look at what tools can be helpful to support the
test-driven development process, as well as a few available tools. Getting a good
test-driven development rhythm requires adequate tools, and for the remaining
examples of this book, JsTestDriver was selected to run tests. It offers both a highly
efficient workflow as well as thorough testing on a wide array of platform and
browser combinations.

This chapter also touched briefly on BDD and “specs” and how test-driven
development, as practiced in this book, shares a lot in common with it.

3.5 Summary 53

Although we visited the topics of test coverage reports and continuous integra-
tion in this chapter, no setup or examples were given for such tools. On the book’s
website1 you will find a guide to running the Coverage plugin for JsTestDriver as
well as a guide on how to run JsTestDriver tests in the open source continuous
integration server Hudson.

In the next chapter we will have a look at some other ways to utilize unit tests
before we move on to Part II, JavaScript for Programmers.

1. http://tddjs.com

http://tddjs.com

This page intentionally left blank

Index

A
acceptance test-driven development, 34
access tokens, 381–382, 385–386

embeds for, 385–386
updates for, 385

ActionScript, 159
activateTab method, 190–192

event delegation in, 190
implementation of, 192
tag name in, 190
testing for, 190–191

activation object, 82
Active X objects, 252

identificators for, 252
addEventHandler method, 206

custom event handlers, 212–213
addMessage, 361–363

as asynchronous, 365–366
callbacks with, 361–362
event emitters with, 374
promise refactoring with, 367–371
testing implementation for, 366
UIDs for, 362–363
updating of, 369

ad hoc scopes, 101–103
avoiding the global scope, 101–102
lightboxes and, 101–102
with nested closures, 103
simulation of, 102–103

AJAX. See Asynchronous JavaScript
and XML

ajax.cometClient, 323–338
data delegation with, 324–325
data dispatching with, 323–327

error handling with, 325–327
event data looping with, 327
expectations for, 323
notifications with, 324–325
observers with, 325–329
public objects with, 326
server connections with, 329–338
setup for, 323

ajax.loadFragment method, 94
ajax.poll, 453
Ajax Push, 314
anonymous closures, 146
anonymous function expression, 74, 101–107.

See also namespaces
ad hoc scopes, 101–103
immediately called, 101–107
namespaces, 103–107

anonymous mocks, 454
anonymous proxy function, 95
APIs. See application programming interfaces
application programming interfaces (APIs),

247–249, 269–277. See also DOM
manipulation

AJAX, 269–277
integration test for, 269–271
local requests for, 273–274
send method and, 271
status testing for, 274–277
TDD and, 247
testing results for, 270–271

apply method, 75, 77
summing numbers with, 91
this keyword and, 90

arbitrary events, 241–246

479

480 Index

arbitrary events (Continued)
notify method, 243–245
observe method, 241–242

arbitrary objects, 235–241
inheritance motivations, 235
observable behavior for, 235–236
renaming methods and, 240–241

arguments, 97–99
binding functions with, 97–99
bind method and, 97–99
formal parameters v., 173
in memoization, 114
passing, 231–232
setTimeout method and, 97

arguments object, 77–80, 153
accessing properties in, 79
array methods and, 78–79
dynamic mapping of, 79–80
formal parameters, 78–80
modifications of, 79
structure of, 78

array literals, 118
Array.prototype, 121–122
Enumerable module in, 157
method addition to, 122
native object extension for, 122

Array.prototype.splice method,
56–58

arrays, 56
browser consoles, 57
programming, 58
removed item returns, 57
traditional testing, 56

arrays
addObserver method and, 229
arguments object and, 78–79
Array.prototype.splice method, 56
in ECMAScript 5, 175–176
enumerable properties, 123
hard-coding, 225
in observer patterns, 224–225
with obsolete constructors, 238
for refactoring, 226
spliced, 57
for this keyword, 88

assert function, 74
assertions, 9–10, 36

for controllers, 347
functions of, 9
JsTestDriver, 51–52
in POST requests, 283

testing for, 10
in unit tests, 465–466

Asynchronous JavaScript and XML (AJAX),
247–292. See also GET requests; POST
Requests

Ajax Push, 314
APIs, 247–249, 269–277
baseline interfaces for, 290
browser inconsistencies with, 248
development strategy for, 248
directions for, 291
directory layout for, 249
duplication with, 292
GET requests, 255–268
goals of, 248–249
implementation review for, 290
JsTestDriver and, 249–250
namespaces for, 256, 290
onreadystatechangehandler and,

266–267
POST requests, 277–287
refactoring with, 292
request APIs and, 247–249, 288–292
request interfaces and, 249–250
restoring of, 258
Reverse Ajax, 314
source files for, 256
stubbing and, 248–249
TDD and, 292
tddjs.ajax.create method and,

253–254
test cases for, 292
XMLHttpRequest object and, 247–249

asynchronous tests, 35
sleep function in, 35
unit tests and, 35

automated stubbing, 258–260, 262–263
helper method extraction with, 258–259
open method, 259–260
stub helper and, 259

automated testing, 3–19. See also unit tests
assertions, 9–10
debugging with, 3
development of, 3–4
functions, 11–12
green, as symbol for success, 10
integration tests, 14–16
JsUnit, 4
red, as symbol for failure in, 10
setUp method, 13–14
TDD, 30

Index 481

tearDown method, 13–14
unit tests, 4–10, 16–18

B
BDD. See behavior-driven development
Beck, Kent, 21
behavior-driven development (BDD), 33–34

TDD, 34
user stories in, 34
xUnits and, 33

behavior verification, of test doubles, 442–443
inspection of, 443
isolation of behavior from, 470–472
by mocks, 457, 470–472
stubbing and, 451–452, 470–472
tailored asserts for, 451
unit tests as, 465–466, 468–472

benchmarks, 60–69
binding functions and, 98
definition of, 60
DOM manipulation in, 68
Function.prototype in, 65–66
functions for, 65
highlighting in, 67–68
integration of, 64
loops for, 61–63, 66
measuring of, 67–68
reformatting of, 66
runners for, 61
setup for, 64
tools for, 64–65
use of, 66–67
in Windows Vista, 61

binding functions, 93–100
anonymous proxy functions and, 95
with arguments, 97–99
benchmarks and, 97
bind method, 95–97
currying and, 99–100
Function.prototype.bind, 95–96
lightbox examples of, 93–95
setTimout method, 97
this keyword and, 93–96

bind method, 95–97
arguments and, 97–99
closure and, 96
implementation of, 96
optimized, 98–99
use of, 96

bogus headers, 308
bogus observers, 232–233

exceptions for, 233
non-callable arguments and, 232
preconditions for, 233

bootstrap scripts
in chat client model, 430
message lists and, 421
static files and, 410–411

bottlenecks, in performance tests, 68–69
DOM implementation in, 69
Firebug, 68
locating, 68–69
profiling, 68–69

box-shadow property, 209
browser sniffing, 199–207. See also object

detection, in browser sniffing
event listening fixes in, 198–199
libraries and, 200
object detection in, 199–206
problems with, 200
state of, 200
testing in, 207
updating of, 200
user agent sniffing and, 198–199

C
cache issues, with long polling,

319–320
buster additions, 319–320
URLs and, 319–320

callable host objects, 203–204
callbacks, 308–311

with addMessage, 361–362
complete, 300–302, 311
defaults, 310
in domain models, for Node.js, 358
failure, 310–311
nested, 367
for onreadystatechangehandler,

266–268
polling, for data, 308–311
with server connections, 333
static files and, 409
success, 309–310
tddjs.ajax.poller and, 300–302

calling, of functions, 77–80
arguments object, 77–79
direct, 77–80

call method, 75, 77
this keyword and, 89

call order documentation, 234–235
as feature, 234

482 Index

cascading style sheets (CSS), 208–210
box-shadow property in, 209
feature testing of, 208–210
static files and, 410
style properties in, 209–210
support detection of, 209

chat client model, for DOM manipulation,
429–434

application styling of, 430–431
bootstrapping script in, 430
compression in, 434
deployment notes in, 433–434
design of, 430–431
input field clearance in, 432–433
message forms in, 429
scrolling in, 431–432
user testing of, 430–433

chatRoom, 372–375
property descriptors for, 373

Circle hybrid, 168–169
circle objects, 88, 152
Circle.prototype, 132–134, 136–137, 143

assignments for, 133
failing assertions for, 133–134
Sphere.prototype and, 138
_super method, 143
testing for, 133

circular references
assertions of, 272
breaking of, 272–273
with XMLHttpRequest object, 271–272

clean code, in TDD, 28
closure

ad hoc scopes, 103
anonymous, 146
in anonymous proxy function, 95
bind method and, 96
functions and, 84
for onreadystatechangehandler, 267
private methods and, 145

code paths, from stubbing, 444–445
Comet, 314–315, 321–338. See also

ajax.cometClient; server
connections

ajax.cometClient, 323–338
browsers with, 321
client interface with, 322
data publishing with, 338
drawbacks to, 314
feature tests for, 338
forever frames and, 314–315

format messaging with, 321–322
HTML5 streaming, 315
JSON response with, 322
limitations of, 314, 321
with observable objects, 321
server connections with, 329–338
XMLHttpRequest streaming, 315

command line productivity, 51
CommonJs modules, 341, 345
CommonJs testing frameworks, 40–41
complete callbacks, 300–302, 311

scheduling of, 302
specifications of, 301–302

console.log method, 76
constructors, 130–136. See also prototypes

broken properties of, 134
circle object, 139
ECMA-262 and, 136
instanceof operators, 136
missing properties for, 134–135
misuse of, 135–136
objects from, 130–132, 239–240
in observer patterns, 223
private methods for, 146–147
problems with, 135–136
prototypes, 130–135

continuous integration, 34–35
for JavaScript, 34–35
minifying code with, 35

controllers, 345–357, 378–386
access tokens and, 381–382, 385–386
application testing, 356–357
application testing for, 386
assertions for, 347
body of, 386
closing connections for, 355–356
closing responses for, 356
CommonJs modules, 345
creation of, 346–347
done method, 346
duplications with, 350, 353
event handlers and, 352
expectations for, 345
formatting messages with, 383–385
GET requests and, 380–386
JSON and, 347–350
malicious data with, 354
message extraction with, 351–354
message filters, 381–382
with message lists, 411–412
module definition, 345–346

Index 483

MVC, 391
with Node.js, 345–357, 378–386
POST messages, 347–354
post method completion with,

378–380
request bodies with, 348–351
request responses with, 354–356
respond method, 382–383, 386
response codes for, 355
response headers, 386
servers, 356–357
setup for, 351
status codes for, 354–355
stubbing with, 348–349, 353
tabController object, 187–190
tab controllers, 192–196
testing for, 346
in user forms, 392–393

Crockford, Douglas, 148, 175, 333
cross-browser event handling, 210–213
addEventHandler method in,

212–213
custom events in, 211–213
feature detection for, 210–211
normalization in, 211

cross-browsers
event handlers, 210–213
IDE, 17

crosscheck, 42
cross site scripting (XSS) protection, 418
CSS. See cascading style sheets
currying, 99–100

binding v., 99
implementation of, 100

D
Dahl, Ryan, 341
data publishing, with Comet, 338
data streaming, 293–339. See also Comet;

polling, for data; server connections;
tddjs.ajax.poller

with Comet, 314–315, 321–338
long polling for, 315–320
polling for, 294–313
server connections and, 329–338
with Server Push, 293
TDD and, 293

Date.formats.j method, 14
Date.prototype.strftime, 7

JsTestDriver, 47–48
day of year calculations, 15

debugging
assertions and, 9
with automated testing, 3

decoupled code, 22
decrementing functions, 84
dedicated respond method, 383
dependencies, 37
Dojo libraries, 40
domain models, for Node.js, 358–366
addMessage in, 361–363
asynchronous interfaces, 358
bad data in, 359–361
callbacks in, 358
chart room creation, 358
getMessageSince method,

363–365
I/O interface, 358
messages in, 359–366
usernames in, 359–361

DOM events, 42, 207–208
in benchmarks, 68
in bottlenecks, 69
feature detection in, 207–208
feature testing in, 207–208
in IE, 207
in lightbox objects, 94
observer patterns and, 220

DOM manipulation, 389–434. See also chat
client model, for DOM manipulation;
message forms; message lists, with DOM
manipulation; user forms

approaches to, 390–391
chat client model with, 429–434
client display, 391
directory structure for, 390
JsTestDriver configuration in, 390
message forms with, 422–429
message lists with, 411–421
MVC and, 391
MVP and, 391
passive view and, 391
static files in, 408–411
TDD and, 389–434
user forms and, 392–408

done method, 346
DontDelete attribute, 126
DontEnum attribute, 126–128

IE, 127
overriding properties for, 127

dot notation, 118
dummy objects, 441

484 Index

duplication
with AJAX, 292
with controllers, 350, 353
status testing, for APIs, 274–275
in TDD, 28
test removal, 229–230
with unit test, 467–468
for XMLHttpRequest object, 253

E
Eclipse, 49–51

JsTestDriver installation, 49–50
running tests, 50–51

ECMA-262, 58, 118
constructors and, 136
properties and, 126
prototypal inheritance and, 138
in prototype chains, 119

ECMAScript 5, 25, 58, 159–176. See also strict
mode, in ECMAScript 5

ActionScript and, 159
additions to, 174–176
arrays in, 175–176
backwards compatibility in, 159–160
browser extensions in, 160
Circle hybrid in, 168–169
empowered properties, 162
Enumerable module and, 161
in execution contexts, 81
Firefox and, 160
Function.prototype and, 95
Function.prototype.bind method

in, 175
get function, 161
getters in, 166–167
in global object, 82
Google Chrome and, 160
improvements to, 174–176
JScript.Net and, 159
JSON in, 175
name/value assignment in, 161–162
Object.create method in,

165–168
object models and, 161–171
Object.seal implementation

in, 163
property attributes, 161–163, 167–170
property descriptor changes in, 162
prototypal inheritance in, 164–166
reserved keywords in, 170–171

server connections and, 333
set function, 161
setters in, 166–167
shortcuts in, 164
standard codification for, 160
strict mode in, 160, 171–174
tddjs.extend method and, 156
this keyword and, 90–91
writable function, 161

encapsulation, 145–150
private members and, 147–148
private methods and, 145–147
privileged methods and, 147–148
radius property in, 148

Enumerable module, 157–158
Array.prototype in, 157
in ECMAScript 5 object models, 161

enumerable properties, 122–126
looping arrays, 123
Object.prototype.hasOwnProperty,

124–126
running tests with, 123

env.js library, 42
errback conventions, in Node.js, 358
error handling, 232–235

with ajax.cometClient, 325–327
bogus observer additions and,

232–233
call order documentation and, 234–235
forever frames and, 314
misbehaving observers and, 233–234

event emitters, 372–378
addMessage with, 374
chatRoom with, 372–375
getMessageSince method, 376
waitForMessagesSince method,

375–378
event handlers, 102–103

controllers and, 352
cross-browsers, 210–213
handleSubmit method, 397–398
in object detection, 201
tabController object in, 187–188
unit tests and, 466
in unobtrusive JavaScript, 179
in user forms, 394–395

event listeners, 394–398
application code for, 394–395

events. See arbitrary events; cross-browser event
handling; event handlers

execution context, 80–81

Index 485

ECMAScript specification, 81
this keyword and, 88
variable object in, 81–82

expression, functions, 74–75, 84–87
anonymous, 74
conditional declarations in, 85
conditional definitions in, 85
feature detection and, 85
hoisting in, 85
named, 75, 86–87
punctuation for, 75
String.prototype.trim method and, 85

F
Facebook, 294
failure callbacks, 310–311
fake objects, 440–441
feature detection, 85, 197–215

Browser sniffing, 199–207
for Comet, 338
for cross-browser event handling, 210–213
in DOM events, 207–208
IE browsers and, 213
for long polling, 320
for message forms, 428–429
for message lists, 420
script production in, 215
self-testing code, 215
in strftime, 214
stubbing and, 263
undetectable features, 214
uses of, 213–214
for XMLHttpRequest object, 254

Fibonacci sequence, 112–114
alternative versions of, 113

Firebug, 68–69
console.log method in, 76
profiler for, 69

Firefox
ECMAScript 5 and, 160
integration tests with, 270–271

for, as enumerable property, 123
forever frames, 314–315

error handling and, 314
for-in, as enumerable property, 123–124
format specifiers, 15–16
Fowler, Martin, 17, 391
functional inheritance, 148–150

definition of, 148
durable objects and, 149
implementation of, 148–149

object extension in, 149–150
patterns, 149
private variables with, 150
Sphere.prototype and, 150

Function.prototype, 65–66, 75–78
apply method, 75, 77
binding functions and, 95–96
call method, 75, 77
ECMAScript 5 and, 95
function creation, 77

Function.prototype.bind method, 175
Function.prototype.inherit functions,

152–153
functions, 73–91. See also anonymous function

expression; arguments object; binding
functions; expression, of functions; stateful
functions; this keyword

activation object and, 82
anonymous proxy, 95
arguments object and, 77–80
assert, 74
binding, 93–100
calling of, 77–80
closure and, 84
declarations of, 73–74
decrementing, 84
definitions of, 73–77
execution contexts, 80–81
expression of, 74–75, 84–87
formal parameters of, 74
free variables, 84
Function.prototype, 75–78
global object and, 82–83
hoisting of, 82, 85
incrementing, 84
length property, 76
Object.prototype, 75
scope, 80–84
stateful, 107–112
this keyword, 87–91

function scope, 80

G
Geisendörfer, Felix, 408
getMessageSince method, 363–365

addition of, 364
message retrieval testing with, 363–365
with promises, 372
proxy for, 376

getPanel function, 193–195
toggles in, 193–194

486 Index

GET requests, 255–268
automated stubbing and, 258–260, 262–263
controllers and, 380–386
formatting messages with, 383–385
improved stubbing and, 261–263
manual stubbing and, 257–258
onreadystatechangehandler, 263–268
POST requests and, 285–287
respond method, 382–384
stubbing, 257–263
tddjs.ajax.create object and, 255
URL requirement for, 255–256

getters, 166–167
Giammarchi, Andrea, 208
global object, 82–83
Array.prototype and, 122
ECMAScript in, 82
property assignment in, 83
this keyword in, 88
window and, 83

global scope, 80, 101–102
Gmail, unobtrusive JavaScript in, 184
Gnome Shell, 160
Google Chrome, 160
green, as symbol for success in unit testing, 10
GTalk, 294

H
handleSubmit method, 397–398, 401–402,

404
message forms and, 425

hard-coding, 27, 225–226
in addObserver method, 227
for arrays, 225
for inputs, 27
for outputs, 27

headers, in data polling, 308–311
bogus, 308
passing on, 309

headless testing frameworks, 41–42
crosscheck, 42
DOM implementation, 42
env.js library, 42
issues with, 42
Rhino, 42

Heilmann, Chris, 178
hoisting, of functions, 82, 85
host objects, 202–204

callable, 203–204
ECMAScript specification in, 202
feature detection in, 204

in IE, 202
unfriendly, 203

HTML5 streaming, 315
Hypertext Markup Language (HTML), 269–271

in Comet, streaming for, 315
integration testing, 269–271
in JsTestDriver, 400
in static files, 409–410
in unobtrusive JavaScript, 177
user form embedding with, 400–401

I
IDE. See integrated development environment
IE. See Internet Explorer
immediately called anonymous functions,

101–107
ad hoc scopes and, 101–103
punctuation and, 101

improved stubbing, 261–263
in-browser test frameworks, 37–43. See also

YUI test
disadvantages of, 42–43
Dojo, 40
headless, 41–42
JsTestDriver, 43–51
JsUnit, 37, 40
Prototype.js, 40
QUnit, 40
URL query string, 37
YUI test, 38–40

incrementing functions, 84
inheritance models, 119–120
Object.create method, 151

inputs
for hard-coding, 27
in TDD, 24–25

instanceof operators, 136
integrated development environment (IDE), 17,

49–51. See also Eclipse
Eclipse, 49–51
IntelliJ IDEA, 49
JsTestDriver, 49–51

integration tests, 14–16
for APIs, 269–271
Date.formats.j method, 14
for day of year calculations, 15
with Firefox, 270–271
format specifiers in, 15–16
high-level, 14
HTML document testing, 269
script for, 269–270

Index 487

IntelliJ IDEA, 49
Internet Explorer (IE), 127–128
addObserver method, 228
DOM events in, 207
DontEnum attribute in, 127
feature detection and, 213
host objects in, 202
named function expressions in, 86–87
Object.defineProperty in, 166
XMLHttpRequest object and, 252

I/O interfaces, 358
iterators, 109–112

closures, 109
functional approach to, 111–112
looping with, 112
tddjs.iterator method, 109–111

J
Jar file, 44–45

on Linux, 45
starting servers, 45–46
for Windows users, 45

JavaScript. See also Asynchronous JavaScript
and XML; Node.js; unobtrusive JavaScript

ECMAScript 5 in, 25
JsLint, 474
Mozilla, 58
observer pattern in, 220–221
programming of, 58–59
unit tests, 55–60
unobtrusive, 177–196
writing cross-browser code in, 197

JavaScriptCore, 58
JavaScript dates, 5–9
strftime for, 5–9

jQuery
performance tests, 69
tabbed panels, 196
in unobtrusive JavaScript, 195–196

JScript.Net, 58, 159
JsLint, 474
JSON, support for, 175

in Comet, 322
controllers, in Node.js, 347–350
server connections and, 331, 333–334

JsTestDriver, 43–52. See also Jar file
AJAX and, 249–250
assertions, 51–52
browser capture for, 46
in browsers, 43
command line productivity, 51

configuration files for, 249–250
configuration for, 48
Date.prototype.strftime, 47–48
disadvantages of, 44
in DOM manipulation, 390
functions of, 43–44
HTML in, 400
IDE, 49–51
Jar file, 44–45
Linux testing, 48
load paths, 46
observer patterns and, 221
OSX testing, 48
plug-ins, 43
polling data and, 295
project layout for, 249–250
running tests for, 46–48
server connections and, 333
setup, 44–49
starting servers for, 45–46
TDD and, 48–49
timer testing, 303–308
uid’s and, 108
updating of, 262
user form configurations, 404
Windows testing for, 48

JsUnit
in In-Browser test frameworks, 37
testing frameworks, 4, 37, 40
timer testing, 303–304

L
learning tests, 56, 59–60

bugs and, 59
frameworks, 60
new browsers, 59
wisdom from, 59

lightbox objects, 93–95
ad hoc scopes and, 101–102
ajax.loadFragment method, 94
pseudo code for, 94

Linux
ECMAScript 5 and, 160
Jar file on, 45
JsTestDriver testing, 48

load paths, 46–47
local requests, 273–274

success handler for, 273–274
URLs and, 274

long polling, 315–320
cache issues with, 319–320

488 Index

long polling (Continued)
feature tests for, 320
implementation of, 316–319
low latency from, 316
stubbing dates with, 316–319

looping properties, 128–130
ajax.cometClient, 327

M
manual stubbing, 257–258
memoization, 112–115

argument serialization in, 114
definition of, 112
Fibonacci sequence in, 112–114
general methods, 113–114
limiting of, 114

messageFormController, 424
message forms, 422–429

acquisition of, 428
in chat client model, 429
for current users, 426–428
empty function additions in, 426
extraction of, 423
feature tests for, 428–429
handleSubmit method and, 425
message clearance in, 433
message form controllers and, 422
messageFormController with, 424
publishing of, 425–428
refactoring of, 423–425
setModel moving in, 425
TDD and, 428
test setup with, 422
userFormController with, 423–424
view setting with, 422–425

messageListController, 412
message lists, with DOM manipulation,

411–421
addMessage with, 413–414
bootstrap scripts and, 421
controller definition with, 411–412
feature tests for, 420
initialization of, 420–421
message addition to, 416–418
messageListController, 412
model setting, 411–414
node lists and, 419
observe method with, 413
reference storage with, 417
repeated messages in, 418–420
scrolling of, 432

setModel in, 413
setView method and, 393, 414–416
subscription to, 412–414
user additions, 416
user tracking in, 419
view settings, 414–416
XSS protection in, 418

Meszaros, Gerard, 440
misbehaving observers, 233–234

exceptions, 234
mixins, 157–158

definition of, 157
Enumerable module and, 157–158

mocks, 453–458
ajax.poll, 453
anonymous, 454
automatic verification of, 454
behavior verification with, 457,

470–472
definition of, 453
dependency silencing by, 457
method restoration of, 453–454
multiple expectations of, 455–456
notify method and, 454
in POST requests, 284
stubs v., 457–458
for tddjs.ajax.poller, 298–299
this value, 456

Model-View-Controller (MVC), 391
Model-View-Presenter (MVP), 391

axis for, 391
components for, 391
passive view in, 391

module patterns, 107
mouseover events, 184
Mozilla, 58
MVC. See Model-View-Controller
MVP. See Model-View-Presenter

N
named function expressions, 75

in Internet Explorer, 86–87
namespace method, 187
namespaces, 103–107

for AJAX, 256, 290
custom creation of, 106
definition of, 105–106
functions of, 104–105
implementation of, 104–106
importing, 106–107
in libraries, 104

Index 489

native, 103
objects as, 103–104
for XMLHttpRequest object, 251

name tabbed panels, 182
name tests, 462
native objects, 202–204

ECMAScript specification in, 202
nested callbacks, 367
new operators, 131–132
Node.js, 341–387. See also controllers; domain

models, for Node.js; promises, with
Node.js

access tokens in, 381–382, 385–386
assertions for, 347
controllers with, 345–357, 378–386
directory structure for, 342–343
domain models, 358–366
environments for, setting up, 342–343
event emitters, 372–378
events with, 342
framework testing for, 343
HTTP server, 344
message filters, 381–382
nested callbacks and, 367
node-paperboy, 408–409
promises with, 367–372
respond method with, 382–383
runtime, 341–344
servers with, 343–344
starting point for, 343–344
startup scripts for, 344
static files, 408–411
storage for, 358–366
stubbing and, 452
test scripts for, 343

node lists, 419
node-paperboy, 408–409
notify method, 243–245

arguments for, 243
implementation of, 245
mocks and, 454
relevant observers for, 243–244
storage of, 244–245
testing for, 244
updating of, 245

O
object(s), 117–136, 150–157. See also arbitrary

objects; private methods, for objects
arbitrary, 235–241
arguments, 153

circle, 152
composition, 150–157
from constructors, 130–132, 239–240
direct inheritance in, 151
ECMA-262, 118
encapsulation of, 145–150
in functional inheritance, 149–150
information hiding and, 145–150
inspection of, 131
mixins, 157–158
new operators, 131–132
Object.create method, 151–153
object literals, 117–118
Object.prototype.hasOwnProperty,

125
observable, 239–240
private methods for, 145–147
prototype chains, 119–122
prototypes, 130–135
radius property, 131
sphere, 151–152
in strict mode, 174
tddjs.extend method, 153–157

Object.create method, 151–153, 168–169
direct inheritance in, 151
ECMAScript 5 and, 165–166, 167–168
for function creation, 169–170
Function.prototype.inherit

function, 152–153
implementation of, 152, 165–166
inheritance models, 151
with properties, 165

Object.defineProperty, 166
object detection, in browser sniffing,

199–206
addEventHandler method and, 206
event handling in, 201
host objects and, 202–204
individual features of, 200
native objects and, 202–204
premise of, 200
purposes of, 200–206
sample use testing in, 204–206
strftime and, 204–206
testing of, 201
type checking in, 201–202

object literals, 117–118
object model, ECMAScript 5 and, 161–171
Circle hybrid in, 168–169
empowered properties, 162
Enumerable module and, 161

490 Index

object model, ECMAScript 5 and (Continued)
get function, 161
getters in, 166–167
name/value assignment in, 161–162
Object.create method in, 165–168
Object.seal implementation in, 163
property attributes, 161–163, 167–170
property descriptor changes in, 162
prototypal inheritance in, 164–166
reserved keywords in, 170–171
set function, 161
setters in, 166–167
shortcuts in, 164
writable, 161

Object.prototype, 75, 120–121
Object.prototype.hasOwnProperty,

124–126
browsers in, 125
loop qualification, 124
objects in, 125

Object.seal method, 163
observable objects, 239–240

with Comet, 321
observe method, 241–242

call updating, 241–242
formal parameters for, 242
message lists, 413

observer notification, 230–232
calls, 230–231
passing arguments in, 231–232

observer pattern, 219–246. See also arbitrary
objects; bogus observers; error handling;
observer notification

adding constructors in, 223
adding observers to, 222–225
addObserver method with, 224–230
for arbitrary events, 241–246
for arbitrary objects, 235–241
arrays in, 224–225
code writing for, 220
configuration files with, 221
definition of, 219
directory layouts in, 221
DOM events and, 220
environment setting for, 221
error handling in, 232–235
in JavaScript, 220–221
JsTestDriver and, 221
Observable constructors with, 222
observe method, 241–242
observer notification, 230–232

refactoring with, 17, 225–226, 229–230
roles within, 219–220
search results for, 220
stubbing and, 445
testing, 222–225

observers, with ajax.cometClient,
325–329

addition of, 327–329
saving of, 328
testing of, 328
type checking of, 329

obsolete constructors, 236–238
addObserver method and, 237
array definition with, 238
emptying of, 238

one-liners, 311–313
poller interfaces, 311
start method and, 312–313
URLs and, 313

onreadystatechangehandler, 263–268
AJAX and, 266–267
anonymous closure of, 267
assignment verification for, 264
callbacks for, 266–268
empty, 264
handling of, 265–268
send method, 264–265
testing of, 265–268

open method, 259–260
OSX, JsTestDriver testing for, 48
outputs

in hard-coding, 27
in TDD, 24–25

P
passing arguments, 231–232

test confirmation and, 231
performance tests, 60–69

benchmarks, 60–69
bottlenecks, 68–69
closures, 60
footprints for, 63
jQuery, 69
relative performance of, 60–69
setTimeout calls, 63
YUI, 63

Plug-ins, for JsTestDriver, 43
polling, for data, 294–313. See also

tddjs.ajax.poller
callbacks and, 308–311
directory layout in, 294

Index 491

in Facebook, 294
final version of, 313
in GTalk, 294
headers and, 308–311
jsTestDriver and, 295
load order with, 295
one-liners and, 311–313
project layout in, 294–295
with server connections, 330, 334
with tddjs.ajax.poller,

295–302
timer testing, 303–308

post method, 378–380
closing connections with, 379
response times with, 380
verification delay with, 379

POST requests, 277–287
assertions in, 283
configuration methods with, 278–279
copy-pasting for, 278
cropping, 280
data additions, 286–287
data handling functions in, 284–285
data transport for, 282–287
delegation to, 281
encoding data in, 283–285
expectation of, 281
extraction of data in, 278, 285
GET requests and, 285–287
implementation of, 277–281
introductions for, 281
method call changes for, 280
mocking in, 284
Node.js messages, 347–354
ReadyStateHandlerTest, 280
setting headers for, 287
string encoding with, 282
stubbing in, 284
in TDD, 279
test cases for, 279–280
updating of, 280
URLs and, 282, 285

private methods, for objects, 145–147
closures and, 145
definition of, 145–146
function object creations in, 147
inside constructors, 146–147

promises, with Node.js, 367–372
addMessage refactoring, 367–371
consumption of, 371–372
definition of, 367

getMessageSince method
with, 372

grouping of, 371–372
nested callbacks, 367
rejection of, 369–370
resolution of, 370–371
resolve method with, 367
returning, 368–369
test conversion with, 371
then method with, 369

properties, prototypal inheritance and,
117–130

access, 118–119
attributes, 126–130
DontDelete attribute for, 126
DontEnum attribute for, 126–128
dot notation in, 118
ECMA-262 and, 126
enumerable, 122–126
inheritance, 120–121
looping, 128–130
names, with spaces, 119
ReadOnly attribute for, 126
shadowing, 120–121
square bracket notation in, 118
test methods for, 119
toString method and, 119
values for, 120
whitespace and, 118

property identifiers, reserved keywords and,
170–171

prototypal inheritance, 117–130, 136–144, 158.
See also functional inheritance; _super
method

access in, 138–139
Circle.prototype, 136–137
ECMA-262 and, 138
in ECMAScript 5, 164–166
functional, 148–150, 158
functions, 137–138
implementation of, 138
properties and, 117–130
specifications for, 137
Sphere.prototype, 136–137
super, as concept, 139–144
_super method, 140–143
surface area calculations for, 139–140

prototype chains, 119–122
Array.prototype, 121–122
ECMA-262 specification in, 119
inheritance models, 119–120

492 Index

prototype chains, (Continued)
object extension through, 121–122
Object.prototype, 120–121

Prototype.js library, 40
prototypes, 130–135
Circle.prototype, 132–134, 136–137,

143
constructors, 130, 132
property additions to, 132–135

Q
QUnit testing frameworks, 40

R
radius property, 131

in encapsulation, 148
ReadOnly attribute, 126
ReadyStateHandlerTest, 280
red, as symbol for failure in unit testing, 10
refactoring, 17, 225–226, 229–230

with addMessage, 367–371
with addObserver method, 225
with AJAX, 292
arrays for, 226
duplicated test removal, 229–230
hard-coding and, 225–226
of message forms, 423–425
method renaming and, 17
in notify method, 245
with observer pattern, 17
TDD and, 28
test failure and, 17
unit tests, 17

regression testing, 16
renaming methods, 240–241
reserved keywords, 170–171

property identifiers and, 170–171
Resig, John, 42
resolve method, 367
respond method, 382–384, 386

dedicated, 383
initial tests for, 382–384

response codes, 355
Reverse Ajax, 314
Rhino, 42

S
saboteurs, 445
scope, 80–84

Ad Hoc, 101–103
blocking of, 80
chains in, 83–84

function, 80, 82
global, 80, 101–102

scope chain, 83–84
decrementing functions, 84
incrementing functions, 84

scrolling, 431–432
of message lists, 432
stubbing in, 432

send method
onreadystatechangehandler and,

264–265
server connections, 329–338

callbacks with, 333
concerns with, 334–338
custom headers with, 336
data dispatching with, 332–334
ECMAScript5 and, 333
exceptions to, 331
JSON data and, 331, 333–334
JsTestDriver and, 333
missing URLs and, 331
obtaining of, 329
polling for, 330, 334
request headers with, 337
response data in, 332
tokens with, 336

Server Push, 293
setModel additions, 402

with message forms, 425
with message lists, 413

setters, 166–167
setTimeout calls, 63
setTimout method, binding

arguments, 97
setUp function, xUnits and, 35
setUp method, 13–14
setView method, 393, 414–416

compliant, 415
single responsibility principle, 30–31
sleep function, 35
slice function, 153
sphere objects, 151–152
Sphere.prototype, 136–137
Circle.prototype and, 138
functional inheritance and, 150
implementation of, 143
_super method, 143
testing for, 137

spliced arrays, 57
square bracket notation, 118
start method, 296–298

Index 493

additions of, 297
definition for, 297
one-liners and, 312–313
polling for data and, 312–313

stateful functions, 107–112. See also iterators
generating uid’s, 107–109
iterators, 109–112
memoization, 112–115
module patterns, 107

state verification, of test doubles, 442
static files, 408–411

bootstrap scripts and, 410–411
callbacks and, 409
chapp’s servers and, 409
CSS files, 410
HTML in, 409–410

status codes, 354–355
status testing, for APIs, 274–277

coding in, 276–277
duplication reduction and, 274–275
fake requests and, 275
request helpers for, 275–276
success/failure callbacks and, 277
TDD and, 276

storage
with message lists, 417
for Node.js, 358–366
of notify method, 244–245
for uid’s, variable states, 109
unit tests and, 4
in user forms, 403

strftime, 5–9
Date.prototype.strftime, 7
defining of, 205
feature detection in, 214
Firebug session and, 7
implementation of, 205–206
object detection and, 204–206
restructuring of, 12
starting point for, 5–6
test cases with, 12
test pages with, 8
use of, 205–206
YUI test and, 38–40

strict mode, in ECMAScript 5, 160, 171–174
changes, 172–174
enabling of, 171–172
formal parameters in, 172–173
functions in, 172–174
global object, 171
implicit globals in, 172

local, 171–172
objects in, 174
properties in, 174
restrictions in, 174
variables in, 174

String.prototype.trim method, 24–25
function expression and, 85
successful testing of, 27, 29
test failure and, 25

stubbing, 257–263, 443–445, 447–452
AJAX and, 248–249
automated, 258–260, 262–263
behavior verification with, 451–452,

470–472
code paths from, 444–445
with controllers, 348–349, 353
Date, 316–319
DOM and, 444
feature detection and, 263
global methods and, 448
improved, 261–263
inconvenient interfaces and, 444
libraries, 447–452
with long polling, 316–320
manual, 257–258
mocks v., 457–458
Node.js and, 452
Observer pattern and, 445
in POST requests, 284
saboteurs, 445
in scrolling, 432
for tddjs.ajax.poller, 298–299
test doubles and, 443–445, 447–452
testing timers and, 303, 305
test spies with, 445–446
throwaway, 448
with user forms, 397, 403
with waitForMessagesSince method,

375–376
of XMLHttpRequest object, 248–249,

257–263
stubbing Date, 316–319

fixed output constructors, 316
intervals between, 318
requests with, 317
testing with, 317–319
timers and, 318–319

stub helper, 259
stub libraries, 447–452

automatic management with, 449–450
automatic restoring of, 450

494 Index

stub libraries, (Continued)
functions of, 448
manual spying with, 448–449
methods, 448–450
Observer patterns and, 447

success callbacks, 309–310
passing of, 310

SUnit, 5
super, as concept, 139–144
_super method, 140–143
Circle.prototype, 143
helper functions, 143–144
implementation of, 142, 144
performance of, 143
Sphere.prototype, 143
testing of, 141
try-catch and, 143

T
tabbed panels, 179–182, 185–196
activateTab method, 190–192
class names in, 186–187
clean markup for, 181–182
getPanel function in, 194–195
jQuery, 196
name, 182
namespace method and, 187
shared setUp, 186
styles for, 182
tabController object, 187–190
tab controllers in, 192–196
tddjs.extend method and, 187
in TDD projects, 185
testing for, 186–187

tabController object, 187–190
behaviors of, 189
DOM event listener, 188–189
event handlers in, 187–188
implementation of, 188, 190
test cases for, 188

tab controllers, 192–196
getPanel function in, 193–195

TDD. See test-driven development
tddjs.ajax.create object, 253–254

Get requests and, 255
tddjs.ajax.poller, 295–302

callbacks and, 300–302
definition of, 296
exceptions for, 297
expectations of, 296
object definition with, 296

requests for, 299–300
running tests in, 300
start method for, 296–298
stubbing strategy for, 298–299
URLs, 297–299

tddjs.extend method, 153–157
arrays, 153
Boolean strings in, 156
dummy objects, 155
ECMAScript 3 and, 156
ECMAScript 5 and, 156
explicit borrowing in, 154
implementation of, 155
initial testing in, 154–155
method collection in, 154
null method, 155–156
single arguments in, 156
slice functions, 153
sources in, 156
tabbed panels and, 187

tddjs.iterator method, 109–111
implementation of, 110–111

tearDown function, in xUnits, 35
tearDown method, 13–14, 307
testability, of unit tests, 18
testCase function, 11–12
test coverage report, 36
test doubles, 439–459. See also stubbing

definition of, 439
dummy objects and, 441
fake objects and, 440–441
mocks and, 453–458
overview of, 439–441
real-life comparisons to, 440
stubbing and, 443–445, 447–452
verification of, 441–443

test-driven development (TDD), 21–31
acceptance of, 34
AJAX and, 292
APIs and, 247
autotesting in, 30
BDD and, 34
benefits of, 30–31
clean code in, 28
conscious development in, 31
data streaming and, 293
decoupled code in, 22
design, 22–23
development cycle changes for, 22
DOM manipulation and, 389–434
duplication, 28

Index 495

ECMAScript 5 in, 25
facilitation of, 29–30
goals of, 21
hard-coding in, 27
inputs for, 24–25
JsTestDriver and, 48–49
message forms and, 428
outputs for, 24–25
POST requests and, 279
process of, 23–29
productivity boosts from, 31
purpose of, 21
refactoring, 28
sample code in, 22
single responsibility principle, 30–31
status testing and, 276
String.prototype.trim method and,

24–25
successful testing of, 26–27
in tabbed panels, 185
test failure for, 25
test-writing for, 24–25
unobtrusive JavaScript and, 182
workable code from, 30
YAGNI methodology for, 26

test functions, 11–12
testing. See automated testing
testing timers, with polling, 303–308

configurable intervals, 306–308
extraction with, 306
helper methods and, 304
JsUnit and, 303–304
new request scheduling, 304–306
required waits with, 306
running tests, 306
scheduling with, 305
stubbing and, 303, 305
tearDown methods, 307

test reports, 36
test runner, 35–36

test coverage reports for, 36
test reports for, 36

test spies, 445–447
detail inspection with, 446–447
indirect input testing with, 446

then method, 369
this keyword, 87–91

anonymous proxy function, 95
apply method and, 90
array methods for, 88
behaviors of, 87–88

binding functions and, 93–96
Boolean strings and, 89–90
calling functions and, 89
call method and, 89
circle object, 88
ECMAScript 5 mode, 90–91
execution contexts and, 88
explicit setting for, 89
in global objects, 88
implicit setting for, 88–89
mocks and, 456
primitives as, 89–91
summing numbers with, 90–91
values for, 88

throwaway stubs, 448
toString method, 119
try-catch, 143
Twitter, search feature for, 69
type checking, 201–202

features of, 201–202

U
uid’s. See unique IDs
unfriendly host objects, 203
uniform resource locators (URLs)

cache issues, 319–320
for Get requests, 255–256
local requests and, 274
one-liners and, 313
POST requests and, 282, 285
query string, 37
server connections and, 331
tddjs.ajax.poller and, 297–299

unique IDs (uid’s), 107–109
for addMessage, 362–363
free variable storage states and, 109
implementation of, 108–109
JsTestDriver and, 108
specification of, 107–108

unit tests, 4–10, 16–18, 461–475
Array.prototype.splice method,

56–58
assertions in, 465–466
asynchronous tests, 35
behavior verification, 465–466, 468–472
benefits of, 16–18
bugs in, 473–475
code breaking in, 474
Cross-Browser testing, 17
definition of, 4
disk storage and, 4

496 Index

unit tests (Continued)
domain specific test helpers and, 466
duplication with, 467–468
event handlers and, 466
exercise structure for, 464–465
formatting of, 464–465
functionality testing for, 57
green, as symbol for success in, 10
high-level abstractions in, 465–466
JavaScript, 55–60
JavaScript dates, 5–9
JsLint and, 474
learning tests and, 56
name tests for, 462
pitfalls of, 18
readability of, 462–468
red, as symbol for failure in, 10
refactoring, 17
regression, 16
scannability of, 462–463
setup structure for, 464–465
SUnit, 5
technical limitations of, 463–464
testability of, 18
test case functions, 463–464
verify structure for, 464–465
whitespace matching, 58–59
writing of, 57
writing of, 461–475
xUnits and, 5

unobtrusive JavaScript, 177–196
accessibility of, 178
assumptions in, 183–184
clean code in, 177
code decoupling in, 179
definition of, 177
event delegation in, 179
event handlers in, 179
extensibility of, 178
fallback solutions in, 183–184
flexibility of, 178
global footprint of, 183
in Gmail, 184
goals of, 177–178
isolation within, 183
jQuery in, 195–196
mouseover events in, 184
performance of, 178
progressive enhancement in, 182

robustness in, 178
rules of, 178–182, 184–185
semantic HTML in, 177
tabbed panels in, 179–182, 185–196
tabcontroller object in, 187–190
TDD and, 182
WCAG for, 184

URLs. See uniform resource locators
user agent sniffing, 198–199
userFormController, 423–424
user forms, 392–408

class additions to, 393–394
class removals to, 406
controller definitions in, 392–393
default action changes, 398–400
event handlers in, 394–395
event listener additions to, 394–398
handleSubmit method with, 397–398,

401–402, 404
HTML embeds with, 400–401
JsTestDriver configuration, 404
namespace method in, 187, 395
observer notifications with, 403–406
reference storage in, 403
setModel additions, 402
setUp code extraction, 396
setup sharing for, 399–400
setView method with, 393
stubbing with, 397, 403
submit events with, 398–407
test cases for, 392–393
test setup with, 405
usernames in, 401–403
view setting with, 392–398

usernames, 406–408
in domain models, 359–361
feature tests for, 407–408
rejection of, 406–407
in user forms, 401–403

user stories, 34

V
variable object, in execution context, 81–82
verification, of test doubles, 441–443

behavior, 442–443
implications of, 443
of mocks, 454
stages of, 441
state, 442

Index 497

W
waitForMessagesSince method, 375–378

listener additions in, 376–377
message listener implementation with, 377
resolution with, 375
stubbing with, 375–376

WCAG. See web content accessibility guidelines
web content accessibility guidelines (WCAG),

184
whitespace

matching, 58–59
properties and, 118

Windows
Jar file for, 45
JsTestDriver tests, 48

Windows Vista, benchmarks in, 61

X
XMLHttpRequest object, 247–254, 263–268.

See also long polling
Active X objects and, 252
background for, 251–253
browser inconsistencies with, 248
circular references with, 271–272
code duplication for, 253
in Comet, 315
creation of, 250–254
development strategy for, 248
extraction of, 262
feature detection for, 254
goals of, 248–249
IE and, 252
instantiation of, 252
interface style for, 250
long polling, 315–320
namespace creation for, 251

onreadystatechangehandler,
263–268

running tests for, 253
standards for, 251–252
stubbing of, 248–249, 257–263
support for, 254
testing of, 251

XSS protection. See cross site scripting
protection

xUnits, 5, 33, 35–37
assertions, 36
BDD, 33
dependencies, 37
setUp function in, 35
special values for, 36
tearDown function in, 35
test frameworks for, 35–36
test reports for, 36
test runner for, 35–36

Y
YAGNI methodology. See “You ain’t gonna need

it” methodology
“You ain’t gonna need it” (YAGNI)

methodology, 26
YUI test, 38–40

HTML fixture file, 38
as performance test, 63
for production code, 40
running tests, 40, 41
setup of, 38–40
strftime file, 38–40

Z
Zaytsev, Juriy, 207
Zyp, Kris, 367

	Contents
	Preface
	Acknowledgments
	About the Author
	3. Tools of the Trade
	3.1 xUnit Test Frameworks
	3.2 In-Browser Test Frameworks
	3.3 Headless Testing Frameworks
	3.4 One Test Runner to Rule Them All
	3.5 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	text:

